sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / drivers / video / fbdev / sa1100fb.c
blobfc2aaa5aca2347e705c6eb1623ec188b5262e498
1 /*
2 * linux/drivers/video/sa1100fb.c
4 * Copyright (C) 1999 Eric A. Thomas
5 * Based on acornfb.c Copyright (C) Russell King.
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file COPYING in the main directory of this archive for
9 * more details.
11 * StrongARM 1100 LCD Controller Frame Buffer Driver
13 * Please direct your questions and comments on this driver to the following
14 * email address:
16 * linux-arm-kernel@lists.arm.linux.org.uk
18 * Clean patches should be sent to the ARM Linux Patch System. Please see the
19 * following web page for more information:
21 * http://www.arm.linux.org.uk/developer/patches/info.shtml
23 * Thank you.
25 * Known problems:
26 * - With the Neponset plugged into an Assabet, LCD powerdown
27 * doesn't work (LCD stays powered up). Therefore we shouldn't
28 * blank the screen.
29 * - We don't limit the CPU clock rate nor the mode selection
30 * according to the available SDRAM bandwidth.
32 * Other notes:
33 * - Linear grayscale palettes and the kernel.
34 * Such code does not belong in the kernel. The kernel frame buffer
35 * drivers do not expect a linear colourmap, but a colourmap based on
36 * the VT100 standard mapping.
38 * If your _userspace_ requires a linear colourmap, then the setup of
39 * such a colourmap belongs _in userspace_, not in the kernel. Code
40 * to set the colourmap correctly from user space has been sent to
41 * David Neuer. It's around 8 lines of C code, plus another 4 to
42 * detect if we are using grayscale.
44 * - The following must never be specified in a panel definition:
45 * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
47 * - The following should be specified:
48 * either LCCR0_Color or LCCR0_Mono
49 * either LCCR0_Sngl or LCCR0_Dual
50 * either LCCR0_Act or LCCR0_Pas
51 * either LCCR3_OutEnH or LCCD3_OutEnL
52 * either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
55 * Code Status:
56 * 1999/04/01:
57 * - Driver appears to be working for Brutus 320x200x8bpp mode. Other
58 * resolutions are working, but only the 8bpp mode is supported.
59 * Changes need to be made to the palette encode and decode routines
60 * to support 4 and 16 bpp modes.
61 * Driver is not designed to be a module. The FrameBuffer is statically
62 * allocated since dynamic allocation of a 300k buffer cannot be
63 * guaranteed.
65 * 1999/06/17:
66 * - FrameBuffer memory is now allocated at run-time when the
67 * driver is initialized.
69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70 * - Big cleanup for dynamic selection of machine type at run time.
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 * - Support for Bitsy aka Compaq iPAQ H3600 added.
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 * Jeff Sutherland <jsutherland@accelent.com>
77 * - Resolved an issue caused by a change made to the Assabet's PLD
78 * earlier this year which broke the framebuffer driver for newer
79 * Phase 4 Assabets. Some other parameters were changed to optimize
80 * for the Sharp display.
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 * - XP860 support added
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 * - Allows standard options to be passed on the kernel command line
87 * for most common passive displays.
89 * 2000/08/29:
90 * - s/save_flags_cli/local_irq_save/
91 * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 * - Updated LART stuff. Fixed some minor bugs.
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 * - Pangolin support added
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 * - Huw Webpanel support added
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103 * - Freebird add
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 * Cliff Brake <cbrake@accelent.com>
107 * - Added PM callback
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 * - Fix 16bpp so that (a) we use the right colours rather than some
111 * totally random colour depending on what was in page 0, and (b)
112 * we don't de-reference a NULL pointer.
113 * - remove duplicated implementation of consistent_alloc()
114 * - convert dma address types to dma_addr_t
115 * - remove unused 'montype' stuff
116 * - remove redundant zero inits of init_var after the initial
117 * memset.
118 * - remove allow_modeset (acornfb idea does not belong here)
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 * - massive cleanup - move machine dependent data into structures
122 * - I've left various #warnings in - if you see one, and know
123 * the hardware concerned, please get in contact with me.
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 * - Fix LCCR1 HSW value, fix all machine type specifications to
127 * keep values in line. (Please check your machine type specs)
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 * - Fiddle with the LCD controller from task context only; mainly
131 * so that we can run with interrupts on, and sleep.
132 * - Convert #warnings into #errors. No pain, no gain. ;)
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 * - Make the palette BPS value for 12bpp come out correctly.
136 * - Take notice of "greyscale" on any colour depth.
137 * - Make truecolor visuals use the RGB channel encoding information.
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 * - Fix colourmap problems.
142 * 2001/07/13: <abraham@2d3d.co.za>
143 * - Added support for the ICP LCD-Kit01 on LART. This LCD is
144 * manufactured by Prime View, model no V16C6448AB
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 * - Hand merge version from handhelds.org CVS tree. See patch
148 * notes for 595/1 for more information.
149 * - Drop 12bpp (it's 16bpp with different colour register mappings).
150 * - This hardware can not do direct colour. Therefore we don't
151 * support it.
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 * - Halve YRES on dual scan LCDs.
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 * - Add b/w iPAQ pixclock value.
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 * - Add patch 681/1 and clean up stork definitions.
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/gpio.h>
177 #include <linux/platform_device.h>
178 #include <linux/dma-mapping.h>
179 #include <linux/mutex.h>
180 #include <linux/io.h>
181 #include <linux/clk.h>
183 #include <video/sa1100fb.h>
185 #include <mach/hardware.h>
186 #include <asm/mach-types.h>
187 #include <mach/shannon.h>
190 * Complain if VAR is out of range.
192 #define DEBUG_VAR 1
194 #include "sa1100fb.h"
196 static const struct sa1100fb_rgb rgb_4 = {
197 .red = { .offset = 0, .length = 4, },
198 .green = { .offset = 0, .length = 4, },
199 .blue = { .offset = 0, .length = 4, },
200 .transp = { .offset = 0, .length = 0, },
203 static const struct sa1100fb_rgb rgb_8 = {
204 .red = { .offset = 0, .length = 8, },
205 .green = { .offset = 0, .length = 8, },
206 .blue = { .offset = 0, .length = 8, },
207 .transp = { .offset = 0, .length = 0, },
210 static const struct sa1100fb_rgb def_rgb_16 = {
211 .red = { .offset = 11, .length = 5, },
212 .green = { .offset = 5, .length = 6, },
213 .blue = { .offset = 0, .length = 5, },
214 .transp = { .offset = 0, .length = 0, },
219 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
220 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
222 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
224 unsigned long flags;
226 local_irq_save(flags);
228 * We need to handle two requests being made at the same time.
229 * There are two important cases:
230 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
231 * We must perform the unblanking, which will do our REENABLE for us.
232 * 2. When we are blanking, but immediately unblank before we have
233 * blanked. We do the "REENABLE" thing here as well, just to be sure.
235 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
236 state = (u_int) -1;
237 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
238 state = C_REENABLE;
240 if (state != (u_int)-1) {
241 fbi->task_state = state;
242 schedule_work(&fbi->task);
244 local_irq_restore(flags);
247 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
249 chan &= 0xffff;
250 chan >>= 16 - bf->length;
251 return chan << bf->offset;
255 * Convert bits-per-pixel to a hardware palette PBS value.
257 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
259 int ret = 0;
260 switch (var->bits_per_pixel) {
261 case 4: ret = 0 << 12; break;
262 case 8: ret = 1 << 12; break;
263 case 16: ret = 2 << 12; break;
265 return ret;
268 static int
269 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
270 u_int trans, struct fb_info *info)
272 struct sa1100fb_info *fbi =
273 container_of(info, struct sa1100fb_info, fb);
274 u_int val, ret = 1;
276 if (regno < fbi->palette_size) {
277 val = ((red >> 4) & 0xf00);
278 val |= ((green >> 8) & 0x0f0);
279 val |= ((blue >> 12) & 0x00f);
281 if (regno == 0)
282 val |= palette_pbs(&fbi->fb.var);
284 fbi->palette_cpu[regno] = val;
285 ret = 0;
287 return ret;
290 static int
291 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
292 u_int trans, struct fb_info *info)
294 struct sa1100fb_info *fbi =
295 container_of(info, struct sa1100fb_info, fb);
296 unsigned int val;
297 int ret = 1;
300 * If inverse mode was selected, invert all the colours
301 * rather than the register number. The register number
302 * is what you poke into the framebuffer to produce the
303 * colour you requested.
305 if (fbi->inf->cmap_inverse) {
306 red = 0xffff - red;
307 green = 0xffff - green;
308 blue = 0xffff - blue;
312 * If greyscale is true, then we convert the RGB value
313 * to greyscale no mater what visual we are using.
315 if (fbi->fb.var.grayscale)
316 red = green = blue = (19595 * red + 38470 * green +
317 7471 * blue) >> 16;
319 switch (fbi->fb.fix.visual) {
320 case FB_VISUAL_TRUECOLOR:
322 * 12 or 16-bit True Colour. We encode the RGB value
323 * according to the RGB bitfield information.
325 if (regno < 16) {
326 u32 *pal = fbi->fb.pseudo_palette;
328 val = chan_to_field(red, &fbi->fb.var.red);
329 val |= chan_to_field(green, &fbi->fb.var.green);
330 val |= chan_to_field(blue, &fbi->fb.var.blue);
332 pal[regno] = val;
333 ret = 0;
335 break;
337 case FB_VISUAL_STATIC_PSEUDOCOLOR:
338 case FB_VISUAL_PSEUDOCOLOR:
339 ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
340 break;
343 return ret;
346 #ifdef CONFIG_CPU_FREQ
348 * sa1100fb_display_dma_period()
349 * Calculate the minimum period (in picoseconds) between two DMA
350 * requests for the LCD controller. If we hit this, it means we're
351 * doing nothing but LCD DMA.
353 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
356 * Period = pixclock * bits_per_byte * bytes_per_transfer
357 * / memory_bits_per_pixel;
359 return var->pixclock * 8 * 16 / var->bits_per_pixel;
361 #endif
364 * sa1100fb_check_var():
365 * Round up in the following order: bits_per_pixel, xres,
366 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
367 * bitfields, horizontal timing, vertical timing.
369 static int
370 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
372 struct sa1100fb_info *fbi =
373 container_of(info, struct sa1100fb_info, fb);
374 int rgbidx;
376 if (var->xres < MIN_XRES)
377 var->xres = MIN_XRES;
378 if (var->yres < MIN_YRES)
379 var->yres = MIN_YRES;
380 if (var->xres > fbi->inf->xres)
381 var->xres = fbi->inf->xres;
382 if (var->yres > fbi->inf->yres)
383 var->yres = fbi->inf->yres;
384 var->xres_virtual = max(var->xres_virtual, var->xres);
385 var->yres_virtual = max(var->yres_virtual, var->yres);
387 dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
388 switch (var->bits_per_pixel) {
389 case 4:
390 rgbidx = RGB_4;
391 break;
392 case 8:
393 rgbidx = RGB_8;
394 break;
395 case 16:
396 rgbidx = RGB_16;
397 break;
398 default:
399 return -EINVAL;
403 * Copy the RGB parameters for this display
404 * from the machine specific parameters.
406 var->red = fbi->rgb[rgbidx]->red;
407 var->green = fbi->rgb[rgbidx]->green;
408 var->blue = fbi->rgb[rgbidx]->blue;
409 var->transp = fbi->rgb[rgbidx]->transp;
411 dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
412 var->red.length, var->green.length, var->blue.length,
413 var->transp.length);
415 dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
416 var->red.offset, var->green.offset, var->blue.offset,
417 var->transp.offset);
419 #ifdef CONFIG_CPU_FREQ
420 dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n",
421 sa1100fb_display_dma_period(var),
422 clk_get_rate(fbi->clk) / 1000);
423 #endif
425 return 0;
428 static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
430 if (fbi->inf->set_visual)
431 fbi->inf->set_visual(visual);
435 * sa1100fb_set_par():
436 * Set the user defined part of the display for the specified console
438 static int sa1100fb_set_par(struct fb_info *info)
440 struct sa1100fb_info *fbi =
441 container_of(info, struct sa1100fb_info, fb);
442 struct fb_var_screeninfo *var = &info->var;
443 unsigned long palette_mem_size;
445 dev_dbg(fbi->dev, "set_par\n");
447 if (var->bits_per_pixel == 16)
448 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
449 else if (!fbi->inf->cmap_static)
450 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
451 else {
453 * Some people have weird ideas about wanting static
454 * pseudocolor maps. I suspect their user space
455 * applications are broken.
457 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
460 fbi->fb.fix.line_length = var->xres_virtual *
461 var->bits_per_pixel / 8;
462 fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
464 palette_mem_size = fbi->palette_size * sizeof(u16);
466 dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
468 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
469 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
472 * Set (any) board control register to handle new color depth
474 sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
475 sa1100fb_activate_var(var, fbi);
477 return 0;
480 #if 0
481 static int
482 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
483 struct fb_info *info)
485 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
488 * Make sure the user isn't doing something stupid.
490 if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
491 return -EINVAL;
493 return gen_set_cmap(cmap, kspc, con, info);
495 #endif
498 * Formal definition of the VESA spec:
499 * On
500 * This refers to the state of the display when it is in full operation
501 * Stand-By
502 * This defines an optional operating state of minimal power reduction with
503 * the shortest recovery time
504 * Suspend
505 * This refers to a level of power management in which substantial power
506 * reduction is achieved by the display. The display can have a longer
507 * recovery time from this state than from the Stand-by state
508 * Off
509 * This indicates that the display is consuming the lowest level of power
510 * and is non-operational. Recovery from this state may optionally require
511 * the user to manually power on the monitor
513 * Now, the fbdev driver adds an additional state, (blank), where they
514 * turn off the video (maybe by colormap tricks), but don't mess with the
515 * video itself: think of it semantically between on and Stand-By.
517 * So here's what we should do in our fbdev blank routine:
519 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
520 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
521 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
522 * VESA_POWERDOWN (mode 3) Video off, front/back light off
524 * This will match the matrox implementation.
527 * sa1100fb_blank():
528 * Blank the display by setting all palette values to zero. Note, the
529 * 12 and 16 bpp modes don't really use the palette, so this will not
530 * blank the display in all modes.
532 static int sa1100fb_blank(int blank, struct fb_info *info)
534 struct sa1100fb_info *fbi =
535 container_of(info, struct sa1100fb_info, fb);
536 int i;
538 dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
540 switch (blank) {
541 case FB_BLANK_POWERDOWN:
542 case FB_BLANK_VSYNC_SUSPEND:
543 case FB_BLANK_HSYNC_SUSPEND:
544 case FB_BLANK_NORMAL:
545 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
546 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
547 for (i = 0; i < fbi->palette_size; i++)
548 sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
549 sa1100fb_schedule_work(fbi, C_DISABLE);
550 break;
552 case FB_BLANK_UNBLANK:
553 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
554 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
555 fb_set_cmap(&fbi->fb.cmap, info);
556 sa1100fb_schedule_work(fbi, C_ENABLE);
558 return 0;
561 static int sa1100fb_mmap(struct fb_info *info,
562 struct vm_area_struct *vma)
564 struct sa1100fb_info *fbi =
565 container_of(info, struct sa1100fb_info, fb);
566 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
568 if (off < info->fix.smem_len) {
569 vma->vm_pgoff += 1; /* skip over the palette */
570 return dma_mmap_wc(fbi->dev, vma, fbi->map_cpu, fbi->map_dma,
571 fbi->map_size);
574 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
576 return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
579 static struct fb_ops sa1100fb_ops = {
580 .owner = THIS_MODULE,
581 .fb_check_var = sa1100fb_check_var,
582 .fb_set_par = sa1100fb_set_par,
583 // .fb_set_cmap = sa1100fb_set_cmap,
584 .fb_setcolreg = sa1100fb_setcolreg,
585 .fb_fillrect = cfb_fillrect,
586 .fb_copyarea = cfb_copyarea,
587 .fb_imageblit = cfb_imageblit,
588 .fb_blank = sa1100fb_blank,
589 .fb_mmap = sa1100fb_mmap,
593 * Calculate the PCD value from the clock rate (in picoseconds).
594 * We take account of the PPCR clock setting.
596 static inline unsigned int get_pcd(struct sa1100fb_info *fbi,
597 unsigned int pixclock)
599 unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000;
601 pcd *= pixclock;
602 pcd /= 10000000;
604 return pcd + 1; /* make up for integer math truncations */
608 * sa1100fb_activate_var():
609 * Configures LCD Controller based on entries in var parameter. Settings are
610 * only written to the controller if changes were made.
612 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
614 struct sa1100fb_lcd_reg new_regs;
615 u_int half_screen_size, yres, pcd;
616 u_long flags;
618 dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
620 dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
621 var->xres, var->hsync_len,
622 var->left_margin, var->right_margin);
623 dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
624 var->yres, var->vsync_len,
625 var->upper_margin, var->lower_margin);
627 #if DEBUG_VAR
628 if (var->xres < 16 || var->xres > 1024)
629 dev_err(fbi->dev, "%s: invalid xres %d\n",
630 fbi->fb.fix.id, var->xres);
631 if (var->hsync_len < 1 || var->hsync_len > 64)
632 dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
633 fbi->fb.fix.id, var->hsync_len);
634 if (var->left_margin < 1 || var->left_margin > 255)
635 dev_err(fbi->dev, "%s: invalid left_margin %d\n",
636 fbi->fb.fix.id, var->left_margin);
637 if (var->right_margin < 1 || var->right_margin > 255)
638 dev_err(fbi->dev, "%s: invalid right_margin %d\n",
639 fbi->fb.fix.id, var->right_margin);
640 if (var->yres < 1 || var->yres > 1024)
641 dev_err(fbi->dev, "%s: invalid yres %d\n",
642 fbi->fb.fix.id, var->yres);
643 if (var->vsync_len < 1 || var->vsync_len > 64)
644 dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
645 fbi->fb.fix.id, var->vsync_len);
646 if (var->upper_margin < 0 || var->upper_margin > 255)
647 dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
648 fbi->fb.fix.id, var->upper_margin);
649 if (var->lower_margin < 0 || var->lower_margin > 255)
650 dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
651 fbi->fb.fix.id, var->lower_margin);
652 #endif
654 new_regs.lccr0 = fbi->inf->lccr0 |
655 LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
656 LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
658 new_regs.lccr1 =
659 LCCR1_DisWdth(var->xres) +
660 LCCR1_HorSnchWdth(var->hsync_len) +
661 LCCR1_BegLnDel(var->left_margin) +
662 LCCR1_EndLnDel(var->right_margin);
665 * If we have a dual scan LCD, then we need to halve
666 * the YRES parameter.
668 yres = var->yres;
669 if (fbi->inf->lccr0 & LCCR0_Dual)
670 yres /= 2;
672 new_regs.lccr2 =
673 LCCR2_DisHght(yres) +
674 LCCR2_VrtSnchWdth(var->vsync_len) +
675 LCCR2_BegFrmDel(var->upper_margin) +
676 LCCR2_EndFrmDel(var->lower_margin);
678 pcd = get_pcd(fbi, var->pixclock);
679 new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
680 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
681 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
683 dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
684 dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
685 dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
686 dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
688 half_screen_size = var->bits_per_pixel;
689 half_screen_size = half_screen_size * var->xres * var->yres / 16;
691 /* Update shadow copy atomically */
692 local_irq_save(flags);
693 fbi->dbar1 = fbi->palette_dma;
694 fbi->dbar2 = fbi->screen_dma + half_screen_size;
696 fbi->reg_lccr0 = new_regs.lccr0;
697 fbi->reg_lccr1 = new_regs.lccr1;
698 fbi->reg_lccr2 = new_regs.lccr2;
699 fbi->reg_lccr3 = new_regs.lccr3;
700 local_irq_restore(flags);
703 * Only update the registers if the controller is enabled
704 * and something has changed.
706 if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
707 readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
708 readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
709 readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
710 readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
711 readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
712 sa1100fb_schedule_work(fbi, C_REENABLE);
714 return 0;
718 * NOTE! The following functions are purely helpers for set_ctrlr_state.
719 * Do not call them directly; set_ctrlr_state does the correct serialisation
720 * to ensure that things happen in the right way 100% of time time.
721 * -- rmk
723 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
725 dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
727 if (fbi->inf->backlight_power)
728 fbi->inf->backlight_power(on);
731 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
733 dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
735 if (fbi->inf->lcd_power)
736 fbi->inf->lcd_power(on);
739 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
741 u_int mask = 0;
744 * Enable GPIO<9:2> for LCD use if:
745 * 1. Active display, or
746 * 2. Color Dual Passive display
748 * see table 11.8 on page 11-27 in the SA1100 manual
749 * -- Erik.
751 * SA1110 spec update nr. 25 says we can and should
752 * clear LDD15 to 12 for 4 or 8bpp modes with active
753 * panels.
755 if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
756 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
757 mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9 | GPIO_LDD8;
759 if (fbi->fb.var.bits_per_pixel > 8 ||
760 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
761 mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
765 if (mask) {
766 unsigned long flags;
769 * SA-1100 requires the GPIO direction register set
770 * appropriately for the alternate function. Hence
771 * we set it here via bitmask rather than excessive
772 * fiddling via the GPIO subsystem - and even then
773 * we'll still have to deal with GAFR.
775 local_irq_save(flags);
776 GPDR |= mask;
777 GAFR |= mask;
778 local_irq_restore(flags);
782 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
784 dev_dbg(fbi->dev, "Enabling LCD controller\n");
787 * Make sure the mode bits are present in the first palette entry
789 fbi->palette_cpu[0] &= 0xcfff;
790 fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
792 /* enable LCD controller clock */
793 clk_prepare_enable(fbi->clk);
795 /* Sequence from 11.7.10 */
796 writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
797 writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
798 writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
799 writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
800 writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
801 writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
802 writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
804 if (machine_is_shannon())
805 gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
807 dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
808 dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
809 dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
810 dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
811 dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
812 dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
815 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
817 DECLARE_WAITQUEUE(wait, current);
818 u32 lccr0;
820 dev_dbg(fbi->dev, "Disabling LCD controller\n");
822 if (machine_is_shannon())
823 gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
825 set_current_state(TASK_UNINTERRUPTIBLE);
826 add_wait_queue(&fbi->ctrlr_wait, &wait);
828 /* Clear LCD Status Register */
829 writel_relaxed(~0, fbi->base + LCSR);
831 lccr0 = readl_relaxed(fbi->base + LCCR0);
832 lccr0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
833 writel_relaxed(lccr0, fbi->base + LCCR0);
834 lccr0 &= ~LCCR0_LEN; /* Disable LCD Controller */
835 writel_relaxed(lccr0, fbi->base + LCCR0);
837 schedule_timeout(20 * HZ / 1000);
838 remove_wait_queue(&fbi->ctrlr_wait, &wait);
840 /* disable LCD controller clock */
841 clk_disable_unprepare(fbi->clk);
845 * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
847 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
849 struct sa1100fb_info *fbi = dev_id;
850 unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
852 if (lcsr & LCSR_LDD) {
853 u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
854 writel_relaxed(lccr0, fbi->base + LCCR0);
855 wake_up(&fbi->ctrlr_wait);
858 writel_relaxed(lcsr, fbi->base + LCSR);
859 return IRQ_HANDLED;
863 * This function must be called from task context only, since it will
864 * sleep when disabling the LCD controller, or if we get two contending
865 * processes trying to alter state.
867 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
869 u_int old_state;
871 mutex_lock(&fbi->ctrlr_lock);
873 old_state = fbi->state;
876 * Hack around fbcon initialisation.
878 if (old_state == C_STARTUP && state == C_REENABLE)
879 state = C_ENABLE;
881 switch (state) {
882 case C_DISABLE_CLKCHANGE:
884 * Disable controller for clock change. If the
885 * controller is already disabled, then do nothing.
887 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
888 fbi->state = state;
889 sa1100fb_disable_controller(fbi);
891 break;
893 case C_DISABLE_PM:
894 case C_DISABLE:
896 * Disable controller
898 if (old_state != C_DISABLE) {
899 fbi->state = state;
901 __sa1100fb_backlight_power(fbi, 0);
902 if (old_state != C_DISABLE_CLKCHANGE)
903 sa1100fb_disable_controller(fbi);
904 __sa1100fb_lcd_power(fbi, 0);
906 break;
908 case C_ENABLE_CLKCHANGE:
910 * Enable the controller after clock change. Only
911 * do this if we were disabled for the clock change.
913 if (old_state == C_DISABLE_CLKCHANGE) {
914 fbi->state = C_ENABLE;
915 sa1100fb_enable_controller(fbi);
917 break;
919 case C_REENABLE:
921 * Re-enable the controller only if it was already
922 * enabled. This is so we reprogram the control
923 * registers.
925 if (old_state == C_ENABLE) {
926 sa1100fb_disable_controller(fbi);
927 sa1100fb_setup_gpio(fbi);
928 sa1100fb_enable_controller(fbi);
930 break;
932 case C_ENABLE_PM:
934 * Re-enable the controller after PM. This is not
935 * perfect - think about the case where we were doing
936 * a clock change, and we suspended half-way through.
938 if (old_state != C_DISABLE_PM)
939 break;
940 /* fall through */
942 case C_ENABLE:
944 * Power up the LCD screen, enable controller, and
945 * turn on the backlight.
947 if (old_state != C_ENABLE) {
948 fbi->state = C_ENABLE;
949 sa1100fb_setup_gpio(fbi);
950 __sa1100fb_lcd_power(fbi, 1);
951 sa1100fb_enable_controller(fbi);
952 __sa1100fb_backlight_power(fbi, 1);
954 break;
956 mutex_unlock(&fbi->ctrlr_lock);
960 * Our LCD controller task (which is called when we blank or unblank)
961 * via keventd.
963 static void sa1100fb_task(struct work_struct *w)
965 struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
966 u_int state = xchg(&fbi->task_state, -1);
968 set_ctrlr_state(fbi, state);
971 #ifdef CONFIG_CPU_FREQ
973 * Calculate the minimum DMA period over all displays that we own.
974 * This, together with the SDRAM bandwidth defines the slowest CPU
975 * frequency that can be selected.
977 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
979 #if 0
980 unsigned int min_period = (unsigned int)-1;
981 int i;
983 for (i = 0; i < MAX_NR_CONSOLES; i++) {
984 struct display *disp = &fb_display[i];
985 unsigned int period;
988 * Do we own this display?
990 if (disp->fb_info != &fbi->fb)
991 continue;
994 * Ok, calculate its DMA period
996 period = sa1100fb_display_dma_period(&disp->var);
997 if (period < min_period)
998 min_period = period;
1001 return min_period;
1002 #else
1004 * FIXME: we need to verify _all_ consoles.
1006 return sa1100fb_display_dma_period(&fbi->fb.var);
1007 #endif
1011 * CPU clock speed change handler. We need to adjust the LCD timing
1012 * parameters when the CPU clock is adjusted by the power management
1013 * subsystem.
1015 static int
1016 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1017 void *data)
1019 struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1020 u_int pcd;
1022 switch (val) {
1023 case CPUFREQ_PRECHANGE:
1024 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1025 break;
1027 case CPUFREQ_POSTCHANGE:
1028 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1029 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1030 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1031 break;
1033 return 0;
1036 static int
1037 sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1038 void *data)
1040 struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1041 struct cpufreq_policy *policy = data;
1043 switch (val) {
1044 case CPUFREQ_ADJUST:
1045 dev_dbg(fbi->dev, "min dma period: %d ps, "
1046 "new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1047 policy->max);
1048 /* todo: fill in min/max values */
1049 break;
1050 case CPUFREQ_NOTIFY:
1051 do {} while(0);
1052 /* todo: panic if min/max values aren't fulfilled
1053 * [can't really happen unless there's a bug in the
1054 * CPU policy verififcation process *
1056 break;
1058 return 0;
1060 #endif
1062 #ifdef CONFIG_PM
1064 * Power management hooks. Note that we won't be called from IRQ context,
1065 * unlike the blank functions above, so we may sleep.
1067 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1069 struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1071 set_ctrlr_state(fbi, C_DISABLE_PM);
1072 return 0;
1075 static int sa1100fb_resume(struct platform_device *dev)
1077 struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1079 set_ctrlr_state(fbi, C_ENABLE_PM);
1080 return 0;
1082 #else
1083 #define sa1100fb_suspend NULL
1084 #define sa1100fb_resume NULL
1085 #endif
1088 * sa1100fb_map_video_memory():
1089 * Allocates the DRAM memory for the frame buffer. This buffer is
1090 * remapped into a non-cached, non-buffered, memory region to
1091 * allow palette and pixel writes to occur without flushing the
1092 * cache. Once this area is remapped, all virtual memory
1093 * access to the video memory should occur at the new region.
1095 static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1098 * We reserve one page for the palette, plus the size
1099 * of the framebuffer.
1101 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1102 fbi->map_cpu = dma_alloc_wc(fbi->dev, fbi->map_size, &fbi->map_dma,
1103 GFP_KERNEL);
1105 if (fbi->map_cpu) {
1106 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1107 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1109 * FIXME: this is actually the wrong thing to place in
1110 * smem_start. But fbdev suffers from the problem that
1111 * it needs an API which doesn't exist (in this case,
1112 * dma_writecombine_mmap)
1114 fbi->fb.fix.smem_start = fbi->screen_dma;
1117 return fbi->map_cpu ? 0 : -ENOMEM;
1120 /* Fake monspecs to fill in fbinfo structure */
1121 static struct fb_monspecs monspecs = {
1122 .hfmin = 30000,
1123 .hfmax = 70000,
1124 .vfmin = 50,
1125 .vfmax = 65,
1129 static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1131 struct sa1100fb_mach_info *inf = dev_get_platdata(dev);
1132 struct sa1100fb_info *fbi;
1133 unsigned i;
1135 fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1136 GFP_KERNEL);
1137 if (!fbi)
1138 return NULL;
1140 memset(fbi, 0, sizeof(struct sa1100fb_info));
1141 fbi->dev = dev;
1143 strcpy(fbi->fb.fix.id, SA1100_NAME);
1145 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1146 fbi->fb.fix.type_aux = 0;
1147 fbi->fb.fix.xpanstep = 0;
1148 fbi->fb.fix.ypanstep = 0;
1149 fbi->fb.fix.ywrapstep = 0;
1150 fbi->fb.fix.accel = FB_ACCEL_NONE;
1152 fbi->fb.var.nonstd = 0;
1153 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1154 fbi->fb.var.height = -1;
1155 fbi->fb.var.width = -1;
1156 fbi->fb.var.accel_flags = 0;
1157 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1159 fbi->fb.fbops = &sa1100fb_ops;
1160 fbi->fb.flags = FBINFO_DEFAULT;
1161 fbi->fb.monspecs = monspecs;
1162 fbi->fb.pseudo_palette = (fbi + 1);
1164 fbi->rgb[RGB_4] = &rgb_4;
1165 fbi->rgb[RGB_8] = &rgb_8;
1166 fbi->rgb[RGB_16] = &def_rgb_16;
1169 * People just don't seem to get this. We don't support
1170 * anything but correct entries now, so panic if someone
1171 * does something stupid.
1173 if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1174 inf->pixclock == 0)
1175 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1176 "pixclock.");
1178 fbi->fb.var.xres = inf->xres;
1179 fbi->fb.var.xres_virtual = inf->xres;
1180 fbi->fb.var.yres = inf->yres;
1181 fbi->fb.var.yres_virtual = inf->yres;
1182 fbi->fb.var.bits_per_pixel = inf->bpp;
1183 fbi->fb.var.pixclock = inf->pixclock;
1184 fbi->fb.var.hsync_len = inf->hsync_len;
1185 fbi->fb.var.left_margin = inf->left_margin;
1186 fbi->fb.var.right_margin = inf->right_margin;
1187 fbi->fb.var.vsync_len = inf->vsync_len;
1188 fbi->fb.var.upper_margin = inf->upper_margin;
1189 fbi->fb.var.lower_margin = inf->lower_margin;
1190 fbi->fb.var.sync = inf->sync;
1191 fbi->fb.var.grayscale = inf->cmap_greyscale;
1192 fbi->state = C_STARTUP;
1193 fbi->task_state = (u_char)-1;
1194 fbi->fb.fix.smem_len = inf->xres * inf->yres *
1195 inf->bpp / 8;
1196 fbi->inf = inf;
1198 /* Copy the RGB bitfield overrides */
1199 for (i = 0; i < NR_RGB; i++)
1200 if (inf->rgb[i])
1201 fbi->rgb[i] = inf->rgb[i];
1203 init_waitqueue_head(&fbi->ctrlr_wait);
1204 INIT_WORK(&fbi->task, sa1100fb_task);
1205 mutex_init(&fbi->ctrlr_lock);
1207 return fbi;
1210 static int sa1100fb_probe(struct platform_device *pdev)
1212 struct sa1100fb_info *fbi;
1213 struct resource *res;
1214 int ret, irq;
1216 if (!dev_get_platdata(&pdev->dev)) {
1217 dev_err(&pdev->dev, "no platform LCD data\n");
1218 return -EINVAL;
1221 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1222 irq = platform_get_irq(pdev, 0);
1223 if (irq < 0 || !res)
1224 return -EINVAL;
1226 if (!request_mem_region(res->start, resource_size(res), "LCD"))
1227 return -EBUSY;
1229 fbi = sa1100fb_init_fbinfo(&pdev->dev);
1230 ret = -ENOMEM;
1231 if (!fbi)
1232 goto failed;
1234 fbi->clk = clk_get(&pdev->dev, NULL);
1235 if (IS_ERR(fbi->clk)) {
1236 ret = PTR_ERR(fbi->clk);
1237 fbi->clk = NULL;
1238 goto failed;
1241 fbi->base = ioremap(res->start, resource_size(res));
1242 if (!fbi->base)
1243 goto failed;
1245 /* Initialize video memory */
1246 ret = sa1100fb_map_video_memory(fbi);
1247 if (ret)
1248 goto failed;
1250 ret = request_irq(irq, sa1100fb_handle_irq, 0, "LCD", fbi);
1251 if (ret) {
1252 dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1253 goto failed;
1256 if (machine_is_shannon()) {
1257 ret = gpio_request_one(SHANNON_GPIO_DISP_EN,
1258 GPIOF_OUT_INIT_LOW, "display enable");
1259 if (ret)
1260 goto err_free_irq;
1264 * This makes sure that our colour bitfield
1265 * descriptors are correctly initialised.
1267 sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1269 platform_set_drvdata(pdev, fbi);
1271 ret = register_framebuffer(&fbi->fb);
1272 if (ret < 0)
1273 goto err_reg_fb;
1275 #ifdef CONFIG_CPU_FREQ
1276 fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1277 fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1278 cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1279 cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1280 #endif
1282 /* This driver cannot be unloaded at the moment */
1283 return 0;
1285 err_reg_fb:
1286 if (machine_is_shannon())
1287 gpio_free(SHANNON_GPIO_DISP_EN);
1288 err_free_irq:
1289 free_irq(irq, fbi);
1290 failed:
1291 if (fbi)
1292 iounmap(fbi->base);
1293 if (fbi->clk)
1294 clk_put(fbi->clk);
1295 kfree(fbi);
1296 release_mem_region(res->start, resource_size(res));
1297 return ret;
1300 static struct platform_driver sa1100fb_driver = {
1301 .probe = sa1100fb_probe,
1302 .suspend = sa1100fb_suspend,
1303 .resume = sa1100fb_resume,
1304 .driver = {
1305 .name = "sa11x0-fb",
1309 int __init sa1100fb_init(void)
1311 if (fb_get_options("sa1100fb", NULL))
1312 return -ENODEV;
1314 return platform_driver_register(&sa1100fb_driver);
1317 int __init sa1100fb_setup(char *options)
1319 #if 0
1320 char *this_opt;
1322 if (!options || !*options)
1323 return 0;
1325 while ((this_opt = strsep(&options, ",")) != NULL) {
1327 if (!strncmp(this_opt, "bpp:", 4))
1328 current_par.max_bpp =
1329 simple_strtoul(this_opt + 4, NULL, 0);
1331 if (!strncmp(this_opt, "lccr0:", 6))
1332 lcd_shadow.lccr0 =
1333 simple_strtoul(this_opt + 6, NULL, 0);
1334 if (!strncmp(this_opt, "lccr1:", 6)) {
1335 lcd_shadow.lccr1 =
1336 simple_strtoul(this_opt + 6, NULL, 0);
1337 current_par.max_xres =
1338 (lcd_shadow.lccr1 & 0x3ff) + 16;
1340 if (!strncmp(this_opt, "lccr2:", 6)) {
1341 lcd_shadow.lccr2 =
1342 simple_strtoul(this_opt + 6, NULL, 0);
1343 current_par.max_yres =
1344 (lcd_shadow.
1345 lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1346 lccr2 & 0x3ff) +
1347 1) *
1348 2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1350 if (!strncmp(this_opt, "lccr3:", 6))
1351 lcd_shadow.lccr3 =
1352 simple_strtoul(this_opt + 6, NULL, 0);
1354 #endif
1355 return 0;
1358 module_init(sa1100fb_init);
1359 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1360 MODULE_LICENSE("GPL");