2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
23 #include "transaction.h"
26 #define BTRFS_DELAYED_WRITEBACK 512
27 #define BTRFS_DELAYED_BACKGROUND 128
28 #define BTRFS_DELAYED_BATCH 16
30 static struct kmem_cache
*delayed_node_cache
;
32 int __init
btrfs_delayed_inode_init(void)
34 delayed_node_cache
= kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node
),
39 if (!delayed_node_cache
)
44 void btrfs_delayed_inode_exit(void)
46 kmem_cache_destroy(delayed_node_cache
);
49 static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node
*delayed_node
,
51 struct btrfs_root
*root
, u64 inode_id
)
53 delayed_node
->root
= root
;
54 delayed_node
->inode_id
= inode_id
;
55 atomic_set(&delayed_node
->refs
, 0);
56 delayed_node
->ins_root
= RB_ROOT
;
57 delayed_node
->del_root
= RB_ROOT
;
58 mutex_init(&delayed_node
->mutex
);
59 INIT_LIST_HEAD(&delayed_node
->n_list
);
60 INIT_LIST_HEAD(&delayed_node
->p_list
);
63 static inline int btrfs_is_continuous_delayed_item(
64 struct btrfs_delayed_item
*item1
,
65 struct btrfs_delayed_item
*item2
)
67 if (item1
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
68 item1
->key
.objectid
== item2
->key
.objectid
&&
69 item1
->key
.type
== item2
->key
.type
&&
70 item1
->key
.offset
+ 1 == item2
->key
.offset
)
75 static struct btrfs_delayed_node
*btrfs_get_delayed_node(struct inode
*inode
)
77 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
78 struct btrfs_root
*root
= btrfs_inode
->root
;
79 u64 ino
= btrfs_ino(inode
);
80 struct btrfs_delayed_node
*node
;
82 node
= ACCESS_ONCE(btrfs_inode
->delayed_node
);
84 atomic_inc(&node
->refs
);
88 spin_lock(&root
->inode_lock
);
89 node
= radix_tree_lookup(&root
->delayed_nodes_tree
, ino
);
91 if (btrfs_inode
->delayed_node
) {
92 atomic_inc(&node
->refs
); /* can be accessed */
93 BUG_ON(btrfs_inode
->delayed_node
!= node
);
94 spin_unlock(&root
->inode_lock
);
97 btrfs_inode
->delayed_node
= node
;
98 /* can be accessed and cached in the inode */
99 atomic_add(2, &node
->refs
);
100 spin_unlock(&root
->inode_lock
);
103 spin_unlock(&root
->inode_lock
);
108 /* Will return either the node or PTR_ERR(-ENOMEM) */
109 static struct btrfs_delayed_node
*btrfs_get_or_create_delayed_node(
112 struct btrfs_delayed_node
*node
;
113 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
114 struct btrfs_root
*root
= btrfs_inode
->root
;
115 u64 ino
= btrfs_ino(inode
);
119 node
= btrfs_get_delayed_node(inode
);
123 node
= kmem_cache_zalloc(delayed_node_cache
, GFP_NOFS
);
125 return ERR_PTR(-ENOMEM
);
126 btrfs_init_delayed_node(node
, root
, ino
);
128 /* cached in the btrfs inode and can be accessed */
129 atomic_add(2, &node
->refs
);
131 ret
= radix_tree_preload(GFP_NOFS
);
133 kmem_cache_free(delayed_node_cache
, node
);
137 spin_lock(&root
->inode_lock
);
138 ret
= radix_tree_insert(&root
->delayed_nodes_tree
, ino
, node
);
139 if (ret
== -EEXIST
) {
140 spin_unlock(&root
->inode_lock
);
141 kmem_cache_free(delayed_node_cache
, node
);
142 radix_tree_preload_end();
145 btrfs_inode
->delayed_node
= node
;
146 spin_unlock(&root
->inode_lock
);
147 radix_tree_preload_end();
153 * Call it when holding delayed_node->mutex
155 * If mod = 1, add this node into the prepared list.
157 static void btrfs_queue_delayed_node(struct btrfs_delayed_root
*root
,
158 struct btrfs_delayed_node
*node
,
161 spin_lock(&root
->lock
);
162 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
163 if (!list_empty(&node
->p_list
))
164 list_move_tail(&node
->p_list
, &root
->prepare_list
);
166 list_add_tail(&node
->p_list
, &root
->prepare_list
);
168 list_add_tail(&node
->n_list
, &root
->node_list
);
169 list_add_tail(&node
->p_list
, &root
->prepare_list
);
170 atomic_inc(&node
->refs
); /* inserted into list */
172 set_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
);
174 spin_unlock(&root
->lock
);
177 /* Call it when holding delayed_node->mutex */
178 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root
*root
,
179 struct btrfs_delayed_node
*node
)
181 spin_lock(&root
->lock
);
182 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
184 atomic_dec(&node
->refs
); /* not in the list */
185 list_del_init(&node
->n_list
);
186 if (!list_empty(&node
->p_list
))
187 list_del_init(&node
->p_list
);
188 clear_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
);
190 spin_unlock(&root
->lock
);
193 static struct btrfs_delayed_node
*btrfs_first_delayed_node(
194 struct btrfs_delayed_root
*delayed_root
)
197 struct btrfs_delayed_node
*node
= NULL
;
199 spin_lock(&delayed_root
->lock
);
200 if (list_empty(&delayed_root
->node_list
))
203 p
= delayed_root
->node_list
.next
;
204 node
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
205 atomic_inc(&node
->refs
);
207 spin_unlock(&delayed_root
->lock
);
212 static struct btrfs_delayed_node
*btrfs_next_delayed_node(
213 struct btrfs_delayed_node
*node
)
215 struct btrfs_delayed_root
*delayed_root
;
217 struct btrfs_delayed_node
*next
= NULL
;
219 delayed_root
= node
->root
->fs_info
->delayed_root
;
220 spin_lock(&delayed_root
->lock
);
221 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
222 /* not in the list */
223 if (list_empty(&delayed_root
->node_list
))
225 p
= delayed_root
->node_list
.next
;
226 } else if (list_is_last(&node
->n_list
, &delayed_root
->node_list
))
229 p
= node
->n_list
.next
;
231 next
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
232 atomic_inc(&next
->refs
);
234 spin_unlock(&delayed_root
->lock
);
239 static void __btrfs_release_delayed_node(
240 struct btrfs_delayed_node
*delayed_node
,
243 struct btrfs_delayed_root
*delayed_root
;
248 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
250 mutex_lock(&delayed_node
->mutex
);
251 if (delayed_node
->count
)
252 btrfs_queue_delayed_node(delayed_root
, delayed_node
, mod
);
254 btrfs_dequeue_delayed_node(delayed_root
, delayed_node
);
255 mutex_unlock(&delayed_node
->mutex
);
257 if (atomic_dec_and_test(&delayed_node
->refs
)) {
259 struct btrfs_root
*root
= delayed_node
->root
;
260 spin_lock(&root
->inode_lock
);
261 if (atomic_read(&delayed_node
->refs
) == 0) {
262 radix_tree_delete(&root
->delayed_nodes_tree
,
263 delayed_node
->inode_id
);
266 spin_unlock(&root
->inode_lock
);
268 kmem_cache_free(delayed_node_cache
, delayed_node
);
272 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node
*node
)
274 __btrfs_release_delayed_node(node
, 0);
277 static struct btrfs_delayed_node
*btrfs_first_prepared_delayed_node(
278 struct btrfs_delayed_root
*delayed_root
)
281 struct btrfs_delayed_node
*node
= NULL
;
283 spin_lock(&delayed_root
->lock
);
284 if (list_empty(&delayed_root
->prepare_list
))
287 p
= delayed_root
->prepare_list
.next
;
289 node
= list_entry(p
, struct btrfs_delayed_node
, p_list
);
290 atomic_inc(&node
->refs
);
292 spin_unlock(&delayed_root
->lock
);
297 static inline void btrfs_release_prepared_delayed_node(
298 struct btrfs_delayed_node
*node
)
300 __btrfs_release_delayed_node(node
, 1);
303 static struct btrfs_delayed_item
*btrfs_alloc_delayed_item(u32 data_len
)
305 struct btrfs_delayed_item
*item
;
306 item
= kmalloc(sizeof(*item
) + data_len
, GFP_NOFS
);
308 item
->data_len
= data_len
;
309 item
->ins_or_del
= 0;
310 item
->bytes_reserved
= 0;
311 item
->delayed_node
= NULL
;
312 atomic_set(&item
->refs
, 1);
318 * __btrfs_lookup_delayed_item - look up the delayed item by key
319 * @delayed_node: pointer to the delayed node
320 * @key: the key to look up
321 * @prev: used to store the prev item if the right item isn't found
322 * @next: used to store the next item if the right item isn't found
324 * Note: if we don't find the right item, we will return the prev item and
327 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_item(
328 struct rb_root
*root
,
329 struct btrfs_key
*key
,
330 struct btrfs_delayed_item
**prev
,
331 struct btrfs_delayed_item
**next
)
333 struct rb_node
*node
, *prev_node
= NULL
;
334 struct btrfs_delayed_item
*delayed_item
= NULL
;
337 node
= root
->rb_node
;
340 delayed_item
= rb_entry(node
, struct btrfs_delayed_item
,
343 ret
= btrfs_comp_cpu_keys(&delayed_item
->key
, key
);
345 node
= node
->rb_right
;
347 node
= node
->rb_left
;
356 *prev
= delayed_item
;
357 else if ((node
= rb_prev(prev_node
)) != NULL
) {
358 *prev
= rb_entry(node
, struct btrfs_delayed_item
,
368 *next
= delayed_item
;
369 else if ((node
= rb_next(prev_node
)) != NULL
) {
370 *next
= rb_entry(node
, struct btrfs_delayed_item
,
378 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_insertion_item(
379 struct btrfs_delayed_node
*delayed_node
,
380 struct btrfs_key
*key
)
382 return __btrfs_lookup_delayed_item(&delayed_node
->ins_root
, key
,
386 static int __btrfs_add_delayed_item(struct btrfs_delayed_node
*delayed_node
,
387 struct btrfs_delayed_item
*ins
,
390 struct rb_node
**p
, *node
;
391 struct rb_node
*parent_node
= NULL
;
392 struct rb_root
*root
;
393 struct btrfs_delayed_item
*item
;
396 if (action
== BTRFS_DELAYED_INSERTION_ITEM
)
397 root
= &delayed_node
->ins_root
;
398 else if (action
== BTRFS_DELAYED_DELETION_ITEM
)
399 root
= &delayed_node
->del_root
;
403 node
= &ins
->rb_node
;
407 item
= rb_entry(parent_node
, struct btrfs_delayed_item
,
410 cmp
= btrfs_comp_cpu_keys(&item
->key
, &ins
->key
);
419 rb_link_node(node
, parent_node
, p
);
420 rb_insert_color(node
, root
);
421 ins
->delayed_node
= delayed_node
;
422 ins
->ins_or_del
= action
;
424 if (ins
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
425 action
== BTRFS_DELAYED_INSERTION_ITEM
&&
426 ins
->key
.offset
>= delayed_node
->index_cnt
)
427 delayed_node
->index_cnt
= ins
->key
.offset
+ 1;
429 delayed_node
->count
++;
430 atomic_inc(&delayed_node
->root
->fs_info
->delayed_root
->items
);
434 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node
*node
,
435 struct btrfs_delayed_item
*item
)
437 return __btrfs_add_delayed_item(node
, item
,
438 BTRFS_DELAYED_INSERTION_ITEM
);
441 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node
*node
,
442 struct btrfs_delayed_item
*item
)
444 return __btrfs_add_delayed_item(node
, item
,
445 BTRFS_DELAYED_DELETION_ITEM
);
448 static void finish_one_item(struct btrfs_delayed_root
*delayed_root
)
450 int seq
= atomic_inc_return(&delayed_root
->items_seq
);
453 * atomic_dec_return implies a barrier for waitqueue_active
455 if ((atomic_dec_return(&delayed_root
->items
) <
456 BTRFS_DELAYED_BACKGROUND
|| seq
% BTRFS_DELAYED_BATCH
== 0) &&
457 waitqueue_active(&delayed_root
->wait
))
458 wake_up(&delayed_root
->wait
);
461 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item
*delayed_item
)
463 struct rb_root
*root
;
464 struct btrfs_delayed_root
*delayed_root
;
466 delayed_root
= delayed_item
->delayed_node
->root
->fs_info
->delayed_root
;
468 BUG_ON(!delayed_root
);
469 BUG_ON(delayed_item
->ins_or_del
!= BTRFS_DELAYED_DELETION_ITEM
&&
470 delayed_item
->ins_or_del
!= BTRFS_DELAYED_INSERTION_ITEM
);
472 if (delayed_item
->ins_or_del
== BTRFS_DELAYED_INSERTION_ITEM
)
473 root
= &delayed_item
->delayed_node
->ins_root
;
475 root
= &delayed_item
->delayed_node
->del_root
;
477 rb_erase(&delayed_item
->rb_node
, root
);
478 delayed_item
->delayed_node
->count
--;
480 finish_one_item(delayed_root
);
483 static void btrfs_release_delayed_item(struct btrfs_delayed_item
*item
)
486 __btrfs_remove_delayed_item(item
);
487 if (atomic_dec_and_test(&item
->refs
))
492 static struct btrfs_delayed_item
*__btrfs_first_delayed_insertion_item(
493 struct btrfs_delayed_node
*delayed_node
)
496 struct btrfs_delayed_item
*item
= NULL
;
498 p
= rb_first(&delayed_node
->ins_root
);
500 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
505 static struct btrfs_delayed_item
*__btrfs_first_delayed_deletion_item(
506 struct btrfs_delayed_node
*delayed_node
)
509 struct btrfs_delayed_item
*item
= NULL
;
511 p
= rb_first(&delayed_node
->del_root
);
513 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
518 static struct btrfs_delayed_item
*__btrfs_next_delayed_item(
519 struct btrfs_delayed_item
*item
)
522 struct btrfs_delayed_item
*next
= NULL
;
524 p
= rb_next(&item
->rb_node
);
526 next
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
531 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle
*trans
,
532 struct btrfs_fs_info
*fs_info
,
533 struct btrfs_delayed_item
*item
)
535 struct btrfs_block_rsv
*src_rsv
;
536 struct btrfs_block_rsv
*dst_rsv
;
540 if (!trans
->bytes_reserved
)
543 src_rsv
= trans
->block_rsv
;
544 dst_rsv
= &fs_info
->delayed_block_rsv
;
546 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
547 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, 1);
549 trace_btrfs_space_reservation(fs_info
, "delayed_item",
552 item
->bytes_reserved
= num_bytes
;
558 static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info
*fs_info
,
559 struct btrfs_delayed_item
*item
)
561 struct btrfs_block_rsv
*rsv
;
563 if (!item
->bytes_reserved
)
566 rsv
= &fs_info
->delayed_block_rsv
;
567 trace_btrfs_space_reservation(fs_info
, "delayed_item",
568 item
->key
.objectid
, item
->bytes_reserved
,
570 btrfs_block_rsv_release(fs_info
, rsv
,
571 item
->bytes_reserved
);
574 static int btrfs_delayed_inode_reserve_metadata(
575 struct btrfs_trans_handle
*trans
,
576 struct btrfs_root
*root
,
578 struct btrfs_delayed_node
*node
)
580 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
581 struct btrfs_block_rsv
*src_rsv
;
582 struct btrfs_block_rsv
*dst_rsv
;
585 bool release
= false;
587 src_rsv
= trans
->block_rsv
;
588 dst_rsv
= &fs_info
->delayed_block_rsv
;
590 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
593 * If our block_rsv is the delalloc block reserve then check and see if
594 * we have our extra reservation for updating the inode. If not fall
595 * through and try to reserve space quickly.
597 * We used to try and steal from the delalloc block rsv or the global
598 * reserve, but we'd steal a full reservation, which isn't kind. We are
599 * here through delalloc which means we've likely just cowed down close
600 * to the leaf that contains the inode, so we would steal less just
601 * doing the fallback inode update, so if we do end up having to steal
602 * from the global block rsv we hopefully only steal one or two blocks
603 * worth which is less likely to hurt us.
605 if (src_rsv
&& src_rsv
->type
== BTRFS_BLOCK_RSV_DELALLOC
) {
606 spin_lock(&BTRFS_I(inode
)->lock
);
607 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
608 &BTRFS_I(inode
)->runtime_flags
))
612 spin_unlock(&BTRFS_I(inode
)->lock
);
616 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
617 * which doesn't reserve space for speed. This is a problem since we
618 * still need to reserve space for this update, so try to reserve the
621 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
622 * we're accounted for.
624 if (!src_rsv
|| (!trans
->bytes_reserved
&&
625 src_rsv
->type
!= BTRFS_BLOCK_RSV_DELALLOC
)) {
626 ret
= btrfs_block_rsv_add(root
, dst_rsv
, num_bytes
,
627 BTRFS_RESERVE_NO_FLUSH
);
629 * Since we're under a transaction reserve_metadata_bytes could
630 * try to commit the transaction which will make it return
631 * EAGAIN to make us stop the transaction we have, so return
632 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
637 node
->bytes_reserved
= num_bytes
;
638 trace_btrfs_space_reservation(fs_info
,
646 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, 1);
649 * Migrate only takes a reservation, it doesn't touch the size of the
650 * block_rsv. This is to simplify people who don't normally have things
651 * migrated from their block rsv. If they go to release their
652 * reservation, that will decrease the size as well, so if migrate
653 * reduced size we'd end up with a negative size. But for the
654 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
655 * but we could in fact do this reserve/migrate dance several times
656 * between the time we did the original reservation and we'd clean it
657 * up. So to take care of this, release the space for the meta
658 * reservation here. I think it may be time for a documentation page on
659 * how block rsvs. work.
662 trace_btrfs_space_reservation(fs_info
, "delayed_inode",
663 btrfs_ino(inode
), num_bytes
, 1);
664 node
->bytes_reserved
= num_bytes
;
668 trace_btrfs_space_reservation(fs_info
, "delalloc",
669 btrfs_ino(inode
), num_bytes
, 0);
670 btrfs_block_rsv_release(fs_info
, src_rsv
, num_bytes
);
676 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info
*fs_info
,
677 struct btrfs_delayed_node
*node
)
679 struct btrfs_block_rsv
*rsv
;
681 if (!node
->bytes_reserved
)
684 rsv
= &fs_info
->delayed_block_rsv
;
685 trace_btrfs_space_reservation(fs_info
, "delayed_inode",
686 node
->inode_id
, node
->bytes_reserved
, 0);
687 btrfs_block_rsv_release(fs_info
, rsv
,
688 node
->bytes_reserved
);
689 node
->bytes_reserved
= 0;
693 * This helper will insert some continuous items into the same leaf according
694 * to the free space of the leaf.
696 static int btrfs_batch_insert_items(struct btrfs_root
*root
,
697 struct btrfs_path
*path
,
698 struct btrfs_delayed_item
*item
)
700 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
701 struct btrfs_delayed_item
*curr
, *next
;
703 int total_data_size
= 0, total_size
= 0;
704 struct extent_buffer
*leaf
;
706 struct btrfs_key
*keys
;
708 struct list_head head
;
714 BUG_ON(!path
->nodes
[0]);
716 leaf
= path
->nodes
[0];
717 free_space
= btrfs_leaf_free_space(fs_info
, leaf
);
718 INIT_LIST_HEAD(&head
);
724 * count the number of the continuous items that we can insert in batch
726 while (total_size
+ next
->data_len
+ sizeof(struct btrfs_item
) <=
728 total_data_size
+= next
->data_len
;
729 total_size
+= next
->data_len
+ sizeof(struct btrfs_item
);
730 list_add_tail(&next
->tree_list
, &head
);
734 next
= __btrfs_next_delayed_item(curr
);
738 if (!btrfs_is_continuous_delayed_item(curr
, next
))
748 * we need allocate some memory space, but it might cause the task
749 * to sleep, so we set all locked nodes in the path to blocking locks
752 btrfs_set_path_blocking(path
);
754 keys
= kmalloc_array(nitems
, sizeof(struct btrfs_key
), GFP_NOFS
);
760 data_size
= kmalloc_array(nitems
, sizeof(u32
), GFP_NOFS
);
766 /* get keys of all the delayed items */
768 list_for_each_entry(next
, &head
, tree_list
) {
770 data_size
[i
] = next
->data_len
;
774 /* reset all the locked nodes in the patch to spinning locks. */
775 btrfs_clear_path_blocking(path
, NULL
, 0);
777 /* insert the keys of the items */
778 setup_items_for_insert(root
, path
, keys
, data_size
,
779 total_data_size
, total_size
, nitems
);
781 /* insert the dir index items */
782 slot
= path
->slots
[0];
783 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
784 data_ptr
= btrfs_item_ptr(leaf
, slot
, char);
785 write_extent_buffer(leaf
, &curr
->data
,
786 (unsigned long)data_ptr
,
790 btrfs_delayed_item_release_metadata(fs_info
, curr
);
792 list_del(&curr
->tree_list
);
793 btrfs_release_delayed_item(curr
);
804 * This helper can just do simple insertion that needn't extend item for new
805 * data, such as directory name index insertion, inode insertion.
807 static int btrfs_insert_delayed_item(struct btrfs_trans_handle
*trans
,
808 struct btrfs_root
*root
,
809 struct btrfs_path
*path
,
810 struct btrfs_delayed_item
*delayed_item
)
812 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
813 struct extent_buffer
*leaf
;
817 ret
= btrfs_insert_empty_item(trans
, root
, path
, &delayed_item
->key
,
818 delayed_item
->data_len
);
819 if (ret
< 0 && ret
!= -EEXIST
)
822 leaf
= path
->nodes
[0];
824 ptr
= btrfs_item_ptr(leaf
, path
->slots
[0], char);
826 write_extent_buffer(leaf
, delayed_item
->data
, (unsigned long)ptr
,
827 delayed_item
->data_len
);
828 btrfs_mark_buffer_dirty(leaf
);
830 btrfs_delayed_item_release_metadata(fs_info
, delayed_item
);
835 * we insert an item first, then if there are some continuous items, we try
836 * to insert those items into the same leaf.
838 static int btrfs_insert_delayed_items(struct btrfs_trans_handle
*trans
,
839 struct btrfs_path
*path
,
840 struct btrfs_root
*root
,
841 struct btrfs_delayed_node
*node
)
843 struct btrfs_delayed_item
*curr
, *prev
;
847 mutex_lock(&node
->mutex
);
848 curr
= __btrfs_first_delayed_insertion_item(node
);
852 ret
= btrfs_insert_delayed_item(trans
, root
, path
, curr
);
854 btrfs_release_path(path
);
859 curr
= __btrfs_next_delayed_item(prev
);
860 if (curr
&& btrfs_is_continuous_delayed_item(prev
, curr
)) {
861 /* insert the continuous items into the same leaf */
863 btrfs_batch_insert_items(root
, path
, curr
);
865 btrfs_release_delayed_item(prev
);
866 btrfs_mark_buffer_dirty(path
->nodes
[0]);
868 btrfs_release_path(path
);
869 mutex_unlock(&node
->mutex
);
873 mutex_unlock(&node
->mutex
);
877 static int btrfs_batch_delete_items(struct btrfs_trans_handle
*trans
,
878 struct btrfs_root
*root
,
879 struct btrfs_path
*path
,
880 struct btrfs_delayed_item
*item
)
882 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
883 struct btrfs_delayed_item
*curr
, *next
;
884 struct extent_buffer
*leaf
;
885 struct btrfs_key key
;
886 struct list_head head
;
887 int nitems
, i
, last_item
;
890 BUG_ON(!path
->nodes
[0]);
892 leaf
= path
->nodes
[0];
895 last_item
= btrfs_header_nritems(leaf
) - 1;
897 return -ENOENT
; /* FIXME: Is errno suitable? */
900 INIT_LIST_HEAD(&head
);
901 btrfs_item_key_to_cpu(leaf
, &key
, i
);
904 * count the number of the dir index items that we can delete in batch
906 while (btrfs_comp_cpu_keys(&next
->key
, &key
) == 0) {
907 list_add_tail(&next
->tree_list
, &head
);
911 next
= __btrfs_next_delayed_item(curr
);
915 if (!btrfs_is_continuous_delayed_item(curr
, next
))
921 btrfs_item_key_to_cpu(leaf
, &key
, i
);
927 ret
= btrfs_del_items(trans
, root
, path
, path
->slots
[0], nitems
);
931 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
932 btrfs_delayed_item_release_metadata(fs_info
, curr
);
933 list_del(&curr
->tree_list
);
934 btrfs_release_delayed_item(curr
);
941 static int btrfs_delete_delayed_items(struct btrfs_trans_handle
*trans
,
942 struct btrfs_path
*path
,
943 struct btrfs_root
*root
,
944 struct btrfs_delayed_node
*node
)
946 struct btrfs_delayed_item
*curr
, *prev
;
950 mutex_lock(&node
->mutex
);
951 curr
= __btrfs_first_delayed_deletion_item(node
);
955 ret
= btrfs_search_slot(trans
, root
, &curr
->key
, path
, -1, 1);
960 * can't find the item which the node points to, so this node
961 * is invalid, just drop it.
964 curr
= __btrfs_next_delayed_item(prev
);
965 btrfs_release_delayed_item(prev
);
967 btrfs_release_path(path
);
969 mutex_unlock(&node
->mutex
);
975 btrfs_batch_delete_items(trans
, root
, path
, curr
);
976 btrfs_release_path(path
);
977 mutex_unlock(&node
->mutex
);
981 btrfs_release_path(path
);
982 mutex_unlock(&node
->mutex
);
986 static void btrfs_release_delayed_inode(struct btrfs_delayed_node
*delayed_node
)
988 struct btrfs_delayed_root
*delayed_root
;
991 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
992 BUG_ON(!delayed_node
->root
);
993 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
);
994 delayed_node
->count
--;
996 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
997 finish_one_item(delayed_root
);
1001 static void btrfs_release_delayed_iref(struct btrfs_delayed_node
*delayed_node
)
1003 struct btrfs_delayed_root
*delayed_root
;
1005 ASSERT(delayed_node
->root
);
1006 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
);
1007 delayed_node
->count
--;
1009 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
1010 finish_one_item(delayed_root
);
1013 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1014 struct btrfs_root
*root
,
1015 struct btrfs_path
*path
,
1016 struct btrfs_delayed_node
*node
)
1018 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1019 struct btrfs_key key
;
1020 struct btrfs_inode_item
*inode_item
;
1021 struct extent_buffer
*leaf
;
1025 key
.objectid
= node
->inode_id
;
1026 key
.type
= BTRFS_INODE_ITEM_KEY
;
1029 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &node
->flags
))
1034 ret
= btrfs_lookup_inode(trans
, root
, path
, &key
, mod
);
1036 btrfs_release_path(path
);
1038 } else if (ret
< 0) {
1042 leaf
= path
->nodes
[0];
1043 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1044 struct btrfs_inode_item
);
1045 write_extent_buffer(leaf
, &node
->inode_item
, (unsigned long)inode_item
,
1046 sizeof(struct btrfs_inode_item
));
1047 btrfs_mark_buffer_dirty(leaf
);
1049 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &node
->flags
))
1053 if (path
->slots
[0] >= btrfs_header_nritems(leaf
))
1056 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1057 if (key
.objectid
!= node
->inode_id
)
1060 if (key
.type
!= BTRFS_INODE_REF_KEY
&&
1061 key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1065 * Delayed iref deletion is for the inode who has only one link,
1066 * so there is only one iref. The case that several irefs are
1067 * in the same item doesn't exist.
1069 btrfs_del_item(trans
, root
, path
);
1071 btrfs_release_delayed_iref(node
);
1073 btrfs_release_path(path
);
1075 btrfs_delayed_inode_release_metadata(fs_info
, node
);
1076 btrfs_release_delayed_inode(node
);
1081 btrfs_release_path(path
);
1083 key
.type
= BTRFS_INODE_EXTREF_KEY
;
1085 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1091 leaf
= path
->nodes
[0];
1096 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1097 struct btrfs_root
*root
,
1098 struct btrfs_path
*path
,
1099 struct btrfs_delayed_node
*node
)
1103 mutex_lock(&node
->mutex
);
1104 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &node
->flags
)) {
1105 mutex_unlock(&node
->mutex
);
1109 ret
= __btrfs_update_delayed_inode(trans
, root
, path
, node
);
1110 mutex_unlock(&node
->mutex
);
1115 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1116 struct btrfs_path
*path
,
1117 struct btrfs_delayed_node
*node
)
1121 ret
= btrfs_insert_delayed_items(trans
, path
, node
->root
, node
);
1125 ret
= btrfs_delete_delayed_items(trans
, path
, node
->root
, node
);
1129 ret
= btrfs_update_delayed_inode(trans
, node
->root
, path
, node
);
1134 * Called when committing the transaction.
1135 * Returns 0 on success.
1136 * Returns < 0 on error and returns with an aborted transaction with any
1137 * outstanding delayed items cleaned up.
1139 static int __btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1140 struct btrfs_fs_info
*fs_info
, int nr
)
1142 struct btrfs_delayed_root
*delayed_root
;
1143 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1144 struct btrfs_path
*path
;
1145 struct btrfs_block_rsv
*block_rsv
;
1147 bool count
= (nr
> 0);
1152 path
= btrfs_alloc_path();
1155 path
->leave_spinning
= 1;
1157 block_rsv
= trans
->block_rsv
;
1158 trans
->block_rsv
= &fs_info
->delayed_block_rsv
;
1160 delayed_root
= fs_info
->delayed_root
;
1162 curr_node
= btrfs_first_delayed_node(delayed_root
);
1163 while (curr_node
&& (!count
|| (count
&& nr
--))) {
1164 ret
= __btrfs_commit_inode_delayed_items(trans
, path
,
1167 btrfs_release_delayed_node(curr_node
);
1169 btrfs_abort_transaction(trans
, ret
);
1173 prev_node
= curr_node
;
1174 curr_node
= btrfs_next_delayed_node(curr_node
);
1175 btrfs_release_delayed_node(prev_node
);
1179 btrfs_release_delayed_node(curr_node
);
1180 btrfs_free_path(path
);
1181 trans
->block_rsv
= block_rsv
;
1186 int btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1187 struct btrfs_fs_info
*fs_info
)
1189 return __btrfs_run_delayed_items(trans
, fs_info
, -1);
1192 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle
*trans
,
1193 struct btrfs_fs_info
*fs_info
, int nr
)
1195 return __btrfs_run_delayed_items(trans
, fs_info
, nr
);
1198 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1199 struct inode
*inode
)
1201 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1202 struct btrfs_path
*path
;
1203 struct btrfs_block_rsv
*block_rsv
;
1209 mutex_lock(&delayed_node
->mutex
);
1210 if (!delayed_node
->count
) {
1211 mutex_unlock(&delayed_node
->mutex
);
1212 btrfs_release_delayed_node(delayed_node
);
1215 mutex_unlock(&delayed_node
->mutex
);
1217 path
= btrfs_alloc_path();
1219 btrfs_release_delayed_node(delayed_node
);
1222 path
->leave_spinning
= 1;
1224 block_rsv
= trans
->block_rsv
;
1225 trans
->block_rsv
= &delayed_node
->root
->fs_info
->delayed_block_rsv
;
1227 ret
= __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1229 btrfs_release_delayed_node(delayed_node
);
1230 btrfs_free_path(path
);
1231 trans
->block_rsv
= block_rsv
;
1236 int btrfs_commit_inode_delayed_inode(struct inode
*inode
)
1238 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1239 struct btrfs_trans_handle
*trans
;
1240 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1241 struct btrfs_path
*path
;
1242 struct btrfs_block_rsv
*block_rsv
;
1248 mutex_lock(&delayed_node
->mutex
);
1249 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1250 mutex_unlock(&delayed_node
->mutex
);
1251 btrfs_release_delayed_node(delayed_node
);
1254 mutex_unlock(&delayed_node
->mutex
);
1256 trans
= btrfs_join_transaction(delayed_node
->root
);
1257 if (IS_ERR(trans
)) {
1258 ret
= PTR_ERR(trans
);
1262 path
= btrfs_alloc_path();
1267 path
->leave_spinning
= 1;
1269 block_rsv
= trans
->block_rsv
;
1270 trans
->block_rsv
= &fs_info
->delayed_block_rsv
;
1272 mutex_lock(&delayed_node
->mutex
);
1273 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
))
1274 ret
= __btrfs_update_delayed_inode(trans
, delayed_node
->root
,
1275 path
, delayed_node
);
1278 mutex_unlock(&delayed_node
->mutex
);
1280 btrfs_free_path(path
);
1281 trans
->block_rsv
= block_rsv
;
1283 btrfs_end_transaction(trans
);
1284 btrfs_btree_balance_dirty(fs_info
);
1286 btrfs_release_delayed_node(delayed_node
);
1291 void btrfs_remove_delayed_node(struct inode
*inode
)
1293 struct btrfs_delayed_node
*delayed_node
;
1295 delayed_node
= ACCESS_ONCE(BTRFS_I(inode
)->delayed_node
);
1299 BTRFS_I(inode
)->delayed_node
= NULL
;
1300 btrfs_release_delayed_node(delayed_node
);
1303 struct btrfs_async_delayed_work
{
1304 struct btrfs_delayed_root
*delayed_root
;
1306 struct btrfs_work work
;
1309 static void btrfs_async_run_delayed_root(struct btrfs_work
*work
)
1311 struct btrfs_async_delayed_work
*async_work
;
1312 struct btrfs_delayed_root
*delayed_root
;
1313 struct btrfs_trans_handle
*trans
;
1314 struct btrfs_path
*path
;
1315 struct btrfs_delayed_node
*delayed_node
= NULL
;
1316 struct btrfs_root
*root
;
1317 struct btrfs_block_rsv
*block_rsv
;
1320 async_work
= container_of(work
, struct btrfs_async_delayed_work
, work
);
1321 delayed_root
= async_work
->delayed_root
;
1323 path
= btrfs_alloc_path();
1328 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
/ 2)
1331 delayed_node
= btrfs_first_prepared_delayed_node(delayed_root
);
1335 path
->leave_spinning
= 1;
1336 root
= delayed_node
->root
;
1338 trans
= btrfs_join_transaction(root
);
1342 block_rsv
= trans
->block_rsv
;
1343 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1345 __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1347 trans
->block_rsv
= block_rsv
;
1348 btrfs_end_transaction(trans
);
1349 btrfs_btree_balance_dirty_nodelay(root
->fs_info
);
1352 btrfs_release_path(path
);
1355 btrfs_release_prepared_delayed_node(delayed_node
);
1356 if ((async_work
->nr
== 0 && total_done
< BTRFS_DELAYED_WRITEBACK
) ||
1357 total_done
< async_work
->nr
)
1361 btrfs_free_path(path
);
1363 wake_up(&delayed_root
->wait
);
1368 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root
*delayed_root
,
1369 struct btrfs_fs_info
*fs_info
, int nr
)
1371 struct btrfs_async_delayed_work
*async_work
;
1373 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
||
1374 btrfs_workqueue_normal_congested(fs_info
->delayed_workers
))
1377 async_work
= kmalloc(sizeof(*async_work
), GFP_NOFS
);
1381 async_work
->delayed_root
= delayed_root
;
1382 btrfs_init_work(&async_work
->work
, btrfs_delayed_meta_helper
,
1383 btrfs_async_run_delayed_root
, NULL
, NULL
);
1384 async_work
->nr
= nr
;
1386 btrfs_queue_work(fs_info
->delayed_workers
, &async_work
->work
);
1390 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info
*fs_info
)
1392 WARN_ON(btrfs_first_delayed_node(fs_info
->delayed_root
));
1395 static int could_end_wait(struct btrfs_delayed_root
*delayed_root
, int seq
)
1397 int val
= atomic_read(&delayed_root
->items_seq
);
1399 if (val
< seq
|| val
>= seq
+ BTRFS_DELAYED_BATCH
)
1402 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1408 void btrfs_balance_delayed_items(struct btrfs_fs_info
*fs_info
)
1410 struct btrfs_delayed_root
*delayed_root
= fs_info
->delayed_root
;
1412 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1415 if (atomic_read(&delayed_root
->items
) >= BTRFS_DELAYED_WRITEBACK
) {
1419 seq
= atomic_read(&delayed_root
->items_seq
);
1421 ret
= btrfs_wq_run_delayed_node(delayed_root
, fs_info
, 0);
1425 wait_event_interruptible(delayed_root
->wait
,
1426 could_end_wait(delayed_root
, seq
));
1430 btrfs_wq_run_delayed_node(delayed_root
, fs_info
, BTRFS_DELAYED_BATCH
);
1433 /* Will return 0 or -ENOMEM */
1434 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1435 struct btrfs_fs_info
*fs_info
,
1436 const char *name
, int name_len
,
1438 struct btrfs_disk_key
*disk_key
, u8 type
,
1441 struct btrfs_delayed_node
*delayed_node
;
1442 struct btrfs_delayed_item
*delayed_item
;
1443 struct btrfs_dir_item
*dir_item
;
1446 delayed_node
= btrfs_get_or_create_delayed_node(dir
);
1447 if (IS_ERR(delayed_node
))
1448 return PTR_ERR(delayed_node
);
1450 delayed_item
= btrfs_alloc_delayed_item(sizeof(*dir_item
) + name_len
);
1451 if (!delayed_item
) {
1456 delayed_item
->key
.objectid
= btrfs_ino(dir
);
1457 delayed_item
->key
.type
= BTRFS_DIR_INDEX_KEY
;
1458 delayed_item
->key
.offset
= index
;
1460 dir_item
= (struct btrfs_dir_item
*)delayed_item
->data
;
1461 dir_item
->location
= *disk_key
;
1462 btrfs_set_stack_dir_transid(dir_item
, trans
->transid
);
1463 btrfs_set_stack_dir_data_len(dir_item
, 0);
1464 btrfs_set_stack_dir_name_len(dir_item
, name_len
);
1465 btrfs_set_stack_dir_type(dir_item
, type
);
1466 memcpy((char *)(dir_item
+ 1), name
, name_len
);
1468 ret
= btrfs_delayed_item_reserve_metadata(trans
, fs_info
, delayed_item
);
1470 * we have reserved enough space when we start a new transaction,
1471 * so reserving metadata failure is impossible
1476 mutex_lock(&delayed_node
->mutex
);
1477 ret
= __btrfs_add_delayed_insertion_item(delayed_node
, delayed_item
);
1478 if (unlikely(ret
)) {
1480 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1481 name_len
, name
, delayed_node
->root
->objectid
,
1482 delayed_node
->inode_id
, ret
);
1485 mutex_unlock(&delayed_node
->mutex
);
1488 btrfs_release_delayed_node(delayed_node
);
1492 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info
*fs_info
,
1493 struct btrfs_delayed_node
*node
,
1494 struct btrfs_key
*key
)
1496 struct btrfs_delayed_item
*item
;
1498 mutex_lock(&node
->mutex
);
1499 item
= __btrfs_lookup_delayed_insertion_item(node
, key
);
1501 mutex_unlock(&node
->mutex
);
1505 btrfs_delayed_item_release_metadata(fs_info
, item
);
1506 btrfs_release_delayed_item(item
);
1507 mutex_unlock(&node
->mutex
);
1511 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1512 struct btrfs_fs_info
*fs_info
,
1513 struct inode
*dir
, u64 index
)
1515 struct btrfs_delayed_node
*node
;
1516 struct btrfs_delayed_item
*item
;
1517 struct btrfs_key item_key
;
1520 node
= btrfs_get_or_create_delayed_node(dir
);
1522 return PTR_ERR(node
);
1524 item_key
.objectid
= btrfs_ino(dir
);
1525 item_key
.type
= BTRFS_DIR_INDEX_KEY
;
1526 item_key
.offset
= index
;
1528 ret
= btrfs_delete_delayed_insertion_item(fs_info
, node
, &item_key
);
1532 item
= btrfs_alloc_delayed_item(0);
1538 item
->key
= item_key
;
1540 ret
= btrfs_delayed_item_reserve_metadata(trans
, fs_info
, item
);
1542 * we have reserved enough space when we start a new transaction,
1543 * so reserving metadata failure is impossible.
1547 mutex_lock(&node
->mutex
);
1548 ret
= __btrfs_add_delayed_deletion_item(node
, item
);
1549 if (unlikely(ret
)) {
1551 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1552 index
, node
->root
->objectid
, node
->inode_id
, ret
);
1555 mutex_unlock(&node
->mutex
);
1557 btrfs_release_delayed_node(node
);
1561 int btrfs_inode_delayed_dir_index_count(struct inode
*inode
)
1563 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1569 * Since we have held i_mutex of this directory, it is impossible that
1570 * a new directory index is added into the delayed node and index_cnt
1571 * is updated now. So we needn't lock the delayed node.
1573 if (!delayed_node
->index_cnt
) {
1574 btrfs_release_delayed_node(delayed_node
);
1578 BTRFS_I(inode
)->index_cnt
= delayed_node
->index_cnt
;
1579 btrfs_release_delayed_node(delayed_node
);
1583 bool btrfs_readdir_get_delayed_items(struct inode
*inode
,
1584 struct list_head
*ins_list
,
1585 struct list_head
*del_list
)
1587 struct btrfs_delayed_node
*delayed_node
;
1588 struct btrfs_delayed_item
*item
;
1590 delayed_node
= btrfs_get_delayed_node(inode
);
1595 * We can only do one readdir with delayed items at a time because of
1596 * item->readdir_list.
1598 inode_unlock_shared(inode
);
1601 mutex_lock(&delayed_node
->mutex
);
1602 item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1604 atomic_inc(&item
->refs
);
1605 list_add_tail(&item
->readdir_list
, ins_list
);
1606 item
= __btrfs_next_delayed_item(item
);
1609 item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1611 atomic_inc(&item
->refs
);
1612 list_add_tail(&item
->readdir_list
, del_list
);
1613 item
= __btrfs_next_delayed_item(item
);
1615 mutex_unlock(&delayed_node
->mutex
);
1617 * This delayed node is still cached in the btrfs inode, so refs
1618 * must be > 1 now, and we needn't check it is going to be freed
1621 * Besides that, this function is used to read dir, we do not
1622 * insert/delete delayed items in this period. So we also needn't
1623 * requeue or dequeue this delayed node.
1625 atomic_dec(&delayed_node
->refs
);
1630 void btrfs_readdir_put_delayed_items(struct inode
*inode
,
1631 struct list_head
*ins_list
,
1632 struct list_head
*del_list
)
1634 struct btrfs_delayed_item
*curr
, *next
;
1636 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1637 list_del(&curr
->readdir_list
);
1638 if (atomic_dec_and_test(&curr
->refs
))
1642 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1643 list_del(&curr
->readdir_list
);
1644 if (atomic_dec_and_test(&curr
->refs
))
1649 * The VFS is going to do up_read(), so we need to downgrade back to a
1652 downgrade_write(&inode
->i_rwsem
);
1655 int btrfs_should_delete_dir_index(struct list_head
*del_list
,
1658 struct btrfs_delayed_item
*curr
, *next
;
1661 if (list_empty(del_list
))
1664 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1665 if (curr
->key
.offset
> index
)
1668 list_del(&curr
->readdir_list
);
1669 ret
= (curr
->key
.offset
== index
);
1671 if (atomic_dec_and_test(&curr
->refs
))
1683 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1686 int btrfs_readdir_delayed_dir_index(struct dir_context
*ctx
,
1687 struct list_head
*ins_list
)
1689 struct btrfs_dir_item
*di
;
1690 struct btrfs_delayed_item
*curr
, *next
;
1691 struct btrfs_key location
;
1695 unsigned char d_type
;
1697 if (list_empty(ins_list
))
1701 * Changing the data of the delayed item is impossible. So
1702 * we needn't lock them. And we have held i_mutex of the
1703 * directory, nobody can delete any directory indexes now.
1705 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1706 list_del(&curr
->readdir_list
);
1708 if (curr
->key
.offset
< ctx
->pos
) {
1709 if (atomic_dec_and_test(&curr
->refs
))
1714 ctx
->pos
= curr
->key
.offset
;
1716 di
= (struct btrfs_dir_item
*)curr
->data
;
1717 name
= (char *)(di
+ 1);
1718 name_len
= btrfs_stack_dir_name_len(di
);
1720 d_type
= btrfs_filetype_table
[di
->type
];
1721 btrfs_disk_key_to_cpu(&location
, &di
->location
);
1723 over
= !dir_emit(ctx
, name
, name_len
,
1724 location
.objectid
, d_type
);
1726 if (atomic_dec_and_test(&curr
->refs
))
1735 static void fill_stack_inode_item(struct btrfs_trans_handle
*trans
,
1736 struct btrfs_inode_item
*inode_item
,
1737 struct inode
*inode
)
1739 btrfs_set_stack_inode_uid(inode_item
, i_uid_read(inode
));
1740 btrfs_set_stack_inode_gid(inode_item
, i_gid_read(inode
));
1741 btrfs_set_stack_inode_size(inode_item
, BTRFS_I(inode
)->disk_i_size
);
1742 btrfs_set_stack_inode_mode(inode_item
, inode
->i_mode
);
1743 btrfs_set_stack_inode_nlink(inode_item
, inode
->i_nlink
);
1744 btrfs_set_stack_inode_nbytes(inode_item
, inode_get_bytes(inode
));
1745 btrfs_set_stack_inode_generation(inode_item
,
1746 BTRFS_I(inode
)->generation
);
1747 btrfs_set_stack_inode_sequence(inode_item
, inode
->i_version
);
1748 btrfs_set_stack_inode_transid(inode_item
, trans
->transid
);
1749 btrfs_set_stack_inode_rdev(inode_item
, inode
->i_rdev
);
1750 btrfs_set_stack_inode_flags(inode_item
, BTRFS_I(inode
)->flags
);
1751 btrfs_set_stack_inode_block_group(inode_item
, 0);
1753 btrfs_set_stack_timespec_sec(&inode_item
->atime
,
1754 inode
->i_atime
.tv_sec
);
1755 btrfs_set_stack_timespec_nsec(&inode_item
->atime
,
1756 inode
->i_atime
.tv_nsec
);
1758 btrfs_set_stack_timespec_sec(&inode_item
->mtime
,
1759 inode
->i_mtime
.tv_sec
);
1760 btrfs_set_stack_timespec_nsec(&inode_item
->mtime
,
1761 inode
->i_mtime
.tv_nsec
);
1763 btrfs_set_stack_timespec_sec(&inode_item
->ctime
,
1764 inode
->i_ctime
.tv_sec
);
1765 btrfs_set_stack_timespec_nsec(&inode_item
->ctime
,
1766 inode
->i_ctime
.tv_nsec
);
1768 btrfs_set_stack_timespec_sec(&inode_item
->otime
,
1769 BTRFS_I(inode
)->i_otime
.tv_sec
);
1770 btrfs_set_stack_timespec_nsec(&inode_item
->otime
,
1771 BTRFS_I(inode
)->i_otime
.tv_nsec
);
1774 int btrfs_fill_inode(struct inode
*inode
, u32
*rdev
)
1776 struct btrfs_delayed_node
*delayed_node
;
1777 struct btrfs_inode_item
*inode_item
;
1779 delayed_node
= btrfs_get_delayed_node(inode
);
1783 mutex_lock(&delayed_node
->mutex
);
1784 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1785 mutex_unlock(&delayed_node
->mutex
);
1786 btrfs_release_delayed_node(delayed_node
);
1790 inode_item
= &delayed_node
->inode_item
;
1792 i_uid_write(inode
, btrfs_stack_inode_uid(inode_item
));
1793 i_gid_write(inode
, btrfs_stack_inode_gid(inode_item
));
1794 btrfs_i_size_write(inode
, btrfs_stack_inode_size(inode_item
));
1795 inode
->i_mode
= btrfs_stack_inode_mode(inode_item
);
1796 set_nlink(inode
, btrfs_stack_inode_nlink(inode_item
));
1797 inode_set_bytes(inode
, btrfs_stack_inode_nbytes(inode_item
));
1798 BTRFS_I(inode
)->generation
= btrfs_stack_inode_generation(inode_item
);
1799 BTRFS_I(inode
)->last_trans
= btrfs_stack_inode_transid(inode_item
);
1801 inode
->i_version
= btrfs_stack_inode_sequence(inode_item
);
1803 *rdev
= btrfs_stack_inode_rdev(inode_item
);
1804 BTRFS_I(inode
)->flags
= btrfs_stack_inode_flags(inode_item
);
1806 inode
->i_atime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->atime
);
1807 inode
->i_atime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->atime
);
1809 inode
->i_mtime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->mtime
);
1810 inode
->i_mtime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->mtime
);
1812 inode
->i_ctime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->ctime
);
1813 inode
->i_ctime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->ctime
);
1815 BTRFS_I(inode
)->i_otime
.tv_sec
=
1816 btrfs_stack_timespec_sec(&inode_item
->otime
);
1817 BTRFS_I(inode
)->i_otime
.tv_nsec
=
1818 btrfs_stack_timespec_nsec(&inode_item
->otime
);
1820 inode
->i_generation
= BTRFS_I(inode
)->generation
;
1821 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1823 mutex_unlock(&delayed_node
->mutex
);
1824 btrfs_release_delayed_node(delayed_node
);
1828 int btrfs_delayed_update_inode(struct btrfs_trans_handle
*trans
,
1829 struct btrfs_root
*root
, struct inode
*inode
)
1831 struct btrfs_delayed_node
*delayed_node
;
1834 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1835 if (IS_ERR(delayed_node
))
1836 return PTR_ERR(delayed_node
);
1838 mutex_lock(&delayed_node
->mutex
);
1839 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1840 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1844 ret
= btrfs_delayed_inode_reserve_metadata(trans
, root
, inode
,
1849 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1850 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
);
1851 delayed_node
->count
++;
1852 atomic_inc(&root
->fs_info
->delayed_root
->items
);
1854 mutex_unlock(&delayed_node
->mutex
);
1855 btrfs_release_delayed_node(delayed_node
);
1859 int btrfs_delayed_delete_inode_ref(struct inode
*inode
)
1861 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1862 struct btrfs_delayed_node
*delayed_node
;
1865 * we don't do delayed inode updates during log recovery because it
1866 * leads to enospc problems. This means we also can't do
1867 * delayed inode refs
1869 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
1872 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1873 if (IS_ERR(delayed_node
))
1874 return PTR_ERR(delayed_node
);
1877 * We don't reserve space for inode ref deletion is because:
1878 * - We ONLY do async inode ref deletion for the inode who has only
1879 * one link(i_nlink == 1), it means there is only one inode ref.
1880 * And in most case, the inode ref and the inode item are in the
1881 * same leaf, and we will deal with them at the same time.
1882 * Since we are sure we will reserve the space for the inode item,
1883 * it is unnecessary to reserve space for inode ref deletion.
1884 * - If the inode ref and the inode item are not in the same leaf,
1885 * We also needn't worry about enospc problem, because we reserve
1886 * much more space for the inode update than it needs.
1887 * - At the worst, we can steal some space from the global reservation.
1890 mutex_lock(&delayed_node
->mutex
);
1891 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
))
1894 set_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
);
1895 delayed_node
->count
++;
1896 atomic_inc(&fs_info
->delayed_root
->items
);
1898 mutex_unlock(&delayed_node
->mutex
);
1899 btrfs_release_delayed_node(delayed_node
);
1903 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node
*delayed_node
)
1905 struct btrfs_root
*root
= delayed_node
->root
;
1906 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1907 struct btrfs_delayed_item
*curr_item
, *prev_item
;
1909 mutex_lock(&delayed_node
->mutex
);
1910 curr_item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1912 btrfs_delayed_item_release_metadata(fs_info
, curr_item
);
1913 prev_item
= curr_item
;
1914 curr_item
= __btrfs_next_delayed_item(prev_item
);
1915 btrfs_release_delayed_item(prev_item
);
1918 curr_item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1920 btrfs_delayed_item_release_metadata(fs_info
, curr_item
);
1921 prev_item
= curr_item
;
1922 curr_item
= __btrfs_next_delayed_item(prev_item
);
1923 btrfs_release_delayed_item(prev_item
);
1926 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
))
1927 btrfs_release_delayed_iref(delayed_node
);
1929 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1930 btrfs_delayed_inode_release_metadata(fs_info
, delayed_node
);
1931 btrfs_release_delayed_inode(delayed_node
);
1933 mutex_unlock(&delayed_node
->mutex
);
1936 void btrfs_kill_delayed_inode_items(struct inode
*inode
)
1938 struct btrfs_delayed_node
*delayed_node
;
1940 delayed_node
= btrfs_get_delayed_node(inode
);
1944 __btrfs_kill_delayed_node(delayed_node
);
1945 btrfs_release_delayed_node(delayed_node
);
1948 void btrfs_kill_all_delayed_nodes(struct btrfs_root
*root
)
1951 struct btrfs_delayed_node
*delayed_nodes
[8];
1955 spin_lock(&root
->inode_lock
);
1956 n
= radix_tree_gang_lookup(&root
->delayed_nodes_tree
,
1957 (void **)delayed_nodes
, inode_id
,
1958 ARRAY_SIZE(delayed_nodes
));
1960 spin_unlock(&root
->inode_lock
);
1964 inode_id
= delayed_nodes
[n
- 1]->inode_id
+ 1;
1966 for (i
= 0; i
< n
; i
++)
1967 atomic_inc(&delayed_nodes
[i
]->refs
);
1968 spin_unlock(&root
->inode_lock
);
1970 for (i
= 0; i
< n
; i
++) {
1971 __btrfs_kill_delayed_node(delayed_nodes
[i
]);
1972 btrfs_release_delayed_node(delayed_nodes
[i
]);
1977 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info
*fs_info
)
1979 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1981 curr_node
= btrfs_first_delayed_node(fs_info
->delayed_root
);
1983 __btrfs_kill_delayed_node(curr_node
);
1985 prev_node
= curr_node
;
1986 curr_node
= btrfs_next_delayed_node(curr_node
);
1987 btrfs_release_delayed_node(prev_node
);