2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
52 #include "compression.h"
55 #include <asm/cpufeature.h>
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
64 static const struct extent_io_ops btree_extent_io_ops
;
65 static void end_workqueue_fn(struct btrfs_work
*work
);
66 static void free_fs_root(struct btrfs_root
*root
);
67 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
69 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
71 struct btrfs_fs_info
*fs_info
);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
73 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
74 struct extent_io_tree
*dirty_pages
,
76 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
77 struct extent_io_tree
*pinned_extents
);
78 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
);
79 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
);
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
86 struct btrfs_end_io_wq
{
90 struct btrfs_fs_info
*info
;
92 enum btrfs_wq_endio_type metadata
;
93 struct list_head list
;
94 struct btrfs_work work
;
97 static struct kmem_cache
*btrfs_end_io_wq_cache
;
99 int __init
btrfs_end_io_wq_init(void)
101 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq
),
106 if (!btrfs_end_io_wq_cache
)
111 void btrfs_end_io_wq_exit(void)
113 kmem_cache_destroy(btrfs_end_io_wq_cache
);
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
121 struct async_submit_bio
{
124 struct list_head list
;
125 extent_submit_bio_hook_t
*submit_bio_start
;
126 extent_submit_bio_hook_t
*submit_bio_done
;
128 unsigned long bio_flags
;
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
134 struct btrfs_work work
;
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
166 static struct btrfs_lockdep_keyset
{
167 u64 id
; /* root objectid */
168 const char *name_stem
; /* lock name stem */
169 char names
[BTRFS_MAX_LEVEL
+ 1][20];
170 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
171 } btrfs_lockdep_keysets
[] = {
172 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
173 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
174 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
175 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
176 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
177 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
178 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
179 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
180 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
181 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
182 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
183 { .id
= BTRFS_FREE_SPACE_TREE_OBJECTID
, .name_stem
= "free-space" },
184 { .id
= 0, .name_stem
= "tree" },
187 void __init
btrfs_init_lockdep(void)
191 /* initialize lockdep class names */
192 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
193 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
195 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
196 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
197 "btrfs-%s-%02d", ks
->name_stem
, j
);
201 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
204 struct btrfs_lockdep_keyset
*ks
;
206 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
210 if (ks
->id
== objectid
)
213 lockdep_set_class_and_name(&eb
->lock
,
214 &ks
->keys
[level
], ks
->names
[level
]);
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
223 static struct extent_map
*btree_get_extent(struct inode
*inode
,
224 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
227 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
228 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
229 struct extent_map
*em
;
232 read_lock(&em_tree
->lock
);
233 em
= lookup_extent_mapping(em_tree
, start
, len
);
235 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
236 read_unlock(&em_tree
->lock
);
239 read_unlock(&em_tree
->lock
);
241 em
= alloc_extent_map();
243 em
= ERR_PTR(-ENOMEM
);
248 em
->block_len
= (u64
)-1;
250 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
252 write_lock(&em_tree
->lock
);
253 ret
= add_extent_mapping(em_tree
, em
, 0);
254 if (ret
== -EEXIST
) {
256 em
= lookup_extent_mapping(em_tree
, start
, len
);
263 write_unlock(&em_tree
->lock
);
269 u32
btrfs_csum_data(char *data
, u32 seed
, size_t len
)
271 return btrfs_crc32c(seed
, data
, len
);
274 void btrfs_csum_final(u32 crc
, u8
*result
)
276 put_unaligned_le32(~crc
, result
);
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
283 static int csum_tree_block(struct btrfs_fs_info
*fs_info
,
284 struct extent_buffer
*buf
,
287 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
290 unsigned long cur_len
;
291 unsigned long offset
= BTRFS_CSUM_SIZE
;
293 unsigned long map_start
;
294 unsigned long map_len
;
297 unsigned long inline_result
;
299 len
= buf
->len
- offset
;
301 err
= map_private_extent_buffer(buf
, offset
, 32,
302 &kaddr
, &map_start
, &map_len
);
305 cur_len
= min(len
, map_len
- (offset
- map_start
));
306 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
311 if (csum_size
> sizeof(inline_result
)) {
312 result
= kzalloc(csum_size
, GFP_NOFS
);
316 result
= (char *)&inline_result
;
319 btrfs_csum_final(crc
, result
);
322 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
325 memcpy(&found
, result
, csum_size
);
327 read_extent_buffer(buf
, &val
, 0, csum_size
);
328 btrfs_warn_rl(fs_info
,
329 "%s checksum verify failed on %llu wanted %X found %X level %d",
330 fs_info
->sb
->s_id
, buf
->start
,
331 val
, found
, btrfs_header_level(buf
));
332 if (result
!= (char *)&inline_result
)
337 write_extent_buffer(buf
, result
, 0, csum_size
);
339 if (result
!= (char *)&inline_result
)
345 * we can't consider a given block up to date unless the transid of the
346 * block matches the transid in the parent node's pointer. This is how we
347 * detect blocks that either didn't get written at all or got written
348 * in the wrong place.
350 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
351 struct extent_buffer
*eb
, u64 parent_transid
,
354 struct extent_state
*cached_state
= NULL
;
356 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
358 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
365 btrfs_tree_read_lock(eb
);
366 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
369 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
371 if (extent_buffer_uptodate(eb
) &&
372 btrfs_header_generation(eb
) == parent_transid
) {
376 btrfs_err_rl(eb
->fs_info
,
377 "parent transid verify failed on %llu wanted %llu found %llu",
379 parent_transid
, btrfs_header_generation(eb
));
383 * Things reading via commit roots that don't have normal protection,
384 * like send, can have a really old block in cache that may point at a
385 * block that has been freed and re-allocated. So don't clear uptodate
386 * if we find an eb that is under IO (dirty/writeback) because we could
387 * end up reading in the stale data and then writing it back out and
388 * making everybody very sad.
390 if (!extent_buffer_under_io(eb
))
391 clear_extent_buffer_uptodate(eb
);
393 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
394 &cached_state
, GFP_NOFS
);
396 btrfs_tree_read_unlock_blocking(eb
);
401 * Return 0 if the superblock checksum type matches the checksum value of that
402 * algorithm. Pass the raw disk superblock data.
404 static int btrfs_check_super_csum(struct btrfs_fs_info
*fs_info
,
407 struct btrfs_super_block
*disk_sb
=
408 (struct btrfs_super_block
*)raw_disk_sb
;
409 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
412 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
414 const int csum_size
= sizeof(crc
);
415 char result
[csum_size
];
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 * is filled with zeros and is included in the checksum.
422 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
423 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
424 btrfs_csum_final(crc
, result
);
426 if (memcmp(raw_disk_sb
, result
, csum_size
))
430 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
431 btrfs_err(fs_info
, "unsupported checksum algorithm %u",
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
443 static int btree_read_extent_buffer_pages(struct btrfs_fs_info
*fs_info
,
444 struct extent_buffer
*eb
,
447 struct extent_io_tree
*io_tree
;
452 int failed_mirror
= 0;
454 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
455 io_tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
457 ret
= read_extent_buffer_pages(io_tree
, eb
, WAIT_COMPLETE
,
458 btree_get_extent
, mirror_num
);
460 if (!verify_parent_transid(io_tree
, eb
,
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
472 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
475 num_copies
= btrfs_num_copies(fs_info
,
480 if (!failed_mirror
) {
482 failed_mirror
= eb
->read_mirror
;
486 if (mirror_num
== failed_mirror
)
489 if (mirror_num
> num_copies
)
493 if (failed
&& !ret
&& failed_mirror
)
494 repair_eb_io_failure(fs_info
, eb
, failed_mirror
);
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
504 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
506 u64 start
= page_offset(page
);
508 struct extent_buffer
*eb
;
510 eb
= (struct extent_buffer
*)page
->private;
511 if (page
!= eb
->pages
[0])
514 found_start
= btrfs_header_bytenr(eb
);
516 * Please do not consolidate these warnings into a single if.
517 * It is useful to know what went wrong.
519 if (WARN_ON(found_start
!= start
))
521 if (WARN_ON(!PageUptodate(page
)))
524 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fsid
,
525 btrfs_header_fsid(), BTRFS_FSID_SIZE
) == 0);
527 return csum_tree_block(fs_info
, eb
, 0);
530 static int check_tree_block_fsid(struct btrfs_fs_info
*fs_info
,
531 struct extent_buffer
*eb
)
533 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
534 u8 fsid
[BTRFS_UUID_SIZE
];
537 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(), BTRFS_FSID_SIZE
);
539 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
543 fs_devices
= fs_devices
->seed
;
548 #define CORRUPT(reason, eb, root, slot) \
549 btrfs_crit(root->fs_info, \
550 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
551 btrfs_header_level(eb) == 0 ? "leaf" : "node", \
552 reason, btrfs_header_bytenr(eb), root->objectid, slot)
554 static noinline
int check_leaf(struct btrfs_root
*root
,
555 struct extent_buffer
*leaf
)
557 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
558 struct btrfs_key key
;
559 struct btrfs_key leaf_key
;
560 u32 nritems
= btrfs_header_nritems(leaf
);
564 * Extent buffers from a relocation tree have a owner field that
565 * corresponds to the subvolume tree they are based on. So just from an
566 * extent buffer alone we can not find out what is the id of the
567 * corresponding subvolume tree, so we can not figure out if the extent
568 * buffer corresponds to the root of the relocation tree or not. So skip
569 * this check for relocation trees.
571 if (nritems
== 0 && !btrfs_header_flag(leaf
, BTRFS_HEADER_FLAG_RELOC
)) {
572 struct btrfs_root
*check_root
;
574 key
.objectid
= btrfs_header_owner(leaf
);
575 key
.type
= BTRFS_ROOT_ITEM_KEY
;
576 key
.offset
= (u64
)-1;
578 check_root
= btrfs_get_fs_root(fs_info
, &key
, false);
580 * The only reason we also check NULL here is that during
581 * open_ctree() some roots has not yet been set up.
583 if (!IS_ERR_OR_NULL(check_root
)) {
584 struct extent_buffer
*eb
;
586 eb
= btrfs_root_node(check_root
);
587 /* if leaf is the root, then it's fine */
589 CORRUPT("non-root leaf's nritems is 0",
590 leaf
, check_root
, 0);
591 free_extent_buffer(eb
);
594 free_extent_buffer(eb
);
602 /* Check the 0 item */
603 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
604 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
605 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
610 * Check to make sure each items keys are in the correct order and their
611 * offsets make sense. We only have to loop through nritems-1 because
612 * we check the current slot against the next slot, which verifies the
613 * next slot's offset+size makes sense and that the current's slot
616 for (slot
= 0; slot
< nritems
- 1; slot
++) {
617 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
618 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
620 /* Make sure the keys are in the right order */
621 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
622 CORRUPT("bad key order", leaf
, root
, slot
);
627 * Make sure the offset and ends are right, remember that the
628 * item data starts at the end of the leaf and grows towards the
631 if (btrfs_item_offset_nr(leaf
, slot
) !=
632 btrfs_item_end_nr(leaf
, slot
+ 1)) {
633 CORRUPT("slot offset bad", leaf
, root
, slot
);
638 * Check to make sure that we don't point outside of the leaf,
639 * just in case all the items are consistent to each other, but
640 * all point outside of the leaf.
642 if (btrfs_item_end_nr(leaf
, slot
) >
643 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
644 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
652 static int check_node(struct btrfs_root
*root
, struct extent_buffer
*node
)
654 unsigned long nr
= btrfs_header_nritems(node
);
655 struct btrfs_key key
, next_key
;
660 if (nr
== 0 || nr
> BTRFS_NODEPTRS_PER_BLOCK(root
->fs_info
)) {
661 btrfs_crit(root
->fs_info
,
662 "corrupt node: block %llu root %llu nritems %lu",
663 node
->start
, root
->objectid
, nr
);
667 for (slot
= 0; slot
< nr
- 1; slot
++) {
668 bytenr
= btrfs_node_blockptr(node
, slot
);
669 btrfs_node_key_to_cpu(node
, &key
, slot
);
670 btrfs_node_key_to_cpu(node
, &next_key
, slot
+ 1);
673 CORRUPT("invalid item slot", node
, root
, slot
);
678 if (btrfs_comp_cpu_keys(&key
, &next_key
) >= 0) {
679 CORRUPT("bad key order", node
, root
, slot
);
688 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
689 u64 phy_offset
, struct page
*page
,
690 u64 start
, u64 end
, int mirror
)
694 struct extent_buffer
*eb
;
695 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
696 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
703 eb
= (struct extent_buffer
*)page
->private;
705 /* the pending IO might have been the only thing that kept this buffer
706 * in memory. Make sure we have a ref for all this other checks
708 extent_buffer_get(eb
);
710 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
714 eb
->read_mirror
= mirror
;
715 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
720 found_start
= btrfs_header_bytenr(eb
);
721 if (found_start
!= eb
->start
) {
722 btrfs_err_rl(fs_info
, "bad tree block start %llu %llu",
723 found_start
, eb
->start
);
727 if (check_tree_block_fsid(fs_info
, eb
)) {
728 btrfs_err_rl(fs_info
, "bad fsid on block %llu",
733 found_level
= btrfs_header_level(eb
);
734 if (found_level
>= BTRFS_MAX_LEVEL
) {
735 btrfs_err(fs_info
, "bad tree block level %d",
736 (int)btrfs_header_level(eb
));
741 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
744 ret
= csum_tree_block(fs_info
, eb
, 1);
749 * If this is a leaf block and it is corrupt, set the corrupt bit so
750 * that we don't try and read the other copies of this block, just
753 if (found_level
== 0 && check_leaf(root
, eb
)) {
754 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
758 if (found_level
> 0 && check_node(root
, eb
))
762 set_extent_buffer_uptodate(eb
);
765 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
766 btree_readahead_hook(fs_info
, eb
, ret
);
770 * our io error hook is going to dec the io pages
771 * again, we have to make sure it has something
774 atomic_inc(&eb
->io_pages
);
775 clear_extent_buffer_uptodate(eb
);
777 free_extent_buffer(eb
);
782 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
784 struct extent_buffer
*eb
;
786 eb
= (struct extent_buffer
*)page
->private;
787 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
788 eb
->read_mirror
= failed_mirror
;
789 atomic_dec(&eb
->io_pages
);
790 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
791 btree_readahead_hook(eb
->fs_info
, eb
, -EIO
);
792 return -EIO
; /* we fixed nothing */
795 static void end_workqueue_bio(struct bio
*bio
)
797 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
798 struct btrfs_fs_info
*fs_info
;
799 struct btrfs_workqueue
*wq
;
800 btrfs_work_func_t func
;
802 fs_info
= end_io_wq
->info
;
803 end_io_wq
->error
= bio
->bi_error
;
805 if (bio_op(bio
) == REQ_OP_WRITE
) {
806 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
) {
807 wq
= fs_info
->endio_meta_write_workers
;
808 func
= btrfs_endio_meta_write_helper
;
809 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
) {
810 wq
= fs_info
->endio_freespace_worker
;
811 func
= btrfs_freespace_write_helper
;
812 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
813 wq
= fs_info
->endio_raid56_workers
;
814 func
= btrfs_endio_raid56_helper
;
816 wq
= fs_info
->endio_write_workers
;
817 func
= btrfs_endio_write_helper
;
820 if (unlikely(end_io_wq
->metadata
==
821 BTRFS_WQ_ENDIO_DIO_REPAIR
)) {
822 wq
= fs_info
->endio_repair_workers
;
823 func
= btrfs_endio_repair_helper
;
824 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
825 wq
= fs_info
->endio_raid56_workers
;
826 func
= btrfs_endio_raid56_helper
;
827 } else if (end_io_wq
->metadata
) {
828 wq
= fs_info
->endio_meta_workers
;
829 func
= btrfs_endio_meta_helper
;
831 wq
= fs_info
->endio_workers
;
832 func
= btrfs_endio_helper
;
836 btrfs_init_work(&end_io_wq
->work
, func
, end_workqueue_fn
, NULL
, NULL
);
837 btrfs_queue_work(wq
, &end_io_wq
->work
);
840 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
841 enum btrfs_wq_endio_type metadata
)
843 struct btrfs_end_io_wq
*end_io_wq
;
845 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
849 end_io_wq
->private = bio
->bi_private
;
850 end_io_wq
->end_io
= bio
->bi_end_io
;
851 end_io_wq
->info
= info
;
852 end_io_wq
->error
= 0;
853 end_io_wq
->bio
= bio
;
854 end_io_wq
->metadata
= metadata
;
856 bio
->bi_private
= end_io_wq
;
857 bio
->bi_end_io
= end_workqueue_bio
;
861 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
863 unsigned long limit
= min_t(unsigned long,
864 info
->thread_pool_size
,
865 info
->fs_devices
->open_devices
);
869 static void run_one_async_start(struct btrfs_work
*work
)
871 struct async_submit_bio
*async
;
874 async
= container_of(work
, struct async_submit_bio
, work
);
875 ret
= async
->submit_bio_start(async
->inode
, async
->bio
,
876 async
->mirror_num
, async
->bio_flags
,
882 static void run_one_async_done(struct btrfs_work
*work
)
884 struct btrfs_fs_info
*fs_info
;
885 struct async_submit_bio
*async
;
888 async
= container_of(work
, struct async_submit_bio
, work
);
889 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
891 limit
= btrfs_async_submit_limit(fs_info
);
892 limit
= limit
* 2 / 3;
895 * atomic_dec_return implies a barrier for waitqueue_active
897 if (atomic_dec_return(&fs_info
->nr_async_submits
) < limit
&&
898 waitqueue_active(&fs_info
->async_submit_wait
))
899 wake_up(&fs_info
->async_submit_wait
);
901 /* If an error occurred we just want to clean up the bio and move on */
903 async
->bio
->bi_error
= async
->error
;
904 bio_endio(async
->bio
);
908 async
->submit_bio_done(async
->inode
, async
->bio
, async
->mirror_num
,
909 async
->bio_flags
, async
->bio_offset
);
912 static void run_one_async_free(struct btrfs_work
*work
)
914 struct async_submit_bio
*async
;
916 async
= container_of(work
, struct async_submit_bio
, work
);
920 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
921 struct bio
*bio
, int mirror_num
,
922 unsigned long bio_flags
,
924 extent_submit_bio_hook_t
*submit_bio_start
,
925 extent_submit_bio_hook_t
*submit_bio_done
)
927 struct async_submit_bio
*async
;
929 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
933 async
->inode
= inode
;
935 async
->mirror_num
= mirror_num
;
936 async
->submit_bio_start
= submit_bio_start
;
937 async
->submit_bio_done
= submit_bio_done
;
939 btrfs_init_work(&async
->work
, btrfs_worker_helper
, run_one_async_start
,
940 run_one_async_done
, run_one_async_free
);
942 async
->bio_flags
= bio_flags
;
943 async
->bio_offset
= bio_offset
;
947 atomic_inc(&fs_info
->nr_async_submits
);
949 if (op_is_sync(bio
->bi_opf
))
950 btrfs_set_work_high_priority(&async
->work
);
952 btrfs_queue_work(fs_info
->workers
, &async
->work
);
954 while (atomic_read(&fs_info
->async_submit_draining
) &&
955 atomic_read(&fs_info
->nr_async_submits
)) {
956 wait_event(fs_info
->async_submit_wait
,
957 (atomic_read(&fs_info
->nr_async_submits
) == 0));
963 static int btree_csum_one_bio(struct bio
*bio
)
965 struct bio_vec
*bvec
;
966 struct btrfs_root
*root
;
969 bio_for_each_segment_all(bvec
, bio
, i
) {
970 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
971 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
979 static int __btree_submit_bio_start(struct inode
*inode
, struct bio
*bio
,
980 int mirror_num
, unsigned long bio_flags
,
984 * when we're called for a write, we're already in the async
985 * submission context. Just jump into btrfs_map_bio
987 return btree_csum_one_bio(bio
);
990 static int __btree_submit_bio_done(struct inode
*inode
, struct bio
*bio
,
991 int mirror_num
, unsigned long bio_flags
,
997 * when we're called for a write, we're already in the async
998 * submission context. Just jump into btrfs_map_bio
1000 ret
= btrfs_map_bio(btrfs_sb(inode
->i_sb
), bio
, mirror_num
, 1);
1002 bio
->bi_error
= ret
;
1008 static int check_async_write(struct inode
*inode
, unsigned long bio_flags
)
1010 if (bio_flags
& EXTENT_BIO_TREE_LOG
)
1013 if (static_cpu_has(X86_FEATURE_XMM4_2
))
1019 static int btree_submit_bio_hook(struct inode
*inode
, struct bio
*bio
,
1020 int mirror_num
, unsigned long bio_flags
,
1023 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1024 int async
= check_async_write(inode
, bio_flags
);
1027 if (bio_op(bio
) != REQ_OP_WRITE
) {
1029 * called for a read, do the setup so that checksum validation
1030 * can happen in the async kernel threads
1032 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
1033 BTRFS_WQ_ENDIO_METADATA
);
1036 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
1037 } else if (!async
) {
1038 ret
= btree_csum_one_bio(bio
);
1041 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
1044 * kthread helpers are used to submit writes so that
1045 * checksumming can happen in parallel across all CPUs
1047 ret
= btrfs_wq_submit_bio(fs_info
, inode
, bio
, mirror_num
, 0,
1049 __btree_submit_bio_start
,
1050 __btree_submit_bio_done
);
1058 bio
->bi_error
= ret
;
1063 #ifdef CONFIG_MIGRATION
1064 static int btree_migratepage(struct address_space
*mapping
,
1065 struct page
*newpage
, struct page
*page
,
1066 enum migrate_mode mode
)
1069 * we can't safely write a btree page from here,
1070 * we haven't done the locking hook
1072 if (PageDirty(page
))
1075 * Buffers may be managed in a filesystem specific way.
1076 * We must have no buffers or drop them.
1078 if (page_has_private(page
) &&
1079 !try_to_release_page(page
, GFP_KERNEL
))
1081 return migrate_page(mapping
, newpage
, page
, mode
);
1086 static int btree_writepages(struct address_space
*mapping
,
1087 struct writeback_control
*wbc
)
1089 struct btrfs_fs_info
*fs_info
;
1092 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
1094 if (wbc
->for_kupdate
)
1097 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
1098 /* this is a bit racy, but that's ok */
1099 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
1100 BTRFS_DIRTY_METADATA_THRESH
);
1104 return btree_write_cache_pages(mapping
, wbc
);
1107 static int btree_readpage(struct file
*file
, struct page
*page
)
1109 struct extent_io_tree
*tree
;
1110 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1111 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
1114 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
1116 if (PageWriteback(page
) || PageDirty(page
))
1119 return try_release_extent_buffer(page
);
1122 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
1123 unsigned int length
)
1125 struct extent_io_tree
*tree
;
1126 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1127 extent_invalidatepage(tree
, page
, offset
);
1128 btree_releasepage(page
, GFP_NOFS
);
1129 if (PagePrivate(page
)) {
1130 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
1131 "page private not zero on page %llu",
1132 (unsigned long long)page_offset(page
));
1133 ClearPagePrivate(page
);
1134 set_page_private(page
, 0);
1139 static int btree_set_page_dirty(struct page
*page
)
1142 struct extent_buffer
*eb
;
1144 BUG_ON(!PagePrivate(page
));
1145 eb
= (struct extent_buffer
*)page
->private;
1147 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1148 BUG_ON(!atomic_read(&eb
->refs
));
1149 btrfs_assert_tree_locked(eb
);
1151 return __set_page_dirty_nobuffers(page
);
1154 static const struct address_space_operations btree_aops
= {
1155 .readpage
= btree_readpage
,
1156 .writepages
= btree_writepages
,
1157 .releasepage
= btree_releasepage
,
1158 .invalidatepage
= btree_invalidatepage
,
1159 #ifdef CONFIG_MIGRATION
1160 .migratepage
= btree_migratepage
,
1162 .set_page_dirty
= btree_set_page_dirty
,
1165 void readahead_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
1167 struct extent_buffer
*buf
= NULL
;
1168 struct inode
*btree_inode
= fs_info
->btree_inode
;
1170 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1173 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1174 buf
, WAIT_NONE
, btree_get_extent
, 0);
1175 free_extent_buffer(buf
);
1178 int reada_tree_block_flagged(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1179 int mirror_num
, struct extent_buffer
**eb
)
1181 struct extent_buffer
*buf
= NULL
;
1182 struct inode
*btree_inode
= fs_info
->btree_inode
;
1183 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1186 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1190 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1192 ret
= read_extent_buffer_pages(io_tree
, buf
, WAIT_PAGE_LOCK
,
1193 btree_get_extent
, mirror_num
);
1195 free_extent_buffer(buf
);
1199 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1200 free_extent_buffer(buf
);
1202 } else if (extent_buffer_uptodate(buf
)) {
1205 free_extent_buffer(buf
);
1210 struct extent_buffer
*btrfs_find_create_tree_block(
1211 struct btrfs_fs_info
*fs_info
,
1214 if (btrfs_is_testing(fs_info
))
1215 return alloc_test_extent_buffer(fs_info
, bytenr
);
1216 return alloc_extent_buffer(fs_info
, bytenr
);
1220 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1222 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1223 buf
->start
+ buf
->len
- 1);
1226 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1228 return filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1229 buf
->start
, buf
->start
+ buf
->len
- 1);
1232 struct extent_buffer
*read_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1235 struct extent_buffer
*buf
= NULL
;
1238 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1242 ret
= btree_read_extent_buffer_pages(fs_info
, buf
, parent_transid
);
1244 free_extent_buffer(buf
);
1245 return ERR_PTR(ret
);
1251 void clean_tree_block(struct btrfs_trans_handle
*trans
,
1252 struct btrfs_fs_info
*fs_info
,
1253 struct extent_buffer
*buf
)
1255 if (btrfs_header_generation(buf
) ==
1256 fs_info
->running_transaction
->transid
) {
1257 btrfs_assert_tree_locked(buf
);
1259 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1260 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
1262 fs_info
->dirty_metadata_batch
);
1263 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1264 btrfs_set_lock_blocking(buf
);
1265 clear_extent_buffer_dirty(buf
);
1270 static struct btrfs_subvolume_writers
*btrfs_alloc_subvolume_writers(void)
1272 struct btrfs_subvolume_writers
*writers
;
1275 writers
= kmalloc(sizeof(*writers
), GFP_NOFS
);
1277 return ERR_PTR(-ENOMEM
);
1279 ret
= percpu_counter_init(&writers
->counter
, 0, GFP_KERNEL
);
1282 return ERR_PTR(ret
);
1285 init_waitqueue_head(&writers
->wait
);
1290 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers
*writers
)
1292 percpu_counter_destroy(&writers
->counter
);
1296 static void __setup_root(struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1299 bool dummy
= test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO
, &fs_info
->fs_state
);
1301 root
->commit_root
= NULL
;
1303 root
->orphan_cleanup_state
= 0;
1305 root
->objectid
= objectid
;
1306 root
->last_trans
= 0;
1307 root
->highest_objectid
= 0;
1308 root
->nr_delalloc_inodes
= 0;
1309 root
->nr_ordered_extents
= 0;
1311 root
->inode_tree
= RB_ROOT
;
1312 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1313 root
->block_rsv
= NULL
;
1314 root
->orphan_block_rsv
= NULL
;
1316 INIT_LIST_HEAD(&root
->dirty_list
);
1317 INIT_LIST_HEAD(&root
->root_list
);
1318 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1319 INIT_LIST_HEAD(&root
->delalloc_root
);
1320 INIT_LIST_HEAD(&root
->ordered_extents
);
1321 INIT_LIST_HEAD(&root
->ordered_root
);
1322 INIT_LIST_HEAD(&root
->logged_list
[0]);
1323 INIT_LIST_HEAD(&root
->logged_list
[1]);
1324 spin_lock_init(&root
->orphan_lock
);
1325 spin_lock_init(&root
->inode_lock
);
1326 spin_lock_init(&root
->delalloc_lock
);
1327 spin_lock_init(&root
->ordered_extent_lock
);
1328 spin_lock_init(&root
->accounting_lock
);
1329 spin_lock_init(&root
->log_extents_lock
[0]);
1330 spin_lock_init(&root
->log_extents_lock
[1]);
1331 mutex_init(&root
->objectid_mutex
);
1332 mutex_init(&root
->log_mutex
);
1333 mutex_init(&root
->ordered_extent_mutex
);
1334 mutex_init(&root
->delalloc_mutex
);
1335 init_waitqueue_head(&root
->log_writer_wait
);
1336 init_waitqueue_head(&root
->log_commit_wait
[0]);
1337 init_waitqueue_head(&root
->log_commit_wait
[1]);
1338 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1339 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1340 atomic_set(&root
->log_commit
[0], 0);
1341 atomic_set(&root
->log_commit
[1], 0);
1342 atomic_set(&root
->log_writers
, 0);
1343 atomic_set(&root
->log_batch
, 0);
1344 atomic_set(&root
->orphan_inodes
, 0);
1345 atomic_set(&root
->refs
, 1);
1346 atomic_set(&root
->will_be_snapshoted
, 0);
1347 atomic_set(&root
->qgroup_meta_rsv
, 0);
1348 root
->log_transid
= 0;
1349 root
->log_transid_committed
= -1;
1350 root
->last_log_commit
= 0;
1352 extent_io_tree_init(&root
->dirty_log_pages
,
1353 fs_info
->btree_inode
->i_mapping
);
1355 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1356 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1357 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1359 root
->defrag_trans_start
= fs_info
->generation
;
1361 root
->defrag_trans_start
= 0;
1362 root
->root_key
.objectid
= objectid
;
1365 spin_lock_init(&root
->root_item_lock
);
1368 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
1371 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
1373 root
->fs_info
= fs_info
;
1377 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1378 /* Should only be used by the testing infrastructure */
1379 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
)
1381 struct btrfs_root
*root
;
1384 return ERR_PTR(-EINVAL
);
1386 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1388 return ERR_PTR(-ENOMEM
);
1390 /* We don't use the stripesize in selftest, set it as sectorsize */
1391 __setup_root(root
, fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1392 root
->alloc_bytenr
= 0;
1398 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1399 struct btrfs_fs_info
*fs_info
,
1402 struct extent_buffer
*leaf
;
1403 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1404 struct btrfs_root
*root
;
1405 struct btrfs_key key
;
1409 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1411 return ERR_PTR(-ENOMEM
);
1413 __setup_root(root
, fs_info
, objectid
);
1414 root
->root_key
.objectid
= objectid
;
1415 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1416 root
->root_key
.offset
= 0;
1418 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1420 ret
= PTR_ERR(leaf
);
1425 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
1426 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1427 btrfs_set_header_generation(leaf
, trans
->transid
);
1428 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1429 btrfs_set_header_owner(leaf
, objectid
);
1432 write_extent_buffer_fsid(leaf
, fs_info
->fsid
);
1433 write_extent_buffer_chunk_tree_uuid(leaf
, fs_info
->chunk_tree_uuid
);
1434 btrfs_mark_buffer_dirty(leaf
);
1436 root
->commit_root
= btrfs_root_node(root
);
1437 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1439 root
->root_item
.flags
= 0;
1440 root
->root_item
.byte_limit
= 0;
1441 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1442 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1443 btrfs_set_root_level(&root
->root_item
, 0);
1444 btrfs_set_root_refs(&root
->root_item
, 1);
1445 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1446 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1447 btrfs_set_root_dirid(&root
->root_item
, 0);
1449 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1450 root
->root_item
.drop_level
= 0;
1452 key
.objectid
= objectid
;
1453 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1455 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1459 btrfs_tree_unlock(leaf
);
1465 btrfs_tree_unlock(leaf
);
1466 free_extent_buffer(root
->commit_root
);
1467 free_extent_buffer(leaf
);
1471 return ERR_PTR(ret
);
1474 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1475 struct btrfs_fs_info
*fs_info
)
1477 struct btrfs_root
*root
;
1478 struct extent_buffer
*leaf
;
1480 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1482 return ERR_PTR(-ENOMEM
);
1484 __setup_root(root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1486 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1487 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1488 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1491 * DON'T set REF_COWS for log trees
1493 * log trees do not get reference counted because they go away
1494 * before a real commit is actually done. They do store pointers
1495 * to file data extents, and those reference counts still get
1496 * updated (along with back refs to the log tree).
1499 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1503 return ERR_CAST(leaf
);
1506 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
1507 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1508 btrfs_set_header_generation(leaf
, trans
->transid
);
1509 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1510 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1513 write_extent_buffer_fsid(root
->node
, fs_info
->fsid
);
1514 btrfs_mark_buffer_dirty(root
->node
);
1515 btrfs_tree_unlock(root
->node
);
1519 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1520 struct btrfs_fs_info
*fs_info
)
1522 struct btrfs_root
*log_root
;
1524 log_root
= alloc_log_tree(trans
, fs_info
);
1525 if (IS_ERR(log_root
))
1526 return PTR_ERR(log_root
);
1527 WARN_ON(fs_info
->log_root_tree
);
1528 fs_info
->log_root_tree
= log_root
;
1532 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1533 struct btrfs_root
*root
)
1535 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1536 struct btrfs_root
*log_root
;
1537 struct btrfs_inode_item
*inode_item
;
1539 log_root
= alloc_log_tree(trans
, fs_info
);
1540 if (IS_ERR(log_root
))
1541 return PTR_ERR(log_root
);
1543 log_root
->last_trans
= trans
->transid
;
1544 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1546 inode_item
= &log_root
->root_item
.inode
;
1547 btrfs_set_stack_inode_generation(inode_item
, 1);
1548 btrfs_set_stack_inode_size(inode_item
, 3);
1549 btrfs_set_stack_inode_nlink(inode_item
, 1);
1550 btrfs_set_stack_inode_nbytes(inode_item
,
1552 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1554 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1556 WARN_ON(root
->log_root
);
1557 root
->log_root
= log_root
;
1558 root
->log_transid
= 0;
1559 root
->log_transid_committed
= -1;
1560 root
->last_log_commit
= 0;
1564 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1565 struct btrfs_key
*key
)
1567 struct btrfs_root
*root
;
1568 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1569 struct btrfs_path
*path
;
1573 path
= btrfs_alloc_path();
1575 return ERR_PTR(-ENOMEM
);
1577 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1583 __setup_root(root
, fs_info
, key
->objectid
);
1585 ret
= btrfs_find_root(tree_root
, key
, path
,
1586 &root
->root_item
, &root
->root_key
);
1593 generation
= btrfs_root_generation(&root
->root_item
);
1594 root
->node
= read_tree_block(fs_info
,
1595 btrfs_root_bytenr(&root
->root_item
),
1597 if (IS_ERR(root
->node
)) {
1598 ret
= PTR_ERR(root
->node
);
1600 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1602 free_extent_buffer(root
->node
);
1605 root
->commit_root
= btrfs_root_node(root
);
1607 btrfs_free_path(path
);
1613 root
= ERR_PTR(ret
);
1617 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1618 struct btrfs_key
*location
)
1620 struct btrfs_root
*root
;
1622 root
= btrfs_read_tree_root(tree_root
, location
);
1626 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1627 set_bit(BTRFS_ROOT_REF_COWS
, &root
->state
);
1628 btrfs_check_and_init_root_item(&root
->root_item
);
1634 int btrfs_init_fs_root(struct btrfs_root
*root
)
1637 struct btrfs_subvolume_writers
*writers
;
1639 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1640 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1642 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1647 writers
= btrfs_alloc_subvolume_writers();
1648 if (IS_ERR(writers
)) {
1649 ret
= PTR_ERR(writers
);
1652 root
->subv_writers
= writers
;
1654 btrfs_init_free_ino_ctl(root
);
1655 spin_lock_init(&root
->ino_cache_lock
);
1656 init_waitqueue_head(&root
->ino_cache_wait
);
1658 ret
= get_anon_bdev(&root
->anon_dev
);
1662 mutex_lock(&root
->objectid_mutex
);
1663 ret
= btrfs_find_highest_objectid(root
,
1664 &root
->highest_objectid
);
1666 mutex_unlock(&root
->objectid_mutex
);
1670 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1672 mutex_unlock(&root
->objectid_mutex
);
1676 /* the caller is responsible to call free_fs_root */
1680 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1683 struct btrfs_root
*root
;
1685 spin_lock(&fs_info
->fs_roots_radix_lock
);
1686 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1687 (unsigned long)root_id
);
1688 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1692 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1693 struct btrfs_root
*root
)
1697 ret
= radix_tree_preload(GFP_NOFS
);
1701 spin_lock(&fs_info
->fs_roots_radix_lock
);
1702 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1703 (unsigned long)root
->root_key
.objectid
,
1706 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1707 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1708 radix_tree_preload_end();
1713 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1714 struct btrfs_key
*location
,
1717 struct btrfs_root
*root
;
1718 struct btrfs_path
*path
;
1719 struct btrfs_key key
;
1722 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1723 return fs_info
->tree_root
;
1724 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1725 return fs_info
->extent_root
;
1726 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1727 return fs_info
->chunk_root
;
1728 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1729 return fs_info
->dev_root
;
1730 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1731 return fs_info
->csum_root
;
1732 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1733 return fs_info
->quota_root
? fs_info
->quota_root
:
1735 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1736 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1738 if (location
->objectid
== BTRFS_FREE_SPACE_TREE_OBJECTID
)
1739 return fs_info
->free_space_root
? fs_info
->free_space_root
:
1742 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1744 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1745 return ERR_PTR(-ENOENT
);
1749 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1753 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1758 ret
= btrfs_init_fs_root(root
);
1762 path
= btrfs_alloc_path();
1767 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1768 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1769 key
.offset
= location
->objectid
;
1771 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1772 btrfs_free_path(path
);
1776 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1778 ret
= btrfs_insert_fs_root(fs_info
, root
);
1780 if (ret
== -EEXIST
) {
1789 return ERR_PTR(ret
);
1792 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1794 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1796 struct btrfs_device
*device
;
1797 struct backing_dev_info
*bdi
;
1800 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1803 bdi
= blk_get_backing_dev_info(device
->bdev
);
1804 if (bdi_congested(bdi
, bdi_bits
)) {
1813 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1817 err
= bdi_setup_and_register(bdi
, "btrfs");
1821 bdi
->ra_pages
= VM_MAX_READAHEAD
* 1024 / PAGE_SIZE
;
1822 bdi
->congested_fn
= btrfs_congested_fn
;
1823 bdi
->congested_data
= info
;
1824 bdi
->capabilities
|= BDI_CAP_CGROUP_WRITEBACK
;
1829 * called by the kthread helper functions to finally call the bio end_io
1830 * functions. This is where read checksum verification actually happens
1832 static void end_workqueue_fn(struct btrfs_work
*work
)
1835 struct btrfs_end_io_wq
*end_io_wq
;
1837 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1838 bio
= end_io_wq
->bio
;
1840 bio
->bi_error
= end_io_wq
->error
;
1841 bio
->bi_private
= end_io_wq
->private;
1842 bio
->bi_end_io
= end_io_wq
->end_io
;
1843 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1847 static int cleaner_kthread(void *arg
)
1849 struct btrfs_root
*root
= arg
;
1850 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1852 struct btrfs_trans_handle
*trans
;
1857 /* Make the cleaner go to sleep early. */
1858 if (btrfs_need_cleaner_sleep(fs_info
))
1862 * Do not do anything if we might cause open_ctree() to block
1863 * before we have finished mounting the filesystem.
1865 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1868 if (!mutex_trylock(&fs_info
->cleaner_mutex
))
1872 * Avoid the problem that we change the status of the fs
1873 * during the above check and trylock.
1875 if (btrfs_need_cleaner_sleep(fs_info
)) {
1876 mutex_unlock(&fs_info
->cleaner_mutex
);
1880 mutex_lock(&fs_info
->cleaner_delayed_iput_mutex
);
1881 btrfs_run_delayed_iputs(fs_info
);
1882 mutex_unlock(&fs_info
->cleaner_delayed_iput_mutex
);
1884 again
= btrfs_clean_one_deleted_snapshot(root
);
1885 mutex_unlock(&fs_info
->cleaner_mutex
);
1888 * The defragger has dealt with the R/O remount and umount,
1889 * needn't do anything special here.
1891 btrfs_run_defrag_inodes(fs_info
);
1894 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1895 * with relocation (btrfs_relocate_chunk) and relocation
1896 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1897 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1898 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1899 * unused block groups.
1901 btrfs_delete_unused_bgs(fs_info
);
1904 set_current_state(TASK_INTERRUPTIBLE
);
1905 if (!kthread_should_stop())
1907 __set_current_state(TASK_RUNNING
);
1909 } while (!kthread_should_stop());
1912 * Transaction kthread is stopped before us and wakes us up.
1913 * However we might have started a new transaction and COWed some
1914 * tree blocks when deleting unused block groups for example. So
1915 * make sure we commit the transaction we started to have a clean
1916 * shutdown when evicting the btree inode - if it has dirty pages
1917 * when we do the final iput() on it, eviction will trigger a
1918 * writeback for it which will fail with null pointer dereferences
1919 * since work queues and other resources were already released and
1920 * destroyed by the time the iput/eviction/writeback is made.
1922 trans
= btrfs_attach_transaction(root
);
1923 if (IS_ERR(trans
)) {
1924 if (PTR_ERR(trans
) != -ENOENT
)
1926 "cleaner transaction attach returned %ld",
1931 ret
= btrfs_commit_transaction(trans
);
1934 "cleaner open transaction commit returned %d",
1941 static int transaction_kthread(void *arg
)
1943 struct btrfs_root
*root
= arg
;
1944 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1945 struct btrfs_trans_handle
*trans
;
1946 struct btrfs_transaction
*cur
;
1949 unsigned long delay
;
1953 cannot_commit
= false;
1954 delay
= HZ
* fs_info
->commit_interval
;
1955 mutex_lock(&fs_info
->transaction_kthread_mutex
);
1957 spin_lock(&fs_info
->trans_lock
);
1958 cur
= fs_info
->running_transaction
;
1960 spin_unlock(&fs_info
->trans_lock
);
1964 now
= get_seconds();
1965 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1966 (now
< cur
->start_time
||
1967 now
- cur
->start_time
< fs_info
->commit_interval
)) {
1968 spin_unlock(&fs_info
->trans_lock
);
1972 transid
= cur
->transid
;
1973 spin_unlock(&fs_info
->trans_lock
);
1975 /* If the file system is aborted, this will always fail. */
1976 trans
= btrfs_attach_transaction(root
);
1977 if (IS_ERR(trans
)) {
1978 if (PTR_ERR(trans
) != -ENOENT
)
1979 cannot_commit
= true;
1982 if (transid
== trans
->transid
) {
1983 btrfs_commit_transaction(trans
);
1985 btrfs_end_transaction(trans
);
1988 wake_up_process(fs_info
->cleaner_kthread
);
1989 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
1991 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1992 &fs_info
->fs_state
)))
1993 btrfs_cleanup_transaction(fs_info
);
1994 set_current_state(TASK_INTERRUPTIBLE
);
1995 if (!kthread_should_stop() &&
1996 (!btrfs_transaction_blocked(fs_info
) ||
1998 schedule_timeout(delay
);
1999 __set_current_state(TASK_RUNNING
);
2000 } while (!kthread_should_stop());
2005 * this will find the highest generation in the array of
2006 * root backups. The index of the highest array is returned,
2007 * or -1 if we can't find anything.
2009 * We check to make sure the array is valid by comparing the
2010 * generation of the latest root in the array with the generation
2011 * in the super block. If they don't match we pitch it.
2013 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
2016 int newest_index
= -1;
2017 struct btrfs_root_backup
*root_backup
;
2020 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
2021 root_backup
= info
->super_copy
->super_roots
+ i
;
2022 cur
= btrfs_backup_tree_root_gen(root_backup
);
2023 if (cur
== newest_gen
)
2027 /* check to see if we actually wrapped around */
2028 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
2029 root_backup
= info
->super_copy
->super_roots
;
2030 cur
= btrfs_backup_tree_root_gen(root_backup
);
2031 if (cur
== newest_gen
)
2034 return newest_index
;
2039 * find the oldest backup so we know where to store new entries
2040 * in the backup array. This will set the backup_root_index
2041 * field in the fs_info struct
2043 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
2046 int newest_index
= -1;
2048 newest_index
= find_newest_super_backup(info
, newest_gen
);
2049 /* if there was garbage in there, just move along */
2050 if (newest_index
== -1) {
2051 info
->backup_root_index
= 0;
2053 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
2058 * copy all the root pointers into the super backup array.
2059 * this will bump the backup pointer by one when it is
2062 static void backup_super_roots(struct btrfs_fs_info
*info
)
2065 struct btrfs_root_backup
*root_backup
;
2068 next_backup
= info
->backup_root_index
;
2069 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
2070 BTRFS_NUM_BACKUP_ROOTS
;
2073 * just overwrite the last backup if we're at the same generation
2074 * this happens only at umount
2076 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
2077 if (btrfs_backup_tree_root_gen(root_backup
) ==
2078 btrfs_header_generation(info
->tree_root
->node
))
2079 next_backup
= last_backup
;
2081 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
2084 * make sure all of our padding and empty slots get zero filled
2085 * regardless of which ones we use today
2087 memset(root_backup
, 0, sizeof(*root_backup
));
2089 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
2091 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
2092 btrfs_set_backup_tree_root_gen(root_backup
,
2093 btrfs_header_generation(info
->tree_root
->node
));
2095 btrfs_set_backup_tree_root_level(root_backup
,
2096 btrfs_header_level(info
->tree_root
->node
));
2098 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
2099 btrfs_set_backup_chunk_root_gen(root_backup
,
2100 btrfs_header_generation(info
->chunk_root
->node
));
2101 btrfs_set_backup_chunk_root_level(root_backup
,
2102 btrfs_header_level(info
->chunk_root
->node
));
2104 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
2105 btrfs_set_backup_extent_root_gen(root_backup
,
2106 btrfs_header_generation(info
->extent_root
->node
));
2107 btrfs_set_backup_extent_root_level(root_backup
,
2108 btrfs_header_level(info
->extent_root
->node
));
2111 * we might commit during log recovery, which happens before we set
2112 * the fs_root. Make sure it is valid before we fill it in.
2114 if (info
->fs_root
&& info
->fs_root
->node
) {
2115 btrfs_set_backup_fs_root(root_backup
,
2116 info
->fs_root
->node
->start
);
2117 btrfs_set_backup_fs_root_gen(root_backup
,
2118 btrfs_header_generation(info
->fs_root
->node
));
2119 btrfs_set_backup_fs_root_level(root_backup
,
2120 btrfs_header_level(info
->fs_root
->node
));
2123 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
2124 btrfs_set_backup_dev_root_gen(root_backup
,
2125 btrfs_header_generation(info
->dev_root
->node
));
2126 btrfs_set_backup_dev_root_level(root_backup
,
2127 btrfs_header_level(info
->dev_root
->node
));
2129 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
2130 btrfs_set_backup_csum_root_gen(root_backup
,
2131 btrfs_header_generation(info
->csum_root
->node
));
2132 btrfs_set_backup_csum_root_level(root_backup
,
2133 btrfs_header_level(info
->csum_root
->node
));
2135 btrfs_set_backup_total_bytes(root_backup
,
2136 btrfs_super_total_bytes(info
->super_copy
));
2137 btrfs_set_backup_bytes_used(root_backup
,
2138 btrfs_super_bytes_used(info
->super_copy
));
2139 btrfs_set_backup_num_devices(root_backup
,
2140 btrfs_super_num_devices(info
->super_copy
));
2143 * if we don't copy this out to the super_copy, it won't get remembered
2144 * for the next commit
2146 memcpy(&info
->super_copy
->super_roots
,
2147 &info
->super_for_commit
->super_roots
,
2148 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
2152 * this copies info out of the root backup array and back into
2153 * the in-memory super block. It is meant to help iterate through
2154 * the array, so you send it the number of backups you've already
2155 * tried and the last backup index you used.
2157 * this returns -1 when it has tried all the backups
2159 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
2160 struct btrfs_super_block
*super
,
2161 int *num_backups_tried
, int *backup_index
)
2163 struct btrfs_root_backup
*root_backup
;
2164 int newest
= *backup_index
;
2166 if (*num_backups_tried
== 0) {
2167 u64 gen
= btrfs_super_generation(super
);
2169 newest
= find_newest_super_backup(info
, gen
);
2173 *backup_index
= newest
;
2174 *num_backups_tried
= 1;
2175 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
2176 /* we've tried all the backups, all done */
2179 /* jump to the next oldest backup */
2180 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
2181 BTRFS_NUM_BACKUP_ROOTS
;
2182 *backup_index
= newest
;
2183 *num_backups_tried
+= 1;
2185 root_backup
= super
->super_roots
+ newest
;
2187 btrfs_set_super_generation(super
,
2188 btrfs_backup_tree_root_gen(root_backup
));
2189 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
2190 btrfs_set_super_root_level(super
,
2191 btrfs_backup_tree_root_level(root_backup
));
2192 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
2195 * fixme: the total bytes and num_devices need to match or we should
2198 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
2199 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
2203 /* helper to cleanup workers */
2204 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
2206 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
2207 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
2208 btrfs_destroy_workqueue(fs_info
->workers
);
2209 btrfs_destroy_workqueue(fs_info
->endio_workers
);
2210 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
2211 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
2212 btrfs_destroy_workqueue(fs_info
->endio_repair_workers
);
2213 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
2214 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
2215 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
2216 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
2217 btrfs_destroy_workqueue(fs_info
->submit_workers
);
2218 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
2219 btrfs_destroy_workqueue(fs_info
->caching_workers
);
2220 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
2221 btrfs_destroy_workqueue(fs_info
->flush_workers
);
2222 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
2223 btrfs_destroy_workqueue(fs_info
->extent_workers
);
2226 static void free_root_extent_buffers(struct btrfs_root
*root
)
2229 free_extent_buffer(root
->node
);
2230 free_extent_buffer(root
->commit_root
);
2232 root
->commit_root
= NULL
;
2236 /* helper to cleanup tree roots */
2237 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2239 free_root_extent_buffers(info
->tree_root
);
2241 free_root_extent_buffers(info
->dev_root
);
2242 free_root_extent_buffers(info
->extent_root
);
2243 free_root_extent_buffers(info
->csum_root
);
2244 free_root_extent_buffers(info
->quota_root
);
2245 free_root_extent_buffers(info
->uuid_root
);
2247 free_root_extent_buffers(info
->chunk_root
);
2248 free_root_extent_buffers(info
->free_space_root
);
2251 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2254 struct btrfs_root
*gang
[8];
2257 while (!list_empty(&fs_info
->dead_roots
)) {
2258 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2259 struct btrfs_root
, root_list
);
2260 list_del(&gang
[0]->root_list
);
2262 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
)) {
2263 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2265 free_extent_buffer(gang
[0]->node
);
2266 free_extent_buffer(gang
[0]->commit_root
);
2267 btrfs_put_fs_root(gang
[0]);
2272 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2277 for (i
= 0; i
< ret
; i
++)
2278 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2281 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
2282 btrfs_free_log_root_tree(NULL
, fs_info
);
2283 btrfs_destroy_pinned_extent(fs_info
, fs_info
->pinned_extents
);
2287 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2289 mutex_init(&fs_info
->scrub_lock
);
2290 atomic_set(&fs_info
->scrubs_running
, 0);
2291 atomic_set(&fs_info
->scrub_pause_req
, 0);
2292 atomic_set(&fs_info
->scrubs_paused
, 0);
2293 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2294 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2295 fs_info
->scrub_workers_refcnt
= 0;
2298 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2300 spin_lock_init(&fs_info
->balance_lock
);
2301 mutex_init(&fs_info
->balance_mutex
);
2302 atomic_set(&fs_info
->balance_running
, 0);
2303 atomic_set(&fs_info
->balance_pause_req
, 0);
2304 atomic_set(&fs_info
->balance_cancel_req
, 0);
2305 fs_info
->balance_ctl
= NULL
;
2306 init_waitqueue_head(&fs_info
->balance_wait_q
);
2309 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
)
2311 struct inode
*inode
= fs_info
->btree_inode
;
2313 inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2314 set_nlink(inode
, 1);
2316 * we set the i_size on the btree inode to the max possible int.
2317 * the real end of the address space is determined by all of
2318 * the devices in the system
2320 inode
->i_size
= OFFSET_MAX
;
2321 inode
->i_mapping
->a_ops
= &btree_aops
;
2323 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
2324 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
, inode
->i_mapping
);
2325 BTRFS_I(inode
)->io_tree
.track_uptodate
= 0;
2326 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
);
2328 BTRFS_I(inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2330 BTRFS_I(inode
)->root
= fs_info
->tree_root
;
2331 memset(&BTRFS_I(inode
)->location
, 0, sizeof(struct btrfs_key
));
2332 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
2333 btrfs_insert_inode_hash(inode
);
2336 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2338 fs_info
->dev_replace
.lock_owner
= 0;
2339 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2340 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2341 rwlock_init(&fs_info
->dev_replace
.lock
);
2342 atomic_set(&fs_info
->dev_replace
.read_locks
, 0);
2343 atomic_set(&fs_info
->dev_replace
.blocking_readers
, 0);
2344 init_waitqueue_head(&fs_info
->replace_wait
);
2345 init_waitqueue_head(&fs_info
->dev_replace
.read_lock_wq
);
2348 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2350 spin_lock_init(&fs_info
->qgroup_lock
);
2351 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2352 fs_info
->qgroup_tree
= RB_ROOT
;
2353 fs_info
->qgroup_op_tree
= RB_ROOT
;
2354 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2355 fs_info
->qgroup_seq
= 1;
2356 fs_info
->qgroup_ulist
= NULL
;
2357 fs_info
->qgroup_rescan_running
= false;
2358 mutex_init(&fs_info
->qgroup_rescan_lock
);
2361 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2362 struct btrfs_fs_devices
*fs_devices
)
2364 int max_active
= fs_info
->thread_pool_size
;
2365 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2368 btrfs_alloc_workqueue(fs_info
, "worker",
2369 flags
| WQ_HIGHPRI
, max_active
, 16);
2371 fs_info
->delalloc_workers
=
2372 btrfs_alloc_workqueue(fs_info
, "delalloc",
2373 flags
, max_active
, 2);
2375 fs_info
->flush_workers
=
2376 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
2377 flags
, max_active
, 0);
2379 fs_info
->caching_workers
=
2380 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
2383 * a higher idle thresh on the submit workers makes it much more
2384 * likely that bios will be send down in a sane order to the
2387 fs_info
->submit_workers
=
2388 btrfs_alloc_workqueue(fs_info
, "submit", flags
,
2389 min_t(u64
, fs_devices
->num_devices
,
2392 fs_info
->fixup_workers
=
2393 btrfs_alloc_workqueue(fs_info
, "fixup", flags
, 1, 0);
2396 * endios are largely parallel and should have a very
2399 fs_info
->endio_workers
=
2400 btrfs_alloc_workqueue(fs_info
, "endio", flags
, max_active
, 4);
2401 fs_info
->endio_meta_workers
=
2402 btrfs_alloc_workqueue(fs_info
, "endio-meta", flags
,
2404 fs_info
->endio_meta_write_workers
=
2405 btrfs_alloc_workqueue(fs_info
, "endio-meta-write", flags
,
2407 fs_info
->endio_raid56_workers
=
2408 btrfs_alloc_workqueue(fs_info
, "endio-raid56", flags
,
2410 fs_info
->endio_repair_workers
=
2411 btrfs_alloc_workqueue(fs_info
, "endio-repair", flags
, 1, 0);
2412 fs_info
->rmw_workers
=
2413 btrfs_alloc_workqueue(fs_info
, "rmw", flags
, max_active
, 2);
2414 fs_info
->endio_write_workers
=
2415 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
2417 fs_info
->endio_freespace_worker
=
2418 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2420 fs_info
->delayed_workers
=
2421 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2423 fs_info
->readahead_workers
=
2424 btrfs_alloc_workqueue(fs_info
, "readahead", flags
,
2426 fs_info
->qgroup_rescan_workers
=
2427 btrfs_alloc_workqueue(fs_info
, "qgroup-rescan", flags
, 1, 0);
2428 fs_info
->extent_workers
=
2429 btrfs_alloc_workqueue(fs_info
, "extent-refs", flags
,
2430 min_t(u64
, fs_devices
->num_devices
,
2433 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2434 fs_info
->submit_workers
&& fs_info
->flush_workers
&&
2435 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2436 fs_info
->endio_meta_write_workers
&&
2437 fs_info
->endio_repair_workers
&&
2438 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2439 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2440 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2441 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2442 fs_info
->extent_workers
&&
2443 fs_info
->qgroup_rescan_workers
)) {
2450 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2451 struct btrfs_fs_devices
*fs_devices
)
2454 struct btrfs_root
*log_tree_root
;
2455 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2456 u64 bytenr
= btrfs_super_log_root(disk_super
);
2458 if (fs_devices
->rw_devices
== 0) {
2459 btrfs_warn(fs_info
, "log replay required on RO media");
2463 log_tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2467 __setup_root(log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2469 log_tree_root
->node
= read_tree_block(fs_info
, bytenr
,
2470 fs_info
->generation
+ 1);
2471 if (IS_ERR(log_tree_root
->node
)) {
2472 btrfs_warn(fs_info
, "failed to read log tree");
2473 ret
= PTR_ERR(log_tree_root
->node
);
2474 kfree(log_tree_root
);
2476 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2477 btrfs_err(fs_info
, "failed to read log tree");
2478 free_extent_buffer(log_tree_root
->node
);
2479 kfree(log_tree_root
);
2482 /* returns with log_tree_root freed on success */
2483 ret
= btrfs_recover_log_trees(log_tree_root
);
2485 btrfs_handle_fs_error(fs_info
, ret
,
2486 "Failed to recover log tree");
2487 free_extent_buffer(log_tree_root
->node
);
2488 kfree(log_tree_root
);
2492 if (fs_info
->sb
->s_flags
& MS_RDONLY
) {
2493 ret
= btrfs_commit_super(fs_info
);
2501 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
)
2503 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2504 struct btrfs_root
*root
;
2505 struct btrfs_key location
;
2508 BUG_ON(!fs_info
->tree_root
);
2510 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2511 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2512 location
.offset
= 0;
2514 root
= btrfs_read_tree_root(tree_root
, &location
);
2516 return PTR_ERR(root
);
2517 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2518 fs_info
->extent_root
= root
;
2520 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2521 root
= btrfs_read_tree_root(tree_root
, &location
);
2523 return PTR_ERR(root
);
2524 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2525 fs_info
->dev_root
= root
;
2526 btrfs_init_devices_late(fs_info
);
2528 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2529 root
= btrfs_read_tree_root(tree_root
, &location
);
2531 return PTR_ERR(root
);
2532 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2533 fs_info
->csum_root
= root
;
2535 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2536 root
= btrfs_read_tree_root(tree_root
, &location
);
2537 if (!IS_ERR(root
)) {
2538 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2539 set_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
);
2540 fs_info
->quota_root
= root
;
2543 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2544 root
= btrfs_read_tree_root(tree_root
, &location
);
2546 ret
= PTR_ERR(root
);
2550 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2551 fs_info
->uuid_root
= root
;
2554 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2555 location
.objectid
= BTRFS_FREE_SPACE_TREE_OBJECTID
;
2556 root
= btrfs_read_tree_root(tree_root
, &location
);
2558 return PTR_ERR(root
);
2559 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2560 fs_info
->free_space_root
= root
;
2566 int open_ctree(struct super_block
*sb
,
2567 struct btrfs_fs_devices
*fs_devices
,
2575 struct btrfs_key location
;
2576 struct buffer_head
*bh
;
2577 struct btrfs_super_block
*disk_super
;
2578 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2579 struct btrfs_root
*tree_root
;
2580 struct btrfs_root
*chunk_root
;
2583 int num_backups_tried
= 0;
2584 int backup_index
= 0;
2586 int clear_free_space_tree
= 0;
2588 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2589 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2590 if (!tree_root
|| !chunk_root
) {
2595 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2601 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
2607 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2612 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2613 (1 + ilog2(nr_cpu_ids
));
2615 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2618 goto fail_dirty_metadata_bytes
;
2621 ret
= percpu_counter_init(&fs_info
->bio_counter
, 0, GFP_KERNEL
);
2624 goto fail_delalloc_bytes
;
2627 fs_info
->btree_inode
= new_inode(sb
);
2628 if (!fs_info
->btree_inode
) {
2630 goto fail_bio_counter
;
2633 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2635 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2636 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2637 INIT_LIST_HEAD(&fs_info
->trans_list
);
2638 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2639 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2640 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2641 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2642 spin_lock_init(&fs_info
->delalloc_root_lock
);
2643 spin_lock_init(&fs_info
->trans_lock
);
2644 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2645 spin_lock_init(&fs_info
->delayed_iput_lock
);
2646 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2647 spin_lock_init(&fs_info
->free_chunk_lock
);
2648 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2649 spin_lock_init(&fs_info
->super_lock
);
2650 spin_lock_init(&fs_info
->qgroup_op_lock
);
2651 spin_lock_init(&fs_info
->buffer_lock
);
2652 spin_lock_init(&fs_info
->unused_bgs_lock
);
2653 rwlock_init(&fs_info
->tree_mod_log_lock
);
2654 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2655 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2656 mutex_init(&fs_info
->reloc_mutex
);
2657 mutex_init(&fs_info
->delalloc_root_mutex
);
2658 mutex_init(&fs_info
->cleaner_delayed_iput_mutex
);
2659 seqlock_init(&fs_info
->profiles_lock
);
2661 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2662 INIT_LIST_HEAD(&fs_info
->space_info
);
2663 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2664 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2665 btrfs_mapping_init(&fs_info
->mapping_tree
);
2666 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2667 BTRFS_BLOCK_RSV_GLOBAL
);
2668 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
,
2669 BTRFS_BLOCK_RSV_DELALLOC
);
2670 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2671 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2672 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2673 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2674 BTRFS_BLOCK_RSV_DELOPS
);
2675 atomic_set(&fs_info
->nr_async_submits
, 0);
2676 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2677 atomic_set(&fs_info
->async_submit_draining
, 0);
2678 atomic_set(&fs_info
->nr_async_bios
, 0);
2679 atomic_set(&fs_info
->defrag_running
, 0);
2680 atomic_set(&fs_info
->qgroup_op_seq
, 0);
2681 atomic_set(&fs_info
->reada_works_cnt
, 0);
2682 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2683 fs_info
->fs_frozen
= 0;
2685 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2686 fs_info
->metadata_ratio
= 0;
2687 fs_info
->defrag_inodes
= RB_ROOT
;
2688 fs_info
->free_chunk_space
= 0;
2689 fs_info
->tree_mod_log
= RB_ROOT
;
2690 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2691 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2692 /* readahead state */
2693 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2694 spin_lock_init(&fs_info
->reada_lock
);
2696 fs_info
->thread_pool_size
= min_t(unsigned long,
2697 num_online_cpus() + 2, 8);
2699 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2700 spin_lock_init(&fs_info
->ordered_root_lock
);
2701 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2703 if (!fs_info
->delayed_root
) {
2707 btrfs_init_delayed_root(fs_info
->delayed_root
);
2709 btrfs_init_scrub(fs_info
);
2710 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2711 fs_info
->check_integrity_print_mask
= 0;
2713 btrfs_init_balance(fs_info
);
2714 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2716 sb
->s_blocksize
= 4096;
2717 sb
->s_blocksize_bits
= blksize_bits(4096);
2718 sb
->s_bdi
= &fs_info
->bdi
;
2720 btrfs_init_btree_inode(fs_info
);
2722 spin_lock_init(&fs_info
->block_group_cache_lock
);
2723 fs_info
->block_group_cache_tree
= RB_ROOT
;
2724 fs_info
->first_logical_byte
= (u64
)-1;
2726 extent_io_tree_init(&fs_info
->freed_extents
[0],
2727 fs_info
->btree_inode
->i_mapping
);
2728 extent_io_tree_init(&fs_info
->freed_extents
[1],
2729 fs_info
->btree_inode
->i_mapping
);
2730 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2731 set_bit(BTRFS_FS_BARRIER
, &fs_info
->flags
);
2733 mutex_init(&fs_info
->ordered_operations_mutex
);
2734 mutex_init(&fs_info
->tree_log_mutex
);
2735 mutex_init(&fs_info
->chunk_mutex
);
2736 mutex_init(&fs_info
->transaction_kthread_mutex
);
2737 mutex_init(&fs_info
->cleaner_mutex
);
2738 mutex_init(&fs_info
->volume_mutex
);
2739 mutex_init(&fs_info
->ro_block_group_mutex
);
2740 init_rwsem(&fs_info
->commit_root_sem
);
2741 init_rwsem(&fs_info
->cleanup_work_sem
);
2742 init_rwsem(&fs_info
->subvol_sem
);
2743 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2745 btrfs_init_dev_replace_locks(fs_info
);
2746 btrfs_init_qgroup(fs_info
);
2748 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2749 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2751 init_waitqueue_head(&fs_info
->transaction_throttle
);
2752 init_waitqueue_head(&fs_info
->transaction_wait
);
2753 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2754 init_waitqueue_head(&fs_info
->async_submit_wait
);
2756 INIT_LIST_HEAD(&fs_info
->pinned_chunks
);
2758 /* Usable values until the real ones are cached from the superblock */
2759 fs_info
->nodesize
= 4096;
2760 fs_info
->sectorsize
= 4096;
2761 fs_info
->stripesize
= 4096;
2763 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2769 __setup_root(tree_root
, fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2771 invalidate_bdev(fs_devices
->latest_bdev
);
2774 * Read super block and check the signature bytes only
2776 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2783 * We want to check superblock checksum, the type is stored inside.
2784 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2786 if (btrfs_check_super_csum(fs_info
, bh
->b_data
)) {
2787 btrfs_err(fs_info
, "superblock checksum mismatch");
2794 * super_copy is zeroed at allocation time and we never touch the
2795 * following bytes up to INFO_SIZE, the checksum is calculated from
2796 * the whole block of INFO_SIZE
2798 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2799 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2800 sizeof(*fs_info
->super_for_commit
));
2803 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2805 ret
= btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2807 btrfs_err(fs_info
, "superblock contains fatal errors");
2812 disk_super
= fs_info
->super_copy
;
2813 if (!btrfs_super_root(disk_super
))
2816 /* check FS state, whether FS is broken. */
2817 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2818 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2821 * run through our array of backup supers and setup
2822 * our ring pointer to the oldest one
2824 generation
= btrfs_super_generation(disk_super
);
2825 find_oldest_super_backup(fs_info
, generation
);
2828 * In the long term, we'll store the compression type in the super
2829 * block, and it'll be used for per file compression control.
2831 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2833 ret
= btrfs_parse_options(fs_info
, options
, sb
->s_flags
);
2839 features
= btrfs_super_incompat_flags(disk_super
) &
2840 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2843 "cannot mount because of unsupported optional features (%llx)",
2849 features
= btrfs_super_incompat_flags(disk_super
);
2850 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2851 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2852 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2854 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2855 btrfs_info(fs_info
, "has skinny extents");
2858 * flag our filesystem as having big metadata blocks if
2859 * they are bigger than the page size
2861 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
) {
2862 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2864 "flagging fs with big metadata feature");
2865 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2868 nodesize
= btrfs_super_nodesize(disk_super
);
2869 sectorsize
= btrfs_super_sectorsize(disk_super
);
2870 stripesize
= sectorsize
;
2871 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
2872 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2874 /* Cache block sizes */
2875 fs_info
->nodesize
= nodesize
;
2876 fs_info
->sectorsize
= sectorsize
;
2877 fs_info
->stripesize
= stripesize
;
2880 * mixed block groups end up with duplicate but slightly offset
2881 * extent buffers for the same range. It leads to corruptions
2883 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2884 (sectorsize
!= nodesize
)) {
2886 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2887 nodesize
, sectorsize
);
2892 * Needn't use the lock because there is no other task which will
2895 btrfs_set_super_incompat_flags(disk_super
, features
);
2897 features
= btrfs_super_compat_ro_flags(disk_super
) &
2898 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2899 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2901 "cannot mount read-write because of unsupported optional features (%llx)",
2907 max_active
= fs_info
->thread_pool_size
;
2909 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
2912 goto fail_sb_buffer
;
2915 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2916 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2919 sb
->s_blocksize
= sectorsize
;
2920 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2922 mutex_lock(&fs_info
->chunk_mutex
);
2923 ret
= btrfs_read_sys_array(fs_info
);
2924 mutex_unlock(&fs_info
->chunk_mutex
);
2926 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
2927 goto fail_sb_buffer
;
2930 generation
= btrfs_super_chunk_root_generation(disk_super
);
2932 __setup_root(chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2934 chunk_root
->node
= read_tree_block(fs_info
,
2935 btrfs_super_chunk_root(disk_super
),
2937 if (IS_ERR(chunk_root
->node
) ||
2938 !extent_buffer_uptodate(chunk_root
->node
)) {
2939 btrfs_err(fs_info
, "failed to read chunk root");
2940 if (!IS_ERR(chunk_root
->node
))
2941 free_extent_buffer(chunk_root
->node
);
2942 chunk_root
->node
= NULL
;
2943 goto fail_tree_roots
;
2945 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2946 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2948 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2949 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
2951 ret
= btrfs_read_chunk_tree(fs_info
);
2953 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
2954 goto fail_tree_roots
;
2958 * keep the device that is marked to be the target device for the
2959 * dev_replace procedure
2961 btrfs_close_extra_devices(fs_devices
, 0);
2963 if (!fs_devices
->latest_bdev
) {
2964 btrfs_err(fs_info
, "failed to read devices");
2965 goto fail_tree_roots
;
2969 generation
= btrfs_super_generation(disk_super
);
2971 tree_root
->node
= read_tree_block(fs_info
,
2972 btrfs_super_root(disk_super
),
2974 if (IS_ERR(tree_root
->node
) ||
2975 !extent_buffer_uptodate(tree_root
->node
)) {
2976 btrfs_warn(fs_info
, "failed to read tree root");
2977 if (!IS_ERR(tree_root
->node
))
2978 free_extent_buffer(tree_root
->node
);
2979 tree_root
->node
= NULL
;
2980 goto recovery_tree_root
;
2983 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2984 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2985 btrfs_set_root_refs(&tree_root
->root_item
, 1);
2987 mutex_lock(&tree_root
->objectid_mutex
);
2988 ret
= btrfs_find_highest_objectid(tree_root
,
2989 &tree_root
->highest_objectid
);
2991 mutex_unlock(&tree_root
->objectid_mutex
);
2992 goto recovery_tree_root
;
2995 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
2997 mutex_unlock(&tree_root
->objectid_mutex
);
2999 ret
= btrfs_read_roots(fs_info
);
3001 goto recovery_tree_root
;
3003 fs_info
->generation
= generation
;
3004 fs_info
->last_trans_committed
= generation
;
3006 ret
= btrfs_recover_balance(fs_info
);
3008 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
3009 goto fail_block_groups
;
3012 ret
= btrfs_init_dev_stats(fs_info
);
3014 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
3015 goto fail_block_groups
;
3018 ret
= btrfs_init_dev_replace(fs_info
);
3020 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
3021 goto fail_block_groups
;
3024 btrfs_close_extra_devices(fs_devices
, 1);
3026 ret
= btrfs_sysfs_add_fsid(fs_devices
, NULL
);
3028 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
3030 goto fail_block_groups
;
3033 ret
= btrfs_sysfs_add_device(fs_devices
);
3035 btrfs_err(fs_info
, "failed to init sysfs device interface: %d",
3037 goto fail_fsdev_sysfs
;
3040 ret
= btrfs_sysfs_add_mounted(fs_info
);
3042 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
3043 goto fail_fsdev_sysfs
;
3046 ret
= btrfs_init_space_info(fs_info
);
3048 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
3052 ret
= btrfs_read_block_groups(fs_info
);
3054 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
3057 fs_info
->num_tolerated_disk_barrier_failures
=
3058 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3059 if (fs_info
->fs_devices
->missing_devices
>
3060 fs_info
->num_tolerated_disk_barrier_failures
&&
3061 !(sb
->s_flags
& MS_RDONLY
)) {
3063 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3064 fs_info
->fs_devices
->missing_devices
,
3065 fs_info
->num_tolerated_disk_barrier_failures
);
3069 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
3071 if (IS_ERR(fs_info
->cleaner_kthread
))
3074 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
3076 "btrfs-transaction");
3077 if (IS_ERR(fs_info
->transaction_kthread
))
3080 if (!btrfs_test_opt(fs_info
, SSD
) &&
3081 !btrfs_test_opt(fs_info
, NOSSD
) &&
3082 !fs_info
->fs_devices
->rotating
) {
3083 btrfs_info(fs_info
, "detected SSD devices, enabling SSD mode");
3084 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
3088 * Mount does not set all options immediately, we can do it now and do
3089 * not have to wait for transaction commit
3091 btrfs_apply_pending_changes(fs_info
);
3093 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3094 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
)) {
3095 ret
= btrfsic_mount(fs_info
, fs_devices
,
3096 btrfs_test_opt(fs_info
,
3097 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
3099 fs_info
->check_integrity_print_mask
);
3102 "failed to initialize integrity check module: %d",
3106 ret
= btrfs_read_qgroup_config(fs_info
);
3108 goto fail_trans_kthread
;
3110 /* do not make disk changes in broken FS or nologreplay is given */
3111 if (btrfs_super_log_root(disk_super
) != 0 &&
3112 !btrfs_test_opt(fs_info
, NOLOGREPLAY
)) {
3113 ret
= btrfs_replay_log(fs_info
, fs_devices
);
3120 ret
= btrfs_find_orphan_roots(fs_info
);
3124 if (!(sb
->s_flags
& MS_RDONLY
)) {
3125 ret
= btrfs_cleanup_fs_roots(fs_info
);
3129 mutex_lock(&fs_info
->cleaner_mutex
);
3130 ret
= btrfs_recover_relocation(tree_root
);
3131 mutex_unlock(&fs_info
->cleaner_mutex
);
3133 btrfs_warn(fs_info
, "failed to recover relocation: %d",
3140 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
3141 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3142 location
.offset
= 0;
3144 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
3145 if (IS_ERR(fs_info
->fs_root
)) {
3146 err
= PTR_ERR(fs_info
->fs_root
);
3150 if (sb
->s_flags
& MS_RDONLY
)
3153 if (btrfs_test_opt(fs_info
, CLEAR_CACHE
) &&
3154 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3155 clear_free_space_tree
= 1;
3156 } else if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
3157 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
)) {
3158 btrfs_warn(fs_info
, "free space tree is invalid");
3159 clear_free_space_tree
= 1;
3162 if (clear_free_space_tree
) {
3163 btrfs_info(fs_info
, "clearing free space tree");
3164 ret
= btrfs_clear_free_space_tree(fs_info
);
3167 "failed to clear free space tree: %d", ret
);
3168 close_ctree(fs_info
);
3173 if (btrfs_test_opt(fs_info
, FREE_SPACE_TREE
) &&
3174 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3175 btrfs_info(fs_info
, "creating free space tree");
3176 ret
= btrfs_create_free_space_tree(fs_info
);
3179 "failed to create free space tree: %d", ret
);
3180 close_ctree(fs_info
);
3185 down_read(&fs_info
->cleanup_work_sem
);
3186 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3187 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3188 up_read(&fs_info
->cleanup_work_sem
);
3189 close_ctree(fs_info
);
3192 up_read(&fs_info
->cleanup_work_sem
);
3194 ret
= btrfs_resume_balance_async(fs_info
);
3196 btrfs_warn(fs_info
, "failed to resume balance: %d", ret
);
3197 close_ctree(fs_info
);
3201 ret
= btrfs_resume_dev_replace_async(fs_info
);
3203 btrfs_warn(fs_info
, "failed to resume device replace: %d", ret
);
3204 close_ctree(fs_info
);
3208 btrfs_qgroup_rescan_resume(fs_info
);
3210 if (!fs_info
->uuid_root
) {
3211 btrfs_info(fs_info
, "creating UUID tree");
3212 ret
= btrfs_create_uuid_tree(fs_info
);
3215 "failed to create the UUID tree: %d", ret
);
3216 close_ctree(fs_info
);
3219 } else if (btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) ||
3220 fs_info
->generation
!=
3221 btrfs_super_uuid_tree_generation(disk_super
)) {
3222 btrfs_info(fs_info
, "checking UUID tree");
3223 ret
= btrfs_check_uuid_tree(fs_info
);
3226 "failed to check the UUID tree: %d", ret
);
3227 close_ctree(fs_info
);
3231 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
3233 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3236 * backuproot only affect mount behavior, and if open_ctree succeeded,
3237 * no need to keep the flag
3239 btrfs_clear_opt(fs_info
->mount_opt
, USEBACKUPROOT
);
3244 btrfs_free_qgroup_config(fs_info
);
3246 kthread_stop(fs_info
->transaction_kthread
);
3247 btrfs_cleanup_transaction(fs_info
);
3248 btrfs_free_fs_roots(fs_info
);
3250 kthread_stop(fs_info
->cleaner_kthread
);
3253 * make sure we're done with the btree inode before we stop our
3256 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3259 btrfs_sysfs_remove_mounted(fs_info
);
3262 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3265 btrfs_put_block_group_cache(fs_info
);
3266 btrfs_free_block_groups(fs_info
);
3269 free_root_pointers(fs_info
, 1);
3270 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3273 btrfs_stop_all_workers(fs_info
);
3276 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3278 iput(fs_info
->btree_inode
);
3280 percpu_counter_destroy(&fs_info
->bio_counter
);
3281 fail_delalloc_bytes
:
3282 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3283 fail_dirty_metadata_bytes
:
3284 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3286 bdi_destroy(&fs_info
->bdi
);
3288 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3290 btrfs_free_stripe_hash_table(fs_info
);
3291 btrfs_close_devices(fs_info
->fs_devices
);
3295 if (!btrfs_test_opt(fs_info
, USEBACKUPROOT
))
3296 goto fail_tree_roots
;
3298 free_root_pointers(fs_info
, 0);
3300 /* don't use the log in recovery mode, it won't be valid */
3301 btrfs_set_super_log_root(disk_super
, 0);
3303 /* we can't trust the free space cache either */
3304 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
3306 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
3307 &num_backups_tried
, &backup_index
);
3309 goto fail_block_groups
;
3310 goto retry_root_backup
;
3313 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3316 set_buffer_uptodate(bh
);
3318 struct btrfs_device
*device
= (struct btrfs_device
*)
3321 btrfs_warn_rl_in_rcu(device
->fs_info
,
3322 "lost page write due to IO error on %s",
3323 rcu_str_deref(device
->name
));
3324 /* note, we don't set_buffer_write_io_error because we have
3325 * our own ways of dealing with the IO errors
3327 clear_buffer_uptodate(bh
);
3328 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3334 int btrfs_read_dev_one_super(struct block_device
*bdev
, int copy_num
,
3335 struct buffer_head
**bh_ret
)
3337 struct buffer_head
*bh
;
3338 struct btrfs_super_block
*super
;
3341 bytenr
= btrfs_sb_offset(copy_num
);
3342 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3345 bh
= __bread(bdev
, bytenr
/ 4096, BTRFS_SUPER_INFO_SIZE
);
3347 * If we fail to read from the underlying devices, as of now
3348 * the best option we have is to mark it EIO.
3353 super
= (struct btrfs_super_block
*)bh
->b_data
;
3354 if (btrfs_super_bytenr(super
) != bytenr
||
3355 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3365 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3367 struct buffer_head
*bh
;
3368 struct buffer_head
*latest
= NULL
;
3369 struct btrfs_super_block
*super
;
3374 /* we would like to check all the supers, but that would make
3375 * a btrfs mount succeed after a mkfs from a different FS.
3376 * So, we need to add a special mount option to scan for
3377 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3379 for (i
= 0; i
< 1; i
++) {
3380 ret
= btrfs_read_dev_one_super(bdev
, i
, &bh
);
3384 super
= (struct btrfs_super_block
*)bh
->b_data
;
3386 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3389 transid
= btrfs_super_generation(super
);
3396 return ERR_PTR(ret
);
3402 * this should be called twice, once with wait == 0 and
3403 * once with wait == 1. When wait == 0 is done, all the buffer heads
3404 * we write are pinned.
3406 * They are released when wait == 1 is done.
3407 * max_mirrors must be the same for both runs, and it indicates how
3408 * many supers on this one device should be written.
3410 * max_mirrors == 0 means to write them all.
3412 static int write_dev_supers(struct btrfs_device
*device
,
3413 struct btrfs_super_block
*sb
,
3414 int do_barriers
, int wait
, int max_mirrors
)
3416 struct buffer_head
*bh
;
3423 if (max_mirrors
== 0)
3424 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3426 for (i
= 0; i
< max_mirrors
; i
++) {
3427 bytenr
= btrfs_sb_offset(i
);
3428 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3429 device
->commit_total_bytes
)
3433 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
3434 BTRFS_SUPER_INFO_SIZE
);
3440 if (!buffer_uptodate(bh
))
3443 /* drop our reference */
3446 /* drop the reference from the wait == 0 run */
3450 btrfs_set_super_bytenr(sb
, bytenr
);
3453 crc
= btrfs_csum_data((char *)sb
+
3454 BTRFS_CSUM_SIZE
, crc
,
3455 BTRFS_SUPER_INFO_SIZE
-
3457 btrfs_csum_final(crc
, sb
->csum
);
3460 * one reference for us, and we leave it for the
3463 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
3464 BTRFS_SUPER_INFO_SIZE
);
3466 btrfs_err(device
->fs_info
,
3467 "couldn't get super buffer head for bytenr %llu",
3473 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3475 /* one reference for submit_bh */
3478 set_buffer_uptodate(bh
);
3480 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3481 bh
->b_private
= device
;
3485 * we fua the first super. The others we allow
3489 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, REQ_FUA
, bh
);
3491 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, REQ_SYNC
, bh
);
3495 return errors
< i
? 0 : -1;
3499 * endio for the write_dev_flush, this will wake anyone waiting
3500 * for the barrier when it is done
3502 static void btrfs_end_empty_barrier(struct bio
*bio
)
3504 if (bio
->bi_private
)
3505 complete(bio
->bi_private
);
3510 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3511 * sent down. With wait == 1, it waits for the previous flush.
3513 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3516 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
3521 if (device
->nobarriers
)
3525 bio
= device
->flush_bio
;
3529 wait_for_completion(&device
->flush_wait
);
3531 if (bio
->bi_error
) {
3532 ret
= bio
->bi_error
;
3533 btrfs_dev_stat_inc_and_print(device
,
3534 BTRFS_DEV_STAT_FLUSH_ERRS
);
3537 /* drop the reference from the wait == 0 run */
3539 device
->flush_bio
= NULL
;
3545 * one reference for us, and we leave it for the
3548 device
->flush_bio
= NULL
;
3549 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
3553 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3554 bio
->bi_bdev
= device
->bdev
;
3555 bio
->bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
3556 init_completion(&device
->flush_wait
);
3557 bio
->bi_private
= &device
->flush_wait
;
3558 device
->flush_bio
= bio
;
3561 btrfsic_submit_bio(bio
);
3567 * send an empty flush down to each device in parallel,
3568 * then wait for them
3570 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3572 struct list_head
*head
;
3573 struct btrfs_device
*dev
;
3574 int errors_send
= 0;
3575 int errors_wait
= 0;
3578 /* send down all the barriers */
3579 head
= &info
->fs_devices
->devices
;
3580 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3587 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3590 ret
= write_dev_flush(dev
, 0);
3595 /* wait for all the barriers */
3596 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3603 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3606 ret
= write_dev_flush(dev
, 1);
3610 if (errors_send
> info
->num_tolerated_disk_barrier_failures
||
3611 errors_wait
> info
->num_tolerated_disk_barrier_failures
)
3616 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3619 int min_tolerated
= INT_MAX
;
3621 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3622 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3623 min_tolerated
= min(min_tolerated
,
3624 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3625 tolerated_failures
);
3627 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3628 if (raid_type
== BTRFS_RAID_SINGLE
)
3630 if (!(flags
& btrfs_raid_group
[raid_type
]))
3632 min_tolerated
= min(min_tolerated
,
3633 btrfs_raid_array
[raid_type
].
3634 tolerated_failures
);
3637 if (min_tolerated
== INT_MAX
) {
3638 pr_warn("BTRFS: unknown raid flag: %llu", flags
);
3642 return min_tolerated
;
3645 int btrfs_calc_num_tolerated_disk_barrier_failures(
3646 struct btrfs_fs_info
*fs_info
)
3648 struct btrfs_ioctl_space_info space
;
3649 struct btrfs_space_info
*sinfo
;
3650 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3651 BTRFS_BLOCK_GROUP_SYSTEM
,
3652 BTRFS_BLOCK_GROUP_METADATA
,
3653 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3656 int num_tolerated_disk_barrier_failures
=
3657 (int)fs_info
->fs_devices
->num_devices
;
3659 for (i
= 0; i
< ARRAY_SIZE(types
); i
++) {
3660 struct btrfs_space_info
*tmp
;
3664 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
, list
) {
3665 if (tmp
->flags
== types
[i
]) {
3675 down_read(&sinfo
->groups_sem
);
3676 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3679 if (list_empty(&sinfo
->block_groups
[c
]))
3682 btrfs_get_block_group_info(&sinfo
->block_groups
[c
],
3684 if (space
.total_bytes
== 0 || space
.used_bytes
== 0)
3686 flags
= space
.flags
;
3688 num_tolerated_disk_barrier_failures
= min(
3689 num_tolerated_disk_barrier_failures
,
3690 btrfs_get_num_tolerated_disk_barrier_failures(
3693 up_read(&sinfo
->groups_sem
);
3696 return num_tolerated_disk_barrier_failures
;
3699 static int write_all_supers(struct btrfs_fs_info
*fs_info
, int max_mirrors
)
3701 struct list_head
*head
;
3702 struct btrfs_device
*dev
;
3703 struct btrfs_super_block
*sb
;
3704 struct btrfs_dev_item
*dev_item
;
3708 int total_errors
= 0;
3711 do_barriers
= !btrfs_test_opt(fs_info
, NOBARRIER
);
3712 backup_super_roots(fs_info
);
3714 sb
= fs_info
->super_for_commit
;
3715 dev_item
= &sb
->dev_item
;
3717 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3718 head
= &fs_info
->fs_devices
->devices
;
3719 max_errors
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
3722 ret
= barrier_all_devices(fs_info
);
3725 &fs_info
->fs_devices
->device_list_mutex
);
3726 btrfs_handle_fs_error(fs_info
, ret
,
3727 "errors while submitting device barriers.");
3732 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3737 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3740 btrfs_set_stack_device_generation(dev_item
, 0);
3741 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3742 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3743 btrfs_set_stack_device_total_bytes(dev_item
,
3744 dev
->commit_total_bytes
);
3745 btrfs_set_stack_device_bytes_used(dev_item
,
3746 dev
->commit_bytes_used
);
3747 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3748 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3749 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3750 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3751 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
3753 flags
= btrfs_super_flags(sb
);
3754 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3756 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
3760 if (total_errors
> max_errors
) {
3761 btrfs_err(fs_info
, "%d errors while writing supers",
3763 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3765 /* FUA is masked off if unsupported and can't be the reason */
3766 btrfs_handle_fs_error(fs_info
, -EIO
,
3767 "%d errors while writing supers",
3773 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3776 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3779 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
3783 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3784 if (total_errors
> max_errors
) {
3785 btrfs_handle_fs_error(fs_info
, -EIO
,
3786 "%d errors while writing supers",
3793 int write_ctree_super(struct btrfs_trans_handle
*trans
,
3794 struct btrfs_fs_info
*fs_info
, int max_mirrors
)
3796 return write_all_supers(fs_info
, max_mirrors
);
3799 /* Drop a fs root from the radix tree and free it. */
3800 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3801 struct btrfs_root
*root
)
3803 spin_lock(&fs_info
->fs_roots_radix_lock
);
3804 radix_tree_delete(&fs_info
->fs_roots_radix
,
3805 (unsigned long)root
->root_key
.objectid
);
3806 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3808 if (btrfs_root_refs(&root
->root_item
) == 0)
3809 synchronize_srcu(&fs_info
->subvol_srcu
);
3811 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3812 btrfs_free_log(NULL
, root
);
3813 if (root
->reloc_root
) {
3814 free_extent_buffer(root
->reloc_root
->node
);
3815 free_extent_buffer(root
->reloc_root
->commit_root
);
3816 btrfs_put_fs_root(root
->reloc_root
);
3817 root
->reloc_root
= NULL
;
3821 if (root
->free_ino_pinned
)
3822 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3823 if (root
->free_ino_ctl
)
3824 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3828 static void free_fs_root(struct btrfs_root
*root
)
3830 iput(root
->ino_cache_inode
);
3831 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3832 btrfs_free_block_rsv(root
->fs_info
, root
->orphan_block_rsv
);
3833 root
->orphan_block_rsv
= NULL
;
3835 free_anon_bdev(root
->anon_dev
);
3836 if (root
->subv_writers
)
3837 btrfs_free_subvolume_writers(root
->subv_writers
);
3838 free_extent_buffer(root
->node
);
3839 free_extent_buffer(root
->commit_root
);
3840 kfree(root
->free_ino_ctl
);
3841 kfree(root
->free_ino_pinned
);
3843 btrfs_put_fs_root(root
);
3846 void btrfs_free_fs_root(struct btrfs_root
*root
)
3851 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3853 u64 root_objectid
= 0;
3854 struct btrfs_root
*gang
[8];
3857 unsigned int ret
= 0;
3861 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3862 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3863 (void **)gang
, root_objectid
,
3866 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3869 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3871 for (i
= 0; i
< ret
; i
++) {
3872 /* Avoid to grab roots in dead_roots */
3873 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3877 /* grab all the search result for later use */
3878 gang
[i
] = btrfs_grab_fs_root(gang
[i
]);
3880 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3882 for (i
= 0; i
< ret
; i
++) {
3885 root_objectid
= gang
[i
]->root_key
.objectid
;
3886 err
= btrfs_orphan_cleanup(gang
[i
]);
3889 btrfs_put_fs_root(gang
[i
]);
3894 /* release the uncleaned roots due to error */
3895 for (; i
< ret
; i
++) {
3897 btrfs_put_fs_root(gang
[i
]);
3902 int btrfs_commit_super(struct btrfs_fs_info
*fs_info
)
3904 struct btrfs_root
*root
= fs_info
->tree_root
;
3905 struct btrfs_trans_handle
*trans
;
3907 mutex_lock(&fs_info
->cleaner_mutex
);
3908 btrfs_run_delayed_iputs(fs_info
);
3909 mutex_unlock(&fs_info
->cleaner_mutex
);
3910 wake_up_process(fs_info
->cleaner_kthread
);
3912 /* wait until ongoing cleanup work done */
3913 down_write(&fs_info
->cleanup_work_sem
);
3914 up_write(&fs_info
->cleanup_work_sem
);
3916 trans
= btrfs_join_transaction(root
);
3918 return PTR_ERR(trans
);
3919 return btrfs_commit_transaction(trans
);
3922 void close_ctree(struct btrfs_fs_info
*fs_info
)
3924 struct btrfs_root
*root
= fs_info
->tree_root
;
3927 set_bit(BTRFS_FS_CLOSING_START
, &fs_info
->flags
);
3929 /* wait for the qgroup rescan worker to stop */
3930 btrfs_qgroup_wait_for_completion(fs_info
, false);
3932 /* wait for the uuid_scan task to finish */
3933 down(&fs_info
->uuid_tree_rescan_sem
);
3934 /* avoid complains from lockdep et al., set sem back to initial state */
3935 up(&fs_info
->uuid_tree_rescan_sem
);
3937 /* pause restriper - we want to resume on mount */
3938 btrfs_pause_balance(fs_info
);
3940 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3942 btrfs_scrub_cancel(fs_info
);
3944 /* wait for any defraggers to finish */
3945 wait_event(fs_info
->transaction_wait
,
3946 (atomic_read(&fs_info
->defrag_running
) == 0));
3948 /* clear out the rbtree of defraggable inodes */
3949 btrfs_cleanup_defrag_inodes(fs_info
);
3951 cancel_work_sync(&fs_info
->async_reclaim_work
);
3953 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
3955 * If the cleaner thread is stopped and there are
3956 * block groups queued for removal, the deletion will be
3957 * skipped when we quit the cleaner thread.
3959 btrfs_delete_unused_bgs(fs_info
);
3961 ret
= btrfs_commit_super(fs_info
);
3963 btrfs_err(fs_info
, "commit super ret %d", ret
);
3966 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3967 btrfs_error_commit_super(fs_info
);
3969 kthread_stop(fs_info
->transaction_kthread
);
3970 kthread_stop(fs_info
->cleaner_kthread
);
3972 set_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
);
3974 btrfs_free_qgroup_config(fs_info
);
3976 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3977 btrfs_info(fs_info
, "at unmount delalloc count %lld",
3978 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3981 btrfs_sysfs_remove_mounted(fs_info
);
3982 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3984 btrfs_free_fs_roots(fs_info
);
3986 btrfs_put_block_group_cache(fs_info
);
3988 btrfs_free_block_groups(fs_info
);
3991 * we must make sure there is not any read request to
3992 * submit after we stopping all workers.
3994 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3995 btrfs_stop_all_workers(fs_info
);
3997 clear_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3998 free_root_pointers(fs_info
, 1);
4000 iput(fs_info
->btree_inode
);
4002 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4003 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
))
4004 btrfsic_unmount(fs_info
->fs_devices
);
4007 btrfs_close_devices(fs_info
->fs_devices
);
4008 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
4010 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
4011 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
4012 percpu_counter_destroy(&fs_info
->bio_counter
);
4013 bdi_destroy(&fs_info
->bdi
);
4014 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
4016 btrfs_free_stripe_hash_table(fs_info
);
4018 __btrfs_free_block_rsv(root
->orphan_block_rsv
);
4019 root
->orphan_block_rsv
= NULL
;
4021 mutex_lock(&fs_info
->chunk_mutex
);
4022 while (!list_empty(&fs_info
->pinned_chunks
)) {
4023 struct extent_map
*em
;
4025 em
= list_first_entry(&fs_info
->pinned_chunks
,
4026 struct extent_map
, list
);
4027 list_del_init(&em
->list
);
4028 free_extent_map(em
);
4030 mutex_unlock(&fs_info
->chunk_mutex
);
4033 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
4037 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
4039 ret
= extent_buffer_uptodate(buf
);
4043 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
4044 parent_transid
, atomic
);
4050 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
4052 struct btrfs_fs_info
*fs_info
;
4053 struct btrfs_root
*root
;
4054 u64 transid
= btrfs_header_generation(buf
);
4057 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4059 * This is a fast path so only do this check if we have sanity tests
4060 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4061 * outside of the sanity tests.
4063 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &buf
->bflags
)))
4066 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4067 fs_info
= root
->fs_info
;
4068 btrfs_assert_tree_locked(buf
);
4069 if (transid
!= fs_info
->generation
)
4070 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4071 buf
->start
, transid
, fs_info
->generation
);
4072 was_dirty
= set_extent_buffer_dirty(buf
);
4074 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
4076 fs_info
->dirty_metadata_batch
);
4077 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4078 if (btrfs_header_level(buf
) == 0 && check_leaf(root
, buf
)) {
4079 btrfs_print_leaf(fs_info
, buf
);
4085 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
,
4089 * looks as though older kernels can get into trouble with
4090 * this code, they end up stuck in balance_dirty_pages forever
4094 if (current
->flags
& PF_MEMALLOC
)
4098 btrfs_balance_delayed_items(fs_info
);
4100 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
4101 BTRFS_DIRTY_METADATA_THRESH
);
4103 balance_dirty_pages_ratelimited(fs_info
->btree_inode
->i_mapping
);
4107 void btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
)
4109 __btrfs_btree_balance_dirty(fs_info
, 1);
4112 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info
*fs_info
)
4114 __btrfs_btree_balance_dirty(fs_info
, 0);
4117 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
4119 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4120 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4122 return btree_read_extent_buffer_pages(fs_info
, buf
, parent_transid
);
4125 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
4128 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
4129 u64 nodesize
= btrfs_super_nodesize(sb
);
4130 u64 sectorsize
= btrfs_super_sectorsize(sb
);
4133 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
4134 btrfs_err(fs_info
, "no valid FS found");
4137 if (btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
)
4138 btrfs_warn(fs_info
, "unrecognized super flag: %llu",
4139 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
4140 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4141 btrfs_err(fs_info
, "tree_root level too big: %d >= %d",
4142 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
4145 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4146 btrfs_err(fs_info
, "chunk_root level too big: %d >= %d",
4147 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
4150 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4151 btrfs_err(fs_info
, "log_root level too big: %d >= %d",
4152 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
4157 * Check sectorsize and nodesize first, other check will need it.
4158 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4160 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
4161 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
4162 btrfs_err(fs_info
, "invalid sectorsize %llu", sectorsize
);
4165 /* Only PAGE SIZE is supported yet */
4166 if (sectorsize
!= PAGE_SIZE
) {
4168 "sectorsize %llu not supported yet, only support %lu",
4169 sectorsize
, PAGE_SIZE
);
4172 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
4173 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
4174 btrfs_err(fs_info
, "invalid nodesize %llu", nodesize
);
4177 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
4178 btrfs_err(fs_info
, "invalid leafsize %u, should be %llu",
4179 le32_to_cpu(sb
->__unused_leafsize
), nodesize
);
4183 /* Root alignment check */
4184 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
4185 btrfs_warn(fs_info
, "tree_root block unaligned: %llu",
4186 btrfs_super_root(sb
));
4189 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
4190 btrfs_warn(fs_info
, "chunk_root block unaligned: %llu",
4191 btrfs_super_chunk_root(sb
));
4194 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
4195 btrfs_warn(fs_info
, "log_root block unaligned: %llu",
4196 btrfs_super_log_root(sb
));
4200 if (memcmp(fs_info
->fsid
, sb
->dev_item
.fsid
, BTRFS_UUID_SIZE
) != 0) {
4202 "dev_item UUID does not match fsid: %pU != %pU",
4203 fs_info
->fsid
, sb
->dev_item
.fsid
);
4208 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4211 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
4212 btrfs_err(fs_info
, "bytes_used is too small %llu",
4213 btrfs_super_bytes_used(sb
));
4216 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
4217 btrfs_err(fs_info
, "invalid stripesize %u",
4218 btrfs_super_stripesize(sb
));
4221 if (btrfs_super_num_devices(sb
) > (1UL << 31))
4222 btrfs_warn(fs_info
, "suspicious number of devices: %llu",
4223 btrfs_super_num_devices(sb
));
4224 if (btrfs_super_num_devices(sb
) == 0) {
4225 btrfs_err(fs_info
, "number of devices is 0");
4229 if (btrfs_super_bytenr(sb
) != BTRFS_SUPER_INFO_OFFSET
) {
4230 btrfs_err(fs_info
, "super offset mismatch %llu != %u",
4231 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
4236 * Obvious sys_chunk_array corruptions, it must hold at least one key
4239 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4240 btrfs_err(fs_info
, "system chunk array too big %u > %u",
4241 btrfs_super_sys_array_size(sb
),
4242 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
4245 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
4246 + sizeof(struct btrfs_chunk
)) {
4247 btrfs_err(fs_info
, "system chunk array too small %u < %zu",
4248 btrfs_super_sys_array_size(sb
),
4249 sizeof(struct btrfs_disk_key
)
4250 + sizeof(struct btrfs_chunk
));
4255 * The generation is a global counter, we'll trust it more than the others
4256 * but it's still possible that it's the one that's wrong.
4258 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
4260 "suspicious: generation < chunk_root_generation: %llu < %llu",
4261 btrfs_super_generation(sb
),
4262 btrfs_super_chunk_root_generation(sb
));
4263 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
4264 && btrfs_super_cache_generation(sb
) != (u64
)-1)
4266 "suspicious: generation < cache_generation: %llu < %llu",
4267 btrfs_super_generation(sb
),
4268 btrfs_super_cache_generation(sb
));
4273 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
)
4275 mutex_lock(&fs_info
->cleaner_mutex
);
4276 btrfs_run_delayed_iputs(fs_info
);
4277 mutex_unlock(&fs_info
->cleaner_mutex
);
4279 down_write(&fs_info
->cleanup_work_sem
);
4280 up_write(&fs_info
->cleanup_work_sem
);
4282 /* cleanup FS via transaction */
4283 btrfs_cleanup_transaction(fs_info
);
4286 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4288 struct btrfs_ordered_extent
*ordered
;
4290 spin_lock(&root
->ordered_extent_lock
);
4292 * This will just short circuit the ordered completion stuff which will
4293 * make sure the ordered extent gets properly cleaned up.
4295 list_for_each_entry(ordered
, &root
->ordered_extents
,
4297 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4298 spin_unlock(&root
->ordered_extent_lock
);
4301 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4303 struct btrfs_root
*root
;
4304 struct list_head splice
;
4306 INIT_LIST_HEAD(&splice
);
4308 spin_lock(&fs_info
->ordered_root_lock
);
4309 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4310 while (!list_empty(&splice
)) {
4311 root
= list_first_entry(&splice
, struct btrfs_root
,
4313 list_move_tail(&root
->ordered_root
,
4314 &fs_info
->ordered_roots
);
4316 spin_unlock(&fs_info
->ordered_root_lock
);
4317 btrfs_destroy_ordered_extents(root
);
4320 spin_lock(&fs_info
->ordered_root_lock
);
4322 spin_unlock(&fs_info
->ordered_root_lock
);
4325 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4326 struct btrfs_fs_info
*fs_info
)
4328 struct rb_node
*node
;
4329 struct btrfs_delayed_ref_root
*delayed_refs
;
4330 struct btrfs_delayed_ref_node
*ref
;
4333 delayed_refs
= &trans
->delayed_refs
;
4335 spin_lock(&delayed_refs
->lock
);
4336 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4337 spin_unlock(&delayed_refs
->lock
);
4338 btrfs_info(fs_info
, "delayed_refs has NO entry");
4342 while ((node
= rb_first(&delayed_refs
->href_root
)) != NULL
) {
4343 struct btrfs_delayed_ref_head
*head
;
4344 struct btrfs_delayed_ref_node
*tmp
;
4345 bool pin_bytes
= false;
4347 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4349 if (!mutex_trylock(&head
->mutex
)) {
4350 atomic_inc(&head
->node
.refs
);
4351 spin_unlock(&delayed_refs
->lock
);
4353 mutex_lock(&head
->mutex
);
4354 mutex_unlock(&head
->mutex
);
4355 btrfs_put_delayed_ref(&head
->node
);
4356 spin_lock(&delayed_refs
->lock
);
4359 spin_lock(&head
->lock
);
4360 list_for_each_entry_safe_reverse(ref
, tmp
, &head
->ref_list
,
4363 list_del(&ref
->list
);
4364 if (!list_empty(&ref
->add_list
))
4365 list_del(&ref
->add_list
);
4366 atomic_dec(&delayed_refs
->num_entries
);
4367 btrfs_put_delayed_ref(ref
);
4369 if (head
->must_insert_reserved
)
4371 btrfs_free_delayed_extent_op(head
->extent_op
);
4372 delayed_refs
->num_heads
--;
4373 if (head
->processing
== 0)
4374 delayed_refs
->num_heads_ready
--;
4375 atomic_dec(&delayed_refs
->num_entries
);
4376 head
->node
.in_tree
= 0;
4377 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
4378 spin_unlock(&head
->lock
);
4379 spin_unlock(&delayed_refs
->lock
);
4380 mutex_unlock(&head
->mutex
);
4383 btrfs_pin_extent(fs_info
, head
->node
.bytenr
,
4384 head
->node
.num_bytes
, 1);
4385 btrfs_put_delayed_ref(&head
->node
);
4387 spin_lock(&delayed_refs
->lock
);
4390 spin_unlock(&delayed_refs
->lock
);
4395 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4397 struct btrfs_inode
*btrfs_inode
;
4398 struct list_head splice
;
4400 INIT_LIST_HEAD(&splice
);
4402 spin_lock(&root
->delalloc_lock
);
4403 list_splice_init(&root
->delalloc_inodes
, &splice
);
4405 while (!list_empty(&splice
)) {
4406 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4409 list_del_init(&btrfs_inode
->delalloc_inodes
);
4410 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
4411 &btrfs_inode
->runtime_flags
);
4412 spin_unlock(&root
->delalloc_lock
);
4414 btrfs_invalidate_inodes(btrfs_inode
->root
);
4416 spin_lock(&root
->delalloc_lock
);
4419 spin_unlock(&root
->delalloc_lock
);
4422 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4424 struct btrfs_root
*root
;
4425 struct list_head splice
;
4427 INIT_LIST_HEAD(&splice
);
4429 spin_lock(&fs_info
->delalloc_root_lock
);
4430 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4431 while (!list_empty(&splice
)) {
4432 root
= list_first_entry(&splice
, struct btrfs_root
,
4434 list_del_init(&root
->delalloc_root
);
4435 root
= btrfs_grab_fs_root(root
);
4437 spin_unlock(&fs_info
->delalloc_root_lock
);
4439 btrfs_destroy_delalloc_inodes(root
);
4440 btrfs_put_fs_root(root
);
4442 spin_lock(&fs_info
->delalloc_root_lock
);
4444 spin_unlock(&fs_info
->delalloc_root_lock
);
4447 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
4448 struct extent_io_tree
*dirty_pages
,
4452 struct extent_buffer
*eb
;
4457 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4462 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4463 while (start
<= end
) {
4464 eb
= find_extent_buffer(fs_info
, start
);
4465 start
+= fs_info
->nodesize
;
4468 wait_on_extent_buffer_writeback(eb
);
4470 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4472 clear_extent_buffer_dirty(eb
);
4473 free_extent_buffer_stale(eb
);
4480 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
4481 struct extent_io_tree
*pinned_extents
)
4483 struct extent_io_tree
*unpin
;
4489 unpin
= pinned_extents
;
4492 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4493 EXTENT_DIRTY
, NULL
);
4497 clear_extent_dirty(unpin
, start
, end
);
4498 btrfs_error_unpin_extent_range(fs_info
, start
, end
);
4503 if (unpin
== &fs_info
->freed_extents
[0])
4504 unpin
= &fs_info
->freed_extents
[1];
4506 unpin
= &fs_info
->freed_extents
[0];
4514 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache
*cache
)
4516 struct inode
*inode
;
4518 inode
= cache
->io_ctl
.inode
;
4520 invalidate_inode_pages2(inode
->i_mapping
);
4521 BTRFS_I(inode
)->generation
= 0;
4522 cache
->io_ctl
.inode
= NULL
;
4525 btrfs_put_block_group(cache
);
4528 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction
*cur_trans
,
4529 struct btrfs_fs_info
*fs_info
)
4531 struct btrfs_block_group_cache
*cache
;
4533 spin_lock(&cur_trans
->dirty_bgs_lock
);
4534 while (!list_empty(&cur_trans
->dirty_bgs
)) {
4535 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
4536 struct btrfs_block_group_cache
,
4539 btrfs_err(fs_info
, "orphan block group dirty_bgs list");
4540 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4544 if (!list_empty(&cache
->io_list
)) {
4545 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4546 list_del_init(&cache
->io_list
);
4547 btrfs_cleanup_bg_io(cache
);
4548 spin_lock(&cur_trans
->dirty_bgs_lock
);
4551 list_del_init(&cache
->dirty_list
);
4552 spin_lock(&cache
->lock
);
4553 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4554 spin_unlock(&cache
->lock
);
4556 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4557 btrfs_put_block_group(cache
);
4558 spin_lock(&cur_trans
->dirty_bgs_lock
);
4560 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4562 while (!list_empty(&cur_trans
->io_bgs
)) {
4563 cache
= list_first_entry(&cur_trans
->io_bgs
,
4564 struct btrfs_block_group_cache
,
4567 btrfs_err(fs_info
, "orphan block group on io_bgs list");
4571 list_del_init(&cache
->io_list
);
4572 spin_lock(&cache
->lock
);
4573 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4574 spin_unlock(&cache
->lock
);
4575 btrfs_cleanup_bg_io(cache
);
4579 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4580 struct btrfs_fs_info
*fs_info
)
4582 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
4583 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
4584 ASSERT(list_empty(&cur_trans
->io_bgs
));
4586 btrfs_destroy_delayed_refs(cur_trans
, fs_info
);
4588 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4589 wake_up(&fs_info
->transaction_blocked_wait
);
4591 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4592 wake_up(&fs_info
->transaction_wait
);
4594 btrfs_destroy_delayed_inodes(fs_info
);
4595 btrfs_assert_delayed_root_empty(fs_info
);
4597 btrfs_destroy_marked_extents(fs_info
, &cur_trans
->dirty_pages
,
4599 btrfs_destroy_pinned_extent(fs_info
,
4600 fs_info
->pinned_extents
);
4602 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4603 wake_up(&cur_trans
->commit_wait
);
4606 memset(cur_trans, 0, sizeof(*cur_trans));
4607 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4611 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
)
4613 struct btrfs_transaction
*t
;
4615 mutex_lock(&fs_info
->transaction_kthread_mutex
);
4617 spin_lock(&fs_info
->trans_lock
);
4618 while (!list_empty(&fs_info
->trans_list
)) {
4619 t
= list_first_entry(&fs_info
->trans_list
,
4620 struct btrfs_transaction
, list
);
4621 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4622 atomic_inc(&t
->use_count
);
4623 spin_unlock(&fs_info
->trans_lock
);
4624 btrfs_wait_for_commit(fs_info
, t
->transid
);
4625 btrfs_put_transaction(t
);
4626 spin_lock(&fs_info
->trans_lock
);
4629 if (t
== fs_info
->running_transaction
) {
4630 t
->state
= TRANS_STATE_COMMIT_DOING
;
4631 spin_unlock(&fs_info
->trans_lock
);
4633 * We wait for 0 num_writers since we don't hold a trans
4634 * handle open currently for this transaction.
4636 wait_event(t
->writer_wait
,
4637 atomic_read(&t
->num_writers
) == 0);
4639 spin_unlock(&fs_info
->trans_lock
);
4641 btrfs_cleanup_one_transaction(t
, fs_info
);
4643 spin_lock(&fs_info
->trans_lock
);
4644 if (t
== fs_info
->running_transaction
)
4645 fs_info
->running_transaction
= NULL
;
4646 list_del_init(&t
->list
);
4647 spin_unlock(&fs_info
->trans_lock
);
4649 btrfs_put_transaction(t
);
4650 trace_btrfs_transaction_commit(fs_info
->tree_root
);
4651 spin_lock(&fs_info
->trans_lock
);
4653 spin_unlock(&fs_info
->trans_lock
);
4654 btrfs_destroy_all_ordered_extents(fs_info
);
4655 btrfs_destroy_delayed_inodes(fs_info
);
4656 btrfs_assert_delayed_root_empty(fs_info
);
4657 btrfs_destroy_pinned_extent(fs_info
, fs_info
->pinned_extents
);
4658 btrfs_destroy_all_delalloc_inodes(fs_info
);
4659 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
4664 static const struct extent_io_ops btree_extent_io_ops
= {
4665 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4666 .readpage_io_failed_hook
= btree_io_failed_hook
,
4667 .submit_bio_hook
= btree_submit_bio_hook
,
4668 /* note we're sharing with inode.c for the merge bio hook */
4669 .merge_bio_hook
= btrfs_merge_bio_hook
,