2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
41 #undef SCRAMBLE_DELAYED_REFS
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 CHUNK_ALLOC_NO_FORCE
= 0,
59 CHUNK_ALLOC_LIMITED
= 1,
60 CHUNK_ALLOC_FORCE
= 2,
63 static int update_block_group(struct btrfs_trans_handle
*trans
,
64 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
65 u64 num_bytes
, int alloc
);
66 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
67 struct btrfs_fs_info
*fs_info
,
68 struct btrfs_delayed_ref_node
*node
, u64 parent
,
69 u64 root_objectid
, u64 owner_objectid
,
70 u64 owner_offset
, int refs_to_drop
,
71 struct btrfs_delayed_extent_op
*extra_op
);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
73 struct extent_buffer
*leaf
,
74 struct btrfs_extent_item
*ei
);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
76 struct btrfs_fs_info
*fs_info
,
77 u64 parent
, u64 root_objectid
,
78 u64 flags
, u64 owner
, u64 offset
,
79 struct btrfs_key
*ins
, int ref_mod
);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
81 struct btrfs_fs_info
*fs_info
,
82 u64 parent
, u64 root_objectid
,
83 u64 flags
, struct btrfs_disk_key
*key
,
84 int level
, struct btrfs_key
*ins
);
85 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
86 struct btrfs_fs_info
*fs_info
, u64 flags
,
88 static int find_next_key(struct btrfs_path
*path
, int level
,
89 struct btrfs_key
*key
);
90 static void dump_space_info(struct btrfs_fs_info
*fs_info
,
91 struct btrfs_space_info
*info
, u64 bytes
,
92 int dump_block_groups
);
93 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
94 u64 ram_bytes
, u64 num_bytes
, int delalloc
);
95 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
96 u64 num_bytes
, int delalloc
);
97 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
99 static int __reserve_metadata_bytes(struct btrfs_root
*root
,
100 struct btrfs_space_info
*space_info
,
102 enum btrfs_reserve_flush_enum flush
);
103 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
104 struct btrfs_space_info
*space_info
,
106 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
107 struct btrfs_space_info
*space_info
,
111 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
114 return cache
->cached
== BTRFS_CACHE_FINISHED
||
115 cache
->cached
== BTRFS_CACHE_ERROR
;
118 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
120 return (cache
->flags
& bits
) == bits
;
123 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
125 atomic_inc(&cache
->count
);
128 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
130 if (atomic_dec_and_test(&cache
->count
)) {
131 WARN_ON(cache
->pinned
> 0);
132 WARN_ON(cache
->reserved
> 0);
133 kfree(cache
->free_space_ctl
);
139 * this adds the block group to the fs_info rb tree for the block group
142 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
143 struct btrfs_block_group_cache
*block_group
)
146 struct rb_node
*parent
= NULL
;
147 struct btrfs_block_group_cache
*cache
;
149 spin_lock(&info
->block_group_cache_lock
);
150 p
= &info
->block_group_cache_tree
.rb_node
;
154 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
156 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
158 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
161 spin_unlock(&info
->block_group_cache_lock
);
166 rb_link_node(&block_group
->cache_node
, parent
, p
);
167 rb_insert_color(&block_group
->cache_node
,
168 &info
->block_group_cache_tree
);
170 if (info
->first_logical_byte
> block_group
->key
.objectid
)
171 info
->first_logical_byte
= block_group
->key
.objectid
;
173 spin_unlock(&info
->block_group_cache_lock
);
179 * This will return the block group at or after bytenr if contains is 0, else
180 * it will return the block group that contains the bytenr
182 static struct btrfs_block_group_cache
*
183 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
186 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
190 spin_lock(&info
->block_group_cache_lock
);
191 n
= info
->block_group_cache_tree
.rb_node
;
194 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
196 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
197 start
= cache
->key
.objectid
;
199 if (bytenr
< start
) {
200 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
203 } else if (bytenr
> start
) {
204 if (contains
&& bytenr
<= end
) {
215 btrfs_get_block_group(ret
);
216 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
217 info
->first_logical_byte
= ret
->key
.objectid
;
219 spin_unlock(&info
->block_group_cache_lock
);
224 static int add_excluded_extent(struct btrfs_fs_info
*fs_info
,
225 u64 start
, u64 num_bytes
)
227 u64 end
= start
+ num_bytes
- 1;
228 set_extent_bits(&fs_info
->freed_extents
[0],
229 start
, end
, EXTENT_UPTODATE
);
230 set_extent_bits(&fs_info
->freed_extents
[1],
231 start
, end
, EXTENT_UPTODATE
);
235 static void free_excluded_extents(struct btrfs_fs_info
*fs_info
,
236 struct btrfs_block_group_cache
*cache
)
240 start
= cache
->key
.objectid
;
241 end
= start
+ cache
->key
.offset
- 1;
243 clear_extent_bits(&fs_info
->freed_extents
[0],
244 start
, end
, EXTENT_UPTODATE
);
245 clear_extent_bits(&fs_info
->freed_extents
[1],
246 start
, end
, EXTENT_UPTODATE
);
249 static int exclude_super_stripes(struct btrfs_fs_info
*fs_info
,
250 struct btrfs_block_group_cache
*cache
)
257 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
258 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
259 cache
->bytes_super
+= stripe_len
;
260 ret
= add_excluded_extent(fs_info
, cache
->key
.objectid
,
266 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
267 bytenr
= btrfs_sb_offset(i
);
268 ret
= btrfs_rmap_block(fs_info
, cache
->key
.objectid
,
269 bytenr
, 0, &logical
, &nr
, &stripe_len
);
276 if (logical
[nr
] > cache
->key
.objectid
+
280 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
284 if (start
< cache
->key
.objectid
) {
285 start
= cache
->key
.objectid
;
286 len
= (logical
[nr
] + stripe_len
) - start
;
288 len
= min_t(u64
, stripe_len
,
289 cache
->key
.objectid
+
290 cache
->key
.offset
- start
);
293 cache
->bytes_super
+= len
;
294 ret
= add_excluded_extent(fs_info
, start
, len
);
306 static struct btrfs_caching_control
*
307 get_caching_control(struct btrfs_block_group_cache
*cache
)
309 struct btrfs_caching_control
*ctl
;
311 spin_lock(&cache
->lock
);
312 if (!cache
->caching_ctl
) {
313 spin_unlock(&cache
->lock
);
317 ctl
= cache
->caching_ctl
;
318 atomic_inc(&ctl
->count
);
319 spin_unlock(&cache
->lock
);
323 static void put_caching_control(struct btrfs_caching_control
*ctl
)
325 if (atomic_dec_and_test(&ctl
->count
))
329 #ifdef CONFIG_BTRFS_DEBUG
330 static void fragment_free_space(struct btrfs_block_group_cache
*block_group
)
332 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
333 u64 start
= block_group
->key
.objectid
;
334 u64 len
= block_group
->key
.offset
;
335 u64 chunk
= block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
?
336 fs_info
->nodesize
: fs_info
->sectorsize
;
337 u64 step
= chunk
<< 1;
339 while (len
> chunk
) {
340 btrfs_remove_free_space(block_group
, start
, chunk
);
351 * this is only called by cache_block_group, since we could have freed extents
352 * we need to check the pinned_extents for any extents that can't be used yet
353 * since their free space will be released as soon as the transaction commits.
355 u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
356 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
358 u64 extent_start
, extent_end
, size
, total_added
= 0;
361 while (start
< end
) {
362 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
363 &extent_start
, &extent_end
,
364 EXTENT_DIRTY
| EXTENT_UPTODATE
,
369 if (extent_start
<= start
) {
370 start
= extent_end
+ 1;
371 } else if (extent_start
> start
&& extent_start
< end
) {
372 size
= extent_start
- start
;
374 ret
= btrfs_add_free_space(block_group
, start
,
376 BUG_ON(ret
); /* -ENOMEM or logic error */
377 start
= extent_end
+ 1;
386 ret
= btrfs_add_free_space(block_group
, start
, size
);
387 BUG_ON(ret
); /* -ENOMEM or logic error */
393 static int load_extent_tree_free(struct btrfs_caching_control
*caching_ctl
)
395 struct btrfs_block_group_cache
*block_group
= caching_ctl
->block_group
;
396 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
397 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
398 struct btrfs_path
*path
;
399 struct extent_buffer
*leaf
;
400 struct btrfs_key key
;
407 path
= btrfs_alloc_path();
411 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
413 #ifdef CONFIG_BTRFS_DEBUG
415 * If we're fragmenting we don't want to make anybody think we can
416 * allocate from this block group until we've had a chance to fragment
419 if (btrfs_should_fragment_free_space(block_group
))
423 * We don't want to deadlock with somebody trying to allocate a new
424 * extent for the extent root while also trying to search the extent
425 * root to add free space. So we skip locking and search the commit
426 * root, since its read-only
428 path
->skip_locking
= 1;
429 path
->search_commit_root
= 1;
430 path
->reada
= READA_FORWARD
;
434 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
437 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
441 leaf
= path
->nodes
[0];
442 nritems
= btrfs_header_nritems(leaf
);
445 if (btrfs_fs_closing(fs_info
) > 1) {
450 if (path
->slots
[0] < nritems
) {
451 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
453 ret
= find_next_key(path
, 0, &key
);
457 if (need_resched() ||
458 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
460 caching_ctl
->progress
= last
;
461 btrfs_release_path(path
);
462 up_read(&fs_info
->commit_root_sem
);
463 mutex_unlock(&caching_ctl
->mutex
);
465 mutex_lock(&caching_ctl
->mutex
);
466 down_read(&fs_info
->commit_root_sem
);
470 ret
= btrfs_next_leaf(extent_root
, path
);
475 leaf
= path
->nodes
[0];
476 nritems
= btrfs_header_nritems(leaf
);
480 if (key
.objectid
< last
) {
483 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
486 caching_ctl
->progress
= last
;
487 btrfs_release_path(path
);
491 if (key
.objectid
< block_group
->key
.objectid
) {
496 if (key
.objectid
>= block_group
->key
.objectid
+
497 block_group
->key
.offset
)
500 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
501 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
502 total_found
+= add_new_free_space(block_group
,
505 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
506 last
= key
.objectid
+
509 last
= key
.objectid
+ key
.offset
;
511 if (total_found
> CACHING_CTL_WAKE_UP
) {
514 wake_up(&caching_ctl
->wait
);
521 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
522 block_group
->key
.objectid
+
523 block_group
->key
.offset
);
524 caching_ctl
->progress
= (u64
)-1;
527 btrfs_free_path(path
);
531 static noinline
void caching_thread(struct btrfs_work
*work
)
533 struct btrfs_block_group_cache
*block_group
;
534 struct btrfs_fs_info
*fs_info
;
535 struct btrfs_caching_control
*caching_ctl
;
536 struct btrfs_root
*extent_root
;
539 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
540 block_group
= caching_ctl
->block_group
;
541 fs_info
= block_group
->fs_info
;
542 extent_root
= fs_info
->extent_root
;
544 mutex_lock(&caching_ctl
->mutex
);
545 down_read(&fs_info
->commit_root_sem
);
547 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
))
548 ret
= load_free_space_tree(caching_ctl
);
550 ret
= load_extent_tree_free(caching_ctl
);
552 spin_lock(&block_group
->lock
);
553 block_group
->caching_ctl
= NULL
;
554 block_group
->cached
= ret
? BTRFS_CACHE_ERROR
: BTRFS_CACHE_FINISHED
;
555 spin_unlock(&block_group
->lock
);
557 #ifdef CONFIG_BTRFS_DEBUG
558 if (btrfs_should_fragment_free_space(block_group
)) {
561 spin_lock(&block_group
->space_info
->lock
);
562 spin_lock(&block_group
->lock
);
563 bytes_used
= block_group
->key
.offset
-
564 btrfs_block_group_used(&block_group
->item
);
565 block_group
->space_info
->bytes_used
+= bytes_used
>> 1;
566 spin_unlock(&block_group
->lock
);
567 spin_unlock(&block_group
->space_info
->lock
);
568 fragment_free_space(block_group
);
572 caching_ctl
->progress
= (u64
)-1;
574 up_read(&fs_info
->commit_root_sem
);
575 free_excluded_extents(fs_info
, block_group
);
576 mutex_unlock(&caching_ctl
->mutex
);
578 wake_up(&caching_ctl
->wait
);
580 put_caching_control(caching_ctl
);
581 btrfs_put_block_group(block_group
);
584 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
588 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
589 struct btrfs_caching_control
*caching_ctl
;
592 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
596 INIT_LIST_HEAD(&caching_ctl
->list
);
597 mutex_init(&caching_ctl
->mutex
);
598 init_waitqueue_head(&caching_ctl
->wait
);
599 caching_ctl
->block_group
= cache
;
600 caching_ctl
->progress
= cache
->key
.objectid
;
601 atomic_set(&caching_ctl
->count
, 1);
602 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
603 caching_thread
, NULL
, NULL
);
605 spin_lock(&cache
->lock
);
607 * This should be a rare occasion, but this could happen I think in the
608 * case where one thread starts to load the space cache info, and then
609 * some other thread starts a transaction commit which tries to do an
610 * allocation while the other thread is still loading the space cache
611 * info. The previous loop should have kept us from choosing this block
612 * group, but if we've moved to the state where we will wait on caching
613 * block groups we need to first check if we're doing a fast load here,
614 * so we can wait for it to finish, otherwise we could end up allocating
615 * from a block group who's cache gets evicted for one reason or
618 while (cache
->cached
== BTRFS_CACHE_FAST
) {
619 struct btrfs_caching_control
*ctl
;
621 ctl
= cache
->caching_ctl
;
622 atomic_inc(&ctl
->count
);
623 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
624 spin_unlock(&cache
->lock
);
628 finish_wait(&ctl
->wait
, &wait
);
629 put_caching_control(ctl
);
630 spin_lock(&cache
->lock
);
633 if (cache
->cached
!= BTRFS_CACHE_NO
) {
634 spin_unlock(&cache
->lock
);
638 WARN_ON(cache
->caching_ctl
);
639 cache
->caching_ctl
= caching_ctl
;
640 cache
->cached
= BTRFS_CACHE_FAST
;
641 spin_unlock(&cache
->lock
);
643 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
644 mutex_lock(&caching_ctl
->mutex
);
645 ret
= load_free_space_cache(fs_info
, cache
);
647 spin_lock(&cache
->lock
);
649 cache
->caching_ctl
= NULL
;
650 cache
->cached
= BTRFS_CACHE_FINISHED
;
651 cache
->last_byte_to_unpin
= (u64
)-1;
652 caching_ctl
->progress
= (u64
)-1;
654 if (load_cache_only
) {
655 cache
->caching_ctl
= NULL
;
656 cache
->cached
= BTRFS_CACHE_NO
;
658 cache
->cached
= BTRFS_CACHE_STARTED
;
659 cache
->has_caching_ctl
= 1;
662 spin_unlock(&cache
->lock
);
663 #ifdef CONFIG_BTRFS_DEBUG
665 btrfs_should_fragment_free_space(cache
)) {
668 spin_lock(&cache
->space_info
->lock
);
669 spin_lock(&cache
->lock
);
670 bytes_used
= cache
->key
.offset
-
671 btrfs_block_group_used(&cache
->item
);
672 cache
->space_info
->bytes_used
+= bytes_used
>> 1;
673 spin_unlock(&cache
->lock
);
674 spin_unlock(&cache
->space_info
->lock
);
675 fragment_free_space(cache
);
678 mutex_unlock(&caching_ctl
->mutex
);
680 wake_up(&caching_ctl
->wait
);
682 put_caching_control(caching_ctl
);
683 free_excluded_extents(fs_info
, cache
);
688 * We're either using the free space tree or no caching at all.
689 * Set cached to the appropriate value and wakeup any waiters.
691 spin_lock(&cache
->lock
);
692 if (load_cache_only
) {
693 cache
->caching_ctl
= NULL
;
694 cache
->cached
= BTRFS_CACHE_NO
;
696 cache
->cached
= BTRFS_CACHE_STARTED
;
697 cache
->has_caching_ctl
= 1;
699 spin_unlock(&cache
->lock
);
700 wake_up(&caching_ctl
->wait
);
703 if (load_cache_only
) {
704 put_caching_control(caching_ctl
);
708 down_write(&fs_info
->commit_root_sem
);
709 atomic_inc(&caching_ctl
->count
);
710 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
711 up_write(&fs_info
->commit_root_sem
);
713 btrfs_get_block_group(cache
);
715 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
721 * return the block group that starts at or after bytenr
723 static struct btrfs_block_group_cache
*
724 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
726 return block_group_cache_tree_search(info
, bytenr
, 0);
730 * return the block group that contains the given bytenr
732 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
733 struct btrfs_fs_info
*info
,
736 return block_group_cache_tree_search(info
, bytenr
, 1);
739 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
742 struct list_head
*head
= &info
->space_info
;
743 struct btrfs_space_info
*found
;
745 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
748 list_for_each_entry_rcu(found
, head
, list
) {
749 if (found
->flags
& flags
) {
759 * after adding space to the filesystem, we need to clear the full flags
760 * on all the space infos.
762 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
764 struct list_head
*head
= &info
->space_info
;
765 struct btrfs_space_info
*found
;
768 list_for_each_entry_rcu(found
, head
, list
)
773 /* simple helper to search for an existing data extent at a given offset */
774 int btrfs_lookup_data_extent(struct btrfs_fs_info
*fs_info
, u64 start
, u64 len
)
777 struct btrfs_key key
;
778 struct btrfs_path
*path
;
780 path
= btrfs_alloc_path();
784 key
.objectid
= start
;
786 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
787 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
788 btrfs_free_path(path
);
793 * helper function to lookup reference count and flags of a tree block.
795 * the head node for delayed ref is used to store the sum of all the
796 * reference count modifications queued up in the rbtree. the head
797 * node may also store the extent flags to set. This way you can check
798 * to see what the reference count and extent flags would be if all of
799 * the delayed refs are not processed.
801 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
802 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
803 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
805 struct btrfs_delayed_ref_head
*head
;
806 struct btrfs_delayed_ref_root
*delayed_refs
;
807 struct btrfs_path
*path
;
808 struct btrfs_extent_item
*ei
;
809 struct extent_buffer
*leaf
;
810 struct btrfs_key key
;
817 * If we don't have skinny metadata, don't bother doing anything
820 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
)) {
821 offset
= fs_info
->nodesize
;
825 path
= btrfs_alloc_path();
830 path
->skip_locking
= 1;
831 path
->search_commit_root
= 1;
835 key
.objectid
= bytenr
;
838 key
.type
= BTRFS_METADATA_ITEM_KEY
;
840 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
842 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
846 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
847 if (path
->slots
[0]) {
849 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
851 if (key
.objectid
== bytenr
&&
852 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
853 key
.offset
== fs_info
->nodesize
)
859 leaf
= path
->nodes
[0];
860 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
861 if (item_size
>= sizeof(*ei
)) {
862 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
863 struct btrfs_extent_item
);
864 num_refs
= btrfs_extent_refs(leaf
, ei
);
865 extent_flags
= btrfs_extent_flags(leaf
, ei
);
867 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
868 struct btrfs_extent_item_v0
*ei0
;
869 BUG_ON(item_size
!= sizeof(*ei0
));
870 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
871 struct btrfs_extent_item_v0
);
872 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
873 /* FIXME: this isn't correct for data */
874 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
879 BUG_ON(num_refs
== 0);
889 delayed_refs
= &trans
->transaction
->delayed_refs
;
890 spin_lock(&delayed_refs
->lock
);
891 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
893 if (!mutex_trylock(&head
->mutex
)) {
894 atomic_inc(&head
->node
.refs
);
895 spin_unlock(&delayed_refs
->lock
);
897 btrfs_release_path(path
);
900 * Mutex was contended, block until it's released and try
903 mutex_lock(&head
->mutex
);
904 mutex_unlock(&head
->mutex
);
905 btrfs_put_delayed_ref(&head
->node
);
908 spin_lock(&head
->lock
);
909 if (head
->extent_op
&& head
->extent_op
->update_flags
)
910 extent_flags
|= head
->extent_op
->flags_to_set
;
912 BUG_ON(num_refs
== 0);
914 num_refs
+= head
->node
.ref_mod
;
915 spin_unlock(&head
->lock
);
916 mutex_unlock(&head
->mutex
);
918 spin_unlock(&delayed_refs
->lock
);
920 WARN_ON(num_refs
== 0);
924 *flags
= extent_flags
;
926 btrfs_free_path(path
);
931 * Back reference rules. Back refs have three main goals:
933 * 1) differentiate between all holders of references to an extent so that
934 * when a reference is dropped we can make sure it was a valid reference
935 * before freeing the extent.
937 * 2) Provide enough information to quickly find the holders of an extent
938 * if we notice a given block is corrupted or bad.
940 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
941 * maintenance. This is actually the same as #2, but with a slightly
942 * different use case.
944 * There are two kinds of back refs. The implicit back refs is optimized
945 * for pointers in non-shared tree blocks. For a given pointer in a block,
946 * back refs of this kind provide information about the block's owner tree
947 * and the pointer's key. These information allow us to find the block by
948 * b-tree searching. The full back refs is for pointers in tree blocks not
949 * referenced by their owner trees. The location of tree block is recorded
950 * in the back refs. Actually the full back refs is generic, and can be
951 * used in all cases the implicit back refs is used. The major shortcoming
952 * of the full back refs is its overhead. Every time a tree block gets
953 * COWed, we have to update back refs entry for all pointers in it.
955 * For a newly allocated tree block, we use implicit back refs for
956 * pointers in it. This means most tree related operations only involve
957 * implicit back refs. For a tree block created in old transaction, the
958 * only way to drop a reference to it is COW it. So we can detect the
959 * event that tree block loses its owner tree's reference and do the
960 * back refs conversion.
962 * When a tree block is COWed through a tree, there are four cases:
964 * The reference count of the block is one and the tree is the block's
965 * owner tree. Nothing to do in this case.
967 * The reference count of the block is one and the tree is not the
968 * block's owner tree. In this case, full back refs is used for pointers
969 * in the block. Remove these full back refs, add implicit back refs for
970 * every pointers in the new block.
972 * The reference count of the block is greater than one and the tree is
973 * the block's owner tree. In this case, implicit back refs is used for
974 * pointers in the block. Add full back refs for every pointers in the
975 * block, increase lower level extents' reference counts. The original
976 * implicit back refs are entailed to the new block.
978 * The reference count of the block is greater than one and the tree is
979 * not the block's owner tree. Add implicit back refs for every pointer in
980 * the new block, increase lower level extents' reference count.
982 * Back Reference Key composing:
984 * The key objectid corresponds to the first byte in the extent,
985 * The key type is used to differentiate between types of back refs.
986 * There are different meanings of the key offset for different types
989 * File extents can be referenced by:
991 * - multiple snapshots, subvolumes, or different generations in one subvol
992 * - different files inside a single subvolume
993 * - different offsets inside a file (bookend extents in file.c)
995 * The extent ref structure for the implicit back refs has fields for:
997 * - Objectid of the subvolume root
998 * - objectid of the file holding the reference
999 * - original offset in the file
1000 * - how many bookend extents
1002 * The key offset for the implicit back refs is hash of the first
1005 * The extent ref structure for the full back refs has field for:
1007 * - number of pointers in the tree leaf
1009 * The key offset for the implicit back refs is the first byte of
1012 * When a file extent is allocated, The implicit back refs is used.
1013 * the fields are filled in:
1015 * (root_key.objectid, inode objectid, offset in file, 1)
1017 * When a file extent is removed file truncation, we find the
1018 * corresponding implicit back refs and check the following fields:
1020 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1022 * Btree extents can be referenced by:
1024 * - Different subvolumes
1026 * Both the implicit back refs and the full back refs for tree blocks
1027 * only consist of key. The key offset for the implicit back refs is
1028 * objectid of block's owner tree. The key offset for the full back refs
1029 * is the first byte of parent block.
1031 * When implicit back refs is used, information about the lowest key and
1032 * level of the tree block are required. These information are stored in
1033 * tree block info structure.
1036 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1037 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
1038 struct btrfs_root
*root
,
1039 struct btrfs_path
*path
,
1040 u64 owner
, u32 extra_size
)
1042 struct btrfs_extent_item
*item
;
1043 struct btrfs_extent_item_v0
*ei0
;
1044 struct btrfs_extent_ref_v0
*ref0
;
1045 struct btrfs_tree_block_info
*bi
;
1046 struct extent_buffer
*leaf
;
1047 struct btrfs_key key
;
1048 struct btrfs_key found_key
;
1049 u32 new_size
= sizeof(*item
);
1053 leaf
= path
->nodes
[0];
1054 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
1056 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1057 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1058 struct btrfs_extent_item_v0
);
1059 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1061 if (owner
== (u64
)-1) {
1063 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1064 ret
= btrfs_next_leaf(root
, path
);
1067 BUG_ON(ret
> 0); /* Corruption */
1068 leaf
= path
->nodes
[0];
1070 btrfs_item_key_to_cpu(leaf
, &found_key
,
1072 BUG_ON(key
.objectid
!= found_key
.objectid
);
1073 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1077 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1078 struct btrfs_extent_ref_v0
);
1079 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1083 btrfs_release_path(path
);
1085 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1086 new_size
+= sizeof(*bi
);
1088 new_size
-= sizeof(*ei0
);
1089 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1090 new_size
+ extra_size
, 1);
1093 BUG_ON(ret
); /* Corruption */
1095 btrfs_extend_item(root
->fs_info
, path
, new_size
);
1097 leaf
= path
->nodes
[0];
1098 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1099 btrfs_set_extent_refs(leaf
, item
, refs
);
1100 /* FIXME: get real generation */
1101 btrfs_set_extent_generation(leaf
, item
, 0);
1102 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1103 btrfs_set_extent_flags(leaf
, item
,
1104 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1105 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1106 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1107 /* FIXME: get first key of the block */
1108 memzero_extent_buffer(leaf
, (unsigned long)bi
, sizeof(*bi
));
1109 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1111 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1113 btrfs_mark_buffer_dirty(leaf
);
1118 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1120 u32 high_crc
= ~(u32
)0;
1121 u32 low_crc
= ~(u32
)0;
1124 lenum
= cpu_to_le64(root_objectid
);
1125 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1126 lenum
= cpu_to_le64(owner
);
1127 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1128 lenum
= cpu_to_le64(offset
);
1129 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1131 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1134 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1135 struct btrfs_extent_data_ref
*ref
)
1137 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1138 btrfs_extent_data_ref_objectid(leaf
, ref
),
1139 btrfs_extent_data_ref_offset(leaf
, ref
));
1142 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1143 struct btrfs_extent_data_ref
*ref
,
1144 u64 root_objectid
, u64 owner
, u64 offset
)
1146 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1147 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1148 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1153 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1154 struct btrfs_root
*root
,
1155 struct btrfs_path
*path
,
1156 u64 bytenr
, u64 parent
,
1158 u64 owner
, u64 offset
)
1160 struct btrfs_key key
;
1161 struct btrfs_extent_data_ref
*ref
;
1162 struct extent_buffer
*leaf
;
1168 key
.objectid
= bytenr
;
1170 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1171 key
.offset
= parent
;
1173 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1174 key
.offset
= hash_extent_data_ref(root_objectid
,
1179 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1188 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1189 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1190 btrfs_release_path(path
);
1191 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1202 leaf
= path
->nodes
[0];
1203 nritems
= btrfs_header_nritems(leaf
);
1205 if (path
->slots
[0] >= nritems
) {
1206 ret
= btrfs_next_leaf(root
, path
);
1212 leaf
= path
->nodes
[0];
1213 nritems
= btrfs_header_nritems(leaf
);
1217 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1218 if (key
.objectid
!= bytenr
||
1219 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1222 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1223 struct btrfs_extent_data_ref
);
1225 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1228 btrfs_release_path(path
);
1240 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1241 struct btrfs_root
*root
,
1242 struct btrfs_path
*path
,
1243 u64 bytenr
, u64 parent
,
1244 u64 root_objectid
, u64 owner
,
1245 u64 offset
, int refs_to_add
)
1247 struct btrfs_key key
;
1248 struct extent_buffer
*leaf
;
1253 key
.objectid
= bytenr
;
1255 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1256 key
.offset
= parent
;
1257 size
= sizeof(struct btrfs_shared_data_ref
);
1259 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1260 key
.offset
= hash_extent_data_ref(root_objectid
,
1262 size
= sizeof(struct btrfs_extent_data_ref
);
1265 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1266 if (ret
&& ret
!= -EEXIST
)
1269 leaf
= path
->nodes
[0];
1271 struct btrfs_shared_data_ref
*ref
;
1272 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1273 struct btrfs_shared_data_ref
);
1275 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1277 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1278 num_refs
+= refs_to_add
;
1279 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1282 struct btrfs_extent_data_ref
*ref
;
1283 while (ret
== -EEXIST
) {
1284 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1285 struct btrfs_extent_data_ref
);
1286 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1289 btrfs_release_path(path
);
1291 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1293 if (ret
&& ret
!= -EEXIST
)
1296 leaf
= path
->nodes
[0];
1298 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1299 struct btrfs_extent_data_ref
);
1301 btrfs_set_extent_data_ref_root(leaf
, ref
,
1303 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1304 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1305 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1307 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1308 num_refs
+= refs_to_add
;
1309 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1312 btrfs_mark_buffer_dirty(leaf
);
1315 btrfs_release_path(path
);
1319 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1320 struct btrfs_root
*root
,
1321 struct btrfs_path
*path
,
1322 int refs_to_drop
, int *last_ref
)
1324 struct btrfs_key key
;
1325 struct btrfs_extent_data_ref
*ref1
= NULL
;
1326 struct btrfs_shared_data_ref
*ref2
= NULL
;
1327 struct extent_buffer
*leaf
;
1331 leaf
= path
->nodes
[0];
1332 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1334 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1335 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1336 struct btrfs_extent_data_ref
);
1337 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1338 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1339 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1340 struct btrfs_shared_data_ref
);
1341 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1342 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1343 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1344 struct btrfs_extent_ref_v0
*ref0
;
1345 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1346 struct btrfs_extent_ref_v0
);
1347 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1353 BUG_ON(num_refs
< refs_to_drop
);
1354 num_refs
-= refs_to_drop
;
1356 if (num_refs
== 0) {
1357 ret
= btrfs_del_item(trans
, root
, path
);
1360 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1361 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1362 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1363 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1364 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1366 struct btrfs_extent_ref_v0
*ref0
;
1367 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1368 struct btrfs_extent_ref_v0
);
1369 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1372 btrfs_mark_buffer_dirty(leaf
);
1377 static noinline u32
extent_data_ref_count(struct btrfs_path
*path
,
1378 struct btrfs_extent_inline_ref
*iref
)
1380 struct btrfs_key key
;
1381 struct extent_buffer
*leaf
;
1382 struct btrfs_extent_data_ref
*ref1
;
1383 struct btrfs_shared_data_ref
*ref2
;
1386 leaf
= path
->nodes
[0];
1387 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1389 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1390 BTRFS_EXTENT_DATA_REF_KEY
) {
1391 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1392 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1394 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1395 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1397 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1398 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1399 struct btrfs_extent_data_ref
);
1400 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1401 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1402 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1403 struct btrfs_shared_data_ref
);
1404 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1405 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1406 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1407 struct btrfs_extent_ref_v0
*ref0
;
1408 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1409 struct btrfs_extent_ref_v0
);
1410 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1418 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1419 struct btrfs_root
*root
,
1420 struct btrfs_path
*path
,
1421 u64 bytenr
, u64 parent
,
1424 struct btrfs_key key
;
1427 key
.objectid
= bytenr
;
1429 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1430 key
.offset
= parent
;
1432 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1433 key
.offset
= root_objectid
;
1436 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1439 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1440 if (ret
== -ENOENT
&& parent
) {
1441 btrfs_release_path(path
);
1442 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1443 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1451 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1452 struct btrfs_root
*root
,
1453 struct btrfs_path
*path
,
1454 u64 bytenr
, u64 parent
,
1457 struct btrfs_key key
;
1460 key
.objectid
= bytenr
;
1462 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1463 key
.offset
= parent
;
1465 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1466 key
.offset
= root_objectid
;
1469 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1470 btrfs_release_path(path
);
1474 static inline int extent_ref_type(u64 parent
, u64 owner
)
1477 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1479 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1481 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1484 type
= BTRFS_SHARED_DATA_REF_KEY
;
1486 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1491 static int find_next_key(struct btrfs_path
*path
, int level
,
1492 struct btrfs_key
*key
)
1495 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1496 if (!path
->nodes
[level
])
1498 if (path
->slots
[level
] + 1 >=
1499 btrfs_header_nritems(path
->nodes
[level
]))
1502 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1503 path
->slots
[level
] + 1);
1505 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1506 path
->slots
[level
] + 1);
1513 * look for inline back ref. if back ref is found, *ref_ret is set
1514 * to the address of inline back ref, and 0 is returned.
1516 * if back ref isn't found, *ref_ret is set to the address where it
1517 * should be inserted, and -ENOENT is returned.
1519 * if insert is true and there are too many inline back refs, the path
1520 * points to the extent item, and -EAGAIN is returned.
1522 * NOTE: inline back refs are ordered in the same way that back ref
1523 * items in the tree are ordered.
1525 static noinline_for_stack
1526 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1527 struct btrfs_root
*root
,
1528 struct btrfs_path
*path
,
1529 struct btrfs_extent_inline_ref
**ref_ret
,
1530 u64 bytenr
, u64 num_bytes
,
1531 u64 parent
, u64 root_objectid
,
1532 u64 owner
, u64 offset
, int insert
)
1534 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1535 struct btrfs_key key
;
1536 struct extent_buffer
*leaf
;
1537 struct btrfs_extent_item
*ei
;
1538 struct btrfs_extent_inline_ref
*iref
;
1548 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
1550 key
.objectid
= bytenr
;
1551 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1552 key
.offset
= num_bytes
;
1554 want
= extent_ref_type(parent
, owner
);
1556 extra_size
= btrfs_extent_inline_ref_size(want
);
1557 path
->keep_locks
= 1;
1562 * Owner is our parent level, so we can just add one to get the level
1563 * for the block we are interested in.
1565 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1566 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1571 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1578 * We may be a newly converted file system which still has the old fat
1579 * extent entries for metadata, so try and see if we have one of those.
1581 if (ret
> 0 && skinny_metadata
) {
1582 skinny_metadata
= false;
1583 if (path
->slots
[0]) {
1585 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1587 if (key
.objectid
== bytenr
&&
1588 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1589 key
.offset
== num_bytes
)
1593 key
.objectid
= bytenr
;
1594 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1595 key
.offset
= num_bytes
;
1596 btrfs_release_path(path
);
1601 if (ret
&& !insert
) {
1604 } else if (WARN_ON(ret
)) {
1609 leaf
= path
->nodes
[0];
1610 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1611 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1612 if (item_size
< sizeof(*ei
)) {
1617 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1623 leaf
= path
->nodes
[0];
1624 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1627 BUG_ON(item_size
< sizeof(*ei
));
1629 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1630 flags
= btrfs_extent_flags(leaf
, ei
);
1632 ptr
= (unsigned long)(ei
+ 1);
1633 end
= (unsigned long)ei
+ item_size
;
1635 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1636 ptr
+= sizeof(struct btrfs_tree_block_info
);
1646 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1647 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1651 ptr
+= btrfs_extent_inline_ref_size(type
);
1655 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1656 struct btrfs_extent_data_ref
*dref
;
1657 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1658 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1663 if (hash_extent_data_ref_item(leaf
, dref
) <
1664 hash_extent_data_ref(root_objectid
, owner
, offset
))
1668 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1670 if (parent
== ref_offset
) {
1674 if (ref_offset
< parent
)
1677 if (root_objectid
== ref_offset
) {
1681 if (ref_offset
< root_objectid
)
1685 ptr
+= btrfs_extent_inline_ref_size(type
);
1687 if (err
== -ENOENT
&& insert
) {
1688 if (item_size
+ extra_size
>=
1689 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1694 * To add new inline back ref, we have to make sure
1695 * there is no corresponding back ref item.
1696 * For simplicity, we just do not add new inline back
1697 * ref if there is any kind of item for this block
1699 if (find_next_key(path
, 0, &key
) == 0 &&
1700 key
.objectid
== bytenr
&&
1701 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1706 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1709 path
->keep_locks
= 0;
1710 btrfs_unlock_up_safe(path
, 1);
1716 * helper to add new inline back ref
1718 static noinline_for_stack
1719 void setup_inline_extent_backref(struct btrfs_root
*root
,
1720 struct btrfs_path
*path
,
1721 struct btrfs_extent_inline_ref
*iref
,
1722 u64 parent
, u64 root_objectid
,
1723 u64 owner
, u64 offset
, int refs_to_add
,
1724 struct btrfs_delayed_extent_op
*extent_op
)
1726 struct extent_buffer
*leaf
;
1727 struct btrfs_extent_item
*ei
;
1730 unsigned long item_offset
;
1735 leaf
= path
->nodes
[0];
1736 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1737 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1739 type
= extent_ref_type(parent
, owner
);
1740 size
= btrfs_extent_inline_ref_size(type
);
1742 btrfs_extend_item(root
->fs_info
, path
, size
);
1744 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1745 refs
= btrfs_extent_refs(leaf
, ei
);
1746 refs
+= refs_to_add
;
1747 btrfs_set_extent_refs(leaf
, ei
, refs
);
1749 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1751 ptr
= (unsigned long)ei
+ item_offset
;
1752 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1753 if (ptr
< end
- size
)
1754 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1757 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1758 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1759 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1760 struct btrfs_extent_data_ref
*dref
;
1761 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1762 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1763 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1764 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1765 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1766 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1767 struct btrfs_shared_data_ref
*sref
;
1768 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1769 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1770 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1771 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1772 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1774 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1776 btrfs_mark_buffer_dirty(leaf
);
1779 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1780 struct btrfs_root
*root
,
1781 struct btrfs_path
*path
,
1782 struct btrfs_extent_inline_ref
**ref_ret
,
1783 u64 bytenr
, u64 num_bytes
, u64 parent
,
1784 u64 root_objectid
, u64 owner
, u64 offset
)
1788 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1789 bytenr
, num_bytes
, parent
,
1790 root_objectid
, owner
, offset
, 0);
1794 btrfs_release_path(path
);
1797 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1798 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1801 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1802 root_objectid
, owner
, offset
);
1808 * helper to update/remove inline back ref
1810 static noinline_for_stack
1811 void update_inline_extent_backref(struct btrfs_root
*root
,
1812 struct btrfs_path
*path
,
1813 struct btrfs_extent_inline_ref
*iref
,
1815 struct btrfs_delayed_extent_op
*extent_op
,
1818 struct extent_buffer
*leaf
;
1819 struct btrfs_extent_item
*ei
;
1820 struct btrfs_extent_data_ref
*dref
= NULL
;
1821 struct btrfs_shared_data_ref
*sref
= NULL
;
1829 leaf
= path
->nodes
[0];
1830 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1831 refs
= btrfs_extent_refs(leaf
, ei
);
1832 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1833 refs
+= refs_to_mod
;
1834 btrfs_set_extent_refs(leaf
, ei
, refs
);
1836 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1838 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1840 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1841 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1842 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1843 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1844 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1845 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1848 BUG_ON(refs_to_mod
!= -1);
1851 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1852 refs
+= refs_to_mod
;
1855 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1856 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1858 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1861 size
= btrfs_extent_inline_ref_size(type
);
1862 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1863 ptr
= (unsigned long)iref
;
1864 end
= (unsigned long)ei
+ item_size
;
1865 if (ptr
+ size
< end
)
1866 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1869 btrfs_truncate_item(root
->fs_info
, path
, item_size
, 1);
1871 btrfs_mark_buffer_dirty(leaf
);
1874 static noinline_for_stack
1875 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1876 struct btrfs_root
*root
,
1877 struct btrfs_path
*path
,
1878 u64 bytenr
, u64 num_bytes
, u64 parent
,
1879 u64 root_objectid
, u64 owner
,
1880 u64 offset
, int refs_to_add
,
1881 struct btrfs_delayed_extent_op
*extent_op
)
1883 struct btrfs_extent_inline_ref
*iref
;
1886 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1887 bytenr
, num_bytes
, parent
,
1888 root_objectid
, owner
, offset
, 1);
1890 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1891 update_inline_extent_backref(root
, path
, iref
,
1892 refs_to_add
, extent_op
, NULL
);
1893 } else if (ret
== -ENOENT
) {
1894 setup_inline_extent_backref(root
, path
, iref
, parent
,
1895 root_objectid
, owner
, offset
,
1896 refs_to_add
, extent_op
);
1902 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1903 struct btrfs_root
*root
,
1904 struct btrfs_path
*path
,
1905 u64 bytenr
, u64 parent
, u64 root_objectid
,
1906 u64 owner
, u64 offset
, int refs_to_add
)
1909 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1910 BUG_ON(refs_to_add
!= 1);
1911 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1912 parent
, root_objectid
);
1914 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1915 parent
, root_objectid
,
1916 owner
, offset
, refs_to_add
);
1921 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1922 struct btrfs_root
*root
,
1923 struct btrfs_path
*path
,
1924 struct btrfs_extent_inline_ref
*iref
,
1925 int refs_to_drop
, int is_data
, int *last_ref
)
1929 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1931 update_inline_extent_backref(root
, path
, iref
,
1932 -refs_to_drop
, NULL
, last_ref
);
1933 } else if (is_data
) {
1934 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
,
1938 ret
= btrfs_del_item(trans
, root
, path
);
1943 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1944 static int btrfs_issue_discard(struct block_device
*bdev
, u64 start
, u64 len
,
1945 u64
*discarded_bytes
)
1948 u64 bytes_left
, end
;
1949 u64 aligned_start
= ALIGN(start
, 1 << 9);
1951 if (WARN_ON(start
!= aligned_start
)) {
1952 len
-= aligned_start
- start
;
1953 len
= round_down(len
, 1 << 9);
1954 start
= aligned_start
;
1957 *discarded_bytes
= 0;
1965 /* Skip any superblocks on this device. */
1966 for (j
= 0; j
< BTRFS_SUPER_MIRROR_MAX
; j
++) {
1967 u64 sb_start
= btrfs_sb_offset(j
);
1968 u64 sb_end
= sb_start
+ BTRFS_SUPER_INFO_SIZE
;
1969 u64 size
= sb_start
- start
;
1971 if (!in_range(sb_start
, start
, bytes_left
) &&
1972 !in_range(sb_end
, start
, bytes_left
) &&
1973 !in_range(start
, sb_start
, BTRFS_SUPER_INFO_SIZE
))
1977 * Superblock spans beginning of range. Adjust start and
1980 if (sb_start
<= start
) {
1981 start
+= sb_end
- start
;
1986 bytes_left
= end
- start
;
1991 ret
= blkdev_issue_discard(bdev
, start
>> 9, size
>> 9,
1994 *discarded_bytes
+= size
;
1995 else if (ret
!= -EOPNOTSUPP
)
2004 bytes_left
= end
- start
;
2008 ret
= blkdev_issue_discard(bdev
, start
>> 9, bytes_left
>> 9,
2011 *discarded_bytes
+= bytes_left
;
2016 int btrfs_discard_extent(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
2017 u64 num_bytes
, u64
*actual_bytes
)
2020 u64 discarded_bytes
= 0;
2021 struct btrfs_bio
*bbio
= NULL
;
2025 * Avoid races with device replace and make sure our bbio has devices
2026 * associated to its stripes that don't go away while we are discarding.
2028 btrfs_bio_counter_inc_blocked(fs_info
);
2029 /* Tell the block device(s) that the sectors can be discarded */
2030 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_DISCARD
, bytenr
, &num_bytes
,
2032 /* Error condition is -ENOMEM */
2034 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
2038 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
2040 if (!stripe
->dev
->can_discard
)
2043 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
2048 discarded_bytes
+= bytes
;
2049 else if (ret
!= -EOPNOTSUPP
)
2050 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2053 * Just in case we get back EOPNOTSUPP for some reason,
2054 * just ignore the return value so we don't screw up
2055 * people calling discard_extent.
2059 btrfs_put_bbio(bbio
);
2061 btrfs_bio_counter_dec(fs_info
);
2064 *actual_bytes
= discarded_bytes
;
2067 if (ret
== -EOPNOTSUPP
)
2072 /* Can return -ENOMEM */
2073 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2074 struct btrfs_fs_info
*fs_info
,
2075 u64 bytenr
, u64 num_bytes
, u64 parent
,
2076 u64 root_objectid
, u64 owner
, u64 offset
)
2080 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
2081 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
2083 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
2084 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
2086 parent
, root_objectid
, (int)owner
,
2087 BTRFS_ADD_DELAYED_REF
, NULL
);
2089 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
2090 num_bytes
, parent
, root_objectid
,
2092 BTRFS_ADD_DELAYED_REF
, NULL
);
2097 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2098 struct btrfs_fs_info
*fs_info
,
2099 struct btrfs_delayed_ref_node
*node
,
2100 u64 parent
, u64 root_objectid
,
2101 u64 owner
, u64 offset
, int refs_to_add
,
2102 struct btrfs_delayed_extent_op
*extent_op
)
2104 struct btrfs_path
*path
;
2105 struct extent_buffer
*leaf
;
2106 struct btrfs_extent_item
*item
;
2107 struct btrfs_key key
;
2108 u64 bytenr
= node
->bytenr
;
2109 u64 num_bytes
= node
->num_bytes
;
2113 path
= btrfs_alloc_path();
2117 path
->reada
= READA_FORWARD
;
2118 path
->leave_spinning
= 1;
2119 /* this will setup the path even if it fails to insert the back ref */
2120 ret
= insert_inline_extent_backref(trans
, fs_info
->extent_root
, path
,
2121 bytenr
, num_bytes
, parent
,
2122 root_objectid
, owner
, offset
,
2123 refs_to_add
, extent_op
);
2124 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
2128 * Ok we had -EAGAIN which means we didn't have space to insert and
2129 * inline extent ref, so just update the reference count and add a
2132 leaf
= path
->nodes
[0];
2133 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2134 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2135 refs
= btrfs_extent_refs(leaf
, item
);
2136 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2138 __run_delayed_extent_op(extent_op
, leaf
, item
);
2140 btrfs_mark_buffer_dirty(leaf
);
2141 btrfs_release_path(path
);
2143 path
->reada
= READA_FORWARD
;
2144 path
->leave_spinning
= 1;
2145 /* now insert the actual backref */
2146 ret
= insert_extent_backref(trans
, fs_info
->extent_root
,
2147 path
, bytenr
, parent
, root_objectid
,
2148 owner
, offset
, refs_to_add
);
2150 btrfs_abort_transaction(trans
, ret
);
2152 btrfs_free_path(path
);
2156 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2157 struct btrfs_fs_info
*fs_info
,
2158 struct btrfs_delayed_ref_node
*node
,
2159 struct btrfs_delayed_extent_op
*extent_op
,
2160 int insert_reserved
)
2163 struct btrfs_delayed_data_ref
*ref
;
2164 struct btrfs_key ins
;
2169 ins
.objectid
= node
->bytenr
;
2170 ins
.offset
= node
->num_bytes
;
2171 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2173 ref
= btrfs_delayed_node_to_data_ref(node
);
2174 trace_run_delayed_data_ref(fs_info
, node
, ref
, node
->action
);
2176 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2177 parent
= ref
->parent
;
2178 ref_root
= ref
->root
;
2180 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2182 flags
|= extent_op
->flags_to_set
;
2183 ret
= alloc_reserved_file_extent(trans
, fs_info
,
2184 parent
, ref_root
, flags
,
2185 ref
->objectid
, ref
->offset
,
2186 &ins
, node
->ref_mod
);
2187 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2188 ret
= __btrfs_inc_extent_ref(trans
, fs_info
, node
, parent
,
2189 ref_root
, ref
->objectid
,
2190 ref
->offset
, node
->ref_mod
,
2192 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2193 ret
= __btrfs_free_extent(trans
, fs_info
, node
, parent
,
2194 ref_root
, ref
->objectid
,
2195 ref
->offset
, node
->ref_mod
,
2203 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2204 struct extent_buffer
*leaf
,
2205 struct btrfs_extent_item
*ei
)
2207 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2208 if (extent_op
->update_flags
) {
2209 flags
|= extent_op
->flags_to_set
;
2210 btrfs_set_extent_flags(leaf
, ei
, flags
);
2213 if (extent_op
->update_key
) {
2214 struct btrfs_tree_block_info
*bi
;
2215 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2216 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2217 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2221 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2222 struct btrfs_fs_info
*fs_info
,
2223 struct btrfs_delayed_ref_node
*node
,
2224 struct btrfs_delayed_extent_op
*extent_op
)
2226 struct btrfs_key key
;
2227 struct btrfs_path
*path
;
2228 struct btrfs_extent_item
*ei
;
2229 struct extent_buffer
*leaf
;
2233 int metadata
= !extent_op
->is_data
;
2238 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2241 path
= btrfs_alloc_path();
2245 key
.objectid
= node
->bytenr
;
2248 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2249 key
.offset
= extent_op
->level
;
2251 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2252 key
.offset
= node
->num_bytes
;
2256 path
->reada
= READA_FORWARD
;
2257 path
->leave_spinning
= 1;
2258 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 1);
2265 if (path
->slots
[0] > 0) {
2267 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2269 if (key
.objectid
== node
->bytenr
&&
2270 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2271 key
.offset
== node
->num_bytes
)
2275 btrfs_release_path(path
);
2278 key
.objectid
= node
->bytenr
;
2279 key
.offset
= node
->num_bytes
;
2280 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2289 leaf
= path
->nodes
[0];
2290 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2291 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2292 if (item_size
< sizeof(*ei
)) {
2293 ret
= convert_extent_item_v0(trans
, fs_info
->extent_root
,
2299 leaf
= path
->nodes
[0];
2300 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2303 BUG_ON(item_size
< sizeof(*ei
));
2304 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2305 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2307 btrfs_mark_buffer_dirty(leaf
);
2309 btrfs_free_path(path
);
2313 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2314 struct btrfs_fs_info
*fs_info
,
2315 struct btrfs_delayed_ref_node
*node
,
2316 struct btrfs_delayed_extent_op
*extent_op
,
2317 int insert_reserved
)
2320 struct btrfs_delayed_tree_ref
*ref
;
2321 struct btrfs_key ins
;
2324 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
2326 ref
= btrfs_delayed_node_to_tree_ref(node
);
2327 trace_run_delayed_tree_ref(fs_info
, node
, ref
, node
->action
);
2329 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2330 parent
= ref
->parent
;
2331 ref_root
= ref
->root
;
2333 ins
.objectid
= node
->bytenr
;
2334 if (skinny_metadata
) {
2335 ins
.offset
= ref
->level
;
2336 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2338 ins
.offset
= node
->num_bytes
;
2339 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2342 if (node
->ref_mod
!= 1) {
2344 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2345 node
->bytenr
, node
->ref_mod
, node
->action
, ref_root
,
2349 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2350 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2351 ret
= alloc_reserved_tree_block(trans
, fs_info
,
2353 extent_op
->flags_to_set
,
2356 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2357 ret
= __btrfs_inc_extent_ref(trans
, fs_info
, node
,
2361 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2362 ret
= __btrfs_free_extent(trans
, fs_info
, node
,
2364 ref
->level
, 0, 1, extent_op
);
2371 /* helper function to actually process a single delayed ref entry */
2372 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2373 struct btrfs_fs_info
*fs_info
,
2374 struct btrfs_delayed_ref_node
*node
,
2375 struct btrfs_delayed_extent_op
*extent_op
,
2376 int insert_reserved
)
2380 if (trans
->aborted
) {
2381 if (insert_reserved
)
2382 btrfs_pin_extent(fs_info
, node
->bytenr
,
2383 node
->num_bytes
, 1);
2387 if (btrfs_delayed_ref_is_head(node
)) {
2388 struct btrfs_delayed_ref_head
*head
;
2390 * we've hit the end of the chain and we were supposed
2391 * to insert this extent into the tree. But, it got
2392 * deleted before we ever needed to insert it, so all
2393 * we have to do is clean up the accounting
2396 head
= btrfs_delayed_node_to_head(node
);
2397 trace_run_delayed_ref_head(fs_info
, node
, head
, node
->action
);
2399 if (insert_reserved
) {
2400 btrfs_pin_extent(fs_info
, node
->bytenr
,
2401 node
->num_bytes
, 1);
2402 if (head
->is_data
) {
2403 ret
= btrfs_del_csums(trans
, fs_info
,
2409 /* Also free its reserved qgroup space */
2410 btrfs_qgroup_free_delayed_ref(fs_info
, head
->qgroup_ref_root
,
2411 head
->qgroup_reserved
);
2415 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2416 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2417 ret
= run_delayed_tree_ref(trans
, fs_info
, node
, extent_op
,
2419 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2420 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2421 ret
= run_delayed_data_ref(trans
, fs_info
, node
, extent_op
,
2428 static inline struct btrfs_delayed_ref_node
*
2429 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2431 struct btrfs_delayed_ref_node
*ref
;
2433 if (list_empty(&head
->ref_list
))
2437 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2438 * This is to prevent a ref count from going down to zero, which deletes
2439 * the extent item from the extent tree, when there still are references
2440 * to add, which would fail because they would not find the extent item.
2442 if (!list_empty(&head
->ref_add_list
))
2443 return list_first_entry(&head
->ref_add_list
,
2444 struct btrfs_delayed_ref_node
, add_list
);
2446 ref
= list_first_entry(&head
->ref_list
, struct btrfs_delayed_ref_node
,
2448 ASSERT(list_empty(&ref
->add_list
));
2453 * Returns 0 on success or if called with an already aborted transaction.
2454 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2456 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2457 struct btrfs_fs_info
*fs_info
,
2460 struct btrfs_delayed_ref_root
*delayed_refs
;
2461 struct btrfs_delayed_ref_node
*ref
;
2462 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2463 struct btrfs_delayed_extent_op
*extent_op
;
2464 ktime_t start
= ktime_get();
2466 unsigned long count
= 0;
2467 unsigned long actual_count
= 0;
2468 int must_insert_reserved
= 0;
2470 delayed_refs
= &trans
->transaction
->delayed_refs
;
2476 spin_lock(&delayed_refs
->lock
);
2477 locked_ref
= btrfs_select_ref_head(trans
);
2479 spin_unlock(&delayed_refs
->lock
);
2483 /* grab the lock that says we are going to process
2484 * all the refs for this head */
2485 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2486 spin_unlock(&delayed_refs
->lock
);
2488 * we may have dropped the spin lock to get the head
2489 * mutex lock, and that might have given someone else
2490 * time to free the head. If that's true, it has been
2491 * removed from our list and we can move on.
2493 if (ret
== -EAGAIN
) {
2501 * We need to try and merge add/drops of the same ref since we
2502 * can run into issues with relocate dropping the implicit ref
2503 * and then it being added back again before the drop can
2504 * finish. If we merged anything we need to re-loop so we can
2506 * Or we can get node references of the same type that weren't
2507 * merged when created due to bumps in the tree mod seq, and
2508 * we need to merge them to prevent adding an inline extent
2509 * backref before dropping it (triggering a BUG_ON at
2510 * insert_inline_extent_backref()).
2512 spin_lock(&locked_ref
->lock
);
2513 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2517 * locked_ref is the head node, so we have to go one
2518 * node back for any delayed ref updates
2520 ref
= select_delayed_ref(locked_ref
);
2522 if (ref
&& ref
->seq
&&
2523 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2524 spin_unlock(&locked_ref
->lock
);
2525 btrfs_delayed_ref_unlock(locked_ref
);
2526 spin_lock(&delayed_refs
->lock
);
2527 locked_ref
->processing
= 0;
2528 delayed_refs
->num_heads_ready
++;
2529 spin_unlock(&delayed_refs
->lock
);
2537 * record the must insert reserved flag before we
2538 * drop the spin lock.
2540 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2541 locked_ref
->must_insert_reserved
= 0;
2543 extent_op
= locked_ref
->extent_op
;
2544 locked_ref
->extent_op
= NULL
;
2549 /* All delayed refs have been processed, Go ahead
2550 * and send the head node to run_one_delayed_ref,
2551 * so that any accounting fixes can happen
2553 ref
= &locked_ref
->node
;
2555 if (extent_op
&& must_insert_reserved
) {
2556 btrfs_free_delayed_extent_op(extent_op
);
2561 spin_unlock(&locked_ref
->lock
);
2562 ret
= run_delayed_extent_op(trans
, fs_info
,
2564 btrfs_free_delayed_extent_op(extent_op
);
2568 * Need to reset must_insert_reserved if
2569 * there was an error so the abort stuff
2570 * can cleanup the reserved space
2573 if (must_insert_reserved
)
2574 locked_ref
->must_insert_reserved
= 1;
2575 locked_ref
->processing
= 0;
2576 btrfs_debug(fs_info
,
2577 "run_delayed_extent_op returned %d",
2579 btrfs_delayed_ref_unlock(locked_ref
);
2586 * Need to drop our head ref lock and re-acquire the
2587 * delayed ref lock and then re-check to make sure
2590 spin_unlock(&locked_ref
->lock
);
2591 spin_lock(&delayed_refs
->lock
);
2592 spin_lock(&locked_ref
->lock
);
2593 if (!list_empty(&locked_ref
->ref_list
) ||
2594 locked_ref
->extent_op
) {
2595 spin_unlock(&locked_ref
->lock
);
2596 spin_unlock(&delayed_refs
->lock
);
2600 delayed_refs
->num_heads
--;
2601 rb_erase(&locked_ref
->href_node
,
2602 &delayed_refs
->href_root
);
2603 spin_unlock(&delayed_refs
->lock
);
2607 list_del(&ref
->list
);
2608 if (!list_empty(&ref
->add_list
))
2609 list_del(&ref
->add_list
);
2611 atomic_dec(&delayed_refs
->num_entries
);
2613 if (!btrfs_delayed_ref_is_head(ref
)) {
2615 * when we play the delayed ref, also correct the
2618 switch (ref
->action
) {
2619 case BTRFS_ADD_DELAYED_REF
:
2620 case BTRFS_ADD_DELAYED_EXTENT
:
2621 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2623 case BTRFS_DROP_DELAYED_REF
:
2624 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2630 spin_unlock(&locked_ref
->lock
);
2632 ret
= run_one_delayed_ref(trans
, fs_info
, ref
, extent_op
,
2633 must_insert_reserved
);
2635 btrfs_free_delayed_extent_op(extent_op
);
2637 spin_lock(&delayed_refs
->lock
);
2638 locked_ref
->processing
= 0;
2639 delayed_refs
->num_heads_ready
++;
2640 spin_unlock(&delayed_refs
->lock
);
2641 btrfs_delayed_ref_unlock(locked_ref
);
2642 btrfs_put_delayed_ref(ref
);
2643 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d",
2649 * If this node is a head, that means all the refs in this head
2650 * have been dealt with, and we will pick the next head to deal
2651 * with, so we must unlock the head and drop it from the cluster
2652 * list before we release it.
2654 if (btrfs_delayed_ref_is_head(ref
)) {
2655 if (locked_ref
->is_data
&&
2656 locked_ref
->total_ref_mod
< 0) {
2657 spin_lock(&delayed_refs
->lock
);
2658 delayed_refs
->pending_csums
-= ref
->num_bytes
;
2659 spin_unlock(&delayed_refs
->lock
);
2661 btrfs_delayed_ref_unlock(locked_ref
);
2664 btrfs_put_delayed_ref(ref
);
2670 * We don't want to include ref heads since we can have empty ref heads
2671 * and those will drastically skew our runtime down since we just do
2672 * accounting, no actual extent tree updates.
2674 if (actual_count
> 0) {
2675 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2679 * We weigh the current average higher than our current runtime
2680 * to avoid large swings in the average.
2682 spin_lock(&delayed_refs
->lock
);
2683 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2684 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2685 spin_unlock(&delayed_refs
->lock
);
2690 #ifdef SCRAMBLE_DELAYED_REFS
2692 * Normally delayed refs get processed in ascending bytenr order. This
2693 * correlates in most cases to the order added. To expose dependencies on this
2694 * order, we start to process the tree in the middle instead of the beginning
2696 static u64
find_middle(struct rb_root
*root
)
2698 struct rb_node
*n
= root
->rb_node
;
2699 struct btrfs_delayed_ref_node
*entry
;
2702 u64 first
= 0, last
= 0;
2706 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2707 first
= entry
->bytenr
;
2711 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2712 last
= entry
->bytenr
;
2717 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2718 WARN_ON(!entry
->in_tree
);
2720 middle
= entry
->bytenr
;
2733 static inline u64
heads_to_leaves(struct btrfs_fs_info
*fs_info
, u64 heads
)
2737 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2738 sizeof(struct btrfs_extent_inline_ref
));
2739 if (!btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2740 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2743 * We don't ever fill up leaves all the way so multiply by 2 just to be
2744 * closer to what we're really going to want to use.
2746 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(fs_info
));
2750 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2751 * would require to store the csums for that many bytes.
2753 u64
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info
*fs_info
, u64 csum_bytes
)
2756 u64 num_csums_per_leaf
;
2759 csum_size
= BTRFS_MAX_ITEM_SIZE(fs_info
);
2760 num_csums_per_leaf
= div64_u64(csum_size
,
2761 (u64
)btrfs_super_csum_size(fs_info
->super_copy
));
2762 num_csums
= div64_u64(csum_bytes
, fs_info
->sectorsize
);
2763 num_csums
+= num_csums_per_leaf
- 1;
2764 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2768 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2769 struct btrfs_fs_info
*fs_info
)
2771 struct btrfs_block_rsv
*global_rsv
;
2772 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2773 u64 csum_bytes
= trans
->transaction
->delayed_refs
.pending_csums
;
2774 u64 num_dirty_bgs
= trans
->transaction
->num_dirty_bgs
;
2775 u64 num_bytes
, num_dirty_bgs_bytes
;
2778 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2779 num_heads
= heads_to_leaves(fs_info
, num_heads
);
2781 num_bytes
+= (num_heads
- 1) * fs_info
->nodesize
;
2783 num_bytes
+= btrfs_csum_bytes_to_leaves(fs_info
, csum_bytes
) *
2785 num_dirty_bgs_bytes
= btrfs_calc_trans_metadata_size(fs_info
,
2787 global_rsv
= &fs_info
->global_block_rsv
;
2790 * If we can't allocate any more chunks lets make sure we have _lots_ of
2791 * wiggle room since running delayed refs can create more delayed refs.
2793 if (global_rsv
->space_info
->full
) {
2794 num_dirty_bgs_bytes
<<= 1;
2798 spin_lock(&global_rsv
->lock
);
2799 if (global_rsv
->reserved
<= num_bytes
+ num_dirty_bgs_bytes
)
2801 spin_unlock(&global_rsv
->lock
);
2805 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2806 struct btrfs_fs_info
*fs_info
)
2809 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2814 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2815 val
= num_entries
* avg_runtime
;
2816 if (val
>= NSEC_PER_SEC
)
2818 if (val
>= NSEC_PER_SEC
/ 2)
2821 return btrfs_check_space_for_delayed_refs(trans
, fs_info
);
2824 struct async_delayed_refs
{
2825 struct btrfs_root
*root
;
2830 struct completion wait
;
2831 struct btrfs_work work
;
2834 static inline struct async_delayed_refs
*
2835 to_async_delayed_refs(struct btrfs_work
*work
)
2837 return container_of(work
, struct async_delayed_refs
, work
);
2840 static void delayed_ref_async_start(struct btrfs_work
*work
)
2842 struct async_delayed_refs
*async
= to_async_delayed_refs(work
);
2843 struct btrfs_trans_handle
*trans
;
2844 struct btrfs_fs_info
*fs_info
= async
->root
->fs_info
;
2847 /* if the commit is already started, we don't need to wait here */
2848 if (btrfs_transaction_blocked(fs_info
))
2851 trans
= btrfs_join_transaction(async
->root
);
2852 if (IS_ERR(trans
)) {
2853 async
->error
= PTR_ERR(trans
);
2858 * trans->sync means that when we call end_transaction, we won't
2859 * wait on delayed refs
2863 /* Don't bother flushing if we got into a different transaction */
2864 if (trans
->transid
> async
->transid
)
2867 ret
= btrfs_run_delayed_refs(trans
, fs_info
, async
->count
);
2871 ret
= btrfs_end_transaction(trans
);
2872 if (ret
&& !async
->error
)
2876 complete(&async
->wait
);
2881 int btrfs_async_run_delayed_refs(struct btrfs_fs_info
*fs_info
,
2882 unsigned long count
, u64 transid
, int wait
)
2884 struct async_delayed_refs
*async
;
2887 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
2891 async
->root
= fs_info
->tree_root
;
2892 async
->count
= count
;
2894 async
->transid
= transid
;
2899 init_completion(&async
->wait
);
2901 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
2902 delayed_ref_async_start
, NULL
, NULL
);
2904 btrfs_queue_work(fs_info
->extent_workers
, &async
->work
);
2907 wait_for_completion(&async
->wait
);
2916 * this starts processing the delayed reference count updates and
2917 * extent insertions we have queued up so far. count can be
2918 * 0, which means to process everything in the tree at the start
2919 * of the run (but not newly added entries), or it can be some target
2920 * number you'd like to process.
2922 * Returns 0 on success or if called with an aborted transaction
2923 * Returns <0 on error and aborts the transaction
2925 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2926 struct btrfs_fs_info
*fs_info
, unsigned long count
)
2928 struct rb_node
*node
;
2929 struct btrfs_delayed_ref_root
*delayed_refs
;
2930 struct btrfs_delayed_ref_head
*head
;
2932 int run_all
= count
== (unsigned long)-1;
2933 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
2935 /* We'll clean this up in btrfs_cleanup_transaction */
2939 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE
, &fs_info
->flags
))
2942 delayed_refs
= &trans
->transaction
->delayed_refs
;
2944 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2947 #ifdef SCRAMBLE_DELAYED_REFS
2948 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2950 trans
->can_flush_pending_bgs
= false;
2951 ret
= __btrfs_run_delayed_refs(trans
, fs_info
, count
);
2953 btrfs_abort_transaction(trans
, ret
);
2958 if (!list_empty(&trans
->new_bgs
))
2959 btrfs_create_pending_block_groups(trans
, fs_info
);
2961 spin_lock(&delayed_refs
->lock
);
2962 node
= rb_first(&delayed_refs
->href_root
);
2964 spin_unlock(&delayed_refs
->lock
);
2969 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2971 if (btrfs_delayed_ref_is_head(&head
->node
)) {
2972 struct btrfs_delayed_ref_node
*ref
;
2975 atomic_inc(&ref
->refs
);
2977 spin_unlock(&delayed_refs
->lock
);
2979 * Mutex was contended, block until it's
2980 * released and try again
2982 mutex_lock(&head
->mutex
);
2983 mutex_unlock(&head
->mutex
);
2985 btrfs_put_delayed_ref(ref
);
2991 node
= rb_next(node
);
2993 spin_unlock(&delayed_refs
->lock
);
2998 assert_qgroups_uptodate(trans
);
2999 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
3003 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
3004 struct btrfs_fs_info
*fs_info
,
3005 u64 bytenr
, u64 num_bytes
, u64 flags
,
3006 int level
, int is_data
)
3008 struct btrfs_delayed_extent_op
*extent_op
;
3011 extent_op
= btrfs_alloc_delayed_extent_op();
3015 extent_op
->flags_to_set
= flags
;
3016 extent_op
->update_flags
= true;
3017 extent_op
->update_key
= false;
3018 extent_op
->is_data
= is_data
? true : false;
3019 extent_op
->level
= level
;
3021 ret
= btrfs_add_delayed_extent_op(fs_info
, trans
, bytenr
,
3022 num_bytes
, extent_op
);
3024 btrfs_free_delayed_extent_op(extent_op
);
3028 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
3029 struct btrfs_root
*root
,
3030 struct btrfs_path
*path
,
3031 u64 objectid
, u64 offset
, u64 bytenr
)
3033 struct btrfs_delayed_ref_head
*head
;
3034 struct btrfs_delayed_ref_node
*ref
;
3035 struct btrfs_delayed_data_ref
*data_ref
;
3036 struct btrfs_delayed_ref_root
*delayed_refs
;
3039 delayed_refs
= &trans
->transaction
->delayed_refs
;
3040 spin_lock(&delayed_refs
->lock
);
3041 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
3043 spin_unlock(&delayed_refs
->lock
);
3047 if (!mutex_trylock(&head
->mutex
)) {
3048 atomic_inc(&head
->node
.refs
);
3049 spin_unlock(&delayed_refs
->lock
);
3051 btrfs_release_path(path
);
3054 * Mutex was contended, block until it's released and let
3057 mutex_lock(&head
->mutex
);
3058 mutex_unlock(&head
->mutex
);
3059 btrfs_put_delayed_ref(&head
->node
);
3062 spin_unlock(&delayed_refs
->lock
);
3064 spin_lock(&head
->lock
);
3065 list_for_each_entry(ref
, &head
->ref_list
, list
) {
3066 /* If it's a shared ref we know a cross reference exists */
3067 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
3072 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
3075 * If our ref doesn't match the one we're currently looking at
3076 * then we have a cross reference.
3078 if (data_ref
->root
!= root
->root_key
.objectid
||
3079 data_ref
->objectid
!= objectid
||
3080 data_ref
->offset
!= offset
) {
3085 spin_unlock(&head
->lock
);
3086 mutex_unlock(&head
->mutex
);
3090 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
3091 struct btrfs_root
*root
,
3092 struct btrfs_path
*path
,
3093 u64 objectid
, u64 offset
, u64 bytenr
)
3095 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3096 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
3097 struct extent_buffer
*leaf
;
3098 struct btrfs_extent_data_ref
*ref
;
3099 struct btrfs_extent_inline_ref
*iref
;
3100 struct btrfs_extent_item
*ei
;
3101 struct btrfs_key key
;
3105 key
.objectid
= bytenr
;
3106 key
.offset
= (u64
)-1;
3107 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3109 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
3112 BUG_ON(ret
== 0); /* Corruption */
3115 if (path
->slots
[0] == 0)
3119 leaf
= path
->nodes
[0];
3120 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3122 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
3126 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3127 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3128 if (item_size
< sizeof(*ei
)) {
3129 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
3133 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
3135 if (item_size
!= sizeof(*ei
) +
3136 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
3139 if (btrfs_extent_generation(leaf
, ei
) <=
3140 btrfs_root_last_snapshot(&root
->root_item
))
3143 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
3144 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
3145 BTRFS_EXTENT_DATA_REF_KEY
)
3148 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
3149 if (btrfs_extent_refs(leaf
, ei
) !=
3150 btrfs_extent_data_ref_count(leaf
, ref
) ||
3151 btrfs_extent_data_ref_root(leaf
, ref
) !=
3152 root
->root_key
.objectid
||
3153 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
3154 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3162 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
3163 struct btrfs_root
*root
,
3164 u64 objectid
, u64 offset
, u64 bytenr
)
3166 struct btrfs_path
*path
;
3170 path
= btrfs_alloc_path();
3175 ret
= check_committed_ref(trans
, root
, path
, objectid
,
3177 if (ret
&& ret
!= -ENOENT
)
3180 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
3182 } while (ret2
== -EAGAIN
);
3184 if (ret2
&& ret2
!= -ENOENT
) {
3189 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3192 btrfs_free_path(path
);
3193 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3198 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3199 struct btrfs_root
*root
,
3200 struct extent_buffer
*buf
,
3201 int full_backref
, int inc
)
3203 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3209 struct btrfs_key key
;
3210 struct btrfs_file_extent_item
*fi
;
3214 int (*process_func
)(struct btrfs_trans_handle
*,
3215 struct btrfs_fs_info
*,
3216 u64
, u64
, u64
, u64
, u64
, u64
);
3219 if (btrfs_is_testing(fs_info
))
3222 ref_root
= btrfs_header_owner(buf
);
3223 nritems
= btrfs_header_nritems(buf
);
3224 level
= btrfs_header_level(buf
);
3226 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3230 process_func
= btrfs_inc_extent_ref
;
3232 process_func
= btrfs_free_extent
;
3235 parent
= buf
->start
;
3239 for (i
= 0; i
< nritems
; i
++) {
3241 btrfs_item_key_to_cpu(buf
, &key
, i
);
3242 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3244 fi
= btrfs_item_ptr(buf
, i
,
3245 struct btrfs_file_extent_item
);
3246 if (btrfs_file_extent_type(buf
, fi
) ==
3247 BTRFS_FILE_EXTENT_INLINE
)
3249 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3253 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3254 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3255 ret
= process_func(trans
, fs_info
, bytenr
, num_bytes
,
3256 parent
, ref_root
, key
.objectid
,
3261 bytenr
= btrfs_node_blockptr(buf
, i
);
3262 num_bytes
= fs_info
->nodesize
;
3263 ret
= process_func(trans
, fs_info
, bytenr
, num_bytes
,
3264 parent
, ref_root
, level
- 1, 0);
3274 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3275 struct extent_buffer
*buf
, int full_backref
)
3277 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3280 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3281 struct extent_buffer
*buf
, int full_backref
)
3283 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3286 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3287 struct btrfs_fs_info
*fs_info
,
3288 struct btrfs_path
*path
,
3289 struct btrfs_block_group_cache
*cache
)
3292 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
3294 struct extent_buffer
*leaf
;
3296 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3303 leaf
= path
->nodes
[0];
3304 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3305 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3306 btrfs_mark_buffer_dirty(leaf
);
3308 btrfs_release_path(path
);
3313 static struct btrfs_block_group_cache
*
3314 next_block_group(struct btrfs_fs_info
*fs_info
,
3315 struct btrfs_block_group_cache
*cache
)
3317 struct rb_node
*node
;
3319 spin_lock(&fs_info
->block_group_cache_lock
);
3321 /* If our block group was removed, we need a full search. */
3322 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
3323 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
3325 spin_unlock(&fs_info
->block_group_cache_lock
);
3326 btrfs_put_block_group(cache
);
3327 cache
= btrfs_lookup_first_block_group(fs_info
, next_bytenr
); return cache
;
3329 node
= rb_next(&cache
->cache_node
);
3330 btrfs_put_block_group(cache
);
3332 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3334 btrfs_get_block_group(cache
);
3337 spin_unlock(&fs_info
->block_group_cache_lock
);
3341 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3342 struct btrfs_trans_handle
*trans
,
3343 struct btrfs_path
*path
)
3345 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3346 struct btrfs_root
*root
= fs_info
->tree_root
;
3347 struct inode
*inode
= NULL
;
3349 int dcs
= BTRFS_DC_ERROR
;
3355 * If this block group is smaller than 100 megs don't bother caching the
3358 if (block_group
->key
.offset
< (100 * SZ_1M
)) {
3359 spin_lock(&block_group
->lock
);
3360 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3361 spin_unlock(&block_group
->lock
);
3368 inode
= lookup_free_space_inode(root
, block_group
, path
);
3369 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3370 ret
= PTR_ERR(inode
);
3371 btrfs_release_path(path
);
3375 if (IS_ERR(inode
)) {
3379 if (block_group
->ro
)
3382 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
3388 /* We've already setup this transaction, go ahead and exit */
3389 if (block_group
->cache_generation
== trans
->transid
&&
3390 i_size_read(inode
)) {
3391 dcs
= BTRFS_DC_SETUP
;
3396 * We want to set the generation to 0, that way if anything goes wrong
3397 * from here on out we know not to trust this cache when we load up next
3400 BTRFS_I(inode
)->generation
= 0;
3401 ret
= btrfs_update_inode(trans
, root
, inode
);
3404 * So theoretically we could recover from this, simply set the
3405 * super cache generation to 0 so we know to invalidate the
3406 * cache, but then we'd have to keep track of the block groups
3407 * that fail this way so we know we _have_ to reset this cache
3408 * before the next commit or risk reading stale cache. So to
3409 * limit our exposure to horrible edge cases lets just abort the
3410 * transaction, this only happens in really bad situations
3413 btrfs_abort_transaction(trans
, ret
);
3418 if (i_size_read(inode
) > 0) {
3419 ret
= btrfs_check_trunc_cache_free_space(fs_info
,
3420 &fs_info
->global_block_rsv
);
3424 ret
= btrfs_truncate_free_space_cache(root
, trans
, NULL
, inode
);
3429 spin_lock(&block_group
->lock
);
3430 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3431 !btrfs_test_opt(fs_info
, SPACE_CACHE
)) {
3433 * don't bother trying to write stuff out _if_
3434 * a) we're not cached,
3435 * b) we're with nospace_cache mount option.
3437 dcs
= BTRFS_DC_WRITTEN
;
3438 spin_unlock(&block_group
->lock
);
3441 spin_unlock(&block_group
->lock
);
3444 * We hit an ENOSPC when setting up the cache in this transaction, just
3445 * skip doing the setup, we've already cleared the cache so we're safe.
3447 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
)) {
3453 * Try to preallocate enough space based on how big the block group is.
3454 * Keep in mind this has to include any pinned space which could end up
3455 * taking up quite a bit since it's not folded into the other space
3458 num_pages
= div_u64(block_group
->key
.offset
, SZ_256M
);
3463 num_pages
*= PAGE_SIZE
;
3465 ret
= btrfs_check_data_free_space(inode
, 0, num_pages
);
3469 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3470 num_pages
, num_pages
,
3473 * Our cache requires contiguous chunks so that we don't modify a bunch
3474 * of metadata or split extents when writing the cache out, which means
3475 * we can enospc if we are heavily fragmented in addition to just normal
3476 * out of space conditions. So if we hit this just skip setting up any
3477 * other block groups for this transaction, maybe we'll unpin enough
3478 * space the next time around.
3481 dcs
= BTRFS_DC_SETUP
;
3482 else if (ret
== -ENOSPC
)
3483 set_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
);
3488 btrfs_release_path(path
);
3490 spin_lock(&block_group
->lock
);
3491 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3492 block_group
->cache_generation
= trans
->transid
;
3493 block_group
->disk_cache_state
= dcs
;
3494 spin_unlock(&block_group
->lock
);
3499 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
,
3500 struct btrfs_fs_info
*fs_info
)
3502 struct btrfs_block_group_cache
*cache
, *tmp
;
3503 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3504 struct btrfs_path
*path
;
3506 if (list_empty(&cur_trans
->dirty_bgs
) ||
3507 !btrfs_test_opt(fs_info
, SPACE_CACHE
))
3510 path
= btrfs_alloc_path();
3514 /* Could add new block groups, use _safe just in case */
3515 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
3517 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3518 cache_save_setup(cache
, trans
, path
);
3521 btrfs_free_path(path
);
3526 * transaction commit does final block group cache writeback during a
3527 * critical section where nothing is allowed to change the FS. This is
3528 * required in order for the cache to actually match the block group,
3529 * but can introduce a lot of latency into the commit.
3531 * So, btrfs_start_dirty_block_groups is here to kick off block group
3532 * cache IO. There's a chance we'll have to redo some of it if the
3533 * block group changes again during the commit, but it greatly reduces
3534 * the commit latency by getting rid of the easy block groups while
3535 * we're still allowing others to join the commit.
3537 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3538 struct btrfs_fs_info
*fs_info
)
3540 struct btrfs_block_group_cache
*cache
;
3541 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3544 struct btrfs_path
*path
= NULL
;
3546 struct list_head
*io
= &cur_trans
->io_bgs
;
3547 int num_started
= 0;
3550 spin_lock(&cur_trans
->dirty_bgs_lock
);
3551 if (list_empty(&cur_trans
->dirty_bgs
)) {
3552 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3555 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3556 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3560 * make sure all the block groups on our dirty list actually
3563 btrfs_create_pending_block_groups(trans
, fs_info
);
3566 path
= btrfs_alloc_path();
3572 * cache_write_mutex is here only to save us from balance or automatic
3573 * removal of empty block groups deleting this block group while we are
3574 * writing out the cache
3576 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3577 while (!list_empty(&dirty
)) {
3578 cache
= list_first_entry(&dirty
,
3579 struct btrfs_block_group_cache
,
3582 * this can happen if something re-dirties a block
3583 * group that is already under IO. Just wait for it to
3584 * finish and then do it all again
3586 if (!list_empty(&cache
->io_list
)) {
3587 list_del_init(&cache
->io_list
);
3588 btrfs_wait_cache_io(trans
, cache
, path
);
3589 btrfs_put_block_group(cache
);
3594 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3595 * if it should update the cache_state. Don't delete
3596 * until after we wait.
3598 * Since we're not running in the commit critical section
3599 * we need the dirty_bgs_lock to protect from update_block_group
3601 spin_lock(&cur_trans
->dirty_bgs_lock
);
3602 list_del_init(&cache
->dirty_list
);
3603 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3607 cache_save_setup(cache
, trans
, path
);
3609 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3610 cache
->io_ctl
.inode
= NULL
;
3611 ret
= btrfs_write_out_cache(fs_info
, trans
,
3613 if (ret
== 0 && cache
->io_ctl
.inode
) {
3618 * the cache_write_mutex is protecting
3621 list_add_tail(&cache
->io_list
, io
);
3624 * if we failed to write the cache, the
3625 * generation will be bad and life goes on
3631 ret
= write_one_cache_group(trans
, fs_info
,
3634 * Our block group might still be attached to the list
3635 * of new block groups in the transaction handle of some
3636 * other task (struct btrfs_trans_handle->new_bgs). This
3637 * means its block group item isn't yet in the extent
3638 * tree. If this happens ignore the error, as we will
3639 * try again later in the critical section of the
3640 * transaction commit.
3642 if (ret
== -ENOENT
) {
3644 spin_lock(&cur_trans
->dirty_bgs_lock
);
3645 if (list_empty(&cache
->dirty_list
)) {
3646 list_add_tail(&cache
->dirty_list
,
3647 &cur_trans
->dirty_bgs
);
3648 btrfs_get_block_group(cache
);
3650 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3652 btrfs_abort_transaction(trans
, ret
);
3656 /* if its not on the io list, we need to put the block group */
3658 btrfs_put_block_group(cache
);
3664 * Avoid blocking other tasks for too long. It might even save
3665 * us from writing caches for block groups that are going to be
3668 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3669 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3671 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3674 * go through delayed refs for all the stuff we've just kicked off
3675 * and then loop back (just once)
3677 ret
= btrfs_run_delayed_refs(trans
, fs_info
, 0);
3678 if (!ret
&& loops
== 0) {
3680 spin_lock(&cur_trans
->dirty_bgs_lock
);
3681 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3683 * dirty_bgs_lock protects us from concurrent block group
3684 * deletes too (not just cache_write_mutex).
3686 if (!list_empty(&dirty
)) {
3687 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3690 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3691 } else if (ret
< 0) {
3692 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
3695 btrfs_free_path(path
);
3699 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3700 struct btrfs_fs_info
*fs_info
)
3702 struct btrfs_block_group_cache
*cache
;
3703 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3706 struct btrfs_path
*path
;
3707 struct list_head
*io
= &cur_trans
->io_bgs
;
3708 int num_started
= 0;
3710 path
= btrfs_alloc_path();
3715 * Even though we are in the critical section of the transaction commit,
3716 * we can still have concurrent tasks adding elements to this
3717 * transaction's list of dirty block groups. These tasks correspond to
3718 * endio free space workers started when writeback finishes for a
3719 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3720 * allocate new block groups as a result of COWing nodes of the root
3721 * tree when updating the free space inode. The writeback for the space
3722 * caches is triggered by an earlier call to
3723 * btrfs_start_dirty_block_groups() and iterations of the following
3725 * Also we want to do the cache_save_setup first and then run the
3726 * delayed refs to make sure we have the best chance at doing this all
3729 spin_lock(&cur_trans
->dirty_bgs_lock
);
3730 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3731 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3732 struct btrfs_block_group_cache
,
3736 * this can happen if cache_save_setup re-dirties a block
3737 * group that is already under IO. Just wait for it to
3738 * finish and then do it all again
3740 if (!list_empty(&cache
->io_list
)) {
3741 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3742 list_del_init(&cache
->io_list
);
3743 btrfs_wait_cache_io(trans
, cache
, path
);
3744 btrfs_put_block_group(cache
);
3745 spin_lock(&cur_trans
->dirty_bgs_lock
);
3749 * don't remove from the dirty list until after we've waited
3752 list_del_init(&cache
->dirty_list
);
3753 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3756 cache_save_setup(cache
, trans
, path
);
3759 ret
= btrfs_run_delayed_refs(trans
, fs_info
,
3760 (unsigned long) -1);
3762 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3763 cache
->io_ctl
.inode
= NULL
;
3764 ret
= btrfs_write_out_cache(fs_info
, trans
,
3766 if (ret
== 0 && cache
->io_ctl
.inode
) {
3769 list_add_tail(&cache
->io_list
, io
);
3772 * if we failed to write the cache, the
3773 * generation will be bad and life goes on
3779 ret
= write_one_cache_group(trans
, fs_info
,
3782 * One of the free space endio workers might have
3783 * created a new block group while updating a free space
3784 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3785 * and hasn't released its transaction handle yet, in
3786 * which case the new block group is still attached to
3787 * its transaction handle and its creation has not
3788 * finished yet (no block group item in the extent tree
3789 * yet, etc). If this is the case, wait for all free
3790 * space endio workers to finish and retry. This is a
3791 * a very rare case so no need for a more efficient and
3794 if (ret
== -ENOENT
) {
3795 wait_event(cur_trans
->writer_wait
,
3796 atomic_read(&cur_trans
->num_writers
) == 1);
3797 ret
= write_one_cache_group(trans
, fs_info
,
3801 btrfs_abort_transaction(trans
, ret
);
3804 /* if its not on the io list, we need to put the block group */
3806 btrfs_put_block_group(cache
);
3807 spin_lock(&cur_trans
->dirty_bgs_lock
);
3809 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3811 while (!list_empty(io
)) {
3812 cache
= list_first_entry(io
, struct btrfs_block_group_cache
,
3814 list_del_init(&cache
->io_list
);
3815 btrfs_wait_cache_io(trans
, cache
, path
);
3816 btrfs_put_block_group(cache
);
3819 btrfs_free_path(path
);
3823 int btrfs_extent_readonly(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3825 struct btrfs_block_group_cache
*block_group
;
3828 block_group
= btrfs_lookup_block_group(fs_info
, bytenr
);
3829 if (!block_group
|| block_group
->ro
)
3832 btrfs_put_block_group(block_group
);
3836 bool btrfs_inc_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3838 struct btrfs_block_group_cache
*bg
;
3841 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3845 spin_lock(&bg
->lock
);
3849 atomic_inc(&bg
->nocow_writers
);
3850 spin_unlock(&bg
->lock
);
3852 /* no put on block group, done by btrfs_dec_nocow_writers */
3854 btrfs_put_block_group(bg
);
3860 void btrfs_dec_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3862 struct btrfs_block_group_cache
*bg
;
3864 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3866 if (atomic_dec_and_test(&bg
->nocow_writers
))
3867 wake_up_atomic_t(&bg
->nocow_writers
);
3869 * Once for our lookup and once for the lookup done by a previous call
3870 * to btrfs_inc_nocow_writers()
3872 btrfs_put_block_group(bg
);
3873 btrfs_put_block_group(bg
);
3876 static int btrfs_wait_nocow_writers_atomic_t(atomic_t
*a
)
3882 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache
*bg
)
3884 wait_on_atomic_t(&bg
->nocow_writers
,
3885 btrfs_wait_nocow_writers_atomic_t
,
3886 TASK_UNINTERRUPTIBLE
);
3889 static const char *alloc_name(u64 flags
)
3892 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
3894 case BTRFS_BLOCK_GROUP_METADATA
:
3896 case BTRFS_BLOCK_GROUP_DATA
:
3898 case BTRFS_BLOCK_GROUP_SYSTEM
:
3902 return "invalid-combination";
3906 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3907 u64 total_bytes
, u64 bytes_used
,
3909 struct btrfs_space_info
**space_info
)
3911 struct btrfs_space_info
*found
;
3916 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3917 BTRFS_BLOCK_GROUP_RAID10
))
3922 found
= __find_space_info(info
, flags
);
3924 spin_lock(&found
->lock
);
3925 found
->total_bytes
+= total_bytes
;
3926 found
->disk_total
+= total_bytes
* factor
;
3927 found
->bytes_used
+= bytes_used
;
3928 found
->disk_used
+= bytes_used
* factor
;
3929 found
->bytes_readonly
+= bytes_readonly
;
3930 if (total_bytes
> 0)
3932 space_info_add_new_bytes(info
, found
, total_bytes
-
3933 bytes_used
- bytes_readonly
);
3934 spin_unlock(&found
->lock
);
3935 *space_info
= found
;
3938 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3942 ret
= percpu_counter_init(&found
->total_bytes_pinned
, 0, GFP_KERNEL
);
3948 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3949 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3950 init_rwsem(&found
->groups_sem
);
3951 spin_lock_init(&found
->lock
);
3952 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3953 found
->total_bytes
= total_bytes
;
3954 found
->disk_total
= total_bytes
* factor
;
3955 found
->bytes_used
= bytes_used
;
3956 found
->disk_used
= bytes_used
* factor
;
3957 found
->bytes_pinned
= 0;
3958 found
->bytes_reserved
= 0;
3959 found
->bytes_readonly
= bytes_readonly
;
3960 found
->bytes_may_use
= 0;
3962 found
->max_extent_size
= 0;
3963 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3964 found
->chunk_alloc
= 0;
3966 init_waitqueue_head(&found
->wait
);
3967 INIT_LIST_HEAD(&found
->ro_bgs
);
3968 INIT_LIST_HEAD(&found
->tickets
);
3969 INIT_LIST_HEAD(&found
->priority_tickets
);
3971 ret
= kobject_init_and_add(&found
->kobj
, &space_info_ktype
,
3972 info
->space_info_kobj
, "%s",
3973 alloc_name(found
->flags
));
3979 *space_info
= found
;
3980 list_add_rcu(&found
->list
, &info
->space_info
);
3981 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3982 info
->data_sinfo
= found
;
3987 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3989 u64 extra_flags
= chunk_to_extended(flags
) &
3990 BTRFS_EXTENDED_PROFILE_MASK
;
3992 write_seqlock(&fs_info
->profiles_lock
);
3993 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3994 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3995 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3996 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3997 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3998 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3999 write_sequnlock(&fs_info
->profiles_lock
);
4003 * returns target flags in extended format or 0 if restripe for this
4004 * chunk_type is not in progress
4006 * should be called with either volume_mutex or balance_lock held
4008 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
4010 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4016 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
4017 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4018 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
4019 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
4020 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4021 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
4022 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
4023 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4024 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
4031 * @flags: available profiles in extended format (see ctree.h)
4033 * Returns reduced profile in chunk format. If profile changing is in
4034 * progress (either running or paused) picks the target profile (if it's
4035 * already available), otherwise falls back to plain reducing.
4037 static u64
btrfs_reduce_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 flags
)
4039 u64 num_devices
= fs_info
->fs_devices
->rw_devices
;
4045 * see if restripe for this chunk_type is in progress, if so
4046 * try to reduce to the target profile
4048 spin_lock(&fs_info
->balance_lock
);
4049 target
= get_restripe_target(fs_info
, flags
);
4051 /* pick target profile only if it's already available */
4052 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
4053 spin_unlock(&fs_info
->balance_lock
);
4054 return extended_to_chunk(target
);
4057 spin_unlock(&fs_info
->balance_lock
);
4059 /* First, mask out the RAID levels which aren't possible */
4060 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
4061 if (num_devices
>= btrfs_raid_array
[raid_type
].devs_min
)
4062 allowed
|= btrfs_raid_group
[raid_type
];
4066 if (allowed
& BTRFS_BLOCK_GROUP_RAID6
)
4067 allowed
= BTRFS_BLOCK_GROUP_RAID6
;
4068 else if (allowed
& BTRFS_BLOCK_GROUP_RAID5
)
4069 allowed
= BTRFS_BLOCK_GROUP_RAID5
;
4070 else if (allowed
& BTRFS_BLOCK_GROUP_RAID10
)
4071 allowed
= BTRFS_BLOCK_GROUP_RAID10
;
4072 else if (allowed
& BTRFS_BLOCK_GROUP_RAID1
)
4073 allowed
= BTRFS_BLOCK_GROUP_RAID1
;
4074 else if (allowed
& BTRFS_BLOCK_GROUP_RAID0
)
4075 allowed
= BTRFS_BLOCK_GROUP_RAID0
;
4077 flags
&= ~BTRFS_BLOCK_GROUP_PROFILE_MASK
;
4079 return extended_to_chunk(flags
| allowed
);
4082 static u64
get_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 orig_flags
)
4089 seq
= read_seqbegin(&fs_info
->profiles_lock
);
4091 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4092 flags
|= fs_info
->avail_data_alloc_bits
;
4093 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4094 flags
|= fs_info
->avail_system_alloc_bits
;
4095 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4096 flags
|= fs_info
->avail_metadata_alloc_bits
;
4097 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
4099 return btrfs_reduce_alloc_profile(fs_info
, flags
);
4102 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
4104 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4109 flags
= BTRFS_BLOCK_GROUP_DATA
;
4110 else if (root
== fs_info
->chunk_root
)
4111 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
4113 flags
= BTRFS_BLOCK_GROUP_METADATA
;
4115 ret
= get_alloc_profile(fs_info
, flags
);
4119 int btrfs_alloc_data_chunk_ondemand(struct inode
*inode
, u64 bytes
)
4121 struct btrfs_space_info
*data_sinfo
;
4122 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4123 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4126 int need_commit
= 2;
4127 int have_pinned_space
;
4129 /* make sure bytes are sectorsize aligned */
4130 bytes
= ALIGN(bytes
, fs_info
->sectorsize
);
4132 if (btrfs_is_free_space_inode(inode
)) {
4134 ASSERT(current
->journal_info
);
4137 data_sinfo
= fs_info
->data_sinfo
;
4142 /* make sure we have enough space to handle the data first */
4143 spin_lock(&data_sinfo
->lock
);
4144 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
4145 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
4146 data_sinfo
->bytes_may_use
;
4148 if (used
+ bytes
> data_sinfo
->total_bytes
) {
4149 struct btrfs_trans_handle
*trans
;
4152 * if we don't have enough free bytes in this space then we need
4153 * to alloc a new chunk.
4155 if (!data_sinfo
->full
) {
4158 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
4159 spin_unlock(&data_sinfo
->lock
);
4161 alloc_target
= btrfs_get_alloc_profile(root
, 1);
4163 * It is ugly that we don't call nolock join
4164 * transaction for the free space inode case here.
4165 * But it is safe because we only do the data space
4166 * reservation for the free space cache in the
4167 * transaction context, the common join transaction
4168 * just increase the counter of the current transaction
4169 * handler, doesn't try to acquire the trans_lock of
4172 trans
= btrfs_join_transaction(root
);
4174 return PTR_ERR(trans
);
4176 ret
= do_chunk_alloc(trans
, fs_info
, alloc_target
,
4177 CHUNK_ALLOC_NO_FORCE
);
4178 btrfs_end_transaction(trans
);
4183 have_pinned_space
= 1;
4189 data_sinfo
= fs_info
->data_sinfo
;
4195 * If we don't have enough pinned space to deal with this
4196 * allocation, and no removed chunk in current transaction,
4197 * don't bother committing the transaction.
4199 have_pinned_space
= percpu_counter_compare(
4200 &data_sinfo
->total_bytes_pinned
,
4201 used
+ bytes
- data_sinfo
->total_bytes
);
4202 spin_unlock(&data_sinfo
->lock
);
4204 /* commit the current transaction and try again */
4207 !atomic_read(&fs_info
->open_ioctl_trans
)) {
4210 if (need_commit
> 0) {
4211 btrfs_start_delalloc_roots(fs_info
, 0, -1);
4212 btrfs_wait_ordered_roots(fs_info
, -1, 0,
4216 trans
= btrfs_join_transaction(root
);
4218 return PTR_ERR(trans
);
4219 if (have_pinned_space
>= 0 ||
4220 test_bit(BTRFS_TRANS_HAVE_FREE_BGS
,
4221 &trans
->transaction
->flags
) ||
4223 ret
= btrfs_commit_transaction(trans
);
4227 * The cleaner kthread might still be doing iput
4228 * operations. Wait for it to finish so that
4229 * more space is released.
4231 mutex_lock(&fs_info
->cleaner_delayed_iput_mutex
);
4232 mutex_unlock(&fs_info
->cleaner_delayed_iput_mutex
);
4235 btrfs_end_transaction(trans
);
4239 trace_btrfs_space_reservation(fs_info
,
4240 "space_info:enospc",
4241 data_sinfo
->flags
, bytes
, 1);
4244 data_sinfo
->bytes_may_use
+= bytes
;
4245 trace_btrfs_space_reservation(fs_info
, "space_info",
4246 data_sinfo
->flags
, bytes
, 1);
4247 spin_unlock(&data_sinfo
->lock
);
4253 * New check_data_free_space() with ability for precious data reservation
4254 * Will replace old btrfs_check_data_free_space(), but for patch split,
4255 * add a new function first and then replace it.
4257 int btrfs_check_data_free_space(struct inode
*inode
, u64 start
, u64 len
)
4259 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4262 /* align the range */
4263 len
= round_up(start
+ len
, fs_info
->sectorsize
) -
4264 round_down(start
, fs_info
->sectorsize
);
4265 start
= round_down(start
, fs_info
->sectorsize
);
4267 ret
= btrfs_alloc_data_chunk_ondemand(inode
, len
);
4271 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4272 ret
= btrfs_qgroup_reserve_data(inode
, start
, len
);
4274 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4279 * Called if we need to clear a data reservation for this inode
4280 * Normally in a error case.
4282 * This one will *NOT* use accurate qgroup reserved space API, just for case
4283 * which we can't sleep and is sure it won't affect qgroup reserved space.
4284 * Like clear_bit_hook().
4286 void btrfs_free_reserved_data_space_noquota(struct inode
*inode
, u64 start
,
4289 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4290 struct btrfs_space_info
*data_sinfo
;
4292 /* Make sure the range is aligned to sectorsize */
4293 len
= round_up(start
+ len
, fs_info
->sectorsize
) -
4294 round_down(start
, fs_info
->sectorsize
);
4295 start
= round_down(start
, fs_info
->sectorsize
);
4297 data_sinfo
= fs_info
->data_sinfo
;
4298 spin_lock(&data_sinfo
->lock
);
4299 if (WARN_ON(data_sinfo
->bytes_may_use
< len
))
4300 data_sinfo
->bytes_may_use
= 0;
4302 data_sinfo
->bytes_may_use
-= len
;
4303 trace_btrfs_space_reservation(fs_info
, "space_info",
4304 data_sinfo
->flags
, len
, 0);
4305 spin_unlock(&data_sinfo
->lock
);
4309 * Called if we need to clear a data reservation for this inode
4310 * Normally in a error case.
4312 * This one will handle the per-inode data rsv map for accurate reserved
4315 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 start
, u64 len
)
4317 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4319 /* Make sure the range is aligned to sectorsize */
4320 len
= round_up(start
+ len
, root
->fs_info
->sectorsize
) -
4321 round_down(start
, root
->fs_info
->sectorsize
);
4322 start
= round_down(start
, root
->fs_info
->sectorsize
);
4324 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4325 btrfs_qgroup_free_data(inode
, start
, len
);
4328 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
4330 struct list_head
*head
= &info
->space_info
;
4331 struct btrfs_space_info
*found
;
4334 list_for_each_entry_rcu(found
, head
, list
) {
4335 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4336 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
4341 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
4343 return (global
->size
<< 1);
4346 static int should_alloc_chunk(struct btrfs_fs_info
*fs_info
,
4347 struct btrfs_space_info
*sinfo
, int force
)
4349 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4350 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
4351 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
4354 if (force
== CHUNK_ALLOC_FORCE
)
4358 * We need to take into account the global rsv because for all intents
4359 * and purposes it's used space. Don't worry about locking the
4360 * global_rsv, it doesn't change except when the transaction commits.
4362 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4363 num_allocated
+= calc_global_rsv_need_space(global_rsv
);
4366 * in limited mode, we want to have some free space up to
4367 * about 1% of the FS size.
4369 if (force
== CHUNK_ALLOC_LIMITED
) {
4370 thresh
= btrfs_super_total_bytes(fs_info
->super_copy
);
4371 thresh
= max_t(u64
, SZ_64M
, div_factor_fine(thresh
, 1));
4373 if (num_bytes
- num_allocated
< thresh
)
4377 if (num_allocated
+ SZ_2M
< div_factor(num_bytes
, 8))
4382 static u64
get_profile_num_devs(struct btrfs_fs_info
*fs_info
, u64 type
)
4386 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
4387 BTRFS_BLOCK_GROUP_RAID0
|
4388 BTRFS_BLOCK_GROUP_RAID5
|
4389 BTRFS_BLOCK_GROUP_RAID6
))
4390 num_dev
= fs_info
->fs_devices
->rw_devices
;
4391 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
4394 num_dev
= 1; /* DUP or single */
4400 * If @is_allocation is true, reserve space in the system space info necessary
4401 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4404 void check_system_chunk(struct btrfs_trans_handle
*trans
,
4405 struct btrfs_fs_info
*fs_info
, u64 type
)
4407 struct btrfs_space_info
*info
;
4414 * Needed because we can end up allocating a system chunk and for an
4415 * atomic and race free space reservation in the chunk block reserve.
4417 ASSERT(mutex_is_locked(&fs_info
->chunk_mutex
));
4419 info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4420 spin_lock(&info
->lock
);
4421 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
4422 info
->bytes_reserved
- info
->bytes_readonly
-
4423 info
->bytes_may_use
;
4424 spin_unlock(&info
->lock
);
4426 num_devs
= get_profile_num_devs(fs_info
, type
);
4428 /* num_devs device items to update and 1 chunk item to add or remove */
4429 thresh
= btrfs_calc_trunc_metadata_size(fs_info
, num_devs
) +
4430 btrfs_calc_trans_metadata_size(fs_info
, 1);
4432 if (left
< thresh
&& btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
4433 btrfs_info(fs_info
, "left=%llu, need=%llu, flags=%llu",
4434 left
, thresh
, type
);
4435 dump_space_info(fs_info
, info
, 0, 0);
4438 if (left
< thresh
) {
4441 flags
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
4443 * Ignore failure to create system chunk. We might end up not
4444 * needing it, as we might not need to COW all nodes/leafs from
4445 * the paths we visit in the chunk tree (they were already COWed
4446 * or created in the current transaction for example).
4448 ret
= btrfs_alloc_chunk(trans
, fs_info
, flags
);
4452 ret
= btrfs_block_rsv_add(fs_info
->chunk_root
,
4453 &fs_info
->chunk_block_rsv
,
4454 thresh
, BTRFS_RESERVE_NO_FLUSH
);
4456 trans
->chunk_bytes_reserved
+= thresh
;
4461 * If force is CHUNK_ALLOC_FORCE:
4462 * - return 1 if it successfully allocates a chunk,
4463 * - return errors including -ENOSPC otherwise.
4464 * If force is NOT CHUNK_ALLOC_FORCE:
4465 * - return 0 if it doesn't need to allocate a new chunk,
4466 * - return 1 if it successfully allocates a chunk,
4467 * - return errors including -ENOSPC otherwise.
4469 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
4470 struct btrfs_fs_info
*fs_info
, u64 flags
, int force
)
4472 struct btrfs_space_info
*space_info
;
4473 int wait_for_alloc
= 0;
4476 /* Don't re-enter if we're already allocating a chunk */
4477 if (trans
->allocating_chunk
)
4480 space_info
= __find_space_info(fs_info
, flags
);
4482 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
4483 BUG_ON(ret
); /* -ENOMEM */
4485 BUG_ON(!space_info
); /* Logic error */
4488 spin_lock(&space_info
->lock
);
4489 if (force
< space_info
->force_alloc
)
4490 force
= space_info
->force_alloc
;
4491 if (space_info
->full
) {
4492 if (should_alloc_chunk(fs_info
, space_info
, force
))
4496 spin_unlock(&space_info
->lock
);
4500 if (!should_alloc_chunk(fs_info
, space_info
, force
)) {
4501 spin_unlock(&space_info
->lock
);
4503 } else if (space_info
->chunk_alloc
) {
4506 space_info
->chunk_alloc
= 1;
4509 spin_unlock(&space_info
->lock
);
4511 mutex_lock(&fs_info
->chunk_mutex
);
4514 * The chunk_mutex is held throughout the entirety of a chunk
4515 * allocation, so once we've acquired the chunk_mutex we know that the
4516 * other guy is done and we need to recheck and see if we should
4519 if (wait_for_alloc
) {
4520 mutex_unlock(&fs_info
->chunk_mutex
);
4525 trans
->allocating_chunk
= true;
4528 * If we have mixed data/metadata chunks we want to make sure we keep
4529 * allocating mixed chunks instead of individual chunks.
4531 if (btrfs_mixed_space_info(space_info
))
4532 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
4535 * if we're doing a data chunk, go ahead and make sure that
4536 * we keep a reasonable number of metadata chunks allocated in the
4539 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
4540 fs_info
->data_chunk_allocations
++;
4541 if (!(fs_info
->data_chunk_allocations
%
4542 fs_info
->metadata_ratio
))
4543 force_metadata_allocation(fs_info
);
4547 * Check if we have enough space in SYSTEM chunk because we may need
4548 * to update devices.
4550 check_system_chunk(trans
, fs_info
, flags
);
4552 ret
= btrfs_alloc_chunk(trans
, fs_info
, flags
);
4553 trans
->allocating_chunk
= false;
4555 spin_lock(&space_info
->lock
);
4556 if (ret
< 0 && ret
!= -ENOSPC
)
4559 space_info
->full
= 1;
4563 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4565 space_info
->chunk_alloc
= 0;
4566 spin_unlock(&space_info
->lock
);
4567 mutex_unlock(&fs_info
->chunk_mutex
);
4569 * When we allocate a new chunk we reserve space in the chunk block
4570 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4571 * add new nodes/leafs to it if we end up needing to do it when
4572 * inserting the chunk item and updating device items as part of the
4573 * second phase of chunk allocation, performed by
4574 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4575 * large number of new block groups to create in our transaction
4576 * handle's new_bgs list to avoid exhausting the chunk block reserve
4577 * in extreme cases - like having a single transaction create many new
4578 * block groups when starting to write out the free space caches of all
4579 * the block groups that were made dirty during the lifetime of the
4582 if (trans
->can_flush_pending_bgs
&&
4583 trans
->chunk_bytes_reserved
>= (u64
)SZ_2M
) {
4584 btrfs_create_pending_block_groups(trans
, fs_info
);
4585 btrfs_trans_release_chunk_metadata(trans
);
4590 static int can_overcommit(struct btrfs_root
*root
,
4591 struct btrfs_space_info
*space_info
, u64 bytes
,
4592 enum btrfs_reserve_flush_enum flush
)
4594 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4595 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4601 /* Don't overcommit when in mixed mode. */
4602 if (space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4605 profile
= btrfs_get_alloc_profile(root
, 0);
4606 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4607 space_info
->bytes_pinned
+ space_info
->bytes_readonly
;
4610 * We only want to allow over committing if we have lots of actual space
4611 * free, but if we don't have enough space to handle the global reserve
4612 * space then we could end up having a real enospc problem when trying
4613 * to allocate a chunk or some other such important allocation.
4615 spin_lock(&global_rsv
->lock
);
4616 space_size
= calc_global_rsv_need_space(global_rsv
);
4617 spin_unlock(&global_rsv
->lock
);
4618 if (used
+ space_size
>= space_info
->total_bytes
)
4621 used
+= space_info
->bytes_may_use
;
4623 spin_lock(&fs_info
->free_chunk_lock
);
4624 avail
= fs_info
->free_chunk_space
;
4625 spin_unlock(&fs_info
->free_chunk_lock
);
4628 * If we have dup, raid1 or raid10 then only half of the free
4629 * space is actually useable. For raid56, the space info used
4630 * doesn't include the parity drive, so we don't have to
4633 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4634 BTRFS_BLOCK_GROUP_RAID1
|
4635 BTRFS_BLOCK_GROUP_RAID10
))
4639 * If we aren't flushing all things, let us overcommit up to
4640 * 1/2th of the space. If we can flush, don't let us overcommit
4641 * too much, let it overcommit up to 1/8 of the space.
4643 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4648 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4653 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info
*fs_info
,
4654 unsigned long nr_pages
, int nr_items
)
4656 struct super_block
*sb
= fs_info
->sb
;
4658 if (down_read_trylock(&sb
->s_umount
)) {
4659 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4660 up_read(&sb
->s_umount
);
4663 * We needn't worry the filesystem going from r/w to r/o though
4664 * we don't acquire ->s_umount mutex, because the filesystem
4665 * should guarantee the delalloc inodes list be empty after
4666 * the filesystem is readonly(all dirty pages are written to
4669 btrfs_start_delalloc_roots(fs_info
, 0, nr_items
);
4670 if (!current
->journal_info
)
4671 btrfs_wait_ordered_roots(fs_info
, nr_items
, 0, (u64
)-1);
4675 static inline int calc_reclaim_items_nr(struct btrfs_fs_info
*fs_info
,
4681 bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
4682 nr
= (int)div64_u64(to_reclaim
, bytes
);
4688 #define EXTENT_SIZE_PER_ITEM SZ_256K
4691 * shrink metadata reservation for delalloc
4693 static void shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
, u64 orig
,
4696 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4697 struct btrfs_block_rsv
*block_rsv
;
4698 struct btrfs_space_info
*space_info
;
4699 struct btrfs_trans_handle
*trans
;
4703 unsigned long nr_pages
;
4706 enum btrfs_reserve_flush_enum flush
;
4708 /* Calc the number of the pages we need flush for space reservation */
4709 items
= calc_reclaim_items_nr(fs_info
, to_reclaim
);
4710 to_reclaim
= (u64
)items
* EXTENT_SIZE_PER_ITEM
;
4712 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4713 block_rsv
= &fs_info
->delalloc_block_rsv
;
4714 space_info
= block_rsv
->space_info
;
4716 delalloc_bytes
= percpu_counter_sum_positive(
4717 &fs_info
->delalloc_bytes
);
4718 if (delalloc_bytes
== 0) {
4722 btrfs_wait_ordered_roots(fs_info
, items
, 0, (u64
)-1);
4727 while (delalloc_bytes
&& loops
< 3) {
4728 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4729 nr_pages
= max_reclaim
>> PAGE_SHIFT
;
4730 btrfs_writeback_inodes_sb_nr(fs_info
, nr_pages
, items
);
4732 * We need to wait for the async pages to actually start before
4735 max_reclaim
= atomic_read(&fs_info
->async_delalloc_pages
);
4739 if (max_reclaim
<= nr_pages
)
4742 max_reclaim
-= nr_pages
;
4744 wait_event(fs_info
->async_submit_wait
,
4745 atomic_read(&fs_info
->async_delalloc_pages
) <=
4749 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4751 flush
= BTRFS_RESERVE_NO_FLUSH
;
4752 spin_lock(&space_info
->lock
);
4753 if (can_overcommit(root
, space_info
, orig
, flush
)) {
4754 spin_unlock(&space_info
->lock
);
4757 if (list_empty(&space_info
->tickets
) &&
4758 list_empty(&space_info
->priority_tickets
)) {
4759 spin_unlock(&space_info
->lock
);
4762 spin_unlock(&space_info
->lock
);
4765 if (wait_ordered
&& !trans
) {
4766 btrfs_wait_ordered_roots(fs_info
, items
, 0, (u64
)-1);
4768 time_left
= schedule_timeout_killable(1);
4772 delalloc_bytes
= percpu_counter_sum_positive(
4773 &fs_info
->delalloc_bytes
);
4778 * maybe_commit_transaction - possibly commit the transaction if its ok to
4779 * @root - the root we're allocating for
4780 * @bytes - the number of bytes we want to reserve
4781 * @force - force the commit
4783 * This will check to make sure that committing the transaction will actually
4784 * get us somewhere and then commit the transaction if it does. Otherwise it
4785 * will return -ENOSPC.
4787 static int may_commit_transaction(struct btrfs_root
*root
,
4788 struct btrfs_space_info
*space_info
,
4789 u64 bytes
, int force
)
4791 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4792 struct btrfs_block_rsv
*delayed_rsv
= &fs_info
->delayed_block_rsv
;
4793 struct btrfs_trans_handle
*trans
;
4795 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4802 /* See if there is enough pinned space to make this reservation */
4803 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4808 * See if there is some space in the delayed insertion reservation for
4811 if (space_info
!= delayed_rsv
->space_info
)
4814 spin_lock(&delayed_rsv
->lock
);
4815 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4816 bytes
- delayed_rsv
->size
) >= 0) {
4817 spin_unlock(&delayed_rsv
->lock
);
4820 spin_unlock(&delayed_rsv
->lock
);
4823 trans
= btrfs_join_transaction(root
);
4827 return btrfs_commit_transaction(trans
);
4830 struct reserve_ticket
{
4833 struct list_head list
;
4834 wait_queue_head_t wait
;
4837 static int flush_space(struct btrfs_root
*root
,
4838 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4839 u64 orig_bytes
, int state
)
4841 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4842 struct btrfs_trans_handle
*trans
;
4847 case FLUSH_DELAYED_ITEMS_NR
:
4848 case FLUSH_DELAYED_ITEMS
:
4849 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4850 nr
= calc_reclaim_items_nr(fs_info
, num_bytes
) * 2;
4854 trans
= btrfs_join_transaction(root
);
4855 if (IS_ERR(trans
)) {
4856 ret
= PTR_ERR(trans
);
4859 ret
= btrfs_run_delayed_items_nr(trans
, fs_info
, nr
);
4860 btrfs_end_transaction(trans
);
4862 case FLUSH_DELALLOC
:
4863 case FLUSH_DELALLOC_WAIT
:
4864 shrink_delalloc(root
, num_bytes
* 2, orig_bytes
,
4865 state
== FLUSH_DELALLOC_WAIT
);
4868 trans
= btrfs_join_transaction(root
);
4869 if (IS_ERR(trans
)) {
4870 ret
= PTR_ERR(trans
);
4873 ret
= do_chunk_alloc(trans
, fs_info
,
4874 btrfs_get_alloc_profile(root
, 0),
4875 CHUNK_ALLOC_NO_FORCE
);
4876 btrfs_end_transaction(trans
);
4877 if (ret
> 0 || ret
== -ENOSPC
)
4881 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
4888 trace_btrfs_flush_space(fs_info
, space_info
->flags
, num_bytes
,
4889 orig_bytes
, state
, ret
);
4894 btrfs_calc_reclaim_metadata_size(struct btrfs_root
*root
,
4895 struct btrfs_space_info
*space_info
)
4897 struct reserve_ticket
*ticket
;
4902 list_for_each_entry(ticket
, &space_info
->tickets
, list
)
4903 to_reclaim
+= ticket
->bytes
;
4904 list_for_each_entry(ticket
, &space_info
->priority_tickets
, list
)
4905 to_reclaim
+= ticket
->bytes
;
4909 to_reclaim
= min_t(u64
, num_online_cpus() * SZ_1M
, SZ_16M
);
4910 if (can_overcommit(root
, space_info
, to_reclaim
,
4911 BTRFS_RESERVE_FLUSH_ALL
))
4914 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4915 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4916 space_info
->bytes_may_use
;
4917 if (can_overcommit(root
, space_info
, SZ_1M
, BTRFS_RESERVE_FLUSH_ALL
))
4918 expected
= div_factor_fine(space_info
->total_bytes
, 95);
4920 expected
= div_factor_fine(space_info
->total_bytes
, 90);
4922 if (used
> expected
)
4923 to_reclaim
= used
- expected
;
4926 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
4927 space_info
->bytes_reserved
);
4931 static inline int need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4932 struct btrfs_root
*root
, u64 used
)
4934 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4935 u64 thresh
= div_factor_fine(space_info
->total_bytes
, 98);
4937 /* If we're just plain full then async reclaim just slows us down. */
4938 if ((space_info
->bytes_used
+ space_info
->bytes_reserved
) >= thresh
)
4941 if (!btrfs_calc_reclaim_metadata_size(root
, space_info
))
4944 return (used
>= thresh
&& !btrfs_fs_closing(fs_info
) &&
4945 !test_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
));
4948 static void wake_all_tickets(struct list_head
*head
)
4950 struct reserve_ticket
*ticket
;
4952 while (!list_empty(head
)) {
4953 ticket
= list_first_entry(head
, struct reserve_ticket
, list
);
4954 list_del_init(&ticket
->list
);
4955 ticket
->error
= -ENOSPC
;
4956 wake_up(&ticket
->wait
);
4961 * This is for normal flushers, we can wait all goddamned day if we want to. We
4962 * will loop and continuously try to flush as long as we are making progress.
4963 * We count progress as clearing off tickets each time we have to loop.
4965 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
4967 struct btrfs_fs_info
*fs_info
;
4968 struct btrfs_space_info
*space_info
;
4971 int commit_cycles
= 0;
4972 u64 last_tickets_id
;
4974 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
4975 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4977 spin_lock(&space_info
->lock
);
4978 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
4981 space_info
->flush
= 0;
4982 spin_unlock(&space_info
->lock
);
4985 last_tickets_id
= space_info
->tickets_id
;
4986 spin_unlock(&space_info
->lock
);
4988 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4990 struct reserve_ticket
*ticket
;
4993 ret
= flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
4994 to_reclaim
, flush_state
);
4995 spin_lock(&space_info
->lock
);
4996 if (list_empty(&space_info
->tickets
)) {
4997 space_info
->flush
= 0;
4998 spin_unlock(&space_info
->lock
);
5001 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
5003 ticket
= list_first_entry(&space_info
->tickets
,
5004 struct reserve_ticket
, list
);
5005 if (last_tickets_id
== space_info
->tickets_id
) {
5008 last_tickets_id
= space_info
->tickets_id
;
5009 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5014 if (flush_state
> COMMIT_TRANS
) {
5016 if (commit_cycles
> 2) {
5017 wake_all_tickets(&space_info
->tickets
);
5018 space_info
->flush
= 0;
5020 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5023 spin_unlock(&space_info
->lock
);
5024 } while (flush_state
<= COMMIT_TRANS
);
5027 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
5029 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
5032 static void priority_reclaim_metadata_space(struct btrfs_fs_info
*fs_info
,
5033 struct btrfs_space_info
*space_info
,
5034 struct reserve_ticket
*ticket
)
5037 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5039 spin_lock(&space_info
->lock
);
5040 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
5043 spin_unlock(&space_info
->lock
);
5046 spin_unlock(&space_info
->lock
);
5049 flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
5050 to_reclaim
, flush_state
);
5052 spin_lock(&space_info
->lock
);
5053 if (ticket
->bytes
== 0) {
5054 spin_unlock(&space_info
->lock
);
5057 spin_unlock(&space_info
->lock
);
5060 * Priority flushers can't wait on delalloc without
5063 if (flush_state
== FLUSH_DELALLOC
||
5064 flush_state
== FLUSH_DELALLOC_WAIT
)
5065 flush_state
= ALLOC_CHUNK
;
5066 } while (flush_state
< COMMIT_TRANS
);
5069 static int wait_reserve_ticket(struct btrfs_fs_info
*fs_info
,
5070 struct btrfs_space_info
*space_info
,
5071 struct reserve_ticket
*ticket
, u64 orig_bytes
)
5077 spin_lock(&space_info
->lock
);
5078 while (ticket
->bytes
> 0 && ticket
->error
== 0) {
5079 ret
= prepare_to_wait_event(&ticket
->wait
, &wait
, TASK_KILLABLE
);
5084 spin_unlock(&space_info
->lock
);
5088 finish_wait(&ticket
->wait
, &wait
);
5089 spin_lock(&space_info
->lock
);
5092 ret
= ticket
->error
;
5093 if (!list_empty(&ticket
->list
))
5094 list_del_init(&ticket
->list
);
5095 if (ticket
->bytes
&& ticket
->bytes
< orig_bytes
) {
5096 u64 num_bytes
= orig_bytes
- ticket
->bytes
;
5097 space_info
->bytes_may_use
-= num_bytes
;
5098 trace_btrfs_space_reservation(fs_info
, "space_info",
5099 space_info
->flags
, num_bytes
, 0);
5101 spin_unlock(&space_info
->lock
);
5107 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5108 * @root - the root we're allocating for
5109 * @space_info - the space info we want to allocate from
5110 * @orig_bytes - the number of bytes we want
5111 * @flush - whether or not we can flush to make our reservation
5113 * This will reserve orig_bytes number of bytes from the space info associated
5114 * with the block_rsv. If there is not enough space it will make an attempt to
5115 * flush out space to make room. It will do this by flushing delalloc if
5116 * possible or committing the transaction. If flush is 0 then no attempts to
5117 * regain reservations will be made and this will fail if there is not enough
5120 static int __reserve_metadata_bytes(struct btrfs_root
*root
,
5121 struct btrfs_space_info
*space_info
,
5123 enum btrfs_reserve_flush_enum flush
)
5125 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5126 struct reserve_ticket ticket
;
5131 ASSERT(!current
->journal_info
|| flush
!= BTRFS_RESERVE_FLUSH_ALL
);
5133 spin_lock(&space_info
->lock
);
5135 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
5136 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
5137 space_info
->bytes_may_use
;
5140 * If we have enough space then hooray, make our reservation and carry
5141 * on. If not see if we can overcommit, and if we can, hooray carry on.
5142 * If not things get more complicated.
5144 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
5145 space_info
->bytes_may_use
+= orig_bytes
;
5146 trace_btrfs_space_reservation(fs_info
, "space_info",
5147 space_info
->flags
, orig_bytes
, 1);
5149 } else if (can_overcommit(root
, space_info
, orig_bytes
, flush
)) {
5150 space_info
->bytes_may_use
+= orig_bytes
;
5151 trace_btrfs_space_reservation(fs_info
, "space_info",
5152 space_info
->flags
, orig_bytes
, 1);
5157 * If we couldn't make a reservation then setup our reservation ticket
5158 * and kick the async worker if it's not already running.
5160 * If we are a priority flusher then we just need to add our ticket to
5161 * the list and we will do our own flushing further down.
5163 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
5164 ticket
.bytes
= orig_bytes
;
5166 init_waitqueue_head(&ticket
.wait
);
5167 if (flush
== BTRFS_RESERVE_FLUSH_ALL
) {
5168 list_add_tail(&ticket
.list
, &space_info
->tickets
);
5169 if (!space_info
->flush
) {
5170 space_info
->flush
= 1;
5171 trace_btrfs_trigger_flush(fs_info
,
5175 queue_work(system_unbound_wq
,
5176 &root
->fs_info
->async_reclaim_work
);
5179 list_add_tail(&ticket
.list
,
5180 &space_info
->priority_tickets
);
5182 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
5185 * We will do the space reservation dance during log replay,
5186 * which means we won't have fs_info->fs_root set, so don't do
5187 * the async reclaim as we will panic.
5189 if (!test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
) &&
5190 need_do_async_reclaim(space_info
, root
, used
) &&
5191 !work_busy(&fs_info
->async_reclaim_work
)) {
5192 trace_btrfs_trigger_flush(fs_info
, space_info
->flags
,
5193 orig_bytes
, flush
, "preempt");
5194 queue_work(system_unbound_wq
,
5195 &fs_info
->async_reclaim_work
);
5198 spin_unlock(&space_info
->lock
);
5199 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
5202 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
5203 return wait_reserve_ticket(fs_info
, space_info
, &ticket
,
5207 priority_reclaim_metadata_space(fs_info
, space_info
, &ticket
);
5208 spin_lock(&space_info
->lock
);
5210 if (ticket
.bytes
< orig_bytes
) {
5211 u64 num_bytes
= orig_bytes
- ticket
.bytes
;
5212 space_info
->bytes_may_use
-= num_bytes
;
5213 trace_btrfs_space_reservation(fs_info
, "space_info",
5218 list_del_init(&ticket
.list
);
5221 spin_unlock(&space_info
->lock
);
5222 ASSERT(list_empty(&ticket
.list
));
5227 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5228 * @root - the root we're allocating for
5229 * @block_rsv - the block_rsv we're allocating for
5230 * @orig_bytes - the number of bytes we want
5231 * @flush - whether or not we can flush to make our reservation
5233 * This will reserve orgi_bytes number of bytes from the space info associated
5234 * with the block_rsv. If there is not enough space it will make an attempt to
5235 * flush out space to make room. It will do this by flushing delalloc if
5236 * possible or committing the transaction. If flush is 0 then no attempts to
5237 * regain reservations will be made and this will fail if there is not enough
5240 static int reserve_metadata_bytes(struct btrfs_root
*root
,
5241 struct btrfs_block_rsv
*block_rsv
,
5243 enum btrfs_reserve_flush_enum flush
)
5245 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5246 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5249 ret
= __reserve_metadata_bytes(root
, block_rsv
->space_info
, orig_bytes
,
5251 if (ret
== -ENOSPC
&&
5252 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
5253 if (block_rsv
!= global_rsv
&&
5254 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
5258 trace_btrfs_space_reservation(fs_info
, "space_info:enospc",
5259 block_rsv
->space_info
->flags
,
5264 static struct btrfs_block_rsv
*get_block_rsv(
5265 const struct btrfs_trans_handle
*trans
,
5266 const struct btrfs_root
*root
)
5268 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5269 struct btrfs_block_rsv
*block_rsv
= NULL
;
5271 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
5272 (root
== fs_info
->csum_root
&& trans
->adding_csums
) ||
5273 (root
== fs_info
->uuid_root
))
5274 block_rsv
= trans
->block_rsv
;
5277 block_rsv
= root
->block_rsv
;
5280 block_rsv
= &fs_info
->empty_block_rsv
;
5285 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
5289 spin_lock(&block_rsv
->lock
);
5290 if (block_rsv
->reserved
>= num_bytes
) {
5291 block_rsv
->reserved
-= num_bytes
;
5292 if (block_rsv
->reserved
< block_rsv
->size
)
5293 block_rsv
->full
= 0;
5296 spin_unlock(&block_rsv
->lock
);
5300 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
5301 u64 num_bytes
, int update_size
)
5303 spin_lock(&block_rsv
->lock
);
5304 block_rsv
->reserved
+= num_bytes
;
5306 block_rsv
->size
+= num_bytes
;
5307 else if (block_rsv
->reserved
>= block_rsv
->size
)
5308 block_rsv
->full
= 1;
5309 spin_unlock(&block_rsv
->lock
);
5312 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
5313 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
5316 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5319 if (global_rsv
->space_info
!= dest
->space_info
)
5322 spin_lock(&global_rsv
->lock
);
5323 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
5324 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
5325 spin_unlock(&global_rsv
->lock
);
5328 global_rsv
->reserved
-= num_bytes
;
5329 if (global_rsv
->reserved
< global_rsv
->size
)
5330 global_rsv
->full
= 0;
5331 spin_unlock(&global_rsv
->lock
);
5333 block_rsv_add_bytes(dest
, num_bytes
, 1);
5338 * This is for space we already have accounted in space_info->bytes_may_use, so
5339 * basically when we're returning space from block_rsv's.
5341 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
5342 struct btrfs_space_info
*space_info
,
5345 struct reserve_ticket
*ticket
;
5346 struct list_head
*head
;
5348 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_NO_FLUSH
;
5349 bool check_overcommit
= false;
5351 spin_lock(&space_info
->lock
);
5352 head
= &space_info
->priority_tickets
;
5355 * If we are over our limit then we need to check and see if we can
5356 * overcommit, and if we can't then we just need to free up our space
5357 * and not satisfy any requests.
5359 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
5360 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
5361 space_info
->bytes_may_use
;
5362 if (used
- num_bytes
>= space_info
->total_bytes
)
5363 check_overcommit
= true;
5365 while (!list_empty(head
) && num_bytes
) {
5366 ticket
= list_first_entry(head
, struct reserve_ticket
,
5369 * We use 0 bytes because this space is already reserved, so
5370 * adding the ticket space would be a double count.
5372 if (check_overcommit
&&
5373 !can_overcommit(fs_info
->extent_root
, space_info
, 0,
5376 if (num_bytes
>= ticket
->bytes
) {
5377 list_del_init(&ticket
->list
);
5378 num_bytes
-= ticket
->bytes
;
5380 space_info
->tickets_id
++;
5381 wake_up(&ticket
->wait
);
5383 ticket
->bytes
-= num_bytes
;
5388 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5389 head
= &space_info
->tickets
;
5390 flush
= BTRFS_RESERVE_FLUSH_ALL
;
5393 space_info
->bytes_may_use
-= num_bytes
;
5394 trace_btrfs_space_reservation(fs_info
, "space_info",
5395 space_info
->flags
, num_bytes
, 0);
5396 spin_unlock(&space_info
->lock
);
5400 * This is for newly allocated space that isn't accounted in
5401 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5402 * we use this helper.
5404 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
5405 struct btrfs_space_info
*space_info
,
5408 struct reserve_ticket
*ticket
;
5409 struct list_head
*head
= &space_info
->priority_tickets
;
5412 while (!list_empty(head
) && num_bytes
) {
5413 ticket
= list_first_entry(head
, struct reserve_ticket
,
5415 if (num_bytes
>= ticket
->bytes
) {
5416 trace_btrfs_space_reservation(fs_info
, "space_info",
5419 list_del_init(&ticket
->list
);
5420 num_bytes
-= ticket
->bytes
;
5421 space_info
->bytes_may_use
+= ticket
->bytes
;
5423 space_info
->tickets_id
++;
5424 wake_up(&ticket
->wait
);
5426 trace_btrfs_space_reservation(fs_info
, "space_info",
5429 space_info
->bytes_may_use
+= num_bytes
;
5430 ticket
->bytes
-= num_bytes
;
5435 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5436 head
= &space_info
->tickets
;
5441 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
5442 struct btrfs_block_rsv
*block_rsv
,
5443 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
5445 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
5447 spin_lock(&block_rsv
->lock
);
5448 if (num_bytes
== (u64
)-1)
5449 num_bytes
= block_rsv
->size
;
5450 block_rsv
->size
-= num_bytes
;
5451 if (block_rsv
->reserved
>= block_rsv
->size
) {
5452 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5453 block_rsv
->reserved
= block_rsv
->size
;
5454 block_rsv
->full
= 1;
5458 spin_unlock(&block_rsv
->lock
);
5460 if (num_bytes
> 0) {
5462 spin_lock(&dest
->lock
);
5466 bytes_to_add
= dest
->size
- dest
->reserved
;
5467 bytes_to_add
= min(num_bytes
, bytes_to_add
);
5468 dest
->reserved
+= bytes_to_add
;
5469 if (dest
->reserved
>= dest
->size
)
5471 num_bytes
-= bytes_to_add
;
5473 spin_unlock(&dest
->lock
);
5476 space_info_add_old_bytes(fs_info
, space_info
,
5481 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src
,
5482 struct btrfs_block_rsv
*dst
, u64 num_bytes
,
5487 ret
= block_rsv_use_bytes(src
, num_bytes
);
5491 block_rsv_add_bytes(dst
, num_bytes
, update_size
);
5495 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
5497 memset(rsv
, 0, sizeof(*rsv
));
5498 spin_lock_init(&rsv
->lock
);
5502 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_fs_info
*fs_info
,
5503 unsigned short type
)
5505 struct btrfs_block_rsv
*block_rsv
;
5507 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
5511 btrfs_init_block_rsv(block_rsv
, type
);
5512 block_rsv
->space_info
= __find_space_info(fs_info
,
5513 BTRFS_BLOCK_GROUP_METADATA
);
5517 void btrfs_free_block_rsv(struct btrfs_fs_info
*fs_info
,
5518 struct btrfs_block_rsv
*rsv
)
5522 btrfs_block_rsv_release(fs_info
, rsv
, (u64
)-1);
5526 void __btrfs_free_block_rsv(struct btrfs_block_rsv
*rsv
)
5531 int btrfs_block_rsv_add(struct btrfs_root
*root
,
5532 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
5533 enum btrfs_reserve_flush_enum flush
)
5540 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5542 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
5549 int btrfs_block_rsv_check(struct btrfs_block_rsv
*block_rsv
, int min_factor
)
5557 spin_lock(&block_rsv
->lock
);
5558 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
5559 if (block_rsv
->reserved
>= num_bytes
)
5561 spin_unlock(&block_rsv
->lock
);
5566 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
5567 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
5568 enum btrfs_reserve_flush_enum flush
)
5576 spin_lock(&block_rsv
->lock
);
5577 num_bytes
= min_reserved
;
5578 if (block_rsv
->reserved
>= num_bytes
)
5581 num_bytes
-= block_rsv
->reserved
;
5582 spin_unlock(&block_rsv
->lock
);
5587 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5589 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5596 void btrfs_block_rsv_release(struct btrfs_fs_info
*fs_info
,
5597 struct btrfs_block_rsv
*block_rsv
,
5600 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5602 if (global_rsv
== block_rsv
||
5603 block_rsv
->space_info
!= global_rsv
->space_info
)
5605 block_rsv_release_bytes(fs_info
, block_rsv
, global_rsv
, num_bytes
);
5608 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5610 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
5611 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
5615 * The global block rsv is based on the size of the extent tree, the
5616 * checksum tree and the root tree. If the fs is empty we want to set
5617 * it to a minimal amount for safety.
5619 num_bytes
= btrfs_root_used(&fs_info
->extent_root
->root_item
) +
5620 btrfs_root_used(&fs_info
->csum_root
->root_item
) +
5621 btrfs_root_used(&fs_info
->tree_root
->root_item
);
5622 num_bytes
= max_t(u64
, num_bytes
, SZ_16M
);
5624 spin_lock(&sinfo
->lock
);
5625 spin_lock(&block_rsv
->lock
);
5627 block_rsv
->size
= min_t(u64
, num_bytes
, SZ_512M
);
5629 if (block_rsv
->reserved
< block_rsv
->size
) {
5630 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
5631 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
5632 sinfo
->bytes_may_use
;
5633 if (sinfo
->total_bytes
> num_bytes
) {
5634 num_bytes
= sinfo
->total_bytes
- num_bytes
;
5635 num_bytes
= min(num_bytes
,
5636 block_rsv
->size
- block_rsv
->reserved
);
5637 block_rsv
->reserved
+= num_bytes
;
5638 sinfo
->bytes_may_use
+= num_bytes
;
5639 trace_btrfs_space_reservation(fs_info
, "space_info",
5640 sinfo
->flags
, num_bytes
,
5643 } else if (block_rsv
->reserved
> block_rsv
->size
) {
5644 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5645 sinfo
->bytes_may_use
-= num_bytes
;
5646 trace_btrfs_space_reservation(fs_info
, "space_info",
5647 sinfo
->flags
, num_bytes
, 0);
5648 block_rsv
->reserved
= block_rsv
->size
;
5651 if (block_rsv
->reserved
== block_rsv
->size
)
5652 block_rsv
->full
= 1;
5654 block_rsv
->full
= 0;
5656 spin_unlock(&block_rsv
->lock
);
5657 spin_unlock(&sinfo
->lock
);
5660 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5662 struct btrfs_space_info
*space_info
;
5664 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
5665 fs_info
->chunk_block_rsv
.space_info
= space_info
;
5667 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5668 fs_info
->global_block_rsv
.space_info
= space_info
;
5669 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
5670 fs_info
->trans_block_rsv
.space_info
= space_info
;
5671 fs_info
->empty_block_rsv
.space_info
= space_info
;
5672 fs_info
->delayed_block_rsv
.space_info
= space_info
;
5674 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
5675 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
5676 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
5677 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
5678 if (fs_info
->quota_root
)
5679 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
5680 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
5682 update_global_block_rsv(fs_info
);
5685 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5687 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
5689 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
5690 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
5691 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
5692 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
5693 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
5694 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
5695 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
5696 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
5699 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
5700 struct btrfs_fs_info
*fs_info
)
5702 if (!trans
->block_rsv
)
5705 if (!trans
->bytes_reserved
)
5708 trace_btrfs_space_reservation(fs_info
, "transaction",
5709 trans
->transid
, trans
->bytes_reserved
, 0);
5710 btrfs_block_rsv_release(fs_info
, trans
->block_rsv
,
5711 trans
->bytes_reserved
);
5712 trans
->bytes_reserved
= 0;
5716 * To be called after all the new block groups attached to the transaction
5717 * handle have been created (btrfs_create_pending_block_groups()).
5719 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
5721 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5723 if (!trans
->chunk_bytes_reserved
)
5726 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
5728 block_rsv_release_bytes(fs_info
, &fs_info
->chunk_block_rsv
, NULL
,
5729 trans
->chunk_bytes_reserved
);
5730 trans
->chunk_bytes_reserved
= 0;
5733 /* Can only return 0 or -ENOSPC */
5734 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
5735 struct inode
*inode
)
5737 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5738 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5740 * We always use trans->block_rsv here as we will have reserved space
5741 * for our orphan when starting the transaction, using get_block_rsv()
5742 * here will sometimes make us choose the wrong block rsv as we could be
5743 * doing a reloc inode for a non refcounted root.
5745 struct btrfs_block_rsv
*src_rsv
= trans
->block_rsv
;
5746 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
5749 * We need to hold space in order to delete our orphan item once we've
5750 * added it, so this takes the reservation so we can release it later
5751 * when we are truly done with the orphan item.
5753 u64 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
5755 trace_btrfs_space_reservation(fs_info
, "orphan",
5756 btrfs_ino(inode
), num_bytes
, 1);
5757 return btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, 1);
5760 void btrfs_orphan_release_metadata(struct inode
*inode
)
5762 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5763 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5764 u64 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
5766 trace_btrfs_space_reservation(fs_info
, "orphan",
5767 btrfs_ino(inode
), num_bytes
, 0);
5768 btrfs_block_rsv_release(fs_info
, root
->orphan_block_rsv
, num_bytes
);
5772 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5773 * root: the root of the parent directory
5774 * rsv: block reservation
5775 * items: the number of items that we need do reservation
5776 * qgroup_reserved: used to return the reserved size in qgroup
5778 * This function is used to reserve the space for snapshot/subvolume
5779 * creation and deletion. Those operations are different with the
5780 * common file/directory operations, they change two fs/file trees
5781 * and root tree, the number of items that the qgroup reserves is
5782 * different with the free space reservation. So we can not use
5783 * the space reservation mechanism in start_transaction().
5785 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
5786 struct btrfs_block_rsv
*rsv
,
5788 u64
*qgroup_reserved
,
5789 bool use_global_rsv
)
5793 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5794 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5796 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
)) {
5797 /* One for parent inode, two for dir entries */
5798 num_bytes
= 3 * fs_info
->nodesize
;
5799 ret
= btrfs_qgroup_reserve_meta(root
, num_bytes
);
5806 *qgroup_reserved
= num_bytes
;
5808 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, items
);
5809 rsv
->space_info
= __find_space_info(fs_info
,
5810 BTRFS_BLOCK_GROUP_METADATA
);
5811 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
5812 BTRFS_RESERVE_FLUSH_ALL
);
5814 if (ret
== -ENOSPC
&& use_global_rsv
)
5815 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
, 1);
5817 if (ret
&& *qgroup_reserved
)
5818 btrfs_qgroup_free_meta(root
, *qgroup_reserved
);
5823 void btrfs_subvolume_release_metadata(struct btrfs_fs_info
*fs_info
,
5824 struct btrfs_block_rsv
*rsv
,
5825 u64 qgroup_reserved
)
5827 btrfs_block_rsv_release(fs_info
, rsv
, (u64
)-1);
5831 * drop_outstanding_extent - drop an outstanding extent
5832 * @inode: the inode we're dropping the extent for
5833 * @num_bytes: the number of bytes we're releasing.
5835 * This is called when we are freeing up an outstanding extent, either called
5836 * after an error or after an extent is written. This will return the number of
5837 * reserved extents that need to be freed. This must be called with
5838 * BTRFS_I(inode)->lock held.
5840 static unsigned drop_outstanding_extent(struct inode
*inode
, u64 num_bytes
)
5842 unsigned drop_inode_space
= 0;
5843 unsigned dropped_extents
= 0;
5844 unsigned num_extents
= 0;
5846 num_extents
= (unsigned)div64_u64(num_bytes
+
5847 BTRFS_MAX_EXTENT_SIZE
- 1,
5848 BTRFS_MAX_EXTENT_SIZE
);
5849 ASSERT(num_extents
);
5850 ASSERT(BTRFS_I(inode
)->outstanding_extents
>= num_extents
);
5851 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
5853 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
5854 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5855 &BTRFS_I(inode
)->runtime_flags
))
5856 drop_inode_space
= 1;
5859 * If we have more or the same amount of outstanding extents than we have
5860 * reserved then we need to leave the reserved extents count alone.
5862 if (BTRFS_I(inode
)->outstanding_extents
>=
5863 BTRFS_I(inode
)->reserved_extents
)
5864 return drop_inode_space
;
5866 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
5867 BTRFS_I(inode
)->outstanding_extents
;
5868 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
5869 return dropped_extents
+ drop_inode_space
;
5873 * calc_csum_metadata_size - return the amount of metadata space that must be
5874 * reserved/freed for the given bytes.
5875 * @inode: the inode we're manipulating
5876 * @num_bytes: the number of bytes in question
5877 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5879 * This adjusts the number of csum_bytes in the inode and then returns the
5880 * correct amount of metadata that must either be reserved or freed. We
5881 * calculate how many checksums we can fit into one leaf and then divide the
5882 * number of bytes that will need to be checksumed by this value to figure out
5883 * how many checksums will be required. If we are adding bytes then the number
5884 * may go up and we will return the number of additional bytes that must be
5885 * reserved. If it is going down we will return the number of bytes that must
5888 * This must be called with BTRFS_I(inode)->lock held.
5890 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
5893 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5894 u64 old_csums
, num_csums
;
5896 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
5897 BTRFS_I(inode
)->csum_bytes
== 0)
5900 old_csums
= btrfs_csum_bytes_to_leaves(fs_info
,
5901 BTRFS_I(inode
)->csum_bytes
);
5903 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
5905 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
5906 num_csums
= btrfs_csum_bytes_to_leaves(fs_info
,
5907 BTRFS_I(inode
)->csum_bytes
);
5909 /* No change, no need to reserve more */
5910 if (old_csums
== num_csums
)
5914 return btrfs_calc_trans_metadata_size(fs_info
,
5915 num_csums
- old_csums
);
5917 return btrfs_calc_trans_metadata_size(fs_info
, old_csums
- num_csums
);
5920 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
5922 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5923 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5924 struct btrfs_block_rsv
*block_rsv
= &fs_info
->delalloc_block_rsv
;
5927 unsigned nr_extents
= 0;
5928 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
5930 bool delalloc_lock
= true;
5933 bool release_extra
= false;
5935 /* If we are a free space inode we need to not flush since we will be in
5936 * the middle of a transaction commit. We also don't need the delalloc
5937 * mutex since we won't race with anybody. We need this mostly to make
5938 * lockdep shut its filthy mouth.
5940 * If we have a transaction open (can happen if we call truncate_block
5941 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5943 if (btrfs_is_free_space_inode(inode
)) {
5944 flush
= BTRFS_RESERVE_NO_FLUSH
;
5945 delalloc_lock
= false;
5946 } else if (current
->journal_info
) {
5947 flush
= BTRFS_RESERVE_FLUSH_LIMIT
;
5950 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
5951 btrfs_transaction_in_commit(fs_info
))
5952 schedule_timeout(1);
5955 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
5957 num_bytes
= ALIGN(num_bytes
, fs_info
->sectorsize
);
5959 spin_lock(&BTRFS_I(inode
)->lock
);
5960 nr_extents
= (unsigned)div64_u64(num_bytes
+
5961 BTRFS_MAX_EXTENT_SIZE
- 1,
5962 BTRFS_MAX_EXTENT_SIZE
);
5963 BTRFS_I(inode
)->outstanding_extents
+= nr_extents
;
5966 if (BTRFS_I(inode
)->outstanding_extents
>
5967 BTRFS_I(inode
)->reserved_extents
)
5968 nr_extents
+= BTRFS_I(inode
)->outstanding_extents
-
5969 BTRFS_I(inode
)->reserved_extents
;
5971 /* We always want to reserve a slot for updating the inode. */
5972 to_reserve
= btrfs_calc_trans_metadata_size(fs_info
, nr_extents
+ 1);
5973 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
5974 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5975 spin_unlock(&BTRFS_I(inode
)->lock
);
5977 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
)) {
5978 ret
= btrfs_qgroup_reserve_meta(root
,
5979 nr_extents
* fs_info
->nodesize
);
5984 ret
= btrfs_block_rsv_add(root
, block_rsv
, to_reserve
, flush
);
5985 if (unlikely(ret
)) {
5986 btrfs_qgroup_free_meta(root
,
5987 nr_extents
* fs_info
->nodesize
);
5991 spin_lock(&BTRFS_I(inode
)->lock
);
5992 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5993 &BTRFS_I(inode
)->runtime_flags
)) {
5994 to_reserve
-= btrfs_calc_trans_metadata_size(fs_info
, 1);
5995 release_extra
= true;
5997 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
5998 spin_unlock(&BTRFS_I(inode
)->lock
);
6001 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
6004 trace_btrfs_space_reservation(fs_info
, "delalloc",
6005 btrfs_ino(inode
), to_reserve
, 1);
6007 btrfs_block_rsv_release(fs_info
, block_rsv
,
6008 btrfs_calc_trans_metadata_size(fs_info
, 1));
6012 spin_lock(&BTRFS_I(inode
)->lock
);
6013 dropped
= drop_outstanding_extent(inode
, num_bytes
);
6015 * If the inodes csum_bytes is the same as the original
6016 * csum_bytes then we know we haven't raced with any free()ers
6017 * so we can just reduce our inodes csum bytes and carry on.
6019 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
) {
6020 calc_csum_metadata_size(inode
, num_bytes
, 0);
6022 u64 orig_csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
6026 * This is tricky, but first we need to figure out how much we
6027 * freed from any free-ers that occurred during this
6028 * reservation, so we reset ->csum_bytes to the csum_bytes
6029 * before we dropped our lock, and then call the free for the
6030 * number of bytes that were freed while we were trying our
6033 bytes
= csum_bytes
- BTRFS_I(inode
)->csum_bytes
;
6034 BTRFS_I(inode
)->csum_bytes
= csum_bytes
;
6035 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
6039 * Now we need to see how much we would have freed had we not
6040 * been making this reservation and our ->csum_bytes were not
6041 * artificially inflated.
6043 BTRFS_I(inode
)->csum_bytes
= csum_bytes
- num_bytes
;
6044 bytes
= csum_bytes
- orig_csum_bytes
;
6045 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
6048 * Now reset ->csum_bytes to what it should be. If bytes is
6049 * more than to_free then we would have freed more space had we
6050 * not had an artificially high ->csum_bytes, so we need to free
6051 * the remainder. If bytes is the same or less then we don't
6052 * need to do anything, the other free-ers did the correct
6055 BTRFS_I(inode
)->csum_bytes
= orig_csum_bytes
- num_bytes
;
6056 if (bytes
> to_free
)
6057 to_free
= bytes
- to_free
;
6061 spin_unlock(&BTRFS_I(inode
)->lock
);
6063 to_free
+= btrfs_calc_trans_metadata_size(fs_info
, dropped
);
6066 btrfs_block_rsv_release(fs_info
, block_rsv
, to_free
);
6067 trace_btrfs_space_reservation(fs_info
, "delalloc",
6068 btrfs_ino(inode
), to_free
, 0);
6071 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
6076 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6077 * @inode: the inode to release the reservation for
6078 * @num_bytes: the number of bytes we're releasing
6080 * This will release the metadata reservation for an inode. This can be called
6081 * once we complete IO for a given set of bytes to release their metadata
6084 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
6086 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6090 num_bytes
= ALIGN(num_bytes
, fs_info
->sectorsize
);
6091 spin_lock(&BTRFS_I(inode
)->lock
);
6092 dropped
= drop_outstanding_extent(inode
, num_bytes
);
6095 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
6096 spin_unlock(&BTRFS_I(inode
)->lock
);
6098 to_free
+= btrfs_calc_trans_metadata_size(fs_info
, dropped
);
6100 if (btrfs_is_testing(fs_info
))
6103 trace_btrfs_space_reservation(fs_info
, "delalloc",
6104 btrfs_ino(inode
), to_free
, 0);
6106 btrfs_block_rsv_release(fs_info
, &fs_info
->delalloc_block_rsv
, to_free
);
6110 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6112 * @inode: inode we're writing to
6113 * @start: start range we are writing to
6114 * @len: how long the range we are writing to
6116 * This will do the following things
6118 * o reserve space in data space info for num bytes
6119 * and reserve precious corresponding qgroup space
6120 * (Done in check_data_free_space)
6122 * o reserve space for metadata space, based on the number of outstanding
6123 * extents and how much csums will be needed
6124 * also reserve metadata space in a per root over-reserve method.
6125 * o add to the inodes->delalloc_bytes
6126 * o add it to the fs_info's delalloc inodes list.
6127 * (Above 3 all done in delalloc_reserve_metadata)
6129 * Return 0 for success
6130 * Return <0 for error(-ENOSPC or -EQUOT)
6132 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 start
, u64 len
)
6136 ret
= btrfs_check_data_free_space(inode
, start
, len
);
6139 ret
= btrfs_delalloc_reserve_metadata(inode
, len
);
6141 btrfs_free_reserved_data_space(inode
, start
, len
);
6146 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6147 * @inode: inode we're releasing space for
6148 * @start: start position of the space already reserved
6149 * @len: the len of the space already reserved
6151 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6152 * called in the case that we don't need the metadata AND data reservations
6153 * anymore. So if there is an error or we insert an inline extent.
6155 * This function will release the metadata space that was not used and will
6156 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6157 * list if there are no delalloc bytes left.
6158 * Also it will handle the qgroup reserved space.
6160 void btrfs_delalloc_release_space(struct inode
*inode
, u64 start
, u64 len
)
6162 btrfs_delalloc_release_metadata(inode
, len
);
6163 btrfs_free_reserved_data_space(inode
, start
, len
);
6166 static int update_block_group(struct btrfs_trans_handle
*trans
,
6167 struct btrfs_fs_info
*info
, u64 bytenr
,
6168 u64 num_bytes
, int alloc
)
6170 struct btrfs_block_group_cache
*cache
= NULL
;
6171 u64 total
= num_bytes
;
6176 /* block accounting for super block */
6177 spin_lock(&info
->delalloc_root_lock
);
6178 old_val
= btrfs_super_bytes_used(info
->super_copy
);
6180 old_val
+= num_bytes
;
6182 old_val
-= num_bytes
;
6183 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
6184 spin_unlock(&info
->delalloc_root_lock
);
6187 cache
= btrfs_lookup_block_group(info
, bytenr
);
6190 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
6191 BTRFS_BLOCK_GROUP_RAID1
|
6192 BTRFS_BLOCK_GROUP_RAID10
))
6197 * If this block group has free space cache written out, we
6198 * need to make sure to load it if we are removing space. This
6199 * is because we need the unpinning stage to actually add the
6200 * space back to the block group, otherwise we will leak space.
6202 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
6203 cache_block_group(cache
, 1);
6205 byte_in_group
= bytenr
- cache
->key
.objectid
;
6206 WARN_ON(byte_in_group
> cache
->key
.offset
);
6208 spin_lock(&cache
->space_info
->lock
);
6209 spin_lock(&cache
->lock
);
6211 if (btrfs_test_opt(info
, SPACE_CACHE
) &&
6212 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
6213 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
6215 old_val
= btrfs_block_group_used(&cache
->item
);
6216 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
6218 old_val
+= num_bytes
;
6219 btrfs_set_block_group_used(&cache
->item
, old_val
);
6220 cache
->reserved
-= num_bytes
;
6221 cache
->space_info
->bytes_reserved
-= num_bytes
;
6222 cache
->space_info
->bytes_used
+= num_bytes
;
6223 cache
->space_info
->disk_used
+= num_bytes
* factor
;
6224 spin_unlock(&cache
->lock
);
6225 spin_unlock(&cache
->space_info
->lock
);
6227 old_val
-= num_bytes
;
6228 btrfs_set_block_group_used(&cache
->item
, old_val
);
6229 cache
->pinned
+= num_bytes
;
6230 cache
->space_info
->bytes_pinned
+= num_bytes
;
6231 cache
->space_info
->bytes_used
-= num_bytes
;
6232 cache
->space_info
->disk_used
-= num_bytes
* factor
;
6233 spin_unlock(&cache
->lock
);
6234 spin_unlock(&cache
->space_info
->lock
);
6236 trace_btrfs_space_reservation(info
, "pinned",
6237 cache
->space_info
->flags
,
6239 set_extent_dirty(info
->pinned_extents
,
6240 bytenr
, bytenr
+ num_bytes
- 1,
6241 GFP_NOFS
| __GFP_NOFAIL
);
6244 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
6245 if (list_empty(&cache
->dirty_list
)) {
6246 list_add_tail(&cache
->dirty_list
,
6247 &trans
->transaction
->dirty_bgs
);
6248 trans
->transaction
->num_dirty_bgs
++;
6249 btrfs_get_block_group(cache
);
6251 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
6254 * No longer have used bytes in this block group, queue it for
6255 * deletion. We do this after adding the block group to the
6256 * dirty list to avoid races between cleaner kthread and space
6259 if (!alloc
&& old_val
== 0) {
6260 spin_lock(&info
->unused_bgs_lock
);
6261 if (list_empty(&cache
->bg_list
)) {
6262 btrfs_get_block_group(cache
);
6263 list_add_tail(&cache
->bg_list
,
6266 spin_unlock(&info
->unused_bgs_lock
);
6269 btrfs_put_block_group(cache
);
6271 bytenr
+= num_bytes
;
6276 static u64
first_logical_byte(struct btrfs_fs_info
*fs_info
, u64 search_start
)
6278 struct btrfs_block_group_cache
*cache
;
6281 spin_lock(&fs_info
->block_group_cache_lock
);
6282 bytenr
= fs_info
->first_logical_byte
;
6283 spin_unlock(&fs_info
->block_group_cache_lock
);
6285 if (bytenr
< (u64
)-1)
6288 cache
= btrfs_lookup_first_block_group(fs_info
, search_start
);
6292 bytenr
= cache
->key
.objectid
;
6293 btrfs_put_block_group(cache
);
6298 static int pin_down_extent(struct btrfs_fs_info
*fs_info
,
6299 struct btrfs_block_group_cache
*cache
,
6300 u64 bytenr
, u64 num_bytes
, int reserved
)
6302 spin_lock(&cache
->space_info
->lock
);
6303 spin_lock(&cache
->lock
);
6304 cache
->pinned
+= num_bytes
;
6305 cache
->space_info
->bytes_pinned
+= num_bytes
;
6307 cache
->reserved
-= num_bytes
;
6308 cache
->space_info
->bytes_reserved
-= num_bytes
;
6310 spin_unlock(&cache
->lock
);
6311 spin_unlock(&cache
->space_info
->lock
);
6313 trace_btrfs_space_reservation(fs_info
, "pinned",
6314 cache
->space_info
->flags
, num_bytes
, 1);
6315 set_extent_dirty(fs_info
->pinned_extents
, bytenr
,
6316 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
6321 * this function must be called within transaction
6323 int btrfs_pin_extent(struct btrfs_fs_info
*fs_info
,
6324 u64 bytenr
, u64 num_bytes
, int reserved
)
6326 struct btrfs_block_group_cache
*cache
;
6328 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
6329 BUG_ON(!cache
); /* Logic error */
6331 pin_down_extent(fs_info
, cache
, bytenr
, num_bytes
, reserved
);
6333 btrfs_put_block_group(cache
);
6338 * this function must be called within transaction
6340 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info
*fs_info
,
6341 u64 bytenr
, u64 num_bytes
)
6343 struct btrfs_block_group_cache
*cache
;
6346 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
6351 * pull in the free space cache (if any) so that our pin
6352 * removes the free space from the cache. We have load_only set
6353 * to one because the slow code to read in the free extents does check
6354 * the pinned extents.
6356 cache_block_group(cache
, 1);
6358 pin_down_extent(fs_info
, cache
, bytenr
, num_bytes
, 0);
6360 /* remove us from the free space cache (if we're there at all) */
6361 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
6362 btrfs_put_block_group(cache
);
6366 static int __exclude_logged_extent(struct btrfs_fs_info
*fs_info
,
6367 u64 start
, u64 num_bytes
)
6370 struct btrfs_block_group_cache
*block_group
;
6371 struct btrfs_caching_control
*caching_ctl
;
6373 block_group
= btrfs_lookup_block_group(fs_info
, start
);
6377 cache_block_group(block_group
, 0);
6378 caching_ctl
= get_caching_control(block_group
);
6382 BUG_ON(!block_group_cache_done(block_group
));
6383 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
6385 mutex_lock(&caching_ctl
->mutex
);
6387 if (start
>= caching_ctl
->progress
) {
6388 ret
= add_excluded_extent(fs_info
, start
, num_bytes
);
6389 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
6390 ret
= btrfs_remove_free_space(block_group
,
6393 num_bytes
= caching_ctl
->progress
- start
;
6394 ret
= btrfs_remove_free_space(block_group
,
6399 num_bytes
= (start
+ num_bytes
) -
6400 caching_ctl
->progress
;
6401 start
= caching_ctl
->progress
;
6402 ret
= add_excluded_extent(fs_info
, start
, num_bytes
);
6405 mutex_unlock(&caching_ctl
->mutex
);
6406 put_caching_control(caching_ctl
);
6408 btrfs_put_block_group(block_group
);
6412 int btrfs_exclude_logged_extents(struct btrfs_fs_info
*fs_info
,
6413 struct extent_buffer
*eb
)
6415 struct btrfs_file_extent_item
*item
;
6416 struct btrfs_key key
;
6420 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
))
6423 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
6424 btrfs_item_key_to_cpu(eb
, &key
, i
);
6425 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6427 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
6428 found_type
= btrfs_file_extent_type(eb
, item
);
6429 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
6431 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
6433 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
6434 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
6435 __exclude_logged_extent(fs_info
, key
.objectid
, key
.offset
);
6442 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6444 atomic_inc(&bg
->reservations
);
6447 void btrfs_dec_block_group_reservations(struct btrfs_fs_info
*fs_info
,
6450 struct btrfs_block_group_cache
*bg
;
6452 bg
= btrfs_lookup_block_group(fs_info
, start
);
6454 if (atomic_dec_and_test(&bg
->reservations
))
6455 wake_up_atomic_t(&bg
->reservations
);
6456 btrfs_put_block_group(bg
);
6459 static int btrfs_wait_bg_reservations_atomic_t(atomic_t
*a
)
6465 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6467 struct btrfs_space_info
*space_info
= bg
->space_info
;
6471 if (!(bg
->flags
& BTRFS_BLOCK_GROUP_DATA
))
6475 * Our block group is read only but before we set it to read only,
6476 * some task might have had allocated an extent from it already, but it
6477 * has not yet created a respective ordered extent (and added it to a
6478 * root's list of ordered extents).
6479 * Therefore wait for any task currently allocating extents, since the
6480 * block group's reservations counter is incremented while a read lock
6481 * on the groups' semaphore is held and decremented after releasing
6482 * the read access on that semaphore and creating the ordered extent.
6484 down_write(&space_info
->groups_sem
);
6485 up_write(&space_info
->groups_sem
);
6487 wait_on_atomic_t(&bg
->reservations
,
6488 btrfs_wait_bg_reservations_atomic_t
,
6489 TASK_UNINTERRUPTIBLE
);
6493 * btrfs_add_reserved_bytes - update the block_group and space info counters
6494 * @cache: The cache we are manipulating
6495 * @ram_bytes: The number of bytes of file content, and will be same to
6496 * @num_bytes except for the compress path.
6497 * @num_bytes: The number of bytes in question
6498 * @delalloc: The blocks are allocated for the delalloc write
6500 * This is called by the allocator when it reserves space. If this is a
6501 * reservation and the block group has become read only we cannot make the
6502 * reservation and return -EAGAIN, otherwise this function always succeeds.
6504 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6505 u64 ram_bytes
, u64 num_bytes
, int delalloc
)
6507 struct btrfs_space_info
*space_info
= cache
->space_info
;
6510 spin_lock(&space_info
->lock
);
6511 spin_lock(&cache
->lock
);
6515 cache
->reserved
+= num_bytes
;
6516 space_info
->bytes_reserved
+= num_bytes
;
6518 trace_btrfs_space_reservation(cache
->fs_info
,
6519 "space_info", space_info
->flags
,
6521 space_info
->bytes_may_use
-= ram_bytes
;
6523 cache
->delalloc_bytes
+= num_bytes
;
6525 spin_unlock(&cache
->lock
);
6526 spin_unlock(&space_info
->lock
);
6531 * btrfs_free_reserved_bytes - update the block_group and space info counters
6532 * @cache: The cache we are manipulating
6533 * @num_bytes: The number of bytes in question
6534 * @delalloc: The blocks are allocated for the delalloc write
6536 * This is called by somebody who is freeing space that was never actually used
6537 * on disk. For example if you reserve some space for a new leaf in transaction
6538 * A and before transaction A commits you free that leaf, you call this with
6539 * reserve set to 0 in order to clear the reservation.
6542 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6543 u64 num_bytes
, int delalloc
)
6545 struct btrfs_space_info
*space_info
= cache
->space_info
;
6548 spin_lock(&space_info
->lock
);
6549 spin_lock(&cache
->lock
);
6551 space_info
->bytes_readonly
+= num_bytes
;
6552 cache
->reserved
-= num_bytes
;
6553 space_info
->bytes_reserved
-= num_bytes
;
6556 cache
->delalloc_bytes
-= num_bytes
;
6557 spin_unlock(&cache
->lock
);
6558 spin_unlock(&space_info
->lock
);
6561 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
6562 struct btrfs_fs_info
*fs_info
)
6564 struct btrfs_caching_control
*next
;
6565 struct btrfs_caching_control
*caching_ctl
;
6566 struct btrfs_block_group_cache
*cache
;
6568 down_write(&fs_info
->commit_root_sem
);
6570 list_for_each_entry_safe(caching_ctl
, next
,
6571 &fs_info
->caching_block_groups
, list
) {
6572 cache
= caching_ctl
->block_group
;
6573 if (block_group_cache_done(cache
)) {
6574 cache
->last_byte_to_unpin
= (u64
)-1;
6575 list_del_init(&caching_ctl
->list
);
6576 put_caching_control(caching_ctl
);
6578 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
6582 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6583 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
6585 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
6587 up_write(&fs_info
->commit_root_sem
);
6589 update_global_block_rsv(fs_info
);
6593 * Returns the free cluster for the given space info and sets empty_cluster to
6594 * what it should be based on the mount options.
6596 static struct btrfs_free_cluster
*
6597 fetch_cluster_info(struct btrfs_fs_info
*fs_info
,
6598 struct btrfs_space_info
*space_info
, u64
*empty_cluster
)
6600 struct btrfs_free_cluster
*ret
= NULL
;
6601 bool ssd
= btrfs_test_opt(fs_info
, SSD
);
6604 if (btrfs_mixed_space_info(space_info
))
6608 *empty_cluster
= SZ_2M
;
6609 if (space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
6610 ret
= &fs_info
->meta_alloc_cluster
;
6612 *empty_cluster
= SZ_64K
;
6613 } else if ((space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
) && ssd
) {
6614 ret
= &fs_info
->data_alloc_cluster
;
6620 static int unpin_extent_range(struct btrfs_fs_info
*fs_info
,
6622 const bool return_free_space
)
6624 struct btrfs_block_group_cache
*cache
= NULL
;
6625 struct btrfs_space_info
*space_info
;
6626 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
6627 struct btrfs_free_cluster
*cluster
= NULL
;
6629 u64 total_unpinned
= 0;
6630 u64 empty_cluster
= 0;
6633 while (start
<= end
) {
6636 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
6638 btrfs_put_block_group(cache
);
6640 cache
= btrfs_lookup_block_group(fs_info
, start
);
6641 BUG_ON(!cache
); /* Logic error */
6643 cluster
= fetch_cluster_info(fs_info
,
6646 empty_cluster
<<= 1;
6649 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
6650 len
= min(len
, end
+ 1 - start
);
6652 if (start
< cache
->last_byte_to_unpin
) {
6653 len
= min(len
, cache
->last_byte_to_unpin
- start
);
6654 if (return_free_space
)
6655 btrfs_add_free_space(cache
, start
, len
);
6659 total_unpinned
+= len
;
6660 space_info
= cache
->space_info
;
6663 * If this space cluster has been marked as fragmented and we've
6664 * unpinned enough in this block group to potentially allow a
6665 * cluster to be created inside of it go ahead and clear the
6668 if (cluster
&& cluster
->fragmented
&&
6669 total_unpinned
> empty_cluster
) {
6670 spin_lock(&cluster
->lock
);
6671 cluster
->fragmented
= 0;
6672 spin_unlock(&cluster
->lock
);
6675 spin_lock(&space_info
->lock
);
6676 spin_lock(&cache
->lock
);
6677 cache
->pinned
-= len
;
6678 space_info
->bytes_pinned
-= len
;
6680 trace_btrfs_space_reservation(fs_info
, "pinned",
6681 space_info
->flags
, len
, 0);
6682 space_info
->max_extent_size
= 0;
6683 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
6685 space_info
->bytes_readonly
+= len
;
6688 spin_unlock(&cache
->lock
);
6689 if (!readonly
&& return_free_space
&&
6690 global_rsv
->space_info
== space_info
) {
6692 WARN_ON(!return_free_space
);
6693 spin_lock(&global_rsv
->lock
);
6694 if (!global_rsv
->full
) {
6695 to_add
= min(len
, global_rsv
->size
-
6696 global_rsv
->reserved
);
6697 global_rsv
->reserved
+= to_add
;
6698 space_info
->bytes_may_use
+= to_add
;
6699 if (global_rsv
->reserved
>= global_rsv
->size
)
6700 global_rsv
->full
= 1;
6701 trace_btrfs_space_reservation(fs_info
,
6707 spin_unlock(&global_rsv
->lock
);
6708 /* Add to any tickets we may have */
6710 space_info_add_new_bytes(fs_info
, space_info
,
6713 spin_unlock(&space_info
->lock
);
6717 btrfs_put_block_group(cache
);
6721 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
6722 struct btrfs_fs_info
*fs_info
)
6724 struct btrfs_block_group_cache
*block_group
, *tmp
;
6725 struct list_head
*deleted_bgs
;
6726 struct extent_io_tree
*unpin
;
6731 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6732 unpin
= &fs_info
->freed_extents
[1];
6734 unpin
= &fs_info
->freed_extents
[0];
6736 while (!trans
->aborted
) {
6737 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
6738 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
6739 EXTENT_DIRTY
, NULL
);
6741 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6745 if (btrfs_test_opt(fs_info
, DISCARD
))
6746 ret
= btrfs_discard_extent(fs_info
, start
,
6747 end
+ 1 - start
, NULL
);
6749 clear_extent_dirty(unpin
, start
, end
);
6750 unpin_extent_range(fs_info
, start
, end
, true);
6751 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6756 * Transaction is finished. We don't need the lock anymore. We
6757 * do need to clean up the block groups in case of a transaction
6760 deleted_bgs
= &trans
->transaction
->deleted_bgs
;
6761 list_for_each_entry_safe(block_group
, tmp
, deleted_bgs
, bg_list
) {
6765 if (!trans
->aborted
)
6766 ret
= btrfs_discard_extent(fs_info
,
6767 block_group
->key
.objectid
,
6768 block_group
->key
.offset
,
6771 list_del_init(&block_group
->bg_list
);
6772 btrfs_put_block_group_trimming(block_group
);
6773 btrfs_put_block_group(block_group
);
6776 const char *errstr
= btrfs_decode_error(ret
);
6778 "Discard failed while removing blockgroup: errno=%d %s\n",
6786 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, u64 num_bytes
,
6787 u64 owner
, u64 root_objectid
)
6789 struct btrfs_space_info
*space_info
;
6792 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6793 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
6794 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
6796 flags
= BTRFS_BLOCK_GROUP_METADATA
;
6798 flags
= BTRFS_BLOCK_GROUP_DATA
;
6801 space_info
= __find_space_info(fs_info
, flags
);
6802 BUG_ON(!space_info
); /* Logic bug */
6803 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
6807 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
6808 struct btrfs_fs_info
*info
,
6809 struct btrfs_delayed_ref_node
*node
, u64 parent
,
6810 u64 root_objectid
, u64 owner_objectid
,
6811 u64 owner_offset
, int refs_to_drop
,
6812 struct btrfs_delayed_extent_op
*extent_op
)
6814 struct btrfs_key key
;
6815 struct btrfs_path
*path
;
6816 struct btrfs_root
*extent_root
= info
->extent_root
;
6817 struct extent_buffer
*leaf
;
6818 struct btrfs_extent_item
*ei
;
6819 struct btrfs_extent_inline_ref
*iref
;
6822 int extent_slot
= 0;
6823 int found_extent
= 0;
6827 u64 bytenr
= node
->bytenr
;
6828 u64 num_bytes
= node
->num_bytes
;
6830 bool skinny_metadata
= btrfs_fs_incompat(info
, SKINNY_METADATA
);
6832 path
= btrfs_alloc_path();
6836 path
->reada
= READA_FORWARD
;
6837 path
->leave_spinning
= 1;
6839 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
6840 BUG_ON(!is_data
&& refs_to_drop
!= 1);
6843 skinny_metadata
= 0;
6845 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
6846 bytenr
, num_bytes
, parent
,
6847 root_objectid
, owner_objectid
,
6850 extent_slot
= path
->slots
[0];
6851 while (extent_slot
>= 0) {
6852 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6854 if (key
.objectid
!= bytenr
)
6856 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6857 key
.offset
== num_bytes
) {
6861 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
6862 key
.offset
== owner_objectid
) {
6866 if (path
->slots
[0] - extent_slot
> 5)
6870 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6871 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
6872 if (found_extent
&& item_size
< sizeof(*ei
))
6875 if (!found_extent
) {
6877 ret
= remove_extent_backref(trans
, extent_root
, path
,
6879 is_data
, &last_ref
);
6881 btrfs_abort_transaction(trans
, ret
);
6884 btrfs_release_path(path
);
6885 path
->leave_spinning
= 1;
6887 key
.objectid
= bytenr
;
6888 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6889 key
.offset
= num_bytes
;
6891 if (!is_data
&& skinny_metadata
) {
6892 key
.type
= BTRFS_METADATA_ITEM_KEY
;
6893 key
.offset
= owner_objectid
;
6896 ret
= btrfs_search_slot(trans
, extent_root
,
6898 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
6900 * Couldn't find our skinny metadata item,
6901 * see if we have ye olde extent item.
6904 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6906 if (key
.objectid
== bytenr
&&
6907 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6908 key
.offset
== num_bytes
)
6912 if (ret
> 0 && skinny_metadata
) {
6913 skinny_metadata
= false;
6914 key
.objectid
= bytenr
;
6915 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6916 key
.offset
= num_bytes
;
6917 btrfs_release_path(path
);
6918 ret
= btrfs_search_slot(trans
, extent_root
,
6924 "umm, got %d back from search, was looking for %llu",
6927 btrfs_print_leaf(info
, path
->nodes
[0]);
6930 btrfs_abort_transaction(trans
, ret
);
6933 extent_slot
= path
->slots
[0];
6935 } else if (WARN_ON(ret
== -ENOENT
)) {
6936 btrfs_print_leaf(info
, path
->nodes
[0]);
6938 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6939 bytenr
, parent
, root_objectid
, owner_objectid
,
6941 btrfs_abort_transaction(trans
, ret
);
6944 btrfs_abort_transaction(trans
, ret
);
6948 leaf
= path
->nodes
[0];
6949 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6950 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6951 if (item_size
< sizeof(*ei
)) {
6952 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
6953 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
6956 btrfs_abort_transaction(trans
, ret
);
6960 btrfs_release_path(path
);
6961 path
->leave_spinning
= 1;
6963 key
.objectid
= bytenr
;
6964 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6965 key
.offset
= num_bytes
;
6967 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
6971 "umm, got %d back from search, was looking for %llu",
6973 btrfs_print_leaf(info
, path
->nodes
[0]);
6976 btrfs_abort_transaction(trans
, ret
);
6980 extent_slot
= path
->slots
[0];
6981 leaf
= path
->nodes
[0];
6982 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6985 BUG_ON(item_size
< sizeof(*ei
));
6986 ei
= btrfs_item_ptr(leaf
, extent_slot
,
6987 struct btrfs_extent_item
);
6988 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
6989 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
6990 struct btrfs_tree_block_info
*bi
;
6991 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
6992 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
6993 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
6996 refs
= btrfs_extent_refs(leaf
, ei
);
6997 if (refs
< refs_to_drop
) {
6999 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7000 refs_to_drop
, refs
, bytenr
);
7002 btrfs_abort_transaction(trans
, ret
);
7005 refs
-= refs_to_drop
;
7009 __run_delayed_extent_op(extent_op
, leaf
, ei
);
7011 * In the case of inline back ref, reference count will
7012 * be updated by remove_extent_backref
7015 BUG_ON(!found_extent
);
7017 btrfs_set_extent_refs(leaf
, ei
, refs
);
7018 btrfs_mark_buffer_dirty(leaf
);
7021 ret
= remove_extent_backref(trans
, extent_root
, path
,
7023 is_data
, &last_ref
);
7025 btrfs_abort_transaction(trans
, ret
);
7029 add_pinned_bytes(info
, -num_bytes
, owner_objectid
,
7033 BUG_ON(is_data
&& refs_to_drop
!=
7034 extent_data_ref_count(path
, iref
));
7036 BUG_ON(path
->slots
[0] != extent_slot
);
7038 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
7039 path
->slots
[0] = extent_slot
;
7045 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
7048 btrfs_abort_transaction(trans
, ret
);
7051 btrfs_release_path(path
);
7054 ret
= btrfs_del_csums(trans
, info
, bytenr
, num_bytes
);
7056 btrfs_abort_transaction(trans
, ret
);
7061 ret
= add_to_free_space_tree(trans
, info
, bytenr
, num_bytes
);
7063 btrfs_abort_transaction(trans
, ret
);
7067 ret
= update_block_group(trans
, info
, bytenr
, num_bytes
, 0);
7069 btrfs_abort_transaction(trans
, ret
);
7073 btrfs_release_path(path
);
7076 btrfs_free_path(path
);
7081 * when we free an block, it is possible (and likely) that we free the last
7082 * delayed ref for that extent as well. This searches the delayed ref tree for
7083 * a given extent, and if there are no other delayed refs to be processed, it
7084 * removes it from the tree.
7086 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
7089 struct btrfs_delayed_ref_head
*head
;
7090 struct btrfs_delayed_ref_root
*delayed_refs
;
7093 delayed_refs
= &trans
->transaction
->delayed_refs
;
7094 spin_lock(&delayed_refs
->lock
);
7095 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
7097 goto out_delayed_unlock
;
7099 spin_lock(&head
->lock
);
7100 if (!list_empty(&head
->ref_list
))
7103 if (head
->extent_op
) {
7104 if (!head
->must_insert_reserved
)
7106 btrfs_free_delayed_extent_op(head
->extent_op
);
7107 head
->extent_op
= NULL
;
7111 * waiting for the lock here would deadlock. If someone else has it
7112 * locked they are already in the process of dropping it anyway
7114 if (!mutex_trylock(&head
->mutex
))
7118 * at this point we have a head with no other entries. Go
7119 * ahead and process it.
7121 head
->node
.in_tree
= 0;
7122 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
7124 atomic_dec(&delayed_refs
->num_entries
);
7127 * we don't take a ref on the node because we're removing it from the
7128 * tree, so we just steal the ref the tree was holding.
7130 delayed_refs
->num_heads
--;
7131 if (head
->processing
== 0)
7132 delayed_refs
->num_heads_ready
--;
7133 head
->processing
= 0;
7134 spin_unlock(&head
->lock
);
7135 spin_unlock(&delayed_refs
->lock
);
7137 BUG_ON(head
->extent_op
);
7138 if (head
->must_insert_reserved
)
7141 mutex_unlock(&head
->mutex
);
7142 btrfs_put_delayed_ref(&head
->node
);
7145 spin_unlock(&head
->lock
);
7148 spin_unlock(&delayed_refs
->lock
);
7152 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
7153 struct btrfs_root
*root
,
7154 struct extent_buffer
*buf
,
7155 u64 parent
, int last_ref
)
7157 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7161 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7162 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
,
7163 buf
->start
, buf
->len
,
7165 root
->root_key
.objectid
,
7166 btrfs_header_level(buf
),
7167 BTRFS_DROP_DELAYED_REF
, NULL
);
7168 BUG_ON(ret
); /* -ENOMEM */
7174 if (btrfs_header_generation(buf
) == trans
->transid
) {
7175 struct btrfs_block_group_cache
*cache
;
7177 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7178 ret
= check_ref_cleanup(trans
, buf
->start
);
7183 cache
= btrfs_lookup_block_group(fs_info
, buf
->start
);
7185 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
7186 pin_down_extent(fs_info
, cache
, buf
->start
,
7188 btrfs_put_block_group(cache
);
7192 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
7194 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
7195 btrfs_free_reserved_bytes(cache
, buf
->len
, 0);
7196 btrfs_put_block_group(cache
);
7197 trace_btrfs_reserved_extent_free(fs_info
, buf
->start
, buf
->len
);
7202 add_pinned_bytes(fs_info
, buf
->len
, btrfs_header_level(buf
),
7203 root
->root_key
.objectid
);
7206 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7209 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
7212 /* Can return -ENOMEM */
7213 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
7214 struct btrfs_fs_info
*fs_info
,
7215 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
7216 u64 owner
, u64 offset
)
7220 if (btrfs_is_testing(fs_info
))
7223 add_pinned_bytes(fs_info
, num_bytes
, owner
, root_objectid
);
7226 * tree log blocks never actually go into the extent allocation
7227 * tree, just update pinning info and exit early.
7229 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7230 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
7231 /* unlocks the pinned mutex */
7232 btrfs_pin_extent(fs_info
, bytenr
, num_bytes
, 1);
7234 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
7235 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
7237 parent
, root_objectid
, (int)owner
,
7238 BTRFS_DROP_DELAYED_REF
, NULL
);
7240 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
7242 parent
, root_objectid
, owner
,
7244 BTRFS_DROP_DELAYED_REF
, NULL
);
7250 * when we wait for progress in the block group caching, its because
7251 * our allocation attempt failed at least once. So, we must sleep
7252 * and let some progress happen before we try again.
7254 * This function will sleep at least once waiting for new free space to
7255 * show up, and then it will check the block group free space numbers
7256 * for our min num_bytes. Another option is to have it go ahead
7257 * and look in the rbtree for a free extent of a given size, but this
7260 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7261 * any of the information in this block group.
7263 static noinline
void
7264 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
7267 struct btrfs_caching_control
*caching_ctl
;
7269 caching_ctl
= get_caching_control(cache
);
7273 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
7274 (cache
->free_space_ctl
->free_space
>= num_bytes
));
7276 put_caching_control(caching_ctl
);
7280 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
7282 struct btrfs_caching_control
*caching_ctl
;
7285 caching_ctl
= get_caching_control(cache
);
7287 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
7289 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
7290 if (cache
->cached
== BTRFS_CACHE_ERROR
)
7292 put_caching_control(caching_ctl
);
7296 int __get_raid_index(u64 flags
)
7298 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
7299 return BTRFS_RAID_RAID10
;
7300 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
7301 return BTRFS_RAID_RAID1
;
7302 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7303 return BTRFS_RAID_DUP
;
7304 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7305 return BTRFS_RAID_RAID0
;
7306 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
7307 return BTRFS_RAID_RAID5
;
7308 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
7309 return BTRFS_RAID_RAID6
;
7311 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
7314 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
7316 return __get_raid_index(cache
->flags
);
7319 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
7320 [BTRFS_RAID_RAID10
] = "raid10",
7321 [BTRFS_RAID_RAID1
] = "raid1",
7322 [BTRFS_RAID_DUP
] = "dup",
7323 [BTRFS_RAID_RAID0
] = "raid0",
7324 [BTRFS_RAID_SINGLE
] = "single",
7325 [BTRFS_RAID_RAID5
] = "raid5",
7326 [BTRFS_RAID_RAID6
] = "raid6",
7329 static const char *get_raid_name(enum btrfs_raid_types type
)
7331 if (type
>= BTRFS_NR_RAID_TYPES
)
7334 return btrfs_raid_type_names
[type
];
7337 enum btrfs_loop_type
{
7338 LOOP_CACHING_NOWAIT
= 0,
7339 LOOP_CACHING_WAIT
= 1,
7340 LOOP_ALLOC_CHUNK
= 2,
7341 LOOP_NO_EMPTY_SIZE
= 3,
7345 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
7349 down_read(&cache
->data_rwsem
);
7353 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
7356 btrfs_get_block_group(cache
);
7358 down_read(&cache
->data_rwsem
);
7361 static struct btrfs_block_group_cache
*
7362 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
7363 struct btrfs_free_cluster
*cluster
,
7366 struct btrfs_block_group_cache
*used_bg
= NULL
;
7368 spin_lock(&cluster
->refill_lock
);
7370 used_bg
= cluster
->block_group
;
7374 if (used_bg
== block_group
)
7377 btrfs_get_block_group(used_bg
);
7382 if (down_read_trylock(&used_bg
->data_rwsem
))
7385 spin_unlock(&cluster
->refill_lock
);
7387 down_read(&used_bg
->data_rwsem
);
7389 spin_lock(&cluster
->refill_lock
);
7390 if (used_bg
== cluster
->block_group
)
7393 up_read(&used_bg
->data_rwsem
);
7394 btrfs_put_block_group(used_bg
);
7399 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
7403 up_read(&cache
->data_rwsem
);
7404 btrfs_put_block_group(cache
);
7408 * walks the btree of allocated extents and find a hole of a given size.
7409 * The key ins is changed to record the hole:
7410 * ins->objectid == start position
7411 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7412 * ins->offset == the size of the hole.
7413 * Any available blocks before search_start are skipped.
7415 * If there is no suitable free space, we will record the max size of
7416 * the free space extent currently.
7418 static noinline
int find_free_extent(struct btrfs_root
*orig_root
,
7419 u64 ram_bytes
, u64 num_bytes
, u64 empty_size
,
7420 u64 hint_byte
, struct btrfs_key
*ins
,
7421 u64 flags
, int delalloc
)
7423 struct btrfs_fs_info
*fs_info
= orig_root
->fs_info
;
7425 struct btrfs_root
*root
= fs_info
->extent_root
;
7426 struct btrfs_free_cluster
*last_ptr
= NULL
;
7427 struct btrfs_block_group_cache
*block_group
= NULL
;
7428 u64 search_start
= 0;
7429 u64 max_extent_size
= 0;
7430 u64 empty_cluster
= 0;
7431 struct btrfs_space_info
*space_info
;
7433 int index
= __get_raid_index(flags
);
7434 bool failed_cluster_refill
= false;
7435 bool failed_alloc
= false;
7436 bool use_cluster
= true;
7437 bool have_caching_bg
= false;
7438 bool orig_have_caching_bg
= false;
7439 bool full_search
= false;
7441 WARN_ON(num_bytes
< fs_info
->sectorsize
);
7442 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
7446 trace_find_free_extent(fs_info
, num_bytes
, empty_size
, flags
);
7448 space_info
= __find_space_info(fs_info
, flags
);
7450 btrfs_err(fs_info
, "No space info for %llu", flags
);
7455 * If our free space is heavily fragmented we may not be able to make
7456 * big contiguous allocations, so instead of doing the expensive search
7457 * for free space, simply return ENOSPC with our max_extent_size so we
7458 * can go ahead and search for a more manageable chunk.
7460 * If our max_extent_size is large enough for our allocation simply
7461 * disable clustering since we will likely not be able to find enough
7462 * space to create a cluster and induce latency trying.
7464 if (unlikely(space_info
->max_extent_size
)) {
7465 spin_lock(&space_info
->lock
);
7466 if (space_info
->max_extent_size
&&
7467 num_bytes
> space_info
->max_extent_size
) {
7468 ins
->offset
= space_info
->max_extent_size
;
7469 spin_unlock(&space_info
->lock
);
7471 } else if (space_info
->max_extent_size
) {
7472 use_cluster
= false;
7474 spin_unlock(&space_info
->lock
);
7477 last_ptr
= fetch_cluster_info(fs_info
, space_info
, &empty_cluster
);
7479 spin_lock(&last_ptr
->lock
);
7480 if (last_ptr
->block_group
)
7481 hint_byte
= last_ptr
->window_start
;
7482 if (last_ptr
->fragmented
) {
7484 * We still set window_start so we can keep track of the
7485 * last place we found an allocation to try and save
7488 hint_byte
= last_ptr
->window_start
;
7489 use_cluster
= false;
7491 spin_unlock(&last_ptr
->lock
);
7494 search_start
= max(search_start
, first_logical_byte(fs_info
, 0));
7495 search_start
= max(search_start
, hint_byte
);
7496 if (search_start
== hint_byte
) {
7497 block_group
= btrfs_lookup_block_group(fs_info
, search_start
);
7499 * we don't want to use the block group if it doesn't match our
7500 * allocation bits, or if its not cached.
7502 * However if we are re-searching with an ideal block group
7503 * picked out then we don't care that the block group is cached.
7505 if (block_group
&& block_group_bits(block_group
, flags
) &&
7506 block_group
->cached
!= BTRFS_CACHE_NO
) {
7507 down_read(&space_info
->groups_sem
);
7508 if (list_empty(&block_group
->list
) ||
7511 * someone is removing this block group,
7512 * we can't jump into the have_block_group
7513 * target because our list pointers are not
7516 btrfs_put_block_group(block_group
);
7517 up_read(&space_info
->groups_sem
);
7519 index
= get_block_group_index(block_group
);
7520 btrfs_lock_block_group(block_group
, delalloc
);
7521 goto have_block_group
;
7523 } else if (block_group
) {
7524 btrfs_put_block_group(block_group
);
7528 have_caching_bg
= false;
7529 if (index
== 0 || index
== __get_raid_index(flags
))
7531 down_read(&space_info
->groups_sem
);
7532 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
7537 btrfs_grab_block_group(block_group
, delalloc
);
7538 search_start
= block_group
->key
.objectid
;
7541 * this can happen if we end up cycling through all the
7542 * raid types, but we want to make sure we only allocate
7543 * for the proper type.
7545 if (!block_group_bits(block_group
, flags
)) {
7546 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
7547 BTRFS_BLOCK_GROUP_RAID1
|
7548 BTRFS_BLOCK_GROUP_RAID5
|
7549 BTRFS_BLOCK_GROUP_RAID6
|
7550 BTRFS_BLOCK_GROUP_RAID10
;
7553 * if they asked for extra copies and this block group
7554 * doesn't provide them, bail. This does allow us to
7555 * fill raid0 from raid1.
7557 if ((flags
& extra
) && !(block_group
->flags
& extra
))
7562 cached
= block_group_cache_done(block_group
);
7563 if (unlikely(!cached
)) {
7564 have_caching_bg
= true;
7565 ret
= cache_block_group(block_group
, 0);
7570 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
7572 if (unlikely(block_group
->ro
))
7576 * Ok we want to try and use the cluster allocator, so
7579 if (last_ptr
&& use_cluster
) {
7580 struct btrfs_block_group_cache
*used_block_group
;
7581 unsigned long aligned_cluster
;
7583 * the refill lock keeps out other
7584 * people trying to start a new cluster
7586 used_block_group
= btrfs_lock_cluster(block_group
,
7589 if (!used_block_group
)
7590 goto refill_cluster
;
7592 if (used_block_group
!= block_group
&&
7593 (used_block_group
->ro
||
7594 !block_group_bits(used_block_group
, flags
)))
7595 goto release_cluster
;
7597 offset
= btrfs_alloc_from_cluster(used_block_group
,
7600 used_block_group
->key
.objectid
,
7603 /* we have a block, we're done */
7604 spin_unlock(&last_ptr
->refill_lock
);
7605 trace_btrfs_reserve_extent_cluster(fs_info
,
7607 search_start
, num_bytes
);
7608 if (used_block_group
!= block_group
) {
7609 btrfs_release_block_group(block_group
,
7611 block_group
= used_block_group
;
7616 WARN_ON(last_ptr
->block_group
!= used_block_group
);
7618 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7619 * set up a new clusters, so lets just skip it
7620 * and let the allocator find whatever block
7621 * it can find. If we reach this point, we
7622 * will have tried the cluster allocator
7623 * plenty of times and not have found
7624 * anything, so we are likely way too
7625 * fragmented for the clustering stuff to find
7628 * However, if the cluster is taken from the
7629 * current block group, release the cluster
7630 * first, so that we stand a better chance of
7631 * succeeding in the unclustered
7633 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
7634 used_block_group
!= block_group
) {
7635 spin_unlock(&last_ptr
->refill_lock
);
7636 btrfs_release_block_group(used_block_group
,
7638 goto unclustered_alloc
;
7642 * this cluster didn't work out, free it and
7645 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7647 if (used_block_group
!= block_group
)
7648 btrfs_release_block_group(used_block_group
,
7651 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
7652 spin_unlock(&last_ptr
->refill_lock
);
7653 goto unclustered_alloc
;
7656 aligned_cluster
= max_t(unsigned long,
7657 empty_cluster
+ empty_size
,
7658 block_group
->full_stripe_len
);
7660 /* allocate a cluster in this block group */
7661 ret
= btrfs_find_space_cluster(fs_info
, block_group
,
7662 last_ptr
, search_start
,
7667 * now pull our allocation out of this
7670 offset
= btrfs_alloc_from_cluster(block_group
,
7676 /* we found one, proceed */
7677 spin_unlock(&last_ptr
->refill_lock
);
7678 trace_btrfs_reserve_extent_cluster(fs_info
,
7679 block_group
, search_start
,
7683 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
7684 && !failed_cluster_refill
) {
7685 spin_unlock(&last_ptr
->refill_lock
);
7687 failed_cluster_refill
= true;
7688 wait_block_group_cache_progress(block_group
,
7689 num_bytes
+ empty_cluster
+ empty_size
);
7690 goto have_block_group
;
7694 * at this point we either didn't find a cluster
7695 * or we weren't able to allocate a block from our
7696 * cluster. Free the cluster we've been trying
7697 * to use, and go to the next block group
7699 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7700 spin_unlock(&last_ptr
->refill_lock
);
7706 * We are doing an unclustered alloc, set the fragmented flag so
7707 * we don't bother trying to setup a cluster again until we get
7710 if (unlikely(last_ptr
)) {
7711 spin_lock(&last_ptr
->lock
);
7712 last_ptr
->fragmented
= 1;
7713 spin_unlock(&last_ptr
->lock
);
7715 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
7717 block_group
->free_space_ctl
->free_space
<
7718 num_bytes
+ empty_cluster
+ empty_size
) {
7719 if (block_group
->free_space_ctl
->free_space
>
7722 block_group
->free_space_ctl
->free_space
;
7723 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7726 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7728 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
7729 num_bytes
, empty_size
,
7732 * If we didn't find a chunk, and we haven't failed on this
7733 * block group before, and this block group is in the middle of
7734 * caching and we are ok with waiting, then go ahead and wait
7735 * for progress to be made, and set failed_alloc to true.
7737 * If failed_alloc is true then we've already waited on this
7738 * block group once and should move on to the next block group.
7740 if (!offset
&& !failed_alloc
&& !cached
&&
7741 loop
> LOOP_CACHING_NOWAIT
) {
7742 wait_block_group_cache_progress(block_group
,
7743 num_bytes
+ empty_size
);
7744 failed_alloc
= true;
7745 goto have_block_group
;
7746 } else if (!offset
) {
7750 search_start
= ALIGN(offset
, fs_info
->stripesize
);
7752 /* move on to the next group */
7753 if (search_start
+ num_bytes
>
7754 block_group
->key
.objectid
+ block_group
->key
.offset
) {
7755 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7759 if (offset
< search_start
)
7760 btrfs_add_free_space(block_group
, offset
,
7761 search_start
- offset
);
7762 BUG_ON(offset
> search_start
);
7764 ret
= btrfs_add_reserved_bytes(block_group
, ram_bytes
,
7765 num_bytes
, delalloc
);
7766 if (ret
== -EAGAIN
) {
7767 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7770 btrfs_inc_block_group_reservations(block_group
);
7772 /* we are all good, lets return */
7773 ins
->objectid
= search_start
;
7774 ins
->offset
= num_bytes
;
7776 trace_btrfs_reserve_extent(fs_info
, block_group
,
7777 search_start
, num_bytes
);
7778 btrfs_release_block_group(block_group
, delalloc
);
7781 failed_cluster_refill
= false;
7782 failed_alloc
= false;
7783 BUG_ON(index
!= get_block_group_index(block_group
));
7784 btrfs_release_block_group(block_group
, delalloc
);
7786 up_read(&space_info
->groups_sem
);
7788 if ((loop
== LOOP_CACHING_NOWAIT
) && have_caching_bg
7789 && !orig_have_caching_bg
)
7790 orig_have_caching_bg
= true;
7792 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
7795 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
7799 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7800 * caching kthreads as we move along
7801 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7802 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7803 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7806 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
7808 if (loop
== LOOP_CACHING_NOWAIT
) {
7810 * We want to skip the LOOP_CACHING_WAIT step if we
7811 * don't have any uncached bgs and we've already done a
7812 * full search through.
7814 if (orig_have_caching_bg
|| !full_search
)
7815 loop
= LOOP_CACHING_WAIT
;
7817 loop
= LOOP_ALLOC_CHUNK
;
7822 if (loop
== LOOP_ALLOC_CHUNK
) {
7823 struct btrfs_trans_handle
*trans
;
7826 trans
= current
->journal_info
;
7830 trans
= btrfs_join_transaction(root
);
7832 if (IS_ERR(trans
)) {
7833 ret
= PTR_ERR(trans
);
7837 ret
= do_chunk_alloc(trans
, fs_info
, flags
,
7841 * If we can't allocate a new chunk we've already looped
7842 * through at least once, move on to the NO_EMPTY_SIZE
7846 loop
= LOOP_NO_EMPTY_SIZE
;
7849 * Do not bail out on ENOSPC since we
7850 * can do more things.
7852 if (ret
< 0 && ret
!= -ENOSPC
)
7853 btrfs_abort_transaction(trans
, ret
);
7857 btrfs_end_transaction(trans
);
7862 if (loop
== LOOP_NO_EMPTY_SIZE
) {
7864 * Don't loop again if we already have no empty_size and
7867 if (empty_size
== 0 &&
7868 empty_cluster
== 0) {
7877 } else if (!ins
->objectid
) {
7879 } else if (ins
->objectid
) {
7880 if (!use_cluster
&& last_ptr
) {
7881 spin_lock(&last_ptr
->lock
);
7882 last_ptr
->window_start
= ins
->objectid
;
7883 spin_unlock(&last_ptr
->lock
);
7888 if (ret
== -ENOSPC
) {
7889 spin_lock(&space_info
->lock
);
7890 space_info
->max_extent_size
= max_extent_size
;
7891 spin_unlock(&space_info
->lock
);
7892 ins
->offset
= max_extent_size
;
7897 static void dump_space_info(struct btrfs_fs_info
*fs_info
,
7898 struct btrfs_space_info
*info
, u64 bytes
,
7899 int dump_block_groups
)
7901 struct btrfs_block_group_cache
*cache
;
7904 spin_lock(&info
->lock
);
7905 btrfs_info(fs_info
, "space_info %llu has %llu free, is %sfull",
7907 info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
7908 info
->bytes_reserved
- info
->bytes_readonly
-
7909 info
->bytes_may_use
, (info
->full
) ? "" : "not ");
7911 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7912 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
7913 info
->bytes_reserved
, info
->bytes_may_use
,
7914 info
->bytes_readonly
);
7915 spin_unlock(&info
->lock
);
7917 if (!dump_block_groups
)
7920 down_read(&info
->groups_sem
);
7922 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
7923 spin_lock(&cache
->lock
);
7925 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7926 cache
->key
.objectid
, cache
->key
.offset
,
7927 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
7928 cache
->reserved
, cache
->ro
? "[readonly]" : "");
7929 btrfs_dump_free_space(cache
, bytes
);
7930 spin_unlock(&cache
->lock
);
7932 if (++index
< BTRFS_NR_RAID_TYPES
)
7934 up_read(&info
->groups_sem
);
7937 int btrfs_reserve_extent(struct btrfs_root
*root
, u64 ram_bytes
,
7938 u64 num_bytes
, u64 min_alloc_size
,
7939 u64 empty_size
, u64 hint_byte
,
7940 struct btrfs_key
*ins
, int is_data
, int delalloc
)
7942 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7943 bool final_tried
= num_bytes
== min_alloc_size
;
7947 flags
= btrfs_get_alloc_profile(root
, is_data
);
7949 WARN_ON(num_bytes
< fs_info
->sectorsize
);
7950 ret
= find_free_extent(root
, ram_bytes
, num_bytes
, empty_size
,
7951 hint_byte
, ins
, flags
, delalloc
);
7952 if (!ret
&& !is_data
) {
7953 btrfs_dec_block_group_reservations(fs_info
, ins
->objectid
);
7954 } else if (ret
== -ENOSPC
) {
7955 if (!final_tried
&& ins
->offset
) {
7956 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
7957 num_bytes
= round_down(num_bytes
,
7958 fs_info
->sectorsize
);
7959 num_bytes
= max(num_bytes
, min_alloc_size
);
7960 ram_bytes
= num_bytes
;
7961 if (num_bytes
== min_alloc_size
)
7964 } else if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
7965 struct btrfs_space_info
*sinfo
;
7967 sinfo
= __find_space_info(fs_info
, flags
);
7969 "allocation failed flags %llu, wanted %llu",
7972 dump_space_info(fs_info
, sinfo
, num_bytes
, 1);
7979 static int __btrfs_free_reserved_extent(struct btrfs_fs_info
*fs_info
,
7981 int pin
, int delalloc
)
7983 struct btrfs_block_group_cache
*cache
;
7986 cache
= btrfs_lookup_block_group(fs_info
, start
);
7988 btrfs_err(fs_info
, "Unable to find block group for %llu",
7994 pin_down_extent(fs_info
, cache
, start
, len
, 1);
7996 if (btrfs_test_opt(fs_info
, DISCARD
))
7997 ret
= btrfs_discard_extent(fs_info
, start
, len
, NULL
);
7998 btrfs_add_free_space(cache
, start
, len
);
7999 btrfs_free_reserved_bytes(cache
, len
, delalloc
);
8000 trace_btrfs_reserved_extent_free(fs_info
, start
, len
);
8003 btrfs_put_block_group(cache
);
8007 int btrfs_free_reserved_extent(struct btrfs_fs_info
*fs_info
,
8008 u64 start
, u64 len
, int delalloc
)
8010 return __btrfs_free_reserved_extent(fs_info
, start
, len
, 0, delalloc
);
8013 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info
*fs_info
,
8016 return __btrfs_free_reserved_extent(fs_info
, start
, len
, 1, 0);
8019 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8020 struct btrfs_fs_info
*fs_info
,
8021 u64 parent
, u64 root_objectid
,
8022 u64 flags
, u64 owner
, u64 offset
,
8023 struct btrfs_key
*ins
, int ref_mod
)
8026 struct btrfs_extent_item
*extent_item
;
8027 struct btrfs_extent_inline_ref
*iref
;
8028 struct btrfs_path
*path
;
8029 struct extent_buffer
*leaf
;
8034 type
= BTRFS_SHARED_DATA_REF_KEY
;
8036 type
= BTRFS_EXTENT_DATA_REF_KEY
;
8038 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
8040 path
= btrfs_alloc_path();
8044 path
->leave_spinning
= 1;
8045 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8048 btrfs_free_path(path
);
8052 leaf
= path
->nodes
[0];
8053 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8054 struct btrfs_extent_item
);
8055 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
8056 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8057 btrfs_set_extent_flags(leaf
, extent_item
,
8058 flags
| BTRFS_EXTENT_FLAG_DATA
);
8060 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8061 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
8063 struct btrfs_shared_data_ref
*ref
;
8064 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
8065 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8066 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
8068 struct btrfs_extent_data_ref
*ref
;
8069 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
8070 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
8071 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
8072 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
8073 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
8076 btrfs_mark_buffer_dirty(path
->nodes
[0]);
8077 btrfs_free_path(path
);
8079 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8084 ret
= update_block_group(trans
, fs_info
, ins
->objectid
, ins
->offset
, 1);
8085 if (ret
) { /* -ENOENT, logic error */
8086 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8087 ins
->objectid
, ins
->offset
);
8090 trace_btrfs_reserved_extent_alloc(fs_info
, ins
->objectid
, ins
->offset
);
8094 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
8095 struct btrfs_fs_info
*fs_info
,
8096 u64 parent
, u64 root_objectid
,
8097 u64 flags
, struct btrfs_disk_key
*key
,
8098 int level
, struct btrfs_key
*ins
)
8101 struct btrfs_extent_item
*extent_item
;
8102 struct btrfs_tree_block_info
*block_info
;
8103 struct btrfs_extent_inline_ref
*iref
;
8104 struct btrfs_path
*path
;
8105 struct extent_buffer
*leaf
;
8106 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
8107 u64 num_bytes
= ins
->offset
;
8108 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
8110 if (!skinny_metadata
)
8111 size
+= sizeof(*block_info
);
8113 path
= btrfs_alloc_path();
8115 btrfs_free_and_pin_reserved_extent(fs_info
, ins
->objectid
,
8120 path
->leave_spinning
= 1;
8121 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8124 btrfs_free_path(path
);
8125 btrfs_free_and_pin_reserved_extent(fs_info
, ins
->objectid
,
8130 leaf
= path
->nodes
[0];
8131 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8132 struct btrfs_extent_item
);
8133 btrfs_set_extent_refs(leaf
, extent_item
, 1);
8134 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8135 btrfs_set_extent_flags(leaf
, extent_item
,
8136 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
8138 if (skinny_metadata
) {
8139 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8140 num_bytes
= fs_info
->nodesize
;
8142 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
8143 btrfs_set_tree_block_key(leaf
, block_info
, key
);
8144 btrfs_set_tree_block_level(leaf
, block_info
, level
);
8145 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
8149 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
8150 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8151 BTRFS_SHARED_BLOCK_REF_KEY
);
8152 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8154 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8155 BTRFS_TREE_BLOCK_REF_KEY
);
8156 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
8159 btrfs_mark_buffer_dirty(leaf
);
8160 btrfs_free_path(path
);
8162 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8167 ret
= update_block_group(trans
, fs_info
, ins
->objectid
,
8168 fs_info
->nodesize
, 1);
8169 if (ret
) { /* -ENOENT, logic error */
8170 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8171 ins
->objectid
, ins
->offset
);
8175 trace_btrfs_reserved_extent_alloc(fs_info
, ins
->objectid
,
8180 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8181 u64 root_objectid
, u64 owner
,
8182 u64 offset
, u64 ram_bytes
,
8183 struct btrfs_key
*ins
)
8185 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
8188 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
8190 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, ins
->objectid
,
8192 root_objectid
, owner
, offset
,
8193 ram_bytes
, BTRFS_ADD_DELAYED_EXTENT
,
8199 * this is used by the tree logging recovery code. It records that
8200 * an extent has been allocated and makes sure to clear the free
8201 * space cache bits as well
8203 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
8204 struct btrfs_fs_info
*fs_info
,
8205 u64 root_objectid
, u64 owner
, u64 offset
,
8206 struct btrfs_key
*ins
)
8209 struct btrfs_block_group_cache
*block_group
;
8210 struct btrfs_space_info
*space_info
;
8213 * Mixed block groups will exclude before processing the log so we only
8214 * need to do the exclude dance if this fs isn't mixed.
8216 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
8217 ret
= __exclude_logged_extent(fs_info
, ins
->objectid
,
8223 block_group
= btrfs_lookup_block_group(fs_info
, ins
->objectid
);
8227 space_info
= block_group
->space_info
;
8228 spin_lock(&space_info
->lock
);
8229 spin_lock(&block_group
->lock
);
8230 space_info
->bytes_reserved
+= ins
->offset
;
8231 block_group
->reserved
+= ins
->offset
;
8232 spin_unlock(&block_group
->lock
);
8233 spin_unlock(&space_info
->lock
);
8235 ret
= alloc_reserved_file_extent(trans
, fs_info
, 0, root_objectid
,
8236 0, owner
, offset
, ins
, 1);
8237 btrfs_put_block_group(block_group
);
8241 static struct extent_buffer
*
8242 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
8243 u64 bytenr
, int level
)
8245 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8246 struct extent_buffer
*buf
;
8248 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
8252 btrfs_set_header_generation(buf
, trans
->transid
);
8253 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
8254 btrfs_tree_lock(buf
);
8255 clean_tree_block(trans
, fs_info
, buf
);
8256 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
8258 btrfs_set_lock_blocking(buf
);
8259 set_extent_buffer_uptodate(buf
);
8261 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
8262 buf
->log_index
= root
->log_transid
% 2;
8264 * we allow two log transactions at a time, use different
8265 * EXENT bit to differentiate dirty pages.
8267 if (buf
->log_index
== 0)
8268 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
8269 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8271 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
8272 buf
->start
+ buf
->len
- 1);
8274 buf
->log_index
= -1;
8275 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
8276 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8278 trans
->dirty
= true;
8279 /* this returns a buffer locked for blocking */
8283 static struct btrfs_block_rsv
*
8284 use_block_rsv(struct btrfs_trans_handle
*trans
,
8285 struct btrfs_root
*root
, u32 blocksize
)
8287 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8288 struct btrfs_block_rsv
*block_rsv
;
8289 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
8291 bool global_updated
= false;
8293 block_rsv
= get_block_rsv(trans
, root
);
8295 if (unlikely(block_rsv
->size
== 0))
8298 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
8302 if (block_rsv
->failfast
)
8303 return ERR_PTR(ret
);
8305 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
8306 global_updated
= true;
8307 update_global_block_rsv(fs_info
);
8311 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
8312 static DEFINE_RATELIMIT_STATE(_rs
,
8313 DEFAULT_RATELIMIT_INTERVAL
* 10,
8314 /*DEFAULT_RATELIMIT_BURST*/ 1);
8315 if (__ratelimit(&_rs
))
8317 "BTRFS: block rsv returned %d\n", ret
);
8320 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
8321 BTRFS_RESERVE_NO_FLUSH
);
8325 * If we couldn't reserve metadata bytes try and use some from
8326 * the global reserve if its space type is the same as the global
8329 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
8330 block_rsv
->space_info
== global_rsv
->space_info
) {
8331 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
8335 return ERR_PTR(ret
);
8338 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
8339 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
8341 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
8342 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
8346 * finds a free extent and does all the dirty work required for allocation
8347 * returns the tree buffer or an ERR_PTR on error.
8349 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
8350 struct btrfs_root
*root
,
8351 u64 parent
, u64 root_objectid
,
8352 struct btrfs_disk_key
*key
, int level
,
8353 u64 hint
, u64 empty_size
)
8355 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8356 struct btrfs_key ins
;
8357 struct btrfs_block_rsv
*block_rsv
;
8358 struct extent_buffer
*buf
;
8359 struct btrfs_delayed_extent_op
*extent_op
;
8362 u32 blocksize
= fs_info
->nodesize
;
8363 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
8365 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8366 if (btrfs_is_testing(fs_info
)) {
8367 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
8370 root
->alloc_bytenr
+= blocksize
;
8375 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
8376 if (IS_ERR(block_rsv
))
8377 return ERR_CAST(block_rsv
);
8379 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
, blocksize
,
8380 empty_size
, hint
, &ins
, 0, 0);
8384 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
);
8387 goto out_free_reserved
;
8390 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
8392 parent
= ins
.objectid
;
8393 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8397 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
8398 extent_op
= btrfs_alloc_delayed_extent_op();
8404 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
8406 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
8407 extent_op
->flags_to_set
= flags
;
8408 extent_op
->update_key
= skinny_metadata
? false : true;
8409 extent_op
->update_flags
= true;
8410 extent_op
->is_data
= false;
8411 extent_op
->level
= level
;
8413 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
,
8414 ins
.objectid
, ins
.offset
,
8415 parent
, root_objectid
, level
,
8416 BTRFS_ADD_DELAYED_EXTENT
,
8419 goto out_free_delayed
;
8424 btrfs_free_delayed_extent_op(extent_op
);
8426 free_extent_buffer(buf
);
8428 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 0);
8430 unuse_block_rsv(fs_info
, block_rsv
, blocksize
);
8431 return ERR_PTR(ret
);
8434 struct walk_control
{
8435 u64 refs
[BTRFS_MAX_LEVEL
];
8436 u64 flags
[BTRFS_MAX_LEVEL
];
8437 struct btrfs_key update_progress
;
8448 #define DROP_REFERENCE 1
8449 #define UPDATE_BACKREF 2
8451 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
8452 struct btrfs_root
*root
,
8453 struct walk_control
*wc
,
8454 struct btrfs_path
*path
)
8456 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8462 struct btrfs_key key
;
8463 struct extent_buffer
*eb
;
8468 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
8469 wc
->reada_count
= wc
->reada_count
* 2 / 3;
8470 wc
->reada_count
= max(wc
->reada_count
, 2);
8472 wc
->reada_count
= wc
->reada_count
* 3 / 2;
8473 wc
->reada_count
= min_t(int, wc
->reada_count
,
8474 BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
8477 eb
= path
->nodes
[wc
->level
];
8478 nritems
= btrfs_header_nritems(eb
);
8480 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
8481 if (nread
>= wc
->reada_count
)
8485 bytenr
= btrfs_node_blockptr(eb
, slot
);
8486 generation
= btrfs_node_ptr_generation(eb
, slot
);
8488 if (slot
== path
->slots
[wc
->level
])
8491 if (wc
->stage
== UPDATE_BACKREF
&&
8492 generation
<= root
->root_key
.offset
)
8495 /* We don't lock the tree block, it's OK to be racy here */
8496 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
,
8497 wc
->level
- 1, 1, &refs
,
8499 /* We don't care about errors in readahead. */
8504 if (wc
->stage
== DROP_REFERENCE
) {
8508 if (wc
->level
== 1 &&
8509 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8511 if (!wc
->update_ref
||
8512 generation
<= root
->root_key
.offset
)
8514 btrfs_node_key_to_cpu(eb
, &key
, slot
);
8515 ret
= btrfs_comp_cpu_keys(&key
,
8516 &wc
->update_progress
);
8520 if (wc
->level
== 1 &&
8521 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8525 readahead_tree_block(fs_info
, bytenr
);
8528 wc
->reada_slot
= slot
;
8532 * helper to process tree block while walking down the tree.
8534 * when wc->stage == UPDATE_BACKREF, this function updates
8535 * back refs for pointers in the block.
8537 * NOTE: return value 1 means we should stop walking down.
8539 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
8540 struct btrfs_root
*root
,
8541 struct btrfs_path
*path
,
8542 struct walk_control
*wc
, int lookup_info
)
8544 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8545 int level
= wc
->level
;
8546 struct extent_buffer
*eb
= path
->nodes
[level
];
8547 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8550 if (wc
->stage
== UPDATE_BACKREF
&&
8551 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
8555 * when reference count of tree block is 1, it won't increase
8556 * again. once full backref flag is set, we never clear it.
8559 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
8560 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
8561 BUG_ON(!path
->locks
[level
]);
8562 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
8563 eb
->start
, level
, 1,
8566 BUG_ON(ret
== -ENOMEM
);
8569 BUG_ON(wc
->refs
[level
] == 0);
8572 if (wc
->stage
== DROP_REFERENCE
) {
8573 if (wc
->refs
[level
] > 1)
8576 if (path
->locks
[level
] && !wc
->keep_locks
) {
8577 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8578 path
->locks
[level
] = 0;
8583 /* wc->stage == UPDATE_BACKREF */
8584 if (!(wc
->flags
[level
] & flag
)) {
8585 BUG_ON(!path
->locks
[level
]);
8586 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
8587 BUG_ON(ret
); /* -ENOMEM */
8588 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8589 BUG_ON(ret
); /* -ENOMEM */
8590 ret
= btrfs_set_disk_extent_flags(trans
, fs_info
, eb
->start
,
8592 btrfs_header_level(eb
), 0);
8593 BUG_ON(ret
); /* -ENOMEM */
8594 wc
->flags
[level
] |= flag
;
8598 * the block is shared by multiple trees, so it's not good to
8599 * keep the tree lock
8601 if (path
->locks
[level
] && level
> 0) {
8602 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8603 path
->locks
[level
] = 0;
8609 * helper to process tree block pointer.
8611 * when wc->stage == DROP_REFERENCE, this function checks
8612 * reference count of the block pointed to. if the block
8613 * is shared and we need update back refs for the subtree
8614 * rooted at the block, this function changes wc->stage to
8615 * UPDATE_BACKREF. if the block is shared and there is no
8616 * need to update back, this function drops the reference
8619 * NOTE: return value 1 means we should stop walking down.
8621 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
8622 struct btrfs_root
*root
,
8623 struct btrfs_path
*path
,
8624 struct walk_control
*wc
, int *lookup_info
)
8626 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8631 struct btrfs_key key
;
8632 struct extent_buffer
*next
;
8633 int level
= wc
->level
;
8636 bool need_account
= false;
8638 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
8639 path
->slots
[level
]);
8641 * if the lower level block was created before the snapshot
8642 * was created, we know there is no need to update back refs
8645 if (wc
->stage
== UPDATE_BACKREF
&&
8646 generation
<= root
->root_key
.offset
) {
8651 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
8652 blocksize
= fs_info
->nodesize
;
8654 next
= find_extent_buffer(fs_info
, bytenr
);
8656 next
= btrfs_find_create_tree_block(fs_info
, bytenr
);
8658 return PTR_ERR(next
);
8660 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
8664 btrfs_tree_lock(next
);
8665 btrfs_set_lock_blocking(next
);
8667 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
, level
- 1, 1,
8668 &wc
->refs
[level
- 1],
8669 &wc
->flags
[level
- 1]);
8673 if (unlikely(wc
->refs
[level
- 1] == 0)) {
8674 btrfs_err(fs_info
, "Missing references.");
8680 if (wc
->stage
== DROP_REFERENCE
) {
8681 if (wc
->refs
[level
- 1] > 1) {
8682 need_account
= true;
8684 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8687 if (!wc
->update_ref
||
8688 generation
<= root
->root_key
.offset
)
8691 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
8692 path
->slots
[level
]);
8693 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
8697 wc
->stage
= UPDATE_BACKREF
;
8698 wc
->shared_level
= level
- 1;
8702 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8706 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
8707 btrfs_tree_unlock(next
);
8708 free_extent_buffer(next
);
8714 if (reada
&& level
== 1)
8715 reada_walk_down(trans
, root
, wc
, path
);
8716 next
= read_tree_block(fs_info
, bytenr
, generation
);
8718 return PTR_ERR(next
);
8719 } else if (!extent_buffer_uptodate(next
)) {
8720 free_extent_buffer(next
);
8723 btrfs_tree_lock(next
);
8724 btrfs_set_lock_blocking(next
);
8728 ASSERT(level
== btrfs_header_level(next
));
8729 if (level
!= btrfs_header_level(next
)) {
8730 btrfs_err(root
->fs_info
, "mismatched level");
8734 path
->nodes
[level
] = next
;
8735 path
->slots
[level
] = 0;
8736 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8742 wc
->refs
[level
- 1] = 0;
8743 wc
->flags
[level
- 1] = 0;
8744 if (wc
->stage
== DROP_REFERENCE
) {
8745 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
8746 parent
= path
->nodes
[level
]->start
;
8748 ASSERT(root
->root_key
.objectid
==
8749 btrfs_header_owner(path
->nodes
[level
]));
8750 if (root
->root_key
.objectid
!=
8751 btrfs_header_owner(path
->nodes
[level
])) {
8752 btrfs_err(root
->fs_info
,
8753 "mismatched block owner");
8761 ret
= btrfs_qgroup_trace_subtree(trans
, root
, next
,
8762 generation
, level
- 1);
8764 btrfs_err_rl(fs_info
,
8765 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8769 ret
= btrfs_free_extent(trans
, fs_info
, bytenr
, blocksize
,
8770 parent
, root
->root_key
.objectid
,
8780 btrfs_tree_unlock(next
);
8781 free_extent_buffer(next
);
8787 * helper to process tree block while walking up the tree.
8789 * when wc->stage == DROP_REFERENCE, this function drops
8790 * reference count on the block.
8792 * when wc->stage == UPDATE_BACKREF, this function changes
8793 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8794 * to UPDATE_BACKREF previously while processing the block.
8796 * NOTE: return value 1 means we should stop walking up.
8798 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
8799 struct btrfs_root
*root
,
8800 struct btrfs_path
*path
,
8801 struct walk_control
*wc
)
8803 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8805 int level
= wc
->level
;
8806 struct extent_buffer
*eb
= path
->nodes
[level
];
8809 if (wc
->stage
== UPDATE_BACKREF
) {
8810 BUG_ON(wc
->shared_level
< level
);
8811 if (level
< wc
->shared_level
)
8814 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
8818 wc
->stage
= DROP_REFERENCE
;
8819 wc
->shared_level
= -1;
8820 path
->slots
[level
] = 0;
8823 * check reference count again if the block isn't locked.
8824 * we should start walking down the tree again if reference
8827 if (!path
->locks
[level
]) {
8829 btrfs_tree_lock(eb
);
8830 btrfs_set_lock_blocking(eb
);
8831 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8833 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
8834 eb
->start
, level
, 1,
8838 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8839 path
->locks
[level
] = 0;
8842 BUG_ON(wc
->refs
[level
] == 0);
8843 if (wc
->refs
[level
] == 1) {
8844 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8845 path
->locks
[level
] = 0;
8851 /* wc->stage == DROP_REFERENCE */
8852 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
8854 if (wc
->refs
[level
] == 1) {
8856 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8857 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
8859 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8860 BUG_ON(ret
); /* -ENOMEM */
8861 ret
= btrfs_qgroup_trace_leaf_items(trans
, fs_info
, eb
);
8863 btrfs_err_rl(fs_info
,
8864 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8868 /* make block locked assertion in clean_tree_block happy */
8869 if (!path
->locks
[level
] &&
8870 btrfs_header_generation(eb
) == trans
->transid
) {
8871 btrfs_tree_lock(eb
);
8872 btrfs_set_lock_blocking(eb
);
8873 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8875 clean_tree_block(trans
, fs_info
, eb
);
8878 if (eb
== root
->node
) {
8879 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8882 BUG_ON(root
->root_key
.objectid
!=
8883 btrfs_header_owner(eb
));
8885 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8886 parent
= path
->nodes
[level
+ 1]->start
;
8888 BUG_ON(root
->root_key
.objectid
!=
8889 btrfs_header_owner(path
->nodes
[level
+ 1]));
8892 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
8894 wc
->refs
[level
] = 0;
8895 wc
->flags
[level
] = 0;
8899 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
8900 struct btrfs_root
*root
,
8901 struct btrfs_path
*path
,
8902 struct walk_control
*wc
)
8904 int level
= wc
->level
;
8905 int lookup_info
= 1;
8908 while (level
>= 0) {
8909 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
8916 if (path
->slots
[level
] >=
8917 btrfs_header_nritems(path
->nodes
[level
]))
8920 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
8922 path
->slots
[level
]++;
8931 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
8932 struct btrfs_root
*root
,
8933 struct btrfs_path
*path
,
8934 struct walk_control
*wc
, int max_level
)
8936 int level
= wc
->level
;
8939 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
8940 while (level
< max_level
&& path
->nodes
[level
]) {
8942 if (path
->slots
[level
] + 1 <
8943 btrfs_header_nritems(path
->nodes
[level
])) {
8944 path
->slots
[level
]++;
8947 ret
= walk_up_proc(trans
, root
, path
, wc
);
8951 if (path
->locks
[level
]) {
8952 btrfs_tree_unlock_rw(path
->nodes
[level
],
8953 path
->locks
[level
]);
8954 path
->locks
[level
] = 0;
8956 free_extent_buffer(path
->nodes
[level
]);
8957 path
->nodes
[level
] = NULL
;
8965 * drop a subvolume tree.
8967 * this function traverses the tree freeing any blocks that only
8968 * referenced by the tree.
8970 * when a shared tree block is found. this function decreases its
8971 * reference count by one. if update_ref is true, this function
8972 * also make sure backrefs for the shared block and all lower level
8973 * blocks are properly updated.
8975 * If called with for_reloc == 0, may exit early with -EAGAIN
8977 int btrfs_drop_snapshot(struct btrfs_root
*root
,
8978 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
8981 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8982 struct btrfs_path
*path
;
8983 struct btrfs_trans_handle
*trans
;
8984 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
8985 struct btrfs_root_item
*root_item
= &root
->root_item
;
8986 struct walk_control
*wc
;
8987 struct btrfs_key key
;
8991 bool root_dropped
= false;
8993 btrfs_debug(fs_info
, "Drop subvolume %llu", root
->objectid
);
8995 path
= btrfs_alloc_path();
9001 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9003 btrfs_free_path(path
);
9008 trans
= btrfs_start_transaction(tree_root
, 0);
9009 if (IS_ERR(trans
)) {
9010 err
= PTR_ERR(trans
);
9015 trans
->block_rsv
= block_rsv
;
9017 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
9018 level
= btrfs_header_level(root
->node
);
9019 path
->nodes
[level
] = btrfs_lock_root_node(root
);
9020 btrfs_set_lock_blocking(path
->nodes
[level
]);
9021 path
->slots
[level
] = 0;
9022 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9023 memset(&wc
->update_progress
, 0,
9024 sizeof(wc
->update_progress
));
9026 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
9027 memcpy(&wc
->update_progress
, &key
,
9028 sizeof(wc
->update_progress
));
9030 level
= root_item
->drop_level
;
9032 path
->lowest_level
= level
;
9033 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
9034 path
->lowest_level
= 0;
9042 * unlock our path, this is safe because only this
9043 * function is allowed to delete this snapshot
9045 btrfs_unlock_up_safe(path
, 0);
9047 level
= btrfs_header_level(root
->node
);
9049 btrfs_tree_lock(path
->nodes
[level
]);
9050 btrfs_set_lock_blocking(path
->nodes
[level
]);
9051 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9053 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
9054 path
->nodes
[level
]->start
,
9055 level
, 1, &wc
->refs
[level
],
9061 BUG_ON(wc
->refs
[level
] == 0);
9063 if (level
== root_item
->drop_level
)
9066 btrfs_tree_unlock(path
->nodes
[level
]);
9067 path
->locks
[level
] = 0;
9068 WARN_ON(wc
->refs
[level
] != 1);
9074 wc
->shared_level
= -1;
9075 wc
->stage
= DROP_REFERENCE
;
9076 wc
->update_ref
= update_ref
;
9078 wc
->for_reloc
= for_reloc
;
9079 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
9083 ret
= walk_down_tree(trans
, root
, path
, wc
);
9089 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
9096 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
9100 if (wc
->stage
== DROP_REFERENCE
) {
9102 btrfs_node_key(path
->nodes
[level
],
9103 &root_item
->drop_progress
,
9104 path
->slots
[level
]);
9105 root_item
->drop_level
= level
;
9108 BUG_ON(wc
->level
== 0);
9109 if (btrfs_should_end_transaction(trans
) ||
9110 (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
))) {
9111 ret
= btrfs_update_root(trans
, tree_root
,
9115 btrfs_abort_transaction(trans
, ret
);
9120 btrfs_end_transaction_throttle(trans
);
9121 if (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
)) {
9122 btrfs_debug(fs_info
,
9123 "drop snapshot early exit");
9128 trans
= btrfs_start_transaction(tree_root
, 0);
9129 if (IS_ERR(trans
)) {
9130 err
= PTR_ERR(trans
);
9134 trans
->block_rsv
= block_rsv
;
9137 btrfs_release_path(path
);
9141 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
9143 btrfs_abort_transaction(trans
, ret
);
9147 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
9148 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
9151 btrfs_abort_transaction(trans
, ret
);
9154 } else if (ret
> 0) {
9155 /* if we fail to delete the orphan item this time
9156 * around, it'll get picked up the next time.
9158 * The most common failure here is just -ENOENT.
9160 btrfs_del_orphan_item(trans
, tree_root
,
9161 root
->root_key
.objectid
);
9165 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
9166 btrfs_add_dropped_root(trans
, root
);
9168 free_extent_buffer(root
->node
);
9169 free_extent_buffer(root
->commit_root
);
9170 btrfs_put_fs_root(root
);
9172 root_dropped
= true;
9174 btrfs_end_transaction_throttle(trans
);
9177 btrfs_free_path(path
);
9180 * So if we need to stop dropping the snapshot for whatever reason we
9181 * need to make sure to add it back to the dead root list so that we
9182 * keep trying to do the work later. This also cleans up roots if we
9183 * don't have it in the radix (like when we recover after a power fail
9184 * or unmount) so we don't leak memory.
9186 if (!for_reloc
&& root_dropped
== false)
9187 btrfs_add_dead_root(root
);
9188 if (err
&& err
!= -EAGAIN
)
9189 btrfs_handle_fs_error(fs_info
, err
, NULL
);
9194 * drop subtree rooted at tree block 'node'.
9196 * NOTE: this function will unlock and release tree block 'node'
9197 * only used by relocation code
9199 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
9200 struct btrfs_root
*root
,
9201 struct extent_buffer
*node
,
9202 struct extent_buffer
*parent
)
9204 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9205 struct btrfs_path
*path
;
9206 struct walk_control
*wc
;
9212 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
9214 path
= btrfs_alloc_path();
9218 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9220 btrfs_free_path(path
);
9224 btrfs_assert_tree_locked(parent
);
9225 parent_level
= btrfs_header_level(parent
);
9226 extent_buffer_get(parent
);
9227 path
->nodes
[parent_level
] = parent
;
9228 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
9230 btrfs_assert_tree_locked(node
);
9231 level
= btrfs_header_level(node
);
9232 path
->nodes
[level
] = node
;
9233 path
->slots
[level
] = 0;
9234 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9236 wc
->refs
[parent_level
] = 1;
9237 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
9239 wc
->shared_level
= -1;
9240 wc
->stage
= DROP_REFERENCE
;
9244 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
9247 wret
= walk_down_tree(trans
, root
, path
, wc
);
9253 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
9261 btrfs_free_path(path
);
9265 static u64
update_block_group_flags(struct btrfs_fs_info
*fs_info
, u64 flags
)
9271 * if restripe for this chunk_type is on pick target profile and
9272 * return, otherwise do the usual balance
9274 stripped
= get_restripe_target(fs_info
, flags
);
9276 return extended_to_chunk(stripped
);
9278 num_devices
= fs_info
->fs_devices
->rw_devices
;
9280 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
9281 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
9282 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
9284 if (num_devices
== 1) {
9285 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9286 stripped
= flags
& ~stripped
;
9288 /* turn raid0 into single device chunks */
9289 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
9292 /* turn mirroring into duplication */
9293 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9294 BTRFS_BLOCK_GROUP_RAID10
))
9295 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
9297 /* they already had raid on here, just return */
9298 if (flags
& stripped
)
9301 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9302 stripped
= flags
& ~stripped
;
9304 /* switch duplicated blocks with raid1 */
9305 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
9306 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
9308 /* this is drive concat, leave it alone */
9314 static int inc_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
9316 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9318 u64 min_allocable_bytes
;
9322 * We need some metadata space and system metadata space for
9323 * allocating chunks in some corner cases until we force to set
9324 * it to be readonly.
9327 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
9329 min_allocable_bytes
= SZ_1M
;
9331 min_allocable_bytes
= 0;
9333 spin_lock(&sinfo
->lock
);
9334 spin_lock(&cache
->lock
);
9342 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
9343 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
9345 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
9346 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
9347 min_allocable_bytes
<= sinfo
->total_bytes
) {
9348 sinfo
->bytes_readonly
+= num_bytes
;
9350 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
9354 spin_unlock(&cache
->lock
);
9355 spin_unlock(&sinfo
->lock
);
9359 int btrfs_inc_block_group_ro(struct btrfs_root
*root
,
9360 struct btrfs_block_group_cache
*cache
)
9363 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9364 struct btrfs_trans_handle
*trans
;
9369 trans
= btrfs_join_transaction(root
);
9371 return PTR_ERR(trans
);
9374 * we're not allowed to set block groups readonly after the dirty
9375 * block groups cache has started writing. If it already started,
9376 * back off and let this transaction commit
9378 mutex_lock(&fs_info
->ro_block_group_mutex
);
9379 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &trans
->transaction
->flags
)) {
9380 u64 transid
= trans
->transid
;
9382 mutex_unlock(&fs_info
->ro_block_group_mutex
);
9383 btrfs_end_transaction(trans
);
9385 ret
= btrfs_wait_for_commit(fs_info
, transid
);
9392 * if we are changing raid levels, try to allocate a corresponding
9393 * block group with the new raid level.
9395 alloc_flags
= update_block_group_flags(fs_info
, cache
->flags
);
9396 if (alloc_flags
!= cache
->flags
) {
9397 ret
= do_chunk_alloc(trans
, fs_info
, alloc_flags
,
9400 * ENOSPC is allowed here, we may have enough space
9401 * already allocated at the new raid level to
9410 ret
= inc_block_group_ro(cache
, 0);
9413 alloc_flags
= get_alloc_profile(fs_info
, cache
->space_info
->flags
);
9414 ret
= do_chunk_alloc(trans
, fs_info
, alloc_flags
,
9418 ret
= inc_block_group_ro(cache
, 0);
9420 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
9421 alloc_flags
= update_block_group_flags(fs_info
, cache
->flags
);
9422 mutex_lock(&fs_info
->chunk_mutex
);
9423 check_system_chunk(trans
, fs_info
, alloc_flags
);
9424 mutex_unlock(&fs_info
->chunk_mutex
);
9426 mutex_unlock(&fs_info
->ro_block_group_mutex
);
9428 btrfs_end_transaction(trans
);
9432 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
9433 struct btrfs_fs_info
*fs_info
, u64 type
)
9435 u64 alloc_flags
= get_alloc_profile(fs_info
, type
);
9437 return do_chunk_alloc(trans
, fs_info
, alloc_flags
, CHUNK_ALLOC_FORCE
);
9441 * helper to account the unused space of all the readonly block group in the
9442 * space_info. takes mirrors into account.
9444 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
9446 struct btrfs_block_group_cache
*block_group
;
9450 /* It's df, we don't care if it's racy */
9451 if (list_empty(&sinfo
->ro_bgs
))
9454 spin_lock(&sinfo
->lock
);
9455 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
9456 spin_lock(&block_group
->lock
);
9458 if (!block_group
->ro
) {
9459 spin_unlock(&block_group
->lock
);
9463 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9464 BTRFS_BLOCK_GROUP_RAID10
|
9465 BTRFS_BLOCK_GROUP_DUP
))
9470 free_bytes
+= (block_group
->key
.offset
-
9471 btrfs_block_group_used(&block_group
->item
)) *
9474 spin_unlock(&block_group
->lock
);
9476 spin_unlock(&sinfo
->lock
);
9481 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache
*cache
)
9483 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9488 spin_lock(&sinfo
->lock
);
9489 spin_lock(&cache
->lock
);
9491 num_bytes
= cache
->key
.offset
- cache
->reserved
-
9492 cache
->pinned
- cache
->bytes_super
-
9493 btrfs_block_group_used(&cache
->item
);
9494 sinfo
->bytes_readonly
-= num_bytes
;
9495 list_del_init(&cache
->ro_list
);
9497 spin_unlock(&cache
->lock
);
9498 spin_unlock(&sinfo
->lock
);
9502 * checks to see if its even possible to relocate this block group.
9504 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9505 * ok to go ahead and try.
9507 int btrfs_can_relocate(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
9509 struct btrfs_root
*root
= fs_info
->extent_root
;
9510 struct btrfs_block_group_cache
*block_group
;
9511 struct btrfs_space_info
*space_info
;
9512 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
9513 struct btrfs_device
*device
;
9514 struct btrfs_trans_handle
*trans
;
9524 debug
= btrfs_test_opt(fs_info
, ENOSPC_DEBUG
);
9526 block_group
= btrfs_lookup_block_group(fs_info
, bytenr
);
9528 /* odd, couldn't find the block group, leave it alone */
9532 "can't find block group for bytenr %llu",
9537 min_free
= btrfs_block_group_used(&block_group
->item
);
9539 /* no bytes used, we're good */
9543 space_info
= block_group
->space_info
;
9544 spin_lock(&space_info
->lock
);
9546 full
= space_info
->full
;
9549 * if this is the last block group we have in this space, we can't
9550 * relocate it unless we're able to allocate a new chunk below.
9552 * Otherwise, we need to make sure we have room in the space to handle
9553 * all of the extents from this block group. If we can, we're good
9555 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
9556 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
9557 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
9558 min_free
< space_info
->total_bytes
)) {
9559 spin_unlock(&space_info
->lock
);
9562 spin_unlock(&space_info
->lock
);
9565 * ok we don't have enough space, but maybe we have free space on our
9566 * devices to allocate new chunks for relocation, so loop through our
9567 * alloc devices and guess if we have enough space. if this block
9568 * group is going to be restriped, run checks against the target
9569 * profile instead of the current one.
9581 target
= get_restripe_target(fs_info
, block_group
->flags
);
9583 index
= __get_raid_index(extended_to_chunk(target
));
9586 * this is just a balance, so if we were marked as full
9587 * we know there is no space for a new chunk
9592 "no space to alloc new chunk for block group %llu",
9593 block_group
->key
.objectid
);
9597 index
= get_block_group_index(block_group
);
9600 if (index
== BTRFS_RAID_RAID10
) {
9604 } else if (index
== BTRFS_RAID_RAID1
) {
9606 } else if (index
== BTRFS_RAID_DUP
) {
9609 } else if (index
== BTRFS_RAID_RAID0
) {
9610 dev_min
= fs_devices
->rw_devices
;
9611 min_free
= div64_u64(min_free
, dev_min
);
9614 /* We need to do this so that we can look at pending chunks */
9615 trans
= btrfs_join_transaction(root
);
9616 if (IS_ERR(trans
)) {
9617 ret
= PTR_ERR(trans
);
9621 mutex_lock(&fs_info
->chunk_mutex
);
9622 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
9626 * check to make sure we can actually find a chunk with enough
9627 * space to fit our block group in.
9629 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
9630 !device
->is_tgtdev_for_dev_replace
) {
9631 ret
= find_free_dev_extent(trans
, device
, min_free
,
9636 if (dev_nr
>= dev_min
)
9642 if (debug
&& ret
== -1)
9644 "no space to allocate a new chunk for block group %llu",
9645 block_group
->key
.objectid
);
9646 mutex_unlock(&fs_info
->chunk_mutex
);
9647 btrfs_end_transaction(trans
);
9649 btrfs_put_block_group(block_group
);
9653 static int find_first_block_group(struct btrfs_fs_info
*fs_info
,
9654 struct btrfs_path
*path
,
9655 struct btrfs_key
*key
)
9657 struct btrfs_root
*root
= fs_info
->extent_root
;
9659 struct btrfs_key found_key
;
9660 struct extent_buffer
*leaf
;
9663 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
9668 slot
= path
->slots
[0];
9669 leaf
= path
->nodes
[0];
9670 if (slot
>= btrfs_header_nritems(leaf
)) {
9671 ret
= btrfs_next_leaf(root
, path
);
9678 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
9680 if (found_key
.objectid
>= key
->objectid
&&
9681 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
9682 struct extent_map_tree
*em_tree
;
9683 struct extent_map
*em
;
9685 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
9686 read_lock(&em_tree
->lock
);
9687 em
= lookup_extent_mapping(em_tree
, found_key
.objectid
,
9689 read_unlock(&em_tree
->lock
);
9692 "logical %llu len %llu found bg but no related chunk",
9693 found_key
.objectid
, found_key
.offset
);
9698 free_extent_map(em
);
9707 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
9709 struct btrfs_block_group_cache
*block_group
;
9713 struct inode
*inode
;
9715 block_group
= btrfs_lookup_first_block_group(info
, last
);
9716 while (block_group
) {
9717 spin_lock(&block_group
->lock
);
9718 if (block_group
->iref
)
9720 spin_unlock(&block_group
->lock
);
9721 block_group
= next_block_group(info
, block_group
);
9730 inode
= block_group
->inode
;
9731 block_group
->iref
= 0;
9732 block_group
->inode
= NULL
;
9733 spin_unlock(&block_group
->lock
);
9734 ASSERT(block_group
->io_ctl
.inode
== NULL
);
9736 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
9737 btrfs_put_block_group(block_group
);
9741 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
9743 struct btrfs_block_group_cache
*block_group
;
9744 struct btrfs_space_info
*space_info
;
9745 struct btrfs_caching_control
*caching_ctl
;
9748 down_write(&info
->commit_root_sem
);
9749 while (!list_empty(&info
->caching_block_groups
)) {
9750 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
9751 struct btrfs_caching_control
, list
);
9752 list_del(&caching_ctl
->list
);
9753 put_caching_control(caching_ctl
);
9755 up_write(&info
->commit_root_sem
);
9757 spin_lock(&info
->unused_bgs_lock
);
9758 while (!list_empty(&info
->unused_bgs
)) {
9759 block_group
= list_first_entry(&info
->unused_bgs
,
9760 struct btrfs_block_group_cache
,
9762 list_del_init(&block_group
->bg_list
);
9763 btrfs_put_block_group(block_group
);
9765 spin_unlock(&info
->unused_bgs_lock
);
9767 spin_lock(&info
->block_group_cache_lock
);
9768 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
9769 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
9771 rb_erase(&block_group
->cache_node
,
9772 &info
->block_group_cache_tree
);
9773 RB_CLEAR_NODE(&block_group
->cache_node
);
9774 spin_unlock(&info
->block_group_cache_lock
);
9776 down_write(&block_group
->space_info
->groups_sem
);
9777 list_del(&block_group
->list
);
9778 up_write(&block_group
->space_info
->groups_sem
);
9780 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
9781 wait_block_group_cache_done(block_group
);
9784 * We haven't cached this block group, which means we could
9785 * possibly have excluded extents on this block group.
9787 if (block_group
->cached
== BTRFS_CACHE_NO
||
9788 block_group
->cached
== BTRFS_CACHE_ERROR
)
9789 free_excluded_extents(info
, block_group
);
9791 btrfs_remove_free_space_cache(block_group
);
9792 ASSERT(list_empty(&block_group
->dirty_list
));
9793 ASSERT(list_empty(&block_group
->io_list
));
9794 ASSERT(list_empty(&block_group
->bg_list
));
9795 ASSERT(atomic_read(&block_group
->count
) == 1);
9796 btrfs_put_block_group(block_group
);
9798 spin_lock(&info
->block_group_cache_lock
);
9800 spin_unlock(&info
->block_group_cache_lock
);
9802 /* now that all the block groups are freed, go through and
9803 * free all the space_info structs. This is only called during
9804 * the final stages of unmount, and so we know nobody is
9805 * using them. We call synchronize_rcu() once before we start,
9806 * just to be on the safe side.
9810 release_global_block_rsv(info
);
9812 while (!list_empty(&info
->space_info
)) {
9815 space_info
= list_entry(info
->space_info
.next
,
9816 struct btrfs_space_info
,
9820 * Do not hide this behind enospc_debug, this is actually
9821 * important and indicates a real bug if this happens.
9823 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
9824 space_info
->bytes_reserved
> 0 ||
9825 space_info
->bytes_may_use
> 0))
9826 dump_space_info(info
, space_info
, 0, 0);
9827 list_del(&space_info
->list
);
9828 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
9829 struct kobject
*kobj
;
9830 kobj
= space_info
->block_group_kobjs
[i
];
9831 space_info
->block_group_kobjs
[i
] = NULL
;
9837 kobject_del(&space_info
->kobj
);
9838 kobject_put(&space_info
->kobj
);
9843 static void __link_block_group(struct btrfs_space_info
*space_info
,
9844 struct btrfs_block_group_cache
*cache
)
9846 int index
= get_block_group_index(cache
);
9849 down_write(&space_info
->groups_sem
);
9850 if (list_empty(&space_info
->block_groups
[index
]))
9852 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
9853 up_write(&space_info
->groups_sem
);
9856 struct raid_kobject
*rkobj
;
9859 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
9862 rkobj
->raid_type
= index
;
9863 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
9864 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
9865 "%s", get_raid_name(index
));
9867 kobject_put(&rkobj
->kobj
);
9870 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
9875 btrfs_warn(cache
->fs_info
,
9876 "failed to add kobject for block cache, ignoring");
9879 static struct btrfs_block_group_cache
*
9880 btrfs_create_block_group_cache(struct btrfs_fs_info
*fs_info
,
9881 u64 start
, u64 size
)
9883 struct btrfs_block_group_cache
*cache
;
9885 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
9889 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
9891 if (!cache
->free_space_ctl
) {
9896 cache
->key
.objectid
= start
;
9897 cache
->key
.offset
= size
;
9898 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
9900 cache
->sectorsize
= fs_info
->sectorsize
;
9901 cache
->fs_info
= fs_info
;
9902 cache
->full_stripe_len
= btrfs_full_stripe_len(fs_info
,
9903 &fs_info
->mapping_tree
,
9905 set_free_space_tree_thresholds(cache
);
9907 atomic_set(&cache
->count
, 1);
9908 spin_lock_init(&cache
->lock
);
9909 init_rwsem(&cache
->data_rwsem
);
9910 INIT_LIST_HEAD(&cache
->list
);
9911 INIT_LIST_HEAD(&cache
->cluster_list
);
9912 INIT_LIST_HEAD(&cache
->bg_list
);
9913 INIT_LIST_HEAD(&cache
->ro_list
);
9914 INIT_LIST_HEAD(&cache
->dirty_list
);
9915 INIT_LIST_HEAD(&cache
->io_list
);
9916 btrfs_init_free_space_ctl(cache
);
9917 atomic_set(&cache
->trimming
, 0);
9918 mutex_init(&cache
->free_space_lock
);
9923 int btrfs_read_block_groups(struct btrfs_fs_info
*info
)
9925 struct btrfs_path
*path
;
9927 struct btrfs_block_group_cache
*cache
;
9928 struct btrfs_space_info
*space_info
;
9929 struct btrfs_key key
;
9930 struct btrfs_key found_key
;
9931 struct extent_buffer
*leaf
;
9937 feature
= btrfs_super_incompat_flags(info
->super_copy
);
9938 mixed
= !!(feature
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
);
9942 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
9943 path
= btrfs_alloc_path();
9946 path
->reada
= READA_FORWARD
;
9948 cache_gen
= btrfs_super_cache_generation(info
->super_copy
);
9949 if (btrfs_test_opt(info
, SPACE_CACHE
) &&
9950 btrfs_super_generation(info
->super_copy
) != cache_gen
)
9952 if (btrfs_test_opt(info
, CLEAR_CACHE
))
9956 ret
= find_first_block_group(info
, path
, &key
);
9962 leaf
= path
->nodes
[0];
9963 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
9965 cache
= btrfs_create_block_group_cache(info
, found_key
.objectid
,
9974 * When we mount with old space cache, we need to
9975 * set BTRFS_DC_CLEAR and set dirty flag.
9977 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9978 * truncate the old free space cache inode and
9980 * b) Setting 'dirty flag' makes sure that we flush
9981 * the new space cache info onto disk.
9983 if (btrfs_test_opt(info
, SPACE_CACHE
))
9984 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
9987 read_extent_buffer(leaf
, &cache
->item
,
9988 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
9989 sizeof(cache
->item
));
9990 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
9992 ((cache
->flags
& BTRFS_BLOCK_GROUP_METADATA
) &&
9993 (cache
->flags
& BTRFS_BLOCK_GROUP_DATA
))) {
9995 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9996 cache
->key
.objectid
);
10001 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
10002 btrfs_release_path(path
);
10005 * We need to exclude the super stripes now so that the space
10006 * info has super bytes accounted for, otherwise we'll think
10007 * we have more space than we actually do.
10009 ret
= exclude_super_stripes(info
, cache
);
10012 * We may have excluded something, so call this just in
10015 free_excluded_extents(info
, cache
);
10016 btrfs_put_block_group(cache
);
10021 * check for two cases, either we are full, and therefore
10022 * don't need to bother with the caching work since we won't
10023 * find any space, or we are empty, and we can just add all
10024 * the space in and be done with it. This saves us _alot_ of
10025 * time, particularly in the full case.
10027 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
10028 cache
->last_byte_to_unpin
= (u64
)-1;
10029 cache
->cached
= BTRFS_CACHE_FINISHED
;
10030 free_excluded_extents(info
, cache
);
10031 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10032 cache
->last_byte_to_unpin
= (u64
)-1;
10033 cache
->cached
= BTRFS_CACHE_FINISHED
;
10034 add_new_free_space(cache
, info
,
10035 found_key
.objectid
,
10036 found_key
.objectid
+
10038 free_excluded_extents(info
, cache
);
10041 ret
= btrfs_add_block_group_cache(info
, cache
);
10043 btrfs_remove_free_space_cache(cache
);
10044 btrfs_put_block_group(cache
);
10048 trace_btrfs_add_block_group(info
, cache
, 0);
10049 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
10050 btrfs_block_group_used(&cache
->item
),
10051 cache
->bytes_super
, &space_info
);
10053 btrfs_remove_free_space_cache(cache
);
10054 spin_lock(&info
->block_group_cache_lock
);
10055 rb_erase(&cache
->cache_node
,
10056 &info
->block_group_cache_tree
);
10057 RB_CLEAR_NODE(&cache
->cache_node
);
10058 spin_unlock(&info
->block_group_cache_lock
);
10059 btrfs_put_block_group(cache
);
10063 cache
->space_info
= space_info
;
10065 __link_block_group(space_info
, cache
);
10067 set_avail_alloc_bits(info
, cache
->flags
);
10068 if (btrfs_chunk_readonly(info
, cache
->key
.objectid
)) {
10069 inc_block_group_ro(cache
, 1);
10070 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10071 spin_lock(&info
->unused_bgs_lock
);
10072 /* Should always be true but just in case. */
10073 if (list_empty(&cache
->bg_list
)) {
10074 btrfs_get_block_group(cache
);
10075 list_add_tail(&cache
->bg_list
,
10076 &info
->unused_bgs
);
10078 spin_unlock(&info
->unused_bgs_lock
);
10082 list_for_each_entry_rcu(space_info
, &info
->space_info
, list
) {
10083 if (!(get_alloc_profile(info
, space_info
->flags
) &
10084 (BTRFS_BLOCK_GROUP_RAID10
|
10085 BTRFS_BLOCK_GROUP_RAID1
|
10086 BTRFS_BLOCK_GROUP_RAID5
|
10087 BTRFS_BLOCK_GROUP_RAID6
|
10088 BTRFS_BLOCK_GROUP_DUP
)))
10091 * avoid allocating from un-mirrored block group if there are
10092 * mirrored block groups.
10094 list_for_each_entry(cache
,
10095 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
10097 inc_block_group_ro(cache
, 1);
10098 list_for_each_entry(cache
,
10099 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
10101 inc_block_group_ro(cache
, 1);
10104 init_global_block_rsv(info
);
10107 btrfs_free_path(path
);
10111 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
10112 struct btrfs_fs_info
*fs_info
)
10114 struct btrfs_block_group_cache
*block_group
, *tmp
;
10115 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
10116 struct btrfs_block_group_item item
;
10117 struct btrfs_key key
;
10119 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
10121 trans
->can_flush_pending_bgs
= false;
10122 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
10126 spin_lock(&block_group
->lock
);
10127 memcpy(&item
, &block_group
->item
, sizeof(item
));
10128 memcpy(&key
, &block_group
->key
, sizeof(key
));
10129 spin_unlock(&block_group
->lock
);
10131 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
10134 btrfs_abort_transaction(trans
, ret
);
10135 ret
= btrfs_finish_chunk_alloc(trans
, fs_info
, key
.objectid
,
10138 btrfs_abort_transaction(trans
, ret
);
10139 add_block_group_free_space(trans
, fs_info
, block_group
);
10140 /* already aborted the transaction if it failed. */
10142 list_del_init(&block_group
->bg_list
);
10144 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
10147 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
10148 struct btrfs_fs_info
*fs_info
, u64 bytes_used
,
10149 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
10152 struct btrfs_block_group_cache
*cache
;
10155 btrfs_set_log_full_commit(fs_info
, trans
);
10157 cache
= btrfs_create_block_group_cache(fs_info
, chunk_offset
, size
);
10161 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
10162 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
10163 btrfs_set_block_group_flags(&cache
->item
, type
);
10165 cache
->flags
= type
;
10166 cache
->last_byte_to_unpin
= (u64
)-1;
10167 cache
->cached
= BTRFS_CACHE_FINISHED
;
10168 cache
->needs_free_space
= 1;
10169 ret
= exclude_super_stripes(fs_info
, cache
);
10172 * We may have excluded something, so call this just in
10175 free_excluded_extents(fs_info
, cache
);
10176 btrfs_put_block_group(cache
);
10180 add_new_free_space(cache
, fs_info
, chunk_offset
, chunk_offset
+ size
);
10182 free_excluded_extents(fs_info
, cache
);
10184 #ifdef CONFIG_BTRFS_DEBUG
10185 if (btrfs_should_fragment_free_space(cache
)) {
10186 u64 new_bytes_used
= size
- bytes_used
;
10188 bytes_used
+= new_bytes_used
>> 1;
10189 fragment_free_space(cache
);
10193 * Call to ensure the corresponding space_info object is created and
10194 * assigned to our block group, but don't update its counters just yet.
10195 * We want our bg to be added to the rbtree with its ->space_info set.
10197 ret
= update_space_info(fs_info
, cache
->flags
, 0, 0, 0,
10198 &cache
->space_info
);
10200 btrfs_remove_free_space_cache(cache
);
10201 btrfs_put_block_group(cache
);
10205 ret
= btrfs_add_block_group_cache(fs_info
, cache
);
10207 btrfs_remove_free_space_cache(cache
);
10208 btrfs_put_block_group(cache
);
10213 * Now that our block group has its ->space_info set and is inserted in
10214 * the rbtree, update the space info's counters.
10216 trace_btrfs_add_block_group(fs_info
, cache
, 1);
10217 ret
= update_space_info(fs_info
, cache
->flags
, size
, bytes_used
,
10218 cache
->bytes_super
, &cache
->space_info
);
10220 btrfs_remove_free_space_cache(cache
);
10221 spin_lock(&fs_info
->block_group_cache_lock
);
10222 rb_erase(&cache
->cache_node
,
10223 &fs_info
->block_group_cache_tree
);
10224 RB_CLEAR_NODE(&cache
->cache_node
);
10225 spin_unlock(&fs_info
->block_group_cache_lock
);
10226 btrfs_put_block_group(cache
);
10229 update_global_block_rsv(fs_info
);
10231 __link_block_group(cache
->space_info
, cache
);
10233 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
10235 set_avail_alloc_bits(fs_info
, type
);
10239 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
10241 u64 extra_flags
= chunk_to_extended(flags
) &
10242 BTRFS_EXTENDED_PROFILE_MASK
;
10244 write_seqlock(&fs_info
->profiles_lock
);
10245 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
10246 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
10247 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
10248 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
10249 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
10250 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
10251 write_sequnlock(&fs_info
->profiles_lock
);
10254 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
10255 struct btrfs_fs_info
*fs_info
, u64 group_start
,
10256 struct extent_map
*em
)
10258 struct btrfs_root
*root
= fs_info
->extent_root
;
10259 struct btrfs_path
*path
;
10260 struct btrfs_block_group_cache
*block_group
;
10261 struct btrfs_free_cluster
*cluster
;
10262 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
10263 struct btrfs_key key
;
10264 struct inode
*inode
;
10265 struct kobject
*kobj
= NULL
;
10269 struct btrfs_caching_control
*caching_ctl
= NULL
;
10272 block_group
= btrfs_lookup_block_group(fs_info
, group_start
);
10273 BUG_ON(!block_group
);
10274 BUG_ON(!block_group
->ro
);
10277 * Free the reserved super bytes from this block group before
10280 free_excluded_extents(fs_info
, block_group
);
10282 memcpy(&key
, &block_group
->key
, sizeof(key
));
10283 index
= get_block_group_index(block_group
);
10284 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
10285 BTRFS_BLOCK_GROUP_RAID1
|
10286 BTRFS_BLOCK_GROUP_RAID10
))
10291 /* make sure this block group isn't part of an allocation cluster */
10292 cluster
= &fs_info
->data_alloc_cluster
;
10293 spin_lock(&cluster
->refill_lock
);
10294 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10295 spin_unlock(&cluster
->refill_lock
);
10298 * make sure this block group isn't part of a metadata
10299 * allocation cluster
10301 cluster
= &fs_info
->meta_alloc_cluster
;
10302 spin_lock(&cluster
->refill_lock
);
10303 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10304 spin_unlock(&cluster
->refill_lock
);
10306 path
= btrfs_alloc_path();
10313 * get the inode first so any iput calls done for the io_list
10314 * aren't the final iput (no unlinks allowed now)
10316 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
10318 mutex_lock(&trans
->transaction
->cache_write_mutex
);
10320 * make sure our free spache cache IO is done before remove the
10323 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10324 if (!list_empty(&block_group
->io_list
)) {
10325 list_del_init(&block_group
->io_list
);
10327 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
10329 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10330 btrfs_wait_cache_io(trans
, block_group
, path
);
10331 btrfs_put_block_group(block_group
);
10332 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10335 if (!list_empty(&block_group
->dirty_list
)) {
10336 list_del_init(&block_group
->dirty_list
);
10337 btrfs_put_block_group(block_group
);
10339 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10340 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
10342 if (!IS_ERR(inode
)) {
10343 ret
= btrfs_orphan_add(trans
, inode
);
10345 btrfs_add_delayed_iput(inode
);
10348 clear_nlink(inode
);
10349 /* One for the block groups ref */
10350 spin_lock(&block_group
->lock
);
10351 if (block_group
->iref
) {
10352 block_group
->iref
= 0;
10353 block_group
->inode
= NULL
;
10354 spin_unlock(&block_group
->lock
);
10357 spin_unlock(&block_group
->lock
);
10359 /* One for our lookup ref */
10360 btrfs_add_delayed_iput(inode
);
10363 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
10364 key
.offset
= block_group
->key
.objectid
;
10367 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
10371 btrfs_release_path(path
);
10373 ret
= btrfs_del_item(trans
, tree_root
, path
);
10376 btrfs_release_path(path
);
10379 spin_lock(&fs_info
->block_group_cache_lock
);
10380 rb_erase(&block_group
->cache_node
,
10381 &fs_info
->block_group_cache_tree
);
10382 RB_CLEAR_NODE(&block_group
->cache_node
);
10384 if (fs_info
->first_logical_byte
== block_group
->key
.objectid
)
10385 fs_info
->first_logical_byte
= (u64
)-1;
10386 spin_unlock(&fs_info
->block_group_cache_lock
);
10388 down_write(&block_group
->space_info
->groups_sem
);
10390 * we must use list_del_init so people can check to see if they
10391 * are still on the list after taking the semaphore
10393 list_del_init(&block_group
->list
);
10394 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
10395 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
10396 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
10397 clear_avail_alloc_bits(fs_info
, block_group
->flags
);
10399 up_write(&block_group
->space_info
->groups_sem
);
10405 if (block_group
->has_caching_ctl
)
10406 caching_ctl
= get_caching_control(block_group
);
10407 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
10408 wait_block_group_cache_done(block_group
);
10409 if (block_group
->has_caching_ctl
) {
10410 down_write(&fs_info
->commit_root_sem
);
10411 if (!caching_ctl
) {
10412 struct btrfs_caching_control
*ctl
;
10414 list_for_each_entry(ctl
,
10415 &fs_info
->caching_block_groups
, list
)
10416 if (ctl
->block_group
== block_group
) {
10418 atomic_inc(&caching_ctl
->count
);
10423 list_del_init(&caching_ctl
->list
);
10424 up_write(&fs_info
->commit_root_sem
);
10426 /* Once for the caching bgs list and once for us. */
10427 put_caching_control(caching_ctl
);
10428 put_caching_control(caching_ctl
);
10432 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10433 if (!list_empty(&block_group
->dirty_list
)) {
10436 if (!list_empty(&block_group
->io_list
)) {
10439 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10440 btrfs_remove_free_space_cache(block_group
);
10442 spin_lock(&block_group
->space_info
->lock
);
10443 list_del_init(&block_group
->ro_list
);
10445 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
10446 WARN_ON(block_group
->space_info
->total_bytes
10447 < block_group
->key
.offset
);
10448 WARN_ON(block_group
->space_info
->bytes_readonly
10449 < block_group
->key
.offset
);
10450 WARN_ON(block_group
->space_info
->disk_total
10451 < block_group
->key
.offset
* factor
);
10453 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
10454 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
10455 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
10457 spin_unlock(&block_group
->space_info
->lock
);
10459 memcpy(&key
, &block_group
->key
, sizeof(key
));
10461 mutex_lock(&fs_info
->chunk_mutex
);
10462 if (!list_empty(&em
->list
)) {
10463 /* We're in the transaction->pending_chunks list. */
10464 free_extent_map(em
);
10466 spin_lock(&block_group
->lock
);
10467 block_group
->removed
= 1;
10469 * At this point trimming can't start on this block group, because we
10470 * removed the block group from the tree fs_info->block_group_cache_tree
10471 * so no one can't find it anymore and even if someone already got this
10472 * block group before we removed it from the rbtree, they have already
10473 * incremented block_group->trimming - if they didn't, they won't find
10474 * any free space entries because we already removed them all when we
10475 * called btrfs_remove_free_space_cache().
10477 * And we must not remove the extent map from the fs_info->mapping_tree
10478 * to prevent the same logical address range and physical device space
10479 * ranges from being reused for a new block group. This is because our
10480 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10481 * completely transactionless, so while it is trimming a range the
10482 * currently running transaction might finish and a new one start,
10483 * allowing for new block groups to be created that can reuse the same
10484 * physical device locations unless we take this special care.
10486 * There may also be an implicit trim operation if the file system
10487 * is mounted with -odiscard. The same protections must remain
10488 * in place until the extents have been discarded completely when
10489 * the transaction commit has completed.
10491 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
10493 * Make sure a trimmer task always sees the em in the pinned_chunks list
10494 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10495 * before checking block_group->removed).
10499 * Our em might be in trans->transaction->pending_chunks which
10500 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10501 * and so is the fs_info->pinned_chunks list.
10503 * So at this point we must be holding the chunk_mutex to avoid
10504 * any races with chunk allocation (more specifically at
10505 * volumes.c:contains_pending_extent()), to ensure it always
10506 * sees the em, either in the pending_chunks list or in the
10507 * pinned_chunks list.
10509 list_move_tail(&em
->list
, &fs_info
->pinned_chunks
);
10511 spin_unlock(&block_group
->lock
);
10514 struct extent_map_tree
*em_tree
;
10516 em_tree
= &fs_info
->mapping_tree
.map_tree
;
10517 write_lock(&em_tree
->lock
);
10519 * The em might be in the pending_chunks list, so make sure the
10520 * chunk mutex is locked, since remove_extent_mapping() will
10521 * delete us from that list.
10523 remove_extent_mapping(em_tree
, em
);
10524 write_unlock(&em_tree
->lock
);
10525 /* once for the tree */
10526 free_extent_map(em
);
10529 mutex_unlock(&fs_info
->chunk_mutex
);
10531 ret
= remove_block_group_free_space(trans
, fs_info
, block_group
);
10535 btrfs_put_block_group(block_group
);
10536 btrfs_put_block_group(block_group
);
10538 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
10544 ret
= btrfs_del_item(trans
, root
, path
);
10546 btrfs_free_path(path
);
10550 struct btrfs_trans_handle
*
10551 btrfs_start_trans_remove_block_group(struct btrfs_fs_info
*fs_info
,
10552 const u64 chunk_offset
)
10554 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
.map_tree
;
10555 struct extent_map
*em
;
10556 struct map_lookup
*map
;
10557 unsigned int num_items
;
10559 read_lock(&em_tree
->lock
);
10560 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
10561 read_unlock(&em_tree
->lock
);
10562 ASSERT(em
&& em
->start
== chunk_offset
);
10565 * We need to reserve 3 + N units from the metadata space info in order
10566 * to remove a block group (done at btrfs_remove_chunk() and at
10567 * btrfs_remove_block_group()), which are used for:
10569 * 1 unit for adding the free space inode's orphan (located in the tree
10571 * 1 unit for deleting the block group item (located in the extent
10573 * 1 unit for deleting the free space item (located in tree of tree
10575 * N units for deleting N device extent items corresponding to each
10576 * stripe (located in the device tree).
10578 * In order to remove a block group we also need to reserve units in the
10579 * system space info in order to update the chunk tree (update one or
10580 * more device items and remove one chunk item), but this is done at
10581 * btrfs_remove_chunk() through a call to check_system_chunk().
10583 map
= em
->map_lookup
;
10584 num_items
= 3 + map
->num_stripes
;
10585 free_extent_map(em
);
10587 return btrfs_start_transaction_fallback_global_rsv(fs_info
->extent_root
,
10592 * Process the unused_bgs list and remove any that don't have any allocated
10593 * space inside of them.
10595 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
10597 struct btrfs_block_group_cache
*block_group
;
10598 struct btrfs_space_info
*space_info
;
10599 struct btrfs_trans_handle
*trans
;
10602 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
10605 spin_lock(&fs_info
->unused_bgs_lock
);
10606 while (!list_empty(&fs_info
->unused_bgs
)) {
10610 block_group
= list_first_entry(&fs_info
->unused_bgs
,
10611 struct btrfs_block_group_cache
,
10613 list_del_init(&block_group
->bg_list
);
10615 space_info
= block_group
->space_info
;
10617 if (ret
|| btrfs_mixed_space_info(space_info
)) {
10618 btrfs_put_block_group(block_group
);
10621 spin_unlock(&fs_info
->unused_bgs_lock
);
10623 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
10625 /* Don't want to race with allocators so take the groups_sem */
10626 down_write(&space_info
->groups_sem
);
10627 spin_lock(&block_group
->lock
);
10628 if (block_group
->reserved
||
10629 btrfs_block_group_used(&block_group
->item
) ||
10631 list_is_singular(&block_group
->list
)) {
10633 * We want to bail if we made new allocations or have
10634 * outstanding allocations in this block group. We do
10635 * the ro check in case balance is currently acting on
10636 * this block group.
10638 spin_unlock(&block_group
->lock
);
10639 up_write(&space_info
->groups_sem
);
10642 spin_unlock(&block_group
->lock
);
10644 /* We don't want to force the issue, only flip if it's ok. */
10645 ret
= inc_block_group_ro(block_group
, 0);
10646 up_write(&space_info
->groups_sem
);
10653 * Want to do this before we do anything else so we can recover
10654 * properly if we fail to join the transaction.
10656 trans
= btrfs_start_trans_remove_block_group(fs_info
,
10657 block_group
->key
.objectid
);
10658 if (IS_ERR(trans
)) {
10659 btrfs_dec_block_group_ro(block_group
);
10660 ret
= PTR_ERR(trans
);
10665 * We could have pending pinned extents for this block group,
10666 * just delete them, we don't care about them anymore.
10668 start
= block_group
->key
.objectid
;
10669 end
= start
+ block_group
->key
.offset
- 1;
10671 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10672 * btrfs_finish_extent_commit(). If we are at transaction N,
10673 * another task might be running finish_extent_commit() for the
10674 * previous transaction N - 1, and have seen a range belonging
10675 * to the block group in freed_extents[] before we were able to
10676 * clear the whole block group range from freed_extents[]. This
10677 * means that task can lookup for the block group after we
10678 * unpinned it from freed_extents[] and removed it, leading to
10679 * a BUG_ON() at btrfs_unpin_extent_range().
10681 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
10682 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
10685 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10686 btrfs_dec_block_group_ro(block_group
);
10689 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
10692 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10693 btrfs_dec_block_group_ro(block_group
);
10696 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10698 /* Reset pinned so btrfs_put_block_group doesn't complain */
10699 spin_lock(&space_info
->lock
);
10700 spin_lock(&block_group
->lock
);
10702 space_info
->bytes_pinned
-= block_group
->pinned
;
10703 space_info
->bytes_readonly
+= block_group
->pinned
;
10704 percpu_counter_add(&space_info
->total_bytes_pinned
,
10705 -block_group
->pinned
);
10706 block_group
->pinned
= 0;
10708 spin_unlock(&block_group
->lock
);
10709 spin_unlock(&space_info
->lock
);
10711 /* DISCARD can flip during remount */
10712 trimming
= btrfs_test_opt(fs_info
, DISCARD
);
10714 /* Implicit trim during transaction commit. */
10716 btrfs_get_block_group_trimming(block_group
);
10719 * Btrfs_remove_chunk will abort the transaction if things go
10722 ret
= btrfs_remove_chunk(trans
, fs_info
,
10723 block_group
->key
.objectid
);
10727 btrfs_put_block_group_trimming(block_group
);
10732 * If we're not mounted with -odiscard, we can just forget
10733 * about this block group. Otherwise we'll need to wait
10734 * until transaction commit to do the actual discard.
10737 spin_lock(&fs_info
->unused_bgs_lock
);
10739 * A concurrent scrub might have added us to the list
10740 * fs_info->unused_bgs, so use a list_move operation
10741 * to add the block group to the deleted_bgs list.
10743 list_move(&block_group
->bg_list
,
10744 &trans
->transaction
->deleted_bgs
);
10745 spin_unlock(&fs_info
->unused_bgs_lock
);
10746 btrfs_get_block_group(block_group
);
10749 btrfs_end_transaction(trans
);
10751 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
10752 btrfs_put_block_group(block_group
);
10753 spin_lock(&fs_info
->unused_bgs_lock
);
10755 spin_unlock(&fs_info
->unused_bgs_lock
);
10758 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
10760 struct btrfs_space_info
*space_info
;
10761 struct btrfs_super_block
*disk_super
;
10767 disk_super
= fs_info
->super_copy
;
10768 if (!btrfs_super_root(disk_super
))
10771 features
= btrfs_super_incompat_flags(disk_super
);
10772 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
10775 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
10776 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
10781 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
10782 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
10784 flags
= BTRFS_BLOCK_GROUP_METADATA
;
10785 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
10789 flags
= BTRFS_BLOCK_GROUP_DATA
;
10790 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
10796 int btrfs_error_unpin_extent_range(struct btrfs_fs_info
*fs_info
,
10797 u64 start
, u64 end
)
10799 return unpin_extent_range(fs_info
, start
, end
, false);
10803 * It used to be that old block groups would be left around forever.
10804 * Iterating over them would be enough to trim unused space. Since we
10805 * now automatically remove them, we also need to iterate over unallocated
10808 * We don't want a transaction for this since the discard may take a
10809 * substantial amount of time. We don't require that a transaction be
10810 * running, but we do need to take a running transaction into account
10811 * to ensure that we're not discarding chunks that were released in
10812 * the current transaction.
10814 * Holding the chunks lock will prevent other threads from allocating
10815 * or releasing chunks, but it won't prevent a running transaction
10816 * from committing and releasing the memory that the pending chunks
10817 * list head uses. For that, we need to take a reference to the
10820 static int btrfs_trim_free_extents(struct btrfs_device
*device
,
10821 u64 minlen
, u64
*trimmed
)
10823 u64 start
= 0, len
= 0;
10828 /* Not writeable = nothing to do. */
10829 if (!device
->writeable
)
10832 /* No free space = nothing to do. */
10833 if (device
->total_bytes
<= device
->bytes_used
)
10839 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
10840 struct btrfs_transaction
*trans
;
10843 ret
= mutex_lock_interruptible(&fs_info
->chunk_mutex
);
10847 down_read(&fs_info
->commit_root_sem
);
10849 spin_lock(&fs_info
->trans_lock
);
10850 trans
= fs_info
->running_transaction
;
10852 atomic_inc(&trans
->use_count
);
10853 spin_unlock(&fs_info
->trans_lock
);
10855 ret
= find_free_dev_extent_start(trans
, device
, minlen
, start
,
10858 btrfs_put_transaction(trans
);
10861 up_read(&fs_info
->commit_root_sem
);
10862 mutex_unlock(&fs_info
->chunk_mutex
);
10863 if (ret
== -ENOSPC
)
10868 ret
= btrfs_issue_discard(device
->bdev
, start
, len
, &bytes
);
10869 up_read(&fs_info
->commit_root_sem
);
10870 mutex_unlock(&fs_info
->chunk_mutex
);
10878 if (fatal_signal_pending(current
)) {
10879 ret
= -ERESTARTSYS
;
10889 int btrfs_trim_fs(struct btrfs_fs_info
*fs_info
, struct fstrim_range
*range
)
10891 struct btrfs_block_group_cache
*cache
= NULL
;
10892 struct btrfs_device
*device
;
10893 struct list_head
*devices
;
10898 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
10902 * try to trim all FS space, our block group may start from non-zero.
10904 if (range
->len
== total_bytes
)
10905 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
10907 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
10910 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
10911 btrfs_put_block_group(cache
);
10915 start
= max(range
->start
, cache
->key
.objectid
);
10916 end
= min(range
->start
+ range
->len
,
10917 cache
->key
.objectid
+ cache
->key
.offset
);
10919 if (end
- start
>= range
->minlen
) {
10920 if (!block_group_cache_done(cache
)) {
10921 ret
= cache_block_group(cache
, 0);
10923 btrfs_put_block_group(cache
);
10926 ret
= wait_block_group_cache_done(cache
);
10928 btrfs_put_block_group(cache
);
10932 ret
= btrfs_trim_block_group(cache
,
10938 trimmed
+= group_trimmed
;
10940 btrfs_put_block_group(cache
);
10945 cache
= next_block_group(fs_info
, cache
);
10948 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
10949 devices
= &fs_info
->fs_devices
->alloc_list
;
10950 list_for_each_entry(device
, devices
, dev_alloc_list
) {
10951 ret
= btrfs_trim_free_extents(device
, range
->minlen
,
10956 trimmed
+= group_trimmed
;
10958 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
10960 range
->len
= trimmed
;
10965 * btrfs_{start,end}_write_no_snapshoting() are similar to
10966 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10967 * data into the page cache through nocow before the subvolume is snapshoted,
10968 * but flush the data into disk after the snapshot creation, or to prevent
10969 * operations while snapshoting is ongoing and that cause the snapshot to be
10970 * inconsistent (writes followed by expanding truncates for example).
10972 void btrfs_end_write_no_snapshoting(struct btrfs_root
*root
)
10974 percpu_counter_dec(&root
->subv_writers
->counter
);
10976 * Make sure counter is updated before we wake up waiters.
10979 if (waitqueue_active(&root
->subv_writers
->wait
))
10980 wake_up(&root
->subv_writers
->wait
);
10983 int btrfs_start_write_no_snapshoting(struct btrfs_root
*root
)
10985 if (atomic_read(&root
->will_be_snapshoted
))
10988 percpu_counter_inc(&root
->subv_writers
->counter
);
10990 * Make sure counter is updated before we check for snapshot creation.
10993 if (atomic_read(&root
->will_be_snapshoted
)) {
10994 btrfs_end_write_no_snapshoting(root
);
11000 static int wait_snapshoting_atomic_t(atomic_t
*a
)
11006 void btrfs_wait_for_snapshot_creation(struct btrfs_root
*root
)
11011 ret
= btrfs_start_write_no_snapshoting(root
);
11014 wait_on_atomic_t(&root
->will_be_snapshoted
,
11015 wait_snapshoting_atomic_t
,
11016 TASK_UNINTERRUPTIBLE
);