1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
17 #include "btrfs_inode.h"
19 #include "check-integrity.h"
21 #include "rcu-string.h"
23 #include "transaction.h"
25 static struct kmem_cache
*extent_state_cache
;
26 static struct kmem_cache
*extent_buffer_cache
;
27 static struct bio_set
*btrfs_bioset
;
29 static inline bool extent_state_in_tree(const struct extent_state
*state
)
31 return !RB_EMPTY_NODE(&state
->rb_node
);
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers
);
36 static LIST_HEAD(states
);
38 static DEFINE_SPINLOCK(leak_lock
);
41 void btrfs_leak_debug_add(struct list_head
*new, struct list_head
*head
)
45 spin_lock_irqsave(&leak_lock
, flags
);
47 spin_unlock_irqrestore(&leak_lock
, flags
);
51 void btrfs_leak_debug_del(struct list_head
*entry
)
55 spin_lock_irqsave(&leak_lock
, flags
);
57 spin_unlock_irqrestore(&leak_lock
, flags
);
61 void btrfs_leak_debug_check(void)
63 struct extent_state
*state
;
64 struct extent_buffer
*eb
;
66 while (!list_empty(&states
)) {
67 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state
->start
, state
->end
, state
->state
,
70 extent_state_in_tree(state
),
71 atomic_read(&state
->refs
));
72 list_del(&state
->leak_list
);
73 kmem_cache_free(extent_state_cache
, state
);
76 while (!list_empty(&buffers
)) {
77 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb
->start
, eb
->len
, atomic_read(&eb
->refs
));
80 list_del(&eb
->leak_list
);
81 kmem_cache_free(extent_buffer_cache
, eb
);
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller
,
88 struct extent_io_tree
*tree
, u64 start
, u64 end
)
96 inode
= tree
->mapping
->host
;
97 isize
= i_size_read(inode
);
98 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
99 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller
, btrfs_ino(inode
), isize
, start
, end
);
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
111 #define BUFFER_LRU_MAX 64
116 struct rb_node rb_node
;
119 struct extent_page_data
{
121 struct extent_io_tree
*tree
;
122 get_extent_t
*get_extent
;
123 unsigned long bio_flags
;
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
128 unsigned int extent_locked
:1;
130 /* tells the submit_bio code to use REQ_SYNC */
131 unsigned int sync_io
:1;
134 static void add_extent_changeset(struct extent_state
*state
, unsigned bits
,
135 struct extent_changeset
*changeset
,
142 if (set
&& (state
->state
& bits
) == bits
)
144 if (!set
&& (state
->state
& bits
) == 0)
146 changeset
->bytes_changed
+= state
->end
- state
->start
+ 1;
147 ret
= ulist_add(changeset
->range_changed
, state
->start
, state
->end
,
153 static noinline
void flush_write_bio(void *data
);
154 static inline struct btrfs_fs_info
*
155 tree_fs_info(struct extent_io_tree
*tree
)
159 return btrfs_sb(tree
->mapping
->host
->i_sb
);
162 int __init
extent_io_init(void)
164 extent_state_cache
= kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state
), 0,
166 SLAB_MEM_SPREAD
, NULL
);
167 if (!extent_state_cache
)
170 extent_buffer_cache
= kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer
), 0,
172 SLAB_MEM_SPREAD
, NULL
);
173 if (!extent_buffer_cache
)
174 goto free_state_cache
;
176 btrfs_bioset
= bioset_create(BIO_POOL_SIZE
,
177 offsetof(struct btrfs_io_bio
, bio
));
179 goto free_buffer_cache
;
181 if (bioset_integrity_create(btrfs_bioset
, BIO_POOL_SIZE
))
187 bioset_free(btrfs_bioset
);
191 kmem_cache_destroy(extent_buffer_cache
);
192 extent_buffer_cache
= NULL
;
195 kmem_cache_destroy(extent_state_cache
);
196 extent_state_cache
= NULL
;
200 void extent_io_exit(void)
202 btrfs_leak_debug_check();
205 * Make sure all delayed rcu free are flushed before we
209 kmem_cache_destroy(extent_state_cache
);
210 kmem_cache_destroy(extent_buffer_cache
);
212 bioset_free(btrfs_bioset
);
215 void extent_io_tree_init(struct extent_io_tree
*tree
,
216 struct address_space
*mapping
)
218 tree
->state
= RB_ROOT
;
220 tree
->dirty_bytes
= 0;
221 spin_lock_init(&tree
->lock
);
222 tree
->mapping
= mapping
;
225 static struct extent_state
*alloc_extent_state(gfp_t mask
)
227 struct extent_state
*state
;
229 state
= kmem_cache_alloc(extent_state_cache
, mask
);
233 state
->failrec
= NULL
;
234 RB_CLEAR_NODE(&state
->rb_node
);
235 btrfs_leak_debug_add(&state
->leak_list
, &states
);
236 atomic_set(&state
->refs
, 1);
237 init_waitqueue_head(&state
->wq
);
238 trace_alloc_extent_state(state
, mask
, _RET_IP_
);
242 void free_extent_state(struct extent_state
*state
)
246 if (atomic_dec_and_test(&state
->refs
)) {
247 WARN_ON(extent_state_in_tree(state
));
248 btrfs_leak_debug_del(&state
->leak_list
);
249 trace_free_extent_state(state
, _RET_IP_
);
250 kmem_cache_free(extent_state_cache
, state
);
254 static struct rb_node
*tree_insert(struct rb_root
*root
,
255 struct rb_node
*search_start
,
257 struct rb_node
*node
,
258 struct rb_node
***p_in
,
259 struct rb_node
**parent_in
)
262 struct rb_node
*parent
= NULL
;
263 struct tree_entry
*entry
;
265 if (p_in
&& parent_in
) {
271 p
= search_start
? &search_start
: &root
->rb_node
;
274 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
276 if (offset
< entry
->start
)
278 else if (offset
> entry
->end
)
285 rb_link_node(node
, parent
, p
);
286 rb_insert_color(node
, root
);
290 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
291 struct rb_node
**prev_ret
,
292 struct rb_node
**next_ret
,
293 struct rb_node
***p_ret
,
294 struct rb_node
**parent_ret
)
296 struct rb_root
*root
= &tree
->state
;
297 struct rb_node
**n
= &root
->rb_node
;
298 struct rb_node
*prev
= NULL
;
299 struct rb_node
*orig_prev
= NULL
;
300 struct tree_entry
*entry
;
301 struct tree_entry
*prev_entry
= NULL
;
305 entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
308 if (offset
< entry
->start
)
310 else if (offset
> entry
->end
)
323 while (prev
&& offset
> prev_entry
->end
) {
324 prev
= rb_next(prev
);
325 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
332 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
333 while (prev
&& offset
< prev_entry
->start
) {
334 prev
= rb_prev(prev
);
335 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
342 static inline struct rb_node
*
343 tree_search_for_insert(struct extent_io_tree
*tree
,
345 struct rb_node
***p_ret
,
346 struct rb_node
**parent_ret
)
348 struct rb_node
*prev
= NULL
;
351 ret
= __etree_search(tree
, offset
, &prev
, NULL
, p_ret
, parent_ret
);
357 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
360 return tree_search_for_insert(tree
, offset
, NULL
, NULL
);
363 static void merge_cb(struct extent_io_tree
*tree
, struct extent_state
*new,
364 struct extent_state
*other
)
366 if (tree
->ops
&& tree
->ops
->merge_extent_hook
)
367 tree
->ops
->merge_extent_hook(tree
->mapping
->host
, new,
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
378 * This should be called with the tree lock held.
380 static void merge_state(struct extent_io_tree
*tree
,
381 struct extent_state
*state
)
383 struct extent_state
*other
;
384 struct rb_node
*other_node
;
386 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
389 other_node
= rb_prev(&state
->rb_node
);
391 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
392 if (other
->end
== state
->start
- 1 &&
393 other
->state
== state
->state
) {
394 merge_cb(tree
, state
, other
);
395 state
->start
= other
->start
;
396 rb_erase(&other
->rb_node
, &tree
->state
);
397 RB_CLEAR_NODE(&other
->rb_node
);
398 free_extent_state(other
);
401 other_node
= rb_next(&state
->rb_node
);
403 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
404 if (other
->start
== state
->end
+ 1 &&
405 other
->state
== state
->state
) {
406 merge_cb(tree
, state
, other
);
407 state
->end
= other
->end
;
408 rb_erase(&other
->rb_node
, &tree
->state
);
409 RB_CLEAR_NODE(&other
->rb_node
);
410 free_extent_state(other
);
415 static void set_state_cb(struct extent_io_tree
*tree
,
416 struct extent_state
*state
, unsigned *bits
)
418 if (tree
->ops
&& tree
->ops
->set_bit_hook
)
419 tree
->ops
->set_bit_hook(tree
->mapping
->host
, state
, bits
);
422 static void clear_state_cb(struct extent_io_tree
*tree
,
423 struct extent_state
*state
, unsigned *bits
)
425 if (tree
->ops
&& tree
->ops
->clear_bit_hook
)
426 tree
->ops
->clear_bit_hook(tree
->mapping
->host
, state
, bits
);
429 static void set_state_bits(struct extent_io_tree
*tree
,
430 struct extent_state
*state
, unsigned *bits
,
431 struct extent_changeset
*changeset
);
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
443 static int insert_state(struct extent_io_tree
*tree
,
444 struct extent_state
*state
, u64 start
, u64 end
,
446 struct rb_node
**parent
,
447 unsigned *bits
, struct extent_changeset
*changeset
)
449 struct rb_node
*node
;
452 WARN(1, KERN_ERR
"BTRFS: end < start %llu %llu\n",
454 state
->start
= start
;
457 set_state_bits(tree
, state
, bits
, changeset
);
459 node
= tree_insert(&tree
->state
, NULL
, end
, &state
->rb_node
, p
, parent
);
461 struct extent_state
*found
;
462 found
= rb_entry(node
, struct extent_state
, rb_node
);
463 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
464 found
->start
, found
->end
, start
, end
);
467 merge_state(tree
, state
);
471 static void split_cb(struct extent_io_tree
*tree
, struct extent_state
*orig
,
474 if (tree
->ops
&& tree
->ops
->split_extent_hook
)
475 tree
->ops
->split_extent_hook(tree
->mapping
->host
, orig
, split
);
479 * split a given extent state struct in two, inserting the preallocated
480 * struct 'prealloc' as the newly created second half. 'split' indicates an
481 * offset inside 'orig' where it should be split.
484 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
485 * are two extent state structs in the tree:
486 * prealloc: [orig->start, split - 1]
487 * orig: [ split, orig->end ]
489 * The tree locks are not taken by this function. They need to be held
492 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
493 struct extent_state
*prealloc
, u64 split
)
495 struct rb_node
*node
;
497 split_cb(tree
, orig
, split
);
499 prealloc
->start
= orig
->start
;
500 prealloc
->end
= split
- 1;
501 prealloc
->state
= orig
->state
;
504 node
= tree_insert(&tree
->state
, &orig
->rb_node
, prealloc
->end
,
505 &prealloc
->rb_node
, NULL
, NULL
);
507 free_extent_state(prealloc
);
513 static struct extent_state
*next_state(struct extent_state
*state
)
515 struct rb_node
*next
= rb_next(&state
->rb_node
);
517 return rb_entry(next
, struct extent_state
, rb_node
);
523 * utility function to clear some bits in an extent state struct.
524 * it will optionally wake up any one waiting on this state (wake == 1).
526 * If no bits are set on the state struct after clearing things, the
527 * struct is freed and removed from the tree
529 static struct extent_state
*clear_state_bit(struct extent_io_tree
*tree
,
530 struct extent_state
*state
,
531 unsigned *bits
, int wake
,
532 struct extent_changeset
*changeset
)
534 struct extent_state
*next
;
535 unsigned bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
537 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
538 u64 range
= state
->end
- state
->start
+ 1;
539 WARN_ON(range
> tree
->dirty_bytes
);
540 tree
->dirty_bytes
-= range
;
542 clear_state_cb(tree
, state
, bits
);
543 add_extent_changeset(state
, bits_to_clear
, changeset
, 0);
544 state
->state
&= ~bits_to_clear
;
547 if (state
->state
== 0) {
548 next
= next_state(state
);
549 if (extent_state_in_tree(state
)) {
550 rb_erase(&state
->rb_node
, &tree
->state
);
551 RB_CLEAR_NODE(&state
->rb_node
);
552 free_extent_state(state
);
557 merge_state(tree
, state
);
558 next
= next_state(state
);
563 static struct extent_state
*
564 alloc_extent_state_atomic(struct extent_state
*prealloc
)
567 prealloc
= alloc_extent_state(GFP_ATOMIC
);
572 static void extent_io_tree_panic(struct extent_io_tree
*tree
, int err
)
574 btrfs_panic(tree_fs_info(tree
), err
,
575 "Locking error: Extent tree was modified by another thread while locked.");
579 * clear some bits on a range in the tree. This may require splitting
580 * or inserting elements in the tree, so the gfp mask is used to
581 * indicate which allocations or sleeping are allowed.
583 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
584 * the given range from the tree regardless of state (ie for truncate).
586 * the range [start, end] is inclusive.
588 * This takes the tree lock, and returns 0 on success and < 0 on error.
590 static int __clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
591 unsigned bits
, int wake
, int delete,
592 struct extent_state
**cached_state
,
593 gfp_t mask
, struct extent_changeset
*changeset
)
595 struct extent_state
*state
;
596 struct extent_state
*cached
;
597 struct extent_state
*prealloc
= NULL
;
598 struct rb_node
*node
;
603 btrfs_debug_check_extent_io_range(tree
, start
, end
);
605 if (bits
& EXTENT_DELALLOC
)
606 bits
|= EXTENT_NORESERVE
;
609 bits
|= ~EXTENT_CTLBITS
;
610 bits
|= EXTENT_FIRST_DELALLOC
;
612 if (bits
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
615 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
617 * Don't care for allocation failure here because we might end
618 * up not needing the pre-allocated extent state at all, which
619 * is the case if we only have in the tree extent states that
620 * cover our input range and don't cover too any other range.
621 * If we end up needing a new extent state we allocate it later.
623 prealloc
= alloc_extent_state(mask
);
626 spin_lock(&tree
->lock
);
628 cached
= *cached_state
;
631 *cached_state
= NULL
;
635 if (cached
&& extent_state_in_tree(cached
) &&
636 cached
->start
<= start
&& cached
->end
> start
) {
638 atomic_dec(&cached
->refs
);
643 free_extent_state(cached
);
646 * this search will find the extents that end after
649 node
= tree_search(tree
, start
);
652 state
= rb_entry(node
, struct extent_state
, rb_node
);
654 if (state
->start
> end
)
656 WARN_ON(state
->end
< start
);
657 last_end
= state
->end
;
659 /* the state doesn't have the wanted bits, go ahead */
660 if (!(state
->state
& bits
)) {
661 state
= next_state(state
);
666 * | ---- desired range ---- |
668 * | ------------- state -------------- |
670 * We need to split the extent we found, and may flip
671 * bits on second half.
673 * If the extent we found extends past our range, we
674 * just split and search again. It'll get split again
675 * the next time though.
677 * If the extent we found is inside our range, we clear
678 * the desired bit on it.
681 if (state
->start
< start
) {
682 prealloc
= alloc_extent_state_atomic(prealloc
);
684 err
= split_state(tree
, state
, prealloc
, start
);
686 extent_io_tree_panic(tree
, err
);
691 if (state
->end
<= end
) {
692 state
= clear_state_bit(tree
, state
, &bits
, wake
,
699 * | ---- desired range ---- |
701 * We need to split the extent, and clear the bit
704 if (state
->start
<= end
&& state
->end
> end
) {
705 prealloc
= alloc_extent_state_atomic(prealloc
);
707 err
= split_state(tree
, state
, prealloc
, end
+ 1);
709 extent_io_tree_panic(tree
, err
);
714 clear_state_bit(tree
, prealloc
, &bits
, wake
, changeset
);
720 state
= clear_state_bit(tree
, state
, &bits
, wake
, changeset
);
722 if (last_end
== (u64
)-1)
724 start
= last_end
+ 1;
725 if (start
<= end
&& state
&& !need_resched())
731 spin_unlock(&tree
->lock
);
732 if (gfpflags_allow_blocking(mask
))
737 spin_unlock(&tree
->lock
);
739 free_extent_state(prealloc
);
745 static void wait_on_state(struct extent_io_tree
*tree
,
746 struct extent_state
*state
)
747 __releases(tree
->lock
)
748 __acquires(tree
->lock
)
751 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
752 spin_unlock(&tree
->lock
);
754 spin_lock(&tree
->lock
);
755 finish_wait(&state
->wq
, &wait
);
759 * waits for one or more bits to clear on a range in the state tree.
760 * The range [start, end] is inclusive.
761 * The tree lock is taken by this function
763 static void wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
766 struct extent_state
*state
;
767 struct rb_node
*node
;
769 btrfs_debug_check_extent_io_range(tree
, start
, end
);
771 spin_lock(&tree
->lock
);
775 * this search will find all the extents that end after
778 node
= tree_search(tree
, start
);
783 state
= rb_entry(node
, struct extent_state
, rb_node
);
785 if (state
->start
> end
)
788 if (state
->state
& bits
) {
789 start
= state
->start
;
790 atomic_inc(&state
->refs
);
791 wait_on_state(tree
, state
);
792 free_extent_state(state
);
795 start
= state
->end
+ 1;
800 if (!cond_resched_lock(&tree
->lock
)) {
801 node
= rb_next(node
);
806 spin_unlock(&tree
->lock
);
809 static void set_state_bits(struct extent_io_tree
*tree
,
810 struct extent_state
*state
,
811 unsigned *bits
, struct extent_changeset
*changeset
)
813 unsigned bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
815 set_state_cb(tree
, state
, bits
);
816 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
817 u64 range
= state
->end
- state
->start
+ 1;
818 tree
->dirty_bytes
+= range
;
820 add_extent_changeset(state
, bits_to_set
, changeset
, 1);
821 state
->state
|= bits_to_set
;
824 static void cache_state_if_flags(struct extent_state
*state
,
825 struct extent_state
**cached_ptr
,
828 if (cached_ptr
&& !(*cached_ptr
)) {
829 if (!flags
|| (state
->state
& flags
)) {
831 atomic_inc(&state
->refs
);
836 static void cache_state(struct extent_state
*state
,
837 struct extent_state
**cached_ptr
)
839 return cache_state_if_flags(state
, cached_ptr
,
840 EXTENT_IOBITS
| EXTENT_BOUNDARY
);
844 * set some bits on a range in the tree. This may require allocations or
845 * sleeping, so the gfp mask is used to indicate what is allowed.
847 * If any of the exclusive bits are set, this will fail with -EEXIST if some
848 * part of the range already has the desired bits set. The start of the
849 * existing range is returned in failed_start in this case.
851 * [start, end] is inclusive This takes the tree lock.
854 static int __must_check
855 __set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
856 unsigned bits
, unsigned exclusive_bits
,
857 u64
*failed_start
, struct extent_state
**cached_state
,
858 gfp_t mask
, struct extent_changeset
*changeset
)
860 struct extent_state
*state
;
861 struct extent_state
*prealloc
= NULL
;
862 struct rb_node
*node
;
864 struct rb_node
*parent
;
869 btrfs_debug_check_extent_io_range(tree
, start
, end
);
871 bits
|= EXTENT_FIRST_DELALLOC
;
873 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
875 * Don't care for allocation failure here because we might end
876 * up not needing the pre-allocated extent state at all, which
877 * is the case if we only have in the tree extent states that
878 * cover our input range and don't cover too any other range.
879 * If we end up needing a new extent state we allocate it later.
881 prealloc
= alloc_extent_state(mask
);
884 spin_lock(&tree
->lock
);
885 if (cached_state
&& *cached_state
) {
886 state
= *cached_state
;
887 if (state
->start
<= start
&& state
->end
> start
&&
888 extent_state_in_tree(state
)) {
889 node
= &state
->rb_node
;
894 * this search will find all the extents that end after
897 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
899 prealloc
= alloc_extent_state_atomic(prealloc
);
901 err
= insert_state(tree
, prealloc
, start
, end
,
902 &p
, &parent
, &bits
, changeset
);
904 extent_io_tree_panic(tree
, err
);
906 cache_state(prealloc
, cached_state
);
910 state
= rb_entry(node
, struct extent_state
, rb_node
);
912 last_start
= state
->start
;
913 last_end
= state
->end
;
916 * | ---- desired range ---- |
919 * Just lock what we found and keep going
921 if (state
->start
== start
&& state
->end
<= end
) {
922 if (state
->state
& exclusive_bits
) {
923 *failed_start
= state
->start
;
928 set_state_bits(tree
, state
, &bits
, changeset
);
929 cache_state(state
, cached_state
);
930 merge_state(tree
, state
);
931 if (last_end
== (u64
)-1)
933 start
= last_end
+ 1;
934 state
= next_state(state
);
935 if (start
< end
&& state
&& state
->start
== start
&&
942 * | ---- desired range ---- |
945 * | ------------- state -------------- |
947 * We need to split the extent we found, and may flip bits on
950 * If the extent we found extends past our
951 * range, we just split and search again. It'll get split
952 * again the next time though.
954 * If the extent we found is inside our range, we set the
957 if (state
->start
< start
) {
958 if (state
->state
& exclusive_bits
) {
959 *failed_start
= start
;
964 prealloc
= alloc_extent_state_atomic(prealloc
);
966 err
= split_state(tree
, state
, prealloc
, start
);
968 extent_io_tree_panic(tree
, err
);
973 if (state
->end
<= end
) {
974 set_state_bits(tree
, state
, &bits
, changeset
);
975 cache_state(state
, cached_state
);
976 merge_state(tree
, state
);
977 if (last_end
== (u64
)-1)
979 start
= last_end
+ 1;
980 state
= next_state(state
);
981 if (start
< end
&& state
&& state
->start
== start
&&
988 * | ---- desired range ---- |
989 * | state | or | state |
991 * There's a hole, we need to insert something in it and
992 * ignore the extent we found.
994 if (state
->start
> start
) {
996 if (end
< last_start
)
999 this_end
= last_start
- 1;
1001 prealloc
= alloc_extent_state_atomic(prealloc
);
1005 * Avoid to free 'prealloc' if it can be merged with
1008 err
= insert_state(tree
, prealloc
, start
, this_end
,
1009 NULL
, NULL
, &bits
, changeset
);
1011 extent_io_tree_panic(tree
, err
);
1013 cache_state(prealloc
, cached_state
);
1015 start
= this_end
+ 1;
1019 * | ---- desired range ---- |
1021 * We need to split the extent, and set the bit
1024 if (state
->start
<= end
&& state
->end
> end
) {
1025 if (state
->state
& exclusive_bits
) {
1026 *failed_start
= start
;
1031 prealloc
= alloc_extent_state_atomic(prealloc
);
1033 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1035 extent_io_tree_panic(tree
, err
);
1037 set_state_bits(tree
, prealloc
, &bits
, changeset
);
1038 cache_state(prealloc
, cached_state
);
1039 merge_state(tree
, prealloc
);
1047 spin_unlock(&tree
->lock
);
1048 if (gfpflags_allow_blocking(mask
))
1053 spin_unlock(&tree
->lock
);
1055 free_extent_state(prealloc
);
1061 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1062 unsigned bits
, u64
* failed_start
,
1063 struct extent_state
**cached_state
, gfp_t mask
)
1065 return __set_extent_bit(tree
, start
, end
, bits
, 0, failed_start
,
1066 cached_state
, mask
, NULL
);
1071 * convert_extent_bit - convert all bits in a given range from one bit to
1073 * @tree: the io tree to search
1074 * @start: the start offset in bytes
1075 * @end: the end offset in bytes (inclusive)
1076 * @bits: the bits to set in this range
1077 * @clear_bits: the bits to clear in this range
1078 * @cached_state: state that we're going to cache
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1086 * All allocations are done with GFP_NOFS.
1088 int convert_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1089 unsigned bits
, unsigned clear_bits
,
1090 struct extent_state
**cached_state
)
1092 struct extent_state
*state
;
1093 struct extent_state
*prealloc
= NULL
;
1094 struct rb_node
*node
;
1096 struct rb_node
*parent
;
1100 bool first_iteration
= true;
1102 btrfs_debug_check_extent_io_range(tree
, start
, end
);
1107 * Best effort, don't worry if extent state allocation fails
1108 * here for the first iteration. We might have a cached state
1109 * that matches exactly the target range, in which case no
1110 * extent state allocations are needed. We'll only know this
1111 * after locking the tree.
1113 prealloc
= alloc_extent_state(GFP_NOFS
);
1114 if (!prealloc
&& !first_iteration
)
1118 spin_lock(&tree
->lock
);
1119 if (cached_state
&& *cached_state
) {
1120 state
= *cached_state
;
1121 if (state
->start
<= start
&& state
->end
> start
&&
1122 extent_state_in_tree(state
)) {
1123 node
= &state
->rb_node
;
1129 * this search will find all the extents that end after
1132 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
1134 prealloc
= alloc_extent_state_atomic(prealloc
);
1139 err
= insert_state(tree
, prealloc
, start
, end
,
1140 &p
, &parent
, &bits
, NULL
);
1142 extent_io_tree_panic(tree
, err
);
1143 cache_state(prealloc
, cached_state
);
1147 state
= rb_entry(node
, struct extent_state
, rb_node
);
1149 last_start
= state
->start
;
1150 last_end
= state
->end
;
1153 * | ---- desired range ---- |
1156 * Just lock what we found and keep going
1158 if (state
->start
== start
&& state
->end
<= end
) {
1159 set_state_bits(tree
, state
, &bits
, NULL
);
1160 cache_state(state
, cached_state
);
1161 state
= clear_state_bit(tree
, state
, &clear_bits
, 0, NULL
);
1162 if (last_end
== (u64
)-1)
1164 start
= last_end
+ 1;
1165 if (start
< end
&& state
&& state
->start
== start
&&
1172 * | ---- desired range ---- |
1175 * | ------------- state -------------- |
1177 * We need to split the extent we found, and may flip bits on
1180 * If the extent we found extends past our
1181 * range, we just split and search again. It'll get split
1182 * again the next time though.
1184 * If the extent we found is inside our range, we set the
1185 * desired bit on it.
1187 if (state
->start
< start
) {
1188 prealloc
= alloc_extent_state_atomic(prealloc
);
1193 err
= split_state(tree
, state
, prealloc
, start
);
1195 extent_io_tree_panic(tree
, err
);
1199 if (state
->end
<= end
) {
1200 set_state_bits(tree
, state
, &bits
, NULL
);
1201 cache_state(state
, cached_state
);
1202 state
= clear_state_bit(tree
, state
, &clear_bits
, 0,
1204 if (last_end
== (u64
)-1)
1206 start
= last_end
+ 1;
1207 if (start
< end
&& state
&& state
->start
== start
&&
1214 * | ---- desired range ---- |
1215 * | state | or | state |
1217 * There's a hole, we need to insert something in it and
1218 * ignore the extent we found.
1220 if (state
->start
> start
) {
1222 if (end
< last_start
)
1225 this_end
= last_start
- 1;
1227 prealloc
= alloc_extent_state_atomic(prealloc
);
1234 * Avoid to free 'prealloc' if it can be merged with
1237 err
= insert_state(tree
, prealloc
, start
, this_end
,
1238 NULL
, NULL
, &bits
, NULL
);
1240 extent_io_tree_panic(tree
, err
);
1241 cache_state(prealloc
, cached_state
);
1243 start
= this_end
+ 1;
1247 * | ---- desired range ---- |
1249 * We need to split the extent, and set the bit
1252 if (state
->start
<= end
&& state
->end
> end
) {
1253 prealloc
= alloc_extent_state_atomic(prealloc
);
1259 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1261 extent_io_tree_panic(tree
, err
);
1263 set_state_bits(tree
, prealloc
, &bits
, NULL
);
1264 cache_state(prealloc
, cached_state
);
1265 clear_state_bit(tree
, prealloc
, &clear_bits
, 0, NULL
);
1273 spin_unlock(&tree
->lock
);
1275 first_iteration
= false;
1279 spin_unlock(&tree
->lock
);
1281 free_extent_state(prealloc
);
1286 /* wrappers around set/clear extent bit */
1287 int set_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1288 unsigned bits
, struct extent_changeset
*changeset
)
1291 * We don't support EXTENT_LOCKED yet, as current changeset will
1292 * record any bits changed, so for EXTENT_LOCKED case, it will
1293 * either fail with -EEXIST or changeset will record the whole
1296 BUG_ON(bits
& EXTENT_LOCKED
);
1298 return __set_extent_bit(tree
, start
, end
, bits
, 0, NULL
, NULL
, GFP_NOFS
,
1302 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1303 unsigned bits
, int wake
, int delete,
1304 struct extent_state
**cached
, gfp_t mask
)
1306 return __clear_extent_bit(tree
, start
, end
, bits
, wake
, delete,
1307 cached
, mask
, NULL
);
1310 int clear_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1311 unsigned bits
, struct extent_changeset
*changeset
)
1314 * Don't support EXTENT_LOCKED case, same reason as
1315 * set_record_extent_bits().
1317 BUG_ON(bits
& EXTENT_LOCKED
);
1319 return __clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, GFP_NOFS
,
1324 * either insert or lock state struct between start and end use mask to tell
1325 * us if waiting is desired.
1327 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1328 struct extent_state
**cached_state
)
1334 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
,
1335 EXTENT_LOCKED
, &failed_start
,
1336 cached_state
, GFP_NOFS
, NULL
);
1337 if (err
== -EEXIST
) {
1338 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1339 start
= failed_start
;
1342 WARN_ON(start
> end
);
1347 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1352 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1353 &failed_start
, NULL
, GFP_NOFS
, NULL
);
1354 if (err
== -EEXIST
) {
1355 if (failed_start
> start
)
1356 clear_extent_bit(tree
, start
, failed_start
- 1,
1357 EXTENT_LOCKED
, 1, 0, NULL
, GFP_NOFS
);
1363 void extent_range_clear_dirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1365 unsigned long index
= start
>> PAGE_SHIFT
;
1366 unsigned long end_index
= end
>> PAGE_SHIFT
;
1369 while (index
<= end_index
) {
1370 page
= find_get_page(inode
->i_mapping
, index
);
1371 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1372 clear_page_dirty_for_io(page
);
1378 void extent_range_redirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1380 unsigned long index
= start
>> PAGE_SHIFT
;
1381 unsigned long end_index
= end
>> PAGE_SHIFT
;
1384 while (index
<= end_index
) {
1385 page
= find_get_page(inode
->i_mapping
, index
);
1386 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1387 __set_page_dirty_nobuffers(page
);
1388 account_page_redirty(page
);
1395 * helper function to set both pages and extents in the tree writeback
1397 static void set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1399 unsigned long index
= start
>> PAGE_SHIFT
;
1400 unsigned long end_index
= end
>> PAGE_SHIFT
;
1403 while (index
<= end_index
) {
1404 page
= find_get_page(tree
->mapping
, index
);
1405 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1406 set_page_writeback(page
);
1412 /* find the first state struct with 'bits' set after 'start', and
1413 * return it. tree->lock must be held. NULL will returned if
1414 * nothing was found after 'start'
1416 static struct extent_state
*
1417 find_first_extent_bit_state(struct extent_io_tree
*tree
,
1418 u64 start
, unsigned bits
)
1420 struct rb_node
*node
;
1421 struct extent_state
*state
;
1424 * this search will find all the extents that end after
1427 node
= tree_search(tree
, start
);
1432 state
= rb_entry(node
, struct extent_state
, rb_node
);
1433 if (state
->end
>= start
&& (state
->state
& bits
))
1436 node
= rb_next(node
);
1445 * find the first offset in the io tree with 'bits' set. zero is
1446 * returned if we find something, and *start_ret and *end_ret are
1447 * set to reflect the state struct that was found.
1449 * If nothing was found, 1 is returned. If found something, return 0.
1451 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1452 u64
*start_ret
, u64
*end_ret
, unsigned bits
,
1453 struct extent_state
**cached_state
)
1455 struct extent_state
*state
;
1459 spin_lock(&tree
->lock
);
1460 if (cached_state
&& *cached_state
) {
1461 state
= *cached_state
;
1462 if (state
->end
== start
- 1 && extent_state_in_tree(state
)) {
1463 n
= rb_next(&state
->rb_node
);
1465 state
= rb_entry(n
, struct extent_state
,
1467 if (state
->state
& bits
)
1471 free_extent_state(*cached_state
);
1472 *cached_state
= NULL
;
1475 free_extent_state(*cached_state
);
1476 *cached_state
= NULL
;
1479 state
= find_first_extent_bit_state(tree
, start
, bits
);
1482 cache_state_if_flags(state
, cached_state
, 0);
1483 *start_ret
= state
->start
;
1484 *end_ret
= state
->end
;
1488 spin_unlock(&tree
->lock
);
1493 * find a contiguous range of bytes in the file marked as delalloc, not
1494 * more than 'max_bytes'. start and end are used to return the range,
1496 * 1 is returned if we find something, 0 if nothing was in the tree
1498 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1499 u64
*start
, u64
*end
, u64 max_bytes
,
1500 struct extent_state
**cached_state
)
1502 struct rb_node
*node
;
1503 struct extent_state
*state
;
1504 u64 cur_start
= *start
;
1506 u64 total_bytes
= 0;
1508 spin_lock(&tree
->lock
);
1511 * this search will find all the extents that end after
1514 node
= tree_search(tree
, cur_start
);
1522 state
= rb_entry(node
, struct extent_state
, rb_node
);
1523 if (found
&& (state
->start
!= cur_start
||
1524 (state
->state
& EXTENT_BOUNDARY
))) {
1527 if (!(state
->state
& EXTENT_DELALLOC
)) {
1533 *start
= state
->start
;
1534 *cached_state
= state
;
1535 atomic_inc(&state
->refs
);
1539 cur_start
= state
->end
+ 1;
1540 node
= rb_next(node
);
1541 total_bytes
+= state
->end
- state
->start
+ 1;
1542 if (total_bytes
>= max_bytes
)
1548 spin_unlock(&tree
->lock
);
1552 static noinline
void __unlock_for_delalloc(struct inode
*inode
,
1553 struct page
*locked_page
,
1557 struct page
*pages
[16];
1558 unsigned long index
= start
>> PAGE_SHIFT
;
1559 unsigned long end_index
= end
>> PAGE_SHIFT
;
1560 unsigned long nr_pages
= end_index
- index
+ 1;
1563 if (index
== locked_page
->index
&& end_index
== index
)
1566 while (nr_pages
> 0) {
1567 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1568 min_t(unsigned long, nr_pages
,
1569 ARRAY_SIZE(pages
)), pages
);
1570 for (i
= 0; i
< ret
; i
++) {
1571 if (pages
[i
] != locked_page
)
1572 unlock_page(pages
[i
]);
1581 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1582 struct page
*locked_page
,
1586 unsigned long index
= delalloc_start
>> PAGE_SHIFT
;
1587 unsigned long start_index
= index
;
1588 unsigned long end_index
= delalloc_end
>> PAGE_SHIFT
;
1589 unsigned long pages_locked
= 0;
1590 struct page
*pages
[16];
1591 unsigned long nrpages
;
1595 /* the caller is responsible for locking the start index */
1596 if (index
== locked_page
->index
&& index
== end_index
)
1599 /* skip the page at the start index */
1600 nrpages
= end_index
- index
+ 1;
1601 while (nrpages
> 0) {
1602 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1603 min_t(unsigned long,
1604 nrpages
, ARRAY_SIZE(pages
)), pages
);
1609 /* now we have an array of pages, lock them all */
1610 for (i
= 0; i
< ret
; i
++) {
1612 * the caller is taking responsibility for
1615 if (pages
[i
] != locked_page
) {
1616 lock_page(pages
[i
]);
1617 if (!PageDirty(pages
[i
]) ||
1618 pages
[i
]->mapping
!= inode
->i_mapping
) {
1620 unlock_page(pages
[i
]);
1634 if (ret
&& pages_locked
) {
1635 __unlock_for_delalloc(inode
, locked_page
,
1637 ((u64
)(start_index
+ pages_locked
- 1)) <<
1644 * find a contiguous range of bytes in the file marked as delalloc, not
1645 * more than 'max_bytes'. start and end are used to return the range,
1647 * 1 is returned if we find something, 0 if nothing was in the tree
1649 STATIC u64
find_lock_delalloc_range(struct inode
*inode
,
1650 struct extent_io_tree
*tree
,
1651 struct page
*locked_page
, u64
*start
,
1652 u64
*end
, u64 max_bytes
)
1657 struct extent_state
*cached_state
= NULL
;
1662 /* step one, find a bunch of delalloc bytes starting at start */
1663 delalloc_start
= *start
;
1665 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1666 max_bytes
, &cached_state
);
1667 if (!found
|| delalloc_end
<= *start
) {
1668 *start
= delalloc_start
;
1669 *end
= delalloc_end
;
1670 free_extent_state(cached_state
);
1675 * start comes from the offset of locked_page. We have to lock
1676 * pages in order, so we can't process delalloc bytes before
1679 if (delalloc_start
< *start
)
1680 delalloc_start
= *start
;
1683 * make sure to limit the number of pages we try to lock down
1685 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
)
1686 delalloc_end
= delalloc_start
+ max_bytes
- 1;
1688 /* step two, lock all the pages after the page that has start */
1689 ret
= lock_delalloc_pages(inode
, locked_page
,
1690 delalloc_start
, delalloc_end
);
1691 if (ret
== -EAGAIN
) {
1692 /* some of the pages are gone, lets avoid looping by
1693 * shortening the size of the delalloc range we're searching
1695 free_extent_state(cached_state
);
1696 cached_state
= NULL
;
1698 max_bytes
= PAGE_SIZE
;
1706 BUG_ON(ret
); /* Only valid values are 0 and -EAGAIN */
1708 /* step three, lock the state bits for the whole range */
1709 lock_extent_bits(tree
, delalloc_start
, delalloc_end
, &cached_state
);
1711 /* then test to make sure it is all still delalloc */
1712 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1713 EXTENT_DELALLOC
, 1, cached_state
);
1715 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1716 &cached_state
, GFP_NOFS
);
1717 __unlock_for_delalloc(inode
, locked_page
,
1718 delalloc_start
, delalloc_end
);
1722 free_extent_state(cached_state
);
1723 *start
= delalloc_start
;
1724 *end
= delalloc_end
;
1729 void extent_clear_unlock_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1730 u64 delalloc_end
, struct page
*locked_page
,
1731 unsigned clear_bits
,
1732 unsigned long page_ops
)
1734 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
1736 struct page
*pages
[16];
1737 unsigned long index
= start
>> PAGE_SHIFT
;
1738 unsigned long end_index
= end
>> PAGE_SHIFT
;
1739 unsigned long nr_pages
= end_index
- index
+ 1;
1742 clear_extent_bit(tree
, start
, end
, clear_bits
, 1, 0, NULL
, GFP_NOFS
);
1746 if ((page_ops
& PAGE_SET_ERROR
) && nr_pages
> 0)
1747 mapping_set_error(inode
->i_mapping
, -EIO
);
1749 while (nr_pages
> 0) {
1750 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1751 min_t(unsigned long,
1752 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1753 for (i
= 0; i
< ret
; i
++) {
1755 if (page_ops
& PAGE_SET_PRIVATE2
)
1756 SetPagePrivate2(pages
[i
]);
1758 if (pages
[i
] == locked_page
) {
1762 if (page_ops
& PAGE_CLEAR_DIRTY
)
1763 clear_page_dirty_for_io(pages
[i
]);
1764 if (page_ops
& PAGE_SET_WRITEBACK
)
1765 set_page_writeback(pages
[i
]);
1766 if (page_ops
& PAGE_SET_ERROR
)
1767 SetPageError(pages
[i
]);
1768 if (page_ops
& PAGE_END_WRITEBACK
)
1769 end_page_writeback(pages
[i
]);
1770 if (page_ops
& PAGE_UNLOCK
)
1771 unlock_page(pages
[i
]);
1781 * count the number of bytes in the tree that have a given bit(s)
1782 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1783 * cached. The total number found is returned.
1785 u64
count_range_bits(struct extent_io_tree
*tree
,
1786 u64
*start
, u64 search_end
, u64 max_bytes
,
1787 unsigned bits
, int contig
)
1789 struct rb_node
*node
;
1790 struct extent_state
*state
;
1791 u64 cur_start
= *start
;
1792 u64 total_bytes
= 0;
1796 if (WARN_ON(search_end
<= cur_start
))
1799 spin_lock(&tree
->lock
);
1800 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1801 total_bytes
= tree
->dirty_bytes
;
1805 * this search will find all the extents that end after
1808 node
= tree_search(tree
, cur_start
);
1813 state
= rb_entry(node
, struct extent_state
, rb_node
);
1814 if (state
->start
> search_end
)
1816 if (contig
&& found
&& state
->start
> last
+ 1)
1818 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
1819 total_bytes
+= min(search_end
, state
->end
) + 1 -
1820 max(cur_start
, state
->start
);
1821 if (total_bytes
>= max_bytes
)
1824 *start
= max(cur_start
, state
->start
);
1828 } else if (contig
&& found
) {
1831 node
= rb_next(node
);
1836 spin_unlock(&tree
->lock
);
1841 * set the private field for a given byte offset in the tree. If there isn't
1842 * an extent_state there already, this does nothing.
1844 static noinline
int set_state_failrec(struct extent_io_tree
*tree
, u64 start
,
1845 struct io_failure_record
*failrec
)
1847 struct rb_node
*node
;
1848 struct extent_state
*state
;
1851 spin_lock(&tree
->lock
);
1853 * this search will find all the extents that end after
1856 node
= tree_search(tree
, start
);
1861 state
= rb_entry(node
, struct extent_state
, rb_node
);
1862 if (state
->start
!= start
) {
1866 state
->failrec
= failrec
;
1868 spin_unlock(&tree
->lock
);
1872 static noinline
int get_state_failrec(struct extent_io_tree
*tree
, u64 start
,
1873 struct io_failure_record
**failrec
)
1875 struct rb_node
*node
;
1876 struct extent_state
*state
;
1879 spin_lock(&tree
->lock
);
1881 * this search will find all the extents that end after
1884 node
= tree_search(tree
, start
);
1889 state
= rb_entry(node
, struct extent_state
, rb_node
);
1890 if (state
->start
!= start
) {
1894 *failrec
= state
->failrec
;
1896 spin_unlock(&tree
->lock
);
1901 * searches a range in the state tree for a given mask.
1902 * If 'filled' == 1, this returns 1 only if every extent in the tree
1903 * has the bits set. Otherwise, 1 is returned if any bit in the
1904 * range is found set.
1906 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1907 unsigned bits
, int filled
, struct extent_state
*cached
)
1909 struct extent_state
*state
= NULL
;
1910 struct rb_node
*node
;
1913 spin_lock(&tree
->lock
);
1914 if (cached
&& extent_state_in_tree(cached
) && cached
->start
<= start
&&
1915 cached
->end
> start
)
1916 node
= &cached
->rb_node
;
1918 node
= tree_search(tree
, start
);
1919 while (node
&& start
<= end
) {
1920 state
= rb_entry(node
, struct extent_state
, rb_node
);
1922 if (filled
&& state
->start
> start
) {
1927 if (state
->start
> end
)
1930 if (state
->state
& bits
) {
1934 } else if (filled
) {
1939 if (state
->end
== (u64
)-1)
1942 start
= state
->end
+ 1;
1945 node
= rb_next(node
);
1952 spin_unlock(&tree
->lock
);
1957 * helper function to set a given page up to date if all the
1958 * extents in the tree for that page are up to date
1960 static void check_page_uptodate(struct extent_io_tree
*tree
, struct page
*page
)
1962 u64 start
= page_offset(page
);
1963 u64 end
= start
+ PAGE_SIZE
- 1;
1964 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
1965 SetPageUptodate(page
);
1968 int free_io_failure(struct inode
*inode
, struct io_failure_record
*rec
)
1972 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1974 set_state_failrec(failure_tree
, rec
->start
, NULL
);
1975 ret
= clear_extent_bits(failure_tree
, rec
->start
,
1976 rec
->start
+ rec
->len
- 1,
1977 EXTENT_LOCKED
| EXTENT_DIRTY
);
1981 ret
= clear_extent_bits(&BTRFS_I(inode
)->io_tree
, rec
->start
,
1982 rec
->start
+ rec
->len
- 1,
1992 * this bypasses the standard btrfs submit functions deliberately, as
1993 * the standard behavior is to write all copies in a raid setup. here we only
1994 * want to write the one bad copy. so we do the mapping for ourselves and issue
1995 * submit_bio directly.
1996 * to avoid any synchronization issues, wait for the data after writing, which
1997 * actually prevents the read that triggered the error from finishing.
1998 * currently, there can be no more than two copies of every data bit. thus,
1999 * exactly one rewrite is required.
2001 int repair_io_failure(struct inode
*inode
, u64 start
, u64 length
, u64 logical
,
2002 struct page
*page
, unsigned int pg_offset
, int mirror_num
)
2004 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2006 struct btrfs_device
*dev
;
2009 struct btrfs_bio
*bbio
= NULL
;
2010 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
2013 ASSERT(!(fs_info
->sb
->s_flags
& MS_RDONLY
));
2014 BUG_ON(!mirror_num
);
2016 /* we can't repair anything in raid56 yet */
2017 if (btrfs_is_parity_mirror(map_tree
, logical
, length
, mirror_num
))
2020 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
2023 bio
->bi_iter
.bi_size
= 0;
2024 map_length
= length
;
2027 * Avoid races with device replace and make sure our bbio has devices
2028 * associated to its stripes that don't go away while we are doing the
2029 * read repair operation.
2031 btrfs_bio_counter_inc_blocked(fs_info
);
2032 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_WRITE
, logical
,
2033 &map_length
, &bbio
, mirror_num
);
2035 btrfs_bio_counter_dec(fs_info
);
2039 BUG_ON(mirror_num
!= bbio
->mirror_num
);
2040 sector
= bbio
->stripes
[mirror_num
-1].physical
>> 9;
2041 bio
->bi_iter
.bi_sector
= sector
;
2042 dev
= bbio
->stripes
[mirror_num
-1].dev
;
2043 btrfs_put_bbio(bbio
);
2044 if (!dev
|| !dev
->bdev
|| !dev
->writeable
) {
2045 btrfs_bio_counter_dec(fs_info
);
2049 bio
->bi_bdev
= dev
->bdev
;
2050 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
;
2051 bio_add_page(bio
, page
, length
, pg_offset
);
2053 if (btrfsic_submit_bio_wait(bio
)) {
2054 /* try to remap that extent elsewhere? */
2055 btrfs_bio_counter_dec(fs_info
);
2057 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
2061 btrfs_info_rl_in_rcu(fs_info
,
2062 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2063 btrfs_ino(inode
), start
,
2064 rcu_str_deref(dev
->name
), sector
);
2065 btrfs_bio_counter_dec(fs_info
);
2070 int repair_eb_io_failure(struct btrfs_fs_info
*fs_info
,
2071 struct extent_buffer
*eb
, int mirror_num
)
2073 u64 start
= eb
->start
;
2074 unsigned long i
, num_pages
= num_extent_pages(eb
->start
, eb
->len
);
2077 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
2080 for (i
= 0; i
< num_pages
; i
++) {
2081 struct page
*p
= eb
->pages
[i
];
2083 ret
= repair_io_failure(fs_info
->btree_inode
, start
,
2084 PAGE_SIZE
, start
, p
,
2085 start
- page_offset(p
), mirror_num
);
2095 * each time an IO finishes, we do a fast check in the IO failure tree
2096 * to see if we need to process or clean up an io_failure_record
2098 int clean_io_failure(struct inode
*inode
, u64 start
, struct page
*page
,
2099 unsigned int pg_offset
)
2102 struct io_failure_record
*failrec
;
2103 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2104 struct extent_state
*state
;
2109 ret
= count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
2110 (u64
)-1, 1, EXTENT_DIRTY
, 0);
2114 ret
= get_state_failrec(&BTRFS_I(inode
)->io_failure_tree
, start
,
2119 BUG_ON(!failrec
->this_mirror
);
2121 if (failrec
->in_validation
) {
2122 /* there was no real error, just free the record */
2123 btrfs_debug(fs_info
,
2124 "clean_io_failure: freeing dummy error at %llu",
2128 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
2131 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
2132 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
2135 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
2137 if (state
&& state
->start
<= failrec
->start
&&
2138 state
->end
>= failrec
->start
+ failrec
->len
- 1) {
2139 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
,
2141 if (num_copies
> 1) {
2142 repair_io_failure(inode
, start
, failrec
->len
,
2143 failrec
->logical
, page
,
2144 pg_offset
, failrec
->failed_mirror
);
2149 free_io_failure(inode
, failrec
);
2155 * Can be called when
2156 * - hold extent lock
2157 * - under ordered extent
2158 * - the inode is freeing
2160 void btrfs_free_io_failure_record(struct inode
*inode
, u64 start
, u64 end
)
2162 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2163 struct io_failure_record
*failrec
;
2164 struct extent_state
*state
, *next
;
2166 if (RB_EMPTY_ROOT(&failure_tree
->state
))
2169 spin_lock(&failure_tree
->lock
);
2170 state
= find_first_extent_bit_state(failure_tree
, start
, EXTENT_DIRTY
);
2172 if (state
->start
> end
)
2175 ASSERT(state
->end
<= end
);
2177 next
= next_state(state
);
2179 failrec
= state
->failrec
;
2180 free_extent_state(state
);
2185 spin_unlock(&failure_tree
->lock
);
2188 int btrfs_get_io_failure_record(struct inode
*inode
, u64 start
, u64 end
,
2189 struct io_failure_record
**failrec_ret
)
2191 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2192 struct io_failure_record
*failrec
;
2193 struct extent_map
*em
;
2194 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2195 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2196 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2200 ret
= get_state_failrec(failure_tree
, start
, &failrec
);
2202 failrec
= kzalloc(sizeof(*failrec
), GFP_NOFS
);
2206 failrec
->start
= start
;
2207 failrec
->len
= end
- start
+ 1;
2208 failrec
->this_mirror
= 0;
2209 failrec
->bio_flags
= 0;
2210 failrec
->in_validation
= 0;
2212 read_lock(&em_tree
->lock
);
2213 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
2215 read_unlock(&em_tree
->lock
);
2220 if (em
->start
> start
|| em
->start
+ em
->len
<= start
) {
2221 free_extent_map(em
);
2224 read_unlock(&em_tree
->lock
);
2230 logical
= start
- em
->start
;
2231 logical
= em
->block_start
+ logical
;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2233 logical
= em
->block_start
;
2234 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
2235 extent_set_compress_type(&failrec
->bio_flags
,
2239 btrfs_debug(fs_info
,
2240 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2241 logical
, start
, failrec
->len
);
2243 failrec
->logical
= logical
;
2244 free_extent_map(em
);
2246 /* set the bits in the private failure tree */
2247 ret
= set_extent_bits(failure_tree
, start
, end
,
2248 EXTENT_LOCKED
| EXTENT_DIRTY
);
2250 ret
= set_state_failrec(failure_tree
, start
, failrec
);
2251 /* set the bits in the inode's tree */
2253 ret
= set_extent_bits(tree
, start
, end
, EXTENT_DAMAGED
);
2259 btrfs_debug(fs_info
,
2260 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2261 failrec
->logical
, failrec
->start
, failrec
->len
,
2262 failrec
->in_validation
);
2264 * when data can be on disk more than twice, add to failrec here
2265 * (e.g. with a list for failed_mirror) to make
2266 * clean_io_failure() clean all those errors at once.
2270 *failrec_ret
= failrec
;
2275 int btrfs_check_repairable(struct inode
*inode
, struct bio
*failed_bio
,
2276 struct io_failure_record
*failrec
, int failed_mirror
)
2278 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2281 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
2282 if (num_copies
== 1) {
2284 * we only have a single copy of the data, so don't bother with
2285 * all the retry and error correction code that follows. no
2286 * matter what the error is, it is very likely to persist.
2288 btrfs_debug(fs_info
,
2289 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2290 num_copies
, failrec
->this_mirror
, failed_mirror
);
2295 * there are two premises:
2296 * a) deliver good data to the caller
2297 * b) correct the bad sectors on disk
2299 if (failed_bio
->bi_vcnt
> 1) {
2301 * to fulfill b), we need to know the exact failing sectors, as
2302 * we don't want to rewrite any more than the failed ones. thus,
2303 * we need separate read requests for the failed bio
2305 * if the following BUG_ON triggers, our validation request got
2306 * merged. we need separate requests for our algorithm to work.
2308 BUG_ON(failrec
->in_validation
);
2309 failrec
->in_validation
= 1;
2310 failrec
->this_mirror
= failed_mirror
;
2313 * we're ready to fulfill a) and b) alongside. get a good copy
2314 * of the failed sector and if we succeed, we have setup
2315 * everything for repair_io_failure to do the rest for us.
2317 if (failrec
->in_validation
) {
2318 BUG_ON(failrec
->this_mirror
!= failed_mirror
);
2319 failrec
->in_validation
= 0;
2320 failrec
->this_mirror
= 0;
2322 failrec
->failed_mirror
= failed_mirror
;
2323 failrec
->this_mirror
++;
2324 if (failrec
->this_mirror
== failed_mirror
)
2325 failrec
->this_mirror
++;
2328 if (failrec
->this_mirror
> num_copies
) {
2329 btrfs_debug(fs_info
,
2330 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2331 num_copies
, failrec
->this_mirror
, failed_mirror
);
2339 struct bio
*btrfs_create_repair_bio(struct inode
*inode
, struct bio
*failed_bio
,
2340 struct io_failure_record
*failrec
,
2341 struct page
*page
, int pg_offset
, int icsum
,
2342 bio_end_io_t
*endio_func
, void *data
)
2344 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2346 struct btrfs_io_bio
*btrfs_failed_bio
;
2347 struct btrfs_io_bio
*btrfs_bio
;
2349 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
2353 bio
->bi_end_io
= endio_func
;
2354 bio
->bi_iter
.bi_sector
= failrec
->logical
>> 9;
2355 bio
->bi_bdev
= fs_info
->fs_devices
->latest_bdev
;
2356 bio
->bi_iter
.bi_size
= 0;
2357 bio
->bi_private
= data
;
2359 btrfs_failed_bio
= btrfs_io_bio(failed_bio
);
2360 if (btrfs_failed_bio
->csum
) {
2361 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
2363 btrfs_bio
= btrfs_io_bio(bio
);
2364 btrfs_bio
->csum
= btrfs_bio
->csum_inline
;
2366 memcpy(btrfs_bio
->csum
, btrfs_failed_bio
->csum
+ icsum
,
2370 bio_add_page(bio
, page
, failrec
->len
, pg_offset
);
2376 * this is a generic handler for readpage errors (default
2377 * readpage_io_failed_hook). if other copies exist, read those and write back
2378 * good data to the failed position. does not investigate in remapping the
2379 * failed extent elsewhere, hoping the device will be smart enough to do this as
2383 static int bio_readpage_error(struct bio
*failed_bio
, u64 phy_offset
,
2384 struct page
*page
, u64 start
, u64 end
,
2387 struct io_failure_record
*failrec
;
2388 struct inode
*inode
= page
->mapping
->host
;
2389 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2394 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
2396 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
2400 ret
= btrfs_check_repairable(inode
, failed_bio
, failrec
, failed_mirror
);
2402 free_io_failure(inode
, failrec
);
2406 if (failed_bio
->bi_vcnt
> 1)
2407 read_mode
|= REQ_FAILFAST_DEV
;
2409 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2410 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
2411 start
- page_offset(page
),
2412 (int)phy_offset
, failed_bio
->bi_end_io
,
2415 free_io_failure(inode
, failrec
);
2418 bio_set_op_attrs(bio
, REQ_OP_READ
, read_mode
);
2420 btrfs_debug(btrfs_sb(inode
->i_sb
),
2421 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2422 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
2424 ret
= tree
->ops
->submit_bio_hook(inode
, bio
, failrec
->this_mirror
,
2425 failrec
->bio_flags
, 0);
2427 free_io_failure(inode
, failrec
);
2434 /* lots and lots of room for performance fixes in the end_bio funcs */
2436 void end_extent_writepage(struct page
*page
, int err
, u64 start
, u64 end
)
2438 int uptodate
= (err
== 0);
2439 struct extent_io_tree
*tree
;
2442 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
2444 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
) {
2445 ret
= tree
->ops
->writepage_end_io_hook(page
, start
,
2446 end
, NULL
, uptodate
);
2452 ClearPageUptodate(page
);
2454 ret
= ret
< 0 ? ret
: -EIO
;
2455 mapping_set_error(page
->mapping
, ret
);
2460 * after a writepage IO is done, we need to:
2461 * clear the uptodate bits on error
2462 * clear the writeback bits in the extent tree for this IO
2463 * end_page_writeback if the page has no more pending IO
2465 * Scheduling is not allowed, so the extent state tree is expected
2466 * to have one and only one object corresponding to this IO.
2468 static void end_bio_extent_writepage(struct bio
*bio
)
2470 struct bio_vec
*bvec
;
2475 bio_for_each_segment_all(bvec
, bio
, i
) {
2476 struct page
*page
= bvec
->bv_page
;
2477 struct inode
*inode
= page
->mapping
->host
;
2478 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2480 /* We always issue full-page reads, but if some block
2481 * in a page fails to read, blk_update_request() will
2482 * advance bv_offset and adjust bv_len to compensate.
2483 * Print a warning for nonzero offsets, and an error
2484 * if they don't add up to a full page. */
2485 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_SIZE
) {
2486 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_SIZE
)
2488 "partial page write in btrfs with offset %u and length %u",
2489 bvec
->bv_offset
, bvec
->bv_len
);
2492 "incomplete page write in btrfs with offset %u and length %u",
2493 bvec
->bv_offset
, bvec
->bv_len
);
2496 start
= page_offset(page
);
2497 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2499 end_extent_writepage(page
, bio
->bi_error
, start
, end
);
2500 end_page_writeback(page
);
2507 endio_readpage_release_extent(struct extent_io_tree
*tree
, u64 start
, u64 len
,
2510 struct extent_state
*cached
= NULL
;
2511 u64 end
= start
+ len
- 1;
2513 if (uptodate
&& tree
->track_uptodate
)
2514 set_extent_uptodate(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2515 unlock_extent_cached(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2519 * after a readpage IO is done, we need to:
2520 * clear the uptodate bits on error
2521 * set the uptodate bits if things worked
2522 * set the page up to date if all extents in the tree are uptodate
2523 * clear the lock bit in the extent tree
2524 * unlock the page if there are no other extents locked for it
2526 * Scheduling is not allowed, so the extent state tree is expected
2527 * to have one and only one object corresponding to this IO.
2529 static void end_bio_extent_readpage(struct bio
*bio
)
2531 struct bio_vec
*bvec
;
2532 int uptodate
= !bio
->bi_error
;
2533 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
2534 struct extent_io_tree
*tree
;
2539 u64 extent_start
= 0;
2545 bio_for_each_segment_all(bvec
, bio
, i
) {
2546 struct page
*page
= bvec
->bv_page
;
2547 struct inode
*inode
= page
->mapping
->host
;
2548 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2550 btrfs_debug(fs_info
,
2551 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2552 (u64
)bio
->bi_iter
.bi_sector
, bio
->bi_error
,
2553 io_bio
->mirror_num
);
2554 tree
= &BTRFS_I(inode
)->io_tree
;
2556 /* We always issue full-page reads, but if some block
2557 * in a page fails to read, blk_update_request() will
2558 * advance bv_offset and adjust bv_len to compensate.
2559 * Print a warning for nonzero offsets, and an error
2560 * if they don't add up to a full page. */
2561 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_SIZE
) {
2562 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_SIZE
)
2564 "partial page read in btrfs with offset %u and length %u",
2565 bvec
->bv_offset
, bvec
->bv_len
);
2568 "incomplete page read in btrfs with offset %u and length %u",
2569 bvec
->bv_offset
, bvec
->bv_len
);
2572 start
= page_offset(page
);
2573 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2576 mirror
= io_bio
->mirror_num
;
2577 if (likely(uptodate
&& tree
->ops
&&
2578 tree
->ops
->readpage_end_io_hook
)) {
2579 ret
= tree
->ops
->readpage_end_io_hook(io_bio
, offset
,
2585 clean_io_failure(inode
, start
, page
, 0);
2588 if (likely(uptodate
))
2591 if (tree
->ops
&& tree
->ops
->readpage_io_failed_hook
) {
2592 ret
= tree
->ops
->readpage_io_failed_hook(page
, mirror
);
2593 if (!ret
&& !bio
->bi_error
)
2597 * The generic bio_readpage_error handles errors the
2598 * following way: If possible, new read requests are
2599 * created and submitted and will end up in
2600 * end_bio_extent_readpage as well (if we're lucky, not
2601 * in the !uptodate case). In that case it returns 0 and
2602 * we just go on with the next page in our bio. If it
2603 * can't handle the error it will return -EIO and we
2604 * remain responsible for that page.
2606 ret
= bio_readpage_error(bio
, offset
, page
, start
, end
,
2609 uptodate
= !bio
->bi_error
;
2615 if (likely(uptodate
)) {
2616 loff_t i_size
= i_size_read(inode
);
2617 pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2620 /* Zero out the end if this page straddles i_size */
2621 off
= i_size
& (PAGE_SIZE
-1);
2622 if (page
->index
== end_index
&& off
)
2623 zero_user_segment(page
, off
, PAGE_SIZE
);
2624 SetPageUptodate(page
);
2626 ClearPageUptodate(page
);
2632 if (unlikely(!uptodate
)) {
2634 endio_readpage_release_extent(tree
,
2640 endio_readpage_release_extent(tree
, start
,
2641 end
- start
+ 1, 0);
2642 } else if (!extent_len
) {
2643 extent_start
= start
;
2644 extent_len
= end
+ 1 - start
;
2645 } else if (extent_start
+ extent_len
== start
) {
2646 extent_len
+= end
+ 1 - start
;
2648 endio_readpage_release_extent(tree
, extent_start
,
2649 extent_len
, uptodate
);
2650 extent_start
= start
;
2651 extent_len
= end
+ 1 - start
;
2656 endio_readpage_release_extent(tree
, extent_start
, extent_len
,
2659 io_bio
->end_io(io_bio
, bio
->bi_error
);
2664 * this allocates from the btrfs_bioset. We're returning a bio right now
2665 * but you can call btrfs_io_bio for the appropriate container_of magic
2668 btrfs_bio_alloc(struct block_device
*bdev
, u64 first_sector
, int nr_vecs
,
2671 struct btrfs_io_bio
*btrfs_bio
;
2674 bio
= bio_alloc_bioset(gfp_flags
, nr_vecs
, btrfs_bioset
);
2676 if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
2677 while (!bio
&& (nr_vecs
/= 2)) {
2678 bio
= bio_alloc_bioset(gfp_flags
,
2679 nr_vecs
, btrfs_bioset
);
2684 bio
->bi_bdev
= bdev
;
2685 bio
->bi_iter
.bi_sector
= first_sector
;
2686 btrfs_bio
= btrfs_io_bio(bio
);
2687 btrfs_bio
->csum
= NULL
;
2688 btrfs_bio
->csum_allocated
= NULL
;
2689 btrfs_bio
->end_io
= NULL
;
2694 struct bio
*btrfs_bio_clone(struct bio
*bio
, gfp_t gfp_mask
)
2696 struct btrfs_io_bio
*btrfs_bio
;
2699 new = bio_clone_bioset(bio
, gfp_mask
, btrfs_bioset
);
2701 btrfs_bio
= btrfs_io_bio(new);
2702 btrfs_bio
->csum
= NULL
;
2703 btrfs_bio
->csum_allocated
= NULL
;
2704 btrfs_bio
->end_io
= NULL
;
2709 /* this also allocates from the btrfs_bioset */
2710 struct bio
*btrfs_io_bio_alloc(gfp_t gfp_mask
, unsigned int nr_iovecs
)
2712 struct btrfs_io_bio
*btrfs_bio
;
2715 bio
= bio_alloc_bioset(gfp_mask
, nr_iovecs
, btrfs_bioset
);
2717 btrfs_bio
= btrfs_io_bio(bio
);
2718 btrfs_bio
->csum
= NULL
;
2719 btrfs_bio
->csum_allocated
= NULL
;
2720 btrfs_bio
->end_io
= NULL
;
2726 static int __must_check
submit_one_bio(struct bio
*bio
, int mirror_num
,
2727 unsigned long bio_flags
)
2730 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2731 struct page
*page
= bvec
->bv_page
;
2732 struct extent_io_tree
*tree
= bio
->bi_private
;
2735 start
= page_offset(page
) + bvec
->bv_offset
;
2737 bio
->bi_private
= NULL
;
2740 if (tree
->ops
&& tree
->ops
->submit_bio_hook
)
2741 ret
= tree
->ops
->submit_bio_hook(page
->mapping
->host
, bio
,
2742 mirror_num
, bio_flags
, start
);
2744 btrfsic_submit_bio(bio
);
2750 static int merge_bio(struct extent_io_tree
*tree
, struct page
*page
,
2751 unsigned long offset
, size_t size
, struct bio
*bio
,
2752 unsigned long bio_flags
)
2755 if (tree
->ops
&& tree
->ops
->merge_bio_hook
)
2756 ret
= tree
->ops
->merge_bio_hook(page
, offset
, size
, bio
,
2762 static int submit_extent_page(int op
, int op_flags
, struct extent_io_tree
*tree
,
2763 struct writeback_control
*wbc
,
2764 struct page
*page
, sector_t sector
,
2765 size_t size
, unsigned long offset
,
2766 struct block_device
*bdev
,
2767 struct bio
**bio_ret
,
2768 unsigned long max_pages
,
2769 bio_end_io_t end_io_func
,
2771 unsigned long prev_bio_flags
,
2772 unsigned long bio_flags
,
2773 bool force_bio_submit
)
2778 int old_compressed
= prev_bio_flags
& EXTENT_BIO_COMPRESSED
;
2779 size_t page_size
= min_t(size_t, size
, PAGE_SIZE
);
2781 if (bio_ret
&& *bio_ret
) {
2784 contig
= bio
->bi_iter
.bi_sector
== sector
;
2786 contig
= bio_end_sector(bio
) == sector
;
2788 if (prev_bio_flags
!= bio_flags
|| !contig
||
2790 merge_bio(tree
, page
, offset
, page_size
, bio
, bio_flags
) ||
2791 bio_add_page(bio
, page
, page_size
, offset
) < page_size
) {
2792 ret
= submit_one_bio(bio
, mirror_num
, prev_bio_flags
);
2800 wbc_account_io(wbc
, page
, page_size
);
2805 bio
= btrfs_bio_alloc(bdev
, sector
, BIO_MAX_PAGES
,
2806 GFP_NOFS
| __GFP_HIGH
);
2810 bio_add_page(bio
, page
, page_size
, offset
);
2811 bio
->bi_end_io
= end_io_func
;
2812 bio
->bi_private
= tree
;
2813 bio_set_op_attrs(bio
, op
, op_flags
);
2815 wbc_init_bio(wbc
, bio
);
2816 wbc_account_io(wbc
, page
, page_size
);
2822 ret
= submit_one_bio(bio
, mirror_num
, bio_flags
);
2827 static void attach_extent_buffer_page(struct extent_buffer
*eb
,
2830 if (!PagePrivate(page
)) {
2831 SetPagePrivate(page
);
2833 set_page_private(page
, (unsigned long)eb
);
2835 WARN_ON(page
->private != (unsigned long)eb
);
2839 void set_page_extent_mapped(struct page
*page
)
2841 if (!PagePrivate(page
)) {
2842 SetPagePrivate(page
);
2844 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
2848 static struct extent_map
*
2849 __get_extent_map(struct inode
*inode
, struct page
*page
, size_t pg_offset
,
2850 u64 start
, u64 len
, get_extent_t
*get_extent
,
2851 struct extent_map
**em_cached
)
2853 struct extent_map
*em
;
2855 if (em_cached
&& *em_cached
) {
2857 if (extent_map_in_tree(em
) && start
>= em
->start
&&
2858 start
< extent_map_end(em
)) {
2859 atomic_inc(&em
->refs
);
2863 free_extent_map(em
);
2867 em
= get_extent(inode
, page
, pg_offset
, start
, len
, 0);
2868 if (em_cached
&& !IS_ERR_OR_NULL(em
)) {
2870 atomic_inc(&em
->refs
);
2876 * basic readpage implementation. Locked extent state structs are inserted
2877 * into the tree that are removed when the IO is done (by the end_io
2879 * XXX JDM: This needs looking at to ensure proper page locking
2880 * return 0 on success, otherwise return error
2882 static int __do_readpage(struct extent_io_tree
*tree
,
2884 get_extent_t
*get_extent
,
2885 struct extent_map
**em_cached
,
2886 struct bio
**bio
, int mirror_num
,
2887 unsigned long *bio_flags
, int read_flags
,
2890 struct inode
*inode
= page
->mapping
->host
;
2891 u64 start
= page_offset(page
);
2892 u64 page_end
= start
+ PAGE_SIZE
- 1;
2896 u64 last_byte
= i_size_read(inode
);
2900 struct extent_map
*em
;
2901 struct block_device
*bdev
;
2904 size_t pg_offset
= 0;
2906 size_t disk_io_size
;
2907 size_t blocksize
= inode
->i_sb
->s_blocksize
;
2908 unsigned long this_bio_flag
= 0;
2910 set_page_extent_mapped(page
);
2913 if (!PageUptodate(page
)) {
2914 if (cleancache_get_page(page
) == 0) {
2915 BUG_ON(blocksize
!= PAGE_SIZE
);
2916 unlock_extent(tree
, start
, end
);
2921 if (page
->index
== last_byte
>> PAGE_SHIFT
) {
2923 size_t zero_offset
= last_byte
& (PAGE_SIZE
- 1);
2926 iosize
= PAGE_SIZE
- zero_offset
;
2927 userpage
= kmap_atomic(page
);
2928 memset(userpage
+ zero_offset
, 0, iosize
);
2929 flush_dcache_page(page
);
2930 kunmap_atomic(userpage
);
2933 while (cur
<= end
) {
2934 unsigned long pnr
= (last_byte
>> PAGE_SHIFT
) + 1;
2935 bool force_bio_submit
= false;
2937 if (cur
>= last_byte
) {
2939 struct extent_state
*cached
= NULL
;
2941 iosize
= PAGE_SIZE
- pg_offset
;
2942 userpage
= kmap_atomic(page
);
2943 memset(userpage
+ pg_offset
, 0, iosize
);
2944 flush_dcache_page(page
);
2945 kunmap_atomic(userpage
);
2946 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2948 unlock_extent_cached(tree
, cur
,
2953 em
= __get_extent_map(inode
, page
, pg_offset
, cur
,
2954 end
- cur
+ 1, get_extent
, em_cached
);
2955 if (IS_ERR_OR_NULL(em
)) {
2957 unlock_extent(tree
, cur
, end
);
2960 extent_offset
= cur
- em
->start
;
2961 BUG_ON(extent_map_end(em
) <= cur
);
2964 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2965 this_bio_flag
|= EXTENT_BIO_COMPRESSED
;
2966 extent_set_compress_type(&this_bio_flag
,
2970 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2971 cur_end
= min(extent_map_end(em
) - 1, end
);
2972 iosize
= ALIGN(iosize
, blocksize
);
2973 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
2974 disk_io_size
= em
->block_len
;
2975 sector
= em
->block_start
>> 9;
2977 sector
= (em
->block_start
+ extent_offset
) >> 9;
2978 disk_io_size
= iosize
;
2981 block_start
= em
->block_start
;
2982 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2983 block_start
= EXTENT_MAP_HOLE
;
2986 * If we have a file range that points to a compressed extent
2987 * and it's followed by a consecutive file range that points to
2988 * to the same compressed extent (possibly with a different
2989 * offset and/or length, so it either points to the whole extent
2990 * or only part of it), we must make sure we do not submit a
2991 * single bio to populate the pages for the 2 ranges because
2992 * this makes the compressed extent read zero out the pages
2993 * belonging to the 2nd range. Imagine the following scenario:
2996 * [0 - 8K] [8K - 24K]
2999 * points to extent X, points to extent X,
3000 * offset 4K, length of 8K offset 0, length 16K
3002 * [extent X, compressed length = 4K uncompressed length = 16K]
3004 * If the bio to read the compressed extent covers both ranges,
3005 * it will decompress extent X into the pages belonging to the
3006 * first range and then it will stop, zeroing out the remaining
3007 * pages that belong to the other range that points to extent X.
3008 * So here we make sure we submit 2 bios, one for the first
3009 * range and another one for the third range. Both will target
3010 * the same physical extent from disk, but we can't currently
3011 * make the compressed bio endio callback populate the pages
3012 * for both ranges because each compressed bio is tightly
3013 * coupled with a single extent map, and each range can have
3014 * an extent map with a different offset value relative to the
3015 * uncompressed data of our extent and different lengths. This
3016 * is a corner case so we prioritize correctness over
3017 * non-optimal behavior (submitting 2 bios for the same extent).
3019 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) &&
3020 prev_em_start
&& *prev_em_start
!= (u64
)-1 &&
3021 *prev_em_start
!= em
->orig_start
)
3022 force_bio_submit
= true;
3025 *prev_em_start
= em
->orig_start
;
3027 free_extent_map(em
);
3030 /* we've found a hole, just zero and go on */
3031 if (block_start
== EXTENT_MAP_HOLE
) {
3033 struct extent_state
*cached
= NULL
;
3035 userpage
= kmap_atomic(page
);
3036 memset(userpage
+ pg_offset
, 0, iosize
);
3037 flush_dcache_page(page
);
3038 kunmap_atomic(userpage
);
3040 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3042 unlock_extent_cached(tree
, cur
,
3046 pg_offset
+= iosize
;
3049 /* the get_extent function already copied into the page */
3050 if (test_range_bit(tree
, cur
, cur_end
,
3051 EXTENT_UPTODATE
, 1, NULL
)) {
3052 check_page_uptodate(tree
, page
);
3053 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3055 pg_offset
+= iosize
;
3058 /* we have an inline extent but it didn't get marked up
3059 * to date. Error out
3061 if (block_start
== EXTENT_MAP_INLINE
) {
3063 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3065 pg_offset
+= iosize
;
3070 ret
= submit_extent_page(REQ_OP_READ
, read_flags
, tree
, NULL
,
3071 page
, sector
, disk_io_size
, pg_offset
,
3073 end_bio_extent_readpage
, mirror_num
,
3079 *bio_flags
= this_bio_flag
;
3082 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3086 pg_offset
+= iosize
;
3090 if (!PageError(page
))
3091 SetPageUptodate(page
);
3097 static inline void __do_contiguous_readpages(struct extent_io_tree
*tree
,
3098 struct page
*pages
[], int nr_pages
,
3100 get_extent_t
*get_extent
,
3101 struct extent_map
**em_cached
,
3102 struct bio
**bio
, int mirror_num
,
3103 unsigned long *bio_flags
,
3106 struct inode
*inode
;
3107 struct btrfs_ordered_extent
*ordered
;
3110 inode
= pages
[0]->mapping
->host
;
3112 lock_extent(tree
, start
, end
);
3113 ordered
= btrfs_lookup_ordered_range(inode
, start
,
3117 unlock_extent(tree
, start
, end
);
3118 btrfs_start_ordered_extent(inode
, ordered
, 1);
3119 btrfs_put_ordered_extent(ordered
);
3122 for (index
= 0; index
< nr_pages
; index
++) {
3123 __do_readpage(tree
, pages
[index
], get_extent
, em_cached
, bio
,
3124 mirror_num
, bio_flags
, 0, prev_em_start
);
3125 put_page(pages
[index
]);
3129 static void __extent_readpages(struct extent_io_tree
*tree
,
3130 struct page
*pages
[],
3131 int nr_pages
, get_extent_t
*get_extent
,
3132 struct extent_map
**em_cached
,
3133 struct bio
**bio
, int mirror_num
,
3134 unsigned long *bio_flags
,
3141 int first_index
= 0;
3143 for (index
= 0; index
< nr_pages
; index
++) {
3144 page_start
= page_offset(pages
[index
]);
3147 end
= start
+ PAGE_SIZE
- 1;
3148 first_index
= index
;
3149 } else if (end
+ 1 == page_start
) {
3152 __do_contiguous_readpages(tree
, &pages
[first_index
],
3153 index
- first_index
, start
,
3154 end
, get_extent
, em_cached
,
3155 bio
, mirror_num
, bio_flags
,
3158 end
= start
+ PAGE_SIZE
- 1;
3159 first_index
= index
;
3164 __do_contiguous_readpages(tree
, &pages
[first_index
],
3165 index
- first_index
, start
,
3166 end
, get_extent
, em_cached
, bio
,
3167 mirror_num
, bio_flags
,
3171 static int __extent_read_full_page(struct extent_io_tree
*tree
,
3173 get_extent_t
*get_extent
,
3174 struct bio
**bio
, int mirror_num
,
3175 unsigned long *bio_flags
, int read_flags
)
3177 struct inode
*inode
= page
->mapping
->host
;
3178 struct btrfs_ordered_extent
*ordered
;
3179 u64 start
= page_offset(page
);
3180 u64 end
= start
+ PAGE_SIZE
- 1;
3184 lock_extent(tree
, start
, end
);
3185 ordered
= btrfs_lookup_ordered_range(inode
, start
,
3189 unlock_extent(tree
, start
, end
);
3190 btrfs_start_ordered_extent(inode
, ordered
, 1);
3191 btrfs_put_ordered_extent(ordered
);
3194 ret
= __do_readpage(tree
, page
, get_extent
, NULL
, bio
, mirror_num
,
3195 bio_flags
, read_flags
, NULL
);
3199 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
3200 get_extent_t
*get_extent
, int mirror_num
)
3202 struct bio
*bio
= NULL
;
3203 unsigned long bio_flags
= 0;
3206 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, mirror_num
,
3209 ret
= submit_one_bio(bio
, mirror_num
, bio_flags
);
3213 static void update_nr_written(struct page
*page
, struct writeback_control
*wbc
,
3214 unsigned long nr_written
)
3216 wbc
->nr_to_write
-= nr_written
;
3220 * helper for __extent_writepage, doing all of the delayed allocation setup.
3222 * This returns 1 if our fill_delalloc function did all the work required
3223 * to write the page (copy into inline extent). In this case the IO has
3224 * been started and the page is already unlocked.
3226 * This returns 0 if all went well (page still locked)
3227 * This returns < 0 if there were errors (page still locked)
3229 static noinline_for_stack
int writepage_delalloc(struct inode
*inode
,
3230 struct page
*page
, struct writeback_control
*wbc
,
3231 struct extent_page_data
*epd
,
3233 unsigned long *nr_written
)
3235 struct extent_io_tree
*tree
= epd
->tree
;
3236 u64 page_end
= delalloc_start
+ PAGE_SIZE
- 1;
3238 u64 delalloc_to_write
= 0;
3239 u64 delalloc_end
= 0;
3241 int page_started
= 0;
3243 if (epd
->extent_locked
|| !tree
->ops
|| !tree
->ops
->fill_delalloc
)
3246 while (delalloc_end
< page_end
) {
3247 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
3251 BTRFS_MAX_EXTENT_SIZE
);
3252 if (nr_delalloc
== 0) {
3253 delalloc_start
= delalloc_end
+ 1;
3256 ret
= tree
->ops
->fill_delalloc(inode
, page
,
3261 /* File system has been set read-only */
3264 /* fill_delalloc should be return < 0 for error
3265 * but just in case, we use > 0 here meaning the
3266 * IO is started, so we don't want to return > 0
3267 * unless things are going well.
3269 ret
= ret
< 0 ? ret
: -EIO
;
3273 * delalloc_end is already one less than the total length, so
3274 * we don't subtract one from PAGE_SIZE
3276 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
3277 PAGE_SIZE
) >> PAGE_SHIFT
;
3278 delalloc_start
= delalloc_end
+ 1;
3280 if (wbc
->nr_to_write
< delalloc_to_write
) {
3283 if (delalloc_to_write
< thresh
* 2)
3284 thresh
= delalloc_to_write
;
3285 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
3289 /* did the fill delalloc function already unlock and start
3294 * we've unlocked the page, so we can't update
3295 * the mapping's writeback index, just update
3298 wbc
->nr_to_write
-= *nr_written
;
3309 * helper for __extent_writepage. This calls the writepage start hooks,
3310 * and does the loop to map the page into extents and bios.
3312 * We return 1 if the IO is started and the page is unlocked,
3313 * 0 if all went well (page still locked)
3314 * < 0 if there were errors (page still locked)
3316 static noinline_for_stack
int __extent_writepage_io(struct inode
*inode
,
3318 struct writeback_control
*wbc
,
3319 struct extent_page_data
*epd
,
3321 unsigned long nr_written
,
3322 int write_flags
, int *nr_ret
)
3324 struct extent_io_tree
*tree
= epd
->tree
;
3325 u64 start
= page_offset(page
);
3326 u64 page_end
= start
+ PAGE_SIZE
- 1;
3333 struct extent_state
*cached_state
= NULL
;
3334 struct extent_map
*em
;
3335 struct block_device
*bdev
;
3336 size_t pg_offset
= 0;
3342 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
3343 ret
= tree
->ops
->writepage_start_hook(page
, start
,
3346 /* Fixup worker will requeue */
3348 wbc
->pages_skipped
++;
3350 redirty_page_for_writepage(wbc
, page
);
3352 update_nr_written(page
, wbc
, nr_written
);
3360 * we don't want to touch the inode after unlocking the page,
3361 * so we update the mapping writeback index now
3363 update_nr_written(page
, wbc
, nr_written
+ 1);
3366 if (i_size
<= start
) {
3367 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3368 tree
->ops
->writepage_end_io_hook(page
, start
,
3373 blocksize
= inode
->i_sb
->s_blocksize
;
3375 while (cur
<= end
) {
3377 unsigned long max_nr
;
3379 if (cur
>= i_size
) {
3380 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3381 tree
->ops
->writepage_end_io_hook(page
, cur
,
3385 em
= epd
->get_extent(inode
, page
, pg_offset
, cur
,
3387 if (IS_ERR_OR_NULL(em
)) {
3389 ret
= PTR_ERR_OR_ZERO(em
);
3393 extent_offset
= cur
- em
->start
;
3394 em_end
= extent_map_end(em
);
3395 BUG_ON(em_end
<= cur
);
3397 iosize
= min(em_end
- cur
, end
- cur
+ 1);
3398 iosize
= ALIGN(iosize
, blocksize
);
3399 sector
= (em
->block_start
+ extent_offset
) >> 9;
3401 block_start
= em
->block_start
;
3402 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
3403 free_extent_map(em
);
3407 * compressed and inline extents are written through other
3410 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
3411 block_start
== EXTENT_MAP_INLINE
) {
3413 * end_io notification does not happen here for
3414 * compressed extents
3416 if (!compressed
&& tree
->ops
&&
3417 tree
->ops
->writepage_end_io_hook
)
3418 tree
->ops
->writepage_end_io_hook(page
, cur
,
3421 else if (compressed
) {
3422 /* we don't want to end_page_writeback on
3423 * a compressed extent. this happens
3430 pg_offset
+= iosize
;
3434 max_nr
= (i_size
>> PAGE_SHIFT
) + 1;
3436 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
3437 if (!PageWriteback(page
)) {
3438 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
3439 "page %lu not writeback, cur %llu end %llu",
3440 page
->index
, cur
, end
);
3443 ret
= submit_extent_page(REQ_OP_WRITE
, write_flags
, tree
, wbc
,
3444 page
, sector
, iosize
, pg_offset
,
3445 bdev
, &epd
->bio
, max_nr
,
3446 end_bio_extent_writepage
,
3452 pg_offset
+= iosize
;
3460 /* drop our reference on any cached states */
3461 free_extent_state(cached_state
);
3466 * the writepage semantics are similar to regular writepage. extent
3467 * records are inserted to lock ranges in the tree, and as dirty areas
3468 * are found, they are marked writeback. Then the lock bits are removed
3469 * and the end_io handler clears the writeback ranges
3471 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
3474 struct inode
*inode
= page
->mapping
->host
;
3475 struct extent_page_data
*epd
= data
;
3476 u64 start
= page_offset(page
);
3477 u64 page_end
= start
+ PAGE_SIZE
- 1;
3480 size_t pg_offset
= 0;
3481 loff_t i_size
= i_size_read(inode
);
3482 unsigned long end_index
= i_size
>> PAGE_SHIFT
;
3483 int write_flags
= 0;
3484 unsigned long nr_written
= 0;
3486 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3487 write_flags
= REQ_SYNC
;
3489 trace___extent_writepage(page
, inode
, wbc
);
3491 WARN_ON(!PageLocked(page
));
3493 ClearPageError(page
);
3495 pg_offset
= i_size
& (PAGE_SIZE
- 1);
3496 if (page
->index
> end_index
||
3497 (page
->index
== end_index
&& !pg_offset
)) {
3498 page
->mapping
->a_ops
->invalidatepage(page
, 0, PAGE_SIZE
);
3503 if (page
->index
== end_index
) {
3506 userpage
= kmap_atomic(page
);
3507 memset(userpage
+ pg_offset
, 0,
3508 PAGE_SIZE
- pg_offset
);
3509 kunmap_atomic(userpage
);
3510 flush_dcache_page(page
);
3515 set_page_extent_mapped(page
);
3517 ret
= writepage_delalloc(inode
, page
, wbc
, epd
, start
, &nr_written
);
3523 ret
= __extent_writepage_io(inode
, page
, wbc
, epd
,
3524 i_size
, nr_written
, write_flags
, &nr
);
3530 /* make sure the mapping tag for page dirty gets cleared */
3531 set_page_writeback(page
);
3532 end_page_writeback(page
);
3534 if (PageError(page
)) {
3535 ret
= ret
< 0 ? ret
: -EIO
;
3536 end_extent_writepage(page
, ret
, start
, page_end
);
3545 void wait_on_extent_buffer_writeback(struct extent_buffer
*eb
)
3547 wait_on_bit_io(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
,
3548 TASK_UNINTERRUPTIBLE
);
3551 static noinline_for_stack
int
3552 lock_extent_buffer_for_io(struct extent_buffer
*eb
,
3553 struct btrfs_fs_info
*fs_info
,
3554 struct extent_page_data
*epd
)
3556 unsigned long i
, num_pages
;
3560 if (!btrfs_try_tree_write_lock(eb
)) {
3562 flush_write_bio(epd
);
3563 btrfs_tree_lock(eb
);
3566 if (test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
)) {
3567 btrfs_tree_unlock(eb
);
3571 flush_write_bio(epd
);
3575 wait_on_extent_buffer_writeback(eb
);
3576 btrfs_tree_lock(eb
);
3577 if (!test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
))
3579 btrfs_tree_unlock(eb
);
3584 * We need to do this to prevent races in people who check if the eb is
3585 * under IO since we can end up having no IO bits set for a short period
3588 spin_lock(&eb
->refs_lock
);
3589 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3590 set_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3591 spin_unlock(&eb
->refs_lock
);
3592 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3593 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
3595 fs_info
->dirty_metadata_batch
);
3598 spin_unlock(&eb
->refs_lock
);
3601 btrfs_tree_unlock(eb
);
3606 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3607 for (i
= 0; i
< num_pages
; i
++) {
3608 struct page
*p
= eb
->pages
[i
];
3610 if (!trylock_page(p
)) {
3612 flush_write_bio(epd
);
3622 static void end_extent_buffer_writeback(struct extent_buffer
*eb
)
3624 clear_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3625 smp_mb__after_atomic();
3626 wake_up_bit(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
);
3629 static void set_btree_ioerr(struct page
*page
)
3631 struct extent_buffer
*eb
= (struct extent_buffer
*)page
->private;
3634 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
))
3638 * If writeback for a btree extent that doesn't belong to a log tree
3639 * failed, increment the counter transaction->eb_write_errors.
3640 * We do this because while the transaction is running and before it's
3641 * committing (when we call filemap_fdata[write|wait]_range against
3642 * the btree inode), we might have
3643 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3644 * returns an error or an error happens during writeback, when we're
3645 * committing the transaction we wouldn't know about it, since the pages
3646 * can be no longer dirty nor marked anymore for writeback (if a
3647 * subsequent modification to the extent buffer didn't happen before the
3648 * transaction commit), which makes filemap_fdata[write|wait]_range not
3649 * able to find the pages tagged with SetPageError at transaction
3650 * commit time. So if this happens we must abort the transaction,
3651 * otherwise we commit a super block with btree roots that point to
3652 * btree nodes/leafs whose content on disk is invalid - either garbage
3653 * or the content of some node/leaf from a past generation that got
3654 * cowed or deleted and is no longer valid.
3656 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3657 * not be enough - we need to distinguish between log tree extents vs
3658 * non-log tree extents, and the next filemap_fdatawait_range() call
3659 * will catch and clear such errors in the mapping - and that call might
3660 * be from a log sync and not from a transaction commit. Also, checking
3661 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3662 * not done and would not be reliable - the eb might have been released
3663 * from memory and reading it back again means that flag would not be
3664 * set (since it's a runtime flag, not persisted on disk).
3666 * Using the flags below in the btree inode also makes us achieve the
3667 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3668 * writeback for all dirty pages and before filemap_fdatawait_range()
3669 * is called, the writeback for all dirty pages had already finished
3670 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3671 * filemap_fdatawait_range() would return success, as it could not know
3672 * that writeback errors happened (the pages were no longer tagged for
3675 switch (eb
->log_index
) {
3677 set_bit(BTRFS_FS_BTREE_ERR
, &eb
->fs_info
->flags
);
3680 set_bit(BTRFS_FS_LOG1_ERR
, &eb
->fs_info
->flags
);
3683 set_bit(BTRFS_FS_LOG2_ERR
, &eb
->fs_info
->flags
);
3686 BUG(); /* unexpected, logic error */
3690 static void end_bio_extent_buffer_writepage(struct bio
*bio
)
3692 struct bio_vec
*bvec
;
3693 struct extent_buffer
*eb
;
3696 bio_for_each_segment_all(bvec
, bio
, i
) {
3697 struct page
*page
= bvec
->bv_page
;
3699 eb
= (struct extent_buffer
*)page
->private;
3701 done
= atomic_dec_and_test(&eb
->io_pages
);
3703 if (bio
->bi_error
||
3704 test_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
)) {
3705 ClearPageUptodate(page
);
3706 set_btree_ioerr(page
);
3709 end_page_writeback(page
);
3714 end_extent_buffer_writeback(eb
);
3720 static noinline_for_stack
int write_one_eb(struct extent_buffer
*eb
,
3721 struct btrfs_fs_info
*fs_info
,
3722 struct writeback_control
*wbc
,
3723 struct extent_page_data
*epd
)
3725 struct block_device
*bdev
= fs_info
->fs_devices
->latest_bdev
;
3726 struct extent_io_tree
*tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
3727 u64 offset
= eb
->start
;
3729 unsigned long i
, num_pages
;
3730 unsigned long bio_flags
= 0;
3731 unsigned long start
, end
;
3732 int write_flags
= (epd
->sync_io
? REQ_SYNC
: 0) | REQ_META
;
3735 clear_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
);
3736 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3737 atomic_set(&eb
->io_pages
, num_pages
);
3738 if (btrfs_header_owner(eb
) == BTRFS_TREE_LOG_OBJECTID
)
3739 bio_flags
= EXTENT_BIO_TREE_LOG
;
3741 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3742 nritems
= btrfs_header_nritems(eb
);
3743 if (btrfs_header_level(eb
) > 0) {
3744 end
= btrfs_node_key_ptr_offset(nritems
);
3746 memzero_extent_buffer(eb
, end
, eb
->len
- end
);
3750 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3752 start
= btrfs_item_nr_offset(nritems
);
3753 end
= btrfs_leaf_data(eb
) + leaf_data_end(fs_info
, eb
);
3754 memzero_extent_buffer(eb
, start
, end
- start
);
3757 for (i
= 0; i
< num_pages
; i
++) {
3758 struct page
*p
= eb
->pages
[i
];
3760 clear_page_dirty_for_io(p
);
3761 set_page_writeback(p
);
3762 ret
= submit_extent_page(REQ_OP_WRITE
, write_flags
, tree
, wbc
,
3763 p
, offset
>> 9, PAGE_SIZE
, 0, bdev
,
3765 end_bio_extent_buffer_writepage
,
3766 0, epd
->bio_flags
, bio_flags
, false);
3767 epd
->bio_flags
= bio_flags
;
3770 end_page_writeback(p
);
3771 if (atomic_sub_and_test(num_pages
- i
, &eb
->io_pages
))
3772 end_extent_buffer_writeback(eb
);
3776 offset
+= PAGE_SIZE
;
3777 update_nr_written(p
, wbc
, 1);
3781 if (unlikely(ret
)) {
3782 for (; i
< num_pages
; i
++) {
3783 struct page
*p
= eb
->pages
[i
];
3784 clear_page_dirty_for_io(p
);
3792 int btree_write_cache_pages(struct address_space
*mapping
,
3793 struct writeback_control
*wbc
)
3795 struct extent_io_tree
*tree
= &BTRFS_I(mapping
->host
)->io_tree
;
3796 struct btrfs_fs_info
*fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
3797 struct extent_buffer
*eb
, *prev_eb
= NULL
;
3798 struct extent_page_data epd
= {
3802 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3807 int nr_to_write_done
= 0;
3808 struct pagevec pvec
;
3811 pgoff_t end
; /* Inclusive */
3815 pagevec_init(&pvec
, 0);
3816 if (wbc
->range_cyclic
) {
3817 index
= mapping
->writeback_index
; /* Start from prev offset */
3820 index
= wbc
->range_start
>> PAGE_SHIFT
;
3821 end
= wbc
->range_end
>> PAGE_SHIFT
;
3824 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3825 tag
= PAGECACHE_TAG_TOWRITE
;
3827 tag
= PAGECACHE_TAG_DIRTY
;
3829 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3830 tag_pages_for_writeback(mapping
, index
, end
);
3831 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3832 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
3833 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
3837 for (i
= 0; i
< nr_pages
; i
++) {
3838 struct page
*page
= pvec
.pages
[i
];
3840 if (!PagePrivate(page
))
3843 if (!wbc
->range_cyclic
&& page
->index
> end
) {
3848 spin_lock(&mapping
->private_lock
);
3849 if (!PagePrivate(page
)) {
3850 spin_unlock(&mapping
->private_lock
);
3854 eb
= (struct extent_buffer
*)page
->private;
3857 * Shouldn't happen and normally this would be a BUG_ON
3858 * but no sense in crashing the users box for something
3859 * we can survive anyway.
3862 spin_unlock(&mapping
->private_lock
);
3866 if (eb
== prev_eb
) {
3867 spin_unlock(&mapping
->private_lock
);
3871 ret
= atomic_inc_not_zero(&eb
->refs
);
3872 spin_unlock(&mapping
->private_lock
);
3877 ret
= lock_extent_buffer_for_io(eb
, fs_info
, &epd
);
3879 free_extent_buffer(eb
);
3883 ret
= write_one_eb(eb
, fs_info
, wbc
, &epd
);
3886 free_extent_buffer(eb
);
3889 free_extent_buffer(eb
);
3892 * the filesystem may choose to bump up nr_to_write.
3893 * We have to make sure to honor the new nr_to_write
3896 nr_to_write_done
= wbc
->nr_to_write
<= 0;
3898 pagevec_release(&pvec
);
3901 if (!scanned
&& !done
) {
3903 * We hit the last page and there is more work to be done: wrap
3904 * back to the start of the file
3910 flush_write_bio(&epd
);
3915 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3916 * @mapping: address space structure to write
3917 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3918 * @writepage: function called for each page
3919 * @data: data passed to writepage function
3921 * If a page is already under I/O, write_cache_pages() skips it, even
3922 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3923 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3924 * and msync() need to guarantee that all the data which was dirty at the time
3925 * the call was made get new I/O started against them. If wbc->sync_mode is
3926 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3927 * existing IO to complete.
3929 static int extent_write_cache_pages(struct extent_io_tree
*tree
,
3930 struct address_space
*mapping
,
3931 struct writeback_control
*wbc
,
3932 writepage_t writepage
, void *data
,
3933 void (*flush_fn
)(void *))
3935 struct inode
*inode
= mapping
->host
;
3938 int nr_to_write_done
= 0;
3939 struct pagevec pvec
;
3942 pgoff_t end
; /* Inclusive */
3944 int range_whole
= 0;
3949 * We have to hold onto the inode so that ordered extents can do their
3950 * work when the IO finishes. The alternative to this is failing to add
3951 * an ordered extent if the igrab() fails there and that is a huge pain
3952 * to deal with, so instead just hold onto the inode throughout the
3953 * writepages operation. If it fails here we are freeing up the inode
3954 * anyway and we'd rather not waste our time writing out stuff that is
3955 * going to be truncated anyway.
3960 pagevec_init(&pvec
, 0);
3961 if (wbc
->range_cyclic
) {
3962 index
= mapping
->writeback_index
; /* Start from prev offset */
3965 index
= wbc
->range_start
>> PAGE_SHIFT
;
3966 end
= wbc
->range_end
>> PAGE_SHIFT
;
3967 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
3971 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3972 tag
= PAGECACHE_TAG_TOWRITE
;
3974 tag
= PAGECACHE_TAG_DIRTY
;
3976 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3977 tag_pages_for_writeback(mapping
, index
, end
);
3979 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3980 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
3981 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
3985 for (i
= 0; i
< nr_pages
; i
++) {
3986 struct page
*page
= pvec
.pages
[i
];
3988 done_index
= page
->index
;
3990 * At this point we hold neither mapping->tree_lock nor
3991 * lock on the page itself: the page may be truncated or
3992 * invalidated (changing page->mapping to NULL), or even
3993 * swizzled back from swapper_space to tmpfs file
3996 if (!trylock_page(page
)) {
4001 if (unlikely(page
->mapping
!= mapping
)) {
4006 if (!wbc
->range_cyclic
&& page
->index
> end
) {
4012 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
4013 if (PageWriteback(page
))
4015 wait_on_page_writeback(page
);
4018 if (PageWriteback(page
) ||
4019 !clear_page_dirty_for_io(page
)) {
4024 ret
= (*writepage
)(page
, wbc
, data
);
4026 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
4032 * done_index is set past this page,
4033 * so media errors will not choke
4034 * background writeout for the entire
4035 * file. This has consequences for
4036 * range_cyclic semantics (ie. it may
4037 * not be suitable for data integrity
4040 done_index
= page
->index
+ 1;
4046 * the filesystem may choose to bump up nr_to_write.
4047 * We have to make sure to honor the new nr_to_write
4050 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4052 pagevec_release(&pvec
);
4055 if (!scanned
&& !done
) {
4057 * We hit the last page and there is more work to be done: wrap
4058 * back to the start of the file
4065 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 && range_whole
))
4066 mapping
->writeback_index
= done_index
;
4068 btrfs_add_delayed_iput(inode
);
4072 static void flush_epd_write_bio(struct extent_page_data
*epd
)
4077 bio_set_op_attrs(epd
->bio
, REQ_OP_WRITE
,
4078 epd
->sync_io
? REQ_SYNC
: 0);
4080 ret
= submit_one_bio(epd
->bio
, 0, epd
->bio_flags
);
4081 BUG_ON(ret
< 0); /* -ENOMEM */
4086 static noinline
void flush_write_bio(void *data
)
4088 struct extent_page_data
*epd
= data
;
4089 flush_epd_write_bio(epd
);
4092 int extent_write_full_page(struct extent_io_tree
*tree
, struct page
*page
,
4093 get_extent_t
*get_extent
,
4094 struct writeback_control
*wbc
)
4097 struct extent_page_data epd
= {
4100 .get_extent
= get_extent
,
4102 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4106 ret
= __extent_writepage(page
, wbc
, &epd
);
4108 flush_epd_write_bio(&epd
);
4112 int extent_write_locked_range(struct extent_io_tree
*tree
, struct inode
*inode
,
4113 u64 start
, u64 end
, get_extent_t
*get_extent
,
4117 struct address_space
*mapping
= inode
->i_mapping
;
4119 unsigned long nr_pages
= (end
- start
+ PAGE_SIZE
) >>
4122 struct extent_page_data epd
= {
4125 .get_extent
= get_extent
,
4127 .sync_io
= mode
== WB_SYNC_ALL
,
4130 struct writeback_control wbc_writepages
= {
4132 .nr_to_write
= nr_pages
* 2,
4133 .range_start
= start
,
4134 .range_end
= end
+ 1,
4137 while (start
<= end
) {
4138 page
= find_get_page(mapping
, start
>> PAGE_SHIFT
);
4139 if (clear_page_dirty_for_io(page
))
4140 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
4142 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
4143 tree
->ops
->writepage_end_io_hook(page
, start
,
4144 start
+ PAGE_SIZE
- 1,
4152 flush_epd_write_bio(&epd
);
4156 int extent_writepages(struct extent_io_tree
*tree
,
4157 struct address_space
*mapping
,
4158 get_extent_t
*get_extent
,
4159 struct writeback_control
*wbc
)
4162 struct extent_page_data epd
= {
4165 .get_extent
= get_extent
,
4167 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4171 ret
= extent_write_cache_pages(tree
, mapping
, wbc
,
4172 __extent_writepage
, &epd
,
4174 flush_epd_write_bio(&epd
);
4178 int extent_readpages(struct extent_io_tree
*tree
,
4179 struct address_space
*mapping
,
4180 struct list_head
*pages
, unsigned nr_pages
,
4181 get_extent_t get_extent
)
4183 struct bio
*bio
= NULL
;
4185 unsigned long bio_flags
= 0;
4186 struct page
*pagepool
[16];
4188 struct extent_map
*em_cached
= NULL
;
4190 u64 prev_em_start
= (u64
)-1;
4192 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
4193 page
= list_entry(pages
->prev
, struct page
, lru
);
4195 prefetchw(&page
->flags
);
4196 list_del(&page
->lru
);
4197 if (add_to_page_cache_lru(page
, mapping
,
4199 readahead_gfp_mask(mapping
))) {
4204 pagepool
[nr
++] = page
;
4205 if (nr
< ARRAY_SIZE(pagepool
))
4207 __extent_readpages(tree
, pagepool
, nr
, get_extent
, &em_cached
,
4208 &bio
, 0, &bio_flags
, &prev_em_start
);
4212 __extent_readpages(tree
, pagepool
, nr
, get_extent
, &em_cached
,
4213 &bio
, 0, &bio_flags
, &prev_em_start
);
4216 free_extent_map(em_cached
);
4218 BUG_ON(!list_empty(pages
));
4220 return submit_one_bio(bio
, 0, bio_flags
);
4225 * basic invalidatepage code, this waits on any locked or writeback
4226 * ranges corresponding to the page, and then deletes any extent state
4227 * records from the tree
4229 int extent_invalidatepage(struct extent_io_tree
*tree
,
4230 struct page
*page
, unsigned long offset
)
4232 struct extent_state
*cached_state
= NULL
;
4233 u64 start
= page_offset(page
);
4234 u64 end
= start
+ PAGE_SIZE
- 1;
4235 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
4237 start
+= ALIGN(offset
, blocksize
);
4241 lock_extent_bits(tree
, start
, end
, &cached_state
);
4242 wait_on_page_writeback(page
);
4243 clear_extent_bit(tree
, start
, end
,
4244 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4245 EXTENT_DO_ACCOUNTING
,
4246 1, 1, &cached_state
, GFP_NOFS
);
4251 * a helper for releasepage, this tests for areas of the page that
4252 * are locked or under IO and drops the related state bits if it is safe
4255 static int try_release_extent_state(struct extent_map_tree
*map
,
4256 struct extent_io_tree
*tree
,
4257 struct page
*page
, gfp_t mask
)
4259 u64 start
= page_offset(page
);
4260 u64 end
= start
+ PAGE_SIZE
- 1;
4263 if (test_range_bit(tree
, start
, end
,
4264 EXTENT_IOBITS
, 0, NULL
))
4267 if ((mask
& GFP_NOFS
) == GFP_NOFS
)
4270 * at this point we can safely clear everything except the
4271 * locked bit and the nodatasum bit
4273 ret
= clear_extent_bit(tree
, start
, end
,
4274 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
4277 /* if clear_extent_bit failed for enomem reasons,
4278 * we can't allow the release to continue.
4289 * a helper for releasepage. As long as there are no locked extents
4290 * in the range corresponding to the page, both state records and extent
4291 * map records are removed
4293 int try_release_extent_mapping(struct extent_map_tree
*map
,
4294 struct extent_io_tree
*tree
, struct page
*page
,
4297 struct extent_map
*em
;
4298 u64 start
= page_offset(page
);
4299 u64 end
= start
+ PAGE_SIZE
- 1;
4301 if (gfpflags_allow_blocking(mask
) &&
4302 page
->mapping
->host
->i_size
> SZ_16M
) {
4304 while (start
<= end
) {
4305 len
= end
- start
+ 1;
4306 write_lock(&map
->lock
);
4307 em
= lookup_extent_mapping(map
, start
, len
);
4309 write_unlock(&map
->lock
);
4312 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
4313 em
->start
!= start
) {
4314 write_unlock(&map
->lock
);
4315 free_extent_map(em
);
4318 if (!test_range_bit(tree
, em
->start
,
4319 extent_map_end(em
) - 1,
4320 EXTENT_LOCKED
| EXTENT_WRITEBACK
,
4322 remove_extent_mapping(map
, em
);
4323 /* once for the rb tree */
4324 free_extent_map(em
);
4326 start
= extent_map_end(em
);
4327 write_unlock(&map
->lock
);
4330 free_extent_map(em
);
4333 return try_release_extent_state(map
, tree
, page
, mask
);
4337 * helper function for fiemap, which doesn't want to see any holes.
4338 * This maps until we find something past 'last'
4340 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
4343 get_extent_t
*get_extent
)
4345 u64 sectorsize
= btrfs_inode_sectorsize(inode
);
4346 struct extent_map
*em
;
4353 len
= last
- offset
;
4356 len
= ALIGN(len
, sectorsize
);
4357 em
= get_extent(inode
, NULL
, 0, offset
, len
, 0);
4358 if (IS_ERR_OR_NULL(em
))
4361 /* if this isn't a hole return it */
4362 if (!test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
) &&
4363 em
->block_start
!= EXTENT_MAP_HOLE
) {
4367 /* this is a hole, advance to the next extent */
4368 offset
= extent_map_end(em
);
4369 free_extent_map(em
);
4376 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4377 __u64 start
, __u64 len
, get_extent_t
*get_extent
)
4381 u64 max
= start
+ len
;
4385 u64 last_for_get_extent
= 0;
4387 u64 isize
= i_size_read(inode
);
4388 struct btrfs_key found_key
;
4389 struct extent_map
*em
= NULL
;
4390 struct extent_state
*cached_state
= NULL
;
4391 struct btrfs_path
*path
;
4392 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4401 path
= btrfs_alloc_path();
4404 path
->leave_spinning
= 1;
4406 start
= round_down(start
, btrfs_inode_sectorsize(inode
));
4407 len
= round_up(max
, btrfs_inode_sectorsize(inode
)) - start
;
4410 * lookup the last file extent. We're not using i_size here
4411 * because there might be preallocation past i_size
4413 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, btrfs_ino(inode
), -1,
4416 btrfs_free_path(path
);
4425 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
4426 found_type
= found_key
.type
;
4428 /* No extents, but there might be delalloc bits */
4429 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4430 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4431 /* have to trust i_size as the end */
4433 last_for_get_extent
= isize
;
4436 * remember the start of the last extent. There are a
4437 * bunch of different factors that go into the length of the
4438 * extent, so its much less complex to remember where it started
4440 last
= found_key
.offset
;
4441 last_for_get_extent
= last
+ 1;
4443 btrfs_release_path(path
);
4446 * we might have some extents allocated but more delalloc past those
4447 * extents. so, we trust isize unless the start of the last extent is
4452 last_for_get_extent
= isize
;
4455 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4458 em
= get_extent_skip_holes(inode
, start
, last_for_get_extent
,
4468 u64 offset_in_extent
= 0;
4470 /* break if the extent we found is outside the range */
4471 if (em
->start
>= max
|| extent_map_end(em
) < off
)
4475 * get_extent may return an extent that starts before our
4476 * requested range. We have to make sure the ranges
4477 * we return to fiemap always move forward and don't
4478 * overlap, so adjust the offsets here
4480 em_start
= max(em
->start
, off
);
4483 * record the offset from the start of the extent
4484 * for adjusting the disk offset below. Only do this if the
4485 * extent isn't compressed since our in ram offset may be past
4486 * what we have actually allocated on disk.
4488 if (!test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4489 offset_in_extent
= em_start
- em
->start
;
4490 em_end
= extent_map_end(em
);
4491 em_len
= em_end
- em_start
;
4496 * bump off for our next call to get_extent
4498 off
= extent_map_end(em
);
4502 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
4504 flags
|= FIEMAP_EXTENT_LAST
;
4505 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
4506 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
4507 FIEMAP_EXTENT_NOT_ALIGNED
);
4508 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
4509 flags
|= (FIEMAP_EXTENT_DELALLOC
|
4510 FIEMAP_EXTENT_UNKNOWN
);
4511 } else if (fieinfo
->fi_extents_max
) {
4512 struct btrfs_trans_handle
*trans
;
4514 u64 bytenr
= em
->block_start
-
4515 (em
->start
- em
->orig_start
);
4517 disko
= em
->block_start
+ offset_in_extent
;
4520 * We need a trans handle to get delayed refs
4522 trans
= btrfs_join_transaction(root
);
4524 * It's OK if we can't start a trans we can still check
4531 * As btrfs supports shared space, this information
4532 * can be exported to userspace tools via
4533 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4534 * then we're just getting a count and we can skip the
4537 ret
= btrfs_check_shared(trans
, root
->fs_info
,
4539 btrfs_ino(inode
), bytenr
);
4541 btrfs_end_transaction(trans
);
4545 flags
|= FIEMAP_EXTENT_SHARED
;
4548 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4549 flags
|= FIEMAP_EXTENT_ENCODED
;
4550 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4551 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
4553 free_extent_map(em
);
4555 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
4556 (last
== (u64
)-1 && isize
<= em_end
)) {
4557 flags
|= FIEMAP_EXTENT_LAST
;
4561 /* now scan forward to see if this is really the last extent. */
4562 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
,
4569 flags
|= FIEMAP_EXTENT_LAST
;
4572 ret
= fiemap_fill_next_extent(fieinfo
, em_start
, disko
,
4581 free_extent_map(em
);
4583 btrfs_free_path(path
);
4584 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4585 &cached_state
, GFP_NOFS
);
4589 static void __free_extent_buffer(struct extent_buffer
*eb
)
4591 btrfs_leak_debug_del(&eb
->leak_list
);
4592 kmem_cache_free(extent_buffer_cache
, eb
);
4595 int extent_buffer_under_io(struct extent_buffer
*eb
)
4597 return (atomic_read(&eb
->io_pages
) ||
4598 test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
) ||
4599 test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4603 * Helper for releasing extent buffer page.
4605 static void btrfs_release_extent_buffer_page(struct extent_buffer
*eb
)
4607 unsigned long index
;
4609 int mapped
= !test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4611 BUG_ON(extent_buffer_under_io(eb
));
4613 index
= num_extent_pages(eb
->start
, eb
->len
);
4619 page
= eb
->pages
[index
];
4623 spin_lock(&page
->mapping
->private_lock
);
4625 * We do this since we'll remove the pages after we've
4626 * removed the eb from the radix tree, so we could race
4627 * and have this page now attached to the new eb. So
4628 * only clear page_private if it's still connected to
4631 if (PagePrivate(page
) &&
4632 page
->private == (unsigned long)eb
) {
4633 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4634 BUG_ON(PageDirty(page
));
4635 BUG_ON(PageWriteback(page
));
4637 * We need to make sure we haven't be attached
4640 ClearPagePrivate(page
);
4641 set_page_private(page
, 0);
4642 /* One for the page private */
4647 spin_unlock(&page
->mapping
->private_lock
);
4649 /* One for when we allocated the page */
4651 } while (index
!= 0);
4655 * Helper for releasing the extent buffer.
4657 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
4659 btrfs_release_extent_buffer_page(eb
);
4660 __free_extent_buffer(eb
);
4663 static struct extent_buffer
*
4664 __alloc_extent_buffer(struct btrfs_fs_info
*fs_info
, u64 start
,
4667 struct extent_buffer
*eb
= NULL
;
4669 eb
= kmem_cache_zalloc(extent_buffer_cache
, GFP_NOFS
|__GFP_NOFAIL
);
4672 eb
->fs_info
= fs_info
;
4674 rwlock_init(&eb
->lock
);
4675 atomic_set(&eb
->write_locks
, 0);
4676 atomic_set(&eb
->read_locks
, 0);
4677 atomic_set(&eb
->blocking_readers
, 0);
4678 atomic_set(&eb
->blocking_writers
, 0);
4679 atomic_set(&eb
->spinning_readers
, 0);
4680 atomic_set(&eb
->spinning_writers
, 0);
4681 eb
->lock_nested
= 0;
4682 init_waitqueue_head(&eb
->write_lock_wq
);
4683 init_waitqueue_head(&eb
->read_lock_wq
);
4685 btrfs_leak_debug_add(&eb
->leak_list
, &buffers
);
4687 spin_lock_init(&eb
->refs_lock
);
4688 atomic_set(&eb
->refs
, 1);
4689 atomic_set(&eb
->io_pages
, 0);
4692 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4694 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4695 > MAX_INLINE_EXTENT_BUFFER_SIZE
);
4696 BUG_ON(len
> MAX_INLINE_EXTENT_BUFFER_SIZE
);
4701 struct extent_buffer
*btrfs_clone_extent_buffer(struct extent_buffer
*src
)
4705 struct extent_buffer
*new;
4706 unsigned long num_pages
= num_extent_pages(src
->start
, src
->len
);
4708 new = __alloc_extent_buffer(src
->fs_info
, src
->start
, src
->len
);
4712 for (i
= 0; i
< num_pages
; i
++) {
4713 p
= alloc_page(GFP_NOFS
);
4715 btrfs_release_extent_buffer(new);
4718 attach_extent_buffer_page(new, p
);
4719 WARN_ON(PageDirty(p
));
4722 copy_page(page_address(p
), page_address(src
->pages
[i
]));
4725 set_bit(EXTENT_BUFFER_UPTODATE
, &new->bflags
);
4726 set_bit(EXTENT_BUFFER_DUMMY
, &new->bflags
);
4731 struct extent_buffer
*__alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
4732 u64 start
, unsigned long len
)
4734 struct extent_buffer
*eb
;
4735 unsigned long num_pages
;
4738 num_pages
= num_extent_pages(start
, len
);
4740 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
4744 for (i
= 0; i
< num_pages
; i
++) {
4745 eb
->pages
[i
] = alloc_page(GFP_NOFS
);
4749 set_extent_buffer_uptodate(eb
);
4750 btrfs_set_header_nritems(eb
, 0);
4751 set_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4756 __free_page(eb
->pages
[i
- 1]);
4757 __free_extent_buffer(eb
);
4761 struct extent_buffer
*alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
4764 return __alloc_dummy_extent_buffer(fs_info
, start
, fs_info
->nodesize
);
4767 static void check_buffer_tree_ref(struct extent_buffer
*eb
)
4770 /* the ref bit is tricky. We have to make sure it is set
4771 * if we have the buffer dirty. Otherwise the
4772 * code to free a buffer can end up dropping a dirty
4775 * Once the ref bit is set, it won't go away while the
4776 * buffer is dirty or in writeback, and it also won't
4777 * go away while we have the reference count on the
4780 * We can't just set the ref bit without bumping the
4781 * ref on the eb because free_extent_buffer might
4782 * see the ref bit and try to clear it. If this happens
4783 * free_extent_buffer might end up dropping our original
4784 * ref by mistake and freeing the page before we are able
4785 * to add one more ref.
4787 * So bump the ref count first, then set the bit. If someone
4788 * beat us to it, drop the ref we added.
4790 refs
= atomic_read(&eb
->refs
);
4791 if (refs
>= 2 && test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4794 spin_lock(&eb
->refs_lock
);
4795 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4796 atomic_inc(&eb
->refs
);
4797 spin_unlock(&eb
->refs_lock
);
4800 static void mark_extent_buffer_accessed(struct extent_buffer
*eb
,
4801 struct page
*accessed
)
4803 unsigned long num_pages
, i
;
4805 check_buffer_tree_ref(eb
);
4807 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4808 for (i
= 0; i
< num_pages
; i
++) {
4809 struct page
*p
= eb
->pages
[i
];
4812 mark_page_accessed(p
);
4816 struct extent_buffer
*find_extent_buffer(struct btrfs_fs_info
*fs_info
,
4819 struct extent_buffer
*eb
;
4822 eb
= radix_tree_lookup(&fs_info
->buffer_radix
,
4823 start
>> PAGE_SHIFT
);
4824 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
4827 * Lock our eb's refs_lock to avoid races with
4828 * free_extent_buffer. When we get our eb it might be flagged
4829 * with EXTENT_BUFFER_STALE and another task running
4830 * free_extent_buffer might have seen that flag set,
4831 * eb->refs == 2, that the buffer isn't under IO (dirty and
4832 * writeback flags not set) and it's still in the tree (flag
4833 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4834 * of decrementing the extent buffer's reference count twice.
4835 * So here we could race and increment the eb's reference count,
4836 * clear its stale flag, mark it as dirty and drop our reference
4837 * before the other task finishes executing free_extent_buffer,
4838 * which would later result in an attempt to free an extent
4839 * buffer that is dirty.
4841 if (test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
)) {
4842 spin_lock(&eb
->refs_lock
);
4843 spin_unlock(&eb
->refs_lock
);
4845 mark_extent_buffer_accessed(eb
, NULL
);
4853 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4854 struct extent_buffer
*alloc_test_extent_buffer(struct btrfs_fs_info
*fs_info
,
4857 struct extent_buffer
*eb
, *exists
= NULL
;
4860 eb
= find_extent_buffer(fs_info
, start
);
4863 eb
= alloc_dummy_extent_buffer(fs_info
, start
);
4866 eb
->fs_info
= fs_info
;
4868 ret
= radix_tree_preload(GFP_NOFS
);
4871 spin_lock(&fs_info
->buffer_lock
);
4872 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
4873 start
>> PAGE_SHIFT
, eb
);
4874 spin_unlock(&fs_info
->buffer_lock
);
4875 radix_tree_preload_end();
4876 if (ret
== -EEXIST
) {
4877 exists
= find_extent_buffer(fs_info
, start
);
4883 check_buffer_tree_ref(eb
);
4884 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
4887 * We will free dummy extent buffer's if they come into
4888 * free_extent_buffer with a ref count of 2, but if we are using this we
4889 * want the buffers to stay in memory until we're done with them, so
4890 * bump the ref count again.
4892 atomic_inc(&eb
->refs
);
4895 btrfs_release_extent_buffer(eb
);
4900 struct extent_buffer
*alloc_extent_buffer(struct btrfs_fs_info
*fs_info
,
4903 unsigned long len
= fs_info
->nodesize
;
4904 unsigned long num_pages
= num_extent_pages(start
, len
);
4906 unsigned long index
= start
>> PAGE_SHIFT
;
4907 struct extent_buffer
*eb
;
4908 struct extent_buffer
*exists
= NULL
;
4910 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
4914 if (!IS_ALIGNED(start
, fs_info
->sectorsize
)) {
4915 btrfs_err(fs_info
, "bad tree block start %llu", start
);
4916 return ERR_PTR(-EINVAL
);
4919 eb
= find_extent_buffer(fs_info
, start
);
4923 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
4925 return ERR_PTR(-ENOMEM
);
4927 for (i
= 0; i
< num_pages
; i
++, index
++) {
4928 p
= find_or_create_page(mapping
, index
, GFP_NOFS
|__GFP_NOFAIL
);
4930 exists
= ERR_PTR(-ENOMEM
);
4934 spin_lock(&mapping
->private_lock
);
4935 if (PagePrivate(p
)) {
4937 * We could have already allocated an eb for this page
4938 * and attached one so lets see if we can get a ref on
4939 * the existing eb, and if we can we know it's good and
4940 * we can just return that one, else we know we can just
4941 * overwrite page->private.
4943 exists
= (struct extent_buffer
*)p
->private;
4944 if (atomic_inc_not_zero(&exists
->refs
)) {
4945 spin_unlock(&mapping
->private_lock
);
4948 mark_extent_buffer_accessed(exists
, p
);
4954 * Do this so attach doesn't complain and we need to
4955 * drop the ref the old guy had.
4957 ClearPagePrivate(p
);
4958 WARN_ON(PageDirty(p
));
4961 attach_extent_buffer_page(eb
, p
);
4962 spin_unlock(&mapping
->private_lock
);
4963 WARN_ON(PageDirty(p
));
4965 if (!PageUptodate(p
))
4969 * see below about how we avoid a nasty race with release page
4970 * and why we unlock later
4974 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4976 ret
= radix_tree_preload(GFP_NOFS
);
4978 exists
= ERR_PTR(ret
);
4982 spin_lock(&fs_info
->buffer_lock
);
4983 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
4984 start
>> PAGE_SHIFT
, eb
);
4985 spin_unlock(&fs_info
->buffer_lock
);
4986 radix_tree_preload_end();
4987 if (ret
== -EEXIST
) {
4988 exists
= find_extent_buffer(fs_info
, start
);
4994 /* add one reference for the tree */
4995 check_buffer_tree_ref(eb
);
4996 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
4999 * there is a race where release page may have
5000 * tried to find this extent buffer in the radix
5001 * but failed. It will tell the VM it is safe to
5002 * reclaim the, and it will clear the page private bit.
5003 * We must make sure to set the page private bit properly
5004 * after the extent buffer is in the radix tree so
5005 * it doesn't get lost
5007 SetPageChecked(eb
->pages
[0]);
5008 for (i
= 1; i
< num_pages
; i
++) {
5010 ClearPageChecked(p
);
5013 unlock_page(eb
->pages
[0]);
5017 WARN_ON(!atomic_dec_and_test(&eb
->refs
));
5018 for (i
= 0; i
< num_pages
; i
++) {
5020 unlock_page(eb
->pages
[i
]);
5023 btrfs_release_extent_buffer(eb
);
5027 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
5029 struct extent_buffer
*eb
=
5030 container_of(head
, struct extent_buffer
, rcu_head
);
5032 __free_extent_buffer(eb
);
5035 /* Expects to have eb->eb_lock already held */
5036 static int release_extent_buffer(struct extent_buffer
*eb
)
5038 WARN_ON(atomic_read(&eb
->refs
) == 0);
5039 if (atomic_dec_and_test(&eb
->refs
)) {
5040 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
)) {
5041 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
5043 spin_unlock(&eb
->refs_lock
);
5045 spin_lock(&fs_info
->buffer_lock
);
5046 radix_tree_delete(&fs_info
->buffer_radix
,
5047 eb
->start
>> PAGE_SHIFT
);
5048 spin_unlock(&fs_info
->buffer_lock
);
5050 spin_unlock(&eb
->refs_lock
);
5053 /* Should be safe to release our pages at this point */
5054 btrfs_release_extent_buffer_page(eb
);
5055 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5056 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
))) {
5057 __free_extent_buffer(eb
);
5061 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);
5064 spin_unlock(&eb
->refs_lock
);
5069 void free_extent_buffer(struct extent_buffer
*eb
)
5077 refs
= atomic_read(&eb
->refs
);
5080 old
= atomic_cmpxchg(&eb
->refs
, refs
, refs
- 1);
5085 spin_lock(&eb
->refs_lock
);
5086 if (atomic_read(&eb
->refs
) == 2 &&
5087 test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
))
5088 atomic_dec(&eb
->refs
);
5090 if (atomic_read(&eb
->refs
) == 2 &&
5091 test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
) &&
5092 !extent_buffer_under_io(eb
) &&
5093 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5094 atomic_dec(&eb
->refs
);
5097 * I know this is terrible, but it's temporary until we stop tracking
5098 * the uptodate bits and such for the extent buffers.
5100 release_extent_buffer(eb
);
5103 void free_extent_buffer_stale(struct extent_buffer
*eb
)
5108 spin_lock(&eb
->refs_lock
);
5109 set_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
);
5111 if (atomic_read(&eb
->refs
) == 2 && !extent_buffer_under_io(eb
) &&
5112 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5113 atomic_dec(&eb
->refs
);
5114 release_extent_buffer(eb
);
5117 void clear_extent_buffer_dirty(struct extent_buffer
*eb
)
5120 unsigned long num_pages
;
5123 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5125 for (i
= 0; i
< num_pages
; i
++) {
5126 page
= eb
->pages
[i
];
5127 if (!PageDirty(page
))
5131 WARN_ON(!PagePrivate(page
));
5133 clear_page_dirty_for_io(page
);
5134 spin_lock_irq(&page
->mapping
->tree_lock
);
5135 if (!PageDirty(page
)) {
5136 radix_tree_tag_clear(&page
->mapping
->page_tree
,
5138 PAGECACHE_TAG_DIRTY
);
5140 spin_unlock_irq(&page
->mapping
->tree_lock
);
5141 ClearPageError(page
);
5144 WARN_ON(atomic_read(&eb
->refs
) == 0);
5147 int set_extent_buffer_dirty(struct extent_buffer
*eb
)
5150 unsigned long num_pages
;
5153 check_buffer_tree_ref(eb
);
5155 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
5157 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5158 WARN_ON(atomic_read(&eb
->refs
) == 0);
5159 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
));
5161 for (i
= 0; i
< num_pages
; i
++)
5162 set_page_dirty(eb
->pages
[i
]);
5166 void clear_extent_buffer_uptodate(struct extent_buffer
*eb
)
5170 unsigned long num_pages
;
5172 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5173 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5174 for (i
= 0; i
< num_pages
; i
++) {
5175 page
= eb
->pages
[i
];
5177 ClearPageUptodate(page
);
5181 void set_extent_buffer_uptodate(struct extent_buffer
*eb
)
5185 unsigned long num_pages
;
5187 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5188 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5189 for (i
= 0; i
< num_pages
; i
++) {
5190 page
= eb
->pages
[i
];
5191 SetPageUptodate(page
);
5195 int extent_buffer_uptodate(struct extent_buffer
*eb
)
5197 return test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5200 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
5201 struct extent_buffer
*eb
, int wait
,
5202 get_extent_t
*get_extent
, int mirror_num
)
5208 int locked_pages
= 0;
5209 int all_uptodate
= 1;
5210 unsigned long num_pages
;
5211 unsigned long num_reads
= 0;
5212 struct bio
*bio
= NULL
;
5213 unsigned long bio_flags
= 0;
5215 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
5218 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5219 for (i
= 0; i
< num_pages
; i
++) {
5220 page
= eb
->pages
[i
];
5221 if (wait
== WAIT_NONE
) {
5222 if (!trylock_page(page
))
5230 * We need to firstly lock all pages to make sure that
5231 * the uptodate bit of our pages won't be affected by
5232 * clear_extent_buffer_uptodate().
5234 for (i
= 0; i
< num_pages
; i
++) {
5235 page
= eb
->pages
[i
];
5236 if (!PageUptodate(page
)) {
5243 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5247 clear_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
5248 eb
->read_mirror
= 0;
5249 atomic_set(&eb
->io_pages
, num_reads
);
5250 for (i
= 0; i
< num_pages
; i
++) {
5251 page
= eb
->pages
[i
];
5253 if (!PageUptodate(page
)) {
5255 atomic_dec(&eb
->io_pages
);
5260 ClearPageError(page
);
5261 err
= __extent_read_full_page(tree
, page
,
5263 mirror_num
, &bio_flags
,
5268 * We use &bio in above __extent_read_full_page,
5269 * so we ensure that if it returns error, the
5270 * current page fails to add itself to bio and
5271 * it's been unlocked.
5273 * We must dec io_pages by ourselves.
5275 atomic_dec(&eb
->io_pages
);
5283 err
= submit_one_bio(bio
, mirror_num
, bio_flags
);
5288 if (ret
|| wait
!= WAIT_COMPLETE
)
5291 for (i
= 0; i
< num_pages
; i
++) {
5292 page
= eb
->pages
[i
];
5293 wait_on_page_locked(page
);
5294 if (!PageUptodate(page
))
5301 while (locked_pages
> 0) {
5303 page
= eb
->pages
[locked_pages
];
5309 void read_extent_buffer(struct extent_buffer
*eb
, void *dstv
,
5310 unsigned long start
,
5317 char *dst
= (char *)dstv
;
5318 size_t start_offset
= eb
->start
& ((u64
)PAGE_SIZE
- 1);
5319 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5321 WARN_ON(start
> eb
->len
);
5322 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5324 offset
= (start_offset
+ start
) & (PAGE_SIZE
- 1);
5327 page
= eb
->pages
[i
];
5329 cur
= min(len
, (PAGE_SIZE
- offset
));
5330 kaddr
= page_address(page
);
5331 memcpy(dst
, kaddr
+ offset
, cur
);
5340 int read_extent_buffer_to_user(struct extent_buffer
*eb
, void __user
*dstv
,
5341 unsigned long start
,
5348 char __user
*dst
= (char __user
*)dstv
;
5349 size_t start_offset
= eb
->start
& ((u64
)PAGE_SIZE
- 1);
5350 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5353 WARN_ON(start
> eb
->len
);
5354 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5356 offset
= (start_offset
+ start
) & (PAGE_SIZE
- 1);
5359 page
= eb
->pages
[i
];
5361 cur
= min(len
, (PAGE_SIZE
- offset
));
5362 kaddr
= page_address(page
);
5363 if (copy_to_user(dst
, kaddr
+ offset
, cur
)) {
5378 * return 0 if the item is found within a page.
5379 * return 1 if the item spans two pages.
5380 * return -EINVAL otherwise.
5382 int map_private_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
5383 unsigned long min_len
, char **map
,
5384 unsigned long *map_start
,
5385 unsigned long *map_len
)
5387 size_t offset
= start
& (PAGE_SIZE
- 1);
5390 size_t start_offset
= eb
->start
& ((u64
)PAGE_SIZE
- 1);
5391 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5392 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
5399 offset
= start_offset
;
5403 *map_start
= ((u64
)i
<< PAGE_SHIFT
) - start_offset
;
5406 if (start
+ min_len
> eb
->len
) {
5407 WARN(1, KERN_ERR
"btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5408 eb
->start
, eb
->len
, start
, min_len
);
5413 kaddr
= page_address(p
);
5414 *map
= kaddr
+ offset
;
5415 *map_len
= PAGE_SIZE
- offset
;
5419 int memcmp_extent_buffer(struct extent_buffer
*eb
, const void *ptrv
,
5420 unsigned long start
,
5427 char *ptr
= (char *)ptrv
;
5428 size_t start_offset
= eb
->start
& ((u64
)PAGE_SIZE
- 1);
5429 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5432 WARN_ON(start
> eb
->len
);
5433 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5435 offset
= (start_offset
+ start
) & (PAGE_SIZE
- 1);
5438 page
= eb
->pages
[i
];
5440 cur
= min(len
, (PAGE_SIZE
- offset
));
5442 kaddr
= page_address(page
);
5443 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
5455 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer
*eb
,
5460 WARN_ON(!PageUptodate(eb
->pages
[0]));
5461 kaddr
= page_address(eb
->pages
[0]);
5462 memcpy(kaddr
+ offsetof(struct btrfs_header
, chunk_tree_uuid
), srcv
,
5466 void write_extent_buffer_fsid(struct extent_buffer
*eb
, const void *srcv
)
5470 WARN_ON(!PageUptodate(eb
->pages
[0]));
5471 kaddr
= page_address(eb
->pages
[0]);
5472 memcpy(kaddr
+ offsetof(struct btrfs_header
, fsid
), srcv
,
5476 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
5477 unsigned long start
, unsigned long len
)
5483 char *src
= (char *)srcv
;
5484 size_t start_offset
= eb
->start
& ((u64
)PAGE_SIZE
- 1);
5485 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5487 WARN_ON(start
> eb
->len
);
5488 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5490 offset
= (start_offset
+ start
) & (PAGE_SIZE
- 1);
5493 page
= eb
->pages
[i
];
5494 WARN_ON(!PageUptodate(page
));
5496 cur
= min(len
, PAGE_SIZE
- offset
);
5497 kaddr
= page_address(page
);
5498 memcpy(kaddr
+ offset
, src
, cur
);
5507 void memzero_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
5514 size_t start_offset
= eb
->start
& ((u64
)PAGE_SIZE
- 1);
5515 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5517 WARN_ON(start
> eb
->len
);
5518 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5520 offset
= (start_offset
+ start
) & (PAGE_SIZE
- 1);
5523 page
= eb
->pages
[i
];
5524 WARN_ON(!PageUptodate(page
));
5526 cur
= min(len
, PAGE_SIZE
- offset
);
5527 kaddr
= page_address(page
);
5528 memset(kaddr
+ offset
, 0, cur
);
5536 void copy_extent_buffer_full(struct extent_buffer
*dst
,
5537 struct extent_buffer
*src
)
5542 ASSERT(dst
->len
== src
->len
);
5544 num_pages
= num_extent_pages(dst
->start
, dst
->len
);
5545 for (i
= 0; i
< num_pages
; i
++)
5546 copy_page(page_address(dst
->pages
[i
]),
5547 page_address(src
->pages
[i
]));
5550 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
5551 unsigned long dst_offset
, unsigned long src_offset
,
5554 u64 dst_len
= dst
->len
;
5559 size_t start_offset
= dst
->start
& ((u64
)PAGE_SIZE
- 1);
5560 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_SHIFT
;
5562 WARN_ON(src
->len
!= dst_len
);
5564 offset
= (start_offset
+ dst_offset
) &
5568 page
= dst
->pages
[i
];
5569 WARN_ON(!PageUptodate(page
));
5571 cur
= min(len
, (unsigned long)(PAGE_SIZE
- offset
));
5573 kaddr
= page_address(page
);
5574 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
5583 void le_bitmap_set(u8
*map
, unsigned int start
, int len
)
5585 u8
*p
= map
+ BIT_BYTE(start
);
5586 const unsigned int size
= start
+ len
;
5587 int bits_to_set
= BITS_PER_BYTE
- (start
% BITS_PER_BYTE
);
5588 u8 mask_to_set
= BITMAP_FIRST_BYTE_MASK(start
);
5590 while (len
- bits_to_set
>= 0) {
5593 bits_to_set
= BITS_PER_BYTE
;
5598 mask_to_set
&= BITMAP_LAST_BYTE_MASK(size
);
5603 void le_bitmap_clear(u8
*map
, unsigned int start
, int len
)
5605 u8
*p
= map
+ BIT_BYTE(start
);
5606 const unsigned int size
= start
+ len
;
5607 int bits_to_clear
= BITS_PER_BYTE
- (start
% BITS_PER_BYTE
);
5608 u8 mask_to_clear
= BITMAP_FIRST_BYTE_MASK(start
);
5610 while (len
- bits_to_clear
>= 0) {
5611 *p
&= ~mask_to_clear
;
5612 len
-= bits_to_clear
;
5613 bits_to_clear
= BITS_PER_BYTE
;
5618 mask_to_clear
&= BITMAP_LAST_BYTE_MASK(size
);
5619 *p
&= ~mask_to_clear
;
5624 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5626 * @eb: the extent buffer
5627 * @start: offset of the bitmap item in the extent buffer
5629 * @page_index: return index of the page in the extent buffer that contains the
5631 * @page_offset: return offset into the page given by page_index
5633 * This helper hides the ugliness of finding the byte in an extent buffer which
5634 * contains a given bit.
5636 static inline void eb_bitmap_offset(struct extent_buffer
*eb
,
5637 unsigned long start
, unsigned long nr
,
5638 unsigned long *page_index
,
5639 size_t *page_offset
)
5641 size_t start_offset
= eb
->start
& ((u64
)PAGE_SIZE
- 1);
5642 size_t byte_offset
= BIT_BYTE(nr
);
5646 * The byte we want is the offset of the extent buffer + the offset of
5647 * the bitmap item in the extent buffer + the offset of the byte in the
5650 offset
= start_offset
+ start
+ byte_offset
;
5652 *page_index
= offset
>> PAGE_SHIFT
;
5653 *page_offset
= offset
& (PAGE_SIZE
- 1);
5657 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5658 * @eb: the extent buffer
5659 * @start: offset of the bitmap item in the extent buffer
5660 * @nr: bit number to test
5662 int extent_buffer_test_bit(struct extent_buffer
*eb
, unsigned long start
,
5670 eb_bitmap_offset(eb
, start
, nr
, &i
, &offset
);
5671 page
= eb
->pages
[i
];
5672 WARN_ON(!PageUptodate(page
));
5673 kaddr
= page_address(page
);
5674 return 1U & (kaddr
[offset
] >> (nr
& (BITS_PER_BYTE
- 1)));
5678 * extent_buffer_bitmap_set - set an area of a bitmap
5679 * @eb: the extent buffer
5680 * @start: offset of the bitmap item in the extent buffer
5681 * @pos: bit number of the first bit
5682 * @len: number of bits to set
5684 void extent_buffer_bitmap_set(struct extent_buffer
*eb
, unsigned long start
,
5685 unsigned long pos
, unsigned long len
)
5691 const unsigned int size
= pos
+ len
;
5692 int bits_to_set
= BITS_PER_BYTE
- (pos
% BITS_PER_BYTE
);
5693 u8 mask_to_set
= BITMAP_FIRST_BYTE_MASK(pos
);
5695 eb_bitmap_offset(eb
, start
, pos
, &i
, &offset
);
5696 page
= eb
->pages
[i
];
5697 WARN_ON(!PageUptodate(page
));
5698 kaddr
= page_address(page
);
5700 while (len
>= bits_to_set
) {
5701 kaddr
[offset
] |= mask_to_set
;
5703 bits_to_set
= BITS_PER_BYTE
;
5705 if (++offset
>= PAGE_SIZE
&& len
> 0) {
5707 page
= eb
->pages
[++i
];
5708 WARN_ON(!PageUptodate(page
));
5709 kaddr
= page_address(page
);
5713 mask_to_set
&= BITMAP_LAST_BYTE_MASK(size
);
5714 kaddr
[offset
] |= mask_to_set
;
5720 * extent_buffer_bitmap_clear - clear an area of a bitmap
5721 * @eb: the extent buffer
5722 * @start: offset of the bitmap item in the extent buffer
5723 * @pos: bit number of the first bit
5724 * @len: number of bits to clear
5726 void extent_buffer_bitmap_clear(struct extent_buffer
*eb
, unsigned long start
,
5727 unsigned long pos
, unsigned long len
)
5733 const unsigned int size
= pos
+ len
;
5734 int bits_to_clear
= BITS_PER_BYTE
- (pos
% BITS_PER_BYTE
);
5735 u8 mask_to_clear
= BITMAP_FIRST_BYTE_MASK(pos
);
5737 eb_bitmap_offset(eb
, start
, pos
, &i
, &offset
);
5738 page
= eb
->pages
[i
];
5739 WARN_ON(!PageUptodate(page
));
5740 kaddr
= page_address(page
);
5742 while (len
>= bits_to_clear
) {
5743 kaddr
[offset
] &= ~mask_to_clear
;
5744 len
-= bits_to_clear
;
5745 bits_to_clear
= BITS_PER_BYTE
;
5747 if (++offset
>= PAGE_SIZE
&& len
> 0) {
5749 page
= eb
->pages
[++i
];
5750 WARN_ON(!PageUptodate(page
));
5751 kaddr
= page_address(page
);
5755 mask_to_clear
&= BITMAP_LAST_BYTE_MASK(size
);
5756 kaddr
[offset
] &= ~mask_to_clear
;
5760 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
5762 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
5763 return distance
< len
;
5766 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
5767 unsigned long dst_off
, unsigned long src_off
,
5770 char *dst_kaddr
= page_address(dst_page
);
5772 int must_memmove
= 0;
5774 if (dst_page
!= src_page
) {
5775 src_kaddr
= page_address(src_page
);
5777 src_kaddr
= dst_kaddr
;
5778 if (areas_overlap(src_off
, dst_off
, len
))
5783 memmove(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5785 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5788 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5789 unsigned long src_offset
, unsigned long len
)
5791 struct btrfs_fs_info
*fs_info
= dst
->fs_info
;
5793 size_t dst_off_in_page
;
5794 size_t src_off_in_page
;
5795 size_t start_offset
= dst
->start
& ((u64
)PAGE_SIZE
- 1);
5796 unsigned long dst_i
;
5797 unsigned long src_i
;
5799 if (src_offset
+ len
> dst
->len
) {
5801 "memmove bogus src_offset %lu move len %lu dst len %lu",
5802 src_offset
, len
, dst
->len
);
5805 if (dst_offset
+ len
> dst
->len
) {
5807 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5808 dst_offset
, len
, dst
->len
);
5813 dst_off_in_page
= (start_offset
+ dst_offset
) &
5815 src_off_in_page
= (start_offset
+ src_offset
) &
5818 dst_i
= (start_offset
+ dst_offset
) >> PAGE_SHIFT
;
5819 src_i
= (start_offset
+ src_offset
) >> PAGE_SHIFT
;
5821 cur
= min(len
, (unsigned long)(PAGE_SIZE
-
5823 cur
= min_t(unsigned long, cur
,
5824 (unsigned long)(PAGE_SIZE
- dst_off_in_page
));
5826 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5827 dst_off_in_page
, src_off_in_page
, cur
);
5835 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5836 unsigned long src_offset
, unsigned long len
)
5838 struct btrfs_fs_info
*fs_info
= dst
->fs_info
;
5840 size_t dst_off_in_page
;
5841 size_t src_off_in_page
;
5842 unsigned long dst_end
= dst_offset
+ len
- 1;
5843 unsigned long src_end
= src_offset
+ len
- 1;
5844 size_t start_offset
= dst
->start
& ((u64
)PAGE_SIZE
- 1);
5845 unsigned long dst_i
;
5846 unsigned long src_i
;
5848 if (src_offset
+ len
> dst
->len
) {
5850 "memmove bogus src_offset %lu move len %lu len %lu",
5851 src_offset
, len
, dst
->len
);
5854 if (dst_offset
+ len
> dst
->len
) {
5856 "memmove bogus dst_offset %lu move len %lu len %lu",
5857 dst_offset
, len
, dst
->len
);
5860 if (dst_offset
< src_offset
) {
5861 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
5865 dst_i
= (start_offset
+ dst_end
) >> PAGE_SHIFT
;
5866 src_i
= (start_offset
+ src_end
) >> PAGE_SHIFT
;
5868 dst_off_in_page
= (start_offset
+ dst_end
) &
5870 src_off_in_page
= (start_offset
+ src_end
) &
5873 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
5874 cur
= min(cur
, dst_off_in_page
+ 1);
5875 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5876 dst_off_in_page
- cur
+ 1,
5877 src_off_in_page
- cur
+ 1, cur
);
5885 int try_release_extent_buffer(struct page
*page
)
5887 struct extent_buffer
*eb
;
5890 * We need to make sure nobody is attaching this page to an eb right
5893 spin_lock(&page
->mapping
->private_lock
);
5894 if (!PagePrivate(page
)) {
5895 spin_unlock(&page
->mapping
->private_lock
);
5899 eb
= (struct extent_buffer
*)page
->private;
5903 * This is a little awful but should be ok, we need to make sure that
5904 * the eb doesn't disappear out from under us while we're looking at
5907 spin_lock(&eb
->refs_lock
);
5908 if (atomic_read(&eb
->refs
) != 1 || extent_buffer_under_io(eb
)) {
5909 spin_unlock(&eb
->refs_lock
);
5910 spin_unlock(&page
->mapping
->private_lock
);
5913 spin_unlock(&page
->mapping
->private_lock
);
5916 * If tree ref isn't set then we know the ref on this eb is a real ref,
5917 * so just return, this page will likely be freed soon anyway.
5919 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
)) {
5920 spin_unlock(&eb
->refs_lock
);
5924 return release_extent_buffer(eb
);