2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include <linux/btrfs.h>
33 #include <linux/uio.h>
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
43 #include "compression.h"
45 static struct kmem_cache
*btrfs_inode_defrag_cachep
;
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
52 struct rb_node rb_node
;
56 * transid where the defrag was added, we search for
57 * extents newer than this
64 /* last offset we were able to defrag */
67 /* if we've wrapped around back to zero once already */
71 static int __compare_inode_defrag(struct inode_defrag
*defrag1
,
72 struct inode_defrag
*defrag2
)
74 if (defrag1
->root
> defrag2
->root
)
76 else if (defrag1
->root
< defrag2
->root
)
78 else if (defrag1
->ino
> defrag2
->ino
)
80 else if (defrag1
->ino
< defrag2
->ino
)
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
92 * If an existing record is found the defrag item you
95 static int __btrfs_add_inode_defrag(struct inode
*inode
,
96 struct inode_defrag
*defrag
)
98 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
99 struct inode_defrag
*entry
;
101 struct rb_node
*parent
= NULL
;
104 p
= &fs_info
->defrag_inodes
.rb_node
;
107 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
109 ret
= __compare_inode_defrag(defrag
, entry
);
111 p
= &parent
->rb_left
;
113 p
= &parent
->rb_right
;
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
119 if (defrag
->transid
< entry
->transid
)
120 entry
->transid
= defrag
->transid
;
121 if (defrag
->last_offset
> entry
->last_offset
)
122 entry
->last_offset
= defrag
->last_offset
;
126 set_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
127 rb_link_node(&defrag
->rb_node
, parent
, p
);
128 rb_insert_color(&defrag
->rb_node
, &fs_info
->defrag_inodes
);
132 static inline int __need_auto_defrag(struct btrfs_fs_info
*fs_info
)
134 if (!btrfs_test_opt(fs_info
, AUTO_DEFRAG
))
137 if (btrfs_fs_closing(fs_info
))
144 * insert a defrag record for this inode if auto defrag is
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle
*trans
,
150 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
151 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
152 struct inode_defrag
*defrag
;
156 if (!__need_auto_defrag(fs_info
))
159 if (test_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
))
163 transid
= trans
->transid
;
165 transid
= BTRFS_I(inode
)->root
->last_trans
;
167 defrag
= kmem_cache_zalloc(btrfs_inode_defrag_cachep
, GFP_NOFS
);
171 defrag
->ino
= btrfs_ino(inode
);
172 defrag
->transid
= transid
;
173 defrag
->root
= root
->root_key
.objectid
;
175 spin_lock(&fs_info
->defrag_inodes_lock
);
176 if (!test_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
)) {
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
182 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
184 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
186 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
188 spin_unlock(&fs_info
->defrag_inodes_lock
);
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
197 static void btrfs_requeue_inode_defrag(struct inode
*inode
,
198 struct inode_defrag
*defrag
)
200 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
203 if (!__need_auto_defrag(fs_info
))
207 * Here we don't check the IN_DEFRAG flag, because we need merge
210 spin_lock(&fs_info
->defrag_inodes_lock
);
211 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
212 spin_unlock(&fs_info
->defrag_inodes_lock
);
217 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
221 * pick the defragable inode that we want, if it doesn't exist, we will get
224 static struct inode_defrag
*
225 btrfs_pick_defrag_inode(struct btrfs_fs_info
*fs_info
, u64 root
, u64 ino
)
227 struct inode_defrag
*entry
= NULL
;
228 struct inode_defrag tmp
;
230 struct rb_node
*parent
= NULL
;
236 spin_lock(&fs_info
->defrag_inodes_lock
);
237 p
= fs_info
->defrag_inodes
.rb_node
;
240 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
242 ret
= __compare_inode_defrag(&tmp
, entry
);
246 p
= parent
->rb_right
;
251 if (parent
&& __compare_inode_defrag(&tmp
, entry
) > 0) {
252 parent
= rb_next(parent
);
254 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
260 rb_erase(parent
, &fs_info
->defrag_inodes
);
261 spin_unlock(&fs_info
->defrag_inodes_lock
);
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info
*fs_info
)
267 struct inode_defrag
*defrag
;
268 struct rb_node
*node
;
270 spin_lock(&fs_info
->defrag_inodes_lock
);
271 node
= rb_first(&fs_info
->defrag_inodes
);
273 rb_erase(node
, &fs_info
->defrag_inodes
);
274 defrag
= rb_entry(node
, struct inode_defrag
, rb_node
);
275 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
277 cond_resched_lock(&fs_info
->defrag_inodes_lock
);
279 node
= rb_first(&fs_info
->defrag_inodes
);
281 spin_unlock(&fs_info
->defrag_inodes_lock
);
284 #define BTRFS_DEFRAG_BATCH 1024
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info
*fs_info
,
287 struct inode_defrag
*defrag
)
289 struct btrfs_root
*inode_root
;
291 struct btrfs_key key
;
292 struct btrfs_ioctl_defrag_range_args range
;
298 key
.objectid
= defrag
->root
;
299 key
.type
= BTRFS_ROOT_ITEM_KEY
;
300 key
.offset
= (u64
)-1;
302 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
304 inode_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
305 if (IS_ERR(inode_root
)) {
306 ret
= PTR_ERR(inode_root
);
310 key
.objectid
= defrag
->ino
;
311 key
.type
= BTRFS_INODE_ITEM_KEY
;
313 inode
= btrfs_iget(fs_info
->sb
, &key
, inode_root
, NULL
);
315 ret
= PTR_ERR(inode
);
318 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
322 memset(&range
, 0, sizeof(range
));
324 range
.start
= defrag
->last_offset
;
326 sb_start_write(fs_info
->sb
);
327 num_defrag
= btrfs_defrag_file(inode
, NULL
, &range
, defrag
->transid
,
329 sb_end_write(fs_info
->sb
);
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
335 if (num_defrag
== BTRFS_DEFRAG_BATCH
) {
336 defrag
->last_offset
= range
.start
;
337 btrfs_requeue_inode_defrag(inode
, defrag
);
338 } else if (defrag
->last_offset
&& !defrag
->cycled
) {
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
344 defrag
->last_offset
= 0;
346 btrfs_requeue_inode_defrag(inode
, defrag
);
348 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
354 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
355 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
360 * run through the list of inodes in the FS that need
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info
*fs_info
)
365 struct inode_defrag
*defrag
;
367 u64 root_objectid
= 0;
369 atomic_inc(&fs_info
->defrag_running
);
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING
,
376 if (!__need_auto_defrag(fs_info
))
379 /* find an inode to defrag */
380 defrag
= btrfs_pick_defrag_inode(fs_info
, root_objectid
,
383 if (root_objectid
|| first_ino
) {
392 first_ino
= defrag
->ino
+ 1;
393 root_objectid
= defrag
->root
;
395 __btrfs_run_defrag_inode(fs_info
, defrag
);
397 atomic_dec(&fs_info
->defrag_running
);
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
403 wake_up(&fs_info
->transaction_wait
);
407 /* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
410 static noinline
int btrfs_copy_from_user(loff_t pos
, size_t write_bytes
,
411 struct page
**prepared_pages
,
415 size_t total_copied
= 0;
417 int offset
= pos
& (PAGE_SIZE
- 1);
419 while (write_bytes
> 0) {
420 size_t count
= min_t(size_t,
421 PAGE_SIZE
- offset
, write_bytes
);
422 struct page
*page
= prepared_pages
[pg
];
424 * Copy data from userspace to the current page
426 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, count
);
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page
);
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
440 if (!PageUptodate(page
) && copied
< count
)
443 iov_iter_advance(i
, copied
);
444 write_bytes
-= copied
;
445 total_copied
+= copied
;
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied
== 0))
451 if (copied
< PAGE_SIZE
- offset
) {
462 * unlocks pages after btrfs_file_write is done with them
464 static void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
467 for (i
= 0; i
< num_pages
; i
++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
474 ClearPageChecked(pages
[i
]);
475 unlock_page(pages
[i
]);
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
488 int btrfs_dirty_pages(struct inode
*inode
, struct page
**pages
,
489 size_t num_pages
, loff_t pos
, size_t write_bytes
,
490 struct extent_state
**cached
)
492 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
497 u64 end_of_last_block
;
498 u64 end_pos
= pos
+ write_bytes
;
499 loff_t isize
= i_size_read(inode
);
501 start_pos
= pos
& ~((u64
) fs_info
->sectorsize
- 1);
502 num_bytes
= round_up(write_bytes
+ pos
- start_pos
,
503 fs_info
->sectorsize
);
505 end_of_last_block
= start_pos
+ num_bytes
- 1;
506 err
= btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
,
511 for (i
= 0; i
< num_pages
; i
++) {
512 struct page
*p
= pages
[i
];
519 * we've only changed i_size in ram, and we haven't updated
520 * the disk i_size. There is no need to log the inode
524 i_size_write(inode
, end_pos
);
529 * this drops all the extents in the cache that intersect the range
530 * [start, end]. Existing extents are split as required.
532 void btrfs_drop_extent_cache(struct inode
*inode
, u64 start
, u64 end
,
535 struct extent_map
*em
;
536 struct extent_map
*split
= NULL
;
537 struct extent_map
*split2
= NULL
;
538 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
539 u64 len
= end
- start
+ 1;
547 WARN_ON(end
< start
);
548 if (end
== (u64
)-1) {
557 split
= alloc_extent_map();
559 split2
= alloc_extent_map();
560 if (!split
|| !split2
)
563 write_lock(&em_tree
->lock
);
564 em
= lookup_extent_mapping(em_tree
, start
, len
);
566 write_unlock(&em_tree
->lock
);
570 gen
= em
->generation
;
571 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
572 if (testend
&& em
->start
+ em
->len
>= start
+ len
) {
574 write_unlock(&em_tree
->lock
);
577 start
= em
->start
+ em
->len
;
579 len
= start
+ len
- (em
->start
+ em
->len
);
581 write_unlock(&em_tree
->lock
);
584 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
585 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
586 clear_bit(EXTENT_FLAG_LOGGING
, &flags
);
587 modified
= !list_empty(&em
->list
);
591 if (em
->start
< start
) {
592 split
->start
= em
->start
;
593 split
->len
= start
- em
->start
;
595 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
596 split
->orig_start
= em
->orig_start
;
597 split
->block_start
= em
->block_start
;
600 split
->block_len
= em
->block_len
;
602 split
->block_len
= split
->len
;
603 split
->orig_block_len
= max(split
->block_len
,
605 split
->ram_bytes
= em
->ram_bytes
;
607 split
->orig_start
= split
->start
;
608 split
->block_len
= 0;
609 split
->block_start
= em
->block_start
;
610 split
->orig_block_len
= 0;
611 split
->ram_bytes
= split
->len
;
614 split
->generation
= gen
;
615 split
->bdev
= em
->bdev
;
616 split
->flags
= flags
;
617 split
->compress_type
= em
->compress_type
;
618 replace_extent_mapping(em_tree
, em
, split
, modified
);
619 free_extent_map(split
);
623 if (testend
&& em
->start
+ em
->len
> start
+ len
) {
624 u64 diff
= start
+ len
- em
->start
;
626 split
->start
= start
+ len
;
627 split
->len
= em
->start
+ em
->len
- (start
+ len
);
628 split
->bdev
= em
->bdev
;
629 split
->flags
= flags
;
630 split
->compress_type
= em
->compress_type
;
631 split
->generation
= gen
;
633 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
634 split
->orig_block_len
= max(em
->block_len
,
637 split
->ram_bytes
= em
->ram_bytes
;
639 split
->block_len
= em
->block_len
;
640 split
->block_start
= em
->block_start
;
641 split
->orig_start
= em
->orig_start
;
643 split
->block_len
= split
->len
;
644 split
->block_start
= em
->block_start
646 split
->orig_start
= em
->orig_start
;
649 split
->ram_bytes
= split
->len
;
650 split
->orig_start
= split
->start
;
651 split
->block_len
= 0;
652 split
->block_start
= em
->block_start
;
653 split
->orig_block_len
= 0;
656 if (extent_map_in_tree(em
)) {
657 replace_extent_mapping(em_tree
, em
, split
,
660 ret
= add_extent_mapping(em_tree
, split
,
662 ASSERT(ret
== 0); /* Logic error */
664 free_extent_map(split
);
668 if (extent_map_in_tree(em
))
669 remove_extent_mapping(em_tree
, em
);
670 write_unlock(&em_tree
->lock
);
674 /* once for the tree*/
678 free_extent_map(split
);
680 free_extent_map(split2
);
684 * this is very complex, but the basic idea is to drop all extents
685 * in the range start - end. hint_block is filled in with a block number
686 * that would be a good hint to the block allocator for this file.
688 * If an extent intersects the range but is not entirely inside the range
689 * it is either truncated or split. Anything entirely inside the range
690 * is deleted from the tree.
692 int __btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
693 struct btrfs_root
*root
, struct inode
*inode
,
694 struct btrfs_path
*path
, u64 start
, u64 end
,
695 u64
*drop_end
, int drop_cache
,
697 u32 extent_item_size
,
700 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
701 struct extent_buffer
*leaf
;
702 struct btrfs_file_extent_item
*fi
;
703 struct btrfs_key key
;
704 struct btrfs_key new_key
;
705 u64 ino
= btrfs_ino(inode
);
706 u64 search_start
= start
;
709 u64 extent_offset
= 0;
711 u64 last_end
= start
;
717 int modify_tree
= -1;
720 int leafs_visited
= 0;
723 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
725 if (start
>= BTRFS_I(inode
)->disk_i_size
&& !replace_extent
)
728 update_refs
= (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
729 root
== fs_info
->tree_root
);
732 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
733 search_start
, modify_tree
);
736 if (ret
> 0 && path
->slots
[0] > 0 && search_start
== start
) {
737 leaf
= path
->nodes
[0];
738 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
739 if (key
.objectid
== ino
&&
740 key
.type
== BTRFS_EXTENT_DATA_KEY
)
746 leaf
= path
->nodes
[0];
747 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
749 ret
= btrfs_next_leaf(root
, path
);
757 leaf
= path
->nodes
[0];
761 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
763 if (key
.objectid
> ino
)
765 if (WARN_ON_ONCE(key
.objectid
< ino
) ||
766 key
.type
< BTRFS_EXTENT_DATA_KEY
) {
771 if (key
.type
> BTRFS_EXTENT_DATA_KEY
|| key
.offset
>= end
)
774 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
775 struct btrfs_file_extent_item
);
776 extent_type
= btrfs_file_extent_type(leaf
, fi
);
778 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
779 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
780 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
781 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
782 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
783 extent_end
= key
.offset
+
784 btrfs_file_extent_num_bytes(leaf
, fi
);
785 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
786 extent_end
= key
.offset
+
787 btrfs_file_extent_inline_len(leaf
,
795 * Don't skip extent items representing 0 byte lengths. They
796 * used to be created (bug) if while punching holes we hit
797 * -ENOSPC condition. So if we find one here, just ensure we
798 * delete it, otherwise we would insert a new file extent item
799 * with the same key (offset) as that 0 bytes length file
800 * extent item in the call to setup_items_for_insert() later
803 if (extent_end
== key
.offset
&& extent_end
>= search_start
) {
804 last_end
= extent_end
;
805 goto delete_extent_item
;
808 if (extent_end
<= search_start
) {
814 search_start
= max(key
.offset
, start
);
815 if (recow
|| !modify_tree
) {
817 btrfs_release_path(path
);
822 * | - range to drop - |
823 * | -------- extent -------- |
825 if (start
> key
.offset
&& end
< extent_end
) {
827 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
832 memcpy(&new_key
, &key
, sizeof(new_key
));
833 new_key
.offset
= start
;
834 ret
= btrfs_duplicate_item(trans
, root
, path
,
836 if (ret
== -EAGAIN
) {
837 btrfs_release_path(path
);
843 leaf
= path
->nodes
[0];
844 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
845 struct btrfs_file_extent_item
);
846 btrfs_set_file_extent_num_bytes(leaf
, fi
,
849 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
850 struct btrfs_file_extent_item
);
852 extent_offset
+= start
- key
.offset
;
853 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
854 btrfs_set_file_extent_num_bytes(leaf
, fi
,
856 btrfs_mark_buffer_dirty(leaf
);
858 if (update_refs
&& disk_bytenr
> 0) {
859 ret
= btrfs_inc_extent_ref(trans
, fs_info
,
860 disk_bytenr
, num_bytes
, 0,
861 root
->root_key
.objectid
,
863 start
- extent_offset
);
864 BUG_ON(ret
); /* -ENOMEM */
869 * From here on out we will have actually dropped something, so
870 * last_end can be updated.
872 last_end
= extent_end
;
875 * | ---- range to drop ----- |
876 * | -------- extent -------- |
878 if (start
<= key
.offset
&& end
< extent_end
) {
879 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
884 memcpy(&new_key
, &key
, sizeof(new_key
));
885 new_key
.offset
= end
;
886 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
888 extent_offset
+= end
- key
.offset
;
889 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
890 btrfs_set_file_extent_num_bytes(leaf
, fi
,
892 btrfs_mark_buffer_dirty(leaf
);
893 if (update_refs
&& disk_bytenr
> 0)
894 inode_sub_bytes(inode
, end
- key
.offset
);
898 search_start
= extent_end
;
900 * | ---- range to drop ----- |
901 * | -------- extent -------- |
903 if (start
> key
.offset
&& end
>= extent_end
) {
905 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
910 btrfs_set_file_extent_num_bytes(leaf
, fi
,
912 btrfs_mark_buffer_dirty(leaf
);
913 if (update_refs
&& disk_bytenr
> 0)
914 inode_sub_bytes(inode
, extent_end
- start
);
915 if (end
== extent_end
)
923 * | ---- range to drop ----- |
924 * | ------ extent ------ |
926 if (start
<= key
.offset
&& end
>= extent_end
) {
929 del_slot
= path
->slots
[0];
932 BUG_ON(del_slot
+ del_nr
!= path
->slots
[0]);
937 extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
938 inode_sub_bytes(inode
,
939 extent_end
- key
.offset
);
940 extent_end
= ALIGN(extent_end
,
941 fs_info
->sectorsize
);
942 } else if (update_refs
&& disk_bytenr
> 0) {
943 ret
= btrfs_free_extent(trans
, fs_info
,
944 disk_bytenr
, num_bytes
, 0,
945 root
->root_key
.objectid
,
946 key
.objectid
, key
.offset
-
948 BUG_ON(ret
); /* -ENOMEM */
949 inode_sub_bytes(inode
,
950 extent_end
- key
.offset
);
953 if (end
== extent_end
)
956 if (path
->slots
[0] + 1 < btrfs_header_nritems(leaf
)) {
961 ret
= btrfs_del_items(trans
, root
, path
, del_slot
,
964 btrfs_abort_transaction(trans
, ret
);
971 btrfs_release_path(path
);
978 if (!ret
&& del_nr
> 0) {
980 * Set path->slots[0] to first slot, so that after the delete
981 * if items are move off from our leaf to its immediate left or
982 * right neighbor leafs, we end up with a correct and adjusted
983 * path->slots[0] for our insertion (if replace_extent != 0).
985 path
->slots
[0] = del_slot
;
986 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
988 btrfs_abort_transaction(trans
, ret
);
991 leaf
= path
->nodes
[0];
993 * If btrfs_del_items() was called, it might have deleted a leaf, in
994 * which case it unlocked our path, so check path->locks[0] matches a
997 if (!ret
&& replace_extent
&& leafs_visited
== 1 &&
998 (path
->locks
[0] == BTRFS_WRITE_LOCK_BLOCKING
||
999 path
->locks
[0] == BTRFS_WRITE_LOCK
) &&
1000 btrfs_leaf_free_space(fs_info
, leaf
) >=
1001 sizeof(struct btrfs_item
) + extent_item_size
) {
1004 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1006 if (!del_nr
&& path
->slots
[0] < btrfs_header_nritems(leaf
)) {
1007 struct btrfs_key slot_key
;
1009 btrfs_item_key_to_cpu(leaf
, &slot_key
, path
->slots
[0]);
1010 if (btrfs_comp_cpu_keys(&key
, &slot_key
) > 0)
1013 setup_items_for_insert(root
, path
, &key
,
1016 sizeof(struct btrfs_item
) +
1017 extent_item_size
, 1);
1021 if (!replace_extent
|| !(*key_inserted
))
1022 btrfs_release_path(path
);
1024 *drop_end
= found
? min(end
, last_end
) : end
;
1028 int btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
1029 struct btrfs_root
*root
, struct inode
*inode
, u64 start
,
1030 u64 end
, int drop_cache
)
1032 struct btrfs_path
*path
;
1035 path
= btrfs_alloc_path();
1038 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, start
, end
, NULL
,
1039 drop_cache
, 0, 0, NULL
);
1040 btrfs_free_path(path
);
1044 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
1045 u64 objectid
, u64 bytenr
, u64 orig_offset
,
1046 u64
*start
, u64
*end
)
1048 struct btrfs_file_extent_item
*fi
;
1049 struct btrfs_key key
;
1052 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
1055 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1056 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1059 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
1060 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
1061 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
1062 btrfs_file_extent_offset(leaf
, fi
) != key
.offset
- orig_offset
||
1063 btrfs_file_extent_compression(leaf
, fi
) ||
1064 btrfs_file_extent_encryption(leaf
, fi
) ||
1065 btrfs_file_extent_other_encoding(leaf
, fi
))
1068 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1069 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
1072 *start
= key
.offset
;
1078 * Mark extent in the range start - end as written.
1080 * This changes extent type from 'pre-allocated' to 'regular'. If only
1081 * part of extent is marked as written, the extent will be split into
1084 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
1085 struct inode
*inode
, u64 start
, u64 end
)
1087 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1088 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1089 struct extent_buffer
*leaf
;
1090 struct btrfs_path
*path
;
1091 struct btrfs_file_extent_item
*fi
;
1092 struct btrfs_key key
;
1093 struct btrfs_key new_key
;
1105 u64 ino
= btrfs_ino(inode
);
1107 path
= btrfs_alloc_path();
1114 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1117 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1120 if (ret
> 0 && path
->slots
[0] > 0)
1123 leaf
= path
->nodes
[0];
1124 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1125 if (key
.objectid
!= ino
||
1126 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
1128 btrfs_abort_transaction(trans
, ret
);
1131 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1132 struct btrfs_file_extent_item
);
1133 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_PREALLOC
) {
1135 btrfs_abort_transaction(trans
, ret
);
1138 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1139 if (key
.offset
> start
|| extent_end
< end
) {
1141 btrfs_abort_transaction(trans
, ret
);
1145 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1146 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1147 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
1148 memcpy(&new_key
, &key
, sizeof(new_key
));
1150 if (start
== key
.offset
&& end
< extent_end
) {
1153 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1154 ino
, bytenr
, orig_offset
,
1155 &other_start
, &other_end
)) {
1156 new_key
.offset
= end
;
1157 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
1158 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1159 struct btrfs_file_extent_item
);
1160 btrfs_set_file_extent_generation(leaf
, fi
,
1162 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1164 btrfs_set_file_extent_offset(leaf
, fi
,
1166 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1167 struct btrfs_file_extent_item
);
1168 btrfs_set_file_extent_generation(leaf
, fi
,
1170 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1172 btrfs_mark_buffer_dirty(leaf
);
1177 if (start
> key
.offset
&& end
== extent_end
) {
1180 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1181 ino
, bytenr
, orig_offset
,
1182 &other_start
, &other_end
)) {
1183 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1184 struct btrfs_file_extent_item
);
1185 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1186 start
- key
.offset
);
1187 btrfs_set_file_extent_generation(leaf
, fi
,
1190 new_key
.offset
= start
;
1191 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
1193 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1194 struct btrfs_file_extent_item
);
1195 btrfs_set_file_extent_generation(leaf
, fi
,
1197 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1199 btrfs_set_file_extent_offset(leaf
, fi
,
1200 start
- orig_offset
);
1201 btrfs_mark_buffer_dirty(leaf
);
1206 while (start
> key
.offset
|| end
< extent_end
) {
1207 if (key
.offset
== start
)
1210 new_key
.offset
= split
;
1211 ret
= btrfs_duplicate_item(trans
, root
, path
, &new_key
);
1212 if (ret
== -EAGAIN
) {
1213 btrfs_release_path(path
);
1217 btrfs_abort_transaction(trans
, ret
);
1221 leaf
= path
->nodes
[0];
1222 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1223 struct btrfs_file_extent_item
);
1224 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1225 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1226 split
- key
.offset
);
1228 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1229 struct btrfs_file_extent_item
);
1231 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1232 btrfs_set_file_extent_offset(leaf
, fi
, split
- orig_offset
);
1233 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1234 extent_end
- split
);
1235 btrfs_mark_buffer_dirty(leaf
);
1237 ret
= btrfs_inc_extent_ref(trans
, fs_info
, bytenr
, num_bytes
,
1238 0, root
->root_key
.objectid
,
1241 btrfs_abort_transaction(trans
, ret
);
1245 if (split
== start
) {
1248 if (start
!= key
.offset
) {
1250 btrfs_abort_transaction(trans
, ret
);
1261 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1262 ino
, bytenr
, orig_offset
,
1263 &other_start
, &other_end
)) {
1265 btrfs_release_path(path
);
1268 extent_end
= other_end
;
1269 del_slot
= path
->slots
[0] + 1;
1271 ret
= btrfs_free_extent(trans
, fs_info
, bytenr
, num_bytes
,
1272 0, root
->root_key
.objectid
,
1275 btrfs_abort_transaction(trans
, ret
);
1281 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1282 ino
, bytenr
, orig_offset
,
1283 &other_start
, &other_end
)) {
1285 btrfs_release_path(path
);
1288 key
.offset
= other_start
;
1289 del_slot
= path
->slots
[0];
1291 ret
= btrfs_free_extent(trans
, fs_info
, bytenr
, num_bytes
,
1292 0, root
->root_key
.objectid
,
1295 btrfs_abort_transaction(trans
, ret
);
1300 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1301 struct btrfs_file_extent_item
);
1302 btrfs_set_file_extent_type(leaf
, fi
,
1303 BTRFS_FILE_EXTENT_REG
);
1304 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1305 btrfs_mark_buffer_dirty(leaf
);
1307 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
1308 struct btrfs_file_extent_item
);
1309 btrfs_set_file_extent_type(leaf
, fi
,
1310 BTRFS_FILE_EXTENT_REG
);
1311 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1312 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1313 extent_end
- key
.offset
);
1314 btrfs_mark_buffer_dirty(leaf
);
1316 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1318 btrfs_abort_transaction(trans
, ret
);
1323 btrfs_free_path(path
);
1328 * on error we return an unlocked page and the error value
1329 * on success we return a locked page and 0
1331 static int prepare_uptodate_page(struct inode
*inode
,
1332 struct page
*page
, u64 pos
,
1333 bool force_uptodate
)
1337 if (((pos
& (PAGE_SIZE
- 1)) || force_uptodate
) &&
1338 !PageUptodate(page
)) {
1339 ret
= btrfs_readpage(NULL
, page
);
1343 if (!PageUptodate(page
)) {
1347 if (page
->mapping
!= inode
->i_mapping
) {
1356 * this just gets pages into the page cache and locks them down.
1358 static noinline
int prepare_pages(struct inode
*inode
, struct page
**pages
,
1359 size_t num_pages
, loff_t pos
,
1360 size_t write_bytes
, bool force_uptodate
)
1363 unsigned long index
= pos
>> PAGE_SHIFT
;
1364 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1368 for (i
= 0; i
< num_pages
; i
++) {
1370 pages
[i
] = find_or_create_page(inode
->i_mapping
, index
+ i
,
1371 mask
| __GFP_WRITE
);
1379 err
= prepare_uptodate_page(inode
, pages
[i
], pos
,
1381 if (!err
&& i
== num_pages
- 1)
1382 err
= prepare_uptodate_page(inode
, pages
[i
],
1383 pos
+ write_bytes
, false);
1386 if (err
== -EAGAIN
) {
1393 wait_on_page_writeback(pages
[i
]);
1398 while (faili
>= 0) {
1399 unlock_page(pages
[faili
]);
1400 put_page(pages
[faili
]);
1408 * This function locks the extent and properly waits for data=ordered extents
1409 * to finish before allowing the pages to be modified if need.
1412 * 1 - the extent is locked
1413 * 0 - the extent is not locked, and everything is OK
1414 * -EAGAIN - need re-prepare the pages
1415 * the other < 0 number - Something wrong happens
1418 lock_and_cleanup_extent_if_need(struct inode
*inode
, struct page
**pages
,
1419 size_t num_pages
, loff_t pos
,
1421 u64
*lockstart
, u64
*lockend
,
1422 struct extent_state
**cached_state
)
1424 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1430 start_pos
= round_down(pos
, fs_info
->sectorsize
);
1431 last_pos
= start_pos
1432 + round_up(pos
+ write_bytes
- start_pos
,
1433 fs_info
->sectorsize
) - 1;
1435 if (start_pos
< inode
->i_size
) {
1436 struct btrfs_ordered_extent
*ordered
;
1437 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1438 start_pos
, last_pos
, cached_state
);
1439 ordered
= btrfs_lookup_ordered_range(inode
, start_pos
,
1440 last_pos
- start_pos
+ 1);
1442 ordered
->file_offset
+ ordered
->len
> start_pos
&&
1443 ordered
->file_offset
<= last_pos
) {
1444 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1445 start_pos
, last_pos
,
1446 cached_state
, GFP_NOFS
);
1447 for (i
= 0; i
< num_pages
; i
++) {
1448 unlock_page(pages
[i
]);
1451 btrfs_start_ordered_extent(inode
, ordered
, 1);
1452 btrfs_put_ordered_extent(ordered
);
1456 btrfs_put_ordered_extent(ordered
);
1458 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start_pos
,
1459 last_pos
, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1460 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
1461 0, 0, cached_state
, GFP_NOFS
);
1462 *lockstart
= start_pos
;
1463 *lockend
= last_pos
;
1467 for (i
= 0; i
< num_pages
; i
++) {
1468 if (clear_page_dirty_for_io(pages
[i
]))
1469 account_page_redirty(pages
[i
]);
1470 set_page_extent_mapped(pages
[i
]);
1471 WARN_ON(!PageLocked(pages
[i
]));
1477 static noinline
int check_can_nocow(struct inode
*inode
, loff_t pos
,
1478 size_t *write_bytes
)
1480 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1481 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1482 struct btrfs_ordered_extent
*ordered
;
1483 u64 lockstart
, lockend
;
1487 ret
= btrfs_start_write_no_snapshoting(root
);
1491 lockstart
= round_down(pos
, fs_info
->sectorsize
);
1492 lockend
= round_up(pos
+ *write_bytes
,
1493 fs_info
->sectorsize
) - 1;
1496 lock_extent(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
);
1497 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
1498 lockend
- lockstart
+ 1);
1502 unlock_extent(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
);
1503 btrfs_start_ordered_extent(inode
, ordered
, 1);
1504 btrfs_put_ordered_extent(ordered
);
1507 num_bytes
= lockend
- lockstart
+ 1;
1508 ret
= can_nocow_extent(inode
, lockstart
, &num_bytes
, NULL
, NULL
, NULL
);
1511 btrfs_end_write_no_snapshoting(root
);
1513 *write_bytes
= min_t(size_t, *write_bytes
,
1514 num_bytes
- pos
+ lockstart
);
1517 unlock_extent(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
);
1522 static noinline ssize_t
__btrfs_buffered_write(struct file
*file
,
1526 struct inode
*inode
= file_inode(file
);
1527 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1528 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1529 struct page
**pages
= NULL
;
1530 struct extent_state
*cached_state
= NULL
;
1531 u64 release_bytes
= 0;
1534 size_t num_written
= 0;
1537 bool only_release_metadata
= false;
1538 bool force_page_uptodate
= false;
1541 nrptrs
= min(DIV_ROUND_UP(iov_iter_count(i
), PAGE_SIZE
),
1542 PAGE_SIZE
/ (sizeof(struct page
*)));
1543 nrptrs
= min(nrptrs
, current
->nr_dirtied_pause
- current
->nr_dirtied
);
1544 nrptrs
= max(nrptrs
, 8);
1545 pages
= kmalloc_array(nrptrs
, sizeof(struct page
*), GFP_KERNEL
);
1549 while (iov_iter_count(i
) > 0) {
1550 size_t offset
= pos
& (PAGE_SIZE
- 1);
1551 size_t sector_offset
;
1552 size_t write_bytes
= min(iov_iter_count(i
),
1553 nrptrs
* (size_t)PAGE_SIZE
-
1555 size_t num_pages
= DIV_ROUND_UP(write_bytes
+ offset
,
1557 size_t reserve_bytes
;
1560 size_t dirty_sectors
;
1563 WARN_ON(num_pages
> nrptrs
);
1566 * Fault pages before locking them in prepare_pages
1567 * to avoid recursive lock
1569 if (unlikely(iov_iter_fault_in_readable(i
, write_bytes
))) {
1574 sector_offset
= pos
& (fs_info
->sectorsize
- 1);
1575 reserve_bytes
= round_up(write_bytes
+ sector_offset
,
1576 fs_info
->sectorsize
);
1578 ret
= btrfs_check_data_free_space(inode
, pos
, write_bytes
);
1580 if ((BTRFS_I(inode
)->flags
& (BTRFS_INODE_NODATACOW
|
1581 BTRFS_INODE_PREALLOC
)) &&
1582 check_can_nocow(inode
, pos
, &write_bytes
) > 0) {
1584 * For nodata cow case, no need to reserve
1587 only_release_metadata
= true;
1589 * our prealloc extent may be smaller than
1590 * write_bytes, so scale down.
1592 num_pages
= DIV_ROUND_UP(write_bytes
+ offset
,
1594 reserve_bytes
= round_up(write_bytes
+
1596 fs_info
->sectorsize
);
1602 ret
= btrfs_delalloc_reserve_metadata(inode
, reserve_bytes
);
1604 if (!only_release_metadata
)
1605 btrfs_free_reserved_data_space(inode
, pos
,
1608 btrfs_end_write_no_snapshoting(root
);
1612 release_bytes
= reserve_bytes
;
1613 need_unlock
= false;
1616 * This is going to setup the pages array with the number of
1617 * pages we want, so we don't really need to worry about the
1618 * contents of pages from loop to loop
1620 ret
= prepare_pages(inode
, pages
, num_pages
,
1622 force_page_uptodate
);
1626 ret
= lock_and_cleanup_extent_if_need(inode
, pages
, num_pages
,
1627 pos
, write_bytes
, &lockstart
,
1628 &lockend
, &cached_state
);
1633 } else if (ret
> 0) {
1638 copied
= btrfs_copy_from_user(pos
, write_bytes
, pages
, i
);
1640 num_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, reserve_bytes
);
1641 dirty_sectors
= round_up(copied
+ sector_offset
,
1642 fs_info
->sectorsize
);
1643 dirty_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, dirty_sectors
);
1646 * if we have trouble faulting in the pages, fall
1647 * back to one page at a time
1649 if (copied
< write_bytes
)
1653 force_page_uptodate
= true;
1657 force_page_uptodate
= false;
1658 dirty_pages
= DIV_ROUND_UP(copied
+ offset
,
1663 * If we had a short copy we need to release the excess delaloc
1664 * bytes we reserved. We need to increment outstanding_extents
1665 * because btrfs_delalloc_release_space and
1666 * btrfs_delalloc_release_metadata will decrement it, but
1667 * we still have an outstanding extent for the chunk we actually
1670 if (num_sectors
> dirty_sectors
) {
1671 /* release everything except the sectors we dirtied */
1672 release_bytes
-= dirty_sectors
<<
1673 fs_info
->sb
->s_blocksize_bits
;
1675 spin_lock(&BTRFS_I(inode
)->lock
);
1676 BTRFS_I(inode
)->outstanding_extents
++;
1677 spin_unlock(&BTRFS_I(inode
)->lock
);
1679 if (only_release_metadata
) {
1680 btrfs_delalloc_release_metadata(inode
,
1685 __pos
= round_down(pos
,
1686 fs_info
->sectorsize
) +
1687 (dirty_pages
<< PAGE_SHIFT
);
1688 btrfs_delalloc_release_space(inode
, __pos
,
1693 release_bytes
= round_up(copied
+ sector_offset
,
1694 fs_info
->sectorsize
);
1697 ret
= btrfs_dirty_pages(inode
, pages
, dirty_pages
,
1700 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1701 lockstart
, lockend
, &cached_state
,
1704 btrfs_drop_pages(pages
, num_pages
);
1709 if (only_release_metadata
)
1710 btrfs_end_write_no_snapshoting(root
);
1712 if (only_release_metadata
&& copied
> 0) {
1713 lockstart
= round_down(pos
,
1714 fs_info
->sectorsize
);
1715 lockend
= round_up(pos
+ copied
,
1716 fs_info
->sectorsize
) - 1;
1718 set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
1719 lockend
, EXTENT_NORESERVE
, NULL
,
1721 only_release_metadata
= false;
1724 btrfs_drop_pages(pages
, num_pages
);
1728 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1729 if (dirty_pages
< (fs_info
->nodesize
>> PAGE_SHIFT
) + 1)
1730 btrfs_btree_balance_dirty(fs_info
);
1733 num_written
+= copied
;
1738 if (release_bytes
) {
1739 if (only_release_metadata
) {
1740 btrfs_end_write_no_snapshoting(root
);
1741 btrfs_delalloc_release_metadata(inode
, release_bytes
);
1743 btrfs_delalloc_release_space(inode
,
1744 round_down(pos
, fs_info
->sectorsize
),
1749 return num_written
? num_written
: ret
;
1752 static ssize_t
__btrfs_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
1754 struct file
*file
= iocb
->ki_filp
;
1755 struct inode
*inode
= file_inode(file
);
1756 loff_t pos
= iocb
->ki_pos
;
1758 ssize_t written_buffered
;
1762 written
= generic_file_direct_write(iocb
, from
);
1764 if (written
< 0 || !iov_iter_count(from
))
1768 written_buffered
= __btrfs_buffered_write(file
, from
, pos
);
1769 if (written_buffered
< 0) {
1770 err
= written_buffered
;
1774 * Ensure all data is persisted. We want the next direct IO read to be
1775 * able to read what was just written.
1777 endbyte
= pos
+ written_buffered
- 1;
1778 err
= btrfs_fdatawrite_range(inode
, pos
, endbyte
);
1781 err
= filemap_fdatawait_range(inode
->i_mapping
, pos
, endbyte
);
1784 written
+= written_buffered
;
1785 iocb
->ki_pos
= pos
+ written_buffered
;
1786 invalidate_mapping_pages(file
->f_mapping
, pos
>> PAGE_SHIFT
,
1787 endbyte
>> PAGE_SHIFT
);
1789 return written
? written
: err
;
1792 static void update_time_for_write(struct inode
*inode
)
1794 struct timespec now
;
1796 if (IS_NOCMTIME(inode
))
1799 now
= current_time(inode
);
1800 if (!timespec_equal(&inode
->i_mtime
, &now
))
1801 inode
->i_mtime
= now
;
1803 if (!timespec_equal(&inode
->i_ctime
, &now
))
1804 inode
->i_ctime
= now
;
1806 if (IS_I_VERSION(inode
))
1807 inode_inc_iversion(inode
);
1810 static ssize_t
btrfs_file_write_iter(struct kiocb
*iocb
,
1811 struct iov_iter
*from
)
1813 struct file
*file
= iocb
->ki_filp
;
1814 struct inode
*inode
= file_inode(file
);
1815 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1816 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1819 ssize_t num_written
= 0;
1820 bool sync
= (file
->f_flags
& O_DSYNC
) || IS_SYNC(file
->f_mapping
->host
);
1828 err
= generic_write_checks(iocb
, from
);
1830 inode_unlock(inode
);
1834 current
->backing_dev_info
= inode_to_bdi(inode
);
1835 err
= file_remove_privs(file
);
1837 inode_unlock(inode
);
1842 * If BTRFS flips readonly due to some impossible error
1843 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1844 * although we have opened a file as writable, we have
1845 * to stop this write operation to ensure FS consistency.
1847 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
1848 inode_unlock(inode
);
1854 * We reserve space for updating the inode when we reserve space for the
1855 * extent we are going to write, so we will enospc out there. We don't
1856 * need to start yet another transaction to update the inode as we will
1857 * update the inode when we finish writing whatever data we write.
1859 update_time_for_write(inode
);
1862 count
= iov_iter_count(from
);
1863 start_pos
= round_down(pos
, fs_info
->sectorsize
);
1864 oldsize
= i_size_read(inode
);
1865 if (start_pos
> oldsize
) {
1866 /* Expand hole size to cover write data, preventing empty gap */
1867 end_pos
= round_up(pos
+ count
,
1868 fs_info
->sectorsize
);
1869 err
= btrfs_cont_expand(inode
, oldsize
, end_pos
);
1871 inode_unlock(inode
);
1874 if (start_pos
> round_up(oldsize
, fs_info
->sectorsize
))
1879 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1881 if (iocb
->ki_flags
& IOCB_DIRECT
) {
1882 num_written
= __btrfs_direct_write(iocb
, from
);
1884 num_written
= __btrfs_buffered_write(file
, from
, pos
);
1885 if (num_written
> 0)
1886 iocb
->ki_pos
= pos
+ num_written
;
1888 pagecache_isize_extended(inode
, oldsize
,
1889 i_size_read(inode
));
1892 inode_unlock(inode
);
1895 * We also have to set last_sub_trans to the current log transid,
1896 * otherwise subsequent syncs to a file that's been synced in this
1897 * transaction will appear to have already occurred.
1899 spin_lock(&BTRFS_I(inode
)->lock
);
1900 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
1901 spin_unlock(&BTRFS_I(inode
)->lock
);
1902 if (num_written
> 0)
1903 num_written
= generic_write_sync(iocb
, num_written
);
1906 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1908 current
->backing_dev_info
= NULL
;
1909 return num_written
? num_written
: err
;
1912 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1914 if (filp
->private_data
)
1915 btrfs_ioctl_trans_end(filp
);
1917 * ordered_data_close is set by settattr when we are about to truncate
1918 * a file from a non-zero size to a zero size. This tries to
1919 * flush down new bytes that may have been written if the
1920 * application were using truncate to replace a file in place.
1922 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
1923 &BTRFS_I(inode
)->runtime_flags
))
1924 filemap_flush(inode
->i_mapping
);
1928 static int start_ordered_ops(struct inode
*inode
, loff_t start
, loff_t end
)
1932 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1933 ret
= btrfs_fdatawrite_range(inode
, start
, end
);
1934 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1940 * fsync call for both files and directories. This logs the inode into
1941 * the tree log instead of forcing full commits whenever possible.
1943 * It needs to call filemap_fdatawait so that all ordered extent updates are
1944 * in the metadata btree are up to date for copying to the log.
1946 * It drops the inode mutex before doing the tree log commit. This is an
1947 * important optimization for directories because holding the mutex prevents
1948 * new operations on the dir while we write to disk.
1950 int btrfs_sync_file(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1952 struct dentry
*dentry
= file_dentry(file
);
1953 struct inode
*inode
= d_inode(dentry
);
1954 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1955 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1956 struct btrfs_trans_handle
*trans
;
1957 struct btrfs_log_ctx ctx
;
1963 * The range length can be represented by u64, we have to do the typecasts
1964 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1966 len
= (u64
)end
- (u64
)start
+ 1;
1967 trace_btrfs_sync_file(file
, datasync
);
1970 * We write the dirty pages in the range and wait until they complete
1971 * out of the ->i_mutex. If so, we can flush the dirty pages by
1972 * multi-task, and make the performance up. See
1973 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1975 ret
= start_ordered_ops(inode
, start
, end
);
1980 atomic_inc(&root
->log_batch
);
1981 full_sync
= test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
1982 &BTRFS_I(inode
)->runtime_flags
);
1984 * We might have have had more pages made dirty after calling
1985 * start_ordered_ops and before acquiring the inode's i_mutex.
1989 * For a full sync, we need to make sure any ordered operations
1990 * start and finish before we start logging the inode, so that
1991 * all extents are persisted and the respective file extent
1992 * items are in the fs/subvol btree.
1994 ret
= btrfs_wait_ordered_range(inode
, start
, len
);
1997 * Start any new ordered operations before starting to log the
1998 * inode. We will wait for them to finish in btrfs_sync_log().
2000 * Right before acquiring the inode's mutex, we might have new
2001 * writes dirtying pages, which won't immediately start the
2002 * respective ordered operations - that is done through the
2003 * fill_delalloc callbacks invoked from the writepage and
2004 * writepages address space operations. So make sure we start
2005 * all ordered operations before starting to log our inode. Not
2006 * doing this means that while logging the inode, writeback
2007 * could start and invoke writepage/writepages, which would call
2008 * the fill_delalloc callbacks (cow_file_range,
2009 * submit_compressed_extents). These callbacks add first an
2010 * extent map to the modified list of extents and then create
2011 * the respective ordered operation, which means in
2012 * tree-log.c:btrfs_log_inode() we might capture all existing
2013 * ordered operations (with btrfs_get_logged_extents()) before
2014 * the fill_delalloc callback adds its ordered operation, and by
2015 * the time we visit the modified list of extent maps (with
2016 * btrfs_log_changed_extents()), we see and process the extent
2017 * map they created. We then use the extent map to construct a
2018 * file extent item for logging without waiting for the
2019 * respective ordered operation to finish - this file extent
2020 * item points to a disk location that might not have yet been
2021 * written to, containing random data - so after a crash a log
2022 * replay will make our inode have file extent items that point
2023 * to disk locations containing invalid data, as we returned
2024 * success to userspace without waiting for the respective
2025 * ordered operation to finish, because it wasn't captured by
2026 * btrfs_get_logged_extents().
2028 ret
= start_ordered_ops(inode
, start
, end
);
2031 inode_unlock(inode
);
2034 atomic_inc(&root
->log_batch
);
2037 * If the last transaction that changed this file was before the current
2038 * transaction and we have the full sync flag set in our inode, we can
2039 * bail out now without any syncing.
2041 * Note that we can't bail out if the full sync flag isn't set. This is
2042 * because when the full sync flag is set we start all ordered extents
2043 * and wait for them to fully complete - when they complete they update
2044 * the inode's last_trans field through:
2046 * btrfs_finish_ordered_io() ->
2047 * btrfs_update_inode_fallback() ->
2048 * btrfs_update_inode() ->
2049 * btrfs_set_inode_last_trans()
2051 * So we are sure that last_trans is up to date and can do this check to
2052 * bail out safely. For the fast path, when the full sync flag is not
2053 * set in our inode, we can not do it because we start only our ordered
2054 * extents and don't wait for them to complete (that is when
2055 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2056 * value might be less than or equals to fs_info->last_trans_committed,
2057 * and setting a speculative last_trans for an inode when a buffered
2058 * write is made (such as fs_info->generation + 1 for example) would not
2059 * be reliable since after setting the value and before fsync is called
2060 * any number of transactions can start and commit (transaction kthread
2061 * commits the current transaction periodically), and a transaction
2062 * commit does not start nor waits for ordered extents to complete.
2065 if (btrfs_inode_in_log(inode
, fs_info
->generation
) ||
2066 (full_sync
&& BTRFS_I(inode
)->last_trans
<=
2067 fs_info
->last_trans_committed
) ||
2068 (!btrfs_have_ordered_extents_in_range(inode
, start
, len
) &&
2069 BTRFS_I(inode
)->last_trans
2070 <= fs_info
->last_trans_committed
)) {
2072 * We've had everything committed since the last time we were
2073 * modified so clear this flag in case it was set for whatever
2074 * reason, it's no longer relevant.
2076 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2077 &BTRFS_I(inode
)->runtime_flags
);
2079 * An ordered extent might have started before and completed
2080 * already with io errors, in which case the inode was not
2081 * updated and we end up here. So check the inode's mapping
2082 * flags for any errors that might have happened while doing
2083 * writeback of file data.
2085 ret
= filemap_check_errors(inode
->i_mapping
);
2086 inode_unlock(inode
);
2091 * ok we haven't committed the transaction yet, lets do a commit
2093 if (file
->private_data
)
2094 btrfs_ioctl_trans_end(file
);
2097 * We use start here because we will need to wait on the IO to complete
2098 * in btrfs_sync_log, which could require joining a transaction (for
2099 * example checking cross references in the nocow path). If we use join
2100 * here we could get into a situation where we're waiting on IO to
2101 * happen that is blocked on a transaction trying to commit. With start
2102 * we inc the extwriter counter, so we wait for all extwriters to exit
2103 * before we start blocking join'ers. This comment is to keep somebody
2104 * from thinking they are super smart and changing this to
2105 * btrfs_join_transaction *cough*Josef*cough*.
2107 trans
= btrfs_start_transaction(root
, 0);
2108 if (IS_ERR(trans
)) {
2109 ret
= PTR_ERR(trans
);
2110 inode_unlock(inode
);
2115 btrfs_init_log_ctx(&ctx
, inode
);
2117 ret
= btrfs_log_dentry_safe(trans
, root
, dentry
, start
, end
, &ctx
);
2119 /* Fallthrough and commit/free transaction. */
2123 /* we've logged all the items and now have a consistent
2124 * version of the file in the log. It is possible that
2125 * someone will come in and modify the file, but that's
2126 * fine because the log is consistent on disk, and we
2127 * have references to all of the file's extents
2129 * It is possible that someone will come in and log the
2130 * file again, but that will end up using the synchronization
2131 * inside btrfs_sync_log to keep things safe.
2133 inode_unlock(inode
);
2136 * If any of the ordered extents had an error, just return it to user
2137 * space, so that the application knows some writes didn't succeed and
2138 * can take proper action (retry for e.g.). Blindly committing the
2139 * transaction in this case, would fool userspace that everything was
2140 * successful. And we also want to make sure our log doesn't contain
2141 * file extent items pointing to extents that weren't fully written to -
2142 * just like in the non fast fsync path, where we check for the ordered
2143 * operation's error flag before writing to the log tree and return -EIO
2144 * if any of them had this flag set (btrfs_wait_ordered_range) -
2145 * therefore we need to check for errors in the ordered operations,
2146 * which are indicated by ctx.io_err.
2149 btrfs_end_transaction(trans
);
2154 if (ret
!= BTRFS_NO_LOG_SYNC
) {
2156 ret
= btrfs_sync_log(trans
, root
, &ctx
);
2158 ret
= btrfs_end_transaction(trans
);
2163 ret
= btrfs_wait_ordered_range(inode
, start
, len
);
2165 btrfs_end_transaction(trans
);
2169 ret
= btrfs_commit_transaction(trans
);
2171 ret
= btrfs_end_transaction(trans
);
2174 return ret
> 0 ? -EIO
: ret
;
2177 static const struct vm_operations_struct btrfs_file_vm_ops
= {
2178 .fault
= filemap_fault
,
2179 .map_pages
= filemap_map_pages
,
2180 .page_mkwrite
= btrfs_page_mkwrite
,
2183 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
2185 struct address_space
*mapping
= filp
->f_mapping
;
2187 if (!mapping
->a_ops
->readpage
)
2190 file_accessed(filp
);
2191 vma
->vm_ops
= &btrfs_file_vm_ops
;
2196 static int hole_mergeable(struct inode
*inode
, struct extent_buffer
*leaf
,
2197 int slot
, u64 start
, u64 end
)
2199 struct btrfs_file_extent_item
*fi
;
2200 struct btrfs_key key
;
2202 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
2205 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2206 if (key
.objectid
!= btrfs_ino(inode
) ||
2207 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2210 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
2212 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2215 if (btrfs_file_extent_disk_bytenr(leaf
, fi
))
2218 if (key
.offset
== end
)
2220 if (key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
) == start
)
2225 static int fill_holes(struct btrfs_trans_handle
*trans
, struct inode
*inode
,
2226 struct btrfs_path
*path
, u64 offset
, u64 end
)
2228 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2229 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2230 struct extent_buffer
*leaf
;
2231 struct btrfs_file_extent_item
*fi
;
2232 struct extent_map
*hole_em
;
2233 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2234 struct btrfs_key key
;
2237 if (btrfs_fs_incompat(fs_info
, NO_HOLES
))
2240 key
.objectid
= btrfs_ino(inode
);
2241 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2242 key
.offset
= offset
;
2244 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2247 * We should have dropped this offset, so if we find it then
2248 * something has gone horribly wrong.
2255 leaf
= path
->nodes
[0];
2256 if (hole_mergeable(inode
, leaf
, path
->slots
[0]-1, offset
, end
)) {
2260 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2261 struct btrfs_file_extent_item
);
2262 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) +
2264 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2265 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2266 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2267 btrfs_mark_buffer_dirty(leaf
);
2271 if (hole_mergeable(inode
, leaf
, path
->slots
[0], offset
, end
)) {
2274 key
.offset
= offset
;
2275 btrfs_set_item_key_safe(fs_info
, path
, &key
);
2276 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2277 struct btrfs_file_extent_item
);
2278 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) + end
-
2280 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2281 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2282 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2283 btrfs_mark_buffer_dirty(leaf
);
2286 btrfs_release_path(path
);
2288 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
), offset
,
2289 0, 0, end
- offset
, 0, end
- offset
,
2295 btrfs_release_path(path
);
2297 hole_em
= alloc_extent_map();
2299 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2300 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2301 &BTRFS_I(inode
)->runtime_flags
);
2303 hole_em
->start
= offset
;
2304 hole_em
->len
= end
- offset
;
2305 hole_em
->ram_bytes
= hole_em
->len
;
2306 hole_em
->orig_start
= offset
;
2308 hole_em
->block_start
= EXTENT_MAP_HOLE
;
2309 hole_em
->block_len
= 0;
2310 hole_em
->orig_block_len
= 0;
2311 hole_em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
2312 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
2313 hole_em
->generation
= trans
->transid
;
2316 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2317 write_lock(&em_tree
->lock
);
2318 ret
= add_extent_mapping(em_tree
, hole_em
, 1);
2319 write_unlock(&em_tree
->lock
);
2320 } while (ret
== -EEXIST
);
2321 free_extent_map(hole_em
);
2323 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2324 &BTRFS_I(inode
)->runtime_flags
);
2331 * Find a hole extent on given inode and change start/len to the end of hole
2332 * extent.(hole/vacuum extent whose em->start <= start &&
2333 * em->start + em->len > start)
2334 * When a hole extent is found, return 1 and modify start/len.
2336 static int find_first_non_hole(struct inode
*inode
, u64
*start
, u64
*len
)
2338 struct extent_map
*em
;
2341 em
= btrfs_get_extent(inode
, NULL
, 0, *start
, *len
, 0);
2342 if (IS_ERR_OR_NULL(em
)) {
2350 /* Hole or vacuum extent(only exists in no-hole mode) */
2351 if (em
->block_start
== EXTENT_MAP_HOLE
) {
2353 *len
= em
->start
+ em
->len
> *start
+ *len
?
2354 0 : *start
+ *len
- em
->start
- em
->len
;
2355 *start
= em
->start
+ em
->len
;
2357 free_extent_map(em
);
2361 static int btrfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
2363 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2364 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2365 struct extent_state
*cached_state
= NULL
;
2366 struct btrfs_path
*path
;
2367 struct btrfs_block_rsv
*rsv
;
2368 struct btrfs_trans_handle
*trans
;
2373 u64 orig_start
= offset
;
2375 u64 min_size
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2379 unsigned int rsv_count
;
2381 bool no_holes
= btrfs_fs_incompat(fs_info
, NO_HOLES
);
2383 bool truncated_block
= false;
2384 bool updated_inode
= false;
2386 ret
= btrfs_wait_ordered_range(inode
, offset
, len
);
2391 ino_size
= round_up(inode
->i_size
, fs_info
->sectorsize
);
2392 ret
= find_first_non_hole(inode
, &offset
, &len
);
2394 goto out_only_mutex
;
2396 /* Already in a large hole */
2398 goto out_only_mutex
;
2401 lockstart
= round_up(offset
, btrfs_inode_sectorsize(inode
));
2402 lockend
= round_down(offset
+ len
,
2403 btrfs_inode_sectorsize(inode
)) - 1;
2404 same_block
= (BTRFS_BYTES_TO_BLKS(fs_info
, offset
))
2405 == (BTRFS_BYTES_TO_BLKS(fs_info
, offset
+ len
- 1));
2407 * We needn't truncate any block which is beyond the end of the file
2408 * because we are sure there is no data there.
2411 * Only do this if we are in the same block and we aren't doing the
2414 if (same_block
&& len
< fs_info
->sectorsize
) {
2415 if (offset
< ino_size
) {
2416 truncated_block
= true;
2417 ret
= btrfs_truncate_block(inode
, offset
, len
, 0);
2421 goto out_only_mutex
;
2424 /* zero back part of the first block */
2425 if (offset
< ino_size
) {
2426 truncated_block
= true;
2427 ret
= btrfs_truncate_block(inode
, offset
, 0, 0);
2429 inode_unlock(inode
);
2434 /* Check the aligned pages after the first unaligned page,
2435 * if offset != orig_start, which means the first unaligned page
2436 * including several following pages are already in holes,
2437 * the extra check can be skipped */
2438 if (offset
== orig_start
) {
2439 /* after truncate page, check hole again */
2440 len
= offset
+ len
- lockstart
;
2442 ret
= find_first_non_hole(inode
, &offset
, &len
);
2444 goto out_only_mutex
;
2447 goto out_only_mutex
;
2452 /* Check the tail unaligned part is in a hole */
2453 tail_start
= lockend
+ 1;
2454 tail_len
= offset
+ len
- tail_start
;
2456 ret
= find_first_non_hole(inode
, &tail_start
, &tail_len
);
2457 if (unlikely(ret
< 0))
2458 goto out_only_mutex
;
2460 /* zero the front end of the last page */
2461 if (tail_start
+ tail_len
< ino_size
) {
2462 truncated_block
= true;
2463 ret
= btrfs_truncate_block(inode
,
2464 tail_start
+ tail_len
,
2467 goto out_only_mutex
;
2472 if (lockend
< lockstart
) {
2474 goto out_only_mutex
;
2478 struct btrfs_ordered_extent
*ordered
;
2480 truncate_pagecache_range(inode
, lockstart
, lockend
);
2482 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2484 ordered
= btrfs_lookup_first_ordered_extent(inode
, lockend
);
2487 * We need to make sure we have no ordered extents in this range
2488 * and nobody raced in and read a page in this range, if we did
2489 * we need to try again.
2492 (ordered
->file_offset
+ ordered
->len
<= lockstart
||
2493 ordered
->file_offset
> lockend
)) &&
2494 !btrfs_page_exists_in_range(inode
, lockstart
, lockend
)) {
2496 btrfs_put_ordered_extent(ordered
);
2500 btrfs_put_ordered_extent(ordered
);
2501 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
2502 lockend
, &cached_state
, GFP_NOFS
);
2503 ret
= btrfs_wait_ordered_range(inode
, lockstart
,
2504 lockend
- lockstart
+ 1);
2506 inode_unlock(inode
);
2511 path
= btrfs_alloc_path();
2517 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
2522 rsv
->size
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2526 * 1 - update the inode
2527 * 1 - removing the extents in the range
2528 * 1 - adding the hole extent if no_holes isn't set
2530 rsv_count
= no_holes
? 2 : 3;
2531 trans
= btrfs_start_transaction(root
, rsv_count
);
2532 if (IS_ERR(trans
)) {
2533 err
= PTR_ERR(trans
);
2537 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
2540 trans
->block_rsv
= rsv
;
2542 cur_offset
= lockstart
;
2543 len
= lockend
- cur_offset
;
2544 while (cur_offset
< lockend
) {
2545 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
2546 cur_offset
, lockend
+ 1,
2547 &drop_end
, 1, 0, 0, NULL
);
2551 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2553 if (cur_offset
< drop_end
&& cur_offset
< ino_size
) {
2554 ret
= fill_holes(trans
, inode
, path
, cur_offset
,
2558 * If we failed then we didn't insert our hole
2559 * entries for the area we dropped, so now the
2560 * fs is corrupted, so we must abort the
2563 btrfs_abort_transaction(trans
, ret
);
2569 cur_offset
= drop_end
;
2571 ret
= btrfs_update_inode(trans
, root
, inode
);
2577 btrfs_end_transaction(trans
);
2578 btrfs_btree_balance_dirty(fs_info
);
2580 trans
= btrfs_start_transaction(root
, rsv_count
);
2581 if (IS_ERR(trans
)) {
2582 ret
= PTR_ERR(trans
);
2587 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
2589 BUG_ON(ret
); /* shouldn't happen */
2590 trans
->block_rsv
= rsv
;
2592 ret
= find_first_non_hole(inode
, &cur_offset
, &len
);
2593 if (unlikely(ret
< 0))
2606 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2608 * If we are using the NO_HOLES feature we might have had already an
2609 * hole that overlaps a part of the region [lockstart, lockend] and
2610 * ends at (or beyond) lockend. Since we have no file extent items to
2611 * represent holes, drop_end can be less than lockend and so we must
2612 * make sure we have an extent map representing the existing hole (the
2613 * call to __btrfs_drop_extents() might have dropped the existing extent
2614 * map representing the existing hole), otherwise the fast fsync path
2615 * will not record the existence of the hole region
2616 * [existing_hole_start, lockend].
2618 if (drop_end
<= lockend
)
2619 drop_end
= lockend
+ 1;
2621 * Don't insert file hole extent item if it's for a range beyond eof
2622 * (because it's useless) or if it represents a 0 bytes range (when
2623 * cur_offset == drop_end).
2625 if (cur_offset
< ino_size
&& cur_offset
< drop_end
) {
2626 ret
= fill_holes(trans
, inode
, path
, cur_offset
, drop_end
);
2628 /* Same comment as above. */
2629 btrfs_abort_transaction(trans
, ret
);
2639 inode_inc_iversion(inode
);
2640 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2642 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2643 ret
= btrfs_update_inode(trans
, root
, inode
);
2644 updated_inode
= true;
2645 btrfs_end_transaction(trans
);
2646 btrfs_btree_balance_dirty(fs_info
);
2648 btrfs_free_path(path
);
2649 btrfs_free_block_rsv(fs_info
, rsv
);
2651 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2652 &cached_state
, GFP_NOFS
);
2654 if (!updated_inode
&& truncated_block
&& !ret
&& !err
) {
2656 * If we only end up zeroing part of a page, we still need to
2657 * update the inode item, so that all the time fields are
2658 * updated as well as the necessary btrfs inode in memory fields
2659 * for detecting, at fsync time, if the inode isn't yet in the
2660 * log tree or it's there but not up to date.
2662 trans
= btrfs_start_transaction(root
, 1);
2663 if (IS_ERR(trans
)) {
2664 err
= PTR_ERR(trans
);
2666 err
= btrfs_update_inode(trans
, root
, inode
);
2667 ret
= btrfs_end_transaction(trans
);
2670 inode_unlock(inode
);
2676 /* Helper structure to record which range is already reserved */
2677 struct falloc_range
{
2678 struct list_head list
;
2684 * Helper function to add falloc range
2686 * Caller should have locked the larger range of extent containing
2689 static int add_falloc_range(struct list_head
*head
, u64 start
, u64 len
)
2691 struct falloc_range
*prev
= NULL
;
2692 struct falloc_range
*range
= NULL
;
2694 if (list_empty(head
))
2698 * As fallocate iterate by bytenr order, we only need to check
2701 prev
= list_entry(head
->prev
, struct falloc_range
, list
);
2702 if (prev
->start
+ prev
->len
== start
) {
2707 range
= kmalloc(sizeof(*range
), GFP_KERNEL
);
2710 range
->start
= start
;
2712 list_add_tail(&range
->list
, head
);
2716 static long btrfs_fallocate(struct file
*file
, int mode
,
2717 loff_t offset
, loff_t len
)
2719 struct inode
*inode
= file_inode(file
);
2720 struct extent_state
*cached_state
= NULL
;
2721 struct falloc_range
*range
;
2722 struct falloc_range
*tmp
;
2723 struct list_head reserve_list
;
2731 struct extent_map
*em
;
2732 int blocksize
= btrfs_inode_sectorsize(inode
);
2735 alloc_start
= round_down(offset
, blocksize
);
2736 alloc_end
= round_up(offset
+ len
, blocksize
);
2737 cur_offset
= alloc_start
;
2739 /* Make sure we aren't being give some crap mode */
2740 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2743 if (mode
& FALLOC_FL_PUNCH_HOLE
)
2744 return btrfs_punch_hole(inode
, offset
, len
);
2747 * Only trigger disk allocation, don't trigger qgroup reserve
2749 * For qgroup space, it will be checked later.
2751 ret
= btrfs_alloc_data_chunk_ondemand(inode
, alloc_end
- alloc_start
);
2757 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
) {
2758 ret
= inode_newsize_ok(inode
, offset
+ len
);
2764 * TODO: Move these two operations after we have checked
2765 * accurate reserved space, or fallocate can still fail but
2766 * with page truncated or size expanded.
2768 * But that's a minor problem and won't do much harm BTW.
2770 if (alloc_start
> inode
->i_size
) {
2771 ret
= btrfs_cont_expand(inode
, i_size_read(inode
),
2775 } else if (offset
+ len
> inode
->i_size
) {
2777 * If we are fallocating from the end of the file onward we
2778 * need to zero out the end of the block if i_size lands in the
2779 * middle of a block.
2781 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
2787 * wait for ordered IO before we have any locks. We'll loop again
2788 * below with the locks held.
2790 ret
= btrfs_wait_ordered_range(inode
, alloc_start
,
2791 alloc_end
- alloc_start
);
2795 locked_end
= alloc_end
- 1;
2797 struct btrfs_ordered_extent
*ordered
;
2799 /* the extent lock is ordered inside the running
2802 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, alloc_start
,
2803 locked_end
, &cached_state
);
2804 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2807 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
2808 ordered
->file_offset
< alloc_end
) {
2809 btrfs_put_ordered_extent(ordered
);
2810 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
2811 alloc_start
, locked_end
,
2812 &cached_state
, GFP_KERNEL
);
2814 * we can't wait on the range with the transaction
2815 * running or with the extent lock held
2817 ret
= btrfs_wait_ordered_range(inode
, alloc_start
,
2818 alloc_end
- alloc_start
);
2823 btrfs_put_ordered_extent(ordered
);
2828 /* First, check if we exceed the qgroup limit */
2829 INIT_LIST_HEAD(&reserve_list
);
2831 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
2832 alloc_end
- cur_offset
, 0);
2833 if (IS_ERR_OR_NULL(em
)) {
2840 last_byte
= min(extent_map_end(em
), alloc_end
);
2841 actual_end
= min_t(u64
, extent_map_end(em
), offset
+ len
);
2842 last_byte
= ALIGN(last_byte
, blocksize
);
2843 if (em
->block_start
== EXTENT_MAP_HOLE
||
2844 (cur_offset
>= inode
->i_size
&&
2845 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
2846 ret
= add_falloc_range(&reserve_list
, cur_offset
,
2847 last_byte
- cur_offset
);
2849 free_extent_map(em
);
2852 ret
= btrfs_qgroup_reserve_data(inode
, cur_offset
,
2853 last_byte
- cur_offset
);
2858 * Do not need to reserve unwritten extent for this
2859 * range, free reserved data space first, otherwise
2860 * it'll result in false ENOSPC error.
2862 btrfs_free_reserved_data_space(inode
, cur_offset
,
2863 last_byte
- cur_offset
);
2865 free_extent_map(em
);
2866 cur_offset
= last_byte
;
2867 if (cur_offset
>= alloc_end
)
2872 * If ret is still 0, means we're OK to fallocate.
2873 * Or just cleanup the list and exit.
2875 list_for_each_entry_safe(range
, tmp
, &reserve_list
, list
) {
2877 ret
= btrfs_prealloc_file_range(inode
, mode
,
2879 range
->len
, 1 << inode
->i_blkbits
,
2880 offset
+ len
, &alloc_hint
);
2882 btrfs_free_reserved_data_space(inode
, range
->start
,
2884 list_del(&range
->list
);
2890 if (actual_end
> inode
->i_size
&&
2891 !(mode
& FALLOC_FL_KEEP_SIZE
)) {
2892 struct btrfs_trans_handle
*trans
;
2893 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2896 * We didn't need to allocate any more space, but we
2897 * still extended the size of the file so we need to
2898 * update i_size and the inode item.
2900 trans
= btrfs_start_transaction(root
, 1);
2901 if (IS_ERR(trans
)) {
2902 ret
= PTR_ERR(trans
);
2904 inode
->i_ctime
= current_time(inode
);
2905 i_size_write(inode
, actual_end
);
2906 btrfs_ordered_update_i_size(inode
, actual_end
, NULL
);
2907 ret
= btrfs_update_inode(trans
, root
, inode
);
2909 btrfs_end_transaction(trans
);
2911 ret
= btrfs_end_transaction(trans
);
2915 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
2916 &cached_state
, GFP_KERNEL
);
2918 inode_unlock(inode
);
2919 /* Let go of our reservation. */
2921 btrfs_free_reserved_data_space(inode
, alloc_start
,
2922 alloc_end
- cur_offset
);
2926 static int find_desired_extent(struct inode
*inode
, loff_t
*offset
, int whence
)
2928 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2929 struct extent_map
*em
= NULL
;
2930 struct extent_state
*cached_state
= NULL
;
2937 if (inode
->i_size
== 0)
2941 * *offset can be negative, in this case we start finding DATA/HOLE from
2942 * the very start of the file.
2944 start
= max_t(loff_t
, 0, *offset
);
2946 lockstart
= round_down(start
, fs_info
->sectorsize
);
2947 lockend
= round_up(i_size_read(inode
),
2948 fs_info
->sectorsize
);
2949 if (lockend
<= lockstart
)
2950 lockend
= lockstart
+ fs_info
->sectorsize
;
2952 len
= lockend
- lockstart
+ 1;
2954 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2957 while (start
< inode
->i_size
) {
2958 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0, start
, len
, 0);
2965 if (whence
== SEEK_HOLE
&&
2966 (em
->block_start
== EXTENT_MAP_HOLE
||
2967 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)))
2969 else if (whence
== SEEK_DATA
&&
2970 (em
->block_start
!= EXTENT_MAP_HOLE
&&
2971 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)))
2974 start
= em
->start
+ em
->len
;
2975 free_extent_map(em
);
2979 free_extent_map(em
);
2981 if (whence
== SEEK_DATA
&& start
>= inode
->i_size
)
2984 *offset
= min_t(loff_t
, start
, inode
->i_size
);
2986 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2987 &cached_state
, GFP_NOFS
);
2991 static loff_t
btrfs_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2993 struct inode
*inode
= file
->f_mapping
->host
;
3000 offset
= generic_file_llseek(file
, offset
, whence
);
3004 if (offset
>= i_size_read(inode
)) {
3005 inode_unlock(inode
);
3009 ret
= find_desired_extent(inode
, &offset
, whence
);
3011 inode_unlock(inode
);
3016 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
3018 inode_unlock(inode
);
3022 const struct file_operations btrfs_file_operations
= {
3023 .llseek
= btrfs_file_llseek
,
3024 .read_iter
= generic_file_read_iter
,
3025 .splice_read
= generic_file_splice_read
,
3026 .write_iter
= btrfs_file_write_iter
,
3027 .mmap
= btrfs_file_mmap
,
3028 .open
= generic_file_open
,
3029 .release
= btrfs_release_file
,
3030 .fsync
= btrfs_sync_file
,
3031 .fallocate
= btrfs_fallocate
,
3032 .unlocked_ioctl
= btrfs_ioctl
,
3033 #ifdef CONFIG_COMPAT
3034 .compat_ioctl
= btrfs_compat_ioctl
,
3036 .clone_file_range
= btrfs_clone_file_range
,
3037 .dedupe_file_range
= btrfs_dedupe_file_range
,
3040 void btrfs_auto_defrag_exit(void)
3042 kmem_cache_destroy(btrfs_inode_defrag_cachep
);
3045 int btrfs_auto_defrag_init(void)
3047 btrfs_inode_defrag_cachep
= kmem_cache_create("btrfs_inode_defrag",
3048 sizeof(struct inode_defrag
), 0,
3051 if (!btrfs_inode_defrag_cachep
)
3057 int btrfs_fdatawrite_range(struct inode
*inode
, loff_t start
, loff_t end
)
3062 * So with compression we will find and lock a dirty page and clear the
3063 * first one as dirty, setup an async extent, and immediately return
3064 * with the entire range locked but with nobody actually marked with
3065 * writeback. So we can't just filemap_write_and_wait_range() and
3066 * expect it to work since it will just kick off a thread to do the
3067 * actual work. So we need to call filemap_fdatawrite_range _again_
3068 * since it will wait on the page lock, which won't be unlocked until
3069 * after the pages have been marked as writeback and so we're good to go
3070 * from there. We have to do this otherwise we'll miss the ordered
3071 * extents and that results in badness. Please Josef, do not think you
3072 * know better and pull this out at some point in the future, it is
3073 * right and you are wrong.
3075 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
3076 if (!ret
&& test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
3077 &BTRFS_I(inode
)->runtime_flags
))
3078 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);