2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
25 #include "free-space-cache.h"
26 #include "transaction.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
32 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
33 #define MAX_CACHE_BYTES_PER_GIG SZ_32K
35 struct btrfs_trim_range
{
38 struct list_head list
;
41 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
42 struct btrfs_free_space
*info
);
43 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
44 struct btrfs_free_space
*info
);
45 static int btrfs_wait_cache_io_root(struct btrfs_root
*root
,
46 struct btrfs_trans_handle
*trans
,
47 struct btrfs_io_ctl
*io_ctl
,
48 struct btrfs_path
*path
);
50 static struct inode
*__lookup_free_space_inode(struct btrfs_root
*root
,
51 struct btrfs_path
*path
,
54 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
56 struct btrfs_key location
;
57 struct btrfs_disk_key disk_key
;
58 struct btrfs_free_space_header
*header
;
59 struct extent_buffer
*leaf
;
60 struct inode
*inode
= NULL
;
63 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
67 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
71 btrfs_release_path(path
);
72 return ERR_PTR(-ENOENT
);
75 leaf
= path
->nodes
[0];
76 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
77 struct btrfs_free_space_header
);
78 btrfs_free_space_key(leaf
, header
, &disk_key
);
79 btrfs_disk_key_to_cpu(&location
, &disk_key
);
80 btrfs_release_path(path
);
82 inode
= btrfs_iget(fs_info
->sb
, &location
, root
, NULL
);
85 if (is_bad_inode(inode
)) {
87 return ERR_PTR(-ENOENT
);
90 mapping_set_gfp_mask(inode
->i_mapping
,
91 mapping_gfp_constraint(inode
->i_mapping
,
92 ~(__GFP_FS
| __GFP_HIGHMEM
)));
97 struct inode
*lookup_free_space_inode(struct btrfs_root
*root
,
98 struct btrfs_block_group_cache
99 *block_group
, struct btrfs_path
*path
)
101 struct inode
*inode
= NULL
;
102 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
103 u32 flags
= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
105 spin_lock(&block_group
->lock
);
106 if (block_group
->inode
)
107 inode
= igrab(block_group
->inode
);
108 spin_unlock(&block_group
->lock
);
112 inode
= __lookup_free_space_inode(root
, path
,
113 block_group
->key
.objectid
);
117 spin_lock(&block_group
->lock
);
118 if (!((BTRFS_I(inode
)->flags
& flags
) == flags
)) {
119 btrfs_info(fs_info
, "Old style space inode found, converting.");
120 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
|
121 BTRFS_INODE_NODATACOW
;
122 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
125 if (!block_group
->iref
) {
126 block_group
->inode
= igrab(inode
);
127 block_group
->iref
= 1;
129 spin_unlock(&block_group
->lock
);
134 static int __create_free_space_inode(struct btrfs_root
*root
,
135 struct btrfs_trans_handle
*trans
,
136 struct btrfs_path
*path
,
139 struct btrfs_key key
;
140 struct btrfs_disk_key disk_key
;
141 struct btrfs_free_space_header
*header
;
142 struct btrfs_inode_item
*inode_item
;
143 struct extent_buffer
*leaf
;
144 u64 flags
= BTRFS_INODE_NOCOMPRESS
| BTRFS_INODE_PREALLOC
;
147 ret
= btrfs_insert_empty_inode(trans
, root
, path
, ino
);
151 /* We inline crc's for the free disk space cache */
152 if (ino
!= BTRFS_FREE_INO_OBJECTID
)
153 flags
|= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
155 leaf
= path
->nodes
[0];
156 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
157 struct btrfs_inode_item
);
158 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
159 memzero_extent_buffer(leaf
, (unsigned long)inode_item
,
160 sizeof(*inode_item
));
161 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
162 btrfs_set_inode_size(leaf
, inode_item
, 0);
163 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
164 btrfs_set_inode_uid(leaf
, inode_item
, 0);
165 btrfs_set_inode_gid(leaf
, inode_item
, 0);
166 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
167 btrfs_set_inode_flags(leaf
, inode_item
, flags
);
168 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
169 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
170 btrfs_set_inode_block_group(leaf
, inode_item
, offset
);
171 btrfs_mark_buffer_dirty(leaf
);
172 btrfs_release_path(path
);
174 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
177 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
178 sizeof(struct btrfs_free_space_header
));
180 btrfs_release_path(path
);
184 leaf
= path
->nodes
[0];
185 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
186 struct btrfs_free_space_header
);
187 memzero_extent_buffer(leaf
, (unsigned long)header
, sizeof(*header
));
188 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
189 btrfs_mark_buffer_dirty(leaf
);
190 btrfs_release_path(path
);
195 int create_free_space_inode(struct btrfs_root
*root
,
196 struct btrfs_trans_handle
*trans
,
197 struct btrfs_block_group_cache
*block_group
,
198 struct btrfs_path
*path
)
203 ret
= btrfs_find_free_objectid(root
, &ino
);
207 return __create_free_space_inode(root
, trans
, path
, ino
,
208 block_group
->key
.objectid
);
211 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info
*fs_info
,
212 struct btrfs_block_rsv
*rsv
)
217 /* 1 for slack space, 1 for updating the inode */
218 needed_bytes
= btrfs_calc_trunc_metadata_size(fs_info
, 1) +
219 btrfs_calc_trans_metadata_size(fs_info
, 1);
221 spin_lock(&rsv
->lock
);
222 if (rsv
->reserved
< needed_bytes
)
226 spin_unlock(&rsv
->lock
);
230 int btrfs_truncate_free_space_cache(struct btrfs_root
*root
,
231 struct btrfs_trans_handle
*trans
,
232 struct btrfs_block_group_cache
*block_group
,
236 struct btrfs_path
*path
= btrfs_alloc_path();
246 mutex_lock(&trans
->transaction
->cache_write_mutex
);
247 if (!list_empty(&block_group
->io_list
)) {
248 list_del_init(&block_group
->io_list
);
250 btrfs_wait_cache_io(trans
, block_group
, path
);
251 btrfs_put_block_group(block_group
);
255 * now that we've truncated the cache away, its no longer
258 spin_lock(&block_group
->lock
);
259 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
260 spin_unlock(&block_group
->lock
);
262 btrfs_free_path(path
);
264 btrfs_i_size_write(inode
, 0);
265 truncate_pagecache(inode
, 0);
268 * We don't need an orphan item because truncating the free space cache
269 * will never be split across transactions.
270 * We don't need to check for -EAGAIN because we're a free space
273 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
274 0, BTRFS_EXTENT_DATA_KEY
);
278 ret
= btrfs_update_inode(trans
, root
, inode
);
282 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
284 btrfs_abort_transaction(trans
, ret
);
289 static int readahead_cache(struct inode
*inode
)
291 struct file_ra_state
*ra
;
292 unsigned long last_index
;
294 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
298 file_ra_state_init(ra
, inode
->i_mapping
);
299 last_index
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
301 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
308 static int io_ctl_init(struct btrfs_io_ctl
*io_ctl
, struct inode
*inode
,
314 num_pages
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
316 if (btrfs_ino(inode
) != BTRFS_FREE_INO_OBJECTID
)
319 /* Make sure we can fit our crcs into the first page */
320 if (write
&& check_crcs
&&
321 (num_pages
* sizeof(u32
)) >= PAGE_SIZE
)
324 memset(io_ctl
, 0, sizeof(struct btrfs_io_ctl
));
326 io_ctl
->pages
= kcalloc(num_pages
, sizeof(struct page
*), GFP_NOFS
);
330 io_ctl
->num_pages
= num_pages
;
331 io_ctl
->fs_info
= btrfs_sb(inode
->i_sb
);
332 io_ctl
->check_crcs
= check_crcs
;
333 io_ctl
->inode
= inode
;
338 static void io_ctl_free(struct btrfs_io_ctl
*io_ctl
)
340 kfree(io_ctl
->pages
);
341 io_ctl
->pages
= NULL
;
344 static void io_ctl_unmap_page(struct btrfs_io_ctl
*io_ctl
)
352 static void io_ctl_map_page(struct btrfs_io_ctl
*io_ctl
, int clear
)
354 ASSERT(io_ctl
->index
< io_ctl
->num_pages
);
355 io_ctl
->page
= io_ctl
->pages
[io_ctl
->index
++];
356 io_ctl
->cur
= page_address(io_ctl
->page
);
357 io_ctl
->orig
= io_ctl
->cur
;
358 io_ctl
->size
= PAGE_SIZE
;
360 memset(io_ctl
->cur
, 0, PAGE_SIZE
);
363 static void io_ctl_drop_pages(struct btrfs_io_ctl
*io_ctl
)
367 io_ctl_unmap_page(io_ctl
);
369 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
370 if (io_ctl
->pages
[i
]) {
371 ClearPageChecked(io_ctl
->pages
[i
]);
372 unlock_page(io_ctl
->pages
[i
]);
373 put_page(io_ctl
->pages
[i
]);
378 static int io_ctl_prepare_pages(struct btrfs_io_ctl
*io_ctl
, struct inode
*inode
,
382 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
385 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
386 page
= find_or_create_page(inode
->i_mapping
, i
, mask
);
388 io_ctl_drop_pages(io_ctl
);
391 io_ctl
->pages
[i
] = page
;
392 if (uptodate
&& !PageUptodate(page
)) {
393 btrfs_readpage(NULL
, page
);
395 if (!PageUptodate(page
)) {
396 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
397 "error reading free space cache");
398 io_ctl_drop_pages(io_ctl
);
404 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
405 clear_page_dirty_for_io(io_ctl
->pages
[i
]);
406 set_page_extent_mapped(io_ctl
->pages
[i
]);
412 static void io_ctl_set_generation(struct btrfs_io_ctl
*io_ctl
, u64 generation
)
416 io_ctl_map_page(io_ctl
, 1);
419 * Skip the csum areas. If we don't check crcs then we just have a
420 * 64bit chunk at the front of the first page.
422 if (io_ctl
->check_crcs
) {
423 io_ctl
->cur
+= (sizeof(u32
) * io_ctl
->num_pages
);
424 io_ctl
->size
-= sizeof(u64
) + (sizeof(u32
) * io_ctl
->num_pages
);
426 io_ctl
->cur
+= sizeof(u64
);
427 io_ctl
->size
-= sizeof(u64
) * 2;
431 *val
= cpu_to_le64(generation
);
432 io_ctl
->cur
+= sizeof(u64
);
435 static int io_ctl_check_generation(struct btrfs_io_ctl
*io_ctl
, u64 generation
)
440 * Skip the crc area. If we don't check crcs then we just have a 64bit
441 * chunk at the front of the first page.
443 if (io_ctl
->check_crcs
) {
444 io_ctl
->cur
+= sizeof(u32
) * io_ctl
->num_pages
;
445 io_ctl
->size
-= sizeof(u64
) +
446 (sizeof(u32
) * io_ctl
->num_pages
);
448 io_ctl
->cur
+= sizeof(u64
);
449 io_ctl
->size
-= sizeof(u64
) * 2;
453 if (le64_to_cpu(*gen
) != generation
) {
454 btrfs_err_rl(io_ctl
->fs_info
,
455 "space cache generation (%llu) does not match inode (%llu)",
457 io_ctl_unmap_page(io_ctl
);
460 io_ctl
->cur
+= sizeof(u64
);
464 static void io_ctl_set_crc(struct btrfs_io_ctl
*io_ctl
, int index
)
470 if (!io_ctl
->check_crcs
) {
471 io_ctl_unmap_page(io_ctl
);
476 offset
= sizeof(u32
) * io_ctl
->num_pages
;
478 crc
= btrfs_csum_data(io_ctl
->orig
+ offset
, crc
,
480 btrfs_csum_final(crc
, (u8
*)&crc
);
481 io_ctl_unmap_page(io_ctl
);
482 tmp
= page_address(io_ctl
->pages
[0]);
487 static int io_ctl_check_crc(struct btrfs_io_ctl
*io_ctl
, int index
)
493 if (!io_ctl
->check_crcs
) {
494 io_ctl_map_page(io_ctl
, 0);
499 offset
= sizeof(u32
) * io_ctl
->num_pages
;
501 tmp
= page_address(io_ctl
->pages
[0]);
505 io_ctl_map_page(io_ctl
, 0);
506 crc
= btrfs_csum_data(io_ctl
->orig
+ offset
, crc
,
508 btrfs_csum_final(crc
, (u8
*)&crc
);
510 btrfs_err_rl(io_ctl
->fs_info
,
511 "csum mismatch on free space cache");
512 io_ctl_unmap_page(io_ctl
);
519 static int io_ctl_add_entry(struct btrfs_io_ctl
*io_ctl
, u64 offset
, u64 bytes
,
522 struct btrfs_free_space_entry
*entry
;
528 entry
->offset
= cpu_to_le64(offset
);
529 entry
->bytes
= cpu_to_le64(bytes
);
530 entry
->type
= (bitmap
) ? BTRFS_FREE_SPACE_BITMAP
:
531 BTRFS_FREE_SPACE_EXTENT
;
532 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
533 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
535 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
538 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
540 /* No more pages to map */
541 if (io_ctl
->index
>= io_ctl
->num_pages
)
544 /* map the next page */
545 io_ctl_map_page(io_ctl
, 1);
549 static int io_ctl_add_bitmap(struct btrfs_io_ctl
*io_ctl
, void *bitmap
)
555 * If we aren't at the start of the current page, unmap this one and
556 * map the next one if there is any left.
558 if (io_ctl
->cur
!= io_ctl
->orig
) {
559 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
560 if (io_ctl
->index
>= io_ctl
->num_pages
)
562 io_ctl_map_page(io_ctl
, 0);
565 memcpy(io_ctl
->cur
, bitmap
, PAGE_SIZE
);
566 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
567 if (io_ctl
->index
< io_ctl
->num_pages
)
568 io_ctl_map_page(io_ctl
, 0);
572 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl
*io_ctl
)
575 * If we're not on the boundary we know we've modified the page and we
576 * need to crc the page.
578 if (io_ctl
->cur
!= io_ctl
->orig
)
579 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
581 io_ctl_unmap_page(io_ctl
);
583 while (io_ctl
->index
< io_ctl
->num_pages
) {
584 io_ctl_map_page(io_ctl
, 1);
585 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
589 static int io_ctl_read_entry(struct btrfs_io_ctl
*io_ctl
,
590 struct btrfs_free_space
*entry
, u8
*type
)
592 struct btrfs_free_space_entry
*e
;
596 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
602 entry
->offset
= le64_to_cpu(e
->offset
);
603 entry
->bytes
= le64_to_cpu(e
->bytes
);
605 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
606 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
608 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
611 io_ctl_unmap_page(io_ctl
);
616 static int io_ctl_read_bitmap(struct btrfs_io_ctl
*io_ctl
,
617 struct btrfs_free_space
*entry
)
621 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
625 memcpy(entry
->bitmap
, io_ctl
->cur
, PAGE_SIZE
);
626 io_ctl_unmap_page(io_ctl
);
632 * Since we attach pinned extents after the fact we can have contiguous sections
633 * of free space that are split up in entries. This poses a problem with the
634 * tree logging stuff since it could have allocated across what appears to be 2
635 * entries since we would have merged the entries when adding the pinned extents
636 * back to the free space cache. So run through the space cache that we just
637 * loaded and merge contiguous entries. This will make the log replay stuff not
638 * blow up and it will make for nicer allocator behavior.
640 static void merge_space_tree(struct btrfs_free_space_ctl
*ctl
)
642 struct btrfs_free_space
*e
, *prev
= NULL
;
646 spin_lock(&ctl
->tree_lock
);
647 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
648 e
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
651 if (e
->bitmap
|| prev
->bitmap
)
653 if (prev
->offset
+ prev
->bytes
== e
->offset
) {
654 unlink_free_space(ctl
, prev
);
655 unlink_free_space(ctl
, e
);
656 prev
->bytes
+= e
->bytes
;
657 kmem_cache_free(btrfs_free_space_cachep
, e
);
658 link_free_space(ctl
, prev
);
660 spin_unlock(&ctl
->tree_lock
);
666 spin_unlock(&ctl
->tree_lock
);
669 static int __load_free_space_cache(struct btrfs_root
*root
, struct inode
*inode
,
670 struct btrfs_free_space_ctl
*ctl
,
671 struct btrfs_path
*path
, u64 offset
)
673 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
674 struct btrfs_free_space_header
*header
;
675 struct extent_buffer
*leaf
;
676 struct btrfs_io_ctl io_ctl
;
677 struct btrfs_key key
;
678 struct btrfs_free_space
*e
, *n
;
686 /* Nothing in the space cache, goodbye */
687 if (!i_size_read(inode
))
690 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
694 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
698 btrfs_release_path(path
);
704 leaf
= path
->nodes
[0];
705 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
706 struct btrfs_free_space_header
);
707 num_entries
= btrfs_free_space_entries(leaf
, header
);
708 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
709 generation
= btrfs_free_space_generation(leaf
, header
);
710 btrfs_release_path(path
);
712 if (!BTRFS_I(inode
)->generation
) {
714 "The free space cache file (%llu) is invalid. skip it\n",
719 if (BTRFS_I(inode
)->generation
!= generation
) {
721 "free space inode generation (%llu) did not match free space cache generation (%llu)",
722 BTRFS_I(inode
)->generation
, generation
);
729 ret
= io_ctl_init(&io_ctl
, inode
, 0);
733 ret
= readahead_cache(inode
);
737 ret
= io_ctl_prepare_pages(&io_ctl
, inode
, 1);
741 ret
= io_ctl_check_crc(&io_ctl
, 0);
745 ret
= io_ctl_check_generation(&io_ctl
, generation
);
749 while (num_entries
) {
750 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
755 ret
= io_ctl_read_entry(&io_ctl
, e
, &type
);
757 kmem_cache_free(btrfs_free_space_cachep
, e
);
762 kmem_cache_free(btrfs_free_space_cachep
, e
);
766 if (type
== BTRFS_FREE_SPACE_EXTENT
) {
767 spin_lock(&ctl
->tree_lock
);
768 ret
= link_free_space(ctl
, e
);
769 spin_unlock(&ctl
->tree_lock
);
772 "Duplicate entries in free space cache, dumping");
773 kmem_cache_free(btrfs_free_space_cachep
, e
);
779 e
->bitmap
= kzalloc(PAGE_SIZE
, GFP_NOFS
);
782 btrfs_free_space_cachep
, e
);
785 spin_lock(&ctl
->tree_lock
);
786 ret
= link_free_space(ctl
, e
);
787 ctl
->total_bitmaps
++;
788 ctl
->op
->recalc_thresholds(ctl
);
789 spin_unlock(&ctl
->tree_lock
);
792 "Duplicate entries in free space cache, dumping");
793 kmem_cache_free(btrfs_free_space_cachep
, e
);
796 list_add_tail(&e
->list
, &bitmaps
);
802 io_ctl_unmap_page(&io_ctl
);
805 * We add the bitmaps at the end of the entries in order that
806 * the bitmap entries are added to the cache.
808 list_for_each_entry_safe(e
, n
, &bitmaps
, list
) {
809 list_del_init(&e
->list
);
810 ret
= io_ctl_read_bitmap(&io_ctl
, e
);
815 io_ctl_drop_pages(&io_ctl
);
816 merge_space_tree(ctl
);
819 io_ctl_free(&io_ctl
);
822 io_ctl_drop_pages(&io_ctl
);
823 __btrfs_remove_free_space_cache(ctl
);
827 int load_free_space_cache(struct btrfs_fs_info
*fs_info
,
828 struct btrfs_block_group_cache
*block_group
)
830 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
831 struct btrfs_root
*root
= fs_info
->tree_root
;
833 struct btrfs_path
*path
;
836 u64 used
= btrfs_block_group_used(&block_group
->item
);
839 * If this block group has been marked to be cleared for one reason or
840 * another then we can't trust the on disk cache, so just return.
842 spin_lock(&block_group
->lock
);
843 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
844 spin_unlock(&block_group
->lock
);
847 spin_unlock(&block_group
->lock
);
849 path
= btrfs_alloc_path();
852 path
->search_commit_root
= 1;
853 path
->skip_locking
= 1;
855 inode
= lookup_free_space_inode(root
, block_group
, path
);
857 btrfs_free_path(path
);
861 /* We may have converted the inode and made the cache invalid. */
862 spin_lock(&block_group
->lock
);
863 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
864 spin_unlock(&block_group
->lock
);
865 btrfs_free_path(path
);
868 spin_unlock(&block_group
->lock
);
870 ret
= __load_free_space_cache(fs_info
->tree_root
, inode
, ctl
,
871 path
, block_group
->key
.objectid
);
872 btrfs_free_path(path
);
876 spin_lock(&ctl
->tree_lock
);
877 matched
= (ctl
->free_space
== (block_group
->key
.offset
- used
-
878 block_group
->bytes_super
));
879 spin_unlock(&ctl
->tree_lock
);
882 __btrfs_remove_free_space_cache(ctl
);
884 "block group %llu has wrong amount of free space",
885 block_group
->key
.objectid
);
890 /* This cache is bogus, make sure it gets cleared */
891 spin_lock(&block_group
->lock
);
892 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
893 spin_unlock(&block_group
->lock
);
897 "failed to load free space cache for block group %llu, rebuilding it now",
898 block_group
->key
.objectid
);
905 static noinline_for_stack
906 int write_cache_extent_entries(struct btrfs_io_ctl
*io_ctl
,
907 struct btrfs_free_space_ctl
*ctl
,
908 struct btrfs_block_group_cache
*block_group
,
909 int *entries
, int *bitmaps
,
910 struct list_head
*bitmap_list
)
913 struct btrfs_free_cluster
*cluster
= NULL
;
914 struct btrfs_free_cluster
*cluster_locked
= NULL
;
915 struct rb_node
*node
= rb_first(&ctl
->free_space_offset
);
916 struct btrfs_trim_range
*trim_entry
;
918 /* Get the cluster for this block_group if it exists */
919 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
920 cluster
= list_entry(block_group
->cluster_list
.next
,
921 struct btrfs_free_cluster
,
925 if (!node
&& cluster
) {
926 cluster_locked
= cluster
;
927 spin_lock(&cluster_locked
->lock
);
928 node
= rb_first(&cluster
->root
);
932 /* Write out the extent entries */
934 struct btrfs_free_space
*e
;
936 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
939 ret
= io_ctl_add_entry(io_ctl
, e
->offset
, e
->bytes
,
945 list_add_tail(&e
->list
, bitmap_list
);
948 node
= rb_next(node
);
949 if (!node
&& cluster
) {
950 node
= rb_first(&cluster
->root
);
951 cluster_locked
= cluster
;
952 spin_lock(&cluster_locked
->lock
);
956 if (cluster_locked
) {
957 spin_unlock(&cluster_locked
->lock
);
958 cluster_locked
= NULL
;
962 * Make sure we don't miss any range that was removed from our rbtree
963 * because trimming is running. Otherwise after a umount+mount (or crash
964 * after committing the transaction) we would leak free space and get
965 * an inconsistent free space cache report from fsck.
967 list_for_each_entry(trim_entry
, &ctl
->trimming_ranges
, list
) {
968 ret
= io_ctl_add_entry(io_ctl
, trim_entry
->start
,
969 trim_entry
->bytes
, NULL
);
978 spin_unlock(&cluster_locked
->lock
);
982 static noinline_for_stack
int
983 update_cache_item(struct btrfs_trans_handle
*trans
,
984 struct btrfs_root
*root
,
986 struct btrfs_path
*path
, u64 offset
,
987 int entries
, int bitmaps
)
989 struct btrfs_key key
;
990 struct btrfs_free_space_header
*header
;
991 struct extent_buffer
*leaf
;
994 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
998 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1000 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1001 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0, NULL
,
1005 leaf
= path
->nodes
[0];
1007 struct btrfs_key found_key
;
1008 ASSERT(path
->slots
[0]);
1010 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1011 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
1012 found_key
.offset
!= offset
) {
1013 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0,
1015 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0,
1017 btrfs_release_path(path
);
1022 BTRFS_I(inode
)->generation
= trans
->transid
;
1023 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
1024 struct btrfs_free_space_header
);
1025 btrfs_set_free_space_entries(leaf
, header
, entries
);
1026 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
1027 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
1028 btrfs_mark_buffer_dirty(leaf
);
1029 btrfs_release_path(path
);
1037 static noinline_for_stack
int
1038 write_pinned_extent_entries(struct btrfs_fs_info
*fs_info
,
1039 struct btrfs_block_group_cache
*block_group
,
1040 struct btrfs_io_ctl
*io_ctl
,
1043 u64 start
, extent_start
, extent_end
, len
;
1044 struct extent_io_tree
*unpin
= NULL
;
1051 * We want to add any pinned extents to our free space cache
1052 * so we don't leak the space
1054 * We shouldn't have switched the pinned extents yet so this is the
1057 unpin
= fs_info
->pinned_extents
;
1059 start
= block_group
->key
.objectid
;
1061 while (start
< block_group
->key
.objectid
+ block_group
->key
.offset
) {
1062 ret
= find_first_extent_bit(unpin
, start
,
1063 &extent_start
, &extent_end
,
1064 EXTENT_DIRTY
, NULL
);
1068 /* This pinned extent is out of our range */
1069 if (extent_start
>= block_group
->key
.objectid
+
1070 block_group
->key
.offset
)
1073 extent_start
= max(extent_start
, start
);
1074 extent_end
= min(block_group
->key
.objectid
+
1075 block_group
->key
.offset
, extent_end
+ 1);
1076 len
= extent_end
- extent_start
;
1079 ret
= io_ctl_add_entry(io_ctl
, extent_start
, len
, NULL
);
1089 static noinline_for_stack
int
1090 write_bitmap_entries(struct btrfs_io_ctl
*io_ctl
, struct list_head
*bitmap_list
)
1092 struct btrfs_free_space
*entry
, *next
;
1095 /* Write out the bitmaps */
1096 list_for_each_entry_safe(entry
, next
, bitmap_list
, list
) {
1097 ret
= io_ctl_add_bitmap(io_ctl
, entry
->bitmap
);
1100 list_del_init(&entry
->list
);
1106 static int flush_dirty_cache(struct inode
*inode
)
1110 ret
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1112 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1113 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0, NULL
,
1119 static void noinline_for_stack
1120 cleanup_bitmap_list(struct list_head
*bitmap_list
)
1122 struct btrfs_free_space
*entry
, *next
;
1124 list_for_each_entry_safe(entry
, next
, bitmap_list
, list
)
1125 list_del_init(&entry
->list
);
1128 static void noinline_for_stack
1129 cleanup_write_cache_enospc(struct inode
*inode
,
1130 struct btrfs_io_ctl
*io_ctl
,
1131 struct extent_state
**cached_state
,
1132 struct list_head
*bitmap_list
)
1134 io_ctl_drop_pages(io_ctl
);
1135 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1136 i_size_read(inode
) - 1, cached_state
,
1140 static int __btrfs_wait_cache_io(struct btrfs_root
*root
,
1141 struct btrfs_trans_handle
*trans
,
1142 struct btrfs_block_group_cache
*block_group
,
1143 struct btrfs_io_ctl
*io_ctl
,
1144 struct btrfs_path
*path
, u64 offset
)
1147 struct inode
*inode
= io_ctl
->inode
;
1148 struct btrfs_fs_info
*fs_info
;
1153 fs_info
= btrfs_sb(inode
->i_sb
);
1155 /* Flush the dirty pages in the cache file. */
1156 ret
= flush_dirty_cache(inode
);
1160 /* Update the cache item to tell everyone this cache file is valid. */
1161 ret
= update_cache_item(trans
, root
, inode
, path
, offset
,
1162 io_ctl
->entries
, io_ctl
->bitmaps
);
1164 io_ctl_free(io_ctl
);
1166 invalidate_inode_pages2(inode
->i_mapping
);
1167 BTRFS_I(inode
)->generation
= 0;
1171 "failed to write free space cache for block group %llu",
1172 block_group
->key
.objectid
);
1176 btrfs_update_inode(trans
, root
, inode
);
1179 /* the dirty list is protected by the dirty_bgs_lock */
1180 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
1182 /* the disk_cache_state is protected by the block group lock */
1183 spin_lock(&block_group
->lock
);
1186 * only mark this as written if we didn't get put back on
1187 * the dirty list while waiting for IO. Otherwise our
1188 * cache state won't be right, and we won't get written again
1190 if (!ret
&& list_empty(&block_group
->dirty_list
))
1191 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
1193 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1195 spin_unlock(&block_group
->lock
);
1196 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
1197 io_ctl
->inode
= NULL
;
1205 static int btrfs_wait_cache_io_root(struct btrfs_root
*root
,
1206 struct btrfs_trans_handle
*trans
,
1207 struct btrfs_io_ctl
*io_ctl
,
1208 struct btrfs_path
*path
)
1210 return __btrfs_wait_cache_io(root
, trans
, NULL
, io_ctl
, path
, 0);
1213 int btrfs_wait_cache_io(struct btrfs_trans_handle
*trans
,
1214 struct btrfs_block_group_cache
*block_group
,
1215 struct btrfs_path
*path
)
1217 return __btrfs_wait_cache_io(block_group
->fs_info
->tree_root
, trans
,
1218 block_group
, &block_group
->io_ctl
,
1219 path
, block_group
->key
.objectid
);
1223 * __btrfs_write_out_cache - write out cached info to an inode
1224 * @root - the root the inode belongs to
1225 * @ctl - the free space cache we are going to write out
1226 * @block_group - the block_group for this cache if it belongs to a block_group
1227 * @trans - the trans handle
1228 * @path - the path to use
1229 * @offset - the offset for the key we'll insert
1231 * This function writes out a free space cache struct to disk for quick recovery
1232 * on mount. This will return 0 if it was successful in writing the cache out,
1233 * or an errno if it was not.
1235 static int __btrfs_write_out_cache(struct btrfs_root
*root
, struct inode
*inode
,
1236 struct btrfs_free_space_ctl
*ctl
,
1237 struct btrfs_block_group_cache
*block_group
,
1238 struct btrfs_io_ctl
*io_ctl
,
1239 struct btrfs_trans_handle
*trans
,
1240 struct btrfs_path
*path
, u64 offset
)
1242 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1243 struct extent_state
*cached_state
= NULL
;
1244 LIST_HEAD(bitmap_list
);
1250 if (!i_size_read(inode
))
1253 WARN_ON(io_ctl
->pages
);
1254 ret
= io_ctl_init(io_ctl
, inode
, 1);
1258 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
)) {
1259 down_write(&block_group
->data_rwsem
);
1260 spin_lock(&block_group
->lock
);
1261 if (block_group
->delalloc_bytes
) {
1262 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
1263 spin_unlock(&block_group
->lock
);
1264 up_write(&block_group
->data_rwsem
);
1265 BTRFS_I(inode
)->generation
= 0;
1270 spin_unlock(&block_group
->lock
);
1273 /* Lock all pages first so we can lock the extent safely. */
1274 ret
= io_ctl_prepare_pages(io_ctl
, inode
, 0);
1278 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
1281 io_ctl_set_generation(io_ctl
, trans
->transid
);
1283 mutex_lock(&ctl
->cache_writeout_mutex
);
1284 /* Write out the extent entries in the free space cache */
1285 spin_lock(&ctl
->tree_lock
);
1286 ret
= write_cache_extent_entries(io_ctl
, ctl
,
1287 block_group
, &entries
, &bitmaps
,
1290 goto out_nospc_locked
;
1293 * Some spaces that are freed in the current transaction are pinned,
1294 * they will be added into free space cache after the transaction is
1295 * committed, we shouldn't lose them.
1297 * If this changes while we are working we'll get added back to
1298 * the dirty list and redo it. No locking needed
1300 ret
= write_pinned_extent_entries(fs_info
, block_group
,
1303 goto out_nospc_locked
;
1306 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1307 * locked while doing it because a concurrent trim can be manipulating
1308 * or freeing the bitmap.
1310 ret
= write_bitmap_entries(io_ctl
, &bitmap_list
);
1311 spin_unlock(&ctl
->tree_lock
);
1312 mutex_unlock(&ctl
->cache_writeout_mutex
);
1316 /* Zero out the rest of the pages just to make sure */
1317 io_ctl_zero_remaining_pages(io_ctl
);
1319 /* Everything is written out, now we dirty the pages in the file. */
1320 ret
= btrfs_dirty_pages(inode
, io_ctl
->pages
, io_ctl
->num_pages
, 0,
1321 i_size_read(inode
), &cached_state
);
1325 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
))
1326 up_write(&block_group
->data_rwsem
);
1328 * Release the pages and unlock the extent, we will flush
1331 io_ctl_drop_pages(io_ctl
);
1333 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1334 i_size_read(inode
) - 1, &cached_state
, GFP_NOFS
);
1337 * at this point the pages are under IO and we're happy,
1338 * The caller is responsible for waiting on them and updating the
1339 * the cache and the inode
1341 io_ctl
->entries
= entries
;
1342 io_ctl
->bitmaps
= bitmaps
;
1344 ret
= btrfs_fdatawrite_range(inode
, 0, (u64
)-1);
1351 io_ctl
->inode
= NULL
;
1352 io_ctl_free(io_ctl
);
1354 invalidate_inode_pages2(inode
->i_mapping
);
1355 BTRFS_I(inode
)->generation
= 0;
1357 btrfs_update_inode(trans
, root
, inode
);
1363 cleanup_bitmap_list(&bitmap_list
);
1364 spin_unlock(&ctl
->tree_lock
);
1365 mutex_unlock(&ctl
->cache_writeout_mutex
);
1368 cleanup_write_cache_enospc(inode
, io_ctl
, &cached_state
, &bitmap_list
);
1370 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
))
1371 up_write(&block_group
->data_rwsem
);
1376 int btrfs_write_out_cache(struct btrfs_fs_info
*fs_info
,
1377 struct btrfs_trans_handle
*trans
,
1378 struct btrfs_block_group_cache
*block_group
,
1379 struct btrfs_path
*path
)
1381 struct btrfs_root
*root
= fs_info
->tree_root
;
1382 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1383 struct inode
*inode
;
1386 spin_lock(&block_group
->lock
);
1387 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
1388 spin_unlock(&block_group
->lock
);
1391 spin_unlock(&block_group
->lock
);
1393 inode
= lookup_free_space_inode(root
, block_group
, path
);
1397 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, block_group
,
1398 &block_group
->io_ctl
, trans
,
1399 path
, block_group
->key
.objectid
);
1403 "failed to write free space cache for block group %llu",
1404 block_group
->key
.objectid
);
1406 spin_lock(&block_group
->lock
);
1407 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1408 spin_unlock(&block_group
->lock
);
1410 block_group
->io_ctl
.inode
= NULL
;
1415 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1416 * to wait for IO and put the inode
1422 static inline unsigned long offset_to_bit(u64 bitmap_start
, u32 unit
,
1425 ASSERT(offset
>= bitmap_start
);
1426 offset
-= bitmap_start
;
1427 return (unsigned long)(div_u64(offset
, unit
));
1430 static inline unsigned long bytes_to_bits(u64 bytes
, u32 unit
)
1432 return (unsigned long)(div_u64(bytes
, unit
));
1435 static inline u64
offset_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1439 u64 bytes_per_bitmap
;
1441 bytes_per_bitmap
= BITS_PER_BITMAP
* ctl
->unit
;
1442 bitmap_start
= offset
- ctl
->start
;
1443 bitmap_start
= div64_u64(bitmap_start
, bytes_per_bitmap
);
1444 bitmap_start
*= bytes_per_bitmap
;
1445 bitmap_start
+= ctl
->start
;
1447 return bitmap_start
;
1450 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
1451 struct rb_node
*node
, int bitmap
)
1453 struct rb_node
**p
= &root
->rb_node
;
1454 struct rb_node
*parent
= NULL
;
1455 struct btrfs_free_space
*info
;
1459 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
1461 if (offset
< info
->offset
) {
1463 } else if (offset
> info
->offset
) {
1464 p
= &(*p
)->rb_right
;
1467 * we could have a bitmap entry and an extent entry
1468 * share the same offset. If this is the case, we want
1469 * the extent entry to always be found first if we do a
1470 * linear search through the tree, since we want to have
1471 * the quickest allocation time, and allocating from an
1472 * extent is faster than allocating from a bitmap. So
1473 * if we're inserting a bitmap and we find an entry at
1474 * this offset, we want to go right, or after this entry
1475 * logically. If we are inserting an extent and we've
1476 * found a bitmap, we want to go left, or before
1484 p
= &(*p
)->rb_right
;
1486 if (!info
->bitmap
) {
1495 rb_link_node(node
, parent
, p
);
1496 rb_insert_color(node
, root
);
1502 * searches the tree for the given offset.
1504 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1505 * want a section that has at least bytes size and comes at or after the given
1508 static struct btrfs_free_space
*
1509 tree_search_offset(struct btrfs_free_space_ctl
*ctl
,
1510 u64 offset
, int bitmap_only
, int fuzzy
)
1512 struct rb_node
*n
= ctl
->free_space_offset
.rb_node
;
1513 struct btrfs_free_space
*entry
, *prev
= NULL
;
1515 /* find entry that is closest to the 'offset' */
1522 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1525 if (offset
< entry
->offset
)
1527 else if (offset
> entry
->offset
)
1540 * bitmap entry and extent entry may share same offset,
1541 * in that case, bitmap entry comes after extent entry.
1546 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1547 if (entry
->offset
!= offset
)
1550 WARN_ON(!entry
->bitmap
);
1553 if (entry
->bitmap
) {
1555 * if previous extent entry covers the offset,
1556 * we should return it instead of the bitmap entry
1558 n
= rb_prev(&entry
->offset_index
);
1560 prev
= rb_entry(n
, struct btrfs_free_space
,
1562 if (!prev
->bitmap
&&
1563 prev
->offset
+ prev
->bytes
> offset
)
1573 /* find last entry before the 'offset' */
1575 if (entry
->offset
> offset
) {
1576 n
= rb_prev(&entry
->offset_index
);
1578 entry
= rb_entry(n
, struct btrfs_free_space
,
1580 ASSERT(entry
->offset
<= offset
);
1589 if (entry
->bitmap
) {
1590 n
= rb_prev(&entry
->offset_index
);
1592 prev
= rb_entry(n
, struct btrfs_free_space
,
1594 if (!prev
->bitmap
&&
1595 prev
->offset
+ prev
->bytes
> offset
)
1598 if (entry
->offset
+ BITS_PER_BITMAP
* ctl
->unit
> offset
)
1600 } else if (entry
->offset
+ entry
->bytes
> offset
)
1607 if (entry
->bitmap
) {
1608 if (entry
->offset
+ BITS_PER_BITMAP
*
1612 if (entry
->offset
+ entry
->bytes
> offset
)
1616 n
= rb_next(&entry
->offset_index
);
1619 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1625 __unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1626 struct btrfs_free_space
*info
)
1628 rb_erase(&info
->offset_index
, &ctl
->free_space_offset
);
1629 ctl
->free_extents
--;
1632 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1633 struct btrfs_free_space
*info
)
1635 __unlink_free_space(ctl
, info
);
1636 ctl
->free_space
-= info
->bytes
;
1639 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
1640 struct btrfs_free_space
*info
)
1644 ASSERT(info
->bytes
|| info
->bitmap
);
1645 ret
= tree_insert_offset(&ctl
->free_space_offset
, info
->offset
,
1646 &info
->offset_index
, (info
->bitmap
!= NULL
));
1650 ctl
->free_space
+= info
->bytes
;
1651 ctl
->free_extents
++;
1655 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
1657 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1661 u64 size
= block_group
->key
.offset
;
1662 u64 bytes_per_bg
= BITS_PER_BITMAP
* ctl
->unit
;
1663 u64 max_bitmaps
= div64_u64(size
+ bytes_per_bg
- 1, bytes_per_bg
);
1665 max_bitmaps
= max_t(u64
, max_bitmaps
, 1);
1667 ASSERT(ctl
->total_bitmaps
<= max_bitmaps
);
1670 * The goal is to keep the total amount of memory used per 1gb of space
1671 * at or below 32k, so we need to adjust how much memory we allow to be
1672 * used by extent based free space tracking
1675 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1677 max_bytes
= MAX_CACHE_BYTES_PER_GIG
* div_u64(size
, SZ_1G
);
1680 * we want to account for 1 more bitmap than what we have so we can make
1681 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1682 * we add more bitmaps.
1684 bitmap_bytes
= (ctl
->total_bitmaps
+ 1) * ctl
->unit
;
1686 if (bitmap_bytes
>= max_bytes
) {
1687 ctl
->extents_thresh
= 0;
1692 * we want the extent entry threshold to always be at most 1/2 the max
1693 * bytes we can have, or whatever is less than that.
1695 extent_bytes
= max_bytes
- bitmap_bytes
;
1696 extent_bytes
= min_t(u64
, extent_bytes
, max_bytes
>> 1);
1698 ctl
->extents_thresh
=
1699 div_u64(extent_bytes
, sizeof(struct btrfs_free_space
));
1702 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1703 struct btrfs_free_space
*info
,
1704 u64 offset
, u64 bytes
)
1706 unsigned long start
, count
;
1708 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1709 count
= bytes_to_bits(bytes
, ctl
->unit
);
1710 ASSERT(start
+ count
<= BITS_PER_BITMAP
);
1712 bitmap_clear(info
->bitmap
, start
, count
);
1714 info
->bytes
-= bytes
;
1717 static void bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1718 struct btrfs_free_space
*info
, u64 offset
,
1721 __bitmap_clear_bits(ctl
, info
, offset
, bytes
);
1722 ctl
->free_space
-= bytes
;
1725 static void bitmap_set_bits(struct btrfs_free_space_ctl
*ctl
,
1726 struct btrfs_free_space
*info
, u64 offset
,
1729 unsigned long start
, count
;
1731 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1732 count
= bytes_to_bits(bytes
, ctl
->unit
);
1733 ASSERT(start
+ count
<= BITS_PER_BITMAP
);
1735 bitmap_set(info
->bitmap
, start
, count
);
1737 info
->bytes
+= bytes
;
1738 ctl
->free_space
+= bytes
;
1742 * If we can not find suitable extent, we will use bytes to record
1743 * the size of the max extent.
1745 static int search_bitmap(struct btrfs_free_space_ctl
*ctl
,
1746 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1747 u64
*bytes
, bool for_alloc
)
1749 unsigned long found_bits
= 0;
1750 unsigned long max_bits
= 0;
1751 unsigned long bits
, i
;
1752 unsigned long next_zero
;
1753 unsigned long extent_bits
;
1756 * Skip searching the bitmap if we don't have a contiguous section that
1757 * is large enough for this allocation.
1760 bitmap_info
->max_extent_size
&&
1761 bitmap_info
->max_extent_size
< *bytes
) {
1762 *bytes
= bitmap_info
->max_extent_size
;
1766 i
= offset_to_bit(bitmap_info
->offset
, ctl
->unit
,
1767 max_t(u64
, *offset
, bitmap_info
->offset
));
1768 bits
= bytes_to_bits(*bytes
, ctl
->unit
);
1770 for_each_set_bit_from(i
, bitmap_info
->bitmap
, BITS_PER_BITMAP
) {
1771 if (for_alloc
&& bits
== 1) {
1775 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1776 BITS_PER_BITMAP
, i
);
1777 extent_bits
= next_zero
- i
;
1778 if (extent_bits
>= bits
) {
1779 found_bits
= extent_bits
;
1781 } else if (extent_bits
> max_bits
) {
1782 max_bits
= extent_bits
;
1788 *offset
= (u64
)(i
* ctl
->unit
) + bitmap_info
->offset
;
1789 *bytes
= (u64
)(found_bits
) * ctl
->unit
;
1793 *bytes
= (u64
)(max_bits
) * ctl
->unit
;
1794 bitmap_info
->max_extent_size
= *bytes
;
1798 /* Cache the size of the max extent in bytes */
1799 static struct btrfs_free_space
*
1800 find_free_space(struct btrfs_free_space_ctl
*ctl
, u64
*offset
, u64
*bytes
,
1801 unsigned long align
, u64
*max_extent_size
)
1803 struct btrfs_free_space
*entry
;
1804 struct rb_node
*node
;
1809 if (!ctl
->free_space_offset
.rb_node
)
1812 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, *offset
), 0, 1);
1816 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1817 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1818 if (entry
->bytes
< *bytes
) {
1819 if (entry
->bytes
> *max_extent_size
)
1820 *max_extent_size
= entry
->bytes
;
1824 /* make sure the space returned is big enough
1825 * to match our requested alignment
1827 if (*bytes
>= align
) {
1828 tmp
= entry
->offset
- ctl
->start
+ align
- 1;
1829 tmp
= div64_u64(tmp
, align
);
1830 tmp
= tmp
* align
+ ctl
->start
;
1831 align_off
= tmp
- entry
->offset
;
1834 tmp
= entry
->offset
;
1837 if (entry
->bytes
< *bytes
+ align_off
) {
1838 if (entry
->bytes
> *max_extent_size
)
1839 *max_extent_size
= entry
->bytes
;
1843 if (entry
->bitmap
) {
1846 ret
= search_bitmap(ctl
, entry
, &tmp
, &size
, true);
1851 } else if (size
> *max_extent_size
) {
1852 *max_extent_size
= size
;
1858 *bytes
= entry
->bytes
- align_off
;
1865 static void add_new_bitmap(struct btrfs_free_space_ctl
*ctl
,
1866 struct btrfs_free_space
*info
, u64 offset
)
1868 info
->offset
= offset_to_bitmap(ctl
, offset
);
1870 INIT_LIST_HEAD(&info
->list
);
1871 link_free_space(ctl
, info
);
1872 ctl
->total_bitmaps
++;
1874 ctl
->op
->recalc_thresholds(ctl
);
1877 static void free_bitmap(struct btrfs_free_space_ctl
*ctl
,
1878 struct btrfs_free_space
*bitmap_info
)
1880 unlink_free_space(ctl
, bitmap_info
);
1881 kfree(bitmap_info
->bitmap
);
1882 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1883 ctl
->total_bitmaps
--;
1884 ctl
->op
->recalc_thresholds(ctl
);
1887 static noinline
int remove_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
1888 struct btrfs_free_space
*bitmap_info
,
1889 u64
*offset
, u64
*bytes
)
1892 u64 search_start
, search_bytes
;
1896 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
) - 1;
1899 * We need to search for bits in this bitmap. We could only cover some
1900 * of the extent in this bitmap thanks to how we add space, so we need
1901 * to search for as much as it as we can and clear that amount, and then
1902 * go searching for the next bit.
1904 search_start
= *offset
;
1905 search_bytes
= ctl
->unit
;
1906 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1907 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
, &search_bytes
,
1909 if (ret
< 0 || search_start
!= *offset
)
1912 /* We may have found more bits than what we need */
1913 search_bytes
= min(search_bytes
, *bytes
);
1915 /* Cannot clear past the end of the bitmap */
1916 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1918 bitmap_clear_bits(ctl
, bitmap_info
, search_start
, search_bytes
);
1919 *offset
+= search_bytes
;
1920 *bytes
-= search_bytes
;
1923 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
1924 if (!bitmap_info
->bytes
)
1925 free_bitmap(ctl
, bitmap_info
);
1928 * no entry after this bitmap, but we still have bytes to
1929 * remove, so something has gone wrong.
1934 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
1938 * if the next entry isn't a bitmap we need to return to let the
1939 * extent stuff do its work.
1941 if (!bitmap_info
->bitmap
)
1945 * Ok the next item is a bitmap, but it may not actually hold
1946 * the information for the rest of this free space stuff, so
1947 * look for it, and if we don't find it return so we can try
1948 * everything over again.
1950 search_start
= *offset
;
1951 search_bytes
= ctl
->unit
;
1952 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
,
1953 &search_bytes
, false);
1954 if (ret
< 0 || search_start
!= *offset
)
1958 } else if (!bitmap_info
->bytes
)
1959 free_bitmap(ctl
, bitmap_info
);
1964 static u64
add_bytes_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1965 struct btrfs_free_space
*info
, u64 offset
,
1968 u64 bytes_to_set
= 0;
1971 end
= info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
);
1973 bytes_to_set
= min(end
- offset
, bytes
);
1975 bitmap_set_bits(ctl
, info
, offset
, bytes_to_set
);
1978 * We set some bytes, we have no idea what the max extent size is
1981 info
->max_extent_size
= 0;
1983 return bytes_to_set
;
1987 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
1988 struct btrfs_free_space
*info
)
1990 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1991 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
1992 bool forced
= false;
1994 #ifdef CONFIG_BTRFS_DEBUG
1995 if (btrfs_should_fragment_free_space(block_group
))
2000 * If we are below the extents threshold then we can add this as an
2001 * extent, and don't have to deal with the bitmap
2003 if (!forced
&& ctl
->free_extents
< ctl
->extents_thresh
) {
2005 * If this block group has some small extents we don't want to
2006 * use up all of our free slots in the cache with them, we want
2007 * to reserve them to larger extents, however if we have plenty
2008 * of cache left then go ahead an dadd them, no sense in adding
2009 * the overhead of a bitmap if we don't have to.
2011 if (info
->bytes
<= fs_info
->sectorsize
* 4) {
2012 if (ctl
->free_extents
* 2 <= ctl
->extents_thresh
)
2020 * The original block groups from mkfs can be really small, like 8
2021 * megabytes, so don't bother with a bitmap for those entries. However
2022 * some block groups can be smaller than what a bitmap would cover but
2023 * are still large enough that they could overflow the 32k memory limit,
2024 * so allow those block groups to still be allowed to have a bitmap
2027 if (((BITS_PER_BITMAP
* ctl
->unit
) >> 1) > block_group
->key
.offset
)
2033 static const struct btrfs_free_space_op free_space_op
= {
2034 .recalc_thresholds
= recalculate_thresholds
,
2035 .use_bitmap
= use_bitmap
,
2038 static int insert_into_bitmap(struct btrfs_free_space_ctl
*ctl
,
2039 struct btrfs_free_space
*info
)
2041 struct btrfs_free_space
*bitmap_info
;
2042 struct btrfs_block_group_cache
*block_group
= NULL
;
2044 u64 bytes
, offset
, bytes_added
;
2047 bytes
= info
->bytes
;
2048 offset
= info
->offset
;
2050 if (!ctl
->op
->use_bitmap(ctl
, info
))
2053 if (ctl
->op
== &free_space_op
)
2054 block_group
= ctl
->private;
2057 * Since we link bitmaps right into the cluster we need to see if we
2058 * have a cluster here, and if so and it has our bitmap we need to add
2059 * the free space to that bitmap.
2061 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
2062 struct btrfs_free_cluster
*cluster
;
2063 struct rb_node
*node
;
2064 struct btrfs_free_space
*entry
;
2066 cluster
= list_entry(block_group
->cluster_list
.next
,
2067 struct btrfs_free_cluster
,
2069 spin_lock(&cluster
->lock
);
2070 node
= rb_first(&cluster
->root
);
2072 spin_unlock(&cluster
->lock
);
2073 goto no_cluster_bitmap
;
2076 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2077 if (!entry
->bitmap
) {
2078 spin_unlock(&cluster
->lock
);
2079 goto no_cluster_bitmap
;
2082 if (entry
->offset
== offset_to_bitmap(ctl
, offset
)) {
2083 bytes_added
= add_bytes_to_bitmap(ctl
, entry
,
2085 bytes
-= bytes_added
;
2086 offset
+= bytes_added
;
2088 spin_unlock(&cluster
->lock
);
2096 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
2103 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
2104 bytes
-= bytes_added
;
2105 offset
+= bytes_added
;
2115 if (info
&& info
->bitmap
) {
2116 add_new_bitmap(ctl
, info
, offset
);
2121 spin_unlock(&ctl
->tree_lock
);
2123 /* no pre-allocated info, allocate a new one */
2125 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
2128 spin_lock(&ctl
->tree_lock
);
2134 /* allocate the bitmap */
2135 info
->bitmap
= kzalloc(PAGE_SIZE
, GFP_NOFS
);
2136 spin_lock(&ctl
->tree_lock
);
2137 if (!info
->bitmap
) {
2147 kfree(info
->bitmap
);
2148 kmem_cache_free(btrfs_free_space_cachep
, info
);
2154 static bool try_merge_free_space(struct btrfs_free_space_ctl
*ctl
,
2155 struct btrfs_free_space
*info
, bool update_stat
)
2157 struct btrfs_free_space
*left_info
;
2158 struct btrfs_free_space
*right_info
;
2159 bool merged
= false;
2160 u64 offset
= info
->offset
;
2161 u64 bytes
= info
->bytes
;
2164 * first we want to see if there is free space adjacent to the range we
2165 * are adding, if there is remove that struct and add a new one to
2166 * cover the entire range
2168 right_info
= tree_search_offset(ctl
, offset
+ bytes
, 0, 0);
2169 if (right_info
&& rb_prev(&right_info
->offset_index
))
2170 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
2171 struct btrfs_free_space
, offset_index
);
2173 left_info
= tree_search_offset(ctl
, offset
- 1, 0, 0);
2175 if (right_info
&& !right_info
->bitmap
) {
2177 unlink_free_space(ctl
, right_info
);
2179 __unlink_free_space(ctl
, right_info
);
2180 info
->bytes
+= right_info
->bytes
;
2181 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
2185 if (left_info
&& !left_info
->bitmap
&&
2186 left_info
->offset
+ left_info
->bytes
== offset
) {
2188 unlink_free_space(ctl
, left_info
);
2190 __unlink_free_space(ctl
, left_info
);
2191 info
->offset
= left_info
->offset
;
2192 info
->bytes
+= left_info
->bytes
;
2193 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
2200 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl
*ctl
,
2201 struct btrfs_free_space
*info
,
2204 struct btrfs_free_space
*bitmap
;
2207 const u64 end
= info
->offset
+ info
->bytes
;
2208 const u64 bitmap_offset
= offset_to_bitmap(ctl
, end
);
2211 bitmap
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2215 i
= offset_to_bit(bitmap
->offset
, ctl
->unit
, end
);
2216 j
= find_next_zero_bit(bitmap
->bitmap
, BITS_PER_BITMAP
, i
);
2219 bytes
= (j
- i
) * ctl
->unit
;
2220 info
->bytes
+= bytes
;
2223 bitmap_clear_bits(ctl
, bitmap
, end
, bytes
);
2225 __bitmap_clear_bits(ctl
, bitmap
, end
, bytes
);
2228 free_bitmap(ctl
, bitmap
);
2233 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl
*ctl
,
2234 struct btrfs_free_space
*info
,
2237 struct btrfs_free_space
*bitmap
;
2241 unsigned long prev_j
;
2244 bitmap_offset
= offset_to_bitmap(ctl
, info
->offset
);
2245 /* If we're on a boundary, try the previous logical bitmap. */
2246 if (bitmap_offset
== info
->offset
) {
2247 if (info
->offset
== 0)
2249 bitmap_offset
= offset_to_bitmap(ctl
, info
->offset
- 1);
2252 bitmap
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2256 i
= offset_to_bit(bitmap
->offset
, ctl
->unit
, info
->offset
) - 1;
2258 prev_j
= (unsigned long)-1;
2259 for_each_clear_bit_from(j
, bitmap
->bitmap
, BITS_PER_BITMAP
) {
2267 if (prev_j
== (unsigned long)-1)
2268 bytes
= (i
+ 1) * ctl
->unit
;
2270 bytes
= (i
- prev_j
) * ctl
->unit
;
2272 info
->offset
-= bytes
;
2273 info
->bytes
+= bytes
;
2276 bitmap_clear_bits(ctl
, bitmap
, info
->offset
, bytes
);
2278 __bitmap_clear_bits(ctl
, bitmap
, info
->offset
, bytes
);
2281 free_bitmap(ctl
, bitmap
);
2287 * We prefer always to allocate from extent entries, both for clustered and
2288 * non-clustered allocation requests. So when attempting to add a new extent
2289 * entry, try to see if there's adjacent free space in bitmap entries, and if
2290 * there is, migrate that space from the bitmaps to the extent.
2291 * Like this we get better chances of satisfying space allocation requests
2292 * because we attempt to satisfy them based on a single cache entry, and never
2293 * on 2 or more entries - even if the entries represent a contiguous free space
2294 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2297 static void steal_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
2298 struct btrfs_free_space
*info
,
2302 * Only work with disconnected entries, as we can change their offset,
2303 * and must be extent entries.
2305 ASSERT(!info
->bitmap
);
2306 ASSERT(RB_EMPTY_NODE(&info
->offset_index
));
2308 if (ctl
->total_bitmaps
> 0) {
2310 bool stole_front
= false;
2312 stole_end
= steal_from_bitmap_to_end(ctl
, info
, update_stat
);
2313 if (ctl
->total_bitmaps
> 0)
2314 stole_front
= steal_from_bitmap_to_front(ctl
, info
,
2317 if (stole_end
|| stole_front
)
2318 try_merge_free_space(ctl
, info
, update_stat
);
2322 int __btrfs_add_free_space(struct btrfs_fs_info
*fs_info
,
2323 struct btrfs_free_space_ctl
*ctl
,
2324 u64 offset
, u64 bytes
)
2326 struct btrfs_free_space
*info
;
2329 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
2333 info
->offset
= offset
;
2334 info
->bytes
= bytes
;
2335 RB_CLEAR_NODE(&info
->offset_index
);
2337 spin_lock(&ctl
->tree_lock
);
2339 if (try_merge_free_space(ctl
, info
, true))
2343 * There was no extent directly to the left or right of this new
2344 * extent then we know we're going to have to allocate a new extent, so
2345 * before we do that see if we need to drop this into a bitmap
2347 ret
= insert_into_bitmap(ctl
, info
);
2356 * Only steal free space from adjacent bitmaps if we're sure we're not
2357 * going to add the new free space to existing bitmap entries - because
2358 * that would mean unnecessary work that would be reverted. Therefore
2359 * attempt to steal space from bitmaps if we're adding an extent entry.
2361 steal_from_bitmap(ctl
, info
, true);
2363 ret
= link_free_space(ctl
, info
);
2365 kmem_cache_free(btrfs_free_space_cachep
, info
);
2367 spin_unlock(&ctl
->tree_lock
);
2370 btrfs_crit(fs_info
, "unable to add free space :%d", ret
);
2371 ASSERT(ret
!= -EEXIST
);
2377 int btrfs_remove_free_space(struct btrfs_block_group_cache
*block_group
,
2378 u64 offset
, u64 bytes
)
2380 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2381 struct btrfs_free_space
*info
;
2383 bool re_search
= false;
2385 spin_lock(&ctl
->tree_lock
);
2392 info
= tree_search_offset(ctl
, offset
, 0, 0);
2395 * oops didn't find an extent that matched the space we wanted
2396 * to remove, look for a bitmap instead
2398 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
2402 * If we found a partial bit of our free space in a
2403 * bitmap but then couldn't find the other part this may
2404 * be a problem, so WARN about it.
2412 if (!info
->bitmap
) {
2413 unlink_free_space(ctl
, info
);
2414 if (offset
== info
->offset
) {
2415 u64 to_free
= min(bytes
, info
->bytes
);
2417 info
->bytes
-= to_free
;
2418 info
->offset
+= to_free
;
2420 ret
= link_free_space(ctl
, info
);
2423 kmem_cache_free(btrfs_free_space_cachep
, info
);
2430 u64 old_end
= info
->bytes
+ info
->offset
;
2432 info
->bytes
= offset
- info
->offset
;
2433 ret
= link_free_space(ctl
, info
);
2438 /* Not enough bytes in this entry to satisfy us */
2439 if (old_end
< offset
+ bytes
) {
2440 bytes
-= old_end
- offset
;
2443 } else if (old_end
== offset
+ bytes
) {
2447 spin_unlock(&ctl
->tree_lock
);
2449 ret
= btrfs_add_free_space(block_group
, offset
+ bytes
,
2450 old_end
- (offset
+ bytes
));
2456 ret
= remove_from_bitmap(ctl
, info
, &offset
, &bytes
);
2457 if (ret
== -EAGAIN
) {
2462 spin_unlock(&ctl
->tree_lock
);
2467 void btrfs_dump_free_space(struct btrfs_block_group_cache
*block_group
,
2470 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2471 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2472 struct btrfs_free_space
*info
;
2476 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
2477 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
2478 if (info
->bytes
>= bytes
&& !block_group
->ro
)
2480 btrfs_crit(fs_info
, "entry offset %llu, bytes %llu, bitmap %s",
2481 info
->offset
, info
->bytes
,
2482 (info
->bitmap
) ? "yes" : "no");
2484 btrfs_info(fs_info
, "block group has cluster?: %s",
2485 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
2487 "%d blocks of free space at or bigger than bytes is", count
);
2490 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache
*block_group
)
2492 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2493 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2495 spin_lock_init(&ctl
->tree_lock
);
2496 ctl
->unit
= fs_info
->sectorsize
;
2497 ctl
->start
= block_group
->key
.objectid
;
2498 ctl
->private = block_group
;
2499 ctl
->op
= &free_space_op
;
2500 INIT_LIST_HEAD(&ctl
->trimming_ranges
);
2501 mutex_init(&ctl
->cache_writeout_mutex
);
2504 * we only want to have 32k of ram per block group for keeping
2505 * track of free space, and if we pass 1/2 of that we want to
2506 * start converting things over to using bitmaps
2508 ctl
->extents_thresh
= (SZ_32K
/ 2) / sizeof(struct btrfs_free_space
);
2512 * for a given cluster, put all of its extents back into the free
2513 * space cache. If the block group passed doesn't match the block group
2514 * pointed to by the cluster, someone else raced in and freed the
2515 * cluster already. In that case, we just return without changing anything
2518 __btrfs_return_cluster_to_free_space(
2519 struct btrfs_block_group_cache
*block_group
,
2520 struct btrfs_free_cluster
*cluster
)
2522 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2523 struct btrfs_free_space
*entry
;
2524 struct rb_node
*node
;
2526 spin_lock(&cluster
->lock
);
2527 if (cluster
->block_group
!= block_group
)
2530 cluster
->block_group
= NULL
;
2531 cluster
->window_start
= 0;
2532 list_del_init(&cluster
->block_group_list
);
2534 node
= rb_first(&cluster
->root
);
2538 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2539 node
= rb_next(&entry
->offset_index
);
2540 rb_erase(&entry
->offset_index
, &cluster
->root
);
2541 RB_CLEAR_NODE(&entry
->offset_index
);
2543 bitmap
= (entry
->bitmap
!= NULL
);
2545 try_merge_free_space(ctl
, entry
, false);
2546 steal_from_bitmap(ctl
, entry
, false);
2548 tree_insert_offset(&ctl
->free_space_offset
,
2549 entry
->offset
, &entry
->offset_index
, bitmap
);
2551 cluster
->root
= RB_ROOT
;
2554 spin_unlock(&cluster
->lock
);
2555 btrfs_put_block_group(block_group
);
2559 static void __btrfs_remove_free_space_cache_locked(
2560 struct btrfs_free_space_ctl
*ctl
)
2562 struct btrfs_free_space
*info
;
2563 struct rb_node
*node
;
2565 while ((node
= rb_last(&ctl
->free_space_offset
)) != NULL
) {
2566 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2567 if (!info
->bitmap
) {
2568 unlink_free_space(ctl
, info
);
2569 kmem_cache_free(btrfs_free_space_cachep
, info
);
2571 free_bitmap(ctl
, info
);
2574 cond_resched_lock(&ctl
->tree_lock
);
2578 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl
*ctl
)
2580 spin_lock(&ctl
->tree_lock
);
2581 __btrfs_remove_free_space_cache_locked(ctl
);
2582 spin_unlock(&ctl
->tree_lock
);
2585 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache
*block_group
)
2587 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2588 struct btrfs_free_cluster
*cluster
;
2589 struct list_head
*head
;
2591 spin_lock(&ctl
->tree_lock
);
2592 while ((head
= block_group
->cluster_list
.next
) !=
2593 &block_group
->cluster_list
) {
2594 cluster
= list_entry(head
, struct btrfs_free_cluster
,
2597 WARN_ON(cluster
->block_group
!= block_group
);
2598 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2600 cond_resched_lock(&ctl
->tree_lock
);
2602 __btrfs_remove_free_space_cache_locked(ctl
);
2603 spin_unlock(&ctl
->tree_lock
);
2607 u64
btrfs_find_space_for_alloc(struct btrfs_block_group_cache
*block_group
,
2608 u64 offset
, u64 bytes
, u64 empty_size
,
2609 u64
*max_extent_size
)
2611 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2612 struct btrfs_free_space
*entry
= NULL
;
2613 u64 bytes_search
= bytes
+ empty_size
;
2616 u64 align_gap_len
= 0;
2618 spin_lock(&ctl
->tree_lock
);
2619 entry
= find_free_space(ctl
, &offset
, &bytes_search
,
2620 block_group
->full_stripe_len
, max_extent_size
);
2625 if (entry
->bitmap
) {
2626 bitmap_clear_bits(ctl
, entry
, offset
, bytes
);
2628 free_bitmap(ctl
, entry
);
2630 unlink_free_space(ctl
, entry
);
2631 align_gap_len
= offset
- entry
->offset
;
2632 align_gap
= entry
->offset
;
2634 entry
->offset
= offset
+ bytes
;
2635 WARN_ON(entry
->bytes
< bytes
+ align_gap_len
);
2637 entry
->bytes
-= bytes
+ align_gap_len
;
2639 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2641 link_free_space(ctl
, entry
);
2644 spin_unlock(&ctl
->tree_lock
);
2647 __btrfs_add_free_space(block_group
->fs_info
, ctl
,
2648 align_gap
, align_gap_len
);
2653 * given a cluster, put all of its extents back into the free space
2654 * cache. If a block group is passed, this function will only free
2655 * a cluster that belongs to the passed block group.
2657 * Otherwise, it'll get a reference on the block group pointed to by the
2658 * cluster and remove the cluster from it.
2660 int btrfs_return_cluster_to_free_space(
2661 struct btrfs_block_group_cache
*block_group
,
2662 struct btrfs_free_cluster
*cluster
)
2664 struct btrfs_free_space_ctl
*ctl
;
2667 /* first, get a safe pointer to the block group */
2668 spin_lock(&cluster
->lock
);
2670 block_group
= cluster
->block_group
;
2672 spin_unlock(&cluster
->lock
);
2675 } else if (cluster
->block_group
!= block_group
) {
2676 /* someone else has already freed it don't redo their work */
2677 spin_unlock(&cluster
->lock
);
2680 atomic_inc(&block_group
->count
);
2681 spin_unlock(&cluster
->lock
);
2683 ctl
= block_group
->free_space_ctl
;
2685 /* now return any extents the cluster had on it */
2686 spin_lock(&ctl
->tree_lock
);
2687 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2688 spin_unlock(&ctl
->tree_lock
);
2690 /* finally drop our ref */
2691 btrfs_put_block_group(block_group
);
2695 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache
*block_group
,
2696 struct btrfs_free_cluster
*cluster
,
2697 struct btrfs_free_space
*entry
,
2698 u64 bytes
, u64 min_start
,
2699 u64
*max_extent_size
)
2701 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2703 u64 search_start
= cluster
->window_start
;
2704 u64 search_bytes
= bytes
;
2707 search_start
= min_start
;
2708 search_bytes
= bytes
;
2710 err
= search_bitmap(ctl
, entry
, &search_start
, &search_bytes
, true);
2712 if (search_bytes
> *max_extent_size
)
2713 *max_extent_size
= search_bytes
;
2718 __bitmap_clear_bits(ctl
, entry
, ret
, bytes
);
2724 * given a cluster, try to allocate 'bytes' from it, returns 0
2725 * if it couldn't find anything suitably large, or a logical disk offset
2726 * if things worked out
2728 u64
btrfs_alloc_from_cluster(struct btrfs_block_group_cache
*block_group
,
2729 struct btrfs_free_cluster
*cluster
, u64 bytes
,
2730 u64 min_start
, u64
*max_extent_size
)
2732 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2733 struct btrfs_free_space
*entry
= NULL
;
2734 struct rb_node
*node
;
2737 spin_lock(&cluster
->lock
);
2738 if (bytes
> cluster
->max_size
)
2741 if (cluster
->block_group
!= block_group
)
2744 node
= rb_first(&cluster
->root
);
2748 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2750 if (entry
->bytes
< bytes
&& entry
->bytes
> *max_extent_size
)
2751 *max_extent_size
= entry
->bytes
;
2753 if (entry
->bytes
< bytes
||
2754 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
2755 node
= rb_next(&entry
->offset_index
);
2758 entry
= rb_entry(node
, struct btrfs_free_space
,
2763 if (entry
->bitmap
) {
2764 ret
= btrfs_alloc_from_bitmap(block_group
,
2765 cluster
, entry
, bytes
,
2766 cluster
->window_start
,
2769 node
= rb_next(&entry
->offset_index
);
2772 entry
= rb_entry(node
, struct btrfs_free_space
,
2776 cluster
->window_start
+= bytes
;
2778 ret
= entry
->offset
;
2780 entry
->offset
+= bytes
;
2781 entry
->bytes
-= bytes
;
2784 if (entry
->bytes
== 0)
2785 rb_erase(&entry
->offset_index
, &cluster
->root
);
2789 spin_unlock(&cluster
->lock
);
2794 spin_lock(&ctl
->tree_lock
);
2796 ctl
->free_space
-= bytes
;
2797 if (entry
->bytes
== 0) {
2798 ctl
->free_extents
--;
2799 if (entry
->bitmap
) {
2800 kfree(entry
->bitmap
);
2801 ctl
->total_bitmaps
--;
2802 ctl
->op
->recalc_thresholds(ctl
);
2804 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2807 spin_unlock(&ctl
->tree_lock
);
2812 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache
*block_group
,
2813 struct btrfs_free_space
*entry
,
2814 struct btrfs_free_cluster
*cluster
,
2815 u64 offset
, u64 bytes
,
2816 u64 cont1_bytes
, u64 min_bytes
)
2818 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2819 unsigned long next_zero
;
2821 unsigned long want_bits
;
2822 unsigned long min_bits
;
2823 unsigned long found_bits
;
2824 unsigned long max_bits
= 0;
2825 unsigned long start
= 0;
2826 unsigned long total_found
= 0;
2829 i
= offset_to_bit(entry
->offset
, ctl
->unit
,
2830 max_t(u64
, offset
, entry
->offset
));
2831 want_bits
= bytes_to_bits(bytes
, ctl
->unit
);
2832 min_bits
= bytes_to_bits(min_bytes
, ctl
->unit
);
2835 * Don't bother looking for a cluster in this bitmap if it's heavily
2838 if (entry
->max_extent_size
&&
2839 entry
->max_extent_size
< cont1_bytes
)
2843 for_each_set_bit_from(i
, entry
->bitmap
, BITS_PER_BITMAP
) {
2844 next_zero
= find_next_zero_bit(entry
->bitmap
,
2845 BITS_PER_BITMAP
, i
);
2846 if (next_zero
- i
>= min_bits
) {
2847 found_bits
= next_zero
- i
;
2848 if (found_bits
> max_bits
)
2849 max_bits
= found_bits
;
2852 if (next_zero
- i
> max_bits
)
2853 max_bits
= next_zero
- i
;
2858 entry
->max_extent_size
= (u64
)max_bits
* ctl
->unit
;
2864 cluster
->max_size
= 0;
2867 total_found
+= found_bits
;
2869 if (cluster
->max_size
< found_bits
* ctl
->unit
)
2870 cluster
->max_size
= found_bits
* ctl
->unit
;
2872 if (total_found
< want_bits
|| cluster
->max_size
< cont1_bytes
) {
2877 cluster
->window_start
= start
* ctl
->unit
+ entry
->offset
;
2878 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2879 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2880 &entry
->offset_index
, 1);
2881 ASSERT(!ret
); /* -EEXIST; Logic error */
2883 trace_btrfs_setup_cluster(block_group
, cluster
,
2884 total_found
* ctl
->unit
, 1);
2889 * This searches the block group for just extents to fill the cluster with.
2890 * Try to find a cluster with at least bytes total bytes, at least one
2891 * extent of cont1_bytes, and other clusters of at least min_bytes.
2894 setup_cluster_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2895 struct btrfs_free_cluster
*cluster
,
2896 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2897 u64 cont1_bytes
, u64 min_bytes
)
2899 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2900 struct btrfs_free_space
*first
= NULL
;
2901 struct btrfs_free_space
*entry
= NULL
;
2902 struct btrfs_free_space
*last
;
2903 struct rb_node
*node
;
2908 entry
= tree_search_offset(ctl
, offset
, 0, 1);
2913 * We don't want bitmaps, so just move along until we find a normal
2916 while (entry
->bitmap
|| entry
->bytes
< min_bytes
) {
2917 if (entry
->bitmap
&& list_empty(&entry
->list
))
2918 list_add_tail(&entry
->list
, bitmaps
);
2919 node
= rb_next(&entry
->offset_index
);
2922 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2925 window_free
= entry
->bytes
;
2926 max_extent
= entry
->bytes
;
2930 for (node
= rb_next(&entry
->offset_index
); node
;
2931 node
= rb_next(&entry
->offset_index
)) {
2932 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2934 if (entry
->bitmap
) {
2935 if (list_empty(&entry
->list
))
2936 list_add_tail(&entry
->list
, bitmaps
);
2940 if (entry
->bytes
< min_bytes
)
2944 window_free
+= entry
->bytes
;
2945 if (entry
->bytes
> max_extent
)
2946 max_extent
= entry
->bytes
;
2949 if (window_free
< bytes
|| max_extent
< cont1_bytes
)
2952 cluster
->window_start
= first
->offset
;
2954 node
= &first
->offset_index
;
2957 * now we've found our entries, pull them out of the free space
2958 * cache and put them into the cluster rbtree
2963 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2964 node
= rb_next(&entry
->offset_index
);
2965 if (entry
->bitmap
|| entry
->bytes
< min_bytes
)
2968 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2969 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2970 &entry
->offset_index
, 0);
2971 total_size
+= entry
->bytes
;
2972 ASSERT(!ret
); /* -EEXIST; Logic error */
2973 } while (node
&& entry
!= last
);
2975 cluster
->max_size
= max_extent
;
2976 trace_btrfs_setup_cluster(block_group
, cluster
, total_size
, 0);
2981 * This specifically looks for bitmaps that may work in the cluster, we assume
2982 * that we have already failed to find extents that will work.
2985 setup_cluster_bitmap(struct btrfs_block_group_cache
*block_group
,
2986 struct btrfs_free_cluster
*cluster
,
2987 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2988 u64 cont1_bytes
, u64 min_bytes
)
2990 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2991 struct btrfs_free_space
*entry
= NULL
;
2993 u64 bitmap_offset
= offset_to_bitmap(ctl
, offset
);
2995 if (ctl
->total_bitmaps
== 0)
2999 * The bitmap that covers offset won't be in the list unless offset
3000 * is just its start offset.
3002 if (!list_empty(bitmaps
))
3003 entry
= list_first_entry(bitmaps
, struct btrfs_free_space
, list
);
3005 if (!entry
|| entry
->offset
!= bitmap_offset
) {
3006 entry
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
3007 if (entry
&& list_empty(&entry
->list
))
3008 list_add(&entry
->list
, bitmaps
);
3011 list_for_each_entry(entry
, bitmaps
, list
) {
3012 if (entry
->bytes
< bytes
)
3014 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
3015 bytes
, cont1_bytes
, min_bytes
);
3021 * The bitmaps list has all the bitmaps that record free space
3022 * starting after offset, so no more search is required.
3028 * here we try to find a cluster of blocks in a block group. The goal
3029 * is to find at least bytes+empty_size.
3030 * We might not find them all in one contiguous area.
3032 * returns zero and sets up cluster if things worked out, otherwise
3033 * it returns -enospc
3035 int btrfs_find_space_cluster(struct btrfs_fs_info
*fs_info
,
3036 struct btrfs_block_group_cache
*block_group
,
3037 struct btrfs_free_cluster
*cluster
,
3038 u64 offset
, u64 bytes
, u64 empty_size
)
3040 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3041 struct btrfs_free_space
*entry
, *tmp
;
3048 * Choose the minimum extent size we'll require for this
3049 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3050 * For metadata, allow allocates with smaller extents. For
3051 * data, keep it dense.
3053 if (btrfs_test_opt(fs_info
, SSD_SPREAD
)) {
3054 cont1_bytes
= min_bytes
= bytes
+ empty_size
;
3055 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
3056 cont1_bytes
= bytes
;
3057 min_bytes
= fs_info
->sectorsize
;
3059 cont1_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
3060 min_bytes
= fs_info
->sectorsize
;
3063 spin_lock(&ctl
->tree_lock
);
3066 * If we know we don't have enough space to make a cluster don't even
3067 * bother doing all the work to try and find one.
3069 if (ctl
->free_space
< bytes
) {
3070 spin_unlock(&ctl
->tree_lock
);
3074 spin_lock(&cluster
->lock
);
3076 /* someone already found a cluster, hooray */
3077 if (cluster
->block_group
) {
3082 trace_btrfs_find_cluster(block_group
, offset
, bytes
, empty_size
,
3085 ret
= setup_cluster_no_bitmap(block_group
, cluster
, &bitmaps
, offset
,
3087 cont1_bytes
, min_bytes
);
3089 ret
= setup_cluster_bitmap(block_group
, cluster
, &bitmaps
,
3090 offset
, bytes
+ empty_size
,
3091 cont1_bytes
, min_bytes
);
3093 /* Clear our temporary list */
3094 list_for_each_entry_safe(entry
, tmp
, &bitmaps
, list
)
3095 list_del_init(&entry
->list
);
3098 atomic_inc(&block_group
->count
);
3099 list_add_tail(&cluster
->block_group_list
,
3100 &block_group
->cluster_list
);
3101 cluster
->block_group
= block_group
;
3103 trace_btrfs_failed_cluster_setup(block_group
);
3106 spin_unlock(&cluster
->lock
);
3107 spin_unlock(&ctl
->tree_lock
);
3113 * simple code to zero out a cluster
3115 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
3117 spin_lock_init(&cluster
->lock
);
3118 spin_lock_init(&cluster
->refill_lock
);
3119 cluster
->root
= RB_ROOT
;
3120 cluster
->max_size
= 0;
3121 cluster
->fragmented
= false;
3122 INIT_LIST_HEAD(&cluster
->block_group_list
);
3123 cluster
->block_group
= NULL
;
3126 static int do_trimming(struct btrfs_block_group_cache
*block_group
,
3127 u64
*total_trimmed
, u64 start
, u64 bytes
,
3128 u64 reserved_start
, u64 reserved_bytes
,
3129 struct btrfs_trim_range
*trim_entry
)
3131 struct btrfs_space_info
*space_info
= block_group
->space_info
;
3132 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3133 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3138 spin_lock(&space_info
->lock
);
3139 spin_lock(&block_group
->lock
);
3140 if (!block_group
->ro
) {
3141 block_group
->reserved
+= reserved_bytes
;
3142 space_info
->bytes_reserved
+= reserved_bytes
;
3145 spin_unlock(&block_group
->lock
);
3146 spin_unlock(&space_info
->lock
);
3148 ret
= btrfs_discard_extent(fs_info
, start
, bytes
, &trimmed
);
3150 *total_trimmed
+= trimmed
;
3152 mutex_lock(&ctl
->cache_writeout_mutex
);
3153 btrfs_add_free_space(block_group
, reserved_start
, reserved_bytes
);
3154 list_del(&trim_entry
->list
);
3155 mutex_unlock(&ctl
->cache_writeout_mutex
);
3158 spin_lock(&space_info
->lock
);
3159 spin_lock(&block_group
->lock
);
3160 if (block_group
->ro
)
3161 space_info
->bytes_readonly
+= reserved_bytes
;
3162 block_group
->reserved
-= reserved_bytes
;
3163 space_info
->bytes_reserved
-= reserved_bytes
;
3164 spin_unlock(&space_info
->lock
);
3165 spin_unlock(&block_group
->lock
);
3171 static int trim_no_bitmap(struct btrfs_block_group_cache
*block_group
,
3172 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
3174 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3175 struct btrfs_free_space
*entry
;
3176 struct rb_node
*node
;
3182 while (start
< end
) {
3183 struct btrfs_trim_range trim_entry
;
3185 mutex_lock(&ctl
->cache_writeout_mutex
);
3186 spin_lock(&ctl
->tree_lock
);
3188 if (ctl
->free_space
< minlen
) {
3189 spin_unlock(&ctl
->tree_lock
);
3190 mutex_unlock(&ctl
->cache_writeout_mutex
);
3194 entry
= tree_search_offset(ctl
, start
, 0, 1);
3196 spin_unlock(&ctl
->tree_lock
);
3197 mutex_unlock(&ctl
->cache_writeout_mutex
);
3202 while (entry
->bitmap
) {
3203 node
= rb_next(&entry
->offset_index
);
3205 spin_unlock(&ctl
->tree_lock
);
3206 mutex_unlock(&ctl
->cache_writeout_mutex
);
3209 entry
= rb_entry(node
, struct btrfs_free_space
,
3213 if (entry
->offset
>= end
) {
3214 spin_unlock(&ctl
->tree_lock
);
3215 mutex_unlock(&ctl
->cache_writeout_mutex
);
3219 extent_start
= entry
->offset
;
3220 extent_bytes
= entry
->bytes
;
3221 start
= max(start
, extent_start
);
3222 bytes
= min(extent_start
+ extent_bytes
, end
) - start
;
3223 if (bytes
< minlen
) {
3224 spin_unlock(&ctl
->tree_lock
);
3225 mutex_unlock(&ctl
->cache_writeout_mutex
);
3229 unlink_free_space(ctl
, entry
);
3230 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3232 spin_unlock(&ctl
->tree_lock
);
3233 trim_entry
.start
= extent_start
;
3234 trim_entry
.bytes
= extent_bytes
;
3235 list_add_tail(&trim_entry
.list
, &ctl
->trimming_ranges
);
3236 mutex_unlock(&ctl
->cache_writeout_mutex
);
3238 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
3239 extent_start
, extent_bytes
, &trim_entry
);
3245 if (fatal_signal_pending(current
)) {
3256 static int trim_bitmaps(struct btrfs_block_group_cache
*block_group
,
3257 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
3259 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3260 struct btrfs_free_space
*entry
;
3264 u64 offset
= offset_to_bitmap(ctl
, start
);
3266 while (offset
< end
) {
3267 bool next_bitmap
= false;
3268 struct btrfs_trim_range trim_entry
;
3270 mutex_lock(&ctl
->cache_writeout_mutex
);
3271 spin_lock(&ctl
->tree_lock
);
3273 if (ctl
->free_space
< minlen
) {
3274 spin_unlock(&ctl
->tree_lock
);
3275 mutex_unlock(&ctl
->cache_writeout_mutex
);
3279 entry
= tree_search_offset(ctl
, offset
, 1, 0);
3281 spin_unlock(&ctl
->tree_lock
);
3282 mutex_unlock(&ctl
->cache_writeout_mutex
);
3288 ret2
= search_bitmap(ctl
, entry
, &start
, &bytes
, false);
3289 if (ret2
|| start
>= end
) {
3290 spin_unlock(&ctl
->tree_lock
);
3291 mutex_unlock(&ctl
->cache_writeout_mutex
);
3296 bytes
= min(bytes
, end
- start
);
3297 if (bytes
< minlen
) {
3298 spin_unlock(&ctl
->tree_lock
);
3299 mutex_unlock(&ctl
->cache_writeout_mutex
);
3303 bitmap_clear_bits(ctl
, entry
, start
, bytes
);
3304 if (entry
->bytes
== 0)
3305 free_bitmap(ctl
, entry
);
3307 spin_unlock(&ctl
->tree_lock
);
3308 trim_entry
.start
= start
;
3309 trim_entry
.bytes
= bytes
;
3310 list_add_tail(&trim_entry
.list
, &ctl
->trimming_ranges
);
3311 mutex_unlock(&ctl
->cache_writeout_mutex
);
3313 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
3314 start
, bytes
, &trim_entry
);
3319 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
3322 if (start
>= offset
+ BITS_PER_BITMAP
* ctl
->unit
)
3323 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
3326 if (fatal_signal_pending(current
)) {
3337 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache
*cache
)
3339 atomic_inc(&cache
->trimming
);
3342 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache
*block_group
)
3344 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3345 struct extent_map_tree
*em_tree
;
3346 struct extent_map
*em
;
3349 spin_lock(&block_group
->lock
);
3350 cleanup
= (atomic_dec_and_test(&block_group
->trimming
) &&
3351 block_group
->removed
);
3352 spin_unlock(&block_group
->lock
);
3355 mutex_lock(&fs_info
->chunk_mutex
);
3356 em_tree
= &fs_info
->mapping_tree
.map_tree
;
3357 write_lock(&em_tree
->lock
);
3358 em
= lookup_extent_mapping(em_tree
, block_group
->key
.objectid
,
3360 BUG_ON(!em
); /* logic error, can't happen */
3362 * remove_extent_mapping() will delete us from the pinned_chunks
3363 * list, which is protected by the chunk mutex.
3365 remove_extent_mapping(em_tree
, em
);
3366 write_unlock(&em_tree
->lock
);
3367 mutex_unlock(&fs_info
->chunk_mutex
);
3369 /* once for us and once for the tree */
3370 free_extent_map(em
);
3371 free_extent_map(em
);
3374 * We've left one free space entry and other tasks trimming
3375 * this block group have left 1 entry each one. Free them.
3377 __btrfs_remove_free_space_cache(block_group
->free_space_ctl
);
3381 int btrfs_trim_block_group(struct btrfs_block_group_cache
*block_group
,
3382 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
3388 spin_lock(&block_group
->lock
);
3389 if (block_group
->removed
) {
3390 spin_unlock(&block_group
->lock
);
3393 btrfs_get_block_group_trimming(block_group
);
3394 spin_unlock(&block_group
->lock
);
3396 ret
= trim_no_bitmap(block_group
, trimmed
, start
, end
, minlen
);
3400 ret
= trim_bitmaps(block_group
, trimmed
, start
, end
, minlen
);
3402 btrfs_put_block_group_trimming(block_group
);
3407 * Find the left-most item in the cache tree, and then return the
3408 * smallest inode number in the item.
3410 * Note: the returned inode number may not be the smallest one in
3411 * the tree, if the left-most item is a bitmap.
3413 u64
btrfs_find_ino_for_alloc(struct btrfs_root
*fs_root
)
3415 struct btrfs_free_space_ctl
*ctl
= fs_root
->free_ino_ctl
;
3416 struct btrfs_free_space
*entry
= NULL
;
3419 spin_lock(&ctl
->tree_lock
);
3421 if (RB_EMPTY_ROOT(&ctl
->free_space_offset
))
3424 entry
= rb_entry(rb_first(&ctl
->free_space_offset
),
3425 struct btrfs_free_space
, offset_index
);
3427 if (!entry
->bitmap
) {
3428 ino
= entry
->offset
;
3430 unlink_free_space(ctl
, entry
);
3434 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3436 link_free_space(ctl
, entry
);
3442 ret
= search_bitmap(ctl
, entry
, &offset
, &count
, true);
3443 /* Logic error; Should be empty if it can't find anything */
3447 bitmap_clear_bits(ctl
, entry
, offset
, 1);
3448 if (entry
->bytes
== 0)
3449 free_bitmap(ctl
, entry
);
3452 spin_unlock(&ctl
->tree_lock
);
3457 struct inode
*lookup_free_ino_inode(struct btrfs_root
*root
,
3458 struct btrfs_path
*path
)
3460 struct inode
*inode
= NULL
;
3462 spin_lock(&root
->ino_cache_lock
);
3463 if (root
->ino_cache_inode
)
3464 inode
= igrab(root
->ino_cache_inode
);
3465 spin_unlock(&root
->ino_cache_lock
);
3469 inode
= __lookup_free_space_inode(root
, path
, 0);
3473 spin_lock(&root
->ino_cache_lock
);
3474 if (!btrfs_fs_closing(root
->fs_info
))
3475 root
->ino_cache_inode
= igrab(inode
);
3476 spin_unlock(&root
->ino_cache_lock
);
3481 int create_free_ino_inode(struct btrfs_root
*root
,
3482 struct btrfs_trans_handle
*trans
,
3483 struct btrfs_path
*path
)
3485 return __create_free_space_inode(root
, trans
, path
,
3486 BTRFS_FREE_INO_OBJECTID
, 0);
3489 int load_free_ino_cache(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
3491 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
3492 struct btrfs_path
*path
;
3493 struct inode
*inode
;
3495 u64 root_gen
= btrfs_root_generation(&root
->root_item
);
3497 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
3501 * If we're unmounting then just return, since this does a search on the
3502 * normal root and not the commit root and we could deadlock.
3504 if (btrfs_fs_closing(fs_info
))
3507 path
= btrfs_alloc_path();
3511 inode
= lookup_free_ino_inode(root
, path
);
3515 if (root_gen
!= BTRFS_I(inode
)->generation
)
3518 ret
= __load_free_space_cache(root
, inode
, ctl
, path
, 0);
3522 "failed to load free ino cache for root %llu",
3523 root
->root_key
.objectid
);
3527 btrfs_free_path(path
);
3531 int btrfs_write_out_ino_cache(struct btrfs_root
*root
,
3532 struct btrfs_trans_handle
*trans
,
3533 struct btrfs_path
*path
,
3534 struct inode
*inode
)
3536 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3537 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
3539 struct btrfs_io_ctl io_ctl
;
3540 bool release_metadata
= true;
3542 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
3545 memset(&io_ctl
, 0, sizeof(io_ctl
));
3546 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, NULL
, &io_ctl
,
3550 * At this point writepages() didn't error out, so our metadata
3551 * reservation is released when the writeback finishes, at
3552 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3553 * with or without an error.
3555 release_metadata
= false;
3556 ret
= btrfs_wait_cache_io_root(root
, trans
, &io_ctl
, path
);
3560 if (release_metadata
)
3561 btrfs_delalloc_release_metadata(inode
, inode
->i_size
);
3564 "failed to write free ino cache for root %llu",
3565 root
->root_key
.objectid
);
3572 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3574 * Use this if you need to make a bitmap or extent entry specifically, it
3575 * doesn't do any of the merging that add_free_space does, this acts a lot like
3576 * how the free space cache loading stuff works, so you can get really weird
3579 int test_add_free_space_entry(struct btrfs_block_group_cache
*cache
,
3580 u64 offset
, u64 bytes
, bool bitmap
)
3582 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
3583 struct btrfs_free_space
*info
= NULL
, *bitmap_info
;
3590 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
3596 spin_lock(&ctl
->tree_lock
);
3597 info
->offset
= offset
;
3598 info
->bytes
= bytes
;
3599 info
->max_extent_size
= 0;
3600 ret
= link_free_space(ctl
, info
);
3601 spin_unlock(&ctl
->tree_lock
);
3603 kmem_cache_free(btrfs_free_space_cachep
, info
);
3608 map
= kzalloc(PAGE_SIZE
, GFP_NOFS
);
3610 kmem_cache_free(btrfs_free_space_cachep
, info
);
3615 spin_lock(&ctl
->tree_lock
);
3616 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
3621 add_new_bitmap(ctl
, info
, offset
);
3626 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
3628 bytes
-= bytes_added
;
3629 offset
+= bytes_added
;
3630 spin_unlock(&ctl
->tree_lock
);
3636 kmem_cache_free(btrfs_free_space_cachep
, info
);
3643 * Checks to see if the given range is in the free space cache. This is really
3644 * just used to check the absence of space, so if there is free space in the
3645 * range at all we will return 1.
3647 int test_check_exists(struct btrfs_block_group_cache
*cache
,
3648 u64 offset
, u64 bytes
)
3650 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
3651 struct btrfs_free_space
*info
;
3654 spin_lock(&ctl
->tree_lock
);
3655 info
= tree_search_offset(ctl
, offset
, 0, 0);
3657 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
3665 u64 bit_off
, bit_bytes
;
3667 struct btrfs_free_space
*tmp
;
3670 bit_bytes
= ctl
->unit
;
3671 ret
= search_bitmap(ctl
, info
, &bit_off
, &bit_bytes
, false);
3673 if (bit_off
== offset
) {
3676 } else if (bit_off
> offset
&&
3677 offset
+ bytes
> bit_off
) {
3683 n
= rb_prev(&info
->offset_index
);
3685 tmp
= rb_entry(n
, struct btrfs_free_space
,
3687 if (tmp
->offset
+ tmp
->bytes
< offset
)
3689 if (offset
+ bytes
< tmp
->offset
) {
3690 n
= rb_prev(&tmp
->offset_index
);
3697 n
= rb_next(&info
->offset_index
);
3699 tmp
= rb_entry(n
, struct btrfs_free_space
,
3701 if (offset
+ bytes
< tmp
->offset
)
3703 if (tmp
->offset
+ tmp
->bytes
< offset
) {
3704 n
= rb_next(&tmp
->offset_index
);
3715 if (info
->offset
== offset
) {
3720 if (offset
> info
->offset
&& offset
< info
->offset
+ info
->bytes
)
3723 spin_unlock(&ctl
->tree_lock
);
3726 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */