2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "print-tree.h"
50 #include "ordered-data.h"
54 #include "compression.h"
56 #include "free-space-cache.h"
57 #include "inode-map.h"
64 struct btrfs_iget_args
{
65 struct btrfs_key
*location
;
66 struct btrfs_root
*root
;
69 struct btrfs_dio_data
{
70 u64 outstanding_extents
;
72 u64 unsubmitted_oe_range_start
;
73 u64 unsubmitted_oe_range_end
;
76 static const struct inode_operations btrfs_dir_inode_operations
;
77 static const struct inode_operations btrfs_symlink_inode_operations
;
78 static const struct inode_operations btrfs_dir_ro_inode_operations
;
79 static const struct inode_operations btrfs_special_inode_operations
;
80 static const struct inode_operations btrfs_file_inode_operations
;
81 static const struct address_space_operations btrfs_aops
;
82 static const struct address_space_operations btrfs_symlink_aops
;
83 static const struct file_operations btrfs_dir_file_operations
;
84 static const struct extent_io_ops btrfs_extent_io_ops
;
86 static struct kmem_cache
*btrfs_inode_cachep
;
87 struct kmem_cache
*btrfs_trans_handle_cachep
;
88 struct kmem_cache
*btrfs_transaction_cachep
;
89 struct kmem_cache
*btrfs_path_cachep
;
90 struct kmem_cache
*btrfs_free_space_cachep
;
93 static const unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
94 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
95 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
96 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
97 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
98 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
99 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
100 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
103 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
104 static int btrfs_truncate(struct inode
*inode
);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
106 static noinline
int cow_file_range(struct inode
*inode
,
107 struct page
*locked_page
,
108 u64 start
, u64 end
, u64 delalloc_end
,
109 int *page_started
, unsigned long *nr_written
,
110 int unlock
, struct btrfs_dedupe_hash
*hash
);
111 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
112 u64 len
, u64 orig_start
,
113 u64 block_start
, u64 block_len
,
114 u64 orig_block_len
, u64 ram_bytes
,
117 static int btrfs_dirty_inode(struct inode
*inode
);
119 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
120 void btrfs_test_inode_set_ops(struct inode
*inode
)
122 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
126 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
127 struct inode
*inode
, struct inode
*dir
,
128 const struct qstr
*qstr
)
132 err
= btrfs_init_acl(trans
, inode
, dir
);
134 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
139 * this does all the hard work for inserting an inline extent into
140 * the btree. The caller should have done a btrfs_drop_extents so that
141 * no overlapping inline items exist in the btree
143 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
144 struct btrfs_path
*path
, int extent_inserted
,
145 struct btrfs_root
*root
, struct inode
*inode
,
146 u64 start
, size_t size
, size_t compressed_size
,
148 struct page
**compressed_pages
)
150 struct extent_buffer
*leaf
;
151 struct page
*page
= NULL
;
154 struct btrfs_file_extent_item
*ei
;
157 size_t cur_size
= size
;
158 unsigned long offset
;
160 if (compressed_size
&& compressed_pages
)
161 cur_size
= compressed_size
;
163 inode_add_bytes(inode
, size
);
165 if (!extent_inserted
) {
166 struct btrfs_key key
;
169 key
.objectid
= btrfs_ino(inode
);
171 key
.type
= BTRFS_EXTENT_DATA_KEY
;
173 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
174 path
->leave_spinning
= 1;
175 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
182 leaf
= path
->nodes
[0];
183 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
184 struct btrfs_file_extent_item
);
185 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
186 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
187 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
188 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
189 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
190 ptr
= btrfs_file_extent_inline_start(ei
);
192 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
195 while (compressed_size
> 0) {
196 cpage
= compressed_pages
[i
];
197 cur_size
= min_t(unsigned long, compressed_size
,
200 kaddr
= kmap_atomic(cpage
);
201 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
202 kunmap_atomic(kaddr
);
206 compressed_size
-= cur_size
;
208 btrfs_set_file_extent_compression(leaf
, ei
,
211 page
= find_get_page(inode
->i_mapping
,
212 start
>> PAGE_SHIFT
);
213 btrfs_set_file_extent_compression(leaf
, ei
, 0);
214 kaddr
= kmap_atomic(page
);
215 offset
= start
& (PAGE_SIZE
- 1);
216 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
217 kunmap_atomic(kaddr
);
220 btrfs_mark_buffer_dirty(leaf
);
221 btrfs_release_path(path
);
224 * we're an inline extent, so nobody can
225 * extend the file past i_size without locking
226 * a page we already have locked.
228 * We must do any isize and inode updates
229 * before we unlock the pages. Otherwise we
230 * could end up racing with unlink.
232 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
233 ret
= btrfs_update_inode(trans
, root
, inode
);
242 * conditionally insert an inline extent into the file. This
243 * does the checks required to make sure the data is small enough
244 * to fit as an inline extent.
246 static noinline
int cow_file_range_inline(struct btrfs_root
*root
,
247 struct inode
*inode
, u64 start
,
248 u64 end
, size_t compressed_size
,
250 struct page
**compressed_pages
)
252 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
253 struct btrfs_trans_handle
*trans
;
254 u64 isize
= i_size_read(inode
);
255 u64 actual_end
= min(end
+ 1, isize
);
256 u64 inline_len
= actual_end
- start
;
257 u64 aligned_end
= ALIGN(end
, fs_info
->sectorsize
);
258 u64 data_len
= inline_len
;
260 struct btrfs_path
*path
;
261 int extent_inserted
= 0;
262 u32 extent_item_size
;
265 data_len
= compressed_size
;
268 actual_end
> fs_info
->sectorsize
||
269 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
) ||
271 (actual_end
& (fs_info
->sectorsize
- 1)) == 0) ||
273 data_len
> fs_info
->max_inline
) {
277 path
= btrfs_alloc_path();
281 trans
= btrfs_join_transaction(root
);
283 btrfs_free_path(path
);
284 return PTR_ERR(trans
);
286 trans
->block_rsv
= &fs_info
->delalloc_block_rsv
;
288 if (compressed_size
&& compressed_pages
)
289 extent_item_size
= btrfs_file_extent_calc_inline_size(
292 extent_item_size
= btrfs_file_extent_calc_inline_size(
295 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
296 start
, aligned_end
, NULL
,
297 1, 1, extent_item_size
, &extent_inserted
);
299 btrfs_abort_transaction(trans
, ret
);
303 if (isize
> actual_end
)
304 inline_len
= min_t(u64
, isize
, actual_end
);
305 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
307 inline_len
, compressed_size
,
308 compress_type
, compressed_pages
);
309 if (ret
&& ret
!= -ENOSPC
) {
310 btrfs_abort_transaction(trans
, ret
);
312 } else if (ret
== -ENOSPC
) {
317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
318 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
319 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
322 * Don't forget to free the reserved space, as for inlined extent
323 * it won't count as data extent, free them directly here.
324 * And at reserve time, it's always aligned to page size, so
325 * just free one page here.
327 btrfs_qgroup_free_data(inode
, 0, PAGE_SIZE
);
328 btrfs_free_path(path
);
329 btrfs_end_transaction(trans
);
333 struct async_extent
{
338 unsigned long nr_pages
;
340 struct list_head list
;
345 struct btrfs_root
*root
;
346 struct page
*locked_page
;
349 struct list_head extents
;
350 struct btrfs_work work
;
353 static noinline
int add_async_extent(struct async_cow
*cow
,
354 u64 start
, u64 ram_size
,
357 unsigned long nr_pages
,
360 struct async_extent
*async_extent
;
362 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
363 BUG_ON(!async_extent
); /* -ENOMEM */
364 async_extent
->start
= start
;
365 async_extent
->ram_size
= ram_size
;
366 async_extent
->compressed_size
= compressed_size
;
367 async_extent
->pages
= pages
;
368 async_extent
->nr_pages
= nr_pages
;
369 async_extent
->compress_type
= compress_type
;
370 list_add_tail(&async_extent
->list
, &cow
->extents
);
374 static inline int inode_need_compress(struct inode
*inode
)
376 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
379 if (btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
381 /* bad compression ratios */
382 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
384 if (btrfs_test_opt(fs_info
, COMPRESS
) ||
385 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
386 BTRFS_I(inode
)->force_compress
)
392 * we create compressed extents in two phases. The first
393 * phase compresses a range of pages that have already been
394 * locked (both pages and state bits are locked).
396 * This is done inside an ordered work queue, and the compression
397 * is spread across many cpus. The actual IO submission is step
398 * two, and the ordered work queue takes care of making sure that
399 * happens in the same order things were put onto the queue by
400 * writepages and friends.
402 * If this code finds it can't get good compression, it puts an
403 * entry onto the work queue to write the uncompressed bytes. This
404 * makes sure that both compressed inodes and uncompressed inodes
405 * are written in the same order that the flusher thread sent them
408 static noinline
void compress_file_range(struct inode
*inode
,
409 struct page
*locked_page
,
411 struct async_cow
*async_cow
,
414 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
415 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
417 u64 blocksize
= fs_info
->sectorsize
;
419 u64 isize
= i_size_read(inode
);
421 struct page
**pages
= NULL
;
422 unsigned long nr_pages
;
423 unsigned long nr_pages_ret
= 0;
424 unsigned long total_compressed
= 0;
425 unsigned long total_in
= 0;
426 unsigned long max_compressed
= SZ_128K
;
427 unsigned long max_uncompressed
= SZ_128K
;
430 int compress_type
= fs_info
->compress_type
;
433 /* if this is a small write inside eof, kick off a defrag */
434 if ((end
- start
+ 1) < SZ_16K
&&
435 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
436 btrfs_add_inode_defrag(NULL
, inode
);
438 actual_end
= min_t(u64
, isize
, end
+ 1);
441 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
442 nr_pages
= min_t(unsigned long, nr_pages
, SZ_128K
/ PAGE_SIZE
);
445 * we don't want to send crud past the end of i_size through
446 * compression, that's just a waste of CPU time. So, if the
447 * end of the file is before the start of our current
448 * requested range of bytes, we bail out to the uncompressed
449 * cleanup code that can deal with all of this.
451 * It isn't really the fastest way to fix things, but this is a
452 * very uncommon corner.
454 if (actual_end
<= start
)
455 goto cleanup_and_bail_uncompressed
;
457 total_compressed
= actual_end
- start
;
460 * skip compression for a small file range(<=blocksize) that
461 * isn't an inline extent, since it doesn't save disk space at all.
463 if (total_compressed
<= blocksize
&&
464 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
465 goto cleanup_and_bail_uncompressed
;
467 /* we want to make sure that amount of ram required to uncompress
468 * an extent is reasonable, so we limit the total size in ram
469 * of a compressed extent to 128k. This is a crucial number
470 * because it also controls how easily we can spread reads across
471 * cpus for decompression.
473 * We also want to make sure the amount of IO required to do
474 * a random read is reasonably small, so we limit the size of
475 * a compressed extent to 128k.
477 total_compressed
= min(total_compressed
, max_uncompressed
);
478 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
479 num_bytes
= max(blocksize
, num_bytes
);
484 * we do compression for mount -o compress and when the
485 * inode has not been flagged as nocompress. This flag can
486 * change at any time if we discover bad compression ratios.
488 if (inode_need_compress(inode
)) {
490 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
492 /* just bail out to the uncompressed code */
496 if (BTRFS_I(inode
)->force_compress
)
497 compress_type
= BTRFS_I(inode
)->force_compress
;
500 * we need to call clear_page_dirty_for_io on each
501 * page in the range. Otherwise applications with the file
502 * mmap'd can wander in and change the page contents while
503 * we are compressing them.
505 * If the compression fails for any reason, we set the pages
506 * dirty again later on.
508 extent_range_clear_dirty_for_io(inode
, start
, end
);
510 ret
= btrfs_compress_pages(compress_type
,
511 inode
->i_mapping
, start
,
512 total_compressed
, pages
,
513 nr_pages
, &nr_pages_ret
,
519 unsigned long offset
= total_compressed
&
521 struct page
*page
= pages
[nr_pages_ret
- 1];
524 /* zero the tail end of the last page, we might be
525 * sending it down to disk
528 kaddr
= kmap_atomic(page
);
529 memset(kaddr
+ offset
, 0,
531 kunmap_atomic(kaddr
);
538 /* lets try to make an inline extent */
539 if (ret
|| total_in
< (actual_end
- start
)) {
540 /* we didn't compress the entire range, try
541 * to make an uncompressed inline extent.
543 ret
= cow_file_range_inline(root
, inode
, start
, end
,
546 /* try making a compressed inline extent */
547 ret
= cow_file_range_inline(root
, inode
, start
, end
,
549 compress_type
, pages
);
552 unsigned long clear_flags
= EXTENT_DELALLOC
|
554 unsigned long page_error_op
;
556 clear_flags
|= (ret
< 0) ? EXTENT_DO_ACCOUNTING
: 0;
557 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
560 * inline extent creation worked or returned error,
561 * we don't need to create any more async work items.
562 * Unlock and free up our temp pages.
564 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
571 btrfs_free_reserved_data_space_noquota(inode
, start
,
579 * we aren't doing an inline extent round the compressed size
580 * up to a block size boundary so the allocator does sane
583 total_compressed
= ALIGN(total_compressed
, blocksize
);
586 * one last check to make sure the compression is really a
587 * win, compare the page count read with the blocks on disk
589 total_in
= ALIGN(total_in
, PAGE_SIZE
);
590 if (total_compressed
>= total_in
) {
593 num_bytes
= total_in
;
597 * The async work queues will take care of doing actual
598 * allocation on disk for these compressed pages, and
599 * will submit them to the elevator.
601 add_async_extent(async_cow
, start
, num_bytes
,
602 total_compressed
, pages
, nr_pages_ret
,
605 if (start
+ num_bytes
< end
) {
616 * the compression code ran but failed to make things smaller,
617 * free any pages it allocated and our page pointer array
619 for (i
= 0; i
< nr_pages_ret
; i
++) {
620 WARN_ON(pages
[i
]->mapping
);
625 total_compressed
= 0;
628 /* flag the file so we don't compress in the future */
629 if (!btrfs_test_opt(fs_info
, FORCE_COMPRESS
) &&
630 !(BTRFS_I(inode
)->force_compress
)) {
631 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
634 cleanup_and_bail_uncompressed
:
636 * No compression, but we still need to write the pages in the file
637 * we've been given so far. redirty the locked page if it corresponds
638 * to our extent and set things up for the async work queue to run
639 * cow_file_range to do the normal delalloc dance.
641 if (page_offset(locked_page
) >= start
&&
642 page_offset(locked_page
) <= end
)
643 __set_page_dirty_nobuffers(locked_page
);
644 /* unlocked later on in the async handlers */
647 extent_range_redirty_for_io(inode
, start
, end
);
648 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0,
649 BTRFS_COMPRESS_NONE
);
655 for (i
= 0; i
< nr_pages_ret
; i
++) {
656 WARN_ON(pages
[i
]->mapping
);
662 static void free_async_extent_pages(struct async_extent
*async_extent
)
666 if (!async_extent
->pages
)
669 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
670 WARN_ON(async_extent
->pages
[i
]->mapping
);
671 put_page(async_extent
->pages
[i
]);
673 kfree(async_extent
->pages
);
674 async_extent
->nr_pages
= 0;
675 async_extent
->pages
= NULL
;
679 * phase two of compressed writeback. This is the ordered portion
680 * of the code, which only gets called in the order the work was
681 * queued. We walk all the async extents created by compress_file_range
682 * and send them down to the disk.
684 static noinline
void submit_compressed_extents(struct inode
*inode
,
685 struct async_cow
*async_cow
)
687 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
688 struct async_extent
*async_extent
;
690 struct btrfs_key ins
;
691 struct extent_map
*em
;
692 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
693 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
694 struct extent_io_tree
*io_tree
;
698 while (!list_empty(&async_cow
->extents
)) {
699 async_extent
= list_entry(async_cow
->extents
.next
,
700 struct async_extent
, list
);
701 list_del(&async_extent
->list
);
703 io_tree
= &BTRFS_I(inode
)->io_tree
;
706 /* did the compression code fall back to uncompressed IO? */
707 if (!async_extent
->pages
) {
708 int page_started
= 0;
709 unsigned long nr_written
= 0;
711 lock_extent(io_tree
, async_extent
->start
,
712 async_extent
->start
+
713 async_extent
->ram_size
- 1);
715 /* allocate blocks */
716 ret
= cow_file_range(inode
, async_cow
->locked_page
,
718 async_extent
->start
+
719 async_extent
->ram_size
- 1,
720 async_extent
->start
+
721 async_extent
->ram_size
- 1,
722 &page_started
, &nr_written
, 0,
728 * if page_started, cow_file_range inserted an
729 * inline extent and took care of all the unlocking
730 * and IO for us. Otherwise, we need to submit
731 * all those pages down to the drive.
733 if (!page_started
&& !ret
)
734 extent_write_locked_range(io_tree
,
735 inode
, async_extent
->start
,
736 async_extent
->start
+
737 async_extent
->ram_size
- 1,
741 unlock_page(async_cow
->locked_page
);
747 lock_extent(io_tree
, async_extent
->start
,
748 async_extent
->start
+ async_extent
->ram_size
- 1);
750 ret
= btrfs_reserve_extent(root
, async_extent
->ram_size
,
751 async_extent
->compressed_size
,
752 async_extent
->compressed_size
,
753 0, alloc_hint
, &ins
, 1, 1);
755 free_async_extent_pages(async_extent
);
757 if (ret
== -ENOSPC
) {
758 unlock_extent(io_tree
, async_extent
->start
,
759 async_extent
->start
+
760 async_extent
->ram_size
- 1);
763 * we need to redirty the pages if we decide to
764 * fallback to uncompressed IO, otherwise we
765 * will not submit these pages down to lower
768 extent_range_redirty_for_io(inode
,
770 async_extent
->start
+
771 async_extent
->ram_size
- 1);
778 * here we're doing allocation and writeback of the
781 btrfs_drop_extent_cache(inode
, async_extent
->start
,
782 async_extent
->start
+
783 async_extent
->ram_size
- 1, 0);
785 em
= alloc_extent_map();
788 goto out_free_reserve
;
790 em
->start
= async_extent
->start
;
791 em
->len
= async_extent
->ram_size
;
792 em
->orig_start
= em
->start
;
793 em
->mod_start
= em
->start
;
794 em
->mod_len
= em
->len
;
796 em
->block_start
= ins
.objectid
;
797 em
->block_len
= ins
.offset
;
798 em
->orig_block_len
= ins
.offset
;
799 em
->ram_bytes
= async_extent
->ram_size
;
800 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
801 em
->compress_type
= async_extent
->compress_type
;
802 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
803 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
807 write_lock(&em_tree
->lock
);
808 ret
= add_extent_mapping(em_tree
, em
, 1);
809 write_unlock(&em_tree
->lock
);
810 if (ret
!= -EEXIST
) {
814 btrfs_drop_extent_cache(inode
, async_extent
->start
,
815 async_extent
->start
+
816 async_extent
->ram_size
- 1, 0);
820 goto out_free_reserve
;
822 ret
= btrfs_add_ordered_extent_compress(inode
,
825 async_extent
->ram_size
,
827 BTRFS_ORDERED_COMPRESSED
,
828 async_extent
->compress_type
);
830 btrfs_drop_extent_cache(inode
, async_extent
->start
,
831 async_extent
->start
+
832 async_extent
->ram_size
- 1, 0);
833 goto out_free_reserve
;
835 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
838 * clear dirty, set writeback and unlock the pages.
840 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
841 async_extent
->start
+
842 async_extent
->ram_size
- 1,
843 async_extent
->start
+
844 async_extent
->ram_size
- 1,
845 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
846 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
848 ret
= btrfs_submit_compressed_write(inode
,
850 async_extent
->ram_size
,
852 ins
.offset
, async_extent
->pages
,
853 async_extent
->nr_pages
);
855 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
856 struct page
*p
= async_extent
->pages
[0];
857 const u64 start
= async_extent
->start
;
858 const u64 end
= start
+ async_extent
->ram_size
- 1;
860 p
->mapping
= inode
->i_mapping
;
861 tree
->ops
->writepage_end_io_hook(p
, start
, end
,
864 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
868 free_async_extent_pages(async_extent
);
870 alloc_hint
= ins
.objectid
+ ins
.offset
;
876 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
877 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
879 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
880 async_extent
->start
+
881 async_extent
->ram_size
- 1,
882 async_extent
->start
+
883 async_extent
->ram_size
- 1,
884 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
885 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
886 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
887 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
889 free_async_extent_pages(async_extent
);
894 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
897 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
898 struct extent_map
*em
;
901 read_lock(&em_tree
->lock
);
902 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
905 * if block start isn't an actual block number then find the
906 * first block in this inode and use that as a hint. If that
907 * block is also bogus then just don't worry about it.
909 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
911 em
= search_extent_mapping(em_tree
, 0, 0);
912 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
913 alloc_hint
= em
->block_start
;
917 alloc_hint
= em
->block_start
;
921 read_unlock(&em_tree
->lock
);
927 * when extent_io.c finds a delayed allocation range in the file,
928 * the call backs end up in this code. The basic idea is to
929 * allocate extents on disk for the range, and create ordered data structs
930 * in ram to track those extents.
932 * locked_page is the page that writepage had locked already. We use
933 * it to make sure we don't do extra locks or unlocks.
935 * *page_started is set to one if we unlock locked_page and do everything
936 * required to start IO on it. It may be clean and already done with
939 static noinline
int cow_file_range(struct inode
*inode
,
940 struct page
*locked_page
,
941 u64 start
, u64 end
, u64 delalloc_end
,
942 int *page_started
, unsigned long *nr_written
,
943 int unlock
, struct btrfs_dedupe_hash
*hash
)
945 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
946 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
949 unsigned long ram_size
;
952 u64 blocksize
= fs_info
->sectorsize
;
953 struct btrfs_key ins
;
954 struct extent_map
*em
;
955 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
958 if (btrfs_is_free_space_inode(inode
)) {
964 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
965 num_bytes
= max(blocksize
, num_bytes
);
966 disk_num_bytes
= num_bytes
;
968 /* if this is a small write inside eof, kick off defrag */
969 if (num_bytes
< SZ_64K
&&
970 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
971 btrfs_add_inode_defrag(NULL
, inode
);
974 /* lets try to make an inline extent */
975 ret
= cow_file_range_inline(root
, inode
, start
, end
, 0, 0,
978 extent_clear_unlock_delalloc(inode
, start
, end
,
980 EXTENT_LOCKED
| EXTENT_DELALLOC
|
981 EXTENT_DEFRAG
, PAGE_UNLOCK
|
982 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
984 btrfs_free_reserved_data_space_noquota(inode
, start
,
986 *nr_written
= *nr_written
+
987 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
990 } else if (ret
< 0) {
995 BUG_ON(disk_num_bytes
>
996 btrfs_super_total_bytes(fs_info
->super_copy
));
998 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
999 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
1001 while (disk_num_bytes
> 0) {
1004 cur_alloc_size
= disk_num_bytes
;
1005 ret
= btrfs_reserve_extent(root
, cur_alloc_size
, cur_alloc_size
,
1006 fs_info
->sectorsize
, 0, alloc_hint
,
1011 em
= alloc_extent_map();
1017 em
->orig_start
= em
->start
;
1018 ram_size
= ins
.offset
;
1019 em
->len
= ins
.offset
;
1020 em
->mod_start
= em
->start
;
1021 em
->mod_len
= em
->len
;
1023 em
->block_start
= ins
.objectid
;
1024 em
->block_len
= ins
.offset
;
1025 em
->orig_block_len
= ins
.offset
;
1026 em
->ram_bytes
= ram_size
;
1027 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
1028 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1029 em
->generation
= -1;
1032 write_lock(&em_tree
->lock
);
1033 ret
= add_extent_mapping(em_tree
, em
, 1);
1034 write_unlock(&em_tree
->lock
);
1035 if (ret
!= -EEXIST
) {
1036 free_extent_map(em
);
1039 btrfs_drop_extent_cache(inode
, start
,
1040 start
+ ram_size
- 1, 0);
1045 cur_alloc_size
= ins
.offset
;
1046 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1047 ram_size
, cur_alloc_size
, 0);
1049 goto out_drop_extent_cache
;
1051 if (root
->root_key
.objectid
==
1052 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1053 ret
= btrfs_reloc_clone_csums(inode
, start
,
1056 goto out_drop_extent_cache
;
1059 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1061 if (disk_num_bytes
< cur_alloc_size
)
1064 /* we're not doing compressed IO, don't unlock the first
1065 * page (which the caller expects to stay locked), don't
1066 * clear any dirty bits and don't set any writeback bits
1068 * Do set the Private2 bit so we know this page was properly
1069 * setup for writepage
1071 op
= unlock
? PAGE_UNLOCK
: 0;
1072 op
|= PAGE_SET_PRIVATE2
;
1074 extent_clear_unlock_delalloc(inode
, start
,
1075 start
+ ram_size
- 1,
1076 delalloc_end
, locked_page
,
1077 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1079 disk_num_bytes
-= cur_alloc_size
;
1080 num_bytes
-= cur_alloc_size
;
1081 alloc_hint
= ins
.objectid
+ ins
.offset
;
1082 start
+= cur_alloc_size
;
1087 out_drop_extent_cache
:
1088 btrfs_drop_extent_cache(inode
, start
, start
+ ram_size
- 1, 0);
1090 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1091 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
1093 extent_clear_unlock_delalloc(inode
, start
, end
, delalloc_end
,
1095 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
1096 EXTENT_DELALLOC
| EXTENT_DEFRAG
,
1097 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
1098 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
);
1103 * work queue call back to started compression on a file and pages
1105 static noinline
void async_cow_start(struct btrfs_work
*work
)
1107 struct async_cow
*async_cow
;
1109 async_cow
= container_of(work
, struct async_cow
, work
);
1111 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1112 async_cow
->start
, async_cow
->end
, async_cow
,
1114 if (num_added
== 0) {
1115 btrfs_add_delayed_iput(async_cow
->inode
);
1116 async_cow
->inode
= NULL
;
1121 * work queue call back to submit previously compressed pages
1123 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1125 struct btrfs_fs_info
*fs_info
;
1126 struct async_cow
*async_cow
;
1127 struct btrfs_root
*root
;
1128 unsigned long nr_pages
;
1130 async_cow
= container_of(work
, struct async_cow
, work
);
1132 root
= async_cow
->root
;
1133 fs_info
= root
->fs_info
;
1134 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_SIZE
) >>
1138 * atomic_sub_return implies a barrier for waitqueue_active
1140 if (atomic_sub_return(nr_pages
, &fs_info
->async_delalloc_pages
) <
1142 waitqueue_active(&fs_info
->async_submit_wait
))
1143 wake_up(&fs_info
->async_submit_wait
);
1145 if (async_cow
->inode
)
1146 submit_compressed_extents(async_cow
->inode
, async_cow
);
1149 static noinline
void async_cow_free(struct btrfs_work
*work
)
1151 struct async_cow
*async_cow
;
1152 async_cow
= container_of(work
, struct async_cow
, work
);
1153 if (async_cow
->inode
)
1154 btrfs_add_delayed_iput(async_cow
->inode
);
1158 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1159 u64 start
, u64 end
, int *page_started
,
1160 unsigned long *nr_written
)
1162 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1163 struct async_cow
*async_cow
;
1164 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1165 unsigned long nr_pages
;
1167 int limit
= 10 * SZ_1M
;
1169 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1170 1, 0, NULL
, GFP_NOFS
);
1171 while (start
< end
) {
1172 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1173 BUG_ON(!async_cow
); /* -ENOMEM */
1174 async_cow
->inode
= igrab(inode
);
1175 async_cow
->root
= root
;
1176 async_cow
->locked_page
= locked_page
;
1177 async_cow
->start
= start
;
1179 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1180 !btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
1183 cur_end
= min(end
, start
+ SZ_512K
- 1);
1185 async_cow
->end
= cur_end
;
1186 INIT_LIST_HEAD(&async_cow
->extents
);
1188 btrfs_init_work(&async_cow
->work
,
1189 btrfs_delalloc_helper
,
1190 async_cow_start
, async_cow_submit
,
1193 nr_pages
= (cur_end
- start
+ PAGE_SIZE
) >>
1195 atomic_add(nr_pages
, &fs_info
->async_delalloc_pages
);
1197 btrfs_queue_work(fs_info
->delalloc_workers
, &async_cow
->work
);
1199 if (atomic_read(&fs_info
->async_delalloc_pages
) > limit
) {
1200 wait_event(fs_info
->async_submit_wait
,
1201 (atomic_read(&fs_info
->async_delalloc_pages
) <
1205 while (atomic_read(&fs_info
->async_submit_draining
) &&
1206 atomic_read(&fs_info
->async_delalloc_pages
)) {
1207 wait_event(fs_info
->async_submit_wait
,
1208 (atomic_read(&fs_info
->async_delalloc_pages
) ==
1212 *nr_written
+= nr_pages
;
1213 start
= cur_end
+ 1;
1219 static noinline
int csum_exist_in_range(struct btrfs_fs_info
*fs_info
,
1220 u64 bytenr
, u64 num_bytes
)
1223 struct btrfs_ordered_sum
*sums
;
1226 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, bytenr
,
1227 bytenr
+ num_bytes
- 1, &list
, 0);
1228 if (ret
== 0 && list_empty(&list
))
1231 while (!list_empty(&list
)) {
1232 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1233 list_del(&sums
->list
);
1240 * when nowcow writeback call back. This checks for snapshots or COW copies
1241 * of the extents that exist in the file, and COWs the file as required.
1243 * If no cow copies or snapshots exist, we write directly to the existing
1246 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1247 struct page
*locked_page
,
1248 u64 start
, u64 end
, int *page_started
, int force
,
1249 unsigned long *nr_written
)
1251 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1252 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1253 struct btrfs_trans_handle
*trans
;
1254 struct extent_buffer
*leaf
;
1255 struct btrfs_path
*path
;
1256 struct btrfs_file_extent_item
*fi
;
1257 struct btrfs_key found_key
;
1272 u64 ino
= btrfs_ino(inode
);
1274 path
= btrfs_alloc_path();
1276 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
1278 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1279 EXTENT_DO_ACCOUNTING
|
1280 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1282 PAGE_SET_WRITEBACK
|
1283 PAGE_END_WRITEBACK
);
1287 nolock
= btrfs_is_free_space_inode(inode
);
1290 trans
= btrfs_join_transaction_nolock(root
);
1292 trans
= btrfs_join_transaction(root
);
1294 if (IS_ERR(trans
)) {
1295 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
1297 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1298 EXTENT_DO_ACCOUNTING
|
1299 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1301 PAGE_SET_WRITEBACK
|
1302 PAGE_END_WRITEBACK
);
1303 btrfs_free_path(path
);
1304 return PTR_ERR(trans
);
1307 trans
->block_rsv
= &fs_info
->delalloc_block_rsv
;
1309 cow_start
= (u64
)-1;
1312 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1316 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1317 leaf
= path
->nodes
[0];
1318 btrfs_item_key_to_cpu(leaf
, &found_key
,
1319 path
->slots
[0] - 1);
1320 if (found_key
.objectid
== ino
&&
1321 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1326 leaf
= path
->nodes
[0];
1327 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1328 ret
= btrfs_next_leaf(root
, path
);
1333 leaf
= path
->nodes
[0];
1339 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1341 if (found_key
.objectid
> ino
)
1343 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1344 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1348 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1349 found_key
.offset
> end
)
1352 if (found_key
.offset
> cur_offset
) {
1353 extent_end
= found_key
.offset
;
1358 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1359 struct btrfs_file_extent_item
);
1360 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1362 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1363 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1364 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1365 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1366 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1367 extent_end
= found_key
.offset
+
1368 btrfs_file_extent_num_bytes(leaf
, fi
);
1370 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1371 if (extent_end
<= start
) {
1375 if (disk_bytenr
== 0)
1377 if (btrfs_file_extent_compression(leaf
, fi
) ||
1378 btrfs_file_extent_encryption(leaf
, fi
) ||
1379 btrfs_file_extent_other_encoding(leaf
, fi
))
1381 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1383 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
1385 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1387 extent_offset
, disk_bytenr
))
1389 disk_bytenr
+= extent_offset
;
1390 disk_bytenr
+= cur_offset
- found_key
.offset
;
1391 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1393 * if there are pending snapshots for this root,
1394 * we fall into common COW way.
1397 err
= btrfs_start_write_no_snapshoting(root
);
1402 * force cow if csum exists in the range.
1403 * this ensure that csum for a given extent are
1404 * either valid or do not exist.
1406 if (csum_exist_in_range(fs_info
, disk_bytenr
,
1409 if (!btrfs_inc_nocow_writers(fs_info
, disk_bytenr
))
1412 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1413 extent_end
= found_key
.offset
+
1414 btrfs_file_extent_inline_len(leaf
,
1415 path
->slots
[0], fi
);
1416 extent_end
= ALIGN(extent_end
,
1417 fs_info
->sectorsize
);
1422 if (extent_end
<= start
) {
1424 if (!nolock
&& nocow
)
1425 btrfs_end_write_no_snapshoting(root
);
1427 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1431 if (cow_start
== (u64
)-1)
1432 cow_start
= cur_offset
;
1433 cur_offset
= extent_end
;
1434 if (cur_offset
> end
)
1440 btrfs_release_path(path
);
1441 if (cow_start
!= (u64
)-1) {
1442 ret
= cow_file_range(inode
, locked_page
,
1443 cow_start
, found_key
.offset
- 1,
1444 end
, page_started
, nr_written
, 1,
1447 if (!nolock
&& nocow
)
1448 btrfs_end_write_no_snapshoting(root
);
1450 btrfs_dec_nocow_writers(fs_info
,
1454 cow_start
= (u64
)-1;
1457 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1458 struct extent_map
*em
;
1459 struct extent_map_tree
*em_tree
;
1460 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1461 em
= alloc_extent_map();
1462 BUG_ON(!em
); /* -ENOMEM */
1463 em
->start
= cur_offset
;
1464 em
->orig_start
= found_key
.offset
- extent_offset
;
1465 em
->len
= num_bytes
;
1466 em
->block_len
= num_bytes
;
1467 em
->block_start
= disk_bytenr
;
1468 em
->orig_block_len
= disk_num_bytes
;
1469 em
->ram_bytes
= ram_bytes
;
1470 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
1471 em
->mod_start
= em
->start
;
1472 em
->mod_len
= em
->len
;
1473 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1474 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
1475 em
->generation
= -1;
1477 write_lock(&em_tree
->lock
);
1478 ret
= add_extent_mapping(em_tree
, em
, 1);
1479 write_unlock(&em_tree
->lock
);
1480 if (ret
!= -EEXIST
) {
1481 free_extent_map(em
);
1484 btrfs_drop_extent_cache(inode
, em
->start
,
1485 em
->start
+ em
->len
- 1, 0);
1487 type
= BTRFS_ORDERED_PREALLOC
;
1489 type
= BTRFS_ORDERED_NOCOW
;
1492 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1493 num_bytes
, num_bytes
, type
);
1495 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1496 BUG_ON(ret
); /* -ENOMEM */
1498 if (root
->root_key
.objectid
==
1499 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1500 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1503 if (!nolock
&& nocow
)
1504 btrfs_end_write_no_snapshoting(root
);
1509 extent_clear_unlock_delalloc(inode
, cur_offset
,
1510 cur_offset
+ num_bytes
- 1, end
,
1511 locked_page
, EXTENT_LOCKED
|
1513 EXTENT_CLEAR_DATA_RESV
,
1514 PAGE_UNLOCK
| PAGE_SET_PRIVATE2
);
1516 if (!nolock
&& nocow
)
1517 btrfs_end_write_no_snapshoting(root
);
1518 cur_offset
= extent_end
;
1519 if (cur_offset
> end
)
1522 btrfs_release_path(path
);
1524 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1525 cow_start
= cur_offset
;
1529 if (cow_start
!= (u64
)-1) {
1530 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
, end
,
1531 page_started
, nr_written
, 1, NULL
);
1537 err
= btrfs_end_transaction(trans
);
1541 if (ret
&& cur_offset
< end
)
1542 extent_clear_unlock_delalloc(inode
, cur_offset
, end
, end
,
1543 locked_page
, EXTENT_LOCKED
|
1544 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1545 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1547 PAGE_SET_WRITEBACK
|
1548 PAGE_END_WRITEBACK
);
1549 btrfs_free_path(path
);
1553 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1556 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1557 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1561 * @defrag_bytes is a hint value, no spinlock held here,
1562 * if is not zero, it means the file is defragging.
1563 * Force cow if given extent needs to be defragged.
1565 if (BTRFS_I(inode
)->defrag_bytes
&&
1566 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1567 EXTENT_DEFRAG
, 0, NULL
))
1574 * extent_io.c call back to do delayed allocation processing
1576 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1577 u64 start
, u64 end
, int *page_started
,
1578 unsigned long *nr_written
)
1581 int force_cow
= need_force_cow(inode
, start
, end
);
1583 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1584 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1585 page_started
, 1, nr_written
);
1586 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1587 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1588 page_started
, 0, nr_written
);
1589 } else if (!inode_need_compress(inode
)) {
1590 ret
= cow_file_range(inode
, locked_page
, start
, end
, end
,
1591 page_started
, nr_written
, 1, NULL
);
1593 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1594 &BTRFS_I(inode
)->runtime_flags
);
1595 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1596 page_started
, nr_written
);
1601 static void btrfs_split_extent_hook(struct inode
*inode
,
1602 struct extent_state
*orig
, u64 split
)
1606 /* not delalloc, ignore it */
1607 if (!(orig
->state
& EXTENT_DELALLOC
))
1610 size
= orig
->end
- orig
->start
+ 1;
1611 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1616 * See the explanation in btrfs_merge_extent_hook, the same
1617 * applies here, just in reverse.
1619 new_size
= orig
->end
- split
+ 1;
1620 num_extents
= div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1621 BTRFS_MAX_EXTENT_SIZE
);
1622 new_size
= split
- orig
->start
;
1623 num_extents
+= div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1624 BTRFS_MAX_EXTENT_SIZE
);
1625 if (div64_u64(size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1626 BTRFS_MAX_EXTENT_SIZE
) >= num_extents
)
1630 spin_lock(&BTRFS_I(inode
)->lock
);
1631 BTRFS_I(inode
)->outstanding_extents
++;
1632 spin_unlock(&BTRFS_I(inode
)->lock
);
1636 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1637 * extents so we can keep track of new extents that are just merged onto old
1638 * extents, such as when we are doing sequential writes, so we can properly
1639 * account for the metadata space we'll need.
1641 static void btrfs_merge_extent_hook(struct inode
*inode
,
1642 struct extent_state
*new,
1643 struct extent_state
*other
)
1645 u64 new_size
, old_size
;
1648 /* not delalloc, ignore it */
1649 if (!(other
->state
& EXTENT_DELALLOC
))
1652 if (new->start
> other
->start
)
1653 new_size
= new->end
- other
->start
+ 1;
1655 new_size
= other
->end
- new->start
+ 1;
1657 /* we're not bigger than the max, unreserve the space and go */
1658 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1659 spin_lock(&BTRFS_I(inode
)->lock
);
1660 BTRFS_I(inode
)->outstanding_extents
--;
1661 spin_unlock(&BTRFS_I(inode
)->lock
);
1666 * We have to add up either side to figure out how many extents were
1667 * accounted for before we merged into one big extent. If the number of
1668 * extents we accounted for is <= the amount we need for the new range
1669 * then we can return, otherwise drop. Think of it like this
1673 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1674 * need 2 outstanding extents, on one side we have 1 and the other side
1675 * we have 1 so they are == and we can return. But in this case
1677 * [MAX_SIZE+4k][MAX_SIZE+4k]
1679 * Each range on their own accounts for 2 extents, but merged together
1680 * they are only 3 extents worth of accounting, so we need to drop in
1683 old_size
= other
->end
- other
->start
+ 1;
1684 num_extents
= div64_u64(old_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1685 BTRFS_MAX_EXTENT_SIZE
);
1686 old_size
= new->end
- new->start
+ 1;
1687 num_extents
+= div64_u64(old_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1688 BTRFS_MAX_EXTENT_SIZE
);
1690 if (div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1691 BTRFS_MAX_EXTENT_SIZE
) >= num_extents
)
1694 spin_lock(&BTRFS_I(inode
)->lock
);
1695 BTRFS_I(inode
)->outstanding_extents
--;
1696 spin_unlock(&BTRFS_I(inode
)->lock
);
1699 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1700 struct inode
*inode
)
1702 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1704 spin_lock(&root
->delalloc_lock
);
1705 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1706 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1707 &root
->delalloc_inodes
);
1708 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1709 &BTRFS_I(inode
)->runtime_flags
);
1710 root
->nr_delalloc_inodes
++;
1711 if (root
->nr_delalloc_inodes
== 1) {
1712 spin_lock(&fs_info
->delalloc_root_lock
);
1713 BUG_ON(!list_empty(&root
->delalloc_root
));
1714 list_add_tail(&root
->delalloc_root
,
1715 &fs_info
->delalloc_roots
);
1716 spin_unlock(&fs_info
->delalloc_root_lock
);
1719 spin_unlock(&root
->delalloc_lock
);
1722 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1723 struct inode
*inode
)
1725 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1727 spin_lock(&root
->delalloc_lock
);
1728 if (!list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1729 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1730 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1731 &BTRFS_I(inode
)->runtime_flags
);
1732 root
->nr_delalloc_inodes
--;
1733 if (!root
->nr_delalloc_inodes
) {
1734 spin_lock(&fs_info
->delalloc_root_lock
);
1735 BUG_ON(list_empty(&root
->delalloc_root
));
1736 list_del_init(&root
->delalloc_root
);
1737 spin_unlock(&fs_info
->delalloc_root_lock
);
1740 spin_unlock(&root
->delalloc_lock
);
1744 * extent_io.c set_bit_hook, used to track delayed allocation
1745 * bytes in this file, and to maintain the list of inodes that
1746 * have pending delalloc work to be done.
1748 static void btrfs_set_bit_hook(struct inode
*inode
,
1749 struct extent_state
*state
, unsigned *bits
)
1752 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1754 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1757 * set_bit and clear bit hooks normally require _irqsave/restore
1758 * but in this case, we are only testing for the DELALLOC
1759 * bit, which is only set or cleared with irqs on
1761 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1762 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1763 u64 len
= state
->end
+ 1 - state
->start
;
1764 bool do_list
= !btrfs_is_free_space_inode(inode
);
1766 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1767 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1769 spin_lock(&BTRFS_I(inode
)->lock
);
1770 BTRFS_I(inode
)->outstanding_extents
++;
1771 spin_unlock(&BTRFS_I(inode
)->lock
);
1774 /* For sanity tests */
1775 if (btrfs_is_testing(fs_info
))
1778 __percpu_counter_add(&fs_info
->delalloc_bytes
, len
,
1779 fs_info
->delalloc_batch
);
1780 spin_lock(&BTRFS_I(inode
)->lock
);
1781 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1782 if (*bits
& EXTENT_DEFRAG
)
1783 BTRFS_I(inode
)->defrag_bytes
+= len
;
1784 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1785 &BTRFS_I(inode
)->runtime_flags
))
1786 btrfs_add_delalloc_inodes(root
, inode
);
1787 spin_unlock(&BTRFS_I(inode
)->lock
);
1792 * extent_io.c clear_bit_hook, see set_bit_hook for why
1794 static void btrfs_clear_bit_hook(struct inode
*inode
,
1795 struct extent_state
*state
,
1798 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1799 u64 len
= state
->end
+ 1 - state
->start
;
1800 u64 num_extents
= div64_u64(len
+ BTRFS_MAX_EXTENT_SIZE
-1,
1801 BTRFS_MAX_EXTENT_SIZE
);
1803 spin_lock(&BTRFS_I(inode
)->lock
);
1804 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
))
1805 BTRFS_I(inode
)->defrag_bytes
-= len
;
1806 spin_unlock(&BTRFS_I(inode
)->lock
);
1809 * set_bit and clear bit hooks normally require _irqsave/restore
1810 * but in this case, we are only testing for the DELALLOC
1811 * bit, which is only set or cleared with irqs on
1813 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1814 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1815 bool do_list
= !btrfs_is_free_space_inode(inode
);
1817 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1818 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1819 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1820 spin_lock(&BTRFS_I(inode
)->lock
);
1821 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
1822 spin_unlock(&BTRFS_I(inode
)->lock
);
1826 * We don't reserve metadata space for space cache inodes so we
1827 * don't need to call dellalloc_release_metadata if there is an
1830 if (*bits
& EXTENT_DO_ACCOUNTING
&&
1831 root
!= fs_info
->tree_root
)
1832 btrfs_delalloc_release_metadata(inode
, len
);
1834 /* For sanity tests. */
1835 if (btrfs_is_testing(fs_info
))
1838 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1839 && do_list
&& !(state
->state
& EXTENT_NORESERVE
)
1840 && (*bits
& (EXTENT_DO_ACCOUNTING
|
1841 EXTENT_CLEAR_DATA_RESV
)))
1842 btrfs_free_reserved_data_space_noquota(inode
,
1845 __percpu_counter_add(&fs_info
->delalloc_bytes
, -len
,
1846 fs_info
->delalloc_batch
);
1847 spin_lock(&BTRFS_I(inode
)->lock
);
1848 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1849 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1850 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1851 &BTRFS_I(inode
)->runtime_flags
))
1852 btrfs_del_delalloc_inode(root
, inode
);
1853 spin_unlock(&BTRFS_I(inode
)->lock
);
1858 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1859 * we don't create bios that span stripes or chunks
1861 * return 1 if page cannot be merged to bio
1862 * return 0 if page can be merged to bio
1863 * return error otherwise
1865 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1866 size_t size
, struct bio
*bio
,
1867 unsigned long bio_flags
)
1869 struct inode
*inode
= page
->mapping
->host
;
1870 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1871 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1876 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1879 length
= bio
->bi_iter
.bi_size
;
1880 map_length
= length
;
1881 ret
= btrfs_map_block(fs_info
, btrfs_op(bio
), logical
, &map_length
,
1885 if (map_length
< length
+ size
)
1891 * in order to insert checksums into the metadata in large chunks,
1892 * we wait until bio submission time. All the pages in the bio are
1893 * checksummed and sums are attached onto the ordered extent record.
1895 * At IO completion time the cums attached on the ordered extent record
1896 * are inserted into the btree
1898 static int __btrfs_submit_bio_start(struct inode
*inode
, struct bio
*bio
,
1899 int mirror_num
, unsigned long bio_flags
,
1904 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
1905 BUG_ON(ret
); /* -ENOMEM */
1910 * in order to insert checksums into the metadata in large chunks,
1911 * we wait until bio submission time. All the pages in the bio are
1912 * checksummed and sums are attached onto the ordered extent record.
1914 * At IO completion time the cums attached on the ordered extent record
1915 * are inserted into the btree
1917 static int __btrfs_submit_bio_done(struct inode
*inode
, struct bio
*bio
,
1918 int mirror_num
, unsigned long bio_flags
,
1921 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1924 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 1);
1926 bio
->bi_error
= ret
;
1933 * extent_io.c submission hook. This does the right thing for csum calculation
1934 * on write, or reading the csums from the tree before a read
1936 static int btrfs_submit_bio_hook(struct inode
*inode
, struct bio
*bio
,
1937 int mirror_num
, unsigned long bio_flags
,
1940 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1941 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1942 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
1945 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1947 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1949 if (btrfs_is_free_space_inode(inode
))
1950 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
1952 if (bio_op(bio
) != REQ_OP_WRITE
) {
1953 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, metadata
);
1957 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1958 ret
= btrfs_submit_compressed_read(inode
, bio
,
1962 } else if (!skip_sum
) {
1963 ret
= btrfs_lookup_bio_sums(inode
, bio
, NULL
);
1968 } else if (async
&& !skip_sum
) {
1969 /* csum items have already been cloned */
1970 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1972 /* we're doing a write, do the async checksumming */
1973 ret
= btrfs_wq_submit_bio(fs_info
, inode
, bio
, mirror_num
,
1974 bio_flags
, bio_offset
,
1975 __btrfs_submit_bio_start
,
1976 __btrfs_submit_bio_done
);
1978 } else if (!skip_sum
) {
1979 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
1985 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
1989 bio
->bi_error
= ret
;
1996 * given a list of ordered sums record them in the inode. This happens
1997 * at IO completion time based on sums calculated at bio submission time.
1999 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
2000 struct inode
*inode
, u64 file_offset
,
2001 struct list_head
*list
)
2003 struct btrfs_ordered_sum
*sum
;
2005 list_for_each_entry(sum
, list
, list
) {
2006 trans
->adding_csums
= 1;
2007 btrfs_csum_file_blocks(trans
,
2008 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
2009 trans
->adding_csums
= 0;
2014 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
2015 struct extent_state
**cached_state
, int dedupe
)
2017 WARN_ON((end
& (PAGE_SIZE
- 1)) == 0);
2018 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
2022 /* see btrfs_writepage_start_hook for details on why this is required */
2023 struct btrfs_writepage_fixup
{
2025 struct btrfs_work work
;
2028 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
2030 struct btrfs_writepage_fixup
*fixup
;
2031 struct btrfs_ordered_extent
*ordered
;
2032 struct extent_state
*cached_state
= NULL
;
2034 struct inode
*inode
;
2039 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2043 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2044 ClearPageChecked(page
);
2048 inode
= page
->mapping
->host
;
2049 page_start
= page_offset(page
);
2050 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2052 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2055 /* already ordered? We're done */
2056 if (PagePrivate2(page
))
2059 ordered
= btrfs_lookup_ordered_range(inode
, page_start
,
2062 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2063 page_end
, &cached_state
, GFP_NOFS
);
2065 btrfs_start_ordered_extent(inode
, ordered
, 1);
2066 btrfs_put_ordered_extent(ordered
);
2070 ret
= btrfs_delalloc_reserve_space(inode
, page_start
,
2073 mapping_set_error(page
->mapping
, ret
);
2074 end_extent_writepage(page
, ret
, page_start
, page_end
);
2075 ClearPageChecked(page
);
2079 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
,
2081 ClearPageChecked(page
);
2082 set_page_dirty(page
);
2084 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2085 &cached_state
, GFP_NOFS
);
2093 * There are a few paths in the higher layers of the kernel that directly
2094 * set the page dirty bit without asking the filesystem if it is a
2095 * good idea. This causes problems because we want to make sure COW
2096 * properly happens and the data=ordered rules are followed.
2098 * In our case any range that doesn't have the ORDERED bit set
2099 * hasn't been properly setup for IO. We kick off an async process
2100 * to fix it up. The async helper will wait for ordered extents, set
2101 * the delalloc bit and make it safe to write the page.
2103 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
2105 struct inode
*inode
= page
->mapping
->host
;
2106 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2107 struct btrfs_writepage_fixup
*fixup
;
2109 /* this page is properly in the ordered list */
2110 if (TestClearPagePrivate2(page
))
2113 if (PageChecked(page
))
2116 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2120 SetPageChecked(page
);
2122 btrfs_init_work(&fixup
->work
, btrfs_fixup_helper
,
2123 btrfs_writepage_fixup_worker
, NULL
, NULL
);
2125 btrfs_queue_work(fs_info
->fixup_workers
, &fixup
->work
);
2129 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2130 struct inode
*inode
, u64 file_pos
,
2131 u64 disk_bytenr
, u64 disk_num_bytes
,
2132 u64 num_bytes
, u64 ram_bytes
,
2133 u8 compression
, u8 encryption
,
2134 u16 other_encoding
, int extent_type
)
2136 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2137 struct btrfs_file_extent_item
*fi
;
2138 struct btrfs_path
*path
;
2139 struct extent_buffer
*leaf
;
2140 struct btrfs_key ins
;
2141 int extent_inserted
= 0;
2144 path
= btrfs_alloc_path();
2149 * we may be replacing one extent in the tree with another.
2150 * The new extent is pinned in the extent map, and we don't want
2151 * to drop it from the cache until it is completely in the btree.
2153 * So, tell btrfs_drop_extents to leave this extent in the cache.
2154 * the caller is expected to unpin it and allow it to be merged
2157 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2158 file_pos
+ num_bytes
, NULL
, 0,
2159 1, sizeof(*fi
), &extent_inserted
);
2163 if (!extent_inserted
) {
2164 ins
.objectid
= btrfs_ino(inode
);
2165 ins
.offset
= file_pos
;
2166 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2168 path
->leave_spinning
= 1;
2169 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2174 leaf
= path
->nodes
[0];
2175 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2176 struct btrfs_file_extent_item
);
2177 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2178 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2179 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2180 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2181 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2182 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2183 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2184 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2185 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2186 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2188 btrfs_mark_buffer_dirty(leaf
);
2189 btrfs_release_path(path
);
2191 inode_add_bytes(inode
, num_bytes
);
2193 ins
.objectid
= disk_bytenr
;
2194 ins
.offset
= disk_num_bytes
;
2195 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2196 ret
= btrfs_alloc_reserved_file_extent(trans
, root
->root_key
.objectid
,
2197 btrfs_ino(inode
), file_pos
,
2200 * Release the reserved range from inode dirty range map, as it is
2201 * already moved into delayed_ref_head
2203 btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2205 btrfs_free_path(path
);
2210 /* snapshot-aware defrag */
2211 struct sa_defrag_extent_backref
{
2212 struct rb_node node
;
2213 struct old_sa_defrag_extent
*old
;
2222 struct old_sa_defrag_extent
{
2223 struct list_head list
;
2224 struct new_sa_defrag_extent
*new;
2233 struct new_sa_defrag_extent
{
2234 struct rb_root root
;
2235 struct list_head head
;
2236 struct btrfs_path
*path
;
2237 struct inode
*inode
;
2245 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
2246 struct sa_defrag_extent_backref
*b2
)
2248 if (b1
->root_id
< b2
->root_id
)
2250 else if (b1
->root_id
> b2
->root_id
)
2253 if (b1
->inum
< b2
->inum
)
2255 else if (b1
->inum
> b2
->inum
)
2258 if (b1
->file_pos
< b2
->file_pos
)
2260 else if (b1
->file_pos
> b2
->file_pos
)
2264 * [------------------------------] ===> (a range of space)
2265 * |<--->| |<---->| =============> (fs/file tree A)
2266 * |<---------------------------->| ===> (fs/file tree B)
2268 * A range of space can refer to two file extents in one tree while
2269 * refer to only one file extent in another tree.
2271 * So we may process a disk offset more than one time(two extents in A)
2272 * and locate at the same extent(one extent in B), then insert two same
2273 * backrefs(both refer to the extent in B).
2278 static void backref_insert(struct rb_root
*root
,
2279 struct sa_defrag_extent_backref
*backref
)
2281 struct rb_node
**p
= &root
->rb_node
;
2282 struct rb_node
*parent
= NULL
;
2283 struct sa_defrag_extent_backref
*entry
;
2288 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2290 ret
= backref_comp(backref
, entry
);
2294 p
= &(*p
)->rb_right
;
2297 rb_link_node(&backref
->node
, parent
, p
);
2298 rb_insert_color(&backref
->node
, root
);
2302 * Note the backref might has changed, and in this case we just return 0.
2304 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2307 struct btrfs_file_extent_item
*extent
;
2308 struct old_sa_defrag_extent
*old
= ctx
;
2309 struct new_sa_defrag_extent
*new = old
->new;
2310 struct btrfs_path
*path
= new->path
;
2311 struct btrfs_key key
;
2312 struct btrfs_root
*root
;
2313 struct sa_defrag_extent_backref
*backref
;
2314 struct extent_buffer
*leaf
;
2315 struct inode
*inode
= new->inode
;
2316 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2322 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2323 inum
== btrfs_ino(inode
))
2326 key
.objectid
= root_id
;
2327 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2328 key
.offset
= (u64
)-1;
2330 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2332 if (PTR_ERR(root
) == -ENOENT
)
2335 btrfs_debug(fs_info
, "inum=%llu, offset=%llu, root_id=%llu",
2336 inum
, offset
, root_id
);
2337 return PTR_ERR(root
);
2340 key
.objectid
= inum
;
2341 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2342 if (offset
> (u64
)-1 << 32)
2345 key
.offset
= offset
;
2347 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2348 if (WARN_ON(ret
< 0))
2355 leaf
= path
->nodes
[0];
2356 slot
= path
->slots
[0];
2358 if (slot
>= btrfs_header_nritems(leaf
)) {
2359 ret
= btrfs_next_leaf(root
, path
);
2362 } else if (ret
> 0) {
2371 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2373 if (key
.objectid
> inum
)
2376 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2379 extent
= btrfs_item_ptr(leaf
, slot
,
2380 struct btrfs_file_extent_item
);
2382 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2386 * 'offset' refers to the exact key.offset,
2387 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2388 * (key.offset - extent_offset).
2390 if (key
.offset
!= offset
)
2393 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2394 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2396 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2397 old
->len
|| extent_offset
+ num_bytes
<=
2398 old
->extent_offset
+ old
->offset
)
2403 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2409 backref
->root_id
= root_id
;
2410 backref
->inum
= inum
;
2411 backref
->file_pos
= offset
;
2412 backref
->num_bytes
= num_bytes
;
2413 backref
->extent_offset
= extent_offset
;
2414 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2416 backref_insert(&new->root
, backref
);
2419 btrfs_release_path(path
);
2424 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2425 struct new_sa_defrag_extent
*new)
2427 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2428 struct old_sa_defrag_extent
*old
, *tmp
;
2433 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2434 ret
= iterate_inodes_from_logical(old
->bytenr
+
2435 old
->extent_offset
, fs_info
,
2436 path
, record_one_backref
,
2438 if (ret
< 0 && ret
!= -ENOENT
)
2441 /* no backref to be processed for this extent */
2443 list_del(&old
->list
);
2448 if (list_empty(&new->head
))
2454 static int relink_is_mergable(struct extent_buffer
*leaf
,
2455 struct btrfs_file_extent_item
*fi
,
2456 struct new_sa_defrag_extent
*new)
2458 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2461 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2464 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2467 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2468 btrfs_file_extent_other_encoding(leaf
, fi
))
2475 * Note the backref might has changed, and in this case we just return 0.
2477 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2478 struct sa_defrag_extent_backref
*prev
,
2479 struct sa_defrag_extent_backref
*backref
)
2481 struct btrfs_file_extent_item
*extent
;
2482 struct btrfs_file_extent_item
*item
;
2483 struct btrfs_ordered_extent
*ordered
;
2484 struct btrfs_trans_handle
*trans
;
2485 struct btrfs_root
*root
;
2486 struct btrfs_key key
;
2487 struct extent_buffer
*leaf
;
2488 struct old_sa_defrag_extent
*old
= backref
->old
;
2489 struct new_sa_defrag_extent
*new = old
->new;
2490 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2491 struct inode
*inode
;
2492 struct extent_state
*cached
= NULL
;
2501 if (prev
&& prev
->root_id
== backref
->root_id
&&
2502 prev
->inum
== backref
->inum
&&
2503 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2506 /* step 1: get root */
2507 key
.objectid
= backref
->root_id
;
2508 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2509 key
.offset
= (u64
)-1;
2511 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2513 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2515 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2516 if (PTR_ERR(root
) == -ENOENT
)
2518 return PTR_ERR(root
);
2521 if (btrfs_root_readonly(root
)) {
2522 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2526 /* step 2: get inode */
2527 key
.objectid
= backref
->inum
;
2528 key
.type
= BTRFS_INODE_ITEM_KEY
;
2531 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2532 if (IS_ERR(inode
)) {
2533 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2537 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2539 /* step 3: relink backref */
2540 lock_start
= backref
->file_pos
;
2541 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2542 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2545 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2547 btrfs_put_ordered_extent(ordered
);
2551 trans
= btrfs_join_transaction(root
);
2552 if (IS_ERR(trans
)) {
2553 ret
= PTR_ERR(trans
);
2557 key
.objectid
= backref
->inum
;
2558 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2559 key
.offset
= backref
->file_pos
;
2561 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2564 } else if (ret
> 0) {
2569 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2570 struct btrfs_file_extent_item
);
2572 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2573 backref
->generation
)
2576 btrfs_release_path(path
);
2578 start
= backref
->file_pos
;
2579 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2580 start
+= old
->extent_offset
+ old
->offset
-
2581 backref
->extent_offset
;
2583 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2584 old
->extent_offset
+ old
->offset
+ old
->len
);
2585 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2587 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2592 key
.objectid
= btrfs_ino(inode
);
2593 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2596 path
->leave_spinning
= 1;
2598 struct btrfs_file_extent_item
*fi
;
2600 struct btrfs_key found_key
;
2602 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2607 leaf
= path
->nodes
[0];
2608 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2610 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2611 struct btrfs_file_extent_item
);
2612 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2614 if (extent_len
+ found_key
.offset
== start
&&
2615 relink_is_mergable(leaf
, fi
, new)) {
2616 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2618 btrfs_mark_buffer_dirty(leaf
);
2619 inode_add_bytes(inode
, len
);
2625 btrfs_release_path(path
);
2630 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2633 btrfs_abort_transaction(trans
, ret
);
2637 leaf
= path
->nodes
[0];
2638 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2639 struct btrfs_file_extent_item
);
2640 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2641 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2642 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2643 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2644 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2645 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2646 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2647 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2648 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2649 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2651 btrfs_mark_buffer_dirty(leaf
);
2652 inode_add_bytes(inode
, len
);
2653 btrfs_release_path(path
);
2655 ret
= btrfs_inc_extent_ref(trans
, fs_info
, new->bytenr
,
2657 backref
->root_id
, backref
->inum
,
2658 new->file_pos
); /* start - extent_offset */
2660 btrfs_abort_transaction(trans
, ret
);
2666 btrfs_release_path(path
);
2667 path
->leave_spinning
= 0;
2668 btrfs_end_transaction(trans
);
2670 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2676 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2678 struct old_sa_defrag_extent
*old
, *tmp
;
2683 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2689 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2691 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2692 struct btrfs_path
*path
;
2693 struct sa_defrag_extent_backref
*backref
;
2694 struct sa_defrag_extent_backref
*prev
= NULL
;
2695 struct inode
*inode
;
2696 struct btrfs_root
*root
;
2697 struct rb_node
*node
;
2701 root
= BTRFS_I(inode
)->root
;
2703 path
= btrfs_alloc_path();
2707 if (!record_extent_backrefs(path
, new)) {
2708 btrfs_free_path(path
);
2711 btrfs_release_path(path
);
2714 node
= rb_first(&new->root
);
2717 rb_erase(node
, &new->root
);
2719 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2721 ret
= relink_extent_backref(path
, prev
, backref
);
2734 btrfs_free_path(path
);
2736 free_sa_defrag_extent(new);
2738 atomic_dec(&fs_info
->defrag_running
);
2739 wake_up(&fs_info
->transaction_wait
);
2742 static struct new_sa_defrag_extent
*
2743 record_old_file_extents(struct inode
*inode
,
2744 struct btrfs_ordered_extent
*ordered
)
2746 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2747 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2748 struct btrfs_path
*path
;
2749 struct btrfs_key key
;
2750 struct old_sa_defrag_extent
*old
;
2751 struct new_sa_defrag_extent
*new;
2754 new = kmalloc(sizeof(*new), GFP_NOFS
);
2759 new->file_pos
= ordered
->file_offset
;
2760 new->len
= ordered
->len
;
2761 new->bytenr
= ordered
->start
;
2762 new->disk_len
= ordered
->disk_len
;
2763 new->compress_type
= ordered
->compress_type
;
2764 new->root
= RB_ROOT
;
2765 INIT_LIST_HEAD(&new->head
);
2767 path
= btrfs_alloc_path();
2771 key
.objectid
= btrfs_ino(inode
);
2772 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2773 key
.offset
= new->file_pos
;
2775 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2778 if (ret
> 0 && path
->slots
[0] > 0)
2781 /* find out all the old extents for the file range */
2783 struct btrfs_file_extent_item
*extent
;
2784 struct extent_buffer
*l
;
2793 slot
= path
->slots
[0];
2795 if (slot
>= btrfs_header_nritems(l
)) {
2796 ret
= btrfs_next_leaf(root
, path
);
2804 btrfs_item_key_to_cpu(l
, &key
, slot
);
2806 if (key
.objectid
!= btrfs_ino(inode
))
2808 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2810 if (key
.offset
>= new->file_pos
+ new->len
)
2813 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2815 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2816 if (key
.offset
+ num_bytes
< new->file_pos
)
2819 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2823 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2825 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2829 offset
= max(new->file_pos
, key
.offset
);
2830 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2832 old
->bytenr
= disk_bytenr
;
2833 old
->extent_offset
= extent_offset
;
2834 old
->offset
= offset
- key
.offset
;
2835 old
->len
= end
- offset
;
2838 list_add_tail(&old
->list
, &new->head
);
2844 btrfs_free_path(path
);
2845 atomic_inc(&fs_info
->defrag_running
);
2850 btrfs_free_path(path
);
2852 free_sa_defrag_extent(new);
2856 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info
*fs_info
,
2859 struct btrfs_block_group_cache
*cache
;
2861 cache
= btrfs_lookup_block_group(fs_info
, start
);
2864 spin_lock(&cache
->lock
);
2865 cache
->delalloc_bytes
-= len
;
2866 spin_unlock(&cache
->lock
);
2868 btrfs_put_block_group(cache
);
2871 /* as ordered data IO finishes, this gets called so we can finish
2872 * an ordered extent if the range of bytes in the file it covers are
2875 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2877 struct inode
*inode
= ordered_extent
->inode
;
2878 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2879 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2880 struct btrfs_trans_handle
*trans
= NULL
;
2881 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2882 struct extent_state
*cached_state
= NULL
;
2883 struct new_sa_defrag_extent
*new = NULL
;
2884 int compress_type
= 0;
2886 u64 logical_len
= ordered_extent
->len
;
2888 bool truncated
= false;
2890 nolock
= btrfs_is_free_space_inode(inode
);
2892 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2897 btrfs_free_io_failure_record(inode
, ordered_extent
->file_offset
,
2898 ordered_extent
->file_offset
+
2899 ordered_extent
->len
- 1);
2901 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2903 logical_len
= ordered_extent
->truncated_len
;
2904 /* Truncated the entire extent, don't bother adding */
2909 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2910 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2913 * For mwrite(mmap + memset to write) case, we still reserve
2914 * space for NOCOW range.
2915 * As NOCOW won't cause a new delayed ref, just free the space
2917 btrfs_qgroup_free_data(inode
, ordered_extent
->file_offset
,
2918 ordered_extent
->len
);
2919 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2921 trans
= btrfs_join_transaction_nolock(root
);
2923 trans
= btrfs_join_transaction(root
);
2924 if (IS_ERR(trans
)) {
2925 ret
= PTR_ERR(trans
);
2929 trans
->block_rsv
= &fs_info
->delalloc_block_rsv
;
2930 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2931 if (ret
) /* -ENOMEM or corruption */
2932 btrfs_abort_transaction(trans
, ret
);
2936 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
2937 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2940 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
2941 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2942 EXTENT_DEFRAG
, 1, cached_state
);
2944 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
2945 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
2946 /* the inode is shared */
2947 new = record_old_file_extents(inode
, ordered_extent
);
2949 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
2950 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2951 EXTENT_DEFRAG
, 0, 0, &cached_state
, GFP_NOFS
);
2955 trans
= btrfs_join_transaction_nolock(root
);
2957 trans
= btrfs_join_transaction(root
);
2958 if (IS_ERR(trans
)) {
2959 ret
= PTR_ERR(trans
);
2964 trans
->block_rsv
= &fs_info
->delalloc_block_rsv
;
2966 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
2967 compress_type
= ordered_extent
->compress_type
;
2968 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2969 BUG_ON(compress_type
);
2970 ret
= btrfs_mark_extent_written(trans
, inode
,
2971 ordered_extent
->file_offset
,
2972 ordered_extent
->file_offset
+
2975 BUG_ON(root
== fs_info
->tree_root
);
2976 ret
= insert_reserved_file_extent(trans
, inode
,
2977 ordered_extent
->file_offset
,
2978 ordered_extent
->start
,
2979 ordered_extent
->disk_len
,
2980 logical_len
, logical_len
,
2981 compress_type
, 0, 0,
2982 BTRFS_FILE_EXTENT_REG
);
2984 btrfs_release_delalloc_bytes(fs_info
,
2985 ordered_extent
->start
,
2986 ordered_extent
->disk_len
);
2988 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
2989 ordered_extent
->file_offset
, ordered_extent
->len
,
2992 btrfs_abort_transaction(trans
, ret
);
2996 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
2997 &ordered_extent
->list
);
2999 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
3000 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
3001 if (ret
) { /* -ENOMEM or corruption */
3002 btrfs_abort_transaction(trans
, ret
);
3007 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
3008 ordered_extent
->file_offset
+
3009 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
3011 if (root
!= fs_info
->tree_root
)
3012 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
3014 btrfs_end_transaction(trans
);
3016 if (ret
|| truncated
) {
3020 start
= ordered_extent
->file_offset
+ logical_len
;
3022 start
= ordered_extent
->file_offset
;
3023 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
3024 clear_extent_uptodate(io_tree
, start
, end
, NULL
, GFP_NOFS
);
3026 /* Drop the cache for the part of the extent we didn't write. */
3027 btrfs_drop_extent_cache(inode
, start
, end
, 0);
3030 * If the ordered extent had an IOERR or something else went
3031 * wrong we need to return the space for this ordered extent
3032 * back to the allocator. We only free the extent in the
3033 * truncated case if we didn't write out the extent at all.
3035 if ((ret
|| !logical_len
) &&
3036 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
3037 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
3038 btrfs_free_reserved_extent(fs_info
,
3039 ordered_extent
->start
,
3040 ordered_extent
->disk_len
, 1);
3045 * This needs to be done to make sure anybody waiting knows we are done
3046 * updating everything for this ordered extent.
3048 btrfs_remove_ordered_extent(inode
, ordered_extent
);
3050 /* for snapshot-aware defrag */
3053 free_sa_defrag_extent(new);
3054 atomic_dec(&fs_info
->defrag_running
);
3056 relink_file_extents(new);
3061 btrfs_put_ordered_extent(ordered_extent
);
3062 /* once for the tree */
3063 btrfs_put_ordered_extent(ordered_extent
);
3068 static void finish_ordered_fn(struct btrfs_work
*work
)
3070 struct btrfs_ordered_extent
*ordered_extent
;
3071 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
3072 btrfs_finish_ordered_io(ordered_extent
);
3075 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
3076 struct extent_state
*state
, int uptodate
)
3078 struct inode
*inode
= page
->mapping
->host
;
3079 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3080 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
3081 struct btrfs_workqueue
*wq
;
3082 btrfs_work_func_t func
;
3084 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
3086 ClearPagePrivate2(page
);
3087 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
3088 end
- start
+ 1, uptodate
))
3091 if (btrfs_is_free_space_inode(inode
)) {
3092 wq
= fs_info
->endio_freespace_worker
;
3093 func
= btrfs_freespace_write_helper
;
3095 wq
= fs_info
->endio_write_workers
;
3096 func
= btrfs_endio_write_helper
;
3099 btrfs_init_work(&ordered_extent
->work
, func
, finish_ordered_fn
, NULL
,
3101 btrfs_queue_work(wq
, &ordered_extent
->work
);
3106 static int __readpage_endio_check(struct inode
*inode
,
3107 struct btrfs_io_bio
*io_bio
,
3108 int icsum
, struct page
*page
,
3109 int pgoff
, u64 start
, size_t len
)
3115 csum_expected
= *(((u32
*)io_bio
->csum
) + icsum
);
3117 kaddr
= kmap_atomic(page
);
3118 csum
= btrfs_csum_data(kaddr
+ pgoff
, csum
, len
);
3119 btrfs_csum_final(csum
, (u8
*)&csum
);
3120 if (csum
!= csum_expected
)
3123 kunmap_atomic(kaddr
);
3126 btrfs_warn_rl(BTRFS_I(inode
)->root
->fs_info
,
3127 "csum failed ino %llu off %llu csum %u expected csum %u",
3128 btrfs_ino(inode
), start
, csum
, csum_expected
);
3129 memset(kaddr
+ pgoff
, 1, len
);
3130 flush_dcache_page(page
);
3131 kunmap_atomic(kaddr
);
3132 if (csum_expected
== 0)
3138 * when reads are done, we need to check csums to verify the data is correct
3139 * if there's a match, we allow the bio to finish. If not, the code in
3140 * extent_io.c will try to find good copies for us.
3142 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
3143 u64 phy_offset
, struct page
*page
,
3144 u64 start
, u64 end
, int mirror
)
3146 size_t offset
= start
- page_offset(page
);
3147 struct inode
*inode
= page
->mapping
->host
;
3148 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3149 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3151 if (PageChecked(page
)) {
3152 ClearPageChecked(page
);
3156 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3159 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3160 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3161 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
3165 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
3166 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
3167 start
, (size_t)(end
- start
+ 1));
3170 void btrfs_add_delayed_iput(struct inode
*inode
)
3172 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3173 struct btrfs_inode
*binode
= BTRFS_I(inode
);
3175 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3178 spin_lock(&fs_info
->delayed_iput_lock
);
3179 if (binode
->delayed_iput_count
== 0) {
3180 ASSERT(list_empty(&binode
->delayed_iput
));
3181 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
3183 binode
->delayed_iput_count
++;
3185 spin_unlock(&fs_info
->delayed_iput_lock
);
3188 void btrfs_run_delayed_iputs(struct btrfs_fs_info
*fs_info
)
3191 spin_lock(&fs_info
->delayed_iput_lock
);
3192 while (!list_empty(&fs_info
->delayed_iputs
)) {
3193 struct btrfs_inode
*inode
;
3195 inode
= list_first_entry(&fs_info
->delayed_iputs
,
3196 struct btrfs_inode
, delayed_iput
);
3197 if (inode
->delayed_iput_count
) {
3198 inode
->delayed_iput_count
--;
3199 list_move_tail(&inode
->delayed_iput
,
3200 &fs_info
->delayed_iputs
);
3202 list_del_init(&inode
->delayed_iput
);
3204 spin_unlock(&fs_info
->delayed_iput_lock
);
3205 iput(&inode
->vfs_inode
);
3206 spin_lock(&fs_info
->delayed_iput_lock
);
3208 spin_unlock(&fs_info
->delayed_iput_lock
);
3212 * This is called in transaction commit time. If there are no orphan
3213 * files in the subvolume, it removes orphan item and frees block_rsv
3216 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
3217 struct btrfs_root
*root
)
3219 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3220 struct btrfs_block_rsv
*block_rsv
;
3223 if (atomic_read(&root
->orphan_inodes
) ||
3224 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
3227 spin_lock(&root
->orphan_lock
);
3228 if (atomic_read(&root
->orphan_inodes
)) {
3229 spin_unlock(&root
->orphan_lock
);
3233 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
3234 spin_unlock(&root
->orphan_lock
);
3238 block_rsv
= root
->orphan_block_rsv
;
3239 root
->orphan_block_rsv
= NULL
;
3240 spin_unlock(&root
->orphan_lock
);
3242 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
) &&
3243 btrfs_root_refs(&root
->root_item
) > 0) {
3244 ret
= btrfs_del_orphan_item(trans
, fs_info
->tree_root
,
3245 root
->root_key
.objectid
);
3247 btrfs_abort_transaction(trans
, ret
);
3249 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
,
3254 WARN_ON(block_rsv
->size
> 0);
3255 btrfs_free_block_rsv(fs_info
, block_rsv
);
3260 * This creates an orphan entry for the given inode in case something goes
3261 * wrong in the middle of an unlink/truncate.
3263 * NOTE: caller of this function should reserve 5 units of metadata for
3266 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
3268 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3269 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3270 struct btrfs_block_rsv
*block_rsv
= NULL
;
3275 if (!root
->orphan_block_rsv
) {
3276 block_rsv
= btrfs_alloc_block_rsv(fs_info
,
3277 BTRFS_BLOCK_RSV_TEMP
);
3282 spin_lock(&root
->orphan_lock
);
3283 if (!root
->orphan_block_rsv
) {
3284 root
->orphan_block_rsv
= block_rsv
;
3285 } else if (block_rsv
) {
3286 btrfs_free_block_rsv(fs_info
, block_rsv
);
3290 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3291 &BTRFS_I(inode
)->runtime_flags
)) {
3294 * For proper ENOSPC handling, we should do orphan
3295 * cleanup when mounting. But this introduces backward
3296 * compatibility issue.
3298 if (!xchg(&root
->orphan_item_inserted
, 1))
3304 atomic_inc(&root
->orphan_inodes
);
3307 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3308 &BTRFS_I(inode
)->runtime_flags
))
3310 spin_unlock(&root
->orphan_lock
);
3312 /* grab metadata reservation from transaction handle */
3314 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
3317 atomic_dec(&root
->orphan_inodes
);
3318 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3319 &BTRFS_I(inode
)->runtime_flags
);
3321 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3322 &BTRFS_I(inode
)->runtime_flags
);
3327 /* insert an orphan item to track this unlinked/truncated file */
3329 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
3331 atomic_dec(&root
->orphan_inodes
);
3333 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3334 &BTRFS_I(inode
)->runtime_flags
);
3335 btrfs_orphan_release_metadata(inode
);
3337 if (ret
!= -EEXIST
) {
3338 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3339 &BTRFS_I(inode
)->runtime_flags
);
3340 btrfs_abort_transaction(trans
, ret
);
3347 /* insert an orphan item to track subvolume contains orphan files */
3349 ret
= btrfs_insert_orphan_item(trans
, fs_info
->tree_root
,
3350 root
->root_key
.objectid
);
3351 if (ret
&& ret
!= -EEXIST
) {
3352 btrfs_abort_transaction(trans
, ret
);
3360 * We have done the truncate/delete so we can go ahead and remove the orphan
3361 * item for this particular inode.
3363 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3364 struct inode
*inode
)
3366 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3367 int delete_item
= 0;
3368 int release_rsv
= 0;
3371 spin_lock(&root
->orphan_lock
);
3372 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3373 &BTRFS_I(inode
)->runtime_flags
))
3376 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3377 &BTRFS_I(inode
)->runtime_flags
))
3379 spin_unlock(&root
->orphan_lock
);
3382 atomic_dec(&root
->orphan_inodes
);
3384 ret
= btrfs_del_orphan_item(trans
, root
,
3389 btrfs_orphan_release_metadata(inode
);
3395 * this cleans up any orphans that may be left on the list from the last use
3398 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3400 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3401 struct btrfs_path
*path
;
3402 struct extent_buffer
*leaf
;
3403 struct btrfs_key key
, found_key
;
3404 struct btrfs_trans_handle
*trans
;
3405 struct inode
*inode
;
3406 u64 last_objectid
= 0;
3407 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
3409 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3412 path
= btrfs_alloc_path();
3417 path
->reada
= READA_BACK
;
3419 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3420 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3421 key
.offset
= (u64
)-1;
3424 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3429 * if ret == 0 means we found what we were searching for, which
3430 * is weird, but possible, so only screw with path if we didn't
3431 * find the key and see if we have stuff that matches
3435 if (path
->slots
[0] == 0)
3440 /* pull out the item */
3441 leaf
= path
->nodes
[0];
3442 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3444 /* make sure the item matches what we want */
3445 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3447 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3450 /* release the path since we're done with it */
3451 btrfs_release_path(path
);
3454 * this is where we are basically btrfs_lookup, without the
3455 * crossing root thing. we store the inode number in the
3456 * offset of the orphan item.
3459 if (found_key
.offset
== last_objectid
) {
3461 "Error removing orphan entry, stopping orphan cleanup");
3466 last_objectid
= found_key
.offset
;
3468 found_key
.objectid
= found_key
.offset
;
3469 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3470 found_key
.offset
= 0;
3471 inode
= btrfs_iget(fs_info
->sb
, &found_key
, root
, NULL
);
3472 ret
= PTR_ERR_OR_ZERO(inode
);
3473 if (ret
&& ret
!= -ENOENT
)
3476 if (ret
== -ENOENT
&& root
== fs_info
->tree_root
) {
3477 struct btrfs_root
*dead_root
;
3478 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3479 int is_dead_root
= 0;
3482 * this is an orphan in the tree root. Currently these
3483 * could come from 2 sources:
3484 * a) a snapshot deletion in progress
3485 * b) a free space cache inode
3486 * We need to distinguish those two, as the snapshot
3487 * orphan must not get deleted.
3488 * find_dead_roots already ran before us, so if this
3489 * is a snapshot deletion, we should find the root
3490 * in the dead_roots list
3492 spin_lock(&fs_info
->trans_lock
);
3493 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3495 if (dead_root
->root_key
.objectid
==
3496 found_key
.objectid
) {
3501 spin_unlock(&fs_info
->trans_lock
);
3503 /* prevent this orphan from being found again */
3504 key
.offset
= found_key
.objectid
- 1;
3509 * Inode is already gone but the orphan item is still there,
3510 * kill the orphan item.
3512 if (ret
== -ENOENT
) {
3513 trans
= btrfs_start_transaction(root
, 1);
3514 if (IS_ERR(trans
)) {
3515 ret
= PTR_ERR(trans
);
3518 btrfs_debug(fs_info
, "auto deleting %Lu",
3519 found_key
.objectid
);
3520 ret
= btrfs_del_orphan_item(trans
, root
,
3521 found_key
.objectid
);
3522 btrfs_end_transaction(trans
);
3529 * add this inode to the orphan list so btrfs_orphan_del does
3530 * the proper thing when we hit it
3532 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3533 &BTRFS_I(inode
)->runtime_flags
);
3534 atomic_inc(&root
->orphan_inodes
);
3536 /* if we have links, this was a truncate, lets do that */
3537 if (inode
->i_nlink
) {
3538 if (WARN_ON(!S_ISREG(inode
->i_mode
))) {
3544 /* 1 for the orphan item deletion. */
3545 trans
= btrfs_start_transaction(root
, 1);
3546 if (IS_ERR(trans
)) {
3548 ret
= PTR_ERR(trans
);
3551 ret
= btrfs_orphan_add(trans
, inode
);
3552 btrfs_end_transaction(trans
);
3558 ret
= btrfs_truncate(inode
);
3560 btrfs_orphan_del(NULL
, inode
);
3565 /* this will do delete_inode and everything for us */
3570 /* release the path since we're done with it */
3571 btrfs_release_path(path
);
3573 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3575 if (root
->orphan_block_rsv
)
3576 btrfs_block_rsv_release(fs_info
, root
->orphan_block_rsv
,
3579 if (root
->orphan_block_rsv
||
3580 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3581 trans
= btrfs_join_transaction(root
);
3583 btrfs_end_transaction(trans
);
3587 btrfs_debug(fs_info
, "unlinked %d orphans", nr_unlink
);
3589 btrfs_debug(fs_info
, "truncated %d orphans", nr_truncate
);
3593 btrfs_err(fs_info
, "could not do orphan cleanup %d", ret
);
3594 btrfs_free_path(path
);
3599 * very simple check to peek ahead in the leaf looking for xattrs. If we
3600 * don't find any xattrs, we know there can't be any acls.
3602 * slot is the slot the inode is in, objectid is the objectid of the inode
3604 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3605 int slot
, u64 objectid
,
3606 int *first_xattr_slot
)
3608 u32 nritems
= btrfs_header_nritems(leaf
);
3609 struct btrfs_key found_key
;
3610 static u64 xattr_access
= 0;
3611 static u64 xattr_default
= 0;
3614 if (!xattr_access
) {
3615 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3616 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3617 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3618 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3622 *first_xattr_slot
= -1;
3623 while (slot
< nritems
) {
3624 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3626 /* we found a different objectid, there must not be acls */
3627 if (found_key
.objectid
!= objectid
)
3630 /* we found an xattr, assume we've got an acl */
3631 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3632 if (*first_xattr_slot
== -1)
3633 *first_xattr_slot
= slot
;
3634 if (found_key
.offset
== xattr_access
||
3635 found_key
.offset
== xattr_default
)
3640 * we found a key greater than an xattr key, there can't
3641 * be any acls later on
3643 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3650 * it goes inode, inode backrefs, xattrs, extents,
3651 * so if there are a ton of hard links to an inode there can
3652 * be a lot of backrefs. Don't waste time searching too hard,
3653 * this is just an optimization
3658 /* we hit the end of the leaf before we found an xattr or
3659 * something larger than an xattr. We have to assume the inode
3662 if (*first_xattr_slot
== -1)
3663 *first_xattr_slot
= slot
;
3668 * read an inode from the btree into the in-memory inode
3670 static int btrfs_read_locked_inode(struct inode
*inode
)
3672 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3673 struct btrfs_path
*path
;
3674 struct extent_buffer
*leaf
;
3675 struct btrfs_inode_item
*inode_item
;
3676 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3677 struct btrfs_key location
;
3682 bool filled
= false;
3683 int first_xattr_slot
;
3685 ret
= btrfs_fill_inode(inode
, &rdev
);
3689 path
= btrfs_alloc_path();
3695 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3697 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3704 leaf
= path
->nodes
[0];
3709 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3710 struct btrfs_inode_item
);
3711 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3712 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3713 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3714 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3715 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
3717 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3718 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3720 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3721 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3723 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3724 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3726 BTRFS_I(inode
)->i_otime
.tv_sec
=
3727 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3728 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3729 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3731 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3732 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3733 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3735 inode
->i_version
= btrfs_inode_sequence(leaf
, inode_item
);
3736 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3738 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3740 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3741 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3745 * If we were modified in the current generation and evicted from memory
3746 * and then re-read we need to do a full sync since we don't have any
3747 * idea about which extents were modified before we were evicted from
3750 * This is required for both inode re-read from disk and delayed inode
3751 * in delayed_nodes_tree.
3753 if (BTRFS_I(inode
)->last_trans
== fs_info
->generation
)
3754 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3755 &BTRFS_I(inode
)->runtime_flags
);
3758 * We don't persist the id of the transaction where an unlink operation
3759 * against the inode was last made. So here we assume the inode might
3760 * have been evicted, and therefore the exact value of last_unlink_trans
3761 * lost, and set it to last_trans to avoid metadata inconsistencies
3762 * between the inode and its parent if the inode is fsync'ed and the log
3763 * replayed. For example, in the scenario:
3766 * ln mydir/foo mydir/bar
3769 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3770 * xfs_io -c fsync mydir/foo
3772 * mount fs, triggers fsync log replay
3774 * We must make sure that when we fsync our inode foo we also log its
3775 * parent inode, otherwise after log replay the parent still has the
3776 * dentry with the "bar" name but our inode foo has a link count of 1
3777 * and doesn't have an inode ref with the name "bar" anymore.
3779 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3780 * but it guarantees correctness at the expense of occasional full
3781 * transaction commits on fsync if our inode is a directory, or if our
3782 * inode is not a directory, logging its parent unnecessarily.
3784 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3787 if (inode
->i_nlink
!= 1 ||
3788 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3791 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3792 if (location
.objectid
!= btrfs_ino(inode
))
3795 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3796 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3797 struct btrfs_inode_ref
*ref
;
3799 ref
= (struct btrfs_inode_ref
*)ptr
;
3800 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3801 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3802 struct btrfs_inode_extref
*extref
;
3804 extref
= (struct btrfs_inode_extref
*)ptr
;
3805 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3810 * try to precache a NULL acl entry for files that don't have
3811 * any xattrs or acls
3813 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3814 btrfs_ino(inode
), &first_xattr_slot
);
3815 if (first_xattr_slot
!= -1) {
3816 path
->slots
[0] = first_xattr_slot
;
3817 ret
= btrfs_load_inode_props(inode
, path
);
3820 "error loading props for ino %llu (root %llu): %d",
3822 root
->root_key
.objectid
, ret
);
3824 btrfs_free_path(path
);
3827 cache_no_acl(inode
);
3829 switch (inode
->i_mode
& S_IFMT
) {
3831 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3832 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3833 inode
->i_fop
= &btrfs_file_operations
;
3834 inode
->i_op
= &btrfs_file_inode_operations
;
3837 inode
->i_fop
= &btrfs_dir_file_operations
;
3838 if (root
== fs_info
->tree_root
)
3839 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
3841 inode
->i_op
= &btrfs_dir_inode_operations
;
3844 inode
->i_op
= &btrfs_symlink_inode_operations
;
3845 inode_nohighmem(inode
);
3846 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3849 inode
->i_op
= &btrfs_special_inode_operations
;
3850 init_special_inode(inode
, inode
->i_mode
, rdev
);
3854 btrfs_update_iflags(inode
);
3858 btrfs_free_path(path
);
3859 make_bad_inode(inode
);
3864 * given a leaf and an inode, copy the inode fields into the leaf
3866 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3867 struct extent_buffer
*leaf
,
3868 struct btrfs_inode_item
*item
,
3869 struct inode
*inode
)
3871 struct btrfs_map_token token
;
3873 btrfs_init_map_token(&token
);
3875 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3876 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3877 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3879 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3880 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3882 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3883 inode
->i_atime
.tv_sec
, &token
);
3884 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3885 inode
->i_atime
.tv_nsec
, &token
);
3887 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3888 inode
->i_mtime
.tv_sec
, &token
);
3889 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3890 inode
->i_mtime
.tv_nsec
, &token
);
3892 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3893 inode
->i_ctime
.tv_sec
, &token
);
3894 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3895 inode
->i_ctime
.tv_nsec
, &token
);
3897 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3898 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3899 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3900 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3902 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3904 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3906 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3907 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3908 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3909 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3910 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3914 * copy everything in the in-memory inode into the btree.
3916 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3917 struct btrfs_root
*root
, struct inode
*inode
)
3919 struct btrfs_inode_item
*inode_item
;
3920 struct btrfs_path
*path
;
3921 struct extent_buffer
*leaf
;
3924 path
= btrfs_alloc_path();
3928 path
->leave_spinning
= 1;
3929 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3937 leaf
= path
->nodes
[0];
3938 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3939 struct btrfs_inode_item
);
3941 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3942 btrfs_mark_buffer_dirty(leaf
);
3943 btrfs_set_inode_last_trans(trans
, inode
);
3946 btrfs_free_path(path
);
3951 * copy everything in the in-memory inode into the btree.
3953 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3954 struct btrfs_root
*root
, struct inode
*inode
)
3956 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3960 * If the inode is a free space inode, we can deadlock during commit
3961 * if we put it into the delayed code.
3963 * The data relocation inode should also be directly updated
3966 if (!btrfs_is_free_space_inode(inode
)
3967 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
3968 && !test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
3969 btrfs_update_root_times(trans
, root
);
3971 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3973 btrfs_set_inode_last_trans(trans
, inode
);
3977 return btrfs_update_inode_item(trans
, root
, inode
);
3980 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3981 struct btrfs_root
*root
,
3982 struct inode
*inode
)
3986 ret
= btrfs_update_inode(trans
, root
, inode
);
3988 return btrfs_update_inode_item(trans
, root
, inode
);
3993 * unlink helper that gets used here in inode.c and in the tree logging
3994 * recovery code. It remove a link in a directory with a given name, and
3995 * also drops the back refs in the inode to the directory
3997 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3998 struct btrfs_root
*root
,
3999 struct inode
*dir
, struct inode
*inode
,
4000 const char *name
, int name_len
)
4002 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4003 struct btrfs_path
*path
;
4005 struct extent_buffer
*leaf
;
4006 struct btrfs_dir_item
*di
;
4007 struct btrfs_key key
;
4009 u64 ino
= btrfs_ino(inode
);
4010 u64 dir_ino
= btrfs_ino(dir
);
4012 path
= btrfs_alloc_path();
4018 path
->leave_spinning
= 1;
4019 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4020 name
, name_len
, -1);
4029 leaf
= path
->nodes
[0];
4030 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4031 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4034 btrfs_release_path(path
);
4037 * If we don't have dir index, we have to get it by looking up
4038 * the inode ref, since we get the inode ref, remove it directly,
4039 * it is unnecessary to do delayed deletion.
4041 * But if we have dir index, needn't search inode ref to get it.
4042 * Since the inode ref is close to the inode item, it is better
4043 * that we delay to delete it, and just do this deletion when
4044 * we update the inode item.
4046 if (BTRFS_I(inode
)->dir_index
) {
4047 ret
= btrfs_delayed_delete_inode_ref(inode
);
4049 index
= BTRFS_I(inode
)->dir_index
;
4054 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
4058 "failed to delete reference to %.*s, inode %llu parent %llu",
4059 name_len
, name
, ino
, dir_ino
);
4060 btrfs_abort_transaction(trans
, ret
);
4064 ret
= btrfs_delete_delayed_dir_index(trans
, fs_info
, dir
, index
);
4066 btrfs_abort_transaction(trans
, ret
);
4070 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
4072 if (ret
!= 0 && ret
!= -ENOENT
) {
4073 btrfs_abort_transaction(trans
, ret
);
4077 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
4082 btrfs_abort_transaction(trans
, ret
);
4084 btrfs_free_path(path
);
4088 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
4089 inode_inc_iversion(inode
);
4090 inode_inc_iversion(dir
);
4091 inode
->i_ctime
= dir
->i_mtime
=
4092 dir
->i_ctime
= current_time(inode
);
4093 ret
= btrfs_update_inode(trans
, root
, dir
);
4098 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4099 struct btrfs_root
*root
,
4100 struct inode
*dir
, struct inode
*inode
,
4101 const char *name
, int name_len
)
4104 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
4107 ret
= btrfs_update_inode(trans
, root
, inode
);
4113 * helper to start transaction for unlink and rmdir.
4115 * unlink and rmdir are special in btrfs, they do not always free space, so
4116 * if we cannot make our reservations the normal way try and see if there is
4117 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4118 * allow the unlink to occur.
4120 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
4122 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4125 * 1 for the possible orphan item
4126 * 1 for the dir item
4127 * 1 for the dir index
4128 * 1 for the inode ref
4131 return btrfs_start_transaction_fallback_global_rsv(root
, 5, 5);
4134 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
4136 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4137 struct btrfs_trans_handle
*trans
;
4138 struct inode
*inode
= d_inode(dentry
);
4141 trans
= __unlink_start_trans(dir
);
4143 return PTR_ERR(trans
);
4145 btrfs_record_unlink_dir(trans
, dir
, d_inode(dentry
), 0);
4147 ret
= btrfs_unlink_inode(trans
, root
, dir
, d_inode(dentry
),
4148 dentry
->d_name
.name
, dentry
->d_name
.len
);
4152 if (inode
->i_nlink
== 0) {
4153 ret
= btrfs_orphan_add(trans
, inode
);
4159 btrfs_end_transaction(trans
);
4160 btrfs_btree_balance_dirty(root
->fs_info
);
4164 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
4165 struct btrfs_root
*root
,
4166 struct inode
*dir
, u64 objectid
,
4167 const char *name
, int name_len
)
4169 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4170 struct btrfs_path
*path
;
4171 struct extent_buffer
*leaf
;
4172 struct btrfs_dir_item
*di
;
4173 struct btrfs_key key
;
4176 u64 dir_ino
= btrfs_ino(dir
);
4178 path
= btrfs_alloc_path();
4182 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4183 name
, name_len
, -1);
4184 if (IS_ERR_OR_NULL(di
)) {
4192 leaf
= path
->nodes
[0];
4193 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4194 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
4195 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4197 btrfs_abort_transaction(trans
, ret
);
4200 btrfs_release_path(path
);
4202 ret
= btrfs_del_root_ref(trans
, fs_info
, objectid
,
4203 root
->root_key
.objectid
, dir_ino
,
4204 &index
, name
, name_len
);
4206 if (ret
!= -ENOENT
) {
4207 btrfs_abort_transaction(trans
, ret
);
4210 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
4212 if (IS_ERR_OR_NULL(di
)) {
4217 btrfs_abort_transaction(trans
, ret
);
4221 leaf
= path
->nodes
[0];
4222 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4223 btrfs_release_path(path
);
4226 btrfs_release_path(path
);
4228 ret
= btrfs_delete_delayed_dir_index(trans
, fs_info
, dir
, index
);
4230 btrfs_abort_transaction(trans
, ret
);
4234 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
4235 inode_inc_iversion(dir
);
4236 dir
->i_mtime
= dir
->i_ctime
= current_time(dir
);
4237 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
4239 btrfs_abort_transaction(trans
, ret
);
4241 btrfs_free_path(path
);
4245 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4247 struct inode
*inode
= d_inode(dentry
);
4249 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4250 struct btrfs_trans_handle
*trans
;
4251 u64 last_unlink_trans
;
4253 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4255 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
4258 trans
= __unlink_start_trans(dir
);
4260 return PTR_ERR(trans
);
4262 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4263 err
= btrfs_unlink_subvol(trans
, root
, dir
,
4264 BTRFS_I(inode
)->location
.objectid
,
4265 dentry
->d_name
.name
,
4266 dentry
->d_name
.len
);
4270 err
= btrfs_orphan_add(trans
, inode
);
4274 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4276 /* now the directory is empty */
4277 err
= btrfs_unlink_inode(trans
, root
, dir
, d_inode(dentry
),
4278 dentry
->d_name
.name
, dentry
->d_name
.len
);
4280 btrfs_i_size_write(inode
, 0);
4282 * Propagate the last_unlink_trans value of the deleted dir to
4283 * its parent directory. This is to prevent an unrecoverable
4284 * log tree in the case we do something like this:
4286 * 2) create snapshot under dir foo
4287 * 3) delete the snapshot
4290 * 6) fsync foo or some file inside foo
4292 if (last_unlink_trans
>= trans
->transid
)
4293 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4296 btrfs_end_transaction(trans
);
4297 btrfs_btree_balance_dirty(root
->fs_info
);
4302 static int truncate_space_check(struct btrfs_trans_handle
*trans
,
4303 struct btrfs_root
*root
,
4306 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4310 * This is only used to apply pressure to the enospc system, we don't
4311 * intend to use this reservation at all.
4313 bytes_deleted
= btrfs_csum_bytes_to_leaves(fs_info
, bytes_deleted
);
4314 bytes_deleted
*= fs_info
->nodesize
;
4315 ret
= btrfs_block_rsv_add(root
, &fs_info
->trans_block_rsv
,
4316 bytes_deleted
, BTRFS_RESERVE_NO_FLUSH
);
4318 trace_btrfs_space_reservation(fs_info
, "transaction",
4321 trans
->bytes_reserved
+= bytes_deleted
;
4327 static int truncate_inline_extent(struct inode
*inode
,
4328 struct btrfs_path
*path
,
4329 struct btrfs_key
*found_key
,
4333 struct extent_buffer
*leaf
= path
->nodes
[0];
4334 int slot
= path
->slots
[0];
4335 struct btrfs_file_extent_item
*fi
;
4336 u32 size
= (u32
)(new_size
- found_key
->offset
);
4337 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4339 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
4341 if (btrfs_file_extent_compression(leaf
, fi
) != BTRFS_COMPRESS_NONE
) {
4342 loff_t offset
= new_size
;
4343 loff_t page_end
= ALIGN(offset
, PAGE_SIZE
);
4346 * Zero out the remaining of the last page of our inline extent,
4347 * instead of directly truncating our inline extent here - that
4348 * would be much more complex (decompressing all the data, then
4349 * compressing the truncated data, which might be bigger than
4350 * the size of the inline extent, resize the extent, etc).
4351 * We release the path because to get the page we might need to
4352 * read the extent item from disk (data not in the page cache).
4354 btrfs_release_path(path
);
4355 return btrfs_truncate_block(inode
, offset
, page_end
- offset
,
4359 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4360 size
= btrfs_file_extent_calc_inline_size(size
);
4361 btrfs_truncate_item(root
->fs_info
, path
, size
, 1);
4363 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4364 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4370 * this can truncate away extent items, csum items and directory items.
4371 * It starts at a high offset and removes keys until it can't find
4372 * any higher than new_size
4374 * csum items that cross the new i_size are truncated to the new size
4377 * min_type is the minimum key type to truncate down to. If set to 0, this
4378 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4380 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4381 struct btrfs_root
*root
,
4382 struct inode
*inode
,
4383 u64 new_size
, u32 min_type
)
4385 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4386 struct btrfs_path
*path
;
4387 struct extent_buffer
*leaf
;
4388 struct btrfs_file_extent_item
*fi
;
4389 struct btrfs_key key
;
4390 struct btrfs_key found_key
;
4391 u64 extent_start
= 0;
4392 u64 extent_num_bytes
= 0;
4393 u64 extent_offset
= 0;
4395 u64 last_size
= new_size
;
4396 u32 found_type
= (u8
)-1;
4399 int pending_del_nr
= 0;
4400 int pending_del_slot
= 0;
4401 int extent_type
= -1;
4404 u64 ino
= btrfs_ino(inode
);
4405 u64 bytes_deleted
= 0;
4407 bool should_throttle
= 0;
4408 bool should_end
= 0;
4410 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4413 * for non-free space inodes and ref cows, we want to back off from
4416 if (!btrfs_is_free_space_inode(inode
) &&
4417 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4420 path
= btrfs_alloc_path();
4423 path
->reada
= READA_BACK
;
4426 * We want to drop from the next block forward in case this new size is
4427 * not block aligned since we will be keeping the last block of the
4428 * extent just the way it is.
4430 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4431 root
== fs_info
->tree_root
)
4432 btrfs_drop_extent_cache(inode
, ALIGN(new_size
,
4433 fs_info
->sectorsize
),
4437 * This function is also used to drop the items in the log tree before
4438 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4439 * it is used to drop the loged items. So we shouldn't kill the delayed
4442 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4443 btrfs_kill_delayed_inode_items(inode
);
4446 key
.offset
= (u64
)-1;
4451 * with a 16K leaf size and 128MB extents, you can actually queue
4452 * up a huge file in a single leaf. Most of the time that
4453 * bytes_deleted is > 0, it will be huge by the time we get here
4455 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4456 if (btrfs_should_end_transaction(trans
)) {
4463 path
->leave_spinning
= 1;
4464 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4471 /* there are no items in the tree for us to truncate, we're
4474 if (path
->slots
[0] == 0)
4481 leaf
= path
->nodes
[0];
4482 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4483 found_type
= found_key
.type
;
4485 if (found_key
.objectid
!= ino
)
4488 if (found_type
< min_type
)
4491 item_end
= found_key
.offset
;
4492 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4493 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4494 struct btrfs_file_extent_item
);
4495 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4496 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4498 btrfs_file_extent_num_bytes(leaf
, fi
);
4499 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4500 item_end
+= btrfs_file_extent_inline_len(leaf
,
4501 path
->slots
[0], fi
);
4505 if (found_type
> min_type
) {
4508 if (item_end
< new_size
)
4510 if (found_key
.offset
>= new_size
)
4516 /* FIXME, shrink the extent if the ref count is only 1 */
4517 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4521 last_size
= found_key
.offset
;
4523 last_size
= new_size
;
4525 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4527 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4529 u64 orig_num_bytes
=
4530 btrfs_file_extent_num_bytes(leaf
, fi
);
4531 extent_num_bytes
= ALIGN(new_size
-
4533 fs_info
->sectorsize
);
4534 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4536 num_dec
= (orig_num_bytes
-
4538 if (test_bit(BTRFS_ROOT_REF_COWS
,
4541 inode_sub_bytes(inode
, num_dec
);
4542 btrfs_mark_buffer_dirty(leaf
);
4545 btrfs_file_extent_disk_num_bytes(leaf
,
4547 extent_offset
= found_key
.offset
-
4548 btrfs_file_extent_offset(leaf
, fi
);
4550 /* FIXME blocksize != 4096 */
4551 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4552 if (extent_start
!= 0) {
4554 if (test_bit(BTRFS_ROOT_REF_COWS
,
4556 inode_sub_bytes(inode
, num_dec
);
4559 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4561 * we can't truncate inline items that have had
4565 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4566 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
4569 * Need to release path in order to truncate a
4570 * compressed extent. So delete any accumulated
4571 * extent items so far.
4573 if (btrfs_file_extent_compression(leaf
, fi
) !=
4574 BTRFS_COMPRESS_NONE
&& pending_del_nr
) {
4575 err
= btrfs_del_items(trans
, root
, path
,
4579 btrfs_abort_transaction(trans
,
4586 err
= truncate_inline_extent(inode
, path
,
4591 btrfs_abort_transaction(trans
, err
);
4594 } else if (test_bit(BTRFS_ROOT_REF_COWS
,
4596 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4601 if (!pending_del_nr
) {
4602 /* no pending yet, add ourselves */
4603 pending_del_slot
= path
->slots
[0];
4605 } else if (pending_del_nr
&&
4606 path
->slots
[0] + 1 == pending_del_slot
) {
4607 /* hop on the pending chunk */
4609 pending_del_slot
= path
->slots
[0];
4616 should_throttle
= 0;
4619 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4620 root
== fs_info
->tree_root
)) {
4621 btrfs_set_path_blocking(path
);
4622 bytes_deleted
+= extent_num_bytes
;
4623 ret
= btrfs_free_extent(trans
, fs_info
, extent_start
,
4624 extent_num_bytes
, 0,
4625 btrfs_header_owner(leaf
),
4626 ino
, extent_offset
);
4628 if (btrfs_should_throttle_delayed_refs(trans
, fs_info
))
4629 btrfs_async_run_delayed_refs(fs_info
,
4630 trans
->delayed_ref_updates
* 2,
4633 if (truncate_space_check(trans
, root
,
4634 extent_num_bytes
)) {
4637 if (btrfs_should_throttle_delayed_refs(trans
,
4639 should_throttle
= 1;
4643 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4646 if (path
->slots
[0] == 0 ||
4647 path
->slots
[0] != pending_del_slot
||
4648 should_throttle
|| should_end
) {
4649 if (pending_del_nr
) {
4650 ret
= btrfs_del_items(trans
, root
, path
,
4654 btrfs_abort_transaction(trans
, ret
);
4659 btrfs_release_path(path
);
4660 if (should_throttle
) {
4661 unsigned long updates
= trans
->delayed_ref_updates
;
4663 trans
->delayed_ref_updates
= 0;
4664 ret
= btrfs_run_delayed_refs(trans
,
4672 * if we failed to refill our space rsv, bail out
4673 * and let the transaction restart
4685 if (pending_del_nr
) {
4686 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4689 btrfs_abort_transaction(trans
, ret
);
4692 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
4693 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4695 btrfs_free_path(path
);
4697 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4698 unsigned long updates
= trans
->delayed_ref_updates
;
4700 trans
->delayed_ref_updates
= 0;
4701 ret
= btrfs_run_delayed_refs(trans
, fs_info
,
4711 * btrfs_truncate_block - read, zero a chunk and write a block
4712 * @inode - inode that we're zeroing
4713 * @from - the offset to start zeroing
4714 * @len - the length to zero, 0 to zero the entire range respective to the
4716 * @front - zero up to the offset instead of from the offset on
4718 * This will find the block for the "from" offset and cow the block and zero the
4719 * part we want to zero. This is used with truncate and hole punching.
4721 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4724 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4725 struct address_space
*mapping
= inode
->i_mapping
;
4726 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4727 struct btrfs_ordered_extent
*ordered
;
4728 struct extent_state
*cached_state
= NULL
;
4730 u32 blocksize
= fs_info
->sectorsize
;
4731 pgoff_t index
= from
>> PAGE_SHIFT
;
4732 unsigned offset
= from
& (blocksize
- 1);
4734 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4739 if ((offset
& (blocksize
- 1)) == 0 &&
4740 (!len
|| ((len
& (blocksize
- 1)) == 0)))
4743 ret
= btrfs_delalloc_reserve_space(inode
,
4744 round_down(from
, blocksize
), blocksize
);
4749 page
= find_or_create_page(mapping
, index
, mask
);
4751 btrfs_delalloc_release_space(inode
,
4752 round_down(from
, blocksize
),
4758 block_start
= round_down(from
, blocksize
);
4759 block_end
= block_start
+ blocksize
- 1;
4761 if (!PageUptodate(page
)) {
4762 ret
= btrfs_readpage(NULL
, page
);
4764 if (page
->mapping
!= mapping
) {
4769 if (!PageUptodate(page
)) {
4774 wait_on_page_writeback(page
);
4776 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4777 set_page_extent_mapped(page
);
4779 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4781 unlock_extent_cached(io_tree
, block_start
, block_end
,
4782 &cached_state
, GFP_NOFS
);
4785 btrfs_start_ordered_extent(inode
, ordered
, 1);
4786 btrfs_put_ordered_extent(ordered
);
4790 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
4791 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4792 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4793 0, 0, &cached_state
, GFP_NOFS
);
4795 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
,
4798 unlock_extent_cached(io_tree
, block_start
, block_end
,
4799 &cached_state
, GFP_NOFS
);
4803 if (offset
!= blocksize
) {
4805 len
= blocksize
- offset
;
4808 memset(kaddr
+ (block_start
- page_offset(page
)),
4811 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4813 flush_dcache_page(page
);
4816 ClearPageChecked(page
);
4817 set_page_dirty(page
);
4818 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
,
4823 btrfs_delalloc_release_space(inode
, block_start
,
4831 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4832 u64 offset
, u64 len
)
4834 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4835 struct btrfs_trans_handle
*trans
;
4839 * Still need to make sure the inode looks like it's been updated so
4840 * that any holes get logged if we fsync.
4842 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
4843 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
4844 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4845 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4850 * 1 - for the one we're dropping
4851 * 1 - for the one we're adding
4852 * 1 - for updating the inode.
4854 trans
= btrfs_start_transaction(root
, 3);
4856 return PTR_ERR(trans
);
4858 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4860 btrfs_abort_transaction(trans
, ret
);
4861 btrfs_end_transaction(trans
);
4865 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
), offset
,
4866 0, 0, len
, 0, len
, 0, 0, 0);
4868 btrfs_abort_transaction(trans
, ret
);
4870 btrfs_update_inode(trans
, root
, inode
);
4871 btrfs_end_transaction(trans
);
4876 * This function puts in dummy file extents for the area we're creating a hole
4877 * for. So if we are truncating this file to a larger size we need to insert
4878 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4879 * the range between oldsize and size
4881 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4883 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4884 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4885 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4886 struct extent_map
*em
= NULL
;
4887 struct extent_state
*cached_state
= NULL
;
4888 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4889 u64 hole_start
= ALIGN(oldsize
, fs_info
->sectorsize
);
4890 u64 block_end
= ALIGN(size
, fs_info
->sectorsize
);
4897 * If our size started in the middle of a block we need to zero out the
4898 * rest of the block before we expand the i_size, otherwise we could
4899 * expose stale data.
4901 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
4905 if (size
<= hole_start
)
4909 struct btrfs_ordered_extent
*ordered
;
4911 lock_extent_bits(io_tree
, hole_start
, block_end
- 1,
4913 ordered
= btrfs_lookup_ordered_range(inode
, hole_start
,
4914 block_end
- hole_start
);
4917 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
4918 &cached_state
, GFP_NOFS
);
4919 btrfs_start_ordered_extent(inode
, ordered
, 1);
4920 btrfs_put_ordered_extent(ordered
);
4923 cur_offset
= hole_start
;
4925 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
4926 block_end
- cur_offset
, 0);
4932 last_byte
= min(extent_map_end(em
), block_end
);
4933 last_byte
= ALIGN(last_byte
, fs_info
->sectorsize
);
4934 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4935 struct extent_map
*hole_em
;
4936 hole_size
= last_byte
- cur_offset
;
4938 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4942 btrfs_drop_extent_cache(inode
, cur_offset
,
4943 cur_offset
+ hole_size
- 1, 0);
4944 hole_em
= alloc_extent_map();
4946 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4947 &BTRFS_I(inode
)->runtime_flags
);
4950 hole_em
->start
= cur_offset
;
4951 hole_em
->len
= hole_size
;
4952 hole_em
->orig_start
= cur_offset
;
4954 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4955 hole_em
->block_len
= 0;
4956 hole_em
->orig_block_len
= 0;
4957 hole_em
->ram_bytes
= hole_size
;
4958 hole_em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
4959 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4960 hole_em
->generation
= fs_info
->generation
;
4963 write_lock(&em_tree
->lock
);
4964 err
= add_extent_mapping(em_tree
, hole_em
, 1);
4965 write_unlock(&em_tree
->lock
);
4968 btrfs_drop_extent_cache(inode
, cur_offset
,
4972 free_extent_map(hole_em
);
4975 free_extent_map(em
);
4977 cur_offset
= last_byte
;
4978 if (cur_offset
>= block_end
)
4981 free_extent_map(em
);
4982 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
4987 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
4989 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4990 struct btrfs_trans_handle
*trans
;
4991 loff_t oldsize
= i_size_read(inode
);
4992 loff_t newsize
= attr
->ia_size
;
4993 int mask
= attr
->ia_valid
;
4997 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4998 * special case where we need to update the times despite not having
4999 * these flags set. For all other operations the VFS set these flags
5000 * explicitly if it wants a timestamp update.
5002 if (newsize
!= oldsize
) {
5003 inode_inc_iversion(inode
);
5004 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
5005 inode
->i_ctime
= inode
->i_mtime
=
5006 current_time(inode
);
5009 if (newsize
> oldsize
) {
5011 * Don't do an expanding truncate while snapshoting is ongoing.
5012 * This is to ensure the snapshot captures a fully consistent
5013 * state of this file - if the snapshot captures this expanding
5014 * truncation, it must capture all writes that happened before
5017 btrfs_wait_for_snapshot_creation(root
);
5018 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
5020 btrfs_end_write_no_snapshoting(root
);
5024 trans
= btrfs_start_transaction(root
, 1);
5025 if (IS_ERR(trans
)) {
5026 btrfs_end_write_no_snapshoting(root
);
5027 return PTR_ERR(trans
);
5030 i_size_write(inode
, newsize
);
5031 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
5032 pagecache_isize_extended(inode
, oldsize
, newsize
);
5033 ret
= btrfs_update_inode(trans
, root
, inode
);
5034 btrfs_end_write_no_snapshoting(root
);
5035 btrfs_end_transaction(trans
);
5039 * We're truncating a file that used to have good data down to
5040 * zero. Make sure it gets into the ordered flush list so that
5041 * any new writes get down to disk quickly.
5044 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
5045 &BTRFS_I(inode
)->runtime_flags
);
5048 * 1 for the orphan item we're going to add
5049 * 1 for the orphan item deletion.
5051 trans
= btrfs_start_transaction(root
, 2);
5053 return PTR_ERR(trans
);
5056 * We need to do this in case we fail at _any_ point during the
5057 * actual truncate. Once we do the truncate_setsize we could
5058 * invalidate pages which forces any outstanding ordered io to
5059 * be instantly completed which will give us extents that need
5060 * to be truncated. If we fail to get an orphan inode down we
5061 * could have left over extents that were never meant to live,
5062 * so we need to guarantee from this point on that everything
5063 * will be consistent.
5065 ret
= btrfs_orphan_add(trans
, inode
);
5066 btrfs_end_transaction(trans
);
5070 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5071 truncate_setsize(inode
, newsize
);
5073 /* Disable nonlocked read DIO to avoid the end less truncate */
5074 btrfs_inode_block_unlocked_dio(inode
);
5075 inode_dio_wait(inode
);
5076 btrfs_inode_resume_unlocked_dio(inode
);
5078 ret
= btrfs_truncate(inode
);
5079 if (ret
&& inode
->i_nlink
) {
5083 * failed to truncate, disk_i_size is only adjusted down
5084 * as we remove extents, so it should represent the true
5085 * size of the inode, so reset the in memory size and
5086 * delete our orphan entry.
5088 trans
= btrfs_join_transaction(root
);
5089 if (IS_ERR(trans
)) {
5090 btrfs_orphan_del(NULL
, inode
);
5093 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
5094 err
= btrfs_orphan_del(trans
, inode
);
5096 btrfs_abort_transaction(trans
, err
);
5097 btrfs_end_transaction(trans
);
5104 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5106 struct inode
*inode
= d_inode(dentry
);
5107 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5110 if (btrfs_root_readonly(root
))
5113 err
= setattr_prepare(dentry
, attr
);
5117 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
5118 err
= btrfs_setsize(inode
, attr
);
5123 if (attr
->ia_valid
) {
5124 setattr_copy(inode
, attr
);
5125 inode_inc_iversion(inode
);
5126 err
= btrfs_dirty_inode(inode
);
5128 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
5129 err
= posix_acl_chmod(inode
, inode
->i_mode
);
5136 * While truncating the inode pages during eviction, we get the VFS calling
5137 * btrfs_invalidatepage() against each page of the inode. This is slow because
5138 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5139 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5140 * extent_state structures over and over, wasting lots of time.
5142 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5143 * those expensive operations on a per page basis and do only the ordered io
5144 * finishing, while we release here the extent_map and extent_state structures,
5145 * without the excessive merging and splitting.
5147 static void evict_inode_truncate_pages(struct inode
*inode
)
5149 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5150 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
5151 struct rb_node
*node
;
5153 ASSERT(inode
->i_state
& I_FREEING
);
5154 truncate_inode_pages_final(&inode
->i_data
);
5156 write_lock(&map_tree
->lock
);
5157 while (!RB_EMPTY_ROOT(&map_tree
->map
)) {
5158 struct extent_map
*em
;
5160 node
= rb_first(&map_tree
->map
);
5161 em
= rb_entry(node
, struct extent_map
, rb_node
);
5162 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5163 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
5164 remove_extent_mapping(map_tree
, em
);
5165 free_extent_map(em
);
5166 if (need_resched()) {
5167 write_unlock(&map_tree
->lock
);
5169 write_lock(&map_tree
->lock
);
5172 write_unlock(&map_tree
->lock
);
5175 * Keep looping until we have no more ranges in the io tree.
5176 * We can have ongoing bios started by readpages (called from readahead)
5177 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5178 * still in progress (unlocked the pages in the bio but did not yet
5179 * unlocked the ranges in the io tree). Therefore this means some
5180 * ranges can still be locked and eviction started because before
5181 * submitting those bios, which are executed by a separate task (work
5182 * queue kthread), inode references (inode->i_count) were not taken
5183 * (which would be dropped in the end io callback of each bio).
5184 * Therefore here we effectively end up waiting for those bios and
5185 * anyone else holding locked ranges without having bumped the inode's
5186 * reference count - if we don't do it, when they access the inode's
5187 * io_tree to unlock a range it may be too late, leading to an
5188 * use-after-free issue.
5190 spin_lock(&io_tree
->lock
);
5191 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
5192 struct extent_state
*state
;
5193 struct extent_state
*cached_state
= NULL
;
5197 node
= rb_first(&io_tree
->state
);
5198 state
= rb_entry(node
, struct extent_state
, rb_node
);
5199 start
= state
->start
;
5201 spin_unlock(&io_tree
->lock
);
5203 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
5206 * If still has DELALLOC flag, the extent didn't reach disk,
5207 * and its reserved space won't be freed by delayed_ref.
5208 * So we need to free its reserved space here.
5209 * (Refer to comment in btrfs_invalidatepage, case 2)
5211 * Note, end is the bytenr of last byte, so we need + 1 here.
5213 if (state
->state
& EXTENT_DELALLOC
)
5214 btrfs_qgroup_free_data(inode
, start
, end
- start
+ 1);
5216 clear_extent_bit(io_tree
, start
, end
,
5217 EXTENT_LOCKED
| EXTENT_DIRTY
|
5218 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
5219 EXTENT_DEFRAG
, 1, 1,
5220 &cached_state
, GFP_NOFS
);
5223 spin_lock(&io_tree
->lock
);
5225 spin_unlock(&io_tree
->lock
);
5228 void btrfs_evict_inode(struct inode
*inode
)
5230 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5231 struct btrfs_trans_handle
*trans
;
5232 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5233 struct btrfs_block_rsv
*rsv
, *global_rsv
;
5234 int steal_from_global
= 0;
5238 trace_btrfs_inode_evict(inode
);
5241 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
5245 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
5247 evict_inode_truncate_pages(inode
);
5249 if (inode
->i_nlink
&&
5250 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5251 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5252 btrfs_is_free_space_inode(inode
)))
5255 if (is_bad_inode(inode
)) {
5256 btrfs_orphan_del(NULL
, inode
);
5259 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5260 if (!special_file(inode
->i_mode
))
5261 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5263 btrfs_free_io_failure_record(inode
, 0, (u64
)-1);
5265 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
5266 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
5267 &BTRFS_I(inode
)->runtime_flags
));
5271 if (inode
->i_nlink
> 0) {
5272 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5273 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5277 ret
= btrfs_commit_inode_delayed_inode(inode
);
5279 btrfs_orphan_del(NULL
, inode
);
5283 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
5285 btrfs_orphan_del(NULL
, inode
);
5288 rsv
->size
= min_size
;
5290 global_rsv
= &fs_info
->global_block_rsv
;
5292 btrfs_i_size_write(inode
, 0);
5295 * This is a bit simpler than btrfs_truncate since we've already
5296 * reserved our space for our orphan item in the unlink, so we just
5297 * need to reserve some slack space in case we add bytes and update
5298 * inode item when doing the truncate.
5301 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
5302 BTRFS_RESERVE_FLUSH_LIMIT
);
5305 * Try and steal from the global reserve since we will
5306 * likely not use this space anyway, we want to try as
5307 * hard as possible to get this to work.
5310 steal_from_global
++;
5312 steal_from_global
= 0;
5316 * steal_from_global == 0: we reserved stuff, hooray!
5317 * steal_from_global == 1: we didn't reserve stuff, boo!
5318 * steal_from_global == 2: we've committed, still not a lot of
5319 * room but maybe we'll have room in the global reserve this
5321 * steal_from_global == 3: abandon all hope!
5323 if (steal_from_global
> 2) {
5325 "Could not get space for a delete, will truncate on mount %d",
5327 btrfs_orphan_del(NULL
, inode
);
5328 btrfs_free_block_rsv(fs_info
, rsv
);
5332 trans
= btrfs_join_transaction(root
);
5333 if (IS_ERR(trans
)) {
5334 btrfs_orphan_del(NULL
, inode
);
5335 btrfs_free_block_rsv(fs_info
, rsv
);
5340 * We can't just steal from the global reserve, we need to make
5341 * sure there is room to do it, if not we need to commit and try
5344 if (steal_from_global
) {
5345 if (!btrfs_check_space_for_delayed_refs(trans
, fs_info
))
5346 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
,
5353 * Couldn't steal from the global reserve, we have too much
5354 * pending stuff built up, commit the transaction and try it
5358 ret
= btrfs_commit_transaction(trans
);
5360 btrfs_orphan_del(NULL
, inode
);
5361 btrfs_free_block_rsv(fs_info
, rsv
);
5366 steal_from_global
= 0;
5369 trans
->block_rsv
= rsv
;
5371 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5372 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5375 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5376 btrfs_end_transaction(trans
);
5378 btrfs_btree_balance_dirty(fs_info
);
5381 btrfs_free_block_rsv(fs_info
, rsv
);
5384 * Errors here aren't a big deal, it just means we leave orphan items
5385 * in the tree. They will be cleaned up on the next mount.
5388 trans
->block_rsv
= root
->orphan_block_rsv
;
5389 btrfs_orphan_del(trans
, inode
);
5391 btrfs_orphan_del(NULL
, inode
);
5394 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5395 if (!(root
== fs_info
->tree_root
||
5396 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5397 btrfs_return_ino(root
, btrfs_ino(inode
));
5399 btrfs_end_transaction(trans
);
5400 btrfs_btree_balance_dirty(fs_info
);
5402 btrfs_remove_delayed_node(inode
);
5407 * this returns the key found in the dir entry in the location pointer.
5408 * If no dir entries were found, location->objectid is 0.
5410 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5411 struct btrfs_key
*location
)
5413 const char *name
= dentry
->d_name
.name
;
5414 int namelen
= dentry
->d_name
.len
;
5415 struct btrfs_dir_item
*di
;
5416 struct btrfs_path
*path
;
5417 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5420 path
= btrfs_alloc_path();
5424 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
5429 if (IS_ERR_OR_NULL(di
))
5432 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5434 btrfs_free_path(path
);
5437 location
->objectid
= 0;
5442 * when we hit a tree root in a directory, the btrfs part of the inode
5443 * needs to be changed to reflect the root directory of the tree root. This
5444 * is kind of like crossing a mount point.
5446 static int fixup_tree_root_location(struct btrfs_fs_info
*fs_info
,
5448 struct dentry
*dentry
,
5449 struct btrfs_key
*location
,
5450 struct btrfs_root
**sub_root
)
5452 struct btrfs_path
*path
;
5453 struct btrfs_root
*new_root
;
5454 struct btrfs_root_ref
*ref
;
5455 struct extent_buffer
*leaf
;
5456 struct btrfs_key key
;
5460 path
= btrfs_alloc_path();
5467 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5468 key
.type
= BTRFS_ROOT_REF_KEY
;
5469 key
.offset
= location
->objectid
;
5471 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
5478 leaf
= path
->nodes
[0];
5479 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5480 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
5481 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5484 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5485 (unsigned long)(ref
+ 1),
5486 dentry
->d_name
.len
);
5490 btrfs_release_path(path
);
5492 new_root
= btrfs_read_fs_root_no_name(fs_info
, location
);
5493 if (IS_ERR(new_root
)) {
5494 err
= PTR_ERR(new_root
);
5498 *sub_root
= new_root
;
5499 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5500 location
->type
= BTRFS_INODE_ITEM_KEY
;
5501 location
->offset
= 0;
5504 btrfs_free_path(path
);
5508 static void inode_tree_add(struct inode
*inode
)
5510 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5511 struct btrfs_inode
*entry
;
5513 struct rb_node
*parent
;
5514 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5515 u64 ino
= btrfs_ino(inode
);
5517 if (inode_unhashed(inode
))
5520 spin_lock(&root
->inode_lock
);
5521 p
= &root
->inode_tree
.rb_node
;
5524 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5526 if (ino
< btrfs_ino(&entry
->vfs_inode
))
5527 p
= &parent
->rb_left
;
5528 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
5529 p
= &parent
->rb_right
;
5531 WARN_ON(!(entry
->vfs_inode
.i_state
&
5532 (I_WILL_FREE
| I_FREEING
)));
5533 rb_replace_node(parent
, new, &root
->inode_tree
);
5534 RB_CLEAR_NODE(parent
);
5535 spin_unlock(&root
->inode_lock
);
5539 rb_link_node(new, parent
, p
);
5540 rb_insert_color(new, &root
->inode_tree
);
5541 spin_unlock(&root
->inode_lock
);
5544 static void inode_tree_del(struct inode
*inode
)
5546 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5547 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5550 spin_lock(&root
->inode_lock
);
5551 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5552 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5553 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5554 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5556 spin_unlock(&root
->inode_lock
);
5558 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5559 synchronize_srcu(&fs_info
->subvol_srcu
);
5560 spin_lock(&root
->inode_lock
);
5561 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5562 spin_unlock(&root
->inode_lock
);
5564 btrfs_add_dead_root(root
);
5568 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
5570 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5571 struct rb_node
*node
;
5572 struct rb_node
*prev
;
5573 struct btrfs_inode
*entry
;
5574 struct inode
*inode
;
5577 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
5578 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
5580 spin_lock(&root
->inode_lock
);
5582 node
= root
->inode_tree
.rb_node
;
5586 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5588 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
5589 node
= node
->rb_left
;
5590 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
5591 node
= node
->rb_right
;
5597 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
5598 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
5602 prev
= rb_next(prev
);
5606 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5607 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
5608 inode
= igrab(&entry
->vfs_inode
);
5610 spin_unlock(&root
->inode_lock
);
5611 if (atomic_read(&inode
->i_count
) > 1)
5612 d_prune_aliases(inode
);
5614 * btrfs_drop_inode will have it removed from
5615 * the inode cache when its usage count
5620 spin_lock(&root
->inode_lock
);
5624 if (cond_resched_lock(&root
->inode_lock
))
5627 node
= rb_next(node
);
5629 spin_unlock(&root
->inode_lock
);
5632 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5634 struct btrfs_iget_args
*args
= p
;
5635 inode
->i_ino
= args
->location
->objectid
;
5636 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5637 sizeof(*args
->location
));
5638 BTRFS_I(inode
)->root
= args
->root
;
5642 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5644 struct btrfs_iget_args
*args
= opaque
;
5645 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5646 args
->root
== BTRFS_I(inode
)->root
;
5649 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5650 struct btrfs_key
*location
,
5651 struct btrfs_root
*root
)
5653 struct inode
*inode
;
5654 struct btrfs_iget_args args
;
5655 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5657 args
.location
= location
;
5660 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5661 btrfs_init_locked_inode
,
5666 /* Get an inode object given its location and corresponding root.
5667 * Returns in *is_new if the inode was read from disk
5669 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5670 struct btrfs_root
*root
, int *new)
5672 struct inode
*inode
;
5674 inode
= btrfs_iget_locked(s
, location
, root
);
5676 return ERR_PTR(-ENOMEM
);
5678 if (inode
->i_state
& I_NEW
) {
5681 ret
= btrfs_read_locked_inode(inode
);
5682 if (!is_bad_inode(inode
)) {
5683 inode_tree_add(inode
);
5684 unlock_new_inode(inode
);
5688 unlock_new_inode(inode
);
5691 inode
= ERR_PTR(ret
< 0 ? ret
: -ESTALE
);
5698 static struct inode
*new_simple_dir(struct super_block
*s
,
5699 struct btrfs_key
*key
,
5700 struct btrfs_root
*root
)
5702 struct inode
*inode
= new_inode(s
);
5705 return ERR_PTR(-ENOMEM
);
5707 BTRFS_I(inode
)->root
= root
;
5708 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5709 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5711 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5712 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5713 inode
->i_fop
= &simple_dir_operations
;
5714 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5715 inode
->i_mtime
= current_time(inode
);
5716 inode
->i_atime
= inode
->i_mtime
;
5717 inode
->i_ctime
= inode
->i_mtime
;
5718 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5723 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5725 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
5726 struct inode
*inode
;
5727 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5728 struct btrfs_root
*sub_root
= root
;
5729 struct btrfs_key location
;
5733 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5734 return ERR_PTR(-ENAMETOOLONG
);
5736 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5738 return ERR_PTR(ret
);
5740 if (location
.objectid
== 0)
5741 return ERR_PTR(-ENOENT
);
5743 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5744 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5748 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
5750 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
5751 ret
= fixup_tree_root_location(fs_info
, dir
, dentry
,
5752 &location
, &sub_root
);
5755 inode
= ERR_PTR(ret
);
5757 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5759 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5761 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5763 if (!IS_ERR(inode
) && root
!= sub_root
) {
5764 down_read(&fs_info
->cleanup_work_sem
);
5765 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
5766 ret
= btrfs_orphan_cleanup(sub_root
);
5767 up_read(&fs_info
->cleanup_work_sem
);
5770 inode
= ERR_PTR(ret
);
5777 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5779 struct btrfs_root
*root
;
5780 struct inode
*inode
= d_inode(dentry
);
5782 if (!inode
&& !IS_ROOT(dentry
))
5783 inode
= d_inode(dentry
->d_parent
);
5786 root
= BTRFS_I(inode
)->root
;
5787 if (btrfs_root_refs(&root
->root_item
) == 0)
5790 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5796 static void btrfs_dentry_release(struct dentry
*dentry
)
5798 kfree(dentry
->d_fsdata
);
5801 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5804 struct inode
*inode
;
5806 inode
= btrfs_lookup_dentry(dir
, dentry
);
5807 if (IS_ERR(inode
)) {
5808 if (PTR_ERR(inode
) == -ENOENT
)
5811 return ERR_CAST(inode
);
5814 return d_splice_alias(inode
, dentry
);
5817 unsigned char btrfs_filetype_table
[] = {
5818 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5821 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5823 struct inode
*inode
= file_inode(file
);
5824 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5825 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5826 struct btrfs_item
*item
;
5827 struct btrfs_dir_item
*di
;
5828 struct btrfs_key key
;
5829 struct btrfs_key found_key
;
5830 struct btrfs_path
*path
;
5831 struct list_head ins_list
;
5832 struct list_head del_list
;
5834 struct extent_buffer
*leaf
;
5836 unsigned char d_type
;
5842 struct btrfs_key location
;
5844 if (!dir_emit_dots(file
, ctx
))
5847 path
= btrfs_alloc_path();
5851 path
->reada
= READA_FORWARD
;
5853 INIT_LIST_HEAD(&ins_list
);
5854 INIT_LIST_HEAD(&del_list
);
5855 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
, &del_list
);
5857 key
.type
= BTRFS_DIR_INDEX_KEY
;
5858 key
.offset
= ctx
->pos
;
5859 key
.objectid
= btrfs_ino(inode
);
5861 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5866 leaf
= path
->nodes
[0];
5867 slot
= path
->slots
[0];
5868 if (slot
>= btrfs_header_nritems(leaf
)) {
5869 ret
= btrfs_next_leaf(root
, path
);
5877 item
= btrfs_item_nr(slot
);
5878 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5880 if (found_key
.objectid
!= key
.objectid
)
5882 if (found_key
.type
!= BTRFS_DIR_INDEX_KEY
)
5884 if (found_key
.offset
< ctx
->pos
)
5886 if (btrfs_should_delete_dir_index(&del_list
, found_key
.offset
))
5889 ctx
->pos
= found_key
.offset
;
5891 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5892 if (verify_dir_item(fs_info
, leaf
, di
))
5895 name_len
= btrfs_dir_name_len(leaf
, di
);
5896 if (name_len
<= sizeof(tmp_name
)) {
5897 name_ptr
= tmp_name
;
5899 name_ptr
= kmalloc(name_len
, GFP_KERNEL
);
5905 read_extent_buffer(leaf
, name_ptr
, (unsigned long)(di
+ 1),
5908 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
5909 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5911 over
= !dir_emit(ctx
, name_ptr
, name_len
, location
.objectid
,
5914 if (name_ptr
!= tmp_name
)
5924 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
5929 * Stop new entries from being returned after we return the last
5932 * New directory entries are assigned a strictly increasing
5933 * offset. This means that new entries created during readdir
5934 * are *guaranteed* to be seen in the future by that readdir.
5935 * This has broken buggy programs which operate on names as
5936 * they're returned by readdir. Until we re-use freed offsets
5937 * we have this hack to stop new entries from being returned
5938 * under the assumption that they'll never reach this huge
5941 * This is being careful not to overflow 32bit loff_t unless the
5942 * last entry requires it because doing so has broken 32bit apps
5945 if (ctx
->pos
>= INT_MAX
)
5946 ctx
->pos
= LLONG_MAX
;
5953 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
5954 btrfs_free_path(path
);
5958 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5960 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5961 struct btrfs_trans_handle
*trans
;
5963 bool nolock
= false;
5965 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5968 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(inode
))
5971 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
5973 trans
= btrfs_join_transaction_nolock(root
);
5975 trans
= btrfs_join_transaction(root
);
5977 return PTR_ERR(trans
);
5978 ret
= btrfs_commit_transaction(trans
);
5984 * This is somewhat expensive, updating the tree every time the
5985 * inode changes. But, it is most likely to find the inode in cache.
5986 * FIXME, needs more benchmarking...there are no reasons other than performance
5987 * to keep or drop this code.
5989 static int btrfs_dirty_inode(struct inode
*inode
)
5991 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5992 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5993 struct btrfs_trans_handle
*trans
;
5996 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5999 trans
= btrfs_join_transaction(root
);
6001 return PTR_ERR(trans
);
6003 ret
= btrfs_update_inode(trans
, root
, inode
);
6004 if (ret
&& ret
== -ENOSPC
) {
6005 /* whoops, lets try again with the full transaction */
6006 btrfs_end_transaction(trans
);
6007 trans
= btrfs_start_transaction(root
, 1);
6009 return PTR_ERR(trans
);
6011 ret
= btrfs_update_inode(trans
, root
, inode
);
6013 btrfs_end_transaction(trans
);
6014 if (BTRFS_I(inode
)->delayed_node
)
6015 btrfs_balance_delayed_items(fs_info
);
6021 * This is a copy of file_update_time. We need this so we can return error on
6022 * ENOSPC for updating the inode in the case of file write and mmap writes.
6024 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
6027 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6029 if (btrfs_root_readonly(root
))
6032 if (flags
& S_VERSION
)
6033 inode_inc_iversion(inode
);
6034 if (flags
& S_CTIME
)
6035 inode
->i_ctime
= *now
;
6036 if (flags
& S_MTIME
)
6037 inode
->i_mtime
= *now
;
6038 if (flags
& S_ATIME
)
6039 inode
->i_atime
= *now
;
6040 return btrfs_dirty_inode(inode
);
6044 * find the highest existing sequence number in a directory
6045 * and then set the in-memory index_cnt variable to reflect
6046 * free sequence numbers
6048 static int btrfs_set_inode_index_count(struct inode
*inode
)
6050 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6051 struct btrfs_key key
, found_key
;
6052 struct btrfs_path
*path
;
6053 struct extent_buffer
*leaf
;
6056 key
.objectid
= btrfs_ino(inode
);
6057 key
.type
= BTRFS_DIR_INDEX_KEY
;
6058 key
.offset
= (u64
)-1;
6060 path
= btrfs_alloc_path();
6064 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6067 /* FIXME: we should be able to handle this */
6073 * MAGIC NUMBER EXPLANATION:
6074 * since we search a directory based on f_pos we have to start at 2
6075 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6076 * else has to start at 2
6078 if (path
->slots
[0] == 0) {
6079 BTRFS_I(inode
)->index_cnt
= 2;
6085 leaf
= path
->nodes
[0];
6086 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6088 if (found_key
.objectid
!= btrfs_ino(inode
) ||
6089 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
6090 BTRFS_I(inode
)->index_cnt
= 2;
6094 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
6096 btrfs_free_path(path
);
6101 * helper to find a free sequence number in a given directory. This current
6102 * code is very simple, later versions will do smarter things in the btree
6104 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
6108 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
6109 ret
= btrfs_inode_delayed_dir_index_count(dir
);
6111 ret
= btrfs_set_inode_index_count(dir
);
6117 *index
= BTRFS_I(dir
)->index_cnt
;
6118 BTRFS_I(dir
)->index_cnt
++;
6123 static int btrfs_insert_inode_locked(struct inode
*inode
)
6125 struct btrfs_iget_args args
;
6126 args
.location
= &BTRFS_I(inode
)->location
;
6127 args
.root
= BTRFS_I(inode
)->root
;
6129 return insert_inode_locked4(inode
,
6130 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
6131 btrfs_find_actor
, &args
);
6134 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
6135 struct btrfs_root
*root
,
6137 const char *name
, int name_len
,
6138 u64 ref_objectid
, u64 objectid
,
6139 umode_t mode
, u64
*index
)
6141 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6142 struct inode
*inode
;
6143 struct btrfs_inode_item
*inode_item
;
6144 struct btrfs_key
*location
;
6145 struct btrfs_path
*path
;
6146 struct btrfs_inode_ref
*ref
;
6147 struct btrfs_key key
[2];
6149 int nitems
= name
? 2 : 1;
6153 path
= btrfs_alloc_path();
6155 return ERR_PTR(-ENOMEM
);
6157 inode
= new_inode(fs_info
->sb
);
6159 btrfs_free_path(path
);
6160 return ERR_PTR(-ENOMEM
);
6164 * O_TMPFILE, set link count to 0, so that after this point,
6165 * we fill in an inode item with the correct link count.
6168 set_nlink(inode
, 0);
6171 * we have to initialize this early, so we can reclaim the inode
6172 * number if we fail afterwards in this function.
6174 inode
->i_ino
= objectid
;
6177 trace_btrfs_inode_request(dir
);
6179 ret
= btrfs_set_inode_index(dir
, index
);
6181 btrfs_free_path(path
);
6183 return ERR_PTR(ret
);
6189 * index_cnt is ignored for everything but a dir,
6190 * btrfs_get_inode_index_count has an explanation for the magic
6193 BTRFS_I(inode
)->index_cnt
= 2;
6194 BTRFS_I(inode
)->dir_index
= *index
;
6195 BTRFS_I(inode
)->root
= root
;
6196 BTRFS_I(inode
)->generation
= trans
->transid
;
6197 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6200 * We could have gotten an inode number from somebody who was fsynced
6201 * and then removed in this same transaction, so let's just set full
6202 * sync since it will be a full sync anyway and this will blow away the
6203 * old info in the log.
6205 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6207 key
[0].objectid
= objectid
;
6208 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6211 sizes
[0] = sizeof(struct btrfs_inode_item
);
6215 * Start new inodes with an inode_ref. This is slightly more
6216 * efficient for small numbers of hard links since they will
6217 * be packed into one item. Extended refs will kick in if we
6218 * add more hard links than can fit in the ref item.
6220 key
[1].objectid
= objectid
;
6221 key
[1].type
= BTRFS_INODE_REF_KEY
;
6222 key
[1].offset
= ref_objectid
;
6224 sizes
[1] = name_len
+ sizeof(*ref
);
6227 location
= &BTRFS_I(inode
)->location
;
6228 location
->objectid
= objectid
;
6229 location
->offset
= 0;
6230 location
->type
= BTRFS_INODE_ITEM_KEY
;
6232 ret
= btrfs_insert_inode_locked(inode
);
6236 path
->leave_spinning
= 1;
6237 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6241 inode_init_owner(inode
, dir
, mode
);
6242 inode_set_bytes(inode
, 0);
6244 inode
->i_mtime
= current_time(inode
);
6245 inode
->i_atime
= inode
->i_mtime
;
6246 inode
->i_ctime
= inode
->i_mtime
;
6247 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6249 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6250 struct btrfs_inode_item
);
6251 memzero_extent_buffer(path
->nodes
[0], (unsigned long)inode_item
,
6252 sizeof(*inode_item
));
6253 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6256 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6257 struct btrfs_inode_ref
);
6258 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6259 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6260 ptr
= (unsigned long)(ref
+ 1);
6261 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6264 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6265 btrfs_free_path(path
);
6267 btrfs_inherit_iflags(inode
, dir
);
6269 if (S_ISREG(mode
)) {
6270 if (btrfs_test_opt(fs_info
, NODATASUM
))
6271 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6272 if (btrfs_test_opt(fs_info
, NODATACOW
))
6273 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6274 BTRFS_INODE_NODATASUM
;
6277 inode_tree_add(inode
);
6279 trace_btrfs_inode_new(inode
);
6280 btrfs_set_inode_last_trans(trans
, inode
);
6282 btrfs_update_root_times(trans
, root
);
6284 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6287 "error inheriting props for ino %llu (root %llu): %d",
6288 btrfs_ino(inode
), root
->root_key
.objectid
, ret
);
6293 unlock_new_inode(inode
);
6296 BTRFS_I(dir
)->index_cnt
--;
6297 btrfs_free_path(path
);
6299 return ERR_PTR(ret
);
6302 static inline u8
btrfs_inode_type(struct inode
*inode
)
6304 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
6308 * utility function to add 'inode' into 'parent_inode' with
6309 * a give name and a given sequence number.
6310 * if 'add_backref' is true, also insert a backref from the
6311 * inode to the parent directory.
6313 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6314 struct inode
*parent_inode
, struct inode
*inode
,
6315 const char *name
, int name_len
, int add_backref
, u64 index
)
6317 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6319 struct btrfs_key key
;
6320 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
6321 u64 ino
= btrfs_ino(inode
);
6322 u64 parent_ino
= btrfs_ino(parent_inode
);
6324 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6325 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
6328 key
.type
= BTRFS_INODE_ITEM_KEY
;
6332 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6333 ret
= btrfs_add_root_ref(trans
, fs_info
, key
.objectid
,
6334 root
->root_key
.objectid
, parent_ino
,
6335 index
, name
, name_len
);
6336 } else if (add_backref
) {
6337 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6341 /* Nothing to clean up yet */
6345 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
6347 btrfs_inode_type(inode
), index
);
6348 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6351 btrfs_abort_transaction(trans
, ret
);
6355 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
6357 inode_inc_iversion(parent_inode
);
6358 parent_inode
->i_mtime
= parent_inode
->i_ctime
=
6359 current_time(parent_inode
);
6360 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
6362 btrfs_abort_transaction(trans
, ret
);
6366 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6369 err
= btrfs_del_root_ref(trans
, fs_info
, key
.objectid
,
6370 root
->root_key
.objectid
, parent_ino
,
6371 &local_index
, name
, name_len
);
6373 } else if (add_backref
) {
6377 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6378 ino
, parent_ino
, &local_index
);
6383 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6384 struct inode
*dir
, struct dentry
*dentry
,
6385 struct inode
*inode
, int backref
, u64 index
)
6387 int err
= btrfs_add_link(trans
, dir
, inode
,
6388 dentry
->d_name
.name
, dentry
->d_name
.len
,
6395 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6396 umode_t mode
, dev_t rdev
)
6398 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6399 struct btrfs_trans_handle
*trans
;
6400 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6401 struct inode
*inode
= NULL
;
6408 * 2 for inode item and ref
6410 * 1 for xattr if selinux is on
6412 trans
= btrfs_start_transaction(root
, 5);
6414 return PTR_ERR(trans
);
6416 err
= btrfs_find_free_ino(root
, &objectid
);
6420 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6421 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6423 if (IS_ERR(inode
)) {
6424 err
= PTR_ERR(inode
);
6429 * If the active LSM wants to access the inode during
6430 * d_instantiate it needs these. Smack checks to see
6431 * if the filesystem supports xattrs by looking at the
6434 inode
->i_op
= &btrfs_special_inode_operations
;
6435 init_special_inode(inode
, inode
->i_mode
, rdev
);
6437 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6439 goto out_unlock_inode
;
6441 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
6443 goto out_unlock_inode
;
6445 btrfs_update_inode(trans
, root
, inode
);
6446 unlock_new_inode(inode
);
6447 d_instantiate(dentry
, inode
);
6451 btrfs_end_transaction(trans
);
6452 btrfs_balance_delayed_items(fs_info
);
6453 btrfs_btree_balance_dirty(fs_info
);
6455 inode_dec_link_count(inode
);
6462 unlock_new_inode(inode
);
6467 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6468 umode_t mode
, bool excl
)
6470 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6471 struct btrfs_trans_handle
*trans
;
6472 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6473 struct inode
*inode
= NULL
;
6474 int drop_inode_on_err
= 0;
6480 * 2 for inode item and ref
6482 * 1 for xattr if selinux is on
6484 trans
= btrfs_start_transaction(root
, 5);
6486 return PTR_ERR(trans
);
6488 err
= btrfs_find_free_ino(root
, &objectid
);
6492 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6493 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6495 if (IS_ERR(inode
)) {
6496 err
= PTR_ERR(inode
);
6499 drop_inode_on_err
= 1;
6501 * If the active LSM wants to access the inode during
6502 * d_instantiate it needs these. Smack checks to see
6503 * if the filesystem supports xattrs by looking at the
6506 inode
->i_fop
= &btrfs_file_operations
;
6507 inode
->i_op
= &btrfs_file_inode_operations
;
6508 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6510 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6512 goto out_unlock_inode
;
6514 err
= btrfs_update_inode(trans
, root
, inode
);
6516 goto out_unlock_inode
;
6518 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
6520 goto out_unlock_inode
;
6522 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6523 unlock_new_inode(inode
);
6524 d_instantiate(dentry
, inode
);
6527 btrfs_end_transaction(trans
);
6528 if (err
&& drop_inode_on_err
) {
6529 inode_dec_link_count(inode
);
6532 btrfs_balance_delayed_items(fs_info
);
6533 btrfs_btree_balance_dirty(fs_info
);
6537 unlock_new_inode(inode
);
6542 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6543 struct dentry
*dentry
)
6545 struct btrfs_trans_handle
*trans
= NULL
;
6546 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6547 struct inode
*inode
= d_inode(old_dentry
);
6548 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6553 /* do not allow sys_link's with other subvols of the same device */
6554 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
6557 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6560 err
= btrfs_set_inode_index(dir
, &index
);
6565 * 2 items for inode and inode ref
6566 * 2 items for dir items
6567 * 1 item for parent inode
6569 trans
= btrfs_start_transaction(root
, 5);
6570 if (IS_ERR(trans
)) {
6571 err
= PTR_ERR(trans
);
6576 /* There are several dir indexes for this inode, clear the cache. */
6577 BTRFS_I(inode
)->dir_index
= 0ULL;
6579 inode_inc_iversion(inode
);
6580 inode
->i_ctime
= current_time(inode
);
6582 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6584 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
6589 struct dentry
*parent
= dentry
->d_parent
;
6590 err
= btrfs_update_inode(trans
, root
, inode
);
6593 if (inode
->i_nlink
== 1) {
6595 * If new hard link count is 1, it's a file created
6596 * with open(2) O_TMPFILE flag.
6598 err
= btrfs_orphan_del(trans
, inode
);
6602 d_instantiate(dentry
, inode
);
6603 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
6606 btrfs_balance_delayed_items(fs_info
);
6609 btrfs_end_transaction(trans
);
6611 inode_dec_link_count(inode
);
6614 btrfs_btree_balance_dirty(fs_info
);
6618 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6620 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6621 struct inode
*inode
= NULL
;
6622 struct btrfs_trans_handle
*trans
;
6623 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6625 int drop_on_err
= 0;
6630 * 2 items for inode and ref
6631 * 2 items for dir items
6632 * 1 for xattr if selinux is on
6634 trans
= btrfs_start_transaction(root
, 5);
6636 return PTR_ERR(trans
);
6638 err
= btrfs_find_free_ino(root
, &objectid
);
6642 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6643 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6644 S_IFDIR
| mode
, &index
);
6645 if (IS_ERR(inode
)) {
6646 err
= PTR_ERR(inode
);
6651 /* these must be set before we unlock the inode */
6652 inode
->i_op
= &btrfs_dir_inode_operations
;
6653 inode
->i_fop
= &btrfs_dir_file_operations
;
6655 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6657 goto out_fail_inode
;
6659 btrfs_i_size_write(inode
, 0);
6660 err
= btrfs_update_inode(trans
, root
, inode
);
6662 goto out_fail_inode
;
6664 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
6665 dentry
->d_name
.len
, 0, index
);
6667 goto out_fail_inode
;
6669 d_instantiate(dentry
, inode
);
6671 * mkdir is special. We're unlocking after we call d_instantiate
6672 * to avoid a race with nfsd calling d_instantiate.
6674 unlock_new_inode(inode
);
6678 btrfs_end_transaction(trans
);
6680 inode_dec_link_count(inode
);
6683 btrfs_balance_delayed_items(fs_info
);
6684 btrfs_btree_balance_dirty(fs_info
);
6688 unlock_new_inode(inode
);
6692 /* Find next extent map of a given extent map, caller needs to ensure locks */
6693 static struct extent_map
*next_extent_map(struct extent_map
*em
)
6695 struct rb_node
*next
;
6697 next
= rb_next(&em
->rb_node
);
6700 return container_of(next
, struct extent_map
, rb_node
);
6703 static struct extent_map
*prev_extent_map(struct extent_map
*em
)
6705 struct rb_node
*prev
;
6707 prev
= rb_prev(&em
->rb_node
);
6710 return container_of(prev
, struct extent_map
, rb_node
);
6713 /* helper for btfs_get_extent. Given an existing extent in the tree,
6714 * the existing extent is the nearest extent to map_start,
6715 * and an extent that you want to insert, deal with overlap and insert
6716 * the best fitted new extent into the tree.
6718 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
6719 struct extent_map
*existing
,
6720 struct extent_map
*em
,
6723 struct extent_map
*prev
;
6724 struct extent_map
*next
;
6729 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
6731 if (existing
->start
> map_start
) {
6733 prev
= prev_extent_map(next
);
6736 next
= next_extent_map(prev
);
6739 start
= prev
? extent_map_end(prev
) : em
->start
;
6740 start
= max_t(u64
, start
, em
->start
);
6741 end
= next
? next
->start
: extent_map_end(em
);
6742 end
= min_t(u64
, end
, extent_map_end(em
));
6743 start_diff
= start
- em
->start
;
6745 em
->len
= end
- start
;
6746 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
6747 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
6748 em
->block_start
+= start_diff
;
6749 em
->block_len
-= start_diff
;
6751 return add_extent_mapping(em_tree
, em
, 0);
6754 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6756 size_t pg_offset
, u64 extent_offset
,
6757 struct btrfs_file_extent_item
*item
)
6760 struct extent_buffer
*leaf
= path
->nodes
[0];
6763 unsigned long inline_size
;
6767 WARN_ON(pg_offset
!= 0);
6768 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6769 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6770 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6771 btrfs_item_nr(path
->slots
[0]));
6772 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6775 ptr
= btrfs_file_extent_inline_start(item
);
6777 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6779 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6780 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6781 extent_offset
, inline_size
, max_size
);
6787 * a bit scary, this does extent mapping from logical file offset to the disk.
6788 * the ugly parts come from merging extents from the disk with the in-ram
6789 * representation. This gets more complex because of the data=ordered code,
6790 * where the in-ram extents might be locked pending data=ordered completion.
6792 * This also copies inline extents directly into the page.
6795 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
6796 size_t pg_offset
, u64 start
, u64 len
,
6799 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6802 u64 extent_start
= 0;
6804 u64 objectid
= btrfs_ino(inode
);
6806 struct btrfs_path
*path
= NULL
;
6807 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6808 struct btrfs_file_extent_item
*item
;
6809 struct extent_buffer
*leaf
;
6810 struct btrfs_key found_key
;
6811 struct extent_map
*em
= NULL
;
6812 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
6813 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6814 struct btrfs_trans_handle
*trans
= NULL
;
6815 const bool new_inline
= !page
|| create
;
6818 read_lock(&em_tree
->lock
);
6819 em
= lookup_extent_mapping(em_tree
, start
, len
);
6821 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6822 read_unlock(&em_tree
->lock
);
6825 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6826 free_extent_map(em
);
6827 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6828 free_extent_map(em
);
6832 em
= alloc_extent_map();
6837 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6838 em
->start
= EXTENT_MAP_HOLE
;
6839 em
->orig_start
= EXTENT_MAP_HOLE
;
6841 em
->block_len
= (u64
)-1;
6844 path
= btrfs_alloc_path();
6850 * Chances are we'll be called again, so go ahead and do
6853 path
->reada
= READA_FORWARD
;
6856 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
6857 objectid
, start
, trans
!= NULL
);
6864 if (path
->slots
[0] == 0)
6869 leaf
= path
->nodes
[0];
6870 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6871 struct btrfs_file_extent_item
);
6872 /* are we inside the extent that was found? */
6873 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6874 found_type
= found_key
.type
;
6875 if (found_key
.objectid
!= objectid
||
6876 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
6878 * If we backup past the first extent we want to move forward
6879 * and see if there is an extent in front of us, otherwise we'll
6880 * say there is a hole for our whole search range which can
6887 found_type
= btrfs_file_extent_type(leaf
, item
);
6888 extent_start
= found_key
.offset
;
6889 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6890 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6891 extent_end
= extent_start
+
6892 btrfs_file_extent_num_bytes(leaf
, item
);
6893 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6895 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6896 extent_end
= ALIGN(extent_start
+ size
,
6897 fs_info
->sectorsize
);
6900 if (start
>= extent_end
) {
6902 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6903 ret
= btrfs_next_leaf(root
, path
);
6910 leaf
= path
->nodes
[0];
6912 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6913 if (found_key
.objectid
!= objectid
||
6914 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6916 if (start
+ len
<= found_key
.offset
)
6918 if (start
> found_key
.offset
)
6921 em
->orig_start
= start
;
6922 em
->len
= found_key
.offset
- start
;
6926 btrfs_extent_item_to_extent_map(inode
, path
, item
, new_inline
, em
);
6928 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6929 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6931 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6935 size_t extent_offset
;
6941 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6942 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6943 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
6944 size
- extent_offset
);
6945 em
->start
= extent_start
+ extent_offset
;
6946 em
->len
= ALIGN(copy_size
, fs_info
->sectorsize
);
6947 em
->orig_block_len
= em
->len
;
6948 em
->orig_start
= em
->start
;
6949 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6950 if (create
== 0 && !PageUptodate(page
)) {
6951 if (btrfs_file_extent_compression(leaf
, item
) !=
6952 BTRFS_COMPRESS_NONE
) {
6953 ret
= uncompress_inline(path
, page
, pg_offset
,
6954 extent_offset
, item
);
6961 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6963 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
6964 memset(map
+ pg_offset
+ copy_size
, 0,
6965 PAGE_SIZE
- pg_offset
-
6970 flush_dcache_page(page
);
6971 } else if (create
&& PageUptodate(page
)) {
6975 free_extent_map(em
);
6978 btrfs_release_path(path
);
6979 trans
= btrfs_join_transaction(root
);
6982 return ERR_CAST(trans
);
6986 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6989 btrfs_mark_buffer_dirty(leaf
);
6991 set_extent_uptodate(io_tree
, em
->start
,
6992 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
6997 em
->orig_start
= start
;
7000 em
->block_start
= EXTENT_MAP_HOLE
;
7001 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
7003 btrfs_release_path(path
);
7004 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
7006 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7007 em
->start
, em
->len
, start
, len
);
7013 write_lock(&em_tree
->lock
);
7014 ret
= add_extent_mapping(em_tree
, em
, 0);
7015 /* it is possible that someone inserted the extent into the tree
7016 * while we had the lock dropped. It is also possible that
7017 * an overlapping map exists in the tree
7019 if (ret
== -EEXIST
) {
7020 struct extent_map
*existing
;
7024 existing
= search_extent_mapping(em_tree
, start
, len
);
7026 * existing will always be non-NULL, since there must be
7027 * extent causing the -EEXIST.
7029 if (existing
->start
== em
->start
&&
7030 extent_map_end(existing
) >= extent_map_end(em
) &&
7031 em
->block_start
== existing
->block_start
) {
7033 * The existing extent map already encompasses the
7034 * entire extent map we tried to add.
7036 free_extent_map(em
);
7040 } else if (start
>= extent_map_end(existing
) ||
7041 start
<= existing
->start
) {
7043 * The existing extent map is the one nearest to
7044 * the [start, start + len) range which overlaps
7046 err
= merge_extent_mapping(em_tree
, existing
,
7048 free_extent_map(existing
);
7050 free_extent_map(em
);
7054 free_extent_map(em
);
7059 write_unlock(&em_tree
->lock
);
7062 trace_btrfs_get_extent(root
, em
);
7064 btrfs_free_path(path
);
7066 ret
= btrfs_end_transaction(trans
);
7071 free_extent_map(em
);
7072 return ERR_PTR(err
);
7074 BUG_ON(!em
); /* Error is always set */
7078 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
7079 size_t pg_offset
, u64 start
, u64 len
,
7082 struct extent_map
*em
;
7083 struct extent_map
*hole_em
= NULL
;
7084 u64 range_start
= start
;
7090 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
7097 * - a pre-alloc extent,
7098 * there might actually be delalloc bytes behind it.
7100 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
7101 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7107 /* check to see if we've wrapped (len == -1 or similar) */
7116 /* ok, we didn't find anything, lets look for delalloc */
7117 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
7118 end
, len
, EXTENT_DELALLOC
, 1);
7119 found_end
= range_start
+ found
;
7120 if (found_end
< range_start
)
7121 found_end
= (u64
)-1;
7124 * we didn't find anything useful, return
7125 * the original results from get_extent()
7127 if (range_start
> end
|| found_end
<= start
) {
7133 /* adjust the range_start to make sure it doesn't
7134 * go backwards from the start they passed in
7136 range_start
= max(start
, range_start
);
7137 found
= found_end
- range_start
;
7140 u64 hole_start
= start
;
7143 em
= alloc_extent_map();
7149 * when btrfs_get_extent can't find anything it
7150 * returns one huge hole
7152 * make sure what it found really fits our range, and
7153 * adjust to make sure it is based on the start from
7157 u64 calc_end
= extent_map_end(hole_em
);
7159 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
7160 free_extent_map(hole_em
);
7163 hole_start
= max(hole_em
->start
, start
);
7164 hole_len
= calc_end
- hole_start
;
7168 if (hole_em
&& range_start
> hole_start
) {
7169 /* our hole starts before our delalloc, so we
7170 * have to return just the parts of the hole
7171 * that go until the delalloc starts
7173 em
->len
= min(hole_len
,
7174 range_start
- hole_start
);
7175 em
->start
= hole_start
;
7176 em
->orig_start
= hole_start
;
7178 * don't adjust block start at all,
7179 * it is fixed at EXTENT_MAP_HOLE
7181 em
->block_start
= hole_em
->block_start
;
7182 em
->block_len
= hole_len
;
7183 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
7184 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7186 em
->start
= range_start
;
7188 em
->orig_start
= range_start
;
7189 em
->block_start
= EXTENT_MAP_DELALLOC
;
7190 em
->block_len
= found
;
7192 } else if (hole_em
) {
7197 free_extent_map(hole_em
);
7199 free_extent_map(em
);
7200 return ERR_PTR(err
);
7205 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
7208 const u64 orig_start
,
7209 const u64 block_start
,
7210 const u64 block_len
,
7211 const u64 orig_block_len
,
7212 const u64 ram_bytes
,
7215 struct extent_map
*em
= NULL
;
7218 down_read(&BTRFS_I(inode
)->dio_sem
);
7219 if (type
!= BTRFS_ORDERED_NOCOW
) {
7220 em
= create_pinned_em(inode
, start
, len
, orig_start
,
7221 block_start
, block_len
, orig_block_len
,
7226 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
7227 len
, block_len
, type
);
7230 free_extent_map(em
);
7231 btrfs_drop_extent_cache(inode
, start
,
7232 start
+ len
- 1, 0);
7237 up_read(&BTRFS_I(inode
)->dio_sem
);
7242 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
7245 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7246 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7247 struct extent_map
*em
;
7248 struct btrfs_key ins
;
7252 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7253 ret
= btrfs_reserve_extent(root
, len
, len
, fs_info
->sectorsize
,
7254 0, alloc_hint
, &ins
, 1, 1);
7256 return ERR_PTR(ret
);
7258 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
7259 ins
.objectid
, ins
.offset
, ins
.offset
,
7261 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
7263 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
7270 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7271 * block must be cow'd
7273 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7274 u64
*orig_start
, u64
*orig_block_len
,
7277 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7278 struct btrfs_trans_handle
*trans
;
7279 struct btrfs_path
*path
;
7281 struct extent_buffer
*leaf
;
7282 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7283 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7284 struct btrfs_file_extent_item
*fi
;
7285 struct btrfs_key key
;
7292 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7294 path
= btrfs_alloc_path();
7298 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, btrfs_ino(inode
),
7303 slot
= path
->slots
[0];
7306 /* can't find the item, must cow */
7313 leaf
= path
->nodes
[0];
7314 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7315 if (key
.objectid
!= btrfs_ino(inode
) ||
7316 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7317 /* not our file or wrong item type, must cow */
7321 if (key
.offset
> offset
) {
7322 /* Wrong offset, must cow */
7326 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7327 found_type
= btrfs_file_extent_type(leaf
, fi
);
7328 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7329 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7330 /* not a regular extent, must cow */
7334 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7337 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7338 if (extent_end
<= offset
)
7341 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7342 if (disk_bytenr
== 0)
7345 if (btrfs_file_extent_compression(leaf
, fi
) ||
7346 btrfs_file_extent_encryption(leaf
, fi
) ||
7347 btrfs_file_extent_other_encoding(leaf
, fi
))
7350 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7353 *orig_start
= key
.offset
- backref_offset
;
7354 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7355 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7358 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
7361 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7362 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7365 range_end
= round_up(offset
+ num_bytes
,
7366 root
->fs_info
->sectorsize
) - 1;
7367 ret
= test_range_bit(io_tree
, offset
, range_end
,
7368 EXTENT_DELALLOC
, 0, NULL
);
7375 btrfs_release_path(path
);
7378 * look for other files referencing this extent, if we
7379 * find any we must cow
7381 trans
= btrfs_join_transaction(root
);
7382 if (IS_ERR(trans
)) {
7387 ret
= btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
7388 key
.offset
- backref_offset
, disk_bytenr
);
7389 btrfs_end_transaction(trans
);
7396 * adjust disk_bytenr and num_bytes to cover just the bytes
7397 * in this extent we are about to write. If there
7398 * are any csums in that range we have to cow in order
7399 * to keep the csums correct
7401 disk_bytenr
+= backref_offset
;
7402 disk_bytenr
+= offset
- key
.offset
;
7403 if (csum_exist_in_range(fs_info
, disk_bytenr
, num_bytes
))
7406 * all of the above have passed, it is safe to overwrite this extent
7412 btrfs_free_path(path
);
7416 bool btrfs_page_exists_in_range(struct inode
*inode
, loff_t start
, loff_t end
)
7418 struct radix_tree_root
*root
= &inode
->i_mapping
->page_tree
;
7420 void **pagep
= NULL
;
7421 struct page
*page
= NULL
;
7425 start_idx
= start
>> PAGE_SHIFT
;
7428 * end is the last byte in the last page. end == start is legal
7430 end_idx
= end
>> PAGE_SHIFT
;
7434 /* Most of the code in this while loop is lifted from
7435 * find_get_page. It's been modified to begin searching from a
7436 * page and return just the first page found in that range. If the
7437 * found idx is less than or equal to the end idx then we know that
7438 * a page exists. If no pages are found or if those pages are
7439 * outside of the range then we're fine (yay!) */
7440 while (page
== NULL
&&
7441 radix_tree_gang_lookup_slot(root
, &pagep
, NULL
, start_idx
, 1)) {
7442 page
= radix_tree_deref_slot(pagep
);
7443 if (unlikely(!page
))
7446 if (radix_tree_exception(page
)) {
7447 if (radix_tree_deref_retry(page
)) {
7452 * Otherwise, shmem/tmpfs must be storing a swap entry
7453 * here as an exceptional entry: so return it without
7454 * attempting to raise page count.
7457 break; /* TODO: Is this relevant for this use case? */
7460 if (!page_cache_get_speculative(page
)) {
7466 * Has the page moved?
7467 * This is part of the lockless pagecache protocol. See
7468 * include/linux/pagemap.h for details.
7470 if (unlikely(page
!= *pagep
)) {
7477 if (page
->index
<= end_idx
)
7486 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7487 struct extent_state
**cached_state
, int writing
)
7489 struct btrfs_ordered_extent
*ordered
;
7493 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7496 * We're concerned with the entire range that we're going to be
7497 * doing DIO to, so we need to make sure there's no ordered
7498 * extents in this range.
7500 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
7501 lockend
- lockstart
+ 1);
7504 * We need to make sure there are no buffered pages in this
7505 * range either, we could have raced between the invalidate in
7506 * generic_file_direct_write and locking the extent. The
7507 * invalidate needs to happen so that reads after a write do not
7512 !btrfs_page_exists_in_range(inode
, lockstart
, lockend
)))
7515 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7516 cached_state
, GFP_NOFS
);
7520 * If we are doing a DIO read and the ordered extent we
7521 * found is for a buffered write, we can not wait for it
7522 * to complete and retry, because if we do so we can
7523 * deadlock with concurrent buffered writes on page
7524 * locks. This happens only if our DIO read covers more
7525 * than one extent map, if at this point has already
7526 * created an ordered extent for a previous extent map
7527 * and locked its range in the inode's io tree, and a
7528 * concurrent write against that previous extent map's
7529 * range and this range started (we unlock the ranges
7530 * in the io tree only when the bios complete and
7531 * buffered writes always lock pages before attempting
7532 * to lock range in the io tree).
7535 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7536 btrfs_start_ordered_extent(inode
, ordered
, 1);
7539 btrfs_put_ordered_extent(ordered
);
7542 * We could trigger writeback for this range (and wait
7543 * for it to complete) and then invalidate the pages for
7544 * this range (through invalidate_inode_pages2_range()),
7545 * but that can lead us to a deadlock with a concurrent
7546 * call to readpages() (a buffered read or a defrag call
7547 * triggered a readahead) on a page lock due to an
7548 * ordered dio extent we created before but did not have
7549 * yet a corresponding bio submitted (whence it can not
7550 * complete), which makes readpages() wait for that
7551 * ordered extent to complete while holding a lock on
7566 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
7567 u64 len
, u64 orig_start
,
7568 u64 block_start
, u64 block_len
,
7569 u64 orig_block_len
, u64 ram_bytes
,
7572 struct extent_map_tree
*em_tree
;
7573 struct extent_map
*em
;
7574 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7577 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7578 em
= alloc_extent_map();
7580 return ERR_PTR(-ENOMEM
);
7583 em
->orig_start
= orig_start
;
7584 em
->mod_start
= start
;
7587 em
->block_len
= block_len
;
7588 em
->block_start
= block_start
;
7589 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7590 em
->orig_block_len
= orig_block_len
;
7591 em
->ram_bytes
= ram_bytes
;
7592 em
->generation
= -1;
7593 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7594 if (type
== BTRFS_ORDERED_PREALLOC
)
7595 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7598 btrfs_drop_extent_cache(inode
, em
->start
,
7599 em
->start
+ em
->len
- 1, 0);
7600 write_lock(&em_tree
->lock
);
7601 ret
= add_extent_mapping(em_tree
, em
, 1);
7602 write_unlock(&em_tree
->lock
);
7603 } while (ret
== -EEXIST
);
7606 free_extent_map(em
);
7607 return ERR_PTR(ret
);
7613 static void adjust_dio_outstanding_extents(struct inode
*inode
,
7614 struct btrfs_dio_data
*dio_data
,
7617 unsigned num_extents
;
7619 num_extents
= (unsigned) div64_u64(len
+ BTRFS_MAX_EXTENT_SIZE
- 1,
7620 BTRFS_MAX_EXTENT_SIZE
);
7622 * If we have an outstanding_extents count still set then we're
7623 * within our reservation, otherwise we need to adjust our inode
7624 * counter appropriately.
7626 if (dio_data
->outstanding_extents
) {
7627 dio_data
->outstanding_extents
-= num_extents
;
7629 spin_lock(&BTRFS_I(inode
)->lock
);
7630 BTRFS_I(inode
)->outstanding_extents
+= num_extents
;
7631 spin_unlock(&BTRFS_I(inode
)->lock
);
7635 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7636 struct buffer_head
*bh_result
, int create
)
7638 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7639 struct extent_map
*em
;
7640 struct extent_state
*cached_state
= NULL
;
7641 struct btrfs_dio_data
*dio_data
= NULL
;
7642 u64 start
= iblock
<< inode
->i_blkbits
;
7643 u64 lockstart
, lockend
;
7644 u64 len
= bh_result
->b_size
;
7645 int unlock_bits
= EXTENT_LOCKED
;
7649 unlock_bits
|= EXTENT_DIRTY
;
7651 len
= min_t(u64
, len
, fs_info
->sectorsize
);
7654 lockend
= start
+ len
- 1;
7656 if (current
->journal_info
) {
7658 * Need to pull our outstanding extents and set journal_info to NULL so
7659 * that anything that needs to check if there's a transaction doesn't get
7662 dio_data
= current
->journal_info
;
7663 current
->journal_info
= NULL
;
7667 * If this errors out it's because we couldn't invalidate pagecache for
7668 * this range and we need to fallback to buffered.
7670 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7676 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
7683 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7684 * io. INLINE is special, and we could probably kludge it in here, but
7685 * it's still buffered so for safety lets just fall back to the generic
7688 * For COMPRESSED we _have_ to read the entire extent in so we can
7689 * decompress it, so there will be buffering required no matter what we
7690 * do, so go ahead and fallback to buffered.
7692 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7693 * to buffered IO. Don't blame me, this is the price we pay for using
7696 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7697 em
->block_start
== EXTENT_MAP_INLINE
) {
7698 free_extent_map(em
);
7703 /* Just a good old fashioned hole, return */
7704 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
7705 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
7706 free_extent_map(em
);
7711 * We don't allocate a new extent in the following cases
7713 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7715 * 2) The extent is marked as PREALLOC. We're good to go here and can
7716 * just use the extent.
7720 len
= min(len
, em
->len
- (start
- em
->start
));
7721 lockstart
= start
+ len
;
7725 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7726 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7727 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7729 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7731 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7732 type
= BTRFS_ORDERED_PREALLOC
;
7734 type
= BTRFS_ORDERED_NOCOW
;
7735 len
= min(len
, em
->len
- (start
- em
->start
));
7736 block_start
= em
->block_start
+ (start
- em
->start
);
7738 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7739 &orig_block_len
, &ram_bytes
) == 1 &&
7740 btrfs_inc_nocow_writers(fs_info
, block_start
)) {
7741 struct extent_map
*em2
;
7743 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7744 orig_start
, block_start
,
7745 len
, orig_block_len
,
7747 btrfs_dec_nocow_writers(fs_info
, block_start
);
7748 if (type
== BTRFS_ORDERED_PREALLOC
) {
7749 free_extent_map(em
);
7752 if (em2
&& IS_ERR(em2
)) {
7757 * For inode marked NODATACOW or extent marked PREALLOC,
7758 * use the existing or preallocated extent, so does not
7759 * need to adjust btrfs_space_info's bytes_may_use.
7761 btrfs_free_reserved_data_space_noquota(inode
,
7768 * this will cow the extent, reset the len in case we changed
7771 len
= bh_result
->b_size
;
7772 free_extent_map(em
);
7773 em
= btrfs_new_extent_direct(inode
, start
, len
);
7778 len
= min(len
, em
->len
- (start
- em
->start
));
7780 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7782 bh_result
->b_size
= len
;
7783 bh_result
->b_bdev
= em
->bdev
;
7784 set_buffer_mapped(bh_result
);
7786 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7787 set_buffer_new(bh_result
);
7790 * Need to update the i_size under the extent lock so buffered
7791 * readers will get the updated i_size when we unlock.
7793 if (start
+ len
> i_size_read(inode
))
7794 i_size_write(inode
, start
+ len
);
7796 adjust_dio_outstanding_extents(inode
, dio_data
, len
);
7797 WARN_ON(dio_data
->reserve
< len
);
7798 dio_data
->reserve
-= len
;
7799 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7800 current
->journal_info
= dio_data
;
7804 * In the case of write we need to clear and unlock the entire range,
7805 * in the case of read we need to unlock only the end area that we
7806 * aren't using if there is any left over space.
7808 if (lockstart
< lockend
) {
7809 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
7810 lockend
, unlock_bits
, 1, 0,
7811 &cached_state
, GFP_NOFS
);
7813 free_extent_state(cached_state
);
7816 free_extent_map(em
);
7821 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7822 unlock_bits
, 1, 0, &cached_state
, GFP_NOFS
);
7825 current
->journal_info
= dio_data
;
7827 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7828 * write less data then expected, so that we don't underflow our inode's
7829 * outstanding extents counter.
7831 if (create
&& dio_data
)
7832 adjust_dio_outstanding_extents(inode
, dio_data
, len
);
7837 static inline int submit_dio_repair_bio(struct inode
*inode
, struct bio
*bio
,
7840 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7843 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7847 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DIO_REPAIR
);
7851 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
7857 static int btrfs_check_dio_repairable(struct inode
*inode
,
7858 struct bio
*failed_bio
,
7859 struct io_failure_record
*failrec
,
7862 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7865 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
7866 if (num_copies
== 1) {
7868 * we only have a single copy of the data, so don't bother with
7869 * all the retry and error correction code that follows. no
7870 * matter what the error is, it is very likely to persist.
7872 btrfs_debug(fs_info
,
7873 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7874 num_copies
, failrec
->this_mirror
, failed_mirror
);
7878 failrec
->failed_mirror
= failed_mirror
;
7879 failrec
->this_mirror
++;
7880 if (failrec
->this_mirror
== failed_mirror
)
7881 failrec
->this_mirror
++;
7883 if (failrec
->this_mirror
> num_copies
) {
7884 btrfs_debug(fs_info
,
7885 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7886 num_copies
, failrec
->this_mirror
, failed_mirror
);
7893 static int dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
7894 struct page
*page
, unsigned int pgoff
,
7895 u64 start
, u64 end
, int failed_mirror
,
7896 bio_end_io_t
*repair_endio
, void *repair_arg
)
7898 struct io_failure_record
*failrec
;
7904 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
7906 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
7910 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
7913 free_io_failure(inode
, failrec
);
7917 if ((failed_bio
->bi_vcnt
> 1)
7918 || (failed_bio
->bi_io_vec
->bv_len
7919 > btrfs_inode_sectorsize(inode
)))
7920 read_mode
|= REQ_FAILFAST_DEV
;
7922 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
7923 isector
>>= inode
->i_sb
->s_blocksize_bits
;
7924 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
7925 pgoff
, isector
, repair_endio
, repair_arg
);
7927 free_io_failure(inode
, failrec
);
7930 bio_set_op_attrs(bio
, REQ_OP_READ
, read_mode
);
7932 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
7933 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7934 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
7936 ret
= submit_dio_repair_bio(inode
, bio
, failrec
->this_mirror
);
7938 free_io_failure(inode
, failrec
);
7945 struct btrfs_retry_complete
{
7946 struct completion done
;
7947 struct inode
*inode
;
7952 static void btrfs_retry_endio_nocsum(struct bio
*bio
)
7954 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7955 struct inode
*inode
;
7956 struct bio_vec
*bvec
;
7962 ASSERT(bio
->bi_vcnt
== 1);
7963 inode
= bio
->bi_io_vec
->bv_page
->mapping
->host
;
7964 ASSERT(bio
->bi_io_vec
->bv_len
== btrfs_inode_sectorsize(inode
));
7967 bio_for_each_segment_all(bvec
, bio
, i
)
7968 clean_io_failure(done
->inode
, done
->start
, bvec
->bv_page
, 0);
7970 complete(&done
->done
);
7974 static int __btrfs_correct_data_nocsum(struct inode
*inode
,
7975 struct btrfs_io_bio
*io_bio
)
7977 struct btrfs_fs_info
*fs_info
;
7978 struct bio_vec
*bvec
;
7979 struct btrfs_retry_complete done
;
7987 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7988 sectorsize
= fs_info
->sectorsize
;
7990 start
= io_bio
->logical
;
7993 bio_for_each_segment_all(bvec
, &io_bio
->bio
, i
) {
7994 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
->bv_len
);
7995 pgoff
= bvec
->bv_offset
;
7997 next_block_or_try_again
:
8000 init_completion(&done
.done
);
8002 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
->bv_page
,
8003 pgoff
, start
, start
+ sectorsize
- 1,
8005 btrfs_retry_endio_nocsum
, &done
);
8009 wait_for_completion(&done
.done
);
8011 if (!done
.uptodate
) {
8012 /* We might have another mirror, so try again */
8013 goto next_block_or_try_again
;
8016 start
+= sectorsize
;
8019 pgoff
+= sectorsize
;
8020 goto next_block_or_try_again
;
8027 static void btrfs_retry_endio(struct bio
*bio
)
8029 struct btrfs_retry_complete
*done
= bio
->bi_private
;
8030 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8031 struct inode
*inode
;
8032 struct bio_vec
*bvec
;
8043 start
= done
->start
;
8045 ASSERT(bio
->bi_vcnt
== 1);
8046 inode
= bio
->bi_io_vec
->bv_page
->mapping
->host
;
8047 ASSERT(bio
->bi_io_vec
->bv_len
== btrfs_inode_sectorsize(inode
));
8049 bio_for_each_segment_all(bvec
, bio
, i
) {
8050 ret
= __readpage_endio_check(done
->inode
, io_bio
, i
,
8051 bvec
->bv_page
, bvec
->bv_offset
,
8052 done
->start
, bvec
->bv_len
);
8054 clean_io_failure(done
->inode
, done
->start
,
8055 bvec
->bv_page
, bvec
->bv_offset
);
8060 done
->uptodate
= uptodate
;
8062 complete(&done
->done
);
8066 static int __btrfs_subio_endio_read(struct inode
*inode
,
8067 struct btrfs_io_bio
*io_bio
, int err
)
8069 struct btrfs_fs_info
*fs_info
;
8070 struct bio_vec
*bvec
;
8071 struct btrfs_retry_complete done
;
8081 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
8082 sectorsize
= fs_info
->sectorsize
;
8085 start
= io_bio
->logical
;
8088 bio_for_each_segment_all(bvec
, &io_bio
->bio
, i
) {
8089 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
->bv_len
);
8091 pgoff
= bvec
->bv_offset
;
8093 csum_pos
= BTRFS_BYTES_TO_BLKS(fs_info
, offset
);
8094 ret
= __readpage_endio_check(inode
, io_bio
, csum_pos
,
8095 bvec
->bv_page
, pgoff
, start
,
8102 init_completion(&done
.done
);
8104 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
->bv_page
,
8105 pgoff
, start
, start
+ sectorsize
- 1,
8107 btrfs_retry_endio
, &done
);
8113 wait_for_completion(&done
.done
);
8115 if (!done
.uptodate
) {
8116 /* We might have another mirror, so try again */
8120 offset
+= sectorsize
;
8121 start
+= sectorsize
;
8126 pgoff
+= sectorsize
;
8134 static int btrfs_subio_endio_read(struct inode
*inode
,
8135 struct btrfs_io_bio
*io_bio
, int err
)
8137 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8141 return __btrfs_correct_data_nocsum(inode
, io_bio
);
8145 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
8149 static void btrfs_endio_direct_read(struct bio
*bio
)
8151 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8152 struct inode
*inode
= dip
->inode
;
8153 struct bio
*dio_bio
;
8154 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8155 int err
= bio
->bi_error
;
8157 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
8158 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
8160 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
8161 dip
->logical_offset
+ dip
->bytes
- 1);
8162 dio_bio
= dip
->dio_bio
;
8166 dio_bio
->bi_error
= bio
->bi_error
;
8167 dio_end_io(dio_bio
, bio
->bi_error
);
8170 io_bio
->end_io(io_bio
, err
);
8174 static void btrfs_endio_direct_write_update_ordered(struct inode
*inode
,
8179 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8180 struct btrfs_ordered_extent
*ordered
= NULL
;
8181 u64 ordered_offset
= offset
;
8182 u64 ordered_bytes
= bytes
;
8186 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
8193 btrfs_init_work(&ordered
->work
, btrfs_endio_write_helper
,
8194 finish_ordered_fn
, NULL
, NULL
);
8195 btrfs_queue_work(fs_info
->endio_write_workers
, &ordered
->work
);
8198 * our bio might span multiple ordered extents. If we haven't
8199 * completed the accounting for the whole dio, go back and try again
8201 if (ordered_offset
< offset
+ bytes
) {
8202 ordered_bytes
= offset
+ bytes
- ordered_offset
;
8208 static void btrfs_endio_direct_write(struct bio
*bio
)
8210 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8211 struct bio
*dio_bio
= dip
->dio_bio
;
8213 btrfs_endio_direct_write_update_ordered(dip
->inode
,
8214 dip
->logical_offset
,
8220 dio_bio
->bi_error
= bio
->bi_error
;
8221 dio_end_io(dio_bio
, bio
->bi_error
);
8225 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
,
8226 struct bio
*bio
, int mirror_num
,
8227 unsigned long bio_flags
, u64 offset
)
8230 ret
= btrfs_csum_one_bio(inode
, bio
, offset
, 1);
8231 BUG_ON(ret
); /* -ENOMEM */
8235 static void btrfs_end_dio_bio(struct bio
*bio
)
8237 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8238 int err
= bio
->bi_error
;
8241 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
8242 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8243 btrfs_ino(dip
->inode
), bio_op(bio
), bio
->bi_opf
,
8244 (unsigned long long)bio
->bi_iter
.bi_sector
,
8245 bio
->bi_iter
.bi_size
, err
);
8247 if (dip
->subio_endio
)
8248 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
8254 * before atomic variable goto zero, we must make sure
8255 * dip->errors is perceived to be set.
8257 smp_mb__before_atomic();
8260 /* if there are more bios still pending for this dio, just exit */
8261 if (!atomic_dec_and_test(&dip
->pending_bios
))
8265 bio_io_error(dip
->orig_bio
);
8267 dip
->dio_bio
->bi_error
= 0;
8268 bio_endio(dip
->orig_bio
);
8274 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
8275 u64 first_sector
, gfp_t gfp_flags
)
8278 bio
= btrfs_bio_alloc(bdev
, first_sector
, BIO_MAX_PAGES
, gfp_flags
);
8280 bio_associate_current(bio
);
8284 static inline int btrfs_lookup_and_bind_dio_csum(struct inode
*inode
,
8285 struct btrfs_dio_private
*dip
,
8289 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8290 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
8294 * We load all the csum data we need when we submit
8295 * the first bio to reduce the csum tree search and
8298 if (dip
->logical_offset
== file_offset
) {
8299 ret
= btrfs_lookup_bio_sums_dio(inode
, dip
->orig_bio
,
8305 if (bio
== dip
->orig_bio
)
8308 file_offset
-= dip
->logical_offset
;
8309 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
8310 io_bio
->csum
= (u8
*)(((u32
*)orig_io_bio
->csum
) + file_offset
);
8315 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
8316 u64 file_offset
, int skip_sum
,
8319 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8320 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8321 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
8325 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
8330 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
8338 if (write
&& async_submit
) {
8339 ret
= btrfs_wq_submit_bio(fs_info
, inode
, bio
, 0, 0,
8341 __btrfs_submit_bio_start_direct_io
,
8342 __btrfs_submit_bio_done
);
8346 * If we aren't doing async submit, calculate the csum of the
8349 ret
= btrfs_csum_one_bio(inode
, bio
, file_offset
, 1);
8353 ret
= btrfs_lookup_and_bind_dio_csum(inode
, dip
, bio
,
8359 ret
= btrfs_map_bio(fs_info
, bio
, 0, async_submit
);
8365 static int btrfs_submit_direct_hook(struct btrfs_dio_private
*dip
,
8368 struct inode
*inode
= dip
->inode
;
8369 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8370 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8372 struct bio
*orig_bio
= dip
->orig_bio
;
8373 struct bio_vec
*bvec
;
8374 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
8375 u64 file_offset
= dip
->logical_offset
;
8378 u32 blocksize
= fs_info
->sectorsize
;
8379 int async_submit
= 0;
8384 map_length
= orig_bio
->bi_iter
.bi_size
;
8385 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
), start_sector
<< 9,
8386 &map_length
, NULL
, 0);
8390 if (map_length
>= orig_bio
->bi_iter
.bi_size
) {
8392 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
8396 /* async crcs make it difficult to collect full stripe writes. */
8397 if (btrfs_get_alloc_profile(root
, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
8402 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
8406 bio
->bi_opf
= orig_bio
->bi_opf
;
8407 bio
->bi_private
= dip
;
8408 bio
->bi_end_io
= btrfs_end_dio_bio
;
8409 btrfs_io_bio(bio
)->logical
= file_offset
;
8410 atomic_inc(&dip
->pending_bios
);
8412 bio_for_each_segment_all(bvec
, orig_bio
, j
) {
8413 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
->bv_len
);
8416 if (unlikely(map_length
< submit_len
+ blocksize
||
8417 bio_add_page(bio
, bvec
->bv_page
, blocksize
,
8418 bvec
->bv_offset
+ (i
* blocksize
)) < blocksize
)) {
8420 * inc the count before we submit the bio so
8421 * we know the end IO handler won't happen before
8422 * we inc the count. Otherwise, the dip might get freed
8423 * before we're done setting it up
8425 atomic_inc(&dip
->pending_bios
);
8426 ret
= __btrfs_submit_dio_bio(bio
, inode
,
8427 file_offset
, skip_sum
,
8431 atomic_dec(&dip
->pending_bios
);
8435 start_sector
+= submit_len
>> 9;
8436 file_offset
+= submit_len
;
8440 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
8441 start_sector
, GFP_NOFS
);
8444 bio
->bi_opf
= orig_bio
->bi_opf
;
8445 bio
->bi_private
= dip
;
8446 bio
->bi_end_io
= btrfs_end_dio_bio
;
8447 btrfs_io_bio(bio
)->logical
= file_offset
;
8449 map_length
= orig_bio
->bi_iter
.bi_size
;
8450 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
),
8452 &map_length
, NULL
, 0);
8460 submit_len
+= blocksize
;
8469 ret
= __btrfs_submit_dio_bio(bio
, inode
, file_offset
, skip_sum
,
8478 * before atomic variable goto zero, we must
8479 * make sure dip->errors is perceived to be set.
8481 smp_mb__before_atomic();
8482 if (atomic_dec_and_test(&dip
->pending_bios
))
8483 bio_io_error(dip
->orig_bio
);
8485 /* bio_end_io() will handle error, so we needn't return it */
8489 static void btrfs_submit_direct(struct bio
*dio_bio
, struct inode
*inode
,
8492 struct btrfs_dio_private
*dip
= NULL
;
8493 struct bio
*io_bio
= NULL
;
8494 struct btrfs_io_bio
*btrfs_bio
;
8496 bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
8499 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8501 io_bio
= btrfs_bio_clone(dio_bio
, GFP_NOFS
);
8507 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8513 dip
->private = dio_bio
->bi_private
;
8515 dip
->logical_offset
= file_offset
;
8516 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8517 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8518 io_bio
->bi_private
= dip
;
8519 dip
->orig_bio
= io_bio
;
8520 dip
->dio_bio
= dio_bio
;
8521 atomic_set(&dip
->pending_bios
, 0);
8522 btrfs_bio
= btrfs_io_bio(io_bio
);
8523 btrfs_bio
->logical
= file_offset
;
8526 io_bio
->bi_end_io
= btrfs_endio_direct_write
;
8528 io_bio
->bi_end_io
= btrfs_endio_direct_read
;
8529 dip
->subio_endio
= btrfs_subio_endio_read
;
8533 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8534 * even if we fail to submit a bio, because in such case we do the
8535 * corresponding error handling below and it must not be done a second
8536 * time by btrfs_direct_IO().
8539 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
8541 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
8543 dio_data
->unsubmitted_oe_range_start
=
8544 dio_data
->unsubmitted_oe_range_end
;
8547 ret
= btrfs_submit_direct_hook(dip
, skip_sum
);
8551 if (btrfs_bio
->end_io
)
8552 btrfs_bio
->end_io(btrfs_bio
, ret
);
8556 * If we arrived here it means either we failed to submit the dip
8557 * or we either failed to clone the dio_bio or failed to allocate the
8558 * dip. If we cloned the dio_bio and allocated the dip, we can just
8559 * call bio_endio against our io_bio so that we get proper resource
8560 * cleanup if we fail to submit the dip, otherwise, we must do the
8561 * same as btrfs_endio_direct_[write|read] because we can't call these
8562 * callbacks - they require an allocated dip and a clone of dio_bio.
8564 if (io_bio
&& dip
) {
8565 io_bio
->bi_error
= -EIO
;
8568 * The end io callbacks free our dip, do the final put on io_bio
8569 * and all the cleanup and final put for dio_bio (through
8576 btrfs_endio_direct_write_update_ordered(inode
,
8578 dio_bio
->bi_iter
.bi_size
,
8581 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
8582 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
8584 dio_bio
->bi_error
= -EIO
;
8586 * Releases and cleans up our dio_bio, no need to bio_put()
8587 * nor bio_endio()/bio_io_error() against dio_bio.
8589 dio_end_io(dio_bio
, ret
);
8596 static ssize_t
check_direct_IO(struct btrfs_fs_info
*fs_info
,
8598 const struct iov_iter
*iter
, loff_t offset
)
8602 unsigned int blocksize_mask
= fs_info
->sectorsize
- 1;
8603 ssize_t retval
= -EINVAL
;
8605 if (offset
& blocksize_mask
)
8608 if (iov_iter_alignment(iter
) & blocksize_mask
)
8611 /* If this is a write we don't need to check anymore */
8612 if (iov_iter_rw(iter
) != READ
|| !iter_is_iovec(iter
))
8615 * Check to make sure we don't have duplicate iov_base's in this
8616 * iovec, if so return EINVAL, otherwise we'll get csum errors
8617 * when reading back.
8619 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8620 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8621 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8630 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
8632 struct file
*file
= iocb
->ki_filp
;
8633 struct inode
*inode
= file
->f_mapping
->host
;
8634 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8635 struct btrfs_dio_data dio_data
= { 0 };
8636 loff_t offset
= iocb
->ki_pos
;
8640 bool relock
= false;
8643 if (check_direct_IO(fs_info
, iocb
, iter
, offset
))
8646 inode_dio_begin(inode
);
8647 smp_mb__after_atomic();
8650 * The generic stuff only does filemap_write_and_wait_range, which
8651 * isn't enough if we've written compressed pages to this area, so
8652 * we need to flush the dirty pages again to make absolutely sure
8653 * that any outstanding dirty pages are on disk.
8655 count
= iov_iter_count(iter
);
8656 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8657 &BTRFS_I(inode
)->runtime_flags
))
8658 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8659 offset
+ count
- 1);
8661 if (iov_iter_rw(iter
) == WRITE
) {
8663 * If the write DIO is beyond the EOF, we need update
8664 * the isize, but it is protected by i_mutex. So we can
8665 * not unlock the i_mutex at this case.
8667 if (offset
+ count
<= inode
->i_size
) {
8668 inode_unlock(inode
);
8671 ret
= btrfs_delalloc_reserve_space(inode
, offset
, count
);
8674 dio_data
.outstanding_extents
= div64_u64(count
+
8675 BTRFS_MAX_EXTENT_SIZE
- 1,
8676 BTRFS_MAX_EXTENT_SIZE
);
8679 * We need to know how many extents we reserved so that we can
8680 * do the accounting properly if we go over the number we
8681 * originally calculated. Abuse current->journal_info for this.
8683 dio_data
.reserve
= round_up(count
,
8684 fs_info
->sectorsize
);
8685 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
8686 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
8687 current
->journal_info
= &dio_data
;
8688 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8689 &BTRFS_I(inode
)->runtime_flags
)) {
8690 inode_dio_end(inode
);
8691 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8695 ret
= __blockdev_direct_IO(iocb
, inode
,
8696 fs_info
->fs_devices
->latest_bdev
,
8697 iter
, btrfs_get_blocks_direct
, NULL
,
8698 btrfs_submit_direct
, flags
);
8699 if (iov_iter_rw(iter
) == WRITE
) {
8700 current
->journal_info
= NULL
;
8701 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
8702 if (dio_data
.reserve
)
8703 btrfs_delalloc_release_space(inode
, offset
,
8706 * On error we might have left some ordered extents
8707 * without submitting corresponding bios for them, so
8708 * cleanup them up to avoid other tasks getting them
8709 * and waiting for them to complete forever.
8711 if (dio_data
.unsubmitted_oe_range_start
<
8712 dio_data
.unsubmitted_oe_range_end
)
8713 btrfs_endio_direct_write_update_ordered(inode
,
8714 dio_data
.unsubmitted_oe_range_start
,
8715 dio_data
.unsubmitted_oe_range_end
-
8716 dio_data
.unsubmitted_oe_range_start
,
8718 } else if (ret
>= 0 && (size_t)ret
< count
)
8719 btrfs_delalloc_release_space(inode
, offset
,
8720 count
- (size_t)ret
);
8724 inode_dio_end(inode
);
8731 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8733 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8734 __u64 start
, __u64 len
)
8738 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8742 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
8745 int btrfs_readpage(struct file
*file
, struct page
*page
)
8747 struct extent_io_tree
*tree
;
8748 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8749 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8752 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8754 struct extent_io_tree
*tree
;
8755 struct inode
*inode
= page
->mapping
->host
;
8758 if (current
->flags
& PF_MEMALLOC
) {
8759 redirty_page_for_writepage(wbc
, page
);
8765 * If we are under memory pressure we will call this directly from the
8766 * VM, we need to make sure we have the inode referenced for the ordered
8767 * extent. If not just return like we didn't do anything.
8769 if (!igrab(inode
)) {
8770 redirty_page_for_writepage(wbc
, page
);
8771 return AOP_WRITEPAGE_ACTIVATE
;
8773 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8774 ret
= extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
8775 btrfs_add_delayed_iput(inode
);
8779 static int btrfs_writepages(struct address_space
*mapping
,
8780 struct writeback_control
*wbc
)
8782 struct extent_io_tree
*tree
;
8784 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8785 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
8789 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8790 struct list_head
*pages
, unsigned nr_pages
)
8792 struct extent_io_tree
*tree
;
8793 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8794 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
8797 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8799 struct extent_io_tree
*tree
;
8800 struct extent_map_tree
*map
;
8803 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8804 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
8805 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
8807 ClearPagePrivate(page
);
8808 set_page_private(page
, 0);
8814 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8816 if (PageWriteback(page
) || PageDirty(page
))
8818 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
8821 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8822 unsigned int length
)
8824 struct inode
*inode
= page
->mapping
->host
;
8825 struct extent_io_tree
*tree
;
8826 struct btrfs_ordered_extent
*ordered
;
8827 struct extent_state
*cached_state
= NULL
;
8828 u64 page_start
= page_offset(page
);
8829 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8832 int inode_evicting
= inode
->i_state
& I_FREEING
;
8835 * we have the page locked, so new writeback can't start,
8836 * and the dirty bit won't be cleared while we are here.
8838 * Wait for IO on this page so that we can safely clear
8839 * the PagePrivate2 bit and do ordered accounting
8841 wait_on_page_writeback(page
);
8843 tree
= &BTRFS_I(inode
)->io_tree
;
8845 btrfs_releasepage(page
, GFP_NOFS
);
8849 if (!inode_evicting
)
8850 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8853 ordered
= btrfs_lookup_ordered_range(inode
, start
,
8854 page_end
- start
+ 1);
8856 end
= min(page_end
, ordered
->file_offset
+ ordered
->len
- 1);
8858 * IO on this page will never be started, so we need
8859 * to account for any ordered extents now
8861 if (!inode_evicting
)
8862 clear_extent_bit(tree
, start
, end
,
8863 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8864 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8865 EXTENT_DEFRAG
, 1, 0, &cached_state
,
8868 * whoever cleared the private bit is responsible
8869 * for the finish_ordered_io
8871 if (TestClearPagePrivate2(page
)) {
8872 struct btrfs_ordered_inode_tree
*tree
;
8875 tree
= &BTRFS_I(inode
)->ordered_tree
;
8877 spin_lock_irq(&tree
->lock
);
8878 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8879 new_len
= start
- ordered
->file_offset
;
8880 if (new_len
< ordered
->truncated_len
)
8881 ordered
->truncated_len
= new_len
;
8882 spin_unlock_irq(&tree
->lock
);
8884 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8886 end
- start
+ 1, 1))
8887 btrfs_finish_ordered_io(ordered
);
8889 btrfs_put_ordered_extent(ordered
);
8890 if (!inode_evicting
) {
8891 cached_state
= NULL
;
8892 lock_extent_bits(tree
, start
, end
,
8897 if (start
< page_end
)
8902 * Qgroup reserved space handler
8903 * Page here will be either
8904 * 1) Already written to disk
8905 * In this case, its reserved space is released from data rsv map
8906 * and will be freed by delayed_ref handler finally.
8907 * So even we call qgroup_free_data(), it won't decrease reserved
8909 * 2) Not written to disk
8910 * This means the reserved space should be freed here. However,
8911 * if a truncate invalidates the page (by clearing PageDirty)
8912 * and the page is accounted for while allocating extent
8913 * in btrfs_check_data_free_space() we let delayed_ref to
8914 * free the entire extent.
8916 if (PageDirty(page
))
8917 btrfs_qgroup_free_data(inode
, page_start
, PAGE_SIZE
);
8918 if (!inode_evicting
) {
8919 clear_extent_bit(tree
, page_start
, page_end
,
8920 EXTENT_LOCKED
| EXTENT_DIRTY
|
8921 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
8922 EXTENT_DEFRAG
, 1, 1,
8923 &cached_state
, GFP_NOFS
);
8925 __btrfs_releasepage(page
, GFP_NOFS
);
8928 ClearPageChecked(page
);
8929 if (PagePrivate(page
)) {
8930 ClearPagePrivate(page
);
8931 set_page_private(page
, 0);
8937 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8938 * called from a page fault handler when a page is first dirtied. Hence we must
8939 * be careful to check for EOF conditions here. We set the page up correctly
8940 * for a written page which means we get ENOSPC checking when writing into
8941 * holes and correct delalloc and unwritten extent mapping on filesystems that
8942 * support these features.
8944 * We are not allowed to take the i_mutex here so we have to play games to
8945 * protect against truncate races as the page could now be beyond EOF. Because
8946 * vmtruncate() writes the inode size before removing pages, once we have the
8947 * page lock we can determine safely if the page is beyond EOF. If it is not
8948 * beyond EOF, then the page is guaranteed safe against truncation until we
8951 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
8953 struct page
*page
= vmf
->page
;
8954 struct inode
*inode
= file_inode(vma
->vm_file
);
8955 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8956 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8957 struct btrfs_ordered_extent
*ordered
;
8958 struct extent_state
*cached_state
= NULL
;
8960 unsigned long zero_start
;
8969 reserved_space
= PAGE_SIZE
;
8971 sb_start_pagefault(inode
->i_sb
);
8972 page_start
= page_offset(page
);
8973 page_end
= page_start
+ PAGE_SIZE
- 1;
8977 * Reserving delalloc space after obtaining the page lock can lead to
8978 * deadlock. For example, if a dirty page is locked by this function
8979 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8980 * dirty page write out, then the btrfs_writepage() function could
8981 * end up waiting indefinitely to get a lock on the page currently
8982 * being processed by btrfs_page_mkwrite() function.
8984 ret
= btrfs_delalloc_reserve_space(inode
, page_start
,
8987 ret
= file_update_time(vma
->vm_file
);
8993 else /* -ENOSPC, -EIO, etc */
8994 ret
= VM_FAULT_SIGBUS
;
9000 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
9003 size
= i_size_read(inode
);
9005 if ((page
->mapping
!= inode
->i_mapping
) ||
9006 (page_start
>= size
)) {
9007 /* page got truncated out from underneath us */
9010 wait_on_page_writeback(page
);
9012 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
9013 set_page_extent_mapped(page
);
9016 * we can't set the delalloc bits if there are pending ordered
9017 * extents. Drop our locks and wait for them to finish
9019 ordered
= btrfs_lookup_ordered_range(inode
, page_start
, page_end
);
9021 unlock_extent_cached(io_tree
, page_start
, page_end
,
9022 &cached_state
, GFP_NOFS
);
9024 btrfs_start_ordered_extent(inode
, ordered
, 1);
9025 btrfs_put_ordered_extent(ordered
);
9029 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
9030 reserved_space
= round_up(size
- page_start
,
9031 fs_info
->sectorsize
);
9032 if (reserved_space
< PAGE_SIZE
) {
9033 end
= page_start
+ reserved_space
- 1;
9034 spin_lock(&BTRFS_I(inode
)->lock
);
9035 BTRFS_I(inode
)->outstanding_extents
++;
9036 spin_unlock(&BTRFS_I(inode
)->lock
);
9037 btrfs_delalloc_release_space(inode
, page_start
,
9038 PAGE_SIZE
- reserved_space
);
9043 * XXX - page_mkwrite gets called every time the page is dirtied, even
9044 * if it was already dirty, so for space accounting reasons we need to
9045 * clear any delalloc bits for the range we are fixing to save. There
9046 * is probably a better way to do this, but for now keep consistent with
9047 * prepare_pages in the normal write path.
9049 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
9050 EXTENT_DIRTY
| EXTENT_DELALLOC
|
9051 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
9052 0, 0, &cached_state
, GFP_NOFS
);
9054 ret
= btrfs_set_extent_delalloc(inode
, page_start
, end
,
9057 unlock_extent_cached(io_tree
, page_start
, page_end
,
9058 &cached_state
, GFP_NOFS
);
9059 ret
= VM_FAULT_SIGBUS
;
9064 /* page is wholly or partially inside EOF */
9065 if (page_start
+ PAGE_SIZE
> size
)
9066 zero_start
= size
& ~PAGE_MASK
;
9068 zero_start
= PAGE_SIZE
;
9070 if (zero_start
!= PAGE_SIZE
) {
9072 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
9073 flush_dcache_page(page
);
9076 ClearPageChecked(page
);
9077 set_page_dirty(page
);
9078 SetPageUptodate(page
);
9080 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
9081 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
9082 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
9084 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
9088 sb_end_pagefault(inode
->i_sb
);
9089 return VM_FAULT_LOCKED
;
9093 btrfs_delalloc_release_space(inode
, page_start
, reserved_space
);
9095 sb_end_pagefault(inode
->i_sb
);
9099 static int btrfs_truncate(struct inode
*inode
)
9101 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9102 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9103 struct btrfs_block_rsv
*rsv
;
9106 struct btrfs_trans_handle
*trans
;
9107 u64 mask
= fs_info
->sectorsize
- 1;
9108 u64 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
9110 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
9116 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9117 * 3 things going on here
9119 * 1) We need to reserve space for our orphan item and the space to
9120 * delete our orphan item. Lord knows we don't want to have a dangling
9121 * orphan item because we didn't reserve space to remove it.
9123 * 2) We need to reserve space to update our inode.
9125 * 3) We need to have something to cache all the space that is going to
9126 * be free'd up by the truncate operation, but also have some slack
9127 * space reserved in case it uses space during the truncate (thank you
9128 * very much snapshotting).
9130 * And we need these to all be separate. The fact is we can use a lot of
9131 * space doing the truncate, and we have no earthly idea how much space
9132 * we will use, so we need the truncate reservation to be separate so it
9133 * doesn't end up using space reserved for updating the inode or
9134 * removing the orphan item. We also need to be able to stop the
9135 * transaction and start a new one, which means we need to be able to
9136 * update the inode several times, and we have no idea of knowing how
9137 * many times that will be, so we can't just reserve 1 item for the
9138 * entirety of the operation, so that has to be done separately as well.
9139 * Then there is the orphan item, which does indeed need to be held on
9140 * to for the whole operation, and we need nobody to touch this reserved
9141 * space except the orphan code.
9143 * So that leaves us with
9145 * 1) root->orphan_block_rsv - for the orphan deletion.
9146 * 2) rsv - for the truncate reservation, which we will steal from the
9147 * transaction reservation.
9148 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9149 * updating the inode.
9151 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
9154 rsv
->size
= min_size
;
9158 * 1 for the truncate slack space
9159 * 1 for updating the inode.
9161 trans
= btrfs_start_transaction(root
, 2);
9162 if (IS_ERR(trans
)) {
9163 err
= PTR_ERR(trans
);
9167 /* Migrate the slack space for the truncate to our reserve */
9168 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
9173 * So if we truncate and then write and fsync we normally would just
9174 * write the extents that changed, which is a problem if we need to
9175 * first truncate that entire inode. So set this flag so we write out
9176 * all of the extents in the inode to the sync log so we're completely
9179 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
9180 trans
->block_rsv
= rsv
;
9183 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
9185 BTRFS_EXTENT_DATA_KEY
);
9186 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
) {
9191 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9192 ret
= btrfs_update_inode(trans
, root
, inode
);
9198 btrfs_end_transaction(trans
);
9199 btrfs_btree_balance_dirty(fs_info
);
9201 trans
= btrfs_start_transaction(root
, 2);
9202 if (IS_ERR(trans
)) {
9203 ret
= err
= PTR_ERR(trans
);
9208 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
9210 BUG_ON(ret
); /* shouldn't happen */
9211 trans
->block_rsv
= rsv
;
9214 if (ret
== 0 && inode
->i_nlink
> 0) {
9215 trans
->block_rsv
= root
->orphan_block_rsv
;
9216 ret
= btrfs_orphan_del(trans
, inode
);
9222 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9223 ret
= btrfs_update_inode(trans
, root
, inode
);
9227 ret
= btrfs_end_transaction(trans
);
9228 btrfs_btree_balance_dirty(fs_info
);
9231 btrfs_free_block_rsv(fs_info
, rsv
);
9240 * create a new subvolume directory/inode (helper for the ioctl).
9242 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
9243 struct btrfs_root
*new_root
,
9244 struct btrfs_root
*parent_root
,
9247 struct inode
*inode
;
9251 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
9252 new_dirid
, new_dirid
,
9253 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
9256 return PTR_ERR(inode
);
9257 inode
->i_op
= &btrfs_dir_inode_operations
;
9258 inode
->i_fop
= &btrfs_dir_file_operations
;
9260 set_nlink(inode
, 1);
9261 btrfs_i_size_write(inode
, 0);
9262 unlock_new_inode(inode
);
9264 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
9266 btrfs_err(new_root
->fs_info
,
9267 "error inheriting subvolume %llu properties: %d",
9268 new_root
->root_key
.objectid
, err
);
9270 err
= btrfs_update_inode(trans
, new_root
, inode
);
9276 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
9278 struct btrfs_inode
*ei
;
9279 struct inode
*inode
;
9281 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
9288 ei
->last_sub_trans
= 0;
9289 ei
->logged_trans
= 0;
9290 ei
->delalloc_bytes
= 0;
9291 ei
->defrag_bytes
= 0;
9292 ei
->disk_i_size
= 0;
9295 ei
->index_cnt
= (u64
)-1;
9297 ei
->last_unlink_trans
= 0;
9298 ei
->last_log_commit
= 0;
9299 ei
->delayed_iput_count
= 0;
9301 spin_lock_init(&ei
->lock
);
9302 ei
->outstanding_extents
= 0;
9303 ei
->reserved_extents
= 0;
9305 ei
->runtime_flags
= 0;
9306 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
9308 ei
->delayed_node
= NULL
;
9310 ei
->i_otime
.tv_sec
= 0;
9311 ei
->i_otime
.tv_nsec
= 0;
9313 inode
= &ei
->vfs_inode
;
9314 extent_map_tree_init(&ei
->extent_tree
);
9315 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
9316 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
9317 ei
->io_tree
.track_uptodate
= 1;
9318 ei
->io_failure_tree
.track_uptodate
= 1;
9319 atomic_set(&ei
->sync_writers
, 0);
9320 mutex_init(&ei
->log_mutex
);
9321 mutex_init(&ei
->delalloc_mutex
);
9322 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
9323 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
9324 INIT_LIST_HEAD(&ei
->delayed_iput
);
9325 RB_CLEAR_NODE(&ei
->rb_node
);
9326 init_rwsem(&ei
->dio_sem
);
9331 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9332 void btrfs_test_destroy_inode(struct inode
*inode
)
9334 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
9335 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9339 static void btrfs_i_callback(struct rcu_head
*head
)
9341 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
9342 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9345 void btrfs_destroy_inode(struct inode
*inode
)
9347 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9348 struct btrfs_ordered_extent
*ordered
;
9349 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9351 WARN_ON(!hlist_empty(&inode
->i_dentry
));
9352 WARN_ON(inode
->i_data
.nrpages
);
9353 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
9354 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
9355 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
9356 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
9357 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
9360 * This can happen where we create an inode, but somebody else also
9361 * created the same inode and we need to destroy the one we already
9367 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
9368 &BTRFS_I(inode
)->runtime_flags
)) {
9369 btrfs_info(fs_info
, "inode %llu still on the orphan list",
9371 atomic_dec(&root
->orphan_inodes
);
9375 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
9380 "found ordered extent %llu %llu on inode cleanup",
9381 ordered
->file_offset
, ordered
->len
);
9382 btrfs_remove_ordered_extent(inode
, ordered
);
9383 btrfs_put_ordered_extent(ordered
);
9384 btrfs_put_ordered_extent(ordered
);
9387 btrfs_qgroup_check_reserved_leak(inode
);
9388 inode_tree_del(inode
);
9389 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
9391 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
9394 int btrfs_drop_inode(struct inode
*inode
)
9396 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9401 /* the snap/subvol tree is on deleting */
9402 if (btrfs_root_refs(&root
->root_item
) == 0)
9405 return generic_drop_inode(inode
);
9408 static void init_once(void *foo
)
9410 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
9412 inode_init_once(&ei
->vfs_inode
);
9415 void btrfs_destroy_cachep(void)
9418 * Make sure all delayed rcu free inodes are flushed before we
9422 kmem_cache_destroy(btrfs_inode_cachep
);
9423 kmem_cache_destroy(btrfs_trans_handle_cachep
);
9424 kmem_cache_destroy(btrfs_transaction_cachep
);
9425 kmem_cache_destroy(btrfs_path_cachep
);
9426 kmem_cache_destroy(btrfs_free_space_cachep
);
9429 int btrfs_init_cachep(void)
9431 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
9432 sizeof(struct btrfs_inode
), 0,
9433 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
9435 if (!btrfs_inode_cachep
)
9438 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
9439 sizeof(struct btrfs_trans_handle
), 0,
9440 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
9441 if (!btrfs_trans_handle_cachep
)
9444 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction",
9445 sizeof(struct btrfs_transaction
), 0,
9446 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
9447 if (!btrfs_transaction_cachep
)
9450 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
9451 sizeof(struct btrfs_path
), 0,
9452 SLAB_MEM_SPREAD
, NULL
);
9453 if (!btrfs_path_cachep
)
9456 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
9457 sizeof(struct btrfs_free_space
), 0,
9458 SLAB_MEM_SPREAD
, NULL
);
9459 if (!btrfs_free_space_cachep
)
9464 btrfs_destroy_cachep();
9468 static int btrfs_getattr(struct vfsmount
*mnt
,
9469 struct dentry
*dentry
, struct kstat
*stat
)
9472 struct inode
*inode
= d_inode(dentry
);
9473 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9475 generic_fillattr(inode
, stat
);
9476 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9478 spin_lock(&BTRFS_I(inode
)->lock
);
9479 delalloc_bytes
= BTRFS_I(inode
)->delalloc_bytes
;
9480 spin_unlock(&BTRFS_I(inode
)->lock
);
9481 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9482 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9486 static int btrfs_rename_exchange(struct inode
*old_dir
,
9487 struct dentry
*old_dentry
,
9488 struct inode
*new_dir
,
9489 struct dentry
*new_dentry
)
9491 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9492 struct btrfs_trans_handle
*trans
;
9493 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9494 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9495 struct inode
*new_inode
= new_dentry
->d_inode
;
9496 struct inode
*old_inode
= old_dentry
->d_inode
;
9497 struct timespec ctime
= current_time(old_inode
);
9498 struct dentry
*parent
;
9499 u64 old_ino
= btrfs_ino(old_inode
);
9500 u64 new_ino
= btrfs_ino(new_inode
);
9505 bool root_log_pinned
= false;
9506 bool dest_log_pinned
= false;
9508 /* we only allow rename subvolume link between subvolumes */
9509 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9512 /* close the race window with snapshot create/destroy ioctl */
9513 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9514 down_read(&fs_info
->subvol_sem
);
9515 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9516 down_read(&fs_info
->subvol_sem
);
9519 * We want to reserve the absolute worst case amount of items. So if
9520 * both inodes are subvols and we need to unlink them then that would
9521 * require 4 item modifications, but if they are both normal inodes it
9522 * would require 5 item modifications, so we'll assume their normal
9523 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9524 * should cover the worst case number of items we'll modify.
9526 trans
= btrfs_start_transaction(root
, 12);
9527 if (IS_ERR(trans
)) {
9528 ret
= PTR_ERR(trans
);
9533 * We need to find a free sequence number both in the source and
9534 * in the destination directory for the exchange.
9536 ret
= btrfs_set_inode_index(new_dir
, &old_idx
);
9539 ret
= btrfs_set_inode_index(old_dir
, &new_idx
);
9543 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9544 BTRFS_I(new_inode
)->dir_index
= 0ULL;
9546 /* Reference for the source. */
9547 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9548 /* force full log commit if subvolume involved. */
9549 btrfs_set_log_full_commit(fs_info
, trans
);
9551 btrfs_pin_log_trans(root
);
9552 root_log_pinned
= true;
9553 ret
= btrfs_insert_inode_ref(trans
, dest
,
9554 new_dentry
->d_name
.name
,
9555 new_dentry
->d_name
.len
,
9557 btrfs_ino(new_dir
), old_idx
);
9562 /* And now for the dest. */
9563 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9564 /* force full log commit if subvolume involved. */
9565 btrfs_set_log_full_commit(fs_info
, trans
);
9567 btrfs_pin_log_trans(dest
);
9568 dest_log_pinned
= true;
9569 ret
= btrfs_insert_inode_ref(trans
, root
,
9570 old_dentry
->d_name
.name
,
9571 old_dentry
->d_name
.len
,
9573 btrfs_ino(old_dir
), new_idx
);
9578 /* Update inode version and ctime/mtime. */
9579 inode_inc_iversion(old_dir
);
9580 inode_inc_iversion(new_dir
);
9581 inode_inc_iversion(old_inode
);
9582 inode_inc_iversion(new_inode
);
9583 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9584 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9585 old_inode
->i_ctime
= ctime
;
9586 new_inode
->i_ctime
= ctime
;
9588 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
9589 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
9590 btrfs_record_unlink_dir(trans
, new_dir
, new_inode
, 1);
9593 /* src is a subvolume */
9594 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9595 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9596 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
,
9598 old_dentry
->d_name
.name
,
9599 old_dentry
->d_name
.len
);
9600 } else { /* src is an inode */
9601 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
9602 old_dentry
->d_inode
,
9603 old_dentry
->d_name
.name
,
9604 old_dentry
->d_name
.len
);
9606 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9609 btrfs_abort_transaction(trans
, ret
);
9613 /* dest is a subvolume */
9614 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9615 root_objectid
= BTRFS_I(new_inode
)->root
->root_key
.objectid
;
9616 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9618 new_dentry
->d_name
.name
,
9619 new_dentry
->d_name
.len
);
9620 } else { /* dest is an inode */
9621 ret
= __btrfs_unlink_inode(trans
, dest
, new_dir
,
9622 new_dentry
->d_inode
,
9623 new_dentry
->d_name
.name
,
9624 new_dentry
->d_name
.len
);
9626 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
9629 btrfs_abort_transaction(trans
, ret
);
9633 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
9634 new_dentry
->d_name
.name
,
9635 new_dentry
->d_name
.len
, 0, old_idx
);
9637 btrfs_abort_transaction(trans
, ret
);
9641 ret
= btrfs_add_link(trans
, old_dir
, new_inode
,
9642 old_dentry
->d_name
.name
,
9643 old_dentry
->d_name
.len
, 0, new_idx
);
9645 btrfs_abort_transaction(trans
, ret
);
9649 if (old_inode
->i_nlink
== 1)
9650 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9651 if (new_inode
->i_nlink
== 1)
9652 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9654 if (root_log_pinned
) {
9655 parent
= new_dentry
->d_parent
;
9656 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
9657 btrfs_end_log_trans(root
);
9658 root_log_pinned
= false;
9660 if (dest_log_pinned
) {
9661 parent
= old_dentry
->d_parent
;
9662 btrfs_log_new_name(trans
, new_inode
, new_dir
, parent
);
9663 btrfs_end_log_trans(dest
);
9664 dest_log_pinned
= false;
9668 * If we have pinned a log and an error happened, we unpin tasks
9669 * trying to sync the log and force them to fallback to a transaction
9670 * commit if the log currently contains any of the inodes involved in
9671 * this rename operation (to ensure we do not persist a log with an
9672 * inconsistent state for any of these inodes or leading to any
9673 * inconsistencies when replayed). If the transaction was aborted, the
9674 * abortion reason is propagated to userspace when attempting to commit
9675 * the transaction. If the log does not contain any of these inodes, we
9676 * allow the tasks to sync it.
9678 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9679 if (btrfs_inode_in_log(old_dir
, fs_info
->generation
) ||
9680 btrfs_inode_in_log(new_dir
, fs_info
->generation
) ||
9681 btrfs_inode_in_log(old_inode
, fs_info
->generation
) ||
9683 btrfs_inode_in_log(new_inode
, fs_info
->generation
)))
9684 btrfs_set_log_full_commit(fs_info
, trans
);
9686 if (root_log_pinned
) {
9687 btrfs_end_log_trans(root
);
9688 root_log_pinned
= false;
9690 if (dest_log_pinned
) {
9691 btrfs_end_log_trans(dest
);
9692 dest_log_pinned
= false;
9695 ret
= btrfs_end_transaction(trans
);
9697 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9698 up_read(&fs_info
->subvol_sem
);
9699 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9700 up_read(&fs_info
->subvol_sem
);
9705 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9706 struct btrfs_root
*root
,
9708 struct dentry
*dentry
)
9711 struct inode
*inode
;
9715 ret
= btrfs_find_free_ino(root
, &objectid
);
9719 inode
= btrfs_new_inode(trans
, root
, dir
,
9720 dentry
->d_name
.name
,
9724 S_IFCHR
| WHITEOUT_MODE
,
9727 if (IS_ERR(inode
)) {
9728 ret
= PTR_ERR(inode
);
9732 inode
->i_op
= &btrfs_special_inode_operations
;
9733 init_special_inode(inode
, inode
->i_mode
,
9736 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9741 ret
= btrfs_add_nondir(trans
, dir
, dentry
,
9746 ret
= btrfs_update_inode(trans
, root
, inode
);
9748 unlock_new_inode(inode
);
9750 inode_dec_link_count(inode
);
9756 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9757 struct inode
*new_dir
, struct dentry
*new_dentry
,
9760 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9761 struct btrfs_trans_handle
*trans
;
9762 unsigned int trans_num_items
;
9763 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9764 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9765 struct inode
*new_inode
= d_inode(new_dentry
);
9766 struct inode
*old_inode
= d_inode(old_dentry
);
9770 u64 old_ino
= btrfs_ino(old_inode
);
9771 bool log_pinned
= false;
9773 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9776 /* we only allow rename subvolume link between subvolumes */
9777 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9780 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9781 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
9784 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9785 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9789 /* check for collisions, even if the name isn't there */
9790 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9791 new_dentry
->d_name
.name
,
9792 new_dentry
->d_name
.len
);
9795 if (ret
== -EEXIST
) {
9797 * eexist without a new_inode */
9798 if (WARN_ON(!new_inode
)) {
9802 /* maybe -EOVERFLOW */
9809 * we're using rename to replace one file with another. Start IO on it
9810 * now so we don't add too much work to the end of the transaction
9812 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9813 filemap_flush(old_inode
->i_mapping
);
9815 /* close the racy window with snapshot create/destroy ioctl */
9816 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9817 down_read(&fs_info
->subvol_sem
);
9819 * We want to reserve the absolute worst case amount of items. So if
9820 * both inodes are subvols and we need to unlink them then that would
9821 * require 4 item modifications, but if they are both normal inodes it
9822 * would require 5 item modifications, so we'll assume they are normal
9823 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9824 * should cover the worst case number of items we'll modify.
9825 * If our rename has the whiteout flag, we need more 5 units for the
9826 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9827 * when selinux is enabled).
9829 trans_num_items
= 11;
9830 if (flags
& RENAME_WHITEOUT
)
9831 trans_num_items
+= 5;
9832 trans
= btrfs_start_transaction(root
, trans_num_items
);
9833 if (IS_ERR(trans
)) {
9834 ret
= PTR_ERR(trans
);
9839 btrfs_record_root_in_trans(trans
, dest
);
9841 ret
= btrfs_set_inode_index(new_dir
, &index
);
9845 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9846 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9847 /* force full log commit if subvolume involved. */
9848 btrfs_set_log_full_commit(fs_info
, trans
);
9850 btrfs_pin_log_trans(root
);
9852 ret
= btrfs_insert_inode_ref(trans
, dest
,
9853 new_dentry
->d_name
.name
,
9854 new_dentry
->d_name
.len
,
9856 btrfs_ino(new_dir
), index
);
9861 inode_inc_iversion(old_dir
);
9862 inode_inc_iversion(new_dir
);
9863 inode_inc_iversion(old_inode
);
9864 old_dir
->i_ctime
= old_dir
->i_mtime
=
9865 new_dir
->i_ctime
= new_dir
->i_mtime
=
9866 old_inode
->i_ctime
= current_time(old_dir
);
9868 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9869 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
9871 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9872 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9873 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
9874 old_dentry
->d_name
.name
,
9875 old_dentry
->d_name
.len
);
9877 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
9878 d_inode(old_dentry
),
9879 old_dentry
->d_name
.name
,
9880 old_dentry
->d_name
.len
);
9882 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9885 btrfs_abort_transaction(trans
, ret
);
9890 inode_inc_iversion(new_inode
);
9891 new_inode
->i_ctime
= current_time(new_inode
);
9892 if (unlikely(btrfs_ino(new_inode
) ==
9893 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
9894 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
9895 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9897 new_dentry
->d_name
.name
,
9898 new_dentry
->d_name
.len
);
9899 BUG_ON(new_inode
->i_nlink
== 0);
9901 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
9902 d_inode(new_dentry
),
9903 new_dentry
->d_name
.name
,
9904 new_dentry
->d_name
.len
);
9906 if (!ret
&& new_inode
->i_nlink
== 0)
9907 ret
= btrfs_orphan_add(trans
, d_inode(new_dentry
));
9909 btrfs_abort_transaction(trans
, ret
);
9914 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
9915 new_dentry
->d_name
.name
,
9916 new_dentry
->d_name
.len
, 0, index
);
9918 btrfs_abort_transaction(trans
, ret
);
9922 if (old_inode
->i_nlink
== 1)
9923 BTRFS_I(old_inode
)->dir_index
= index
;
9926 struct dentry
*parent
= new_dentry
->d_parent
;
9928 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
9929 btrfs_end_log_trans(root
);
9933 if (flags
& RENAME_WHITEOUT
) {
9934 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
9938 btrfs_abort_transaction(trans
, ret
);
9944 * If we have pinned the log and an error happened, we unpin tasks
9945 * trying to sync the log and force them to fallback to a transaction
9946 * commit if the log currently contains any of the inodes involved in
9947 * this rename operation (to ensure we do not persist a log with an
9948 * inconsistent state for any of these inodes or leading to any
9949 * inconsistencies when replayed). If the transaction was aborted, the
9950 * abortion reason is propagated to userspace when attempting to commit
9951 * the transaction. If the log does not contain any of these inodes, we
9952 * allow the tasks to sync it.
9954 if (ret
&& log_pinned
) {
9955 if (btrfs_inode_in_log(old_dir
, fs_info
->generation
) ||
9956 btrfs_inode_in_log(new_dir
, fs_info
->generation
) ||
9957 btrfs_inode_in_log(old_inode
, fs_info
->generation
) ||
9959 btrfs_inode_in_log(new_inode
, fs_info
->generation
)))
9960 btrfs_set_log_full_commit(fs_info
, trans
);
9962 btrfs_end_log_trans(root
);
9965 btrfs_end_transaction(trans
);
9967 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9968 up_read(&fs_info
->subvol_sem
);
9973 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
9974 struct inode
*new_dir
, struct dentry
*new_dentry
,
9977 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
9980 if (flags
& RENAME_EXCHANGE
)
9981 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
9984 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
9987 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
9989 struct btrfs_delalloc_work
*delalloc_work
;
9990 struct inode
*inode
;
9992 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
9994 inode
= delalloc_work
->inode
;
9995 filemap_flush(inode
->i_mapping
);
9996 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
9997 &BTRFS_I(inode
)->runtime_flags
))
9998 filemap_flush(inode
->i_mapping
);
10000 if (delalloc_work
->delay_iput
)
10001 btrfs_add_delayed_iput(inode
);
10004 complete(&delalloc_work
->completion
);
10007 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
10010 struct btrfs_delalloc_work
*work
;
10012 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
10016 init_completion(&work
->completion
);
10017 INIT_LIST_HEAD(&work
->list
);
10018 work
->inode
= inode
;
10019 work
->delay_iput
= delay_iput
;
10020 WARN_ON_ONCE(!inode
);
10021 btrfs_init_work(&work
->work
, btrfs_flush_delalloc_helper
,
10022 btrfs_run_delalloc_work
, NULL
, NULL
);
10027 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
10029 wait_for_completion(&work
->completion
);
10034 * some fairly slow code that needs optimization. This walks the list
10035 * of all the inodes with pending delalloc and forces them to disk.
10037 static int __start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
,
10040 struct btrfs_inode
*binode
;
10041 struct inode
*inode
;
10042 struct btrfs_delalloc_work
*work
, *next
;
10043 struct list_head works
;
10044 struct list_head splice
;
10047 INIT_LIST_HEAD(&works
);
10048 INIT_LIST_HEAD(&splice
);
10050 mutex_lock(&root
->delalloc_mutex
);
10051 spin_lock(&root
->delalloc_lock
);
10052 list_splice_init(&root
->delalloc_inodes
, &splice
);
10053 while (!list_empty(&splice
)) {
10054 binode
= list_entry(splice
.next
, struct btrfs_inode
,
10057 list_move_tail(&binode
->delalloc_inodes
,
10058 &root
->delalloc_inodes
);
10059 inode
= igrab(&binode
->vfs_inode
);
10061 cond_resched_lock(&root
->delalloc_lock
);
10064 spin_unlock(&root
->delalloc_lock
);
10066 work
= btrfs_alloc_delalloc_work(inode
, delay_iput
);
10069 btrfs_add_delayed_iput(inode
);
10075 list_add_tail(&work
->list
, &works
);
10076 btrfs_queue_work(root
->fs_info
->flush_workers
,
10079 if (nr
!= -1 && ret
>= nr
)
10082 spin_lock(&root
->delalloc_lock
);
10084 spin_unlock(&root
->delalloc_lock
);
10087 list_for_each_entry_safe(work
, next
, &works
, list
) {
10088 list_del_init(&work
->list
);
10089 btrfs_wait_and_free_delalloc_work(work
);
10092 if (!list_empty_careful(&splice
)) {
10093 spin_lock(&root
->delalloc_lock
);
10094 list_splice_tail(&splice
, &root
->delalloc_inodes
);
10095 spin_unlock(&root
->delalloc_lock
);
10097 mutex_unlock(&root
->delalloc_mutex
);
10101 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
10103 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
10106 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10109 ret
= __start_delalloc_inodes(root
, delay_iput
, -1);
10113 * the filemap_flush will queue IO into the worker threads, but
10114 * we have to make sure the IO is actually started and that
10115 * ordered extents get created before we return
10117 atomic_inc(&fs_info
->async_submit_draining
);
10118 while (atomic_read(&fs_info
->nr_async_submits
) ||
10119 atomic_read(&fs_info
->async_delalloc_pages
)) {
10120 wait_event(fs_info
->async_submit_wait
,
10121 (atomic_read(&fs_info
->nr_async_submits
) == 0 &&
10122 atomic_read(&fs_info
->async_delalloc_pages
) == 0));
10124 atomic_dec(&fs_info
->async_submit_draining
);
10128 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int delay_iput
,
10131 struct btrfs_root
*root
;
10132 struct list_head splice
;
10135 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10138 INIT_LIST_HEAD(&splice
);
10140 mutex_lock(&fs_info
->delalloc_root_mutex
);
10141 spin_lock(&fs_info
->delalloc_root_lock
);
10142 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
10143 while (!list_empty(&splice
) && nr
) {
10144 root
= list_first_entry(&splice
, struct btrfs_root
,
10146 root
= btrfs_grab_fs_root(root
);
10148 list_move_tail(&root
->delalloc_root
,
10149 &fs_info
->delalloc_roots
);
10150 spin_unlock(&fs_info
->delalloc_root_lock
);
10152 ret
= __start_delalloc_inodes(root
, delay_iput
, nr
);
10153 btrfs_put_fs_root(root
);
10161 spin_lock(&fs_info
->delalloc_root_lock
);
10163 spin_unlock(&fs_info
->delalloc_root_lock
);
10166 atomic_inc(&fs_info
->async_submit_draining
);
10167 while (atomic_read(&fs_info
->nr_async_submits
) ||
10168 atomic_read(&fs_info
->async_delalloc_pages
)) {
10169 wait_event(fs_info
->async_submit_wait
,
10170 (atomic_read(&fs_info
->nr_async_submits
) == 0 &&
10171 atomic_read(&fs_info
->async_delalloc_pages
) == 0));
10173 atomic_dec(&fs_info
->async_submit_draining
);
10175 if (!list_empty_careful(&splice
)) {
10176 spin_lock(&fs_info
->delalloc_root_lock
);
10177 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
10178 spin_unlock(&fs_info
->delalloc_root_lock
);
10180 mutex_unlock(&fs_info
->delalloc_root_mutex
);
10184 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
10185 const char *symname
)
10187 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10188 struct btrfs_trans_handle
*trans
;
10189 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10190 struct btrfs_path
*path
;
10191 struct btrfs_key key
;
10192 struct inode
*inode
= NULL
;
10194 int drop_inode
= 0;
10200 struct btrfs_file_extent_item
*ei
;
10201 struct extent_buffer
*leaf
;
10203 name_len
= strlen(symname
);
10204 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
))
10205 return -ENAMETOOLONG
;
10208 * 2 items for inode item and ref
10209 * 2 items for dir items
10210 * 1 item for updating parent inode item
10211 * 1 item for the inline extent item
10212 * 1 item for xattr if selinux is on
10214 trans
= btrfs_start_transaction(root
, 7);
10216 return PTR_ERR(trans
);
10218 err
= btrfs_find_free_ino(root
, &objectid
);
10222 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
10223 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
10224 S_IFLNK
|S_IRWXUGO
, &index
);
10225 if (IS_ERR(inode
)) {
10226 err
= PTR_ERR(inode
);
10231 * If the active LSM wants to access the inode during
10232 * d_instantiate it needs these. Smack checks to see
10233 * if the filesystem supports xattrs by looking at the
10236 inode
->i_fop
= &btrfs_file_operations
;
10237 inode
->i_op
= &btrfs_file_inode_operations
;
10238 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10239 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10241 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
10243 goto out_unlock_inode
;
10245 path
= btrfs_alloc_path();
10248 goto out_unlock_inode
;
10250 key
.objectid
= btrfs_ino(inode
);
10252 key
.type
= BTRFS_EXTENT_DATA_KEY
;
10253 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
10254 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
10257 btrfs_free_path(path
);
10258 goto out_unlock_inode
;
10260 leaf
= path
->nodes
[0];
10261 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
10262 struct btrfs_file_extent_item
);
10263 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
10264 btrfs_set_file_extent_type(leaf
, ei
,
10265 BTRFS_FILE_EXTENT_INLINE
);
10266 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
10267 btrfs_set_file_extent_compression(leaf
, ei
, 0);
10268 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
10269 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
10271 ptr
= btrfs_file_extent_inline_start(ei
);
10272 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
10273 btrfs_mark_buffer_dirty(leaf
);
10274 btrfs_free_path(path
);
10276 inode
->i_op
= &btrfs_symlink_inode_operations
;
10277 inode_nohighmem(inode
);
10278 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
10279 inode_set_bytes(inode
, name_len
);
10280 btrfs_i_size_write(inode
, name_len
);
10281 err
= btrfs_update_inode(trans
, root
, inode
);
10283 * Last step, add directory indexes for our symlink inode. This is the
10284 * last step to avoid extra cleanup of these indexes if an error happens
10288 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
10291 goto out_unlock_inode
;
10294 unlock_new_inode(inode
);
10295 d_instantiate(dentry
, inode
);
10298 btrfs_end_transaction(trans
);
10300 inode_dec_link_count(inode
);
10303 btrfs_btree_balance_dirty(fs_info
);
10308 unlock_new_inode(inode
);
10312 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10313 u64 start
, u64 num_bytes
, u64 min_size
,
10314 loff_t actual_len
, u64
*alloc_hint
,
10315 struct btrfs_trans_handle
*trans
)
10317 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
10318 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
10319 struct extent_map
*em
;
10320 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10321 struct btrfs_key ins
;
10322 u64 cur_offset
= start
;
10325 u64 last_alloc
= (u64
)-1;
10327 bool own_trans
= true;
10328 u64 end
= start
+ num_bytes
- 1;
10332 while (num_bytes
> 0) {
10334 trans
= btrfs_start_transaction(root
, 3);
10335 if (IS_ERR(trans
)) {
10336 ret
= PTR_ERR(trans
);
10341 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
10342 cur_bytes
= max(cur_bytes
, min_size
);
10344 * If we are severely fragmented we could end up with really
10345 * small allocations, so if the allocator is returning small
10346 * chunks lets make its job easier by only searching for those
10349 cur_bytes
= min(cur_bytes
, last_alloc
);
10350 ret
= btrfs_reserve_extent(root
, cur_bytes
, cur_bytes
,
10351 min_size
, 0, *alloc_hint
, &ins
, 1, 0);
10354 btrfs_end_transaction(trans
);
10357 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
10359 last_alloc
= ins
.offset
;
10360 ret
= insert_reserved_file_extent(trans
, inode
,
10361 cur_offset
, ins
.objectid
,
10362 ins
.offset
, ins
.offset
,
10363 ins
.offset
, 0, 0, 0,
10364 BTRFS_FILE_EXTENT_PREALLOC
);
10366 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
10368 btrfs_abort_transaction(trans
, ret
);
10370 btrfs_end_transaction(trans
);
10374 btrfs_drop_extent_cache(inode
, cur_offset
,
10375 cur_offset
+ ins
.offset
-1, 0);
10377 em
= alloc_extent_map();
10379 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
10380 &BTRFS_I(inode
)->runtime_flags
);
10384 em
->start
= cur_offset
;
10385 em
->orig_start
= cur_offset
;
10386 em
->len
= ins
.offset
;
10387 em
->block_start
= ins
.objectid
;
10388 em
->block_len
= ins
.offset
;
10389 em
->orig_block_len
= ins
.offset
;
10390 em
->ram_bytes
= ins
.offset
;
10391 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
10392 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
10393 em
->generation
= trans
->transid
;
10396 write_lock(&em_tree
->lock
);
10397 ret
= add_extent_mapping(em_tree
, em
, 1);
10398 write_unlock(&em_tree
->lock
);
10399 if (ret
!= -EEXIST
)
10401 btrfs_drop_extent_cache(inode
, cur_offset
,
10402 cur_offset
+ ins
.offset
- 1,
10405 free_extent_map(em
);
10407 num_bytes
-= ins
.offset
;
10408 cur_offset
+= ins
.offset
;
10409 *alloc_hint
= ins
.objectid
+ ins
.offset
;
10411 inode_inc_iversion(inode
);
10412 inode
->i_ctime
= current_time(inode
);
10413 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
10414 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
10415 (actual_len
> inode
->i_size
) &&
10416 (cur_offset
> inode
->i_size
)) {
10417 if (cur_offset
> actual_len
)
10418 i_size
= actual_len
;
10420 i_size
= cur_offset
;
10421 i_size_write(inode
, i_size
);
10422 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
10425 ret
= btrfs_update_inode(trans
, root
, inode
);
10428 btrfs_abort_transaction(trans
, ret
);
10430 btrfs_end_transaction(trans
);
10435 btrfs_end_transaction(trans
);
10437 if (cur_offset
< end
)
10438 btrfs_free_reserved_data_space(inode
, cur_offset
,
10439 end
- cur_offset
+ 1);
10443 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10444 u64 start
, u64 num_bytes
, u64 min_size
,
10445 loff_t actual_len
, u64
*alloc_hint
)
10447 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10448 min_size
, actual_len
, alloc_hint
,
10452 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
10453 struct btrfs_trans_handle
*trans
, int mode
,
10454 u64 start
, u64 num_bytes
, u64 min_size
,
10455 loff_t actual_len
, u64
*alloc_hint
)
10457 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10458 min_size
, actual_len
, alloc_hint
, trans
);
10461 static int btrfs_set_page_dirty(struct page
*page
)
10463 return __set_page_dirty_nobuffers(page
);
10466 static int btrfs_permission(struct inode
*inode
, int mask
)
10468 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10469 umode_t mode
= inode
->i_mode
;
10471 if (mask
& MAY_WRITE
&&
10472 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
10473 if (btrfs_root_readonly(root
))
10475 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
10478 return generic_permission(inode
, mask
);
10481 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
10483 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10484 struct btrfs_trans_handle
*trans
;
10485 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10486 struct inode
*inode
= NULL
;
10492 * 5 units required for adding orphan entry
10494 trans
= btrfs_start_transaction(root
, 5);
10496 return PTR_ERR(trans
);
10498 ret
= btrfs_find_free_ino(root
, &objectid
);
10502 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
10503 btrfs_ino(dir
), objectid
, mode
, &index
);
10504 if (IS_ERR(inode
)) {
10505 ret
= PTR_ERR(inode
);
10510 inode
->i_fop
= &btrfs_file_operations
;
10511 inode
->i_op
= &btrfs_file_inode_operations
;
10513 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10514 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10516 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
10520 ret
= btrfs_update_inode(trans
, root
, inode
);
10523 ret
= btrfs_orphan_add(trans
, inode
);
10528 * We set number of links to 0 in btrfs_new_inode(), and here we set
10529 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10532 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10534 set_nlink(inode
, 1);
10535 unlock_new_inode(inode
);
10536 d_tmpfile(dentry
, inode
);
10537 mark_inode_dirty(inode
);
10540 btrfs_end_transaction(trans
);
10543 btrfs_balance_delayed_items(fs_info
);
10544 btrfs_btree_balance_dirty(fs_info
);
10548 unlock_new_inode(inode
);
10553 static const struct inode_operations btrfs_dir_inode_operations
= {
10554 .getattr
= btrfs_getattr
,
10555 .lookup
= btrfs_lookup
,
10556 .create
= btrfs_create
,
10557 .unlink
= btrfs_unlink
,
10558 .link
= btrfs_link
,
10559 .mkdir
= btrfs_mkdir
,
10560 .rmdir
= btrfs_rmdir
,
10561 .rename
= btrfs_rename2
,
10562 .symlink
= btrfs_symlink
,
10563 .setattr
= btrfs_setattr
,
10564 .mknod
= btrfs_mknod
,
10565 .listxattr
= btrfs_listxattr
,
10566 .permission
= btrfs_permission
,
10567 .get_acl
= btrfs_get_acl
,
10568 .set_acl
= btrfs_set_acl
,
10569 .update_time
= btrfs_update_time
,
10570 .tmpfile
= btrfs_tmpfile
,
10572 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
10573 .lookup
= btrfs_lookup
,
10574 .permission
= btrfs_permission
,
10575 .get_acl
= btrfs_get_acl
,
10576 .set_acl
= btrfs_set_acl
,
10577 .update_time
= btrfs_update_time
,
10580 static const struct file_operations btrfs_dir_file_operations
= {
10581 .llseek
= generic_file_llseek
,
10582 .read
= generic_read_dir
,
10583 .iterate_shared
= btrfs_real_readdir
,
10584 .unlocked_ioctl
= btrfs_ioctl
,
10585 #ifdef CONFIG_COMPAT
10586 .compat_ioctl
= btrfs_compat_ioctl
,
10588 .release
= btrfs_release_file
,
10589 .fsync
= btrfs_sync_file
,
10592 static const struct extent_io_ops btrfs_extent_io_ops
= {
10593 .fill_delalloc
= run_delalloc_range
,
10594 .submit_bio_hook
= btrfs_submit_bio_hook
,
10595 .merge_bio_hook
= btrfs_merge_bio_hook
,
10596 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
10597 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
10598 .writepage_start_hook
= btrfs_writepage_start_hook
,
10599 .set_bit_hook
= btrfs_set_bit_hook
,
10600 .clear_bit_hook
= btrfs_clear_bit_hook
,
10601 .merge_extent_hook
= btrfs_merge_extent_hook
,
10602 .split_extent_hook
= btrfs_split_extent_hook
,
10606 * btrfs doesn't support the bmap operation because swapfiles
10607 * use bmap to make a mapping of extents in the file. They assume
10608 * these extents won't change over the life of the file and they
10609 * use the bmap result to do IO directly to the drive.
10611 * the btrfs bmap call would return logical addresses that aren't
10612 * suitable for IO and they also will change frequently as COW
10613 * operations happen. So, swapfile + btrfs == corruption.
10615 * For now we're avoiding this by dropping bmap.
10617 static const struct address_space_operations btrfs_aops
= {
10618 .readpage
= btrfs_readpage
,
10619 .writepage
= btrfs_writepage
,
10620 .writepages
= btrfs_writepages
,
10621 .readpages
= btrfs_readpages
,
10622 .direct_IO
= btrfs_direct_IO
,
10623 .invalidatepage
= btrfs_invalidatepage
,
10624 .releasepage
= btrfs_releasepage
,
10625 .set_page_dirty
= btrfs_set_page_dirty
,
10626 .error_remove_page
= generic_error_remove_page
,
10629 static const struct address_space_operations btrfs_symlink_aops
= {
10630 .readpage
= btrfs_readpage
,
10631 .writepage
= btrfs_writepage
,
10632 .invalidatepage
= btrfs_invalidatepage
,
10633 .releasepage
= btrfs_releasepage
,
10636 static const struct inode_operations btrfs_file_inode_operations
= {
10637 .getattr
= btrfs_getattr
,
10638 .setattr
= btrfs_setattr
,
10639 .listxattr
= btrfs_listxattr
,
10640 .permission
= btrfs_permission
,
10641 .fiemap
= btrfs_fiemap
,
10642 .get_acl
= btrfs_get_acl
,
10643 .set_acl
= btrfs_set_acl
,
10644 .update_time
= btrfs_update_time
,
10646 static const struct inode_operations btrfs_special_inode_operations
= {
10647 .getattr
= btrfs_getattr
,
10648 .setattr
= btrfs_setattr
,
10649 .permission
= btrfs_permission
,
10650 .listxattr
= btrfs_listxattr
,
10651 .get_acl
= btrfs_get_acl
,
10652 .set_acl
= btrfs_set_acl
,
10653 .update_time
= btrfs_update_time
,
10655 static const struct inode_operations btrfs_symlink_inode_operations
= {
10656 .get_link
= page_get_link
,
10657 .getattr
= btrfs_getattr
,
10658 .setattr
= btrfs_setattr
,
10659 .permission
= btrfs_permission
,
10660 .listxattr
= btrfs_listxattr
,
10661 .update_time
= btrfs_update_time
,
10664 const struct dentry_operations btrfs_dentry_operations
= {
10665 .d_delete
= btrfs_dentry_delete
,
10666 .d_release
= btrfs_dentry_release
,