2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
39 [TRANS_STATE_RUNNING
] = 0U,
40 [TRANS_STATE_BLOCKED
] = (__TRANS_USERSPACE
|
42 [TRANS_STATE_COMMIT_START
] = (__TRANS_USERSPACE
|
45 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_USERSPACE
|
49 [TRANS_STATE_UNBLOCKED
] = (__TRANS_USERSPACE
|
54 [TRANS_STATE_COMPLETED
] = (__TRANS_USERSPACE
|
61 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
63 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
64 if (atomic_dec_and_test(&transaction
->use_count
)) {
65 BUG_ON(!list_empty(&transaction
->list
));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction
->delayed_refs
.href_root
));
67 if (transaction
->delayed_refs
.pending_csums
)
68 btrfs_err(transaction
->fs_info
,
69 "pending csums is %llu",
70 transaction
->delayed_refs
.pending_csums
);
71 while (!list_empty(&transaction
->pending_chunks
)) {
72 struct extent_map
*em
;
74 em
= list_first_entry(&transaction
->pending_chunks
,
75 struct extent_map
, list
);
76 list_del_init(&em
->list
);
80 * If any block groups are found in ->deleted_bgs then it's
81 * because the transaction was aborted and a commit did not
82 * happen (things failed before writing the new superblock
83 * and calling btrfs_finish_extent_commit()), so we can not
84 * discard the physical locations of the block groups.
86 while (!list_empty(&transaction
->deleted_bgs
)) {
87 struct btrfs_block_group_cache
*cache
;
89 cache
= list_first_entry(&transaction
->deleted_bgs
,
90 struct btrfs_block_group_cache
,
92 list_del_init(&cache
->bg_list
);
93 btrfs_put_block_group_trimming(cache
);
94 btrfs_put_block_group(cache
);
96 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
100 static void clear_btree_io_tree(struct extent_io_tree
*tree
)
102 spin_lock(&tree
->lock
);
104 * Do a single barrier for the waitqueue_active check here, the state
105 * of the waitqueue should not change once clear_btree_io_tree is
109 while (!RB_EMPTY_ROOT(&tree
->state
)) {
110 struct rb_node
*node
;
111 struct extent_state
*state
;
113 node
= rb_first(&tree
->state
);
114 state
= rb_entry(node
, struct extent_state
, rb_node
);
115 rb_erase(&state
->rb_node
, &tree
->state
);
116 RB_CLEAR_NODE(&state
->rb_node
);
118 * btree io trees aren't supposed to have tasks waiting for
119 * changes in the flags of extent states ever.
121 ASSERT(!waitqueue_active(&state
->wq
));
122 free_extent_state(state
);
124 cond_resched_lock(&tree
->lock
);
126 spin_unlock(&tree
->lock
);
129 static noinline
void switch_commit_roots(struct btrfs_transaction
*trans
,
130 struct btrfs_fs_info
*fs_info
)
132 struct btrfs_root
*root
, *tmp
;
134 down_write(&fs_info
->commit_root_sem
);
135 list_for_each_entry_safe(root
, tmp
, &trans
->switch_commits
,
137 list_del_init(&root
->dirty_list
);
138 free_extent_buffer(root
->commit_root
);
139 root
->commit_root
= btrfs_root_node(root
);
140 if (is_fstree(root
->objectid
))
141 btrfs_unpin_free_ino(root
);
142 clear_btree_io_tree(&root
->dirty_log_pages
);
145 /* We can free old roots now. */
146 spin_lock(&trans
->dropped_roots_lock
);
147 while (!list_empty(&trans
->dropped_roots
)) {
148 root
= list_first_entry(&trans
->dropped_roots
,
149 struct btrfs_root
, root_list
);
150 list_del_init(&root
->root_list
);
151 spin_unlock(&trans
->dropped_roots_lock
);
152 btrfs_drop_and_free_fs_root(fs_info
, root
);
153 spin_lock(&trans
->dropped_roots_lock
);
155 spin_unlock(&trans
->dropped_roots_lock
);
156 up_write(&fs_info
->commit_root_sem
);
159 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
162 if (type
& TRANS_EXTWRITERS
)
163 atomic_inc(&trans
->num_extwriters
);
166 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
169 if (type
& TRANS_EXTWRITERS
)
170 atomic_dec(&trans
->num_extwriters
);
173 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
176 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
179 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
181 return atomic_read(&trans
->num_extwriters
);
185 * either allocate a new transaction or hop into the existing one
187 static noinline
int join_transaction(struct btrfs_fs_info
*fs_info
,
190 struct btrfs_transaction
*cur_trans
;
192 spin_lock(&fs_info
->trans_lock
);
194 /* The file system has been taken offline. No new transactions. */
195 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
196 spin_unlock(&fs_info
->trans_lock
);
200 cur_trans
= fs_info
->running_transaction
;
202 if (cur_trans
->aborted
) {
203 spin_unlock(&fs_info
->trans_lock
);
204 return cur_trans
->aborted
;
206 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
207 spin_unlock(&fs_info
->trans_lock
);
210 atomic_inc(&cur_trans
->use_count
);
211 atomic_inc(&cur_trans
->num_writers
);
212 extwriter_counter_inc(cur_trans
, type
);
213 spin_unlock(&fs_info
->trans_lock
);
216 spin_unlock(&fs_info
->trans_lock
);
219 * If we are ATTACH, we just want to catch the current transaction,
220 * and commit it. If there is no transaction, just return ENOENT.
222 if (type
== TRANS_ATTACH
)
226 * JOIN_NOLOCK only happens during the transaction commit, so
227 * it is impossible that ->running_transaction is NULL
229 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
231 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
235 spin_lock(&fs_info
->trans_lock
);
236 if (fs_info
->running_transaction
) {
238 * someone started a transaction after we unlocked. Make sure
239 * to redo the checks above
241 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
243 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
244 spin_unlock(&fs_info
->trans_lock
);
245 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
249 cur_trans
->fs_info
= fs_info
;
250 atomic_set(&cur_trans
->num_writers
, 1);
251 extwriter_counter_init(cur_trans
, type
);
252 init_waitqueue_head(&cur_trans
->writer_wait
);
253 init_waitqueue_head(&cur_trans
->commit_wait
);
254 init_waitqueue_head(&cur_trans
->pending_wait
);
255 cur_trans
->state
= TRANS_STATE_RUNNING
;
257 * One for this trans handle, one so it will live on until we
258 * commit the transaction.
260 atomic_set(&cur_trans
->use_count
, 2);
261 atomic_set(&cur_trans
->pending_ordered
, 0);
262 cur_trans
->flags
= 0;
263 cur_trans
->start_time
= get_seconds();
265 memset(&cur_trans
->delayed_refs
, 0, sizeof(cur_trans
->delayed_refs
));
267 cur_trans
->delayed_refs
.href_root
= RB_ROOT
;
268 cur_trans
->delayed_refs
.dirty_extent_root
= RB_ROOT
;
269 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
272 * although the tree mod log is per file system and not per transaction,
273 * the log must never go across transaction boundaries.
276 if (!list_empty(&fs_info
->tree_mod_seq_list
))
277 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
279 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 atomic64_set(&fs_info
->tree_mod_seq
, 0);
282 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
284 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
285 INIT_LIST_HEAD(&cur_trans
->pending_chunks
);
286 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
287 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
288 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
289 INIT_LIST_HEAD(&cur_trans
->dropped_roots
);
290 mutex_init(&cur_trans
->cache_write_mutex
);
291 cur_trans
->num_dirty_bgs
= 0;
292 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
293 INIT_LIST_HEAD(&cur_trans
->deleted_bgs
);
294 spin_lock_init(&cur_trans
->dropped_roots_lock
);
295 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
296 extent_io_tree_init(&cur_trans
->dirty_pages
,
297 fs_info
->btree_inode
->i_mapping
);
298 fs_info
->generation
++;
299 cur_trans
->transid
= fs_info
->generation
;
300 fs_info
->running_transaction
= cur_trans
;
301 cur_trans
->aborted
= 0;
302 spin_unlock(&fs_info
->trans_lock
);
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
313 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
314 struct btrfs_root
*root
,
317 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
319 if ((test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
320 root
->last_trans
< trans
->transid
) || force
) {
321 WARN_ON(root
== fs_info
->extent_root
);
322 WARN_ON(root
->commit_root
!= root
->node
);
325 * see below for IN_TRANS_SETUP usage rules
326 * we have the reloc mutex held now, so there
327 * is only one writer in this function
329 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
331 /* make sure readers find IN_TRANS_SETUP before
332 * they find our root->last_trans update
336 spin_lock(&fs_info
->fs_roots_radix_lock
);
337 if (root
->last_trans
== trans
->transid
&& !force
) {
338 spin_unlock(&fs_info
->fs_roots_radix_lock
);
341 radix_tree_tag_set(&fs_info
->fs_roots_radix
,
342 (unsigned long)root
->root_key
.objectid
,
343 BTRFS_ROOT_TRANS_TAG
);
344 spin_unlock(&fs_info
->fs_roots_radix_lock
);
345 root
->last_trans
= trans
->transid
;
347 /* this is pretty tricky. We don't want to
348 * take the relocation lock in btrfs_record_root_in_trans
349 * unless we're really doing the first setup for this root in
352 * Normally we'd use root->last_trans as a flag to decide
353 * if we want to take the expensive mutex.
355 * But, we have to set root->last_trans before we
356 * init the relocation root, otherwise, we trip over warnings
357 * in ctree.c. The solution used here is to flag ourselves
358 * with root IN_TRANS_SETUP. When this is 1, we're still
359 * fixing up the reloc trees and everyone must wait.
361 * When this is zero, they can trust root->last_trans and fly
362 * through btrfs_record_root_in_trans without having to take the
363 * lock. smp_wmb() makes sure that all the writes above are
364 * done before we pop in the zero below
366 btrfs_init_reloc_root(trans
, root
);
367 smp_mb__before_atomic();
368 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
374 void btrfs_add_dropped_root(struct btrfs_trans_handle
*trans
,
375 struct btrfs_root
*root
)
377 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
378 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
380 /* Add ourselves to the transaction dropped list */
381 spin_lock(&cur_trans
->dropped_roots_lock
);
382 list_add_tail(&root
->root_list
, &cur_trans
->dropped_roots
);
383 spin_unlock(&cur_trans
->dropped_roots_lock
);
385 /* Make sure we don't try to update the root at commit time */
386 spin_lock(&fs_info
->fs_roots_radix_lock
);
387 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
388 (unsigned long)root
->root_key
.objectid
,
389 BTRFS_ROOT_TRANS_TAG
);
390 spin_unlock(&fs_info
->fs_roots_radix_lock
);
393 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
394 struct btrfs_root
*root
)
396 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
398 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
402 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
406 if (root
->last_trans
== trans
->transid
&&
407 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
410 mutex_lock(&fs_info
->reloc_mutex
);
411 record_root_in_trans(trans
, root
, 0);
412 mutex_unlock(&fs_info
->reloc_mutex
);
417 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
419 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
420 trans
->state
< TRANS_STATE_UNBLOCKED
&&
424 /* wait for commit against the current transaction to become unblocked
425 * when this is done, it is safe to start a new transaction, but the current
426 * transaction might not be fully on disk.
428 static void wait_current_trans(struct btrfs_fs_info
*fs_info
)
430 struct btrfs_transaction
*cur_trans
;
432 spin_lock(&fs_info
->trans_lock
);
433 cur_trans
= fs_info
->running_transaction
;
434 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
435 atomic_inc(&cur_trans
->use_count
);
436 spin_unlock(&fs_info
->trans_lock
);
438 wait_event(fs_info
->transaction_wait
,
439 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
441 btrfs_put_transaction(cur_trans
);
443 spin_unlock(&fs_info
->trans_lock
);
447 static int may_wait_transaction(struct btrfs_fs_info
*fs_info
, int type
)
449 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
452 if (type
== TRANS_USERSPACE
)
455 if (type
== TRANS_START
&&
456 !atomic_read(&fs_info
->open_ioctl_trans
))
462 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
464 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
466 if (!fs_info
->reloc_ctl
||
467 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
468 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
475 static struct btrfs_trans_handle
*
476 start_transaction(struct btrfs_root
*root
, unsigned int num_items
,
477 unsigned int type
, enum btrfs_reserve_flush_enum flush
)
479 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
481 struct btrfs_trans_handle
*h
;
482 struct btrfs_transaction
*cur_trans
;
484 u64 qgroup_reserved
= 0;
485 bool reloc_reserved
= false;
488 /* Send isn't supposed to start transactions. */
489 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
491 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
492 return ERR_PTR(-EROFS
);
494 if (current
->journal_info
) {
495 WARN_ON(type
& TRANS_EXTWRITERS
);
496 h
= current
->journal_info
;
498 WARN_ON(h
->use_count
> 2);
499 h
->orig_rsv
= h
->block_rsv
;
505 * Do the reservation before we join the transaction so we can do all
506 * the appropriate flushing if need be.
508 if (num_items
> 0 && root
!= fs_info
->chunk_root
) {
509 qgroup_reserved
= num_items
* fs_info
->nodesize
;
510 ret
= btrfs_qgroup_reserve_meta(root
, qgroup_reserved
);
514 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, num_items
);
516 * Do the reservation for the relocation root creation
518 if (need_reserve_reloc_root(root
)) {
519 num_bytes
+= fs_info
->nodesize
;
520 reloc_reserved
= true;
523 ret
= btrfs_block_rsv_add(root
, &fs_info
->trans_block_rsv
,
529 h
= kmem_cache_zalloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
536 * If we are JOIN_NOLOCK we're already committing a transaction and
537 * waiting on this guy, so we don't need to do the sb_start_intwrite
538 * because we're already holding a ref. We need this because we could
539 * have raced in and did an fsync() on a file which can kick a commit
540 * and then we deadlock with somebody doing a freeze.
542 * If we are ATTACH, it means we just want to catch the current
543 * transaction and commit it, so we needn't do sb_start_intwrite().
545 if (type
& __TRANS_FREEZABLE
)
546 sb_start_intwrite(fs_info
->sb
);
548 if (may_wait_transaction(fs_info
, type
))
549 wait_current_trans(fs_info
);
552 ret
= join_transaction(fs_info
, type
);
554 wait_current_trans(fs_info
);
555 if (unlikely(type
== TRANS_ATTACH
))
558 } while (ret
== -EBUSY
);
563 cur_trans
= fs_info
->running_transaction
;
565 h
->transid
= cur_trans
->transid
;
566 h
->transaction
= cur_trans
;
569 h
->fs_info
= root
->fs_info
;
572 h
->can_flush_pending_bgs
= true;
573 INIT_LIST_HEAD(&h
->qgroup_ref_list
);
574 INIT_LIST_HEAD(&h
->new_bgs
);
577 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
578 may_wait_transaction(fs_info
, type
)) {
579 current
->journal_info
= h
;
580 btrfs_commit_transaction(h
);
585 trace_btrfs_space_reservation(fs_info
, "transaction",
586 h
->transid
, num_bytes
, 1);
587 h
->block_rsv
= &fs_info
->trans_block_rsv
;
588 h
->bytes_reserved
= num_bytes
;
589 h
->reloc_reserved
= reloc_reserved
;
593 btrfs_record_root_in_trans(h
, root
);
595 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
596 current
->journal_info
= h
;
600 if (type
& __TRANS_FREEZABLE
)
601 sb_end_intwrite(fs_info
->sb
);
602 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
605 btrfs_block_rsv_release(fs_info
, &fs_info
->trans_block_rsv
,
608 btrfs_qgroup_free_meta(root
, qgroup_reserved
);
612 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
613 unsigned int num_items
)
615 return start_transaction(root
, num_items
, TRANS_START
,
616 BTRFS_RESERVE_FLUSH_ALL
);
618 struct btrfs_trans_handle
*btrfs_start_transaction_fallback_global_rsv(
619 struct btrfs_root
*root
,
620 unsigned int num_items
,
623 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
624 struct btrfs_trans_handle
*trans
;
628 trans
= btrfs_start_transaction(root
, num_items
);
629 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
632 trans
= btrfs_start_transaction(root
, 0);
636 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, num_items
);
637 ret
= btrfs_cond_migrate_bytes(fs_info
, &fs_info
->trans_block_rsv
,
638 num_bytes
, min_factor
);
640 btrfs_end_transaction(trans
);
644 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
645 trans
->bytes_reserved
= num_bytes
;
646 trace_btrfs_space_reservation(fs_info
, "transaction",
647 trans
->transid
, num_bytes
, 1);
652 struct btrfs_trans_handle
*btrfs_start_transaction_lflush(
653 struct btrfs_root
*root
,
654 unsigned int num_items
)
656 return start_transaction(root
, num_items
, TRANS_START
,
657 BTRFS_RESERVE_FLUSH_LIMIT
);
660 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
662 return start_transaction(root
, 0, TRANS_JOIN
,
663 BTRFS_RESERVE_NO_FLUSH
);
666 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
668 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
,
669 BTRFS_RESERVE_NO_FLUSH
);
672 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
674 return start_transaction(root
, 0, TRANS_USERSPACE
,
675 BTRFS_RESERVE_NO_FLUSH
);
679 * btrfs_attach_transaction() - catch the running transaction
681 * It is used when we want to commit the current the transaction, but
682 * don't want to start a new one.
684 * Note: If this function return -ENOENT, it just means there is no
685 * running transaction. But it is possible that the inactive transaction
686 * is still in the memory, not fully on disk. If you hope there is no
687 * inactive transaction in the fs when -ENOENT is returned, you should
689 * btrfs_attach_transaction_barrier()
691 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
693 return start_transaction(root
, 0, TRANS_ATTACH
,
694 BTRFS_RESERVE_NO_FLUSH
);
698 * btrfs_attach_transaction_barrier() - catch the running transaction
700 * It is similar to the above function, the differentia is this one
701 * will wait for all the inactive transactions until they fully
704 struct btrfs_trans_handle
*
705 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
707 struct btrfs_trans_handle
*trans
;
709 trans
= start_transaction(root
, 0, TRANS_ATTACH
,
710 BTRFS_RESERVE_NO_FLUSH
);
711 if (IS_ERR(trans
) && PTR_ERR(trans
) == -ENOENT
)
712 btrfs_wait_for_commit(root
->fs_info
, 0);
717 /* wait for a transaction commit to be fully complete */
718 static noinline
void wait_for_commit(struct btrfs_transaction
*commit
)
720 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
723 int btrfs_wait_for_commit(struct btrfs_fs_info
*fs_info
, u64 transid
)
725 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
729 if (transid
<= fs_info
->last_trans_committed
)
732 /* find specified transaction */
733 spin_lock(&fs_info
->trans_lock
);
734 list_for_each_entry(t
, &fs_info
->trans_list
, list
) {
735 if (t
->transid
== transid
) {
737 atomic_inc(&cur_trans
->use_count
);
741 if (t
->transid
> transid
) {
746 spin_unlock(&fs_info
->trans_lock
);
749 * The specified transaction doesn't exist, or we
750 * raced with btrfs_commit_transaction
753 if (transid
> fs_info
->last_trans_committed
)
758 /* find newest transaction that is committing | committed */
759 spin_lock(&fs_info
->trans_lock
);
760 list_for_each_entry_reverse(t
, &fs_info
->trans_list
,
762 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
763 if (t
->state
== TRANS_STATE_COMPLETED
)
766 atomic_inc(&cur_trans
->use_count
);
770 spin_unlock(&fs_info
->trans_lock
);
772 goto out
; /* nothing committing|committed */
775 wait_for_commit(cur_trans
);
776 btrfs_put_transaction(cur_trans
);
781 void btrfs_throttle(struct btrfs_fs_info
*fs_info
)
783 if (!atomic_read(&fs_info
->open_ioctl_trans
))
784 wait_current_trans(fs_info
);
787 static int should_end_transaction(struct btrfs_trans_handle
*trans
)
789 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
791 if (fs_info
->global_block_rsv
.space_info
->full
&&
792 btrfs_check_space_for_delayed_refs(trans
, fs_info
))
795 return !!btrfs_block_rsv_check(&fs_info
->global_block_rsv
, 5);
798 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
)
800 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
801 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
806 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
807 cur_trans
->delayed_refs
.flushing
)
810 updates
= trans
->delayed_ref_updates
;
811 trans
->delayed_ref_updates
= 0;
813 err
= btrfs_run_delayed_refs(trans
, fs_info
, updates
* 2);
814 if (err
) /* Error code will also eval true */
818 return should_end_transaction(trans
);
821 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
824 struct btrfs_fs_info
*info
= trans
->fs_info
;
825 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
826 u64 transid
= trans
->transid
;
827 unsigned long cur
= trans
->delayed_ref_updates
;
828 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
830 int must_run_delayed_refs
= 0;
832 if (trans
->use_count
> 1) {
834 trans
->block_rsv
= trans
->orig_rsv
;
838 btrfs_trans_release_metadata(trans
, info
);
839 trans
->block_rsv
= NULL
;
841 if (!list_empty(&trans
->new_bgs
))
842 btrfs_create_pending_block_groups(trans
, info
);
844 trans
->delayed_ref_updates
= 0;
846 must_run_delayed_refs
=
847 btrfs_should_throttle_delayed_refs(trans
, info
);
848 cur
= max_t(unsigned long, cur
, 32);
851 * don't make the caller wait if they are from a NOLOCK
852 * or ATTACH transaction, it will deadlock with commit
854 if (must_run_delayed_refs
== 1 &&
855 (trans
->type
& (__TRANS_JOIN_NOLOCK
| __TRANS_ATTACH
)))
856 must_run_delayed_refs
= 2;
859 btrfs_trans_release_metadata(trans
, info
);
860 trans
->block_rsv
= NULL
;
862 if (!list_empty(&trans
->new_bgs
))
863 btrfs_create_pending_block_groups(trans
, info
);
865 btrfs_trans_release_chunk_metadata(trans
);
867 if (lock
&& !atomic_read(&info
->open_ioctl_trans
) &&
868 should_end_transaction(trans
) &&
869 ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_RUNNING
) {
870 spin_lock(&info
->trans_lock
);
871 if (cur_trans
->state
== TRANS_STATE_RUNNING
)
872 cur_trans
->state
= TRANS_STATE_BLOCKED
;
873 spin_unlock(&info
->trans_lock
);
876 if (lock
&& ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
878 return btrfs_commit_transaction(trans
);
880 wake_up_process(info
->transaction_kthread
);
883 if (trans
->type
& __TRANS_FREEZABLE
)
884 sb_end_intwrite(info
->sb
);
886 WARN_ON(cur_trans
!= info
->running_transaction
);
887 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
888 atomic_dec(&cur_trans
->num_writers
);
889 extwriter_counter_dec(cur_trans
, trans
->type
);
892 * Make sure counter is updated before we wake up waiters.
895 if (waitqueue_active(&cur_trans
->writer_wait
))
896 wake_up(&cur_trans
->writer_wait
);
897 btrfs_put_transaction(cur_trans
);
899 if (current
->journal_info
== trans
)
900 current
->journal_info
= NULL
;
903 btrfs_run_delayed_iputs(info
);
905 if (trans
->aborted
||
906 test_bit(BTRFS_FS_STATE_ERROR
, &info
->fs_state
)) {
907 wake_up_process(info
->transaction_kthread
);
910 assert_qgroups_uptodate(trans
);
912 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
913 if (must_run_delayed_refs
) {
914 btrfs_async_run_delayed_refs(info
, cur
, transid
,
915 must_run_delayed_refs
== 1);
920 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
)
922 return __btrfs_end_transaction(trans
, 0);
925 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
)
927 return __btrfs_end_transaction(trans
, 1);
931 * when btree blocks are allocated, they have some corresponding bits set for
932 * them in one of two extent_io trees. This is used to make sure all of
933 * those extents are sent to disk but does not wait on them
935 int btrfs_write_marked_extents(struct btrfs_fs_info
*fs_info
,
936 struct extent_io_tree
*dirty_pages
, int mark
)
940 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
941 struct extent_state
*cached_state
= NULL
;
945 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
946 mark
, &cached_state
)) {
947 bool wait_writeback
= false;
949 err
= convert_extent_bit(dirty_pages
, start
, end
,
951 mark
, &cached_state
);
953 * convert_extent_bit can return -ENOMEM, which is most of the
954 * time a temporary error. So when it happens, ignore the error
955 * and wait for writeback of this range to finish - because we
956 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
957 * to __btrfs_wait_marked_extents() would not know that
958 * writeback for this range started and therefore wouldn't
959 * wait for it to finish - we don't want to commit a
960 * superblock that points to btree nodes/leafs for which
961 * writeback hasn't finished yet (and without errors).
962 * We cleanup any entries left in the io tree when committing
963 * the transaction (through clear_btree_io_tree()).
965 if (err
== -ENOMEM
) {
967 wait_writeback
= true;
970 err
= filemap_fdatawrite_range(mapping
, start
, end
);
973 else if (wait_writeback
)
974 werr
= filemap_fdatawait_range(mapping
, start
, end
);
975 free_extent_state(cached_state
);
984 * when btree blocks are allocated, they have some corresponding bits set for
985 * them in one of two extent_io trees. This is used to make sure all of
986 * those extents are on disk for transaction or log commit. We wait
987 * on all the pages and clear them from the dirty pages state tree
989 static int __btrfs_wait_marked_extents(struct btrfs_fs_info
*fs_info
,
990 struct extent_io_tree
*dirty_pages
)
994 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
995 struct extent_state
*cached_state
= NULL
;
999 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
1000 EXTENT_NEED_WAIT
, &cached_state
)) {
1002 * Ignore -ENOMEM errors returned by clear_extent_bit().
1003 * When committing the transaction, we'll remove any entries
1004 * left in the io tree. For a log commit, we don't remove them
1005 * after committing the log because the tree can be accessed
1006 * concurrently - we do it only at transaction commit time when
1007 * it's safe to do it (through clear_btree_io_tree()).
1009 err
= clear_extent_bit(dirty_pages
, start
, end
,
1011 0, 0, &cached_state
, GFP_NOFS
);
1015 err
= filemap_fdatawait_range(mapping
, start
, end
);
1018 free_extent_state(cached_state
);
1019 cached_state
= NULL
;
1028 int btrfs_wait_extents(struct btrfs_fs_info
*fs_info
,
1029 struct extent_io_tree
*dirty_pages
)
1031 bool errors
= false;
1034 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
1035 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR
, &fs_info
->flags
))
1043 int btrfs_wait_tree_log_extents(struct btrfs_root
*log_root
, int mark
)
1045 struct btrfs_fs_info
*fs_info
= log_root
->fs_info
;
1046 struct extent_io_tree
*dirty_pages
= &log_root
->dirty_log_pages
;
1047 bool errors
= false;
1050 ASSERT(log_root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
);
1052 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
1053 if ((mark
& EXTENT_DIRTY
) &&
1054 test_and_clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
))
1057 if ((mark
& EXTENT_NEW
) &&
1058 test_and_clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
))
1067 * when btree blocks are allocated, they have some corresponding bits set for
1068 * them in one of two extent_io trees. This is used to make sure all of
1069 * those extents are on disk for transaction or log commit
1071 static int btrfs_write_and_wait_marked_extents(struct btrfs_fs_info
*fs_info
,
1072 struct extent_io_tree
*dirty_pages
, int mark
)
1076 struct blk_plug plug
;
1078 blk_start_plug(&plug
);
1079 ret
= btrfs_write_marked_extents(fs_info
, dirty_pages
, mark
);
1080 blk_finish_plug(&plug
);
1081 ret2
= btrfs_wait_extents(fs_info
, dirty_pages
);
1090 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
1091 struct btrfs_fs_info
*fs_info
)
1095 ret
= btrfs_write_and_wait_marked_extents(fs_info
,
1096 &trans
->transaction
->dirty_pages
,
1098 clear_btree_io_tree(&trans
->transaction
->dirty_pages
);
1104 * this is used to update the root pointer in the tree of tree roots.
1106 * But, in the case of the extent allocation tree, updating the root
1107 * pointer may allocate blocks which may change the root of the extent
1110 * So, this loops and repeats and makes sure the cowonly root didn't
1111 * change while the root pointer was being updated in the metadata.
1113 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1114 struct btrfs_root
*root
)
1117 u64 old_root_bytenr
;
1119 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1120 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1122 old_root_used
= btrfs_root_used(&root
->root_item
);
1125 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1126 if (old_root_bytenr
== root
->node
->start
&&
1127 old_root_used
== btrfs_root_used(&root
->root_item
))
1130 btrfs_set_root_node(&root
->root_item
, root
->node
);
1131 ret
= btrfs_update_root(trans
, tree_root
,
1137 old_root_used
= btrfs_root_used(&root
->root_item
);
1144 * update all the cowonly tree roots on disk
1146 * The error handling in this function may not be obvious. Any of the
1147 * failures will cause the file system to go offline. We still need
1148 * to clean up the delayed refs.
1150 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
1151 struct btrfs_fs_info
*fs_info
)
1153 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1154 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1155 struct list_head
*next
;
1156 struct extent_buffer
*eb
;
1159 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1160 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1162 btrfs_tree_unlock(eb
);
1163 free_extent_buffer(eb
);
1168 ret
= btrfs_run_delayed_refs(trans
, fs_info
, (unsigned long)-1);
1172 ret
= btrfs_run_dev_stats(trans
, fs_info
);
1175 ret
= btrfs_run_dev_replace(trans
, fs_info
);
1178 ret
= btrfs_run_qgroups(trans
, fs_info
);
1182 ret
= btrfs_setup_space_cache(trans
, fs_info
);
1186 /* run_qgroups might have added some more refs */
1187 ret
= btrfs_run_delayed_refs(trans
, fs_info
, (unsigned long)-1);
1191 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1192 struct btrfs_root
*root
;
1193 next
= fs_info
->dirty_cowonly_roots
.next
;
1194 list_del_init(next
);
1195 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1196 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1198 if (root
!= fs_info
->extent_root
)
1199 list_add_tail(&root
->dirty_list
,
1200 &trans
->transaction
->switch_commits
);
1201 ret
= update_cowonly_root(trans
, root
);
1204 ret
= btrfs_run_delayed_refs(trans
, fs_info
, (unsigned long)-1);
1209 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1210 ret
= btrfs_write_dirty_block_groups(trans
, fs_info
);
1213 ret
= btrfs_run_delayed_refs(trans
, fs_info
, (unsigned long)-1);
1218 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1221 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1222 &trans
->transaction
->switch_commits
);
1223 btrfs_after_dev_replace_commit(fs_info
);
1229 * dead roots are old snapshots that need to be deleted. This allocates
1230 * a dirty root struct and adds it into the list of dead roots that need to
1233 void btrfs_add_dead_root(struct btrfs_root
*root
)
1235 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1237 spin_lock(&fs_info
->trans_lock
);
1238 if (list_empty(&root
->root_list
))
1239 list_add_tail(&root
->root_list
, &fs_info
->dead_roots
);
1240 spin_unlock(&fs_info
->trans_lock
);
1244 * update all the cowonly tree roots on disk
1246 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
1247 struct btrfs_fs_info
*fs_info
)
1249 struct btrfs_root
*gang
[8];
1254 spin_lock(&fs_info
->fs_roots_radix_lock
);
1256 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1259 BTRFS_ROOT_TRANS_TAG
);
1262 for (i
= 0; i
< ret
; i
++) {
1263 struct btrfs_root
*root
= gang
[i
];
1264 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1265 (unsigned long)root
->root_key
.objectid
,
1266 BTRFS_ROOT_TRANS_TAG
);
1267 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1269 btrfs_free_log(trans
, root
);
1270 btrfs_update_reloc_root(trans
, root
);
1271 btrfs_orphan_commit_root(trans
, root
);
1273 btrfs_save_ino_cache(root
, trans
);
1275 /* see comments in should_cow_block() */
1276 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1277 smp_mb__after_atomic();
1279 if (root
->commit_root
!= root
->node
) {
1280 list_add_tail(&root
->dirty_list
,
1281 &trans
->transaction
->switch_commits
);
1282 btrfs_set_root_node(&root
->root_item
,
1286 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1289 spin_lock(&fs_info
->fs_roots_radix_lock
);
1292 btrfs_qgroup_free_meta_all(root
);
1295 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1300 * defrag a given btree.
1301 * Every leaf in the btree is read and defragged.
1303 int btrfs_defrag_root(struct btrfs_root
*root
)
1305 struct btrfs_fs_info
*info
= root
->fs_info
;
1306 struct btrfs_trans_handle
*trans
;
1309 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1313 trans
= btrfs_start_transaction(root
, 0);
1315 return PTR_ERR(trans
);
1317 ret
= btrfs_defrag_leaves(trans
, root
);
1319 btrfs_end_transaction(trans
);
1320 btrfs_btree_balance_dirty(info
);
1323 if (btrfs_fs_closing(info
) || ret
!= -EAGAIN
)
1326 if (btrfs_defrag_cancelled(info
)) {
1327 btrfs_debug(info
, "defrag_root cancelled");
1332 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1337 * Do all special snapshot related qgroup dirty hack.
1339 * Will do all needed qgroup inherit and dirty hack like switch commit
1340 * roots inside one transaction and write all btree into disk, to make
1343 static int qgroup_account_snapshot(struct btrfs_trans_handle
*trans
,
1344 struct btrfs_root
*src
,
1345 struct btrfs_root
*parent
,
1346 struct btrfs_qgroup_inherit
*inherit
,
1349 struct btrfs_fs_info
*fs_info
= src
->fs_info
;
1353 * Save some performance in the case that qgroups are not
1354 * enabled. If this check races with the ioctl, rescan will
1357 mutex_lock(&fs_info
->qgroup_ioctl_lock
);
1358 if (!test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
)) {
1359 mutex_unlock(&fs_info
->qgroup_ioctl_lock
);
1362 mutex_unlock(&fs_info
->qgroup_ioctl_lock
);
1365 * We are going to commit transaction, see btrfs_commit_transaction()
1366 * comment for reason locking tree_log_mutex
1368 mutex_lock(&fs_info
->tree_log_mutex
);
1370 ret
= commit_fs_roots(trans
, fs_info
);
1373 ret
= btrfs_qgroup_prepare_account_extents(trans
, fs_info
);
1376 ret
= btrfs_qgroup_account_extents(trans
, fs_info
);
1380 /* Now qgroup are all updated, we can inherit it to new qgroups */
1381 ret
= btrfs_qgroup_inherit(trans
, fs_info
,
1382 src
->root_key
.objectid
, dst_objectid
,
1388 * Now we do a simplified commit transaction, which will:
1389 * 1) commit all subvolume and extent tree
1390 * To ensure all subvolume and extent tree have a valid
1391 * commit_root to accounting later insert_dir_item()
1392 * 2) write all btree blocks onto disk
1393 * This is to make sure later btree modification will be cowed
1394 * Or commit_root can be populated and cause wrong qgroup numbers
1395 * In this simplified commit, we don't really care about other trees
1396 * like chunk and root tree, as they won't affect qgroup.
1397 * And we don't write super to avoid half committed status.
1399 ret
= commit_cowonly_roots(trans
, fs_info
);
1402 switch_commit_roots(trans
->transaction
, fs_info
);
1403 ret
= btrfs_write_and_wait_transaction(trans
, fs_info
);
1405 btrfs_handle_fs_error(fs_info
, ret
,
1406 "Error while writing out transaction for qgroup");
1409 mutex_unlock(&fs_info
->tree_log_mutex
);
1412 * Force parent root to be updated, as we recorded it before so its
1413 * last_trans == cur_transid.
1414 * Or it won't be committed again onto disk after later
1418 record_root_in_trans(trans
, parent
, 1);
1423 * new snapshots need to be created at a very specific time in the
1424 * transaction commit. This does the actual creation.
1427 * If the error which may affect the commitment of the current transaction
1428 * happens, we should return the error number. If the error which just affect
1429 * the creation of the pending snapshots, just return 0.
1431 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1432 struct btrfs_fs_info
*fs_info
,
1433 struct btrfs_pending_snapshot
*pending
)
1435 struct btrfs_key key
;
1436 struct btrfs_root_item
*new_root_item
;
1437 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1438 struct btrfs_root
*root
= pending
->root
;
1439 struct btrfs_root
*parent_root
;
1440 struct btrfs_block_rsv
*rsv
;
1441 struct inode
*parent_inode
;
1442 struct btrfs_path
*path
;
1443 struct btrfs_dir_item
*dir_item
;
1444 struct dentry
*dentry
;
1445 struct extent_buffer
*tmp
;
1446 struct extent_buffer
*old
;
1447 struct timespec cur_time
;
1455 ASSERT(pending
->path
);
1456 path
= pending
->path
;
1458 ASSERT(pending
->root_item
);
1459 new_root_item
= pending
->root_item
;
1461 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1463 goto no_free_objectid
;
1466 * Make qgroup to skip current new snapshot's qgroupid, as it is
1467 * accounted by later btrfs_qgroup_inherit().
1469 btrfs_set_skip_qgroup(trans
, objectid
);
1471 btrfs_reloc_pre_snapshot(pending
, &to_reserve
);
1473 if (to_reserve
> 0) {
1474 pending
->error
= btrfs_block_rsv_add(root
,
1475 &pending
->block_rsv
,
1477 BTRFS_RESERVE_NO_FLUSH
);
1479 goto clear_skip_qgroup
;
1482 key
.objectid
= objectid
;
1483 key
.offset
= (u64
)-1;
1484 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1486 rsv
= trans
->block_rsv
;
1487 trans
->block_rsv
= &pending
->block_rsv
;
1488 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1489 trace_btrfs_space_reservation(fs_info
, "transaction",
1491 trans
->bytes_reserved
, 1);
1492 dentry
= pending
->dentry
;
1493 parent_inode
= pending
->dir
;
1494 parent_root
= BTRFS_I(parent_inode
)->root
;
1495 record_root_in_trans(trans
, parent_root
, 0);
1497 cur_time
= current_time(parent_inode
);
1500 * insert the directory item
1502 ret
= btrfs_set_inode_index(parent_inode
, &index
);
1503 BUG_ON(ret
); /* -ENOMEM */
1505 /* check if there is a file/dir which has the same name. */
1506 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1507 btrfs_ino(parent_inode
),
1508 dentry
->d_name
.name
,
1509 dentry
->d_name
.len
, 0);
1510 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1511 pending
->error
= -EEXIST
;
1512 goto dir_item_existed
;
1513 } else if (IS_ERR(dir_item
)) {
1514 ret
= PTR_ERR(dir_item
);
1515 btrfs_abort_transaction(trans
, ret
);
1518 btrfs_release_path(path
);
1521 * pull in the delayed directory update
1522 * and the delayed inode item
1523 * otherwise we corrupt the FS during
1526 ret
= btrfs_run_delayed_items(trans
, fs_info
);
1527 if (ret
) { /* Transaction aborted */
1528 btrfs_abort_transaction(trans
, ret
);
1532 record_root_in_trans(trans
, root
, 0);
1533 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1534 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1535 btrfs_check_and_init_root_item(new_root_item
);
1537 root_flags
= btrfs_root_flags(new_root_item
);
1538 if (pending
->readonly
)
1539 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1541 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1542 btrfs_set_root_flags(new_root_item
, root_flags
);
1544 btrfs_set_root_generation_v2(new_root_item
,
1546 uuid_le_gen(&new_uuid
);
1547 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1548 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1550 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1551 memset(new_root_item
->received_uuid
, 0,
1552 sizeof(new_root_item
->received_uuid
));
1553 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1554 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1555 btrfs_set_root_stransid(new_root_item
, 0);
1556 btrfs_set_root_rtransid(new_root_item
, 0);
1558 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1559 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1560 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1562 old
= btrfs_lock_root_node(root
);
1563 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1565 btrfs_tree_unlock(old
);
1566 free_extent_buffer(old
);
1567 btrfs_abort_transaction(trans
, ret
);
1571 btrfs_set_lock_blocking(old
);
1573 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1574 /* clean up in any case */
1575 btrfs_tree_unlock(old
);
1576 free_extent_buffer(old
);
1578 btrfs_abort_transaction(trans
, ret
);
1581 /* see comments in should_cow_block() */
1582 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1585 btrfs_set_root_node(new_root_item
, tmp
);
1586 /* record when the snapshot was created in key.offset */
1587 key
.offset
= trans
->transid
;
1588 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1589 btrfs_tree_unlock(tmp
);
1590 free_extent_buffer(tmp
);
1592 btrfs_abort_transaction(trans
, ret
);
1597 * insert root back/forward references
1599 ret
= btrfs_add_root_ref(trans
, fs_info
, objectid
,
1600 parent_root
->root_key
.objectid
,
1601 btrfs_ino(parent_inode
), index
,
1602 dentry
->d_name
.name
, dentry
->d_name
.len
);
1604 btrfs_abort_transaction(trans
, ret
);
1608 key
.offset
= (u64
)-1;
1609 pending
->snap
= btrfs_read_fs_root_no_name(fs_info
, &key
);
1610 if (IS_ERR(pending
->snap
)) {
1611 ret
= PTR_ERR(pending
->snap
);
1612 btrfs_abort_transaction(trans
, ret
);
1616 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1618 btrfs_abort_transaction(trans
, ret
);
1622 ret
= btrfs_run_delayed_refs(trans
, fs_info
, (unsigned long)-1);
1624 btrfs_abort_transaction(trans
, ret
);
1629 * Do special qgroup accounting for snapshot, as we do some qgroup
1630 * snapshot hack to do fast snapshot.
1631 * To co-operate with that hack, we do hack again.
1632 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1634 ret
= qgroup_account_snapshot(trans
, root
, parent_root
,
1635 pending
->inherit
, objectid
);
1639 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1640 dentry
->d_name
.name
, dentry
->d_name
.len
,
1642 BTRFS_FT_DIR
, index
);
1643 /* We have check then name at the beginning, so it is impossible. */
1644 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1646 btrfs_abort_transaction(trans
, ret
);
1650 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
1651 dentry
->d_name
.len
* 2);
1652 parent_inode
->i_mtime
= parent_inode
->i_ctime
=
1653 current_time(parent_inode
);
1654 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1656 btrfs_abort_transaction(trans
, ret
);
1659 ret
= btrfs_uuid_tree_add(trans
, fs_info
, new_uuid
.b
,
1660 BTRFS_UUID_KEY_SUBVOL
, objectid
);
1662 btrfs_abort_transaction(trans
, ret
);
1665 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1666 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
1667 new_root_item
->received_uuid
,
1668 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1670 if (ret
&& ret
!= -EEXIST
) {
1671 btrfs_abort_transaction(trans
, ret
);
1676 ret
= btrfs_run_delayed_refs(trans
, fs_info
, (unsigned long)-1);
1678 btrfs_abort_transaction(trans
, ret
);
1683 pending
->error
= ret
;
1685 trans
->block_rsv
= rsv
;
1686 trans
->bytes_reserved
= 0;
1688 btrfs_clear_skip_qgroup(trans
);
1690 kfree(new_root_item
);
1691 pending
->root_item
= NULL
;
1692 btrfs_free_path(path
);
1693 pending
->path
= NULL
;
1699 * create all the snapshots we've scheduled for creation
1701 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1702 struct btrfs_fs_info
*fs_info
)
1704 struct btrfs_pending_snapshot
*pending
, *next
;
1705 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1708 list_for_each_entry_safe(pending
, next
, head
, list
) {
1709 list_del(&pending
->list
);
1710 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1717 static void update_super_roots(struct btrfs_fs_info
*fs_info
)
1719 struct btrfs_root_item
*root_item
;
1720 struct btrfs_super_block
*super
;
1722 super
= fs_info
->super_copy
;
1724 root_item
= &fs_info
->chunk_root
->root_item
;
1725 super
->chunk_root
= root_item
->bytenr
;
1726 super
->chunk_root_generation
= root_item
->generation
;
1727 super
->chunk_root_level
= root_item
->level
;
1729 root_item
= &fs_info
->tree_root
->root_item
;
1730 super
->root
= root_item
->bytenr
;
1731 super
->generation
= root_item
->generation
;
1732 super
->root_level
= root_item
->level
;
1733 if (btrfs_test_opt(fs_info
, SPACE_CACHE
))
1734 super
->cache_generation
= root_item
->generation
;
1735 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
))
1736 super
->uuid_tree_generation
= root_item
->generation
;
1739 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1741 struct btrfs_transaction
*trans
;
1744 spin_lock(&info
->trans_lock
);
1745 trans
= info
->running_transaction
;
1747 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1748 spin_unlock(&info
->trans_lock
);
1752 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1754 struct btrfs_transaction
*trans
;
1757 spin_lock(&info
->trans_lock
);
1758 trans
= info
->running_transaction
;
1760 ret
= is_transaction_blocked(trans
);
1761 spin_unlock(&info
->trans_lock
);
1766 * wait for the current transaction commit to start and block subsequent
1769 static void wait_current_trans_commit_start(struct btrfs_fs_info
*fs_info
,
1770 struct btrfs_transaction
*trans
)
1772 wait_event(fs_info
->transaction_blocked_wait
,
1773 trans
->state
>= TRANS_STATE_COMMIT_START
|| trans
->aborted
);
1777 * wait for the current transaction to start and then become unblocked.
1780 static void wait_current_trans_commit_start_and_unblock(
1781 struct btrfs_fs_info
*fs_info
,
1782 struct btrfs_transaction
*trans
)
1784 wait_event(fs_info
->transaction_wait
,
1785 trans
->state
>= TRANS_STATE_UNBLOCKED
|| trans
->aborted
);
1789 * commit transactions asynchronously. once btrfs_commit_transaction_async
1790 * returns, any subsequent transaction will not be allowed to join.
1792 struct btrfs_async_commit
{
1793 struct btrfs_trans_handle
*newtrans
;
1794 struct work_struct work
;
1797 static void do_async_commit(struct work_struct
*work
)
1799 struct btrfs_async_commit
*ac
=
1800 container_of(work
, struct btrfs_async_commit
, work
);
1803 * We've got freeze protection passed with the transaction.
1804 * Tell lockdep about it.
1806 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1807 __sb_writers_acquired(ac
->newtrans
->fs_info
->sb
, SB_FREEZE_FS
);
1809 current
->journal_info
= ac
->newtrans
;
1811 btrfs_commit_transaction(ac
->newtrans
);
1815 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1816 int wait_for_unblock
)
1818 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1819 struct btrfs_async_commit
*ac
;
1820 struct btrfs_transaction
*cur_trans
;
1822 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1826 INIT_WORK(&ac
->work
, do_async_commit
);
1827 ac
->newtrans
= btrfs_join_transaction(trans
->root
);
1828 if (IS_ERR(ac
->newtrans
)) {
1829 int err
= PTR_ERR(ac
->newtrans
);
1834 /* take transaction reference */
1835 cur_trans
= trans
->transaction
;
1836 atomic_inc(&cur_trans
->use_count
);
1838 btrfs_end_transaction(trans
);
1841 * Tell lockdep we've released the freeze rwsem, since the
1842 * async commit thread will be the one to unlock it.
1844 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1845 __sb_writers_release(fs_info
->sb
, SB_FREEZE_FS
);
1847 schedule_work(&ac
->work
);
1849 /* wait for transaction to start and unblock */
1850 if (wait_for_unblock
)
1851 wait_current_trans_commit_start_and_unblock(fs_info
, cur_trans
);
1853 wait_current_trans_commit_start(fs_info
, cur_trans
);
1855 if (current
->journal_info
== trans
)
1856 current
->journal_info
= NULL
;
1858 btrfs_put_transaction(cur_trans
);
1863 static void cleanup_transaction(struct btrfs_trans_handle
*trans
,
1864 struct btrfs_root
*root
, int err
)
1866 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1867 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1870 WARN_ON(trans
->use_count
> 1);
1872 btrfs_abort_transaction(trans
, err
);
1874 spin_lock(&fs_info
->trans_lock
);
1877 * If the transaction is removed from the list, it means this
1878 * transaction has been committed successfully, so it is impossible
1879 * to call the cleanup function.
1881 BUG_ON(list_empty(&cur_trans
->list
));
1883 list_del_init(&cur_trans
->list
);
1884 if (cur_trans
== fs_info
->running_transaction
) {
1885 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1886 spin_unlock(&fs_info
->trans_lock
);
1887 wait_event(cur_trans
->writer_wait
,
1888 atomic_read(&cur_trans
->num_writers
) == 1);
1890 spin_lock(&fs_info
->trans_lock
);
1892 spin_unlock(&fs_info
->trans_lock
);
1894 btrfs_cleanup_one_transaction(trans
->transaction
, fs_info
);
1896 spin_lock(&fs_info
->trans_lock
);
1897 if (cur_trans
== fs_info
->running_transaction
)
1898 fs_info
->running_transaction
= NULL
;
1899 spin_unlock(&fs_info
->trans_lock
);
1901 if (trans
->type
& __TRANS_FREEZABLE
)
1902 sb_end_intwrite(fs_info
->sb
);
1903 btrfs_put_transaction(cur_trans
);
1904 btrfs_put_transaction(cur_trans
);
1906 trace_btrfs_transaction_commit(root
);
1908 if (current
->journal_info
== trans
)
1909 current
->journal_info
= NULL
;
1910 btrfs_scrub_cancel(fs_info
);
1912 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1915 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1917 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
))
1918 return btrfs_start_delalloc_roots(fs_info
, 1, -1);
1922 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1924 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
))
1925 btrfs_wait_ordered_roots(fs_info
, -1, 0, (u64
)-1);
1929 btrfs_wait_pending_ordered(struct btrfs_transaction
*cur_trans
)
1931 wait_event(cur_trans
->pending_wait
,
1932 atomic_read(&cur_trans
->pending_ordered
) == 0);
1935 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
)
1937 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1938 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1939 struct btrfs_transaction
*prev_trans
= NULL
;
1942 /* Stop the commit early if ->aborted is set */
1943 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1944 ret
= cur_trans
->aborted
;
1945 btrfs_end_transaction(trans
);
1949 /* make a pass through all the delayed refs we have so far
1950 * any runnings procs may add more while we are here
1952 ret
= btrfs_run_delayed_refs(trans
, fs_info
, 0);
1954 btrfs_end_transaction(trans
);
1958 btrfs_trans_release_metadata(trans
, fs_info
);
1959 trans
->block_rsv
= NULL
;
1961 cur_trans
= trans
->transaction
;
1964 * set the flushing flag so procs in this transaction have to
1965 * start sending their work down.
1967 cur_trans
->delayed_refs
.flushing
= 1;
1970 if (!list_empty(&trans
->new_bgs
))
1971 btrfs_create_pending_block_groups(trans
, fs_info
);
1973 ret
= btrfs_run_delayed_refs(trans
, fs_info
, 0);
1975 btrfs_end_transaction(trans
);
1979 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &cur_trans
->flags
)) {
1982 /* this mutex is also taken before trying to set
1983 * block groups readonly. We need to make sure
1984 * that nobody has set a block group readonly
1985 * after a extents from that block group have been
1986 * allocated for cache files. btrfs_set_block_group_ro
1987 * will wait for the transaction to commit if it
1988 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1990 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1991 * only one process starts all the block group IO. It wouldn't
1992 * hurt to have more than one go through, but there's no
1993 * real advantage to it either.
1995 mutex_lock(&fs_info
->ro_block_group_mutex
);
1996 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN
,
1999 mutex_unlock(&fs_info
->ro_block_group_mutex
);
2002 ret
= btrfs_start_dirty_block_groups(trans
, fs_info
);
2005 btrfs_end_transaction(trans
);
2009 spin_lock(&fs_info
->trans_lock
);
2010 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
2011 spin_unlock(&fs_info
->trans_lock
);
2012 atomic_inc(&cur_trans
->use_count
);
2013 ret
= btrfs_end_transaction(trans
);
2015 wait_for_commit(cur_trans
);
2017 if (unlikely(cur_trans
->aborted
))
2018 ret
= cur_trans
->aborted
;
2020 btrfs_put_transaction(cur_trans
);
2025 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
2026 wake_up(&fs_info
->transaction_blocked_wait
);
2028 if (cur_trans
->list
.prev
!= &fs_info
->trans_list
) {
2029 prev_trans
= list_entry(cur_trans
->list
.prev
,
2030 struct btrfs_transaction
, list
);
2031 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
2032 atomic_inc(&prev_trans
->use_count
);
2033 spin_unlock(&fs_info
->trans_lock
);
2035 wait_for_commit(prev_trans
);
2036 ret
= prev_trans
->aborted
;
2038 btrfs_put_transaction(prev_trans
);
2040 goto cleanup_transaction
;
2042 spin_unlock(&fs_info
->trans_lock
);
2045 spin_unlock(&fs_info
->trans_lock
);
2048 extwriter_counter_dec(cur_trans
, trans
->type
);
2050 ret
= btrfs_start_delalloc_flush(fs_info
);
2052 goto cleanup_transaction
;
2054 ret
= btrfs_run_delayed_items(trans
, fs_info
);
2056 goto cleanup_transaction
;
2058 wait_event(cur_trans
->writer_wait
,
2059 extwriter_counter_read(cur_trans
) == 0);
2061 /* some pending stuffs might be added after the previous flush. */
2062 ret
= btrfs_run_delayed_items(trans
, fs_info
);
2064 goto cleanup_transaction
;
2066 btrfs_wait_delalloc_flush(fs_info
);
2068 btrfs_wait_pending_ordered(cur_trans
);
2070 btrfs_scrub_pause(fs_info
);
2072 * Ok now we need to make sure to block out any other joins while we
2073 * commit the transaction. We could have started a join before setting
2074 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2076 spin_lock(&fs_info
->trans_lock
);
2077 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
2078 spin_unlock(&fs_info
->trans_lock
);
2079 wait_event(cur_trans
->writer_wait
,
2080 atomic_read(&cur_trans
->num_writers
) == 1);
2082 /* ->aborted might be set after the previous check, so check it */
2083 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
2084 ret
= cur_trans
->aborted
;
2085 goto scrub_continue
;
2088 * the reloc mutex makes sure that we stop
2089 * the balancing code from coming in and moving
2090 * extents around in the middle of the commit
2092 mutex_lock(&fs_info
->reloc_mutex
);
2095 * We needn't worry about the delayed items because we will
2096 * deal with them in create_pending_snapshot(), which is the
2097 * core function of the snapshot creation.
2099 ret
= create_pending_snapshots(trans
, fs_info
);
2101 mutex_unlock(&fs_info
->reloc_mutex
);
2102 goto scrub_continue
;
2106 * We insert the dir indexes of the snapshots and update the inode
2107 * of the snapshots' parents after the snapshot creation, so there
2108 * are some delayed items which are not dealt with. Now deal with
2111 * We needn't worry that this operation will corrupt the snapshots,
2112 * because all the tree which are snapshoted will be forced to COW
2113 * the nodes and leaves.
2115 ret
= btrfs_run_delayed_items(trans
, fs_info
);
2117 mutex_unlock(&fs_info
->reloc_mutex
);
2118 goto scrub_continue
;
2121 ret
= btrfs_run_delayed_refs(trans
, fs_info
, (unsigned long)-1);
2123 mutex_unlock(&fs_info
->reloc_mutex
);
2124 goto scrub_continue
;
2127 /* Reocrd old roots for later qgroup accounting */
2128 ret
= btrfs_qgroup_prepare_account_extents(trans
, fs_info
);
2130 mutex_unlock(&fs_info
->reloc_mutex
);
2131 goto scrub_continue
;
2135 * make sure none of the code above managed to slip in a
2138 btrfs_assert_delayed_root_empty(fs_info
);
2140 WARN_ON(cur_trans
!= trans
->transaction
);
2142 /* btrfs_commit_tree_roots is responsible for getting the
2143 * various roots consistent with each other. Every pointer
2144 * in the tree of tree roots has to point to the most up to date
2145 * root for every subvolume and other tree. So, we have to keep
2146 * the tree logging code from jumping in and changing any
2149 * At this point in the commit, there can't be any tree-log
2150 * writers, but a little lower down we drop the trans mutex
2151 * and let new people in. By holding the tree_log_mutex
2152 * from now until after the super is written, we avoid races
2153 * with the tree-log code.
2155 mutex_lock(&fs_info
->tree_log_mutex
);
2157 ret
= commit_fs_roots(trans
, fs_info
);
2159 mutex_unlock(&fs_info
->tree_log_mutex
);
2160 mutex_unlock(&fs_info
->reloc_mutex
);
2161 goto scrub_continue
;
2165 * Since the transaction is done, we can apply the pending changes
2166 * before the next transaction.
2168 btrfs_apply_pending_changes(fs_info
);
2170 /* commit_fs_roots gets rid of all the tree log roots, it is now
2171 * safe to free the root of tree log roots
2173 btrfs_free_log_root_tree(trans
, fs_info
);
2176 * Since fs roots are all committed, we can get a quite accurate
2177 * new_roots. So let's do quota accounting.
2179 ret
= btrfs_qgroup_account_extents(trans
, fs_info
);
2181 mutex_unlock(&fs_info
->tree_log_mutex
);
2182 mutex_unlock(&fs_info
->reloc_mutex
);
2183 goto scrub_continue
;
2186 ret
= commit_cowonly_roots(trans
, fs_info
);
2188 mutex_unlock(&fs_info
->tree_log_mutex
);
2189 mutex_unlock(&fs_info
->reloc_mutex
);
2190 goto scrub_continue
;
2194 * The tasks which save the space cache and inode cache may also
2195 * update ->aborted, check it.
2197 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
2198 ret
= cur_trans
->aborted
;
2199 mutex_unlock(&fs_info
->tree_log_mutex
);
2200 mutex_unlock(&fs_info
->reloc_mutex
);
2201 goto scrub_continue
;
2204 btrfs_prepare_extent_commit(trans
, fs_info
);
2206 cur_trans
= fs_info
->running_transaction
;
2208 btrfs_set_root_node(&fs_info
->tree_root
->root_item
,
2209 fs_info
->tree_root
->node
);
2210 list_add_tail(&fs_info
->tree_root
->dirty_list
,
2211 &cur_trans
->switch_commits
);
2213 btrfs_set_root_node(&fs_info
->chunk_root
->root_item
,
2214 fs_info
->chunk_root
->node
);
2215 list_add_tail(&fs_info
->chunk_root
->dirty_list
,
2216 &cur_trans
->switch_commits
);
2218 switch_commit_roots(cur_trans
, fs_info
);
2220 assert_qgroups_uptodate(trans
);
2221 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2222 ASSERT(list_empty(&cur_trans
->io_bgs
));
2223 update_super_roots(fs_info
);
2225 btrfs_set_super_log_root(fs_info
->super_copy
, 0);
2226 btrfs_set_super_log_root_level(fs_info
->super_copy
, 0);
2227 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2228 sizeof(*fs_info
->super_copy
));
2230 btrfs_update_commit_device_size(fs_info
);
2231 btrfs_update_commit_device_bytes_used(fs_info
, cur_trans
);
2233 clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
);
2234 clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
);
2236 btrfs_trans_release_chunk_metadata(trans
);
2238 spin_lock(&fs_info
->trans_lock
);
2239 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2240 fs_info
->running_transaction
= NULL
;
2241 spin_unlock(&fs_info
->trans_lock
);
2242 mutex_unlock(&fs_info
->reloc_mutex
);
2244 wake_up(&fs_info
->transaction_wait
);
2246 ret
= btrfs_write_and_wait_transaction(trans
, fs_info
);
2248 btrfs_handle_fs_error(fs_info
, ret
,
2249 "Error while writing out transaction");
2250 mutex_unlock(&fs_info
->tree_log_mutex
);
2251 goto scrub_continue
;
2254 ret
= write_ctree_super(trans
, fs_info
, 0);
2256 mutex_unlock(&fs_info
->tree_log_mutex
);
2257 goto scrub_continue
;
2261 * the super is written, we can safely allow the tree-loggers
2262 * to go about their business
2264 mutex_unlock(&fs_info
->tree_log_mutex
);
2266 btrfs_finish_extent_commit(trans
, fs_info
);
2268 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &cur_trans
->flags
))
2269 btrfs_clear_space_info_full(fs_info
);
2271 fs_info
->last_trans_committed
= cur_trans
->transid
;
2273 * We needn't acquire the lock here because there is no other task
2274 * which can change it.
2276 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2277 wake_up(&cur_trans
->commit_wait
);
2279 spin_lock(&fs_info
->trans_lock
);
2280 list_del_init(&cur_trans
->list
);
2281 spin_unlock(&fs_info
->trans_lock
);
2283 btrfs_put_transaction(cur_trans
);
2284 btrfs_put_transaction(cur_trans
);
2286 if (trans
->type
& __TRANS_FREEZABLE
)
2287 sb_end_intwrite(fs_info
->sb
);
2289 trace_btrfs_transaction_commit(trans
->root
);
2291 btrfs_scrub_continue(fs_info
);
2293 if (current
->journal_info
== trans
)
2294 current
->journal_info
= NULL
;
2296 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2299 * If fs has been frozen, we can not handle delayed iputs, otherwise
2300 * it'll result in deadlock about SB_FREEZE_FS.
2302 if (current
!= fs_info
->transaction_kthread
&&
2303 current
!= fs_info
->cleaner_kthread
&& !fs_info
->fs_frozen
)
2304 btrfs_run_delayed_iputs(fs_info
);
2309 btrfs_scrub_continue(fs_info
);
2310 cleanup_transaction
:
2311 btrfs_trans_release_metadata(trans
, fs_info
);
2312 btrfs_trans_release_chunk_metadata(trans
);
2313 trans
->block_rsv
= NULL
;
2314 btrfs_warn(fs_info
, "Skipping commit of aborted transaction.");
2315 if (current
->journal_info
== trans
)
2316 current
->journal_info
= NULL
;
2317 cleanup_transaction(trans
, trans
->root
, ret
);
2323 * return < 0 if error
2324 * 0 if there are no more dead_roots at the time of call
2325 * 1 there are more to be processed, call me again
2327 * The return value indicates there are certainly more snapshots to delete, but
2328 * if there comes a new one during processing, it may return 0. We don't mind,
2329 * because btrfs_commit_super will poke cleaner thread and it will process it a
2330 * few seconds later.
2332 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2335 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2337 spin_lock(&fs_info
->trans_lock
);
2338 if (list_empty(&fs_info
->dead_roots
)) {
2339 spin_unlock(&fs_info
->trans_lock
);
2342 root
= list_first_entry(&fs_info
->dead_roots
,
2343 struct btrfs_root
, root_list
);
2344 list_del_init(&root
->root_list
);
2345 spin_unlock(&fs_info
->trans_lock
);
2347 btrfs_debug(fs_info
, "cleaner removing %llu", root
->objectid
);
2349 btrfs_kill_all_delayed_nodes(root
);
2351 if (btrfs_header_backref_rev(root
->node
) <
2352 BTRFS_MIXED_BACKREF_REV
)
2353 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2355 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2357 return (ret
< 0) ? 0 : 1;
2360 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2365 prev
= xchg(&fs_info
->pending_changes
, 0);
2369 bit
= 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE
;
2371 btrfs_set_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2374 bit
= 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE
;
2376 btrfs_clear_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2379 bit
= 1 << BTRFS_PENDING_COMMIT
;
2381 btrfs_debug(fs_info
, "pending commit done");
2386 "unknown pending changes left 0x%lx, ignoring", prev
);