2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
46 [BTRFS_RAID_RAID10
] = {
49 .devs_max
= 0, /* 0 == as many as possible */
51 .tolerated_failures
= 1,
55 [BTRFS_RAID_RAID1
] = {
60 .tolerated_failures
= 1,
69 .tolerated_failures
= 0,
73 [BTRFS_RAID_RAID0
] = {
78 .tolerated_failures
= 0,
82 [BTRFS_RAID_SINGLE
] = {
87 .tolerated_failures
= 0,
91 [BTRFS_RAID_RAID5
] = {
96 .tolerated_failures
= 1,
100 [BTRFS_RAID_RAID6
] = {
105 .tolerated_failures
= 2,
111 const u64 btrfs_raid_group
[BTRFS_NR_RAID_TYPES
] = {
112 [BTRFS_RAID_RAID10
] = BTRFS_BLOCK_GROUP_RAID10
,
113 [BTRFS_RAID_RAID1
] = BTRFS_BLOCK_GROUP_RAID1
,
114 [BTRFS_RAID_DUP
] = BTRFS_BLOCK_GROUP_DUP
,
115 [BTRFS_RAID_RAID0
] = BTRFS_BLOCK_GROUP_RAID0
,
116 [BTRFS_RAID_SINGLE
] = 0,
117 [BTRFS_RAID_RAID5
] = BTRFS_BLOCK_GROUP_RAID5
,
118 [BTRFS_RAID_RAID6
] = BTRFS_BLOCK_GROUP_RAID6
,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error
[BTRFS_NR_RAID_TYPES
] = {
127 [BTRFS_RAID_RAID10
] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
128 [BTRFS_RAID_RAID1
] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
129 [BTRFS_RAID_DUP
] = 0,
130 [BTRFS_RAID_RAID0
] = 0,
131 [BTRFS_RAID_SINGLE
] = 0,
132 [BTRFS_RAID_RAID5
] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
133 [BTRFS_RAID_RAID6
] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
136 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
137 struct btrfs_fs_info
*fs_info
,
138 struct btrfs_device
*device
);
139 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
);
140 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
144 DEFINE_MUTEX(uuid_mutex
);
145 static LIST_HEAD(fs_uuids
);
146 struct list_head
*btrfs_get_fs_uuids(void)
151 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
153 struct btrfs_fs_devices
*fs_devs
;
155 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
157 return ERR_PTR(-ENOMEM
);
159 mutex_init(&fs_devs
->device_list_mutex
);
161 INIT_LIST_HEAD(&fs_devs
->devices
);
162 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
163 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
164 INIT_LIST_HEAD(&fs_devs
->list
);
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
178 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
180 struct btrfs_fs_devices
*fs_devs
;
182 fs_devs
= __alloc_fs_devices();
187 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
189 generate_random_uuid(fs_devs
->fsid
);
194 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
196 struct btrfs_device
*device
;
197 WARN_ON(fs_devices
->opened
);
198 while (!list_empty(&fs_devices
->devices
)) {
199 device
= list_entry(fs_devices
->devices
.next
,
200 struct btrfs_device
, dev_list
);
201 list_del(&device
->dev_list
);
202 rcu_string_free(device
->name
);
208 static void btrfs_kobject_uevent(struct block_device
*bdev
,
209 enum kobject_action action
)
213 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
217 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
218 &disk_to_dev(bdev
->bd_disk
)->kobj
);
221 void btrfs_cleanup_fs_uuids(void)
223 struct btrfs_fs_devices
*fs_devices
;
225 while (!list_empty(&fs_uuids
)) {
226 fs_devices
= list_entry(fs_uuids
.next
,
227 struct btrfs_fs_devices
, list
);
228 list_del(&fs_devices
->list
);
229 free_fs_devices(fs_devices
);
233 static struct btrfs_device
*__alloc_device(void)
235 struct btrfs_device
*dev
;
237 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
239 return ERR_PTR(-ENOMEM
);
241 INIT_LIST_HEAD(&dev
->dev_list
);
242 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
243 INIT_LIST_HEAD(&dev
->resized_list
);
245 spin_lock_init(&dev
->io_lock
);
247 spin_lock_init(&dev
->reada_lock
);
248 atomic_set(&dev
->reada_in_flight
, 0);
249 atomic_set(&dev
->dev_stats_ccnt
, 0);
250 btrfs_device_data_ordered_init(dev
);
251 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
252 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
257 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
260 struct btrfs_device
*dev
;
262 list_for_each_entry(dev
, head
, dev_list
) {
263 if (dev
->devid
== devid
&&
264 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
271 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
273 struct btrfs_fs_devices
*fs_devices
;
275 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
276 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
283 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
284 int flush
, struct block_device
**bdev
,
285 struct buffer_head
**bh
)
289 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
292 ret
= PTR_ERR(*bdev
);
297 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
298 ret
= set_blocksize(*bdev
, 4096);
300 blkdev_put(*bdev
, flags
);
303 invalidate_bdev(*bdev
);
304 *bh
= btrfs_read_dev_super(*bdev
);
307 blkdev_put(*bdev
, flags
);
319 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
320 struct bio
*head
, struct bio
*tail
)
323 struct bio
*old_head
;
325 old_head
= pending_bios
->head
;
326 pending_bios
->head
= head
;
327 if (pending_bios
->tail
)
328 tail
->bi_next
= old_head
;
330 pending_bios
->tail
= tail
;
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
344 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
346 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
348 struct backing_dev_info
*bdi
;
349 struct btrfs_pending_bios
*pending_bios
;
353 unsigned long num_run
;
354 unsigned long batch_run
= 0;
356 unsigned long last_waited
= 0;
358 int sync_pending
= 0;
359 struct blk_plug plug
;
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
367 blk_start_plug(&plug
);
369 bdi
= blk_get_backing_dev_info(device
->bdev
);
370 limit
= btrfs_async_submit_limit(fs_info
);
371 limit
= limit
* 2 / 3;
374 spin_lock(&device
->io_lock
);
379 /* take all the bios off the list at once and process them
380 * later on (without the lock held). But, remember the
381 * tail and other pointers so the bios can be properly reinserted
382 * into the list if we hit congestion
384 if (!force_reg
&& device
->pending_sync_bios
.head
) {
385 pending_bios
= &device
->pending_sync_bios
;
388 pending_bios
= &device
->pending_bios
;
392 pending
= pending_bios
->head
;
393 tail
= pending_bios
->tail
;
394 WARN_ON(pending
&& !tail
);
397 * if pending was null this time around, no bios need processing
398 * at all and we can stop. Otherwise it'll loop back up again
399 * and do an additional check so no bios are missed.
401 * device->running_pending is used to synchronize with the
404 if (device
->pending_sync_bios
.head
== NULL
&&
405 device
->pending_bios
.head
== NULL
) {
407 device
->running_pending
= 0;
410 device
->running_pending
= 1;
413 pending_bios
->head
= NULL
;
414 pending_bios
->tail
= NULL
;
416 spin_unlock(&device
->io_lock
);
421 /* we want to work on both lists, but do more bios on the
422 * sync list than the regular list
425 pending_bios
!= &device
->pending_sync_bios
&&
426 device
->pending_sync_bios
.head
) ||
427 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
428 device
->pending_bios
.head
)) {
429 spin_lock(&device
->io_lock
);
430 requeue_list(pending_bios
, pending
, tail
);
435 pending
= pending
->bi_next
;
439 * atomic_dec_return implies a barrier for waitqueue_active
441 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
442 waitqueue_active(&fs_info
->async_submit_wait
))
443 wake_up(&fs_info
->async_submit_wait
);
445 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
448 * if we're doing the sync list, record that our
449 * plug has some sync requests on it
451 * If we're doing the regular list and there are
452 * sync requests sitting around, unplug before
455 if (pending_bios
== &device
->pending_sync_bios
) {
457 } else if (sync_pending
) {
458 blk_finish_plug(&plug
);
459 blk_start_plug(&plug
);
463 btrfsic_submit_bio(cur
);
470 * we made progress, there is more work to do and the bdi
471 * is now congested. Back off and let other work structs
474 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
475 fs_info
->fs_devices
->open_devices
> 1) {
476 struct io_context
*ioc
;
478 ioc
= current
->io_context
;
481 * the main goal here is that we don't want to
482 * block if we're going to be able to submit
483 * more requests without blocking.
485 * This code does two great things, it pokes into
486 * the elevator code from a filesystem _and_
487 * it makes assumptions about how batching works.
489 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
490 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
492 ioc
->last_waited
== last_waited
)) {
494 * we want to go through our batch of
495 * requests and stop. So, we copy out
496 * the ioc->last_waited time and test
497 * against it before looping
499 last_waited
= ioc
->last_waited
;
503 spin_lock(&device
->io_lock
);
504 requeue_list(pending_bios
, pending
, tail
);
505 device
->running_pending
= 1;
507 spin_unlock(&device
->io_lock
);
508 btrfs_queue_work(fs_info
->submit_workers
,
512 /* unplug every 64 requests just for good measure */
513 if (batch_run
% 64 == 0) {
514 blk_finish_plug(&plug
);
515 blk_start_plug(&plug
);
524 spin_lock(&device
->io_lock
);
525 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
527 spin_unlock(&device
->io_lock
);
530 blk_finish_plug(&plug
);
533 static void pending_bios_fn(struct btrfs_work
*work
)
535 struct btrfs_device
*device
;
537 device
= container_of(work
, struct btrfs_device
, work
);
538 run_scheduled_bios(device
);
542 void btrfs_free_stale_device(struct btrfs_device
*cur_dev
)
544 struct btrfs_fs_devices
*fs_devs
;
545 struct btrfs_device
*dev
;
550 list_for_each_entry(fs_devs
, &fs_uuids
, list
) {
555 if (fs_devs
->seeding
)
558 list_for_each_entry(dev
, &fs_devs
->devices
, dev_list
) {
566 * Todo: This won't be enough. What if the same device
567 * comes back (with new uuid and) with its mapper path?
568 * But for now, this does help as mostly an admin will
569 * either use mapper or non mapper path throughout.
572 del
= strcmp(rcu_str_deref(dev
->name
),
573 rcu_str_deref(cur_dev
->name
));
580 /* delete the stale device */
581 if (fs_devs
->num_devices
== 1) {
582 btrfs_sysfs_remove_fsid(fs_devs
);
583 list_del(&fs_devs
->list
);
584 free_fs_devices(fs_devs
);
586 fs_devs
->num_devices
--;
587 list_del(&dev
->dev_list
);
588 rcu_string_free(dev
->name
);
597 * Add new device to list of registered devices
600 * 1 - first time device is seen
601 * 0 - device already known
604 static noinline
int device_list_add(const char *path
,
605 struct btrfs_super_block
*disk_super
,
606 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
608 struct btrfs_device
*device
;
609 struct btrfs_fs_devices
*fs_devices
;
610 struct rcu_string
*name
;
612 u64 found_transid
= btrfs_super_generation(disk_super
);
614 fs_devices
= find_fsid(disk_super
->fsid
);
616 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
617 if (IS_ERR(fs_devices
))
618 return PTR_ERR(fs_devices
);
620 list_add(&fs_devices
->list
, &fs_uuids
);
624 device
= __find_device(&fs_devices
->devices
, devid
,
625 disk_super
->dev_item
.uuid
);
629 if (fs_devices
->opened
)
632 device
= btrfs_alloc_device(NULL
, &devid
,
633 disk_super
->dev_item
.uuid
);
634 if (IS_ERR(device
)) {
635 /* we can safely leave the fs_devices entry around */
636 return PTR_ERR(device
);
639 name
= rcu_string_strdup(path
, GFP_NOFS
);
644 rcu_assign_pointer(device
->name
, name
);
646 mutex_lock(&fs_devices
->device_list_mutex
);
647 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
648 fs_devices
->num_devices
++;
649 mutex_unlock(&fs_devices
->device_list_mutex
);
652 device
->fs_devices
= fs_devices
;
653 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
655 * When FS is already mounted.
656 * 1. If you are here and if the device->name is NULL that
657 * means this device was missing at time of FS mount.
658 * 2. If you are here and if the device->name is different
659 * from 'path' that means either
660 * a. The same device disappeared and reappeared with
662 * b. The missing-disk-which-was-replaced, has
665 * We must allow 1 and 2a above. But 2b would be a spurious
668 * Further in case of 1 and 2a above, the disk at 'path'
669 * would have missed some transaction when it was away and
670 * in case of 2a the stale bdev has to be updated as well.
671 * 2b must not be allowed at all time.
675 * For now, we do allow update to btrfs_fs_device through the
676 * btrfs dev scan cli after FS has been mounted. We're still
677 * tracking a problem where systems fail mount by subvolume id
678 * when we reject replacement on a mounted FS.
680 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
682 * That is if the FS is _not_ mounted and if you
683 * are here, that means there is more than one
684 * disk with same uuid and devid.We keep the one
685 * with larger generation number or the last-in if
686 * generation are equal.
691 name
= rcu_string_strdup(path
, GFP_NOFS
);
694 rcu_string_free(device
->name
);
695 rcu_assign_pointer(device
->name
, name
);
696 if (device
->missing
) {
697 fs_devices
->missing_devices
--;
703 * Unmount does not free the btrfs_device struct but would zero
704 * generation along with most of the other members. So just update
705 * it back. We need it to pick the disk with largest generation
708 if (!fs_devices
->opened
)
709 device
->generation
= found_transid
;
712 * if there is new btrfs on an already registered device,
713 * then remove the stale device entry.
716 btrfs_free_stale_device(device
);
718 *fs_devices_ret
= fs_devices
;
723 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
725 struct btrfs_fs_devices
*fs_devices
;
726 struct btrfs_device
*device
;
727 struct btrfs_device
*orig_dev
;
729 fs_devices
= alloc_fs_devices(orig
->fsid
);
730 if (IS_ERR(fs_devices
))
733 mutex_lock(&orig
->device_list_mutex
);
734 fs_devices
->total_devices
= orig
->total_devices
;
736 /* We have held the volume lock, it is safe to get the devices. */
737 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
738 struct rcu_string
*name
;
740 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
746 * This is ok to do without rcu read locked because we hold the
747 * uuid mutex so nothing we touch in here is going to disappear.
749 if (orig_dev
->name
) {
750 name
= rcu_string_strdup(orig_dev
->name
->str
,
756 rcu_assign_pointer(device
->name
, name
);
759 list_add(&device
->dev_list
, &fs_devices
->devices
);
760 device
->fs_devices
= fs_devices
;
761 fs_devices
->num_devices
++;
763 mutex_unlock(&orig
->device_list_mutex
);
766 mutex_unlock(&orig
->device_list_mutex
);
767 free_fs_devices(fs_devices
);
768 return ERR_PTR(-ENOMEM
);
771 void btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
, int step
)
773 struct btrfs_device
*device
, *next
;
774 struct btrfs_device
*latest_dev
= NULL
;
776 mutex_lock(&uuid_mutex
);
778 /* This is the initialized path, it is safe to release the devices. */
779 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
780 if (device
->in_fs_metadata
) {
781 if (!device
->is_tgtdev_for_dev_replace
&&
783 device
->generation
> latest_dev
->generation
)) {
789 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
791 * In the first step, keep the device which has
792 * the correct fsid and the devid that is used
793 * for the dev_replace procedure.
794 * In the second step, the dev_replace state is
795 * read from the device tree and it is known
796 * whether the procedure is really active or
797 * not, which means whether this device is
798 * used or whether it should be removed.
800 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
805 blkdev_put(device
->bdev
, device
->mode
);
807 fs_devices
->open_devices
--;
809 if (device
->writeable
) {
810 list_del_init(&device
->dev_alloc_list
);
811 device
->writeable
= 0;
812 if (!device
->is_tgtdev_for_dev_replace
)
813 fs_devices
->rw_devices
--;
815 list_del_init(&device
->dev_list
);
816 fs_devices
->num_devices
--;
817 rcu_string_free(device
->name
);
821 if (fs_devices
->seed
) {
822 fs_devices
= fs_devices
->seed
;
826 fs_devices
->latest_bdev
= latest_dev
->bdev
;
828 mutex_unlock(&uuid_mutex
);
831 static void __free_device(struct work_struct
*work
)
833 struct btrfs_device
*device
;
835 device
= container_of(work
, struct btrfs_device
, rcu_work
);
836 rcu_string_free(device
->name
);
840 static void free_device(struct rcu_head
*head
)
842 struct btrfs_device
*device
;
844 device
= container_of(head
, struct btrfs_device
, rcu
);
846 INIT_WORK(&device
->rcu_work
, __free_device
);
847 schedule_work(&device
->rcu_work
);
850 static void btrfs_close_bdev(struct btrfs_device
*device
)
852 if (device
->bdev
&& device
->writeable
) {
853 sync_blockdev(device
->bdev
);
854 invalidate_bdev(device
->bdev
);
858 blkdev_put(device
->bdev
, device
->mode
);
861 static void btrfs_prepare_close_one_device(struct btrfs_device
*device
)
863 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
864 struct btrfs_device
*new_device
;
865 struct rcu_string
*name
;
868 fs_devices
->open_devices
--;
870 if (device
->writeable
&&
871 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
872 list_del_init(&device
->dev_alloc_list
);
873 fs_devices
->rw_devices
--;
877 fs_devices
->missing_devices
--;
879 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
881 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
883 /* Safe because we are under uuid_mutex */
885 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
886 BUG_ON(!name
); /* -ENOMEM */
887 rcu_assign_pointer(new_device
->name
, name
);
890 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
891 new_device
->fs_devices
= device
->fs_devices
;
894 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
896 struct btrfs_device
*device
, *tmp
;
897 struct list_head pending_put
;
899 INIT_LIST_HEAD(&pending_put
);
901 if (--fs_devices
->opened
> 0)
904 mutex_lock(&fs_devices
->device_list_mutex
);
905 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
906 btrfs_prepare_close_one_device(device
);
907 list_add(&device
->dev_list
, &pending_put
);
909 mutex_unlock(&fs_devices
->device_list_mutex
);
912 * btrfs_show_devname() is using the device_list_mutex,
913 * sometimes call to blkdev_put() leads vfs calling
914 * into this func. So do put outside of device_list_mutex,
917 while (!list_empty(&pending_put
)) {
918 device
= list_first_entry(&pending_put
,
919 struct btrfs_device
, dev_list
);
920 list_del(&device
->dev_list
);
921 btrfs_close_bdev(device
);
922 call_rcu(&device
->rcu
, free_device
);
925 WARN_ON(fs_devices
->open_devices
);
926 WARN_ON(fs_devices
->rw_devices
);
927 fs_devices
->opened
= 0;
928 fs_devices
->seeding
= 0;
933 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
935 struct btrfs_fs_devices
*seed_devices
= NULL
;
938 mutex_lock(&uuid_mutex
);
939 ret
= __btrfs_close_devices(fs_devices
);
940 if (!fs_devices
->opened
) {
941 seed_devices
= fs_devices
->seed
;
942 fs_devices
->seed
= NULL
;
944 mutex_unlock(&uuid_mutex
);
946 while (seed_devices
) {
947 fs_devices
= seed_devices
;
948 seed_devices
= fs_devices
->seed
;
949 __btrfs_close_devices(fs_devices
);
950 free_fs_devices(fs_devices
);
953 * Wait for rcu kworkers under __btrfs_close_devices
954 * to finish all blkdev_puts so device is really
955 * free when umount is done.
961 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
962 fmode_t flags
, void *holder
)
964 struct request_queue
*q
;
965 struct block_device
*bdev
;
966 struct list_head
*head
= &fs_devices
->devices
;
967 struct btrfs_device
*device
;
968 struct btrfs_device
*latest_dev
= NULL
;
969 struct buffer_head
*bh
;
970 struct btrfs_super_block
*disk_super
;
977 list_for_each_entry(device
, head
, dev_list
) {
983 /* Just open everything we can; ignore failures here */
984 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
988 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
989 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
990 if (devid
!= device
->devid
)
993 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
997 device
->generation
= btrfs_super_generation(disk_super
);
999 device
->generation
> latest_dev
->generation
)
1000 latest_dev
= device
;
1002 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
1003 device
->writeable
= 0;
1005 device
->writeable
= !bdev_read_only(bdev
);
1009 q
= bdev_get_queue(bdev
);
1010 if (blk_queue_discard(q
))
1011 device
->can_discard
= 1;
1013 device
->bdev
= bdev
;
1014 device
->in_fs_metadata
= 0;
1015 device
->mode
= flags
;
1017 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
1018 fs_devices
->rotating
= 1;
1020 fs_devices
->open_devices
++;
1021 if (device
->writeable
&&
1022 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
1023 fs_devices
->rw_devices
++;
1024 list_add(&device
->dev_alloc_list
,
1025 &fs_devices
->alloc_list
);
1032 blkdev_put(bdev
, flags
);
1035 if (fs_devices
->open_devices
== 0) {
1039 fs_devices
->seeding
= seeding
;
1040 fs_devices
->opened
= 1;
1041 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1042 fs_devices
->total_rw_bytes
= 0;
1047 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1048 fmode_t flags
, void *holder
)
1052 mutex_lock(&uuid_mutex
);
1053 if (fs_devices
->opened
) {
1054 fs_devices
->opened
++;
1057 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
1059 mutex_unlock(&uuid_mutex
);
1063 void btrfs_release_disk_super(struct page
*page
)
1069 int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1070 struct page
**page
, struct btrfs_super_block
**disk_super
)
1075 /* make sure our super fits in the device */
1076 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1079 /* make sure our super fits in the page */
1080 if (sizeof(**disk_super
) > PAGE_SIZE
)
1083 /* make sure our super doesn't straddle pages on disk */
1084 index
= bytenr
>> PAGE_SHIFT
;
1085 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1088 /* pull in the page with our super */
1089 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1092 if (IS_ERR_OR_NULL(*page
))
1097 /* align our pointer to the offset of the super block */
1098 *disk_super
= p
+ (bytenr
& ~PAGE_MASK
);
1100 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1101 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1102 btrfs_release_disk_super(*page
);
1106 if ((*disk_super
)->label
[0] &&
1107 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1108 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1114 * Look for a btrfs signature on a device. This may be called out of the mount path
1115 * and we are not allowed to call set_blocksize during the scan. The superblock
1116 * is read via pagecache
1118 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
1119 struct btrfs_fs_devices
**fs_devices_ret
)
1121 struct btrfs_super_block
*disk_super
;
1122 struct block_device
*bdev
;
1131 * we would like to check all the supers, but that would make
1132 * a btrfs mount succeed after a mkfs from a different FS.
1133 * So, we need to add a special mount option to scan for
1134 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1136 bytenr
= btrfs_sb_offset(0);
1137 flags
|= FMODE_EXCL
;
1138 mutex_lock(&uuid_mutex
);
1140 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1142 ret
= PTR_ERR(bdev
);
1146 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
))
1147 goto error_bdev_put
;
1149 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1150 transid
= btrfs_super_generation(disk_super
);
1151 total_devices
= btrfs_super_num_devices(disk_super
);
1153 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
1155 if (disk_super
->label
[0]) {
1156 pr_info("BTRFS: device label %s ", disk_super
->label
);
1158 pr_info("BTRFS: device fsid %pU ", disk_super
->fsid
);
1161 pr_cont("devid %llu transid %llu %s\n", devid
, transid
, path
);
1164 if (!ret
&& fs_devices_ret
)
1165 (*fs_devices_ret
)->total_devices
= total_devices
;
1167 btrfs_release_disk_super(page
);
1170 blkdev_put(bdev
, flags
);
1172 mutex_unlock(&uuid_mutex
);
1176 /* helper to account the used device space in the range */
1177 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1178 u64 end
, u64
*length
)
1180 struct btrfs_key key
;
1181 struct btrfs_root
*root
= device
->fs_info
->dev_root
;
1182 struct btrfs_dev_extent
*dev_extent
;
1183 struct btrfs_path
*path
;
1187 struct extent_buffer
*l
;
1191 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
1194 path
= btrfs_alloc_path();
1197 path
->reada
= READA_FORWARD
;
1199 key
.objectid
= device
->devid
;
1201 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1203 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1207 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1214 slot
= path
->slots
[0];
1215 if (slot
>= btrfs_header_nritems(l
)) {
1216 ret
= btrfs_next_leaf(root
, path
);
1224 btrfs_item_key_to_cpu(l
, &key
, slot
);
1226 if (key
.objectid
< device
->devid
)
1229 if (key
.objectid
> device
->devid
)
1232 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1235 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1236 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1238 if (key
.offset
<= start
&& extent_end
> end
) {
1239 *length
= end
- start
+ 1;
1241 } else if (key
.offset
<= start
&& extent_end
> start
)
1242 *length
+= extent_end
- start
;
1243 else if (key
.offset
> start
&& extent_end
<= end
)
1244 *length
+= extent_end
- key
.offset
;
1245 else if (key
.offset
> start
&& key
.offset
<= end
) {
1246 *length
+= end
- key
.offset
+ 1;
1248 } else if (key
.offset
> end
)
1256 btrfs_free_path(path
);
1260 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1261 struct btrfs_device
*device
,
1262 u64
*start
, u64 len
)
1264 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1265 struct extent_map
*em
;
1266 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1268 u64 physical_start
= *start
;
1271 search_list
= &transaction
->pending_chunks
;
1273 list_for_each_entry(em
, search_list
, list
) {
1274 struct map_lookup
*map
;
1277 map
= em
->map_lookup
;
1278 for (i
= 0; i
< map
->num_stripes
; i
++) {
1281 if (map
->stripes
[i
].dev
!= device
)
1283 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1284 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1288 * Make sure that while processing the pinned list we do
1289 * not override our *start with a lower value, because
1290 * we can have pinned chunks that fall within this
1291 * device hole and that have lower physical addresses
1292 * than the pending chunks we processed before. If we
1293 * do not take this special care we can end up getting
1294 * 2 pending chunks that start at the same physical
1295 * device offsets because the end offset of a pinned
1296 * chunk can be equal to the start offset of some
1299 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1306 if (search_list
!= &fs_info
->pinned_chunks
) {
1307 search_list
= &fs_info
->pinned_chunks
;
1316 * find_free_dev_extent_start - find free space in the specified device
1317 * @device: the device which we search the free space in
1318 * @num_bytes: the size of the free space that we need
1319 * @search_start: the position from which to begin the search
1320 * @start: store the start of the free space.
1321 * @len: the size of the free space. that we find, or the size
1322 * of the max free space if we don't find suitable free space
1324 * this uses a pretty simple search, the expectation is that it is
1325 * called very infrequently and that a given device has a small number
1328 * @start is used to store the start of the free space if we find. But if we
1329 * don't find suitable free space, it will be used to store the start position
1330 * of the max free space.
1332 * @len is used to store the size of the free space that we find.
1333 * But if we don't find suitable free space, it is used to store the size of
1334 * the max free space.
1336 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1337 struct btrfs_device
*device
, u64 num_bytes
,
1338 u64 search_start
, u64
*start
, u64
*len
)
1340 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1341 struct btrfs_root
*root
= fs_info
->dev_root
;
1342 struct btrfs_key key
;
1343 struct btrfs_dev_extent
*dev_extent
;
1344 struct btrfs_path
*path
;
1349 u64 search_end
= device
->total_bytes
;
1352 struct extent_buffer
*l
;
1353 u64 min_search_start
;
1356 * We don't want to overwrite the superblock on the drive nor any area
1357 * used by the boot loader (grub for example), so we make sure to start
1358 * at an offset of at least 1MB.
1360 min_search_start
= max(fs_info
->alloc_start
, 1024ull * 1024);
1361 search_start
= max(search_start
, min_search_start
);
1363 path
= btrfs_alloc_path();
1367 max_hole_start
= search_start
;
1371 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1376 path
->reada
= READA_FORWARD
;
1377 path
->search_commit_root
= 1;
1378 path
->skip_locking
= 1;
1380 key
.objectid
= device
->devid
;
1381 key
.offset
= search_start
;
1382 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1384 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1388 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1395 slot
= path
->slots
[0];
1396 if (slot
>= btrfs_header_nritems(l
)) {
1397 ret
= btrfs_next_leaf(root
, path
);
1405 btrfs_item_key_to_cpu(l
, &key
, slot
);
1407 if (key
.objectid
< device
->devid
)
1410 if (key
.objectid
> device
->devid
)
1413 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1416 if (key
.offset
> search_start
) {
1417 hole_size
= key
.offset
- search_start
;
1420 * Have to check before we set max_hole_start, otherwise
1421 * we could end up sending back this offset anyway.
1423 if (contains_pending_extent(transaction
, device
,
1426 if (key
.offset
>= search_start
) {
1427 hole_size
= key
.offset
- search_start
;
1434 if (hole_size
> max_hole_size
) {
1435 max_hole_start
= search_start
;
1436 max_hole_size
= hole_size
;
1440 * If this free space is greater than which we need,
1441 * it must be the max free space that we have found
1442 * until now, so max_hole_start must point to the start
1443 * of this free space and the length of this free space
1444 * is stored in max_hole_size. Thus, we return
1445 * max_hole_start and max_hole_size and go back to the
1448 if (hole_size
>= num_bytes
) {
1454 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1455 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1457 if (extent_end
> search_start
)
1458 search_start
= extent_end
;
1465 * At this point, search_start should be the end of
1466 * allocated dev extents, and when shrinking the device,
1467 * search_end may be smaller than search_start.
1469 if (search_end
> search_start
) {
1470 hole_size
= search_end
- search_start
;
1472 if (contains_pending_extent(transaction
, device
, &search_start
,
1474 btrfs_release_path(path
);
1478 if (hole_size
> max_hole_size
) {
1479 max_hole_start
= search_start
;
1480 max_hole_size
= hole_size
;
1485 if (max_hole_size
< num_bytes
)
1491 btrfs_free_path(path
);
1492 *start
= max_hole_start
;
1494 *len
= max_hole_size
;
1498 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1499 struct btrfs_device
*device
, u64 num_bytes
,
1500 u64
*start
, u64
*len
)
1502 /* FIXME use last free of some kind */
1503 return find_free_dev_extent_start(trans
->transaction
, device
,
1504 num_bytes
, 0, start
, len
);
1507 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1508 struct btrfs_device
*device
,
1509 u64 start
, u64
*dev_extent_len
)
1511 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1512 struct btrfs_root
*root
= fs_info
->dev_root
;
1514 struct btrfs_path
*path
;
1515 struct btrfs_key key
;
1516 struct btrfs_key found_key
;
1517 struct extent_buffer
*leaf
= NULL
;
1518 struct btrfs_dev_extent
*extent
= NULL
;
1520 path
= btrfs_alloc_path();
1524 key
.objectid
= device
->devid
;
1526 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1528 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1530 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1531 BTRFS_DEV_EXTENT_KEY
);
1534 leaf
= path
->nodes
[0];
1535 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1536 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1537 struct btrfs_dev_extent
);
1538 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1539 btrfs_dev_extent_length(leaf
, extent
) < start
);
1541 btrfs_release_path(path
);
1543 } else if (ret
== 0) {
1544 leaf
= path
->nodes
[0];
1545 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1546 struct btrfs_dev_extent
);
1548 btrfs_handle_fs_error(fs_info
, ret
, "Slot search failed");
1552 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1554 ret
= btrfs_del_item(trans
, root
, path
);
1556 btrfs_handle_fs_error(fs_info
, ret
,
1557 "Failed to remove dev extent item");
1559 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1562 btrfs_free_path(path
);
1566 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1567 struct btrfs_device
*device
,
1568 u64 chunk_tree
, u64 chunk_objectid
,
1569 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1572 struct btrfs_path
*path
;
1573 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1574 struct btrfs_root
*root
= fs_info
->dev_root
;
1575 struct btrfs_dev_extent
*extent
;
1576 struct extent_buffer
*leaf
;
1577 struct btrfs_key key
;
1579 WARN_ON(!device
->in_fs_metadata
);
1580 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1581 path
= btrfs_alloc_path();
1585 key
.objectid
= device
->devid
;
1587 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1588 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1593 leaf
= path
->nodes
[0];
1594 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1595 struct btrfs_dev_extent
);
1596 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1597 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1598 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1600 write_extent_buffer_chunk_tree_uuid(leaf
, fs_info
->chunk_tree_uuid
);
1602 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1603 btrfs_mark_buffer_dirty(leaf
);
1605 btrfs_free_path(path
);
1609 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1611 struct extent_map_tree
*em_tree
;
1612 struct extent_map
*em
;
1616 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1617 read_lock(&em_tree
->lock
);
1618 n
= rb_last(&em_tree
->map
);
1620 em
= rb_entry(n
, struct extent_map
, rb_node
);
1621 ret
= em
->start
+ em
->len
;
1623 read_unlock(&em_tree
->lock
);
1628 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1632 struct btrfs_key key
;
1633 struct btrfs_key found_key
;
1634 struct btrfs_path
*path
;
1636 path
= btrfs_alloc_path();
1640 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1641 key
.type
= BTRFS_DEV_ITEM_KEY
;
1642 key
.offset
= (u64
)-1;
1644 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1648 BUG_ON(ret
== 0); /* Corruption */
1650 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1651 BTRFS_DEV_ITEMS_OBJECTID
,
1652 BTRFS_DEV_ITEM_KEY
);
1656 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1658 *devid_ret
= found_key
.offset
+ 1;
1662 btrfs_free_path(path
);
1667 * the device information is stored in the chunk root
1668 * the btrfs_device struct should be fully filled in
1670 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1671 struct btrfs_fs_info
*fs_info
,
1672 struct btrfs_device
*device
)
1674 struct btrfs_root
*root
= fs_info
->chunk_root
;
1676 struct btrfs_path
*path
;
1677 struct btrfs_dev_item
*dev_item
;
1678 struct extent_buffer
*leaf
;
1679 struct btrfs_key key
;
1682 path
= btrfs_alloc_path();
1686 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1687 key
.type
= BTRFS_DEV_ITEM_KEY
;
1688 key
.offset
= device
->devid
;
1690 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1695 leaf
= path
->nodes
[0];
1696 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1698 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1699 btrfs_set_device_generation(leaf
, dev_item
, 0);
1700 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1701 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1702 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1703 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1704 btrfs_set_device_total_bytes(leaf
, dev_item
,
1705 btrfs_device_get_disk_total_bytes(device
));
1706 btrfs_set_device_bytes_used(leaf
, dev_item
,
1707 btrfs_device_get_bytes_used(device
));
1708 btrfs_set_device_group(leaf
, dev_item
, 0);
1709 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1710 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1711 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1713 ptr
= btrfs_device_uuid(dev_item
);
1714 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1715 ptr
= btrfs_device_fsid(dev_item
);
1716 write_extent_buffer(leaf
, fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1717 btrfs_mark_buffer_dirty(leaf
);
1721 btrfs_free_path(path
);
1726 * Function to update ctime/mtime for a given device path.
1727 * Mainly used for ctime/mtime based probe like libblkid.
1729 static void update_dev_time(char *path_name
)
1733 filp
= filp_open(path_name
, O_RDWR
, 0);
1736 file_update_time(filp
);
1737 filp_close(filp
, NULL
);
1740 static int btrfs_rm_dev_item(struct btrfs_fs_info
*fs_info
,
1741 struct btrfs_device
*device
)
1743 struct btrfs_root
*root
= fs_info
->chunk_root
;
1745 struct btrfs_path
*path
;
1746 struct btrfs_key key
;
1747 struct btrfs_trans_handle
*trans
;
1749 path
= btrfs_alloc_path();
1753 trans
= btrfs_start_transaction(root
, 0);
1754 if (IS_ERR(trans
)) {
1755 btrfs_free_path(path
);
1756 return PTR_ERR(trans
);
1758 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1759 key
.type
= BTRFS_DEV_ITEM_KEY
;
1760 key
.offset
= device
->devid
;
1762 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1771 ret
= btrfs_del_item(trans
, root
, path
);
1775 btrfs_free_path(path
);
1776 btrfs_commit_transaction(trans
);
1781 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1782 * filesystem. It's up to the caller to adjust that number regarding eg. device
1785 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1793 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1795 all_avail
= fs_info
->avail_data_alloc_bits
|
1796 fs_info
->avail_system_alloc_bits
|
1797 fs_info
->avail_metadata_alloc_bits
;
1798 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1800 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1801 if (!(all_avail
& btrfs_raid_group
[i
]))
1804 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1805 int ret
= btrfs_raid_mindev_error
[i
];
1815 struct btrfs_device
*btrfs_find_next_active_device(struct btrfs_fs_devices
*fs_devs
,
1816 struct btrfs_device
*device
)
1818 struct btrfs_device
*next_device
;
1820 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1821 if (next_device
!= device
&&
1822 !next_device
->missing
&& next_device
->bdev
)
1830 * Helper function to check if the given device is part of s_bdev / latest_bdev
1831 * and replace it with the provided or the next active device, in the context
1832 * where this function called, there should be always be another device (or
1833 * this_dev) which is active.
1835 void btrfs_assign_next_active_device(struct btrfs_fs_info
*fs_info
,
1836 struct btrfs_device
*device
, struct btrfs_device
*this_dev
)
1838 struct btrfs_device
*next_device
;
1841 next_device
= this_dev
;
1843 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1845 ASSERT(next_device
);
1847 if (fs_info
->sb
->s_bdev
&&
1848 (fs_info
->sb
->s_bdev
== device
->bdev
))
1849 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1851 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1852 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1855 int btrfs_rm_device(struct btrfs_fs_info
*fs_info
, char *device_path
, u64 devid
)
1857 struct btrfs_device
*device
;
1858 struct btrfs_fs_devices
*cur_devices
;
1861 bool clear_super
= false;
1863 mutex_lock(&uuid_mutex
);
1865 num_devices
= fs_info
->fs_devices
->num_devices
;
1866 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
1867 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
1868 WARN_ON(num_devices
< 1);
1871 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
1873 ret
= btrfs_check_raid_min_devices(fs_info
, num_devices
- 1);
1877 ret
= btrfs_find_device_by_devspec(fs_info
, devid
, device_path
,
1882 if (device
->is_tgtdev_for_dev_replace
) {
1883 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1887 if (device
->writeable
&& fs_info
->fs_devices
->rw_devices
== 1) {
1888 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1892 if (device
->writeable
) {
1893 mutex_lock(&fs_info
->chunk_mutex
);
1894 list_del_init(&device
->dev_alloc_list
);
1895 device
->fs_devices
->rw_devices
--;
1896 mutex_unlock(&fs_info
->chunk_mutex
);
1900 mutex_unlock(&uuid_mutex
);
1901 ret
= btrfs_shrink_device(device
, 0);
1902 mutex_lock(&uuid_mutex
);
1907 * TODO: the superblock still includes this device in its num_devices
1908 * counter although write_all_supers() is not locked out. This
1909 * could give a filesystem state which requires a degraded mount.
1911 ret
= btrfs_rm_dev_item(fs_info
, device
);
1915 device
->in_fs_metadata
= 0;
1916 btrfs_scrub_cancel_dev(fs_info
, device
);
1919 * the device list mutex makes sure that we don't change
1920 * the device list while someone else is writing out all
1921 * the device supers. Whoever is writing all supers, should
1922 * lock the device list mutex before getting the number of
1923 * devices in the super block (super_copy). Conversely,
1924 * whoever updates the number of devices in the super block
1925 * (super_copy) should hold the device list mutex.
1928 cur_devices
= device
->fs_devices
;
1929 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
1930 list_del_rcu(&device
->dev_list
);
1932 device
->fs_devices
->num_devices
--;
1933 device
->fs_devices
->total_devices
--;
1935 if (device
->missing
)
1936 device
->fs_devices
->missing_devices
--;
1938 btrfs_assign_next_active_device(fs_info
, device
, NULL
);
1941 device
->fs_devices
->open_devices
--;
1942 /* remove sysfs entry */
1943 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
1946 num_devices
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
1947 btrfs_set_super_num_devices(fs_info
->super_copy
, num_devices
);
1948 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
1951 * at this point, the device is zero sized and detached from
1952 * the devices list. All that's left is to zero out the old
1953 * supers and free the device.
1955 if (device
->writeable
)
1956 btrfs_scratch_superblocks(device
->bdev
, device
->name
->str
);
1958 btrfs_close_bdev(device
);
1959 call_rcu(&device
->rcu
, free_device
);
1961 if (cur_devices
->open_devices
== 0) {
1962 struct btrfs_fs_devices
*fs_devices
;
1963 fs_devices
= fs_info
->fs_devices
;
1964 while (fs_devices
) {
1965 if (fs_devices
->seed
== cur_devices
) {
1966 fs_devices
->seed
= cur_devices
->seed
;
1969 fs_devices
= fs_devices
->seed
;
1971 cur_devices
->seed
= NULL
;
1972 __btrfs_close_devices(cur_devices
);
1973 free_fs_devices(cur_devices
);
1976 fs_info
->num_tolerated_disk_barrier_failures
=
1977 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
1980 mutex_unlock(&uuid_mutex
);
1984 if (device
->writeable
) {
1985 mutex_lock(&fs_info
->chunk_mutex
);
1986 list_add(&device
->dev_alloc_list
,
1987 &fs_info
->fs_devices
->alloc_list
);
1988 device
->fs_devices
->rw_devices
++;
1989 mutex_unlock(&fs_info
->chunk_mutex
);
1994 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
1995 struct btrfs_device
*srcdev
)
1997 struct btrfs_fs_devices
*fs_devices
;
1999 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
2002 * in case of fs with no seed, srcdev->fs_devices will point
2003 * to fs_devices of fs_info. However when the dev being replaced is
2004 * a seed dev it will point to the seed's local fs_devices. In short
2005 * srcdev will have its correct fs_devices in both the cases.
2007 fs_devices
= srcdev
->fs_devices
;
2009 list_del_rcu(&srcdev
->dev_list
);
2010 list_del_rcu(&srcdev
->dev_alloc_list
);
2011 fs_devices
->num_devices
--;
2012 if (srcdev
->missing
)
2013 fs_devices
->missing_devices
--;
2015 if (srcdev
->writeable
)
2016 fs_devices
->rw_devices
--;
2019 fs_devices
->open_devices
--;
2022 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
2023 struct btrfs_device
*srcdev
)
2025 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2027 if (srcdev
->writeable
) {
2028 /* zero out the old super if it is writable */
2029 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
2032 btrfs_close_bdev(srcdev
);
2034 call_rcu(&srcdev
->rcu
, free_device
);
2037 * unless fs_devices is seed fs, num_devices shouldn't go
2040 BUG_ON(!fs_devices
->num_devices
&& !fs_devices
->seeding
);
2042 /* if this is no devs we rather delete the fs_devices */
2043 if (!fs_devices
->num_devices
) {
2044 struct btrfs_fs_devices
*tmp_fs_devices
;
2046 tmp_fs_devices
= fs_info
->fs_devices
;
2047 while (tmp_fs_devices
) {
2048 if (tmp_fs_devices
->seed
== fs_devices
) {
2049 tmp_fs_devices
->seed
= fs_devices
->seed
;
2052 tmp_fs_devices
= tmp_fs_devices
->seed
;
2054 fs_devices
->seed
= NULL
;
2055 __btrfs_close_devices(fs_devices
);
2056 free_fs_devices(fs_devices
);
2060 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2061 struct btrfs_device
*tgtdev
)
2063 mutex_lock(&uuid_mutex
);
2065 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2067 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, tgtdev
);
2070 fs_info
->fs_devices
->open_devices
--;
2072 fs_info
->fs_devices
->num_devices
--;
2074 btrfs_assign_next_active_device(fs_info
, tgtdev
, NULL
);
2076 list_del_rcu(&tgtdev
->dev_list
);
2078 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2079 mutex_unlock(&uuid_mutex
);
2082 * The update_dev_time() with in btrfs_scratch_superblocks()
2083 * may lead to a call to btrfs_show_devname() which will try
2084 * to hold device_list_mutex. And here this device
2085 * is already out of device list, so we don't have to hold
2086 * the device_list_mutex lock.
2088 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2090 btrfs_close_bdev(tgtdev
);
2091 call_rcu(&tgtdev
->rcu
, free_device
);
2094 static int btrfs_find_device_by_path(struct btrfs_fs_info
*fs_info
,
2096 struct btrfs_device
**device
)
2099 struct btrfs_super_block
*disk_super
;
2102 struct block_device
*bdev
;
2103 struct buffer_head
*bh
;
2106 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2107 fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2110 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2111 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2112 dev_uuid
= disk_super
->dev_item
.uuid
;
2113 *device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, disk_super
->fsid
);
2117 blkdev_put(bdev
, FMODE_READ
);
2121 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info
*fs_info
,
2123 struct btrfs_device
**device
)
2126 if (strcmp(device_path
, "missing") == 0) {
2127 struct list_head
*devices
;
2128 struct btrfs_device
*tmp
;
2130 devices
= &fs_info
->fs_devices
->devices
;
2132 * It is safe to read the devices since the volume_mutex
2133 * is held by the caller.
2135 list_for_each_entry(tmp
, devices
, dev_list
) {
2136 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
2143 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2147 return btrfs_find_device_by_path(fs_info
, device_path
, device
);
2152 * Lookup a device given by device id, or the path if the id is 0.
2154 int btrfs_find_device_by_devspec(struct btrfs_fs_info
*fs_info
, u64 devid
,
2155 char *devpath
, struct btrfs_device
**device
)
2161 *device
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
2165 if (!devpath
|| !devpath
[0])
2168 ret
= btrfs_find_device_missing_or_by_path(fs_info
, devpath
,
2175 * does all the dirty work required for changing file system's UUID.
2177 static int btrfs_prepare_sprout(struct btrfs_fs_info
*fs_info
)
2179 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2180 struct btrfs_fs_devices
*old_devices
;
2181 struct btrfs_fs_devices
*seed_devices
;
2182 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2183 struct btrfs_device
*device
;
2186 BUG_ON(!mutex_is_locked(&uuid_mutex
));
2187 if (!fs_devices
->seeding
)
2190 seed_devices
= __alloc_fs_devices();
2191 if (IS_ERR(seed_devices
))
2192 return PTR_ERR(seed_devices
);
2194 old_devices
= clone_fs_devices(fs_devices
);
2195 if (IS_ERR(old_devices
)) {
2196 kfree(seed_devices
);
2197 return PTR_ERR(old_devices
);
2200 list_add(&old_devices
->list
, &fs_uuids
);
2202 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2203 seed_devices
->opened
= 1;
2204 INIT_LIST_HEAD(&seed_devices
->devices
);
2205 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2206 mutex_init(&seed_devices
->device_list_mutex
);
2208 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2209 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2211 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2212 device
->fs_devices
= seed_devices
;
2214 mutex_lock(&fs_info
->chunk_mutex
);
2215 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2216 mutex_unlock(&fs_info
->chunk_mutex
);
2218 fs_devices
->seeding
= 0;
2219 fs_devices
->num_devices
= 0;
2220 fs_devices
->open_devices
= 0;
2221 fs_devices
->missing_devices
= 0;
2222 fs_devices
->rotating
= 0;
2223 fs_devices
->seed
= seed_devices
;
2225 generate_random_uuid(fs_devices
->fsid
);
2226 memcpy(fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2227 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2228 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2230 super_flags
= btrfs_super_flags(disk_super
) &
2231 ~BTRFS_SUPER_FLAG_SEEDING
;
2232 btrfs_set_super_flags(disk_super
, super_flags
);
2238 * Store the expected generation for seed devices in device items.
2240 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2241 struct btrfs_fs_info
*fs_info
)
2243 struct btrfs_root
*root
= fs_info
->chunk_root
;
2244 struct btrfs_path
*path
;
2245 struct extent_buffer
*leaf
;
2246 struct btrfs_dev_item
*dev_item
;
2247 struct btrfs_device
*device
;
2248 struct btrfs_key key
;
2249 u8 fs_uuid
[BTRFS_UUID_SIZE
];
2250 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2254 path
= btrfs_alloc_path();
2258 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2260 key
.type
= BTRFS_DEV_ITEM_KEY
;
2263 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2267 leaf
= path
->nodes
[0];
2269 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2270 ret
= btrfs_next_leaf(root
, path
);
2275 leaf
= path
->nodes
[0];
2276 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2277 btrfs_release_path(path
);
2281 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2282 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2283 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2286 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2287 struct btrfs_dev_item
);
2288 devid
= btrfs_device_id(leaf
, dev_item
);
2289 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2291 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2293 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
2294 BUG_ON(!device
); /* Logic error */
2296 if (device
->fs_devices
->seeding
) {
2297 btrfs_set_device_generation(leaf
, dev_item
,
2298 device
->generation
);
2299 btrfs_mark_buffer_dirty(leaf
);
2307 btrfs_free_path(path
);
2311 int btrfs_init_new_device(struct btrfs_fs_info
*fs_info
, char *device_path
)
2313 struct btrfs_root
*root
= fs_info
->dev_root
;
2314 struct request_queue
*q
;
2315 struct btrfs_trans_handle
*trans
;
2316 struct btrfs_device
*device
;
2317 struct block_device
*bdev
;
2318 struct list_head
*devices
;
2319 struct super_block
*sb
= fs_info
->sb
;
2320 struct rcu_string
*name
;
2322 int seeding_dev
= 0;
2325 if ((sb
->s_flags
& MS_RDONLY
) && !fs_info
->fs_devices
->seeding
)
2328 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2329 fs_info
->bdev_holder
);
2331 return PTR_ERR(bdev
);
2333 if (fs_info
->fs_devices
->seeding
) {
2335 down_write(&sb
->s_umount
);
2336 mutex_lock(&uuid_mutex
);
2339 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2341 devices
= &fs_info
->fs_devices
->devices
;
2343 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2344 list_for_each_entry(device
, devices
, dev_list
) {
2345 if (device
->bdev
== bdev
) {
2348 &fs_info
->fs_devices
->device_list_mutex
);
2352 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2354 device
= btrfs_alloc_device(fs_info
, NULL
, NULL
);
2355 if (IS_ERR(device
)) {
2356 /* we can safely leave the fs_devices entry around */
2357 ret
= PTR_ERR(device
);
2361 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2367 rcu_assign_pointer(device
->name
, name
);
2369 trans
= btrfs_start_transaction(root
, 0);
2370 if (IS_ERR(trans
)) {
2371 rcu_string_free(device
->name
);
2373 ret
= PTR_ERR(trans
);
2377 q
= bdev_get_queue(bdev
);
2378 if (blk_queue_discard(q
))
2379 device
->can_discard
= 1;
2380 device
->writeable
= 1;
2381 device
->generation
= trans
->transid
;
2382 device
->io_width
= fs_info
->sectorsize
;
2383 device
->io_align
= fs_info
->sectorsize
;
2384 device
->sector_size
= fs_info
->sectorsize
;
2385 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2386 device
->disk_total_bytes
= device
->total_bytes
;
2387 device
->commit_total_bytes
= device
->total_bytes
;
2388 device
->fs_info
= fs_info
;
2389 device
->bdev
= bdev
;
2390 device
->in_fs_metadata
= 1;
2391 device
->is_tgtdev_for_dev_replace
= 0;
2392 device
->mode
= FMODE_EXCL
;
2393 device
->dev_stats_valid
= 1;
2394 set_blocksize(device
->bdev
, 4096);
2397 sb
->s_flags
&= ~MS_RDONLY
;
2398 ret
= btrfs_prepare_sprout(fs_info
);
2399 BUG_ON(ret
); /* -ENOMEM */
2402 device
->fs_devices
= fs_info
->fs_devices
;
2404 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2405 mutex_lock(&fs_info
->chunk_mutex
);
2406 list_add_rcu(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2407 list_add(&device
->dev_alloc_list
,
2408 &fs_info
->fs_devices
->alloc_list
);
2409 fs_info
->fs_devices
->num_devices
++;
2410 fs_info
->fs_devices
->open_devices
++;
2411 fs_info
->fs_devices
->rw_devices
++;
2412 fs_info
->fs_devices
->total_devices
++;
2413 fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2415 spin_lock(&fs_info
->free_chunk_lock
);
2416 fs_info
->free_chunk_space
+= device
->total_bytes
;
2417 spin_unlock(&fs_info
->free_chunk_lock
);
2419 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
2420 fs_info
->fs_devices
->rotating
= 1;
2422 tmp
= btrfs_super_total_bytes(fs_info
->super_copy
);
2423 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2424 tmp
+ device
->total_bytes
);
2426 tmp
= btrfs_super_num_devices(fs_info
->super_copy
);
2427 btrfs_set_super_num_devices(fs_info
->super_copy
, tmp
+ 1);
2429 /* add sysfs device entry */
2430 btrfs_sysfs_add_device_link(fs_info
->fs_devices
, device
);
2433 * we've got more storage, clear any full flags on the space
2436 btrfs_clear_space_info_full(fs_info
);
2438 mutex_unlock(&fs_info
->chunk_mutex
);
2439 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2442 mutex_lock(&fs_info
->chunk_mutex
);
2443 ret
= init_first_rw_device(trans
, fs_info
, device
);
2444 mutex_unlock(&fs_info
->chunk_mutex
);
2446 btrfs_abort_transaction(trans
, ret
);
2451 ret
= btrfs_add_device(trans
, fs_info
, device
);
2453 btrfs_abort_transaction(trans
, ret
);
2458 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2460 ret
= btrfs_finish_sprout(trans
, fs_info
);
2462 btrfs_abort_transaction(trans
, ret
);
2466 /* Sprouting would change fsid of the mounted root,
2467 * so rename the fsid on the sysfs
2469 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2471 if (kobject_rename(&fs_info
->fs_devices
->fsid_kobj
, fsid_buf
))
2473 "sysfs: failed to create fsid for sprout");
2476 fs_info
->num_tolerated_disk_barrier_failures
=
2477 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
2478 ret
= btrfs_commit_transaction(trans
);
2481 mutex_unlock(&uuid_mutex
);
2482 up_write(&sb
->s_umount
);
2484 if (ret
) /* transaction commit */
2487 ret
= btrfs_relocate_sys_chunks(fs_info
);
2489 btrfs_handle_fs_error(fs_info
, ret
,
2490 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2491 trans
= btrfs_attach_transaction(root
);
2492 if (IS_ERR(trans
)) {
2493 if (PTR_ERR(trans
) == -ENOENT
)
2495 return PTR_ERR(trans
);
2497 ret
= btrfs_commit_transaction(trans
);
2500 /* Update ctime/mtime for libblkid */
2501 update_dev_time(device_path
);
2505 btrfs_end_transaction(trans
);
2506 rcu_string_free(device
->name
);
2507 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
2510 blkdev_put(bdev
, FMODE_EXCL
);
2512 mutex_unlock(&uuid_mutex
);
2513 up_write(&sb
->s_umount
);
2518 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2520 struct btrfs_device
*srcdev
,
2521 struct btrfs_device
**device_out
)
2523 struct request_queue
*q
;
2524 struct btrfs_device
*device
;
2525 struct block_device
*bdev
;
2526 struct list_head
*devices
;
2527 struct rcu_string
*name
;
2528 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2532 if (fs_info
->fs_devices
->seeding
) {
2533 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2537 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2538 fs_info
->bdev_holder
);
2540 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2541 return PTR_ERR(bdev
);
2544 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2546 devices
= &fs_info
->fs_devices
->devices
;
2547 list_for_each_entry(device
, devices
, dev_list
) {
2548 if (device
->bdev
== bdev
) {
2550 "target device is in the filesystem!");
2557 if (i_size_read(bdev
->bd_inode
) <
2558 btrfs_device_get_total_bytes(srcdev
)) {
2560 "target device is smaller than source device!");
2566 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2567 if (IS_ERR(device
)) {
2568 ret
= PTR_ERR(device
);
2572 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2578 rcu_assign_pointer(device
->name
, name
);
2580 q
= bdev_get_queue(bdev
);
2581 if (blk_queue_discard(q
))
2582 device
->can_discard
= 1;
2583 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2584 device
->writeable
= 1;
2585 device
->generation
= 0;
2586 device
->io_width
= fs_info
->sectorsize
;
2587 device
->io_align
= fs_info
->sectorsize
;
2588 device
->sector_size
= fs_info
->sectorsize
;
2589 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2590 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2591 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2592 ASSERT(list_empty(&srcdev
->resized_list
));
2593 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2594 device
->commit_bytes_used
= device
->bytes_used
;
2595 device
->fs_info
= fs_info
;
2596 device
->bdev
= bdev
;
2597 device
->in_fs_metadata
= 1;
2598 device
->is_tgtdev_for_dev_replace
= 1;
2599 device
->mode
= FMODE_EXCL
;
2600 device
->dev_stats_valid
= 1;
2601 set_blocksize(device
->bdev
, 4096);
2602 device
->fs_devices
= fs_info
->fs_devices
;
2603 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2604 fs_info
->fs_devices
->num_devices
++;
2605 fs_info
->fs_devices
->open_devices
++;
2606 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2608 *device_out
= device
;
2612 blkdev_put(bdev
, FMODE_EXCL
);
2616 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2617 struct btrfs_device
*tgtdev
)
2619 u32 sectorsize
= fs_info
->sectorsize
;
2621 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2622 tgtdev
->io_width
= sectorsize
;
2623 tgtdev
->io_align
= sectorsize
;
2624 tgtdev
->sector_size
= sectorsize
;
2625 tgtdev
->fs_info
= fs_info
;
2626 tgtdev
->in_fs_metadata
= 1;
2629 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2630 struct btrfs_device
*device
)
2633 struct btrfs_path
*path
;
2634 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
2635 struct btrfs_dev_item
*dev_item
;
2636 struct extent_buffer
*leaf
;
2637 struct btrfs_key key
;
2639 path
= btrfs_alloc_path();
2643 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2644 key
.type
= BTRFS_DEV_ITEM_KEY
;
2645 key
.offset
= device
->devid
;
2647 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2656 leaf
= path
->nodes
[0];
2657 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2659 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2660 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2661 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2662 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2663 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2664 btrfs_set_device_total_bytes(leaf
, dev_item
,
2665 btrfs_device_get_disk_total_bytes(device
));
2666 btrfs_set_device_bytes_used(leaf
, dev_item
,
2667 btrfs_device_get_bytes_used(device
));
2668 btrfs_mark_buffer_dirty(leaf
);
2671 btrfs_free_path(path
);
2675 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2676 struct btrfs_device
*device
, u64 new_size
)
2678 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2679 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2680 struct btrfs_fs_devices
*fs_devices
;
2684 if (!device
->writeable
)
2687 mutex_lock(&fs_info
->chunk_mutex
);
2688 old_total
= btrfs_super_total_bytes(super_copy
);
2689 diff
= new_size
- device
->total_bytes
;
2691 if (new_size
<= device
->total_bytes
||
2692 device
->is_tgtdev_for_dev_replace
) {
2693 mutex_unlock(&fs_info
->chunk_mutex
);
2697 fs_devices
= fs_info
->fs_devices
;
2699 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2700 device
->fs_devices
->total_rw_bytes
+= diff
;
2702 btrfs_device_set_total_bytes(device
, new_size
);
2703 btrfs_device_set_disk_total_bytes(device
, new_size
);
2704 btrfs_clear_space_info_full(device
->fs_info
);
2705 if (list_empty(&device
->resized_list
))
2706 list_add_tail(&device
->resized_list
,
2707 &fs_devices
->resized_devices
);
2708 mutex_unlock(&fs_info
->chunk_mutex
);
2710 return btrfs_update_device(trans
, device
);
2713 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2714 struct btrfs_fs_info
*fs_info
, u64 chunk_objectid
,
2717 struct btrfs_root
*root
= fs_info
->chunk_root
;
2719 struct btrfs_path
*path
;
2720 struct btrfs_key key
;
2722 path
= btrfs_alloc_path();
2726 key
.objectid
= chunk_objectid
;
2727 key
.offset
= chunk_offset
;
2728 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2730 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2733 else if (ret
> 0) { /* Logic error or corruption */
2734 btrfs_handle_fs_error(fs_info
, -ENOENT
,
2735 "Failed lookup while freeing chunk.");
2740 ret
= btrfs_del_item(trans
, root
, path
);
2742 btrfs_handle_fs_error(fs_info
, ret
,
2743 "Failed to delete chunk item.");
2745 btrfs_free_path(path
);
2749 static int btrfs_del_sys_chunk(struct btrfs_fs_info
*fs_info
,
2750 u64 chunk_objectid
, u64 chunk_offset
)
2752 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2753 struct btrfs_disk_key
*disk_key
;
2754 struct btrfs_chunk
*chunk
;
2761 struct btrfs_key key
;
2763 mutex_lock(&fs_info
->chunk_mutex
);
2764 array_size
= btrfs_super_sys_array_size(super_copy
);
2766 ptr
= super_copy
->sys_chunk_array
;
2769 while (cur
< array_size
) {
2770 disk_key
= (struct btrfs_disk_key
*)ptr
;
2771 btrfs_disk_key_to_cpu(&key
, disk_key
);
2773 len
= sizeof(*disk_key
);
2775 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2776 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2777 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2778 len
+= btrfs_chunk_item_size(num_stripes
);
2783 if (key
.objectid
== chunk_objectid
&&
2784 key
.offset
== chunk_offset
) {
2785 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2787 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2793 mutex_unlock(&fs_info
->chunk_mutex
);
2797 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2798 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2800 struct extent_map_tree
*em_tree
;
2801 struct extent_map
*em
;
2802 struct map_lookup
*map
;
2803 u64 dev_extent_len
= 0;
2804 u64 chunk_objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2806 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2808 em_tree
= &fs_info
->mapping_tree
.map_tree
;
2810 read_lock(&em_tree
->lock
);
2811 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2812 read_unlock(&em_tree
->lock
);
2814 if (!em
|| em
->start
> chunk_offset
||
2815 em
->start
+ em
->len
< chunk_offset
) {
2817 * This is a logic error, but we don't want to just rely on the
2818 * user having built with ASSERT enabled, so if ASSERT doesn't
2819 * do anything we still error out.
2823 free_extent_map(em
);
2826 map
= em
->map_lookup
;
2827 mutex_lock(&fs_info
->chunk_mutex
);
2828 check_system_chunk(trans
, fs_info
, map
->type
);
2829 mutex_unlock(&fs_info
->chunk_mutex
);
2832 * Take the device list mutex to prevent races with the final phase of
2833 * a device replace operation that replaces the device object associated
2834 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2836 mutex_lock(&fs_devices
->device_list_mutex
);
2837 for (i
= 0; i
< map
->num_stripes
; i
++) {
2838 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2839 ret
= btrfs_free_dev_extent(trans
, device
,
2840 map
->stripes
[i
].physical
,
2843 mutex_unlock(&fs_devices
->device_list_mutex
);
2844 btrfs_abort_transaction(trans
, ret
);
2848 if (device
->bytes_used
> 0) {
2849 mutex_lock(&fs_info
->chunk_mutex
);
2850 btrfs_device_set_bytes_used(device
,
2851 device
->bytes_used
- dev_extent_len
);
2852 spin_lock(&fs_info
->free_chunk_lock
);
2853 fs_info
->free_chunk_space
+= dev_extent_len
;
2854 spin_unlock(&fs_info
->free_chunk_lock
);
2855 btrfs_clear_space_info_full(fs_info
);
2856 mutex_unlock(&fs_info
->chunk_mutex
);
2859 if (map
->stripes
[i
].dev
) {
2860 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2862 mutex_unlock(&fs_devices
->device_list_mutex
);
2863 btrfs_abort_transaction(trans
, ret
);
2868 mutex_unlock(&fs_devices
->device_list_mutex
);
2870 ret
= btrfs_free_chunk(trans
, fs_info
, chunk_objectid
, chunk_offset
);
2872 btrfs_abort_transaction(trans
, ret
);
2876 trace_btrfs_chunk_free(fs_info
, map
, chunk_offset
, em
->len
);
2878 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2879 ret
= btrfs_del_sys_chunk(fs_info
, chunk_objectid
,
2882 btrfs_abort_transaction(trans
, ret
);
2887 ret
= btrfs_remove_block_group(trans
, fs_info
, chunk_offset
, em
);
2889 btrfs_abort_transaction(trans
, ret
);
2895 free_extent_map(em
);
2899 static int btrfs_relocate_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2901 struct btrfs_root
*root
= fs_info
->chunk_root
;
2902 struct btrfs_trans_handle
*trans
;
2906 * Prevent races with automatic removal of unused block groups.
2907 * After we relocate and before we remove the chunk with offset
2908 * chunk_offset, automatic removal of the block group can kick in,
2909 * resulting in a failure when calling btrfs_remove_chunk() below.
2911 * Make sure to acquire this mutex before doing a tree search (dev
2912 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2913 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2914 * we release the path used to search the chunk/dev tree and before
2915 * the current task acquires this mutex and calls us.
2917 ASSERT(mutex_is_locked(&fs_info
->delete_unused_bgs_mutex
));
2919 ret
= btrfs_can_relocate(fs_info
, chunk_offset
);
2923 /* step one, relocate all the extents inside this chunk */
2924 btrfs_scrub_pause(fs_info
);
2925 ret
= btrfs_relocate_block_group(fs_info
, chunk_offset
);
2926 btrfs_scrub_continue(fs_info
);
2930 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
2932 if (IS_ERR(trans
)) {
2933 ret
= PTR_ERR(trans
);
2934 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2939 * step two, delete the device extents and the
2940 * chunk tree entries
2942 ret
= btrfs_remove_chunk(trans
, fs_info
, chunk_offset
);
2943 btrfs_end_transaction(trans
);
2947 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
)
2949 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
2950 struct btrfs_path
*path
;
2951 struct extent_buffer
*leaf
;
2952 struct btrfs_chunk
*chunk
;
2953 struct btrfs_key key
;
2954 struct btrfs_key found_key
;
2956 bool retried
= false;
2960 path
= btrfs_alloc_path();
2965 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2966 key
.offset
= (u64
)-1;
2967 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2970 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
2971 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2973 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
2976 BUG_ON(ret
== 0); /* Corruption */
2978 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2981 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
2987 leaf
= path
->nodes
[0];
2988 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2990 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2991 struct btrfs_chunk
);
2992 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2993 btrfs_release_path(path
);
2995 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2996 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3002 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3004 if (found_key
.offset
== 0)
3006 key
.offset
= found_key
.offset
- 1;
3009 if (failed
&& !retried
) {
3013 } else if (WARN_ON(failed
&& retried
)) {
3017 btrfs_free_path(path
);
3021 static int insert_balance_item(struct btrfs_fs_info
*fs_info
,
3022 struct btrfs_balance_control
*bctl
)
3024 struct btrfs_root
*root
= fs_info
->tree_root
;
3025 struct btrfs_trans_handle
*trans
;
3026 struct btrfs_balance_item
*item
;
3027 struct btrfs_disk_balance_args disk_bargs
;
3028 struct btrfs_path
*path
;
3029 struct extent_buffer
*leaf
;
3030 struct btrfs_key key
;
3033 path
= btrfs_alloc_path();
3037 trans
= btrfs_start_transaction(root
, 0);
3038 if (IS_ERR(trans
)) {
3039 btrfs_free_path(path
);
3040 return PTR_ERR(trans
);
3043 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3044 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3047 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3052 leaf
= path
->nodes
[0];
3053 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3055 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3057 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3058 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3059 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3060 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3061 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3062 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3064 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3066 btrfs_mark_buffer_dirty(leaf
);
3068 btrfs_free_path(path
);
3069 err
= btrfs_commit_transaction(trans
);
3075 static int del_balance_item(struct btrfs_fs_info
*fs_info
)
3077 struct btrfs_root
*root
= fs_info
->tree_root
;
3078 struct btrfs_trans_handle
*trans
;
3079 struct btrfs_path
*path
;
3080 struct btrfs_key key
;
3083 path
= btrfs_alloc_path();
3087 trans
= btrfs_start_transaction(root
, 0);
3088 if (IS_ERR(trans
)) {
3089 btrfs_free_path(path
);
3090 return PTR_ERR(trans
);
3093 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3094 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3097 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3105 ret
= btrfs_del_item(trans
, root
, path
);
3107 btrfs_free_path(path
);
3108 err
= btrfs_commit_transaction(trans
);
3115 * This is a heuristic used to reduce the number of chunks balanced on
3116 * resume after balance was interrupted.
3118 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3121 * Turn on soft mode for chunk types that were being converted.
3123 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3124 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3125 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3126 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3127 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3128 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3131 * Turn on usage filter if is not already used. The idea is
3132 * that chunks that we have already balanced should be
3133 * reasonably full. Don't do it for chunks that are being
3134 * converted - that will keep us from relocating unconverted
3135 * (albeit full) chunks.
3137 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3138 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3139 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3140 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3141 bctl
->data
.usage
= 90;
3143 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3144 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3145 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3146 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3147 bctl
->sys
.usage
= 90;
3149 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3150 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3151 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3152 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3153 bctl
->meta
.usage
= 90;
3158 * Should be called with both balance and volume mutexes held to
3159 * serialize other volume operations (add_dev/rm_dev/resize) with
3160 * restriper. Same goes for unset_balance_control.
3162 static void set_balance_control(struct btrfs_balance_control
*bctl
)
3164 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3166 BUG_ON(fs_info
->balance_ctl
);
3168 spin_lock(&fs_info
->balance_lock
);
3169 fs_info
->balance_ctl
= bctl
;
3170 spin_unlock(&fs_info
->balance_lock
);
3173 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
3175 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3177 BUG_ON(!fs_info
->balance_ctl
);
3179 spin_lock(&fs_info
->balance_lock
);
3180 fs_info
->balance_ctl
= NULL
;
3181 spin_unlock(&fs_info
->balance_lock
);
3187 * Balance filters. Return 1 if chunk should be filtered out
3188 * (should not be balanced).
3190 static int chunk_profiles_filter(u64 chunk_type
,
3191 struct btrfs_balance_args
*bargs
)
3193 chunk_type
= chunk_to_extended(chunk_type
) &
3194 BTRFS_EXTENDED_PROFILE_MASK
;
3196 if (bargs
->profiles
& chunk_type
)
3202 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3203 struct btrfs_balance_args
*bargs
)
3205 struct btrfs_block_group_cache
*cache
;
3207 u64 user_thresh_min
;
3208 u64 user_thresh_max
;
3211 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3212 chunk_used
= btrfs_block_group_used(&cache
->item
);
3214 if (bargs
->usage_min
== 0)
3215 user_thresh_min
= 0;
3217 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3220 if (bargs
->usage_max
== 0)
3221 user_thresh_max
= 1;
3222 else if (bargs
->usage_max
> 100)
3223 user_thresh_max
= cache
->key
.offset
;
3225 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3228 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3231 btrfs_put_block_group(cache
);
3235 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3236 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3238 struct btrfs_block_group_cache
*cache
;
3239 u64 chunk_used
, user_thresh
;
3242 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3243 chunk_used
= btrfs_block_group_used(&cache
->item
);
3245 if (bargs
->usage_min
== 0)
3247 else if (bargs
->usage
> 100)
3248 user_thresh
= cache
->key
.offset
;
3250 user_thresh
= div_factor_fine(cache
->key
.offset
,
3253 if (chunk_used
< user_thresh
)
3256 btrfs_put_block_group(cache
);
3260 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3261 struct btrfs_chunk
*chunk
,
3262 struct btrfs_balance_args
*bargs
)
3264 struct btrfs_stripe
*stripe
;
3265 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3268 for (i
= 0; i
< num_stripes
; i
++) {
3269 stripe
= btrfs_stripe_nr(chunk
, i
);
3270 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3277 /* [pstart, pend) */
3278 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3279 struct btrfs_chunk
*chunk
,
3281 struct btrfs_balance_args
*bargs
)
3283 struct btrfs_stripe
*stripe
;
3284 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3290 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3293 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3294 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3295 factor
= num_stripes
/ 2;
3296 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3297 factor
= num_stripes
- 1;
3298 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3299 factor
= num_stripes
- 2;
3301 factor
= num_stripes
;
3304 for (i
= 0; i
< num_stripes
; i
++) {
3305 stripe
= btrfs_stripe_nr(chunk
, i
);
3306 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3309 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3310 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3311 stripe_length
= div_u64(stripe_length
, factor
);
3313 if (stripe_offset
< bargs
->pend
&&
3314 stripe_offset
+ stripe_length
> bargs
->pstart
)
3321 /* [vstart, vend) */
3322 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3323 struct btrfs_chunk
*chunk
,
3325 struct btrfs_balance_args
*bargs
)
3327 if (chunk_offset
< bargs
->vend
&&
3328 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3329 /* at least part of the chunk is inside this vrange */
3335 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3336 struct btrfs_chunk
*chunk
,
3337 struct btrfs_balance_args
*bargs
)
3339 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3341 if (bargs
->stripes_min
<= num_stripes
3342 && num_stripes
<= bargs
->stripes_max
)
3348 static int chunk_soft_convert_filter(u64 chunk_type
,
3349 struct btrfs_balance_args
*bargs
)
3351 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3354 chunk_type
= chunk_to_extended(chunk_type
) &
3355 BTRFS_EXTENDED_PROFILE_MASK
;
3357 if (bargs
->target
== chunk_type
)
3363 static int should_balance_chunk(struct btrfs_fs_info
*fs_info
,
3364 struct extent_buffer
*leaf
,
3365 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3367 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3368 struct btrfs_balance_args
*bargs
= NULL
;
3369 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3372 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3373 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3377 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3378 bargs
= &bctl
->data
;
3379 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3381 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3382 bargs
= &bctl
->meta
;
3384 /* profiles filter */
3385 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3386 chunk_profiles_filter(chunk_type
, bargs
)) {
3391 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3392 chunk_usage_filter(fs_info
, chunk_offset
, bargs
)) {
3394 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3395 chunk_usage_range_filter(fs_info
, chunk_offset
, bargs
)) {
3400 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3401 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3405 /* drange filter, makes sense only with devid filter */
3406 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3407 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3412 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3413 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3417 /* stripes filter */
3418 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3419 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3423 /* soft profile changing mode */
3424 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3425 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3430 * limited by count, must be the last filter
3432 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3433 if (bargs
->limit
== 0)
3437 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3439 * Same logic as the 'limit' filter; the minimum cannot be
3440 * determined here because we do not have the global information
3441 * about the count of all chunks that satisfy the filters.
3443 if (bargs
->limit_max
== 0)
3452 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3454 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3455 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3456 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3457 struct list_head
*devices
;
3458 struct btrfs_device
*device
;
3462 struct btrfs_chunk
*chunk
;
3463 struct btrfs_path
*path
= NULL
;
3464 struct btrfs_key key
;
3465 struct btrfs_key found_key
;
3466 struct btrfs_trans_handle
*trans
;
3467 struct extent_buffer
*leaf
;
3470 int enospc_errors
= 0;
3471 bool counting
= true;
3472 /* The single value limit and min/max limits use the same bytes in the */
3473 u64 limit_data
= bctl
->data
.limit
;
3474 u64 limit_meta
= bctl
->meta
.limit
;
3475 u64 limit_sys
= bctl
->sys
.limit
;
3479 int chunk_reserved
= 0;
3482 /* step one make some room on all the devices */
3483 devices
= &fs_info
->fs_devices
->devices
;
3484 list_for_each_entry(device
, devices
, dev_list
) {
3485 old_size
= btrfs_device_get_total_bytes(device
);
3486 size_to_free
= div_factor(old_size
, 1);
3487 size_to_free
= min_t(u64
, size_to_free
, SZ_1M
);
3488 if (!device
->writeable
||
3489 btrfs_device_get_total_bytes(device
) -
3490 btrfs_device_get_bytes_used(device
) > size_to_free
||
3491 device
->is_tgtdev_for_dev_replace
)
3494 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3498 /* btrfs_shrink_device never returns ret > 0 */
3503 trans
= btrfs_start_transaction(dev_root
, 0);
3504 if (IS_ERR(trans
)) {
3505 ret
= PTR_ERR(trans
);
3506 btrfs_info_in_rcu(fs_info
,
3507 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3508 rcu_str_deref(device
->name
), ret
,
3509 old_size
, old_size
- size_to_free
);
3513 ret
= btrfs_grow_device(trans
, device
, old_size
);
3515 btrfs_end_transaction(trans
);
3516 /* btrfs_grow_device never returns ret > 0 */
3518 btrfs_info_in_rcu(fs_info
,
3519 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3520 rcu_str_deref(device
->name
), ret
,
3521 old_size
, old_size
- size_to_free
);
3525 btrfs_end_transaction(trans
);
3528 /* step two, relocate all the chunks */
3529 path
= btrfs_alloc_path();
3535 /* zero out stat counters */
3536 spin_lock(&fs_info
->balance_lock
);
3537 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3538 spin_unlock(&fs_info
->balance_lock
);
3542 * The single value limit and min/max limits use the same bytes
3545 bctl
->data
.limit
= limit_data
;
3546 bctl
->meta
.limit
= limit_meta
;
3547 bctl
->sys
.limit
= limit_sys
;
3549 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3550 key
.offset
= (u64
)-1;
3551 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3554 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3555 atomic_read(&fs_info
->balance_cancel_req
)) {
3560 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3561 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3563 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3568 * this shouldn't happen, it means the last relocate
3572 BUG(); /* FIXME break ? */
3574 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3575 BTRFS_CHUNK_ITEM_KEY
);
3577 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3582 leaf
= path
->nodes
[0];
3583 slot
= path
->slots
[0];
3584 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3586 if (found_key
.objectid
!= key
.objectid
) {
3587 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3591 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3592 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3595 spin_lock(&fs_info
->balance_lock
);
3596 bctl
->stat
.considered
++;
3597 spin_unlock(&fs_info
->balance_lock
);
3600 ret
= should_balance_chunk(fs_info
, leaf
, chunk
,
3603 btrfs_release_path(path
);
3605 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3610 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3611 spin_lock(&fs_info
->balance_lock
);
3612 bctl
->stat
.expected
++;
3613 spin_unlock(&fs_info
->balance_lock
);
3615 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3617 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3619 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3626 * Apply limit_min filter, no need to check if the LIMITS
3627 * filter is used, limit_min is 0 by default
3629 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3630 count_data
< bctl
->data
.limit_min
)
3631 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3632 count_meta
< bctl
->meta
.limit_min
)
3633 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3634 count_sys
< bctl
->sys
.limit_min
)) {
3635 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3639 ASSERT(fs_info
->data_sinfo
);
3640 spin_lock(&fs_info
->data_sinfo
->lock
);
3641 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3642 spin_unlock(&fs_info
->data_sinfo
->lock
);
3644 if ((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3645 !chunk_reserved
&& !bytes_used
) {
3646 trans
= btrfs_start_transaction(chunk_root
, 0);
3647 if (IS_ERR(trans
)) {
3648 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3649 ret
= PTR_ERR(trans
);
3653 ret
= btrfs_force_chunk_alloc(trans
, fs_info
,
3654 BTRFS_BLOCK_GROUP_DATA
);
3655 btrfs_end_transaction(trans
);
3657 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3663 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3664 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3665 if (ret
&& ret
!= -ENOSPC
)
3667 if (ret
== -ENOSPC
) {
3670 spin_lock(&fs_info
->balance_lock
);
3671 bctl
->stat
.completed
++;
3672 spin_unlock(&fs_info
->balance_lock
);
3675 if (found_key
.offset
== 0)
3677 key
.offset
= found_key
.offset
- 1;
3681 btrfs_release_path(path
);
3686 btrfs_free_path(path
);
3687 if (enospc_errors
) {
3688 btrfs_info(fs_info
, "%d enospc errors during balance",
3698 * alloc_profile_is_valid - see if a given profile is valid and reduced
3699 * @flags: profile to validate
3700 * @extended: if true @flags is treated as an extended profile
3702 static int alloc_profile_is_valid(u64 flags
, int extended
)
3704 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3705 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3707 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3709 /* 1) check that all other bits are zeroed */
3713 /* 2) see if profile is reduced */
3715 return !extended
; /* "0" is valid for usual profiles */
3717 /* true if exactly one bit set */
3718 return (flags
& (flags
- 1)) == 0;
3721 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3723 /* cancel requested || normal exit path */
3724 return atomic_read(&fs_info
->balance_cancel_req
) ||
3725 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3726 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3729 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3733 unset_balance_control(fs_info
);
3734 ret
= del_balance_item(fs_info
);
3736 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3738 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3741 /* Non-zero return value signifies invalidity */
3742 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3745 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3746 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3747 (bctl_arg
->target
& ~allowed
)));
3751 * Should be called with both balance and volume mutexes held
3753 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3754 struct btrfs_ioctl_balance_args
*bargs
)
3756 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3763 if (btrfs_fs_closing(fs_info
) ||
3764 atomic_read(&fs_info
->balance_pause_req
) ||
3765 atomic_read(&fs_info
->balance_cancel_req
)) {
3770 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3771 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3775 * In case of mixed groups both data and meta should be picked,
3776 * and identical options should be given for both of them.
3778 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3779 if (mixed
&& (bctl
->flags
& allowed
)) {
3780 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3781 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3782 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3784 "with mixed groups data and metadata balance options must be the same");
3790 num_devices
= fs_info
->fs_devices
->num_devices
;
3791 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3792 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3793 BUG_ON(num_devices
< 1);
3796 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3797 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
| BTRFS_BLOCK_GROUP_DUP
;
3798 if (num_devices
> 1)
3799 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3800 if (num_devices
> 2)
3801 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3802 if (num_devices
> 3)
3803 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3804 BTRFS_BLOCK_GROUP_RAID6
);
3805 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3807 "unable to start balance with target data profile %llu",
3812 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3814 "unable to start balance with target metadata profile %llu",
3819 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3821 "unable to start balance with target system profile %llu",
3827 /* allow to reduce meta or sys integrity only if force set */
3828 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3829 BTRFS_BLOCK_GROUP_RAID10
|
3830 BTRFS_BLOCK_GROUP_RAID5
|
3831 BTRFS_BLOCK_GROUP_RAID6
;
3833 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3835 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3836 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3837 !(bctl
->sys
.target
& allowed
)) ||
3838 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3839 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3840 !(bctl
->meta
.target
& allowed
))) {
3841 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3843 "force reducing metadata integrity");
3846 "balance will reduce metadata integrity, use force if you want this");
3851 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3853 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl
->meta
.target
) <
3854 btrfs_get_num_tolerated_disk_barrier_failures(bctl
->data
.target
)) {
3856 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3857 bctl
->meta
.target
, bctl
->data
.target
);
3860 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3861 fs_info
->num_tolerated_disk_barrier_failures
= min(
3862 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
),
3863 btrfs_get_num_tolerated_disk_barrier_failures(
3867 ret
= insert_balance_item(fs_info
, bctl
);
3868 if (ret
&& ret
!= -EEXIST
)
3871 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3872 BUG_ON(ret
== -EEXIST
);
3873 set_balance_control(bctl
);
3875 BUG_ON(ret
!= -EEXIST
);
3876 spin_lock(&fs_info
->balance_lock
);
3877 update_balance_args(bctl
);
3878 spin_unlock(&fs_info
->balance_lock
);
3881 atomic_inc(&fs_info
->balance_running
);
3882 mutex_unlock(&fs_info
->balance_mutex
);
3884 ret
= __btrfs_balance(fs_info
);
3886 mutex_lock(&fs_info
->balance_mutex
);
3887 atomic_dec(&fs_info
->balance_running
);
3889 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3890 fs_info
->num_tolerated_disk_barrier_failures
=
3891 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3895 memset(bargs
, 0, sizeof(*bargs
));
3896 update_ioctl_balance_args(fs_info
, 0, bargs
);
3899 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3900 balance_need_close(fs_info
)) {
3901 __cancel_balance(fs_info
);
3904 wake_up(&fs_info
->balance_wait_q
);
3908 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3909 __cancel_balance(fs_info
);
3912 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3917 static int balance_kthread(void *data
)
3919 struct btrfs_fs_info
*fs_info
= data
;
3922 mutex_lock(&fs_info
->volume_mutex
);
3923 mutex_lock(&fs_info
->balance_mutex
);
3925 if (fs_info
->balance_ctl
) {
3926 btrfs_info(fs_info
, "continuing balance");
3927 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3930 mutex_unlock(&fs_info
->balance_mutex
);
3931 mutex_unlock(&fs_info
->volume_mutex
);
3936 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3938 struct task_struct
*tsk
;
3940 spin_lock(&fs_info
->balance_lock
);
3941 if (!fs_info
->balance_ctl
) {
3942 spin_unlock(&fs_info
->balance_lock
);
3945 spin_unlock(&fs_info
->balance_lock
);
3947 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
3948 btrfs_info(fs_info
, "force skipping balance");
3952 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3953 return PTR_ERR_OR_ZERO(tsk
);
3956 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3958 struct btrfs_balance_control
*bctl
;
3959 struct btrfs_balance_item
*item
;
3960 struct btrfs_disk_balance_args disk_bargs
;
3961 struct btrfs_path
*path
;
3962 struct extent_buffer
*leaf
;
3963 struct btrfs_key key
;
3966 path
= btrfs_alloc_path();
3970 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3971 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3974 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3977 if (ret
> 0) { /* ret = -ENOENT; */
3982 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3988 leaf
= path
->nodes
[0];
3989 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3991 bctl
->fs_info
= fs_info
;
3992 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
3993 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3995 btrfs_balance_data(leaf
, item
, &disk_bargs
);
3996 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
3997 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
3998 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
3999 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
4000 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
4002 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
4004 mutex_lock(&fs_info
->volume_mutex
);
4005 mutex_lock(&fs_info
->balance_mutex
);
4007 set_balance_control(bctl
);
4009 mutex_unlock(&fs_info
->balance_mutex
);
4010 mutex_unlock(&fs_info
->volume_mutex
);
4012 btrfs_free_path(path
);
4016 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4020 mutex_lock(&fs_info
->balance_mutex
);
4021 if (!fs_info
->balance_ctl
) {
4022 mutex_unlock(&fs_info
->balance_mutex
);
4026 if (atomic_read(&fs_info
->balance_running
)) {
4027 atomic_inc(&fs_info
->balance_pause_req
);
4028 mutex_unlock(&fs_info
->balance_mutex
);
4030 wait_event(fs_info
->balance_wait_q
,
4031 atomic_read(&fs_info
->balance_running
) == 0);
4033 mutex_lock(&fs_info
->balance_mutex
);
4034 /* we are good with balance_ctl ripped off from under us */
4035 BUG_ON(atomic_read(&fs_info
->balance_running
));
4036 atomic_dec(&fs_info
->balance_pause_req
);
4041 mutex_unlock(&fs_info
->balance_mutex
);
4045 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4047 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
4050 mutex_lock(&fs_info
->balance_mutex
);
4051 if (!fs_info
->balance_ctl
) {
4052 mutex_unlock(&fs_info
->balance_mutex
);
4056 atomic_inc(&fs_info
->balance_cancel_req
);
4058 * if we are running just wait and return, balance item is
4059 * deleted in btrfs_balance in this case
4061 if (atomic_read(&fs_info
->balance_running
)) {
4062 mutex_unlock(&fs_info
->balance_mutex
);
4063 wait_event(fs_info
->balance_wait_q
,
4064 atomic_read(&fs_info
->balance_running
) == 0);
4065 mutex_lock(&fs_info
->balance_mutex
);
4067 /* __cancel_balance needs volume_mutex */
4068 mutex_unlock(&fs_info
->balance_mutex
);
4069 mutex_lock(&fs_info
->volume_mutex
);
4070 mutex_lock(&fs_info
->balance_mutex
);
4072 if (fs_info
->balance_ctl
)
4073 __cancel_balance(fs_info
);
4075 mutex_unlock(&fs_info
->volume_mutex
);
4078 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
4079 atomic_dec(&fs_info
->balance_cancel_req
);
4080 mutex_unlock(&fs_info
->balance_mutex
);
4084 static int btrfs_uuid_scan_kthread(void *data
)
4086 struct btrfs_fs_info
*fs_info
= data
;
4087 struct btrfs_root
*root
= fs_info
->tree_root
;
4088 struct btrfs_key key
;
4089 struct btrfs_key max_key
;
4090 struct btrfs_path
*path
= NULL
;
4092 struct extent_buffer
*eb
;
4094 struct btrfs_root_item root_item
;
4096 struct btrfs_trans_handle
*trans
= NULL
;
4098 path
= btrfs_alloc_path();
4105 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4108 max_key
.objectid
= (u64
)-1;
4109 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
4110 max_key
.offset
= (u64
)-1;
4113 ret
= btrfs_search_forward(root
, &key
, path
, 0);
4120 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4121 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4122 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4123 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4126 eb
= path
->nodes
[0];
4127 slot
= path
->slots
[0];
4128 item_size
= btrfs_item_size_nr(eb
, slot
);
4129 if (item_size
< sizeof(root_item
))
4132 read_extent_buffer(eb
, &root_item
,
4133 btrfs_item_ptr_offset(eb
, slot
),
4134 (int)sizeof(root_item
));
4135 if (btrfs_root_refs(&root_item
) == 0)
4138 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4139 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4143 btrfs_release_path(path
);
4145 * 1 - subvol uuid item
4146 * 1 - received_subvol uuid item
4148 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4149 if (IS_ERR(trans
)) {
4150 ret
= PTR_ERR(trans
);
4158 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4159 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
4161 BTRFS_UUID_KEY_SUBVOL
,
4164 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4170 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4171 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
4172 root_item
.received_uuid
,
4173 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4176 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4184 ret
= btrfs_end_transaction(trans
);
4190 btrfs_release_path(path
);
4191 if (key
.offset
< (u64
)-1) {
4193 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4195 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4196 } else if (key
.objectid
< (u64
)-1) {
4198 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4207 btrfs_free_path(path
);
4208 if (trans
&& !IS_ERR(trans
))
4209 btrfs_end_transaction(trans
);
4211 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4213 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4214 up(&fs_info
->uuid_tree_rescan_sem
);
4219 * Callback for btrfs_uuid_tree_iterate().
4221 * 0 check succeeded, the entry is not outdated.
4222 * < 0 if an error occurred.
4223 * > 0 if the check failed, which means the caller shall remove the entry.
4225 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4226 u8
*uuid
, u8 type
, u64 subid
)
4228 struct btrfs_key key
;
4230 struct btrfs_root
*subvol_root
;
4232 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4233 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4236 key
.objectid
= subid
;
4237 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4238 key
.offset
= (u64
)-1;
4239 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4240 if (IS_ERR(subvol_root
)) {
4241 ret
= PTR_ERR(subvol_root
);
4248 case BTRFS_UUID_KEY_SUBVOL
:
4249 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4252 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4253 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4263 static int btrfs_uuid_rescan_kthread(void *data
)
4265 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4269 * 1st step is to iterate through the existing UUID tree and
4270 * to delete all entries that contain outdated data.
4271 * 2nd step is to add all missing entries to the UUID tree.
4273 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4275 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4276 up(&fs_info
->uuid_tree_rescan_sem
);
4279 return btrfs_uuid_scan_kthread(data
);
4282 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4284 struct btrfs_trans_handle
*trans
;
4285 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4286 struct btrfs_root
*uuid_root
;
4287 struct task_struct
*task
;
4294 trans
= btrfs_start_transaction(tree_root
, 2);
4296 return PTR_ERR(trans
);
4298 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4299 BTRFS_UUID_TREE_OBJECTID
);
4300 if (IS_ERR(uuid_root
)) {
4301 ret
= PTR_ERR(uuid_root
);
4302 btrfs_abort_transaction(trans
, ret
);
4303 btrfs_end_transaction(trans
);
4307 fs_info
->uuid_root
= uuid_root
;
4309 ret
= btrfs_commit_transaction(trans
);
4313 down(&fs_info
->uuid_tree_rescan_sem
);
4314 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4316 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4317 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4318 up(&fs_info
->uuid_tree_rescan_sem
);
4319 return PTR_ERR(task
);
4325 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4327 struct task_struct
*task
;
4329 down(&fs_info
->uuid_tree_rescan_sem
);
4330 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4332 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4333 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4334 up(&fs_info
->uuid_tree_rescan_sem
);
4335 return PTR_ERR(task
);
4342 * shrinking a device means finding all of the device extents past
4343 * the new size, and then following the back refs to the chunks.
4344 * The chunk relocation code actually frees the device extent
4346 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4348 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
4349 struct btrfs_root
*root
= fs_info
->dev_root
;
4350 struct btrfs_trans_handle
*trans
;
4351 struct btrfs_dev_extent
*dev_extent
= NULL
;
4352 struct btrfs_path
*path
;
4358 bool retried
= false;
4359 bool checked_pending_chunks
= false;
4360 struct extent_buffer
*l
;
4361 struct btrfs_key key
;
4362 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4363 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4364 u64 old_size
= btrfs_device_get_total_bytes(device
);
4365 u64 diff
= old_size
- new_size
;
4367 if (device
->is_tgtdev_for_dev_replace
)
4370 path
= btrfs_alloc_path();
4374 path
->reada
= READA_FORWARD
;
4376 mutex_lock(&fs_info
->chunk_mutex
);
4378 btrfs_device_set_total_bytes(device
, new_size
);
4379 if (device
->writeable
) {
4380 device
->fs_devices
->total_rw_bytes
-= diff
;
4381 spin_lock(&fs_info
->free_chunk_lock
);
4382 fs_info
->free_chunk_space
-= diff
;
4383 spin_unlock(&fs_info
->free_chunk_lock
);
4385 mutex_unlock(&fs_info
->chunk_mutex
);
4388 key
.objectid
= device
->devid
;
4389 key
.offset
= (u64
)-1;
4390 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4393 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
4394 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4396 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4400 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4402 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4407 btrfs_release_path(path
);
4412 slot
= path
->slots
[0];
4413 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4415 if (key
.objectid
!= device
->devid
) {
4416 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4417 btrfs_release_path(path
);
4421 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4422 length
= btrfs_dev_extent_length(l
, dev_extent
);
4424 if (key
.offset
+ length
<= new_size
) {
4425 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4426 btrfs_release_path(path
);
4430 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4431 btrfs_release_path(path
);
4433 ret
= btrfs_relocate_chunk(fs_info
, chunk_offset
);
4434 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4435 if (ret
&& ret
!= -ENOSPC
)
4439 } while (key
.offset
-- > 0);
4441 if (failed
&& !retried
) {
4445 } else if (failed
&& retried
) {
4450 /* Shrinking succeeded, else we would be at "done". */
4451 trans
= btrfs_start_transaction(root
, 0);
4452 if (IS_ERR(trans
)) {
4453 ret
= PTR_ERR(trans
);
4457 mutex_lock(&fs_info
->chunk_mutex
);
4460 * We checked in the above loop all device extents that were already in
4461 * the device tree. However before we have updated the device's
4462 * total_bytes to the new size, we might have had chunk allocations that
4463 * have not complete yet (new block groups attached to transaction
4464 * handles), and therefore their device extents were not yet in the
4465 * device tree and we missed them in the loop above. So if we have any
4466 * pending chunk using a device extent that overlaps the device range
4467 * that we can not use anymore, commit the current transaction and
4468 * repeat the search on the device tree - this way we guarantee we will
4469 * not have chunks using device extents that end beyond 'new_size'.
4471 if (!checked_pending_chunks
) {
4472 u64 start
= new_size
;
4473 u64 len
= old_size
- new_size
;
4475 if (contains_pending_extent(trans
->transaction
, device
,
4477 mutex_unlock(&fs_info
->chunk_mutex
);
4478 checked_pending_chunks
= true;
4481 ret
= btrfs_commit_transaction(trans
);
4488 btrfs_device_set_disk_total_bytes(device
, new_size
);
4489 if (list_empty(&device
->resized_list
))
4490 list_add_tail(&device
->resized_list
,
4491 &fs_info
->fs_devices
->resized_devices
);
4493 WARN_ON(diff
> old_total
);
4494 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
4495 mutex_unlock(&fs_info
->chunk_mutex
);
4497 /* Now btrfs_update_device() will change the on-disk size. */
4498 ret
= btrfs_update_device(trans
, device
);
4499 btrfs_end_transaction(trans
);
4501 btrfs_free_path(path
);
4503 mutex_lock(&fs_info
->chunk_mutex
);
4504 btrfs_device_set_total_bytes(device
, old_size
);
4505 if (device
->writeable
)
4506 device
->fs_devices
->total_rw_bytes
+= diff
;
4507 spin_lock(&fs_info
->free_chunk_lock
);
4508 fs_info
->free_chunk_space
+= diff
;
4509 spin_unlock(&fs_info
->free_chunk_lock
);
4510 mutex_unlock(&fs_info
->chunk_mutex
);
4515 static int btrfs_add_system_chunk(struct btrfs_fs_info
*fs_info
,
4516 struct btrfs_key
*key
,
4517 struct btrfs_chunk
*chunk
, int item_size
)
4519 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4520 struct btrfs_disk_key disk_key
;
4524 mutex_lock(&fs_info
->chunk_mutex
);
4525 array_size
= btrfs_super_sys_array_size(super_copy
);
4526 if (array_size
+ item_size
+ sizeof(disk_key
)
4527 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4528 mutex_unlock(&fs_info
->chunk_mutex
);
4532 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4533 btrfs_cpu_key_to_disk(&disk_key
, key
);
4534 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4535 ptr
+= sizeof(disk_key
);
4536 memcpy(ptr
, chunk
, item_size
);
4537 item_size
+= sizeof(disk_key
);
4538 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4539 mutex_unlock(&fs_info
->chunk_mutex
);
4545 * sort the devices in descending order by max_avail, total_avail
4547 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4549 const struct btrfs_device_info
*di_a
= a
;
4550 const struct btrfs_device_info
*di_b
= b
;
4552 if (di_a
->max_avail
> di_b
->max_avail
)
4554 if (di_a
->max_avail
< di_b
->max_avail
)
4556 if (di_a
->total_avail
> di_b
->total_avail
)
4558 if (di_a
->total_avail
< di_b
->total_avail
)
4563 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
4565 /* TODO allow them to set a preferred stripe size */
4569 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4571 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4574 btrfs_set_fs_incompat(info
, RAID56
);
4577 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4578 - sizeof(struct btrfs_chunk)) \
4579 / sizeof(struct btrfs_stripe) + 1)
4581 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4582 - 2 * sizeof(struct btrfs_disk_key) \
4583 - 2 * sizeof(struct btrfs_chunk)) \
4584 / sizeof(struct btrfs_stripe) + 1)
4586 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4587 struct btrfs_fs_info
*fs_info
, u64 start
,
4590 struct btrfs_fs_info
*info
= trans
->fs_info
;
4591 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4592 struct list_head
*cur
;
4593 struct map_lookup
*map
= NULL
;
4594 struct extent_map_tree
*em_tree
;
4595 struct extent_map
*em
;
4596 struct btrfs_device_info
*devices_info
= NULL
;
4598 int num_stripes
; /* total number of stripes to allocate */
4599 int data_stripes
; /* number of stripes that count for
4601 int sub_stripes
; /* sub_stripes info for map */
4602 int dev_stripes
; /* stripes per dev */
4603 int devs_max
; /* max devs to use */
4604 int devs_min
; /* min devs needed */
4605 int devs_increment
; /* ndevs has to be a multiple of this */
4606 int ncopies
; /* how many copies to data has */
4608 u64 max_stripe_size
;
4612 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4618 BUG_ON(!alloc_profile_is_valid(type
, 0));
4620 if (list_empty(&fs_devices
->alloc_list
))
4623 index
= __get_raid_index(type
);
4625 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4626 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4627 devs_max
= btrfs_raid_array
[index
].devs_max
;
4628 devs_min
= btrfs_raid_array
[index
].devs_min
;
4629 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4630 ncopies
= btrfs_raid_array
[index
].ncopies
;
4632 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4633 max_stripe_size
= SZ_1G
;
4634 max_chunk_size
= 10 * max_stripe_size
;
4636 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4637 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4638 /* for larger filesystems, use larger metadata chunks */
4639 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4640 max_stripe_size
= SZ_1G
;
4642 max_stripe_size
= SZ_256M
;
4643 max_chunk_size
= max_stripe_size
;
4645 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4646 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4647 max_stripe_size
= SZ_32M
;
4648 max_chunk_size
= 2 * max_stripe_size
;
4650 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4652 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4657 /* we don't want a chunk larger than 10% of writeable space */
4658 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4661 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4666 cur
= fs_devices
->alloc_list
.next
;
4669 * in the first pass through the devices list, we gather information
4670 * about the available holes on each device.
4673 while (cur
!= &fs_devices
->alloc_list
) {
4674 struct btrfs_device
*device
;
4678 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4682 if (!device
->writeable
) {
4684 "BTRFS: read-only device in alloc_list\n");
4688 if (!device
->in_fs_metadata
||
4689 device
->is_tgtdev_for_dev_replace
)
4692 if (device
->total_bytes
> device
->bytes_used
)
4693 total_avail
= device
->total_bytes
- device
->bytes_used
;
4697 /* If there is no space on this device, skip it. */
4698 if (total_avail
== 0)
4701 ret
= find_free_dev_extent(trans
, device
,
4702 max_stripe_size
* dev_stripes
,
4703 &dev_offset
, &max_avail
);
4704 if (ret
&& ret
!= -ENOSPC
)
4708 max_avail
= max_stripe_size
* dev_stripes
;
4710 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4713 if (ndevs
== fs_devices
->rw_devices
) {
4714 WARN(1, "%s: found more than %llu devices\n",
4715 __func__
, fs_devices
->rw_devices
);
4718 devices_info
[ndevs
].dev_offset
= dev_offset
;
4719 devices_info
[ndevs
].max_avail
= max_avail
;
4720 devices_info
[ndevs
].total_avail
= total_avail
;
4721 devices_info
[ndevs
].dev
= device
;
4726 * now sort the devices by hole size / available space
4728 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4729 btrfs_cmp_device_info
, NULL
);
4731 /* round down to number of usable stripes */
4732 ndevs
-= ndevs
% devs_increment
;
4734 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4739 if (devs_max
&& ndevs
> devs_max
)
4742 * the primary goal is to maximize the number of stripes, so use as many
4743 * devices as possible, even if the stripes are not maximum sized.
4745 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4746 num_stripes
= ndevs
* dev_stripes
;
4749 * this will have to be fixed for RAID1 and RAID10 over
4752 data_stripes
= num_stripes
/ ncopies
;
4754 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4755 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4757 data_stripes
= num_stripes
- 1;
4759 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4760 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4762 data_stripes
= num_stripes
- 2;
4766 * Use the number of data stripes to figure out how big this chunk
4767 * is really going to be in terms of logical address space,
4768 * and compare that answer with the max chunk size
4770 if (stripe_size
* data_stripes
> max_chunk_size
) {
4771 u64 mask
= (1ULL << 24) - 1;
4773 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4775 /* bump the answer up to a 16MB boundary */
4776 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4778 /* but don't go higher than the limits we found
4779 * while searching for free extents
4781 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4782 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4785 stripe_size
= div_u64(stripe_size
, dev_stripes
);
4787 /* align to BTRFS_STRIPE_LEN */
4788 stripe_size
= div_u64(stripe_size
, raid_stripe_len
);
4789 stripe_size
*= raid_stripe_len
;
4791 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4796 map
->num_stripes
= num_stripes
;
4798 for (i
= 0; i
< ndevs
; ++i
) {
4799 for (j
= 0; j
< dev_stripes
; ++j
) {
4800 int s
= i
* dev_stripes
+ j
;
4801 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4802 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4806 map
->sector_size
= info
->sectorsize
;
4807 map
->stripe_len
= raid_stripe_len
;
4808 map
->io_align
= raid_stripe_len
;
4809 map
->io_width
= raid_stripe_len
;
4811 map
->sub_stripes
= sub_stripes
;
4813 num_bytes
= stripe_size
* data_stripes
;
4815 trace_btrfs_chunk_alloc(info
, map
, start
, num_bytes
);
4817 em
= alloc_extent_map();
4823 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4824 em
->map_lookup
= map
;
4826 em
->len
= num_bytes
;
4827 em
->block_start
= 0;
4828 em
->block_len
= em
->len
;
4829 em
->orig_block_len
= stripe_size
;
4831 em_tree
= &info
->mapping_tree
.map_tree
;
4832 write_lock(&em_tree
->lock
);
4833 ret
= add_extent_mapping(em_tree
, em
, 0);
4835 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4836 atomic_inc(&em
->refs
);
4838 write_unlock(&em_tree
->lock
);
4840 free_extent_map(em
);
4844 ret
= btrfs_make_block_group(trans
, info
, 0, type
,
4845 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4848 goto error_del_extent
;
4850 for (i
= 0; i
< map
->num_stripes
; i
++) {
4851 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4852 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4855 spin_lock(&info
->free_chunk_lock
);
4856 info
->free_chunk_space
-= (stripe_size
* map
->num_stripes
);
4857 spin_unlock(&info
->free_chunk_lock
);
4859 free_extent_map(em
);
4860 check_raid56_incompat_flag(info
, type
);
4862 kfree(devices_info
);
4866 write_lock(&em_tree
->lock
);
4867 remove_extent_mapping(em_tree
, em
);
4868 write_unlock(&em_tree
->lock
);
4870 /* One for our allocation */
4871 free_extent_map(em
);
4872 /* One for the tree reference */
4873 free_extent_map(em
);
4874 /* One for the pending_chunks list reference */
4875 free_extent_map(em
);
4877 kfree(devices_info
);
4881 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4882 struct btrfs_fs_info
*fs_info
,
4883 u64 chunk_offset
, u64 chunk_size
)
4885 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4886 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
4887 struct btrfs_key key
;
4888 struct btrfs_device
*device
;
4889 struct btrfs_chunk
*chunk
;
4890 struct btrfs_stripe
*stripe
;
4891 struct extent_map_tree
*em_tree
;
4892 struct extent_map
*em
;
4893 struct map_lookup
*map
;
4900 em_tree
= &fs_info
->mapping_tree
.map_tree
;
4901 read_lock(&em_tree
->lock
);
4902 em
= lookup_extent_mapping(em_tree
, chunk_offset
, chunk_size
);
4903 read_unlock(&em_tree
->lock
);
4906 btrfs_crit(fs_info
, "unable to find logical %Lu len %Lu",
4907 chunk_offset
, chunk_size
);
4911 if (em
->start
!= chunk_offset
|| em
->len
!= chunk_size
) {
4913 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4914 chunk_offset
, chunk_size
, em
->start
, em
->len
);
4915 free_extent_map(em
);
4919 map
= em
->map_lookup
;
4920 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4921 stripe_size
= em
->orig_block_len
;
4923 chunk
= kzalloc(item_size
, GFP_NOFS
);
4930 * Take the device list mutex to prevent races with the final phase of
4931 * a device replace operation that replaces the device object associated
4932 * with the map's stripes, because the device object's id can change
4933 * at any time during that final phase of the device replace operation
4934 * (dev-replace.c:btrfs_dev_replace_finishing()).
4936 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4937 for (i
= 0; i
< map
->num_stripes
; i
++) {
4938 device
= map
->stripes
[i
].dev
;
4939 dev_offset
= map
->stripes
[i
].physical
;
4941 ret
= btrfs_update_device(trans
, device
);
4944 ret
= btrfs_alloc_dev_extent(trans
, device
,
4945 chunk_root
->root_key
.objectid
,
4946 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4947 chunk_offset
, dev_offset
,
4953 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4957 stripe
= &chunk
->stripe
;
4958 for (i
= 0; i
< map
->num_stripes
; i
++) {
4959 device
= map
->stripes
[i
].dev
;
4960 dev_offset
= map
->stripes
[i
].physical
;
4962 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4963 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4964 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4967 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4969 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4970 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4971 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4972 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4973 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4974 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4975 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4976 btrfs_set_stack_chunk_sector_size(chunk
, fs_info
->sectorsize
);
4977 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4979 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4980 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4981 key
.offset
= chunk_offset
;
4983 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4984 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4986 * TODO: Cleanup of inserted chunk root in case of
4989 ret
= btrfs_add_system_chunk(fs_info
, &key
, chunk
, item_size
);
4994 free_extent_map(em
);
4999 * Chunk allocation falls into two parts. The first part does works
5000 * that make the new allocated chunk useable, but not do any operation
5001 * that modifies the chunk tree. The second part does the works that
5002 * require modifying the chunk tree. This division is important for the
5003 * bootstrap process of adding storage to a seed btrfs.
5005 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
5006 struct btrfs_fs_info
*fs_info
, u64 type
)
5010 ASSERT(mutex_is_locked(&fs_info
->chunk_mutex
));
5011 chunk_offset
= find_next_chunk(fs_info
);
5012 return __btrfs_alloc_chunk(trans
, fs_info
, chunk_offset
, type
);
5015 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
5016 struct btrfs_fs_info
*fs_info
,
5017 struct btrfs_device
*device
)
5019 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
5021 u64 sys_chunk_offset
;
5025 chunk_offset
= find_next_chunk(fs_info
);
5026 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
5027 ret
= __btrfs_alloc_chunk(trans
, fs_info
, chunk_offset
, alloc_profile
);
5031 sys_chunk_offset
= find_next_chunk(fs_info
);
5032 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
5033 ret
= __btrfs_alloc_chunk(trans
, fs_info
, sys_chunk_offset
,
5038 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5042 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5043 BTRFS_BLOCK_GROUP_RAID10
|
5044 BTRFS_BLOCK_GROUP_RAID5
|
5045 BTRFS_BLOCK_GROUP_DUP
)) {
5047 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5056 int btrfs_chunk_readonly(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
5058 struct extent_map
*em
;
5059 struct map_lookup
*map
;
5060 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5065 read_lock(&map_tree
->map_tree
.lock
);
5066 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
5067 read_unlock(&map_tree
->map_tree
.lock
);
5071 map
= em
->map_lookup
;
5072 for (i
= 0; i
< map
->num_stripes
; i
++) {
5073 if (map
->stripes
[i
].dev
->missing
) {
5078 if (!map
->stripes
[i
].dev
->writeable
) {
5085 * If the number of missing devices is larger than max errors,
5086 * we can not write the data into that chunk successfully, so
5089 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5092 free_extent_map(em
);
5096 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
5098 extent_map_tree_init(&tree
->map_tree
);
5101 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
5103 struct extent_map
*em
;
5106 write_lock(&tree
->map_tree
.lock
);
5107 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
5109 remove_extent_mapping(&tree
->map_tree
, em
);
5110 write_unlock(&tree
->map_tree
.lock
);
5114 free_extent_map(em
);
5115 /* once for the tree */
5116 free_extent_map(em
);
5120 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5122 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5123 struct extent_map
*em
;
5124 struct map_lookup
*map
;
5125 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5128 read_lock(&em_tree
->lock
);
5129 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5130 read_unlock(&em_tree
->lock
);
5133 * We could return errors for these cases, but that could get ugly and
5134 * we'd probably do the same thing which is just not do anything else
5135 * and exit, so return 1 so the callers don't try to use other copies.
5138 btrfs_crit(fs_info
, "No mapping for %Lu-%Lu", logical
,
5143 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5144 btrfs_crit(fs_info
, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5145 logical
, logical
+len
, em
->start
,
5146 em
->start
+ em
->len
);
5147 free_extent_map(em
);
5151 map
= em
->map_lookup
;
5152 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5153 ret
= map
->num_stripes
;
5154 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5155 ret
= map
->sub_stripes
;
5156 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5158 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5162 free_extent_map(em
);
5164 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
5165 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
5167 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
5172 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info
*fs_info
,
5173 struct btrfs_mapping_tree
*map_tree
,
5176 struct extent_map
*em
;
5177 struct map_lookup
*map
;
5178 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5179 unsigned long len
= fs_info
->sectorsize
;
5181 read_lock(&em_tree
->lock
);
5182 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5183 read_unlock(&em_tree
->lock
);
5186 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5187 map
= em
->map_lookup
;
5188 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5189 len
= map
->stripe_len
* nr_data_stripes(map
);
5190 free_extent_map(em
);
5194 int btrfs_is_parity_mirror(struct btrfs_mapping_tree
*map_tree
,
5195 u64 logical
, u64 len
, int mirror_num
)
5197 struct extent_map
*em
;
5198 struct map_lookup
*map
;
5199 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5202 read_lock(&em_tree
->lock
);
5203 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5204 read_unlock(&em_tree
->lock
);
5207 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5208 map
= em
->map_lookup
;
5209 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5211 free_extent_map(em
);
5215 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5216 struct map_lookup
*map
, int first
, int num
,
5217 int optimal
, int dev_replace_is_ongoing
)
5221 struct btrfs_device
*srcdev
;
5223 if (dev_replace_is_ongoing
&&
5224 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5225 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5226 srcdev
= fs_info
->dev_replace
.srcdev
;
5231 * try to avoid the drive that is the source drive for a
5232 * dev-replace procedure, only choose it if no other non-missing
5233 * mirror is available
5235 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5236 if (map
->stripes
[optimal
].dev
->bdev
&&
5237 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
5239 for (i
= first
; i
< first
+ num
; i
++) {
5240 if (map
->stripes
[i
].dev
->bdev
&&
5241 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5246 /* we couldn't find one that doesn't fail. Just return something
5247 * and the io error handling code will clean up eventually
5252 static inline int parity_smaller(u64 a
, u64 b
)
5257 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5258 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5260 struct btrfs_bio_stripe s
;
5267 for (i
= 0; i
< num_stripes
- 1; i
++) {
5268 if (parity_smaller(bbio
->raid_map
[i
],
5269 bbio
->raid_map
[i
+1])) {
5270 s
= bbio
->stripes
[i
];
5271 l
= bbio
->raid_map
[i
];
5272 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5273 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5274 bbio
->stripes
[i
+1] = s
;
5275 bbio
->raid_map
[i
+1] = l
;
5283 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5285 struct btrfs_bio
*bbio
= kzalloc(
5286 /* the size of the btrfs_bio */
5287 sizeof(struct btrfs_bio
) +
5288 /* plus the variable array for the stripes */
5289 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5290 /* plus the variable array for the tgt dev */
5291 sizeof(int) * (real_stripes
) +
5293 * plus the raid_map, which includes both the tgt dev
5296 sizeof(u64
) * (total_stripes
),
5297 GFP_NOFS
|__GFP_NOFAIL
);
5299 atomic_set(&bbio
->error
, 0);
5300 atomic_set(&bbio
->refs
, 1);
5305 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5307 WARN_ON(!atomic_read(&bbio
->refs
));
5308 atomic_inc(&bbio
->refs
);
5311 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5315 if (atomic_dec_and_test(&bbio
->refs
))
5319 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
5320 enum btrfs_map_op op
,
5321 u64 logical
, u64
*length
,
5322 struct btrfs_bio
**bbio_ret
,
5323 int mirror_num
, int need_raid_map
)
5325 struct extent_map
*em
;
5326 struct map_lookup
*map
;
5327 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5328 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5331 u64 stripe_end_offset
;
5341 int tgtdev_indexes
= 0;
5342 struct btrfs_bio
*bbio
= NULL
;
5343 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5344 int dev_replace_is_ongoing
= 0;
5345 int num_alloc_stripes
;
5346 int patch_the_first_stripe_for_dev_replace
= 0;
5347 u64 physical_to_patch_in_first_stripe
= 0;
5348 u64 raid56_full_stripe_start
= (u64
)-1;
5350 read_lock(&em_tree
->lock
);
5351 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
5352 read_unlock(&em_tree
->lock
);
5355 btrfs_crit(fs_info
, "unable to find logical %llu len %llu",
5360 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5362 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5363 logical
, em
->start
, em
->start
+ em
->len
);
5364 free_extent_map(em
);
5368 map
= em
->map_lookup
;
5369 offset
= logical
- em
->start
;
5371 stripe_len
= map
->stripe_len
;
5374 * stripe_nr counts the total number of stripes we have to stride
5375 * to get to this block
5377 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5379 stripe_offset
= stripe_nr
* stripe_len
;
5380 if (offset
< stripe_offset
) {
5382 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5383 stripe_offset
, offset
, em
->start
, logical
,
5385 free_extent_map(em
);
5389 /* stripe_offset is the offset of this block in its stripe*/
5390 stripe_offset
= offset
- stripe_offset
;
5392 /* if we're here for raid56, we need to know the stripe aligned start */
5393 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5394 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5395 raid56_full_stripe_start
= offset
;
5397 /* allow a write of a full stripe, but make sure we don't
5398 * allow straddling of stripes
5400 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5402 raid56_full_stripe_start
*= full_stripe_len
;
5405 if (op
== BTRFS_MAP_DISCARD
) {
5406 /* we don't discard raid56 yet */
5407 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5411 *length
= min_t(u64
, em
->len
- offset
, *length
);
5412 } else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5414 /* For writes to RAID[56], allow a full stripeset across all disks.
5415 For other RAID types and for RAID[56] reads, just allow a single
5416 stripe (on a single disk). */
5417 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5418 (op
== BTRFS_MAP_WRITE
)) {
5419 max_len
= stripe_len
* nr_data_stripes(map
) -
5420 (offset
- raid56_full_stripe_start
);
5422 /* we limit the length of each bio to what fits in a stripe */
5423 max_len
= stripe_len
- stripe_offset
;
5425 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5427 *length
= em
->len
- offset
;
5430 /* This is for when we're called from btrfs_merge_bio_hook() and all
5431 it cares about is the length */
5435 btrfs_dev_replace_lock(dev_replace
, 0);
5436 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5437 if (!dev_replace_is_ongoing
)
5438 btrfs_dev_replace_unlock(dev_replace
, 0);
5440 btrfs_dev_replace_set_lock_blocking(dev_replace
);
5442 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5443 op
!= BTRFS_MAP_WRITE
&& op
!= BTRFS_MAP_DISCARD
&&
5444 op
!= BTRFS_MAP_GET_READ_MIRRORS
&& dev_replace
->tgtdev
!= NULL
) {
5446 * in dev-replace case, for repair case (that's the only
5447 * case where the mirror is selected explicitly when
5448 * calling btrfs_map_block), blocks left of the left cursor
5449 * can also be read from the target drive.
5450 * For REQ_GET_READ_MIRRORS, the target drive is added as
5451 * the last one to the array of stripes. For READ, it also
5452 * needs to be supported using the same mirror number.
5453 * If the requested block is not left of the left cursor,
5454 * EIO is returned. This can happen because btrfs_num_copies()
5455 * returns one more in the dev-replace case.
5457 u64 tmp_length
= *length
;
5458 struct btrfs_bio
*tmp_bbio
= NULL
;
5459 int tmp_num_stripes
;
5460 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5461 int index_srcdev
= 0;
5463 u64 physical_of_found
= 0;
5465 ret
= __btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
5466 logical
, &tmp_length
, &tmp_bbio
, 0, 0);
5468 WARN_ON(tmp_bbio
!= NULL
);
5472 tmp_num_stripes
= tmp_bbio
->num_stripes
;
5473 if (mirror_num
> tmp_num_stripes
) {
5475 * BTRFS_MAP_GET_READ_MIRRORS does not contain this
5476 * mirror, that means that the requested area
5477 * is not left of the left cursor
5480 btrfs_put_bbio(tmp_bbio
);
5485 * process the rest of the function using the mirror_num
5486 * of the source drive. Therefore look it up first.
5487 * At the end, patch the device pointer to the one of the
5490 for (i
= 0; i
< tmp_num_stripes
; i
++) {
5491 if (tmp_bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5495 * In case of DUP, in order to keep it simple, only add
5496 * the mirror with the lowest physical address
5499 physical_of_found
<= tmp_bbio
->stripes
[i
].physical
)
5504 physical_of_found
= tmp_bbio
->stripes
[i
].physical
;
5507 btrfs_put_bbio(tmp_bbio
);
5515 mirror_num
= index_srcdev
+ 1;
5516 patch_the_first_stripe_for_dev_replace
= 1;
5517 physical_to_patch_in_first_stripe
= physical_of_found
;
5518 } else if (mirror_num
> map
->num_stripes
) {
5524 stripe_nr_orig
= stripe_nr
;
5525 stripe_nr_end
= ALIGN(offset
+ *length
, map
->stripe_len
);
5526 stripe_nr_end
= div_u64(stripe_nr_end
, map
->stripe_len
);
5527 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5530 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5531 if (op
== BTRFS_MAP_DISCARD
)
5532 num_stripes
= min_t(u64
, map
->num_stripes
,
5533 stripe_nr_end
- stripe_nr_orig
);
5534 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5536 if (op
!= BTRFS_MAP_WRITE
&& op
!= BTRFS_MAP_DISCARD
&&
5537 op
!= BTRFS_MAP_GET_READ_MIRRORS
)
5539 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5540 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_DISCARD
||
5541 op
== BTRFS_MAP_GET_READ_MIRRORS
)
5542 num_stripes
= map
->num_stripes
;
5543 else if (mirror_num
)
5544 stripe_index
= mirror_num
- 1;
5546 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5548 current
->pid
% map
->num_stripes
,
5549 dev_replace_is_ongoing
);
5550 mirror_num
= stripe_index
+ 1;
5553 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5554 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_DISCARD
||
5555 op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5556 num_stripes
= map
->num_stripes
;
5557 } else if (mirror_num
) {
5558 stripe_index
= mirror_num
- 1;
5563 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5564 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5566 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5567 stripe_index
*= map
->sub_stripes
;
5569 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
)
5570 num_stripes
= map
->sub_stripes
;
5571 else if (op
== BTRFS_MAP_DISCARD
)
5572 num_stripes
= min_t(u64
, map
->sub_stripes
*
5573 (stripe_nr_end
- stripe_nr_orig
),
5575 else if (mirror_num
)
5576 stripe_index
+= mirror_num
- 1;
5578 int old_stripe_index
= stripe_index
;
5579 stripe_index
= find_live_mirror(fs_info
, map
,
5581 map
->sub_stripes
, stripe_index
+
5582 current
->pid
% map
->sub_stripes
,
5583 dev_replace_is_ongoing
);
5584 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5587 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5588 if (need_raid_map
&&
5589 (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
||
5591 /* push stripe_nr back to the start of the full stripe */
5592 stripe_nr
= div_u64(raid56_full_stripe_start
,
5593 stripe_len
* nr_data_stripes(map
));
5595 /* RAID[56] write or recovery. Return all stripes */
5596 num_stripes
= map
->num_stripes
;
5597 max_errors
= nr_parity_stripes(map
);
5599 *length
= map
->stripe_len
;
5604 * Mirror #0 or #1 means the original data block.
5605 * Mirror #2 is RAID5 parity block.
5606 * Mirror #3 is RAID6 Q block.
5608 stripe_nr
= div_u64_rem(stripe_nr
,
5609 nr_data_stripes(map
), &stripe_index
);
5611 stripe_index
= nr_data_stripes(map
) +
5614 /* We distribute the parity blocks across stripes */
5615 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5617 if ((op
!= BTRFS_MAP_WRITE
&& op
!= BTRFS_MAP_DISCARD
&&
5618 op
!= BTRFS_MAP_GET_READ_MIRRORS
) && mirror_num
<= 1)
5623 * after this, stripe_nr is the number of stripes on this
5624 * device we have to walk to find the data, and stripe_index is
5625 * the number of our device in the stripe array
5627 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5629 mirror_num
= stripe_index
+ 1;
5631 if (stripe_index
>= map
->num_stripes
) {
5633 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5634 stripe_index
, map
->num_stripes
);
5639 num_alloc_stripes
= num_stripes
;
5640 if (dev_replace_is_ongoing
) {
5641 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_DISCARD
)
5642 num_alloc_stripes
<<= 1;
5643 if (op
== BTRFS_MAP_GET_READ_MIRRORS
)
5644 num_alloc_stripes
++;
5645 tgtdev_indexes
= num_stripes
;
5648 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5653 if (dev_replace_is_ongoing
)
5654 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5656 /* build raid_map */
5657 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&&
5659 ((op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
) ||
5664 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5665 sizeof(struct btrfs_bio_stripe
) *
5667 sizeof(int) * tgtdev_indexes
);
5669 /* Work out the disk rotation on this stripe-set */
5670 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5672 /* Fill in the logical address of each stripe */
5673 tmp
= stripe_nr
* nr_data_stripes(map
);
5674 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5675 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5676 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5678 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5679 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5680 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5684 if (op
== BTRFS_MAP_DISCARD
) {
5686 u32 sub_stripes
= 0;
5687 u64 stripes_per_dev
= 0;
5688 u32 remaining_stripes
= 0;
5689 u32 last_stripe
= 0;
5692 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
5693 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5696 sub_stripes
= map
->sub_stripes
;
5698 factor
= map
->num_stripes
/ sub_stripes
;
5699 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
5702 &remaining_stripes
);
5703 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5704 last_stripe
*= sub_stripes
;
5707 for (i
= 0; i
< num_stripes
; i
++) {
5708 bbio
->stripes
[i
].physical
=
5709 map
->stripes
[stripe_index
].physical
+
5710 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5711 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5713 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5714 BTRFS_BLOCK_GROUP_RAID10
)) {
5715 bbio
->stripes
[i
].length
= stripes_per_dev
*
5718 if (i
/ sub_stripes
< remaining_stripes
)
5719 bbio
->stripes
[i
].length
+=
5723 * Special for the first stripe and
5726 * |-------|...|-------|
5730 if (i
< sub_stripes
)
5731 bbio
->stripes
[i
].length
-=
5734 if (stripe_index
>= last_stripe
&&
5735 stripe_index
<= (last_stripe
+
5737 bbio
->stripes
[i
].length
-=
5740 if (i
== sub_stripes
- 1)
5743 bbio
->stripes
[i
].length
= *length
;
5746 if (stripe_index
== map
->num_stripes
) {
5747 /* This could only happen for RAID0/10 */
5753 for (i
= 0; i
< num_stripes
; i
++) {
5754 bbio
->stripes
[i
].physical
=
5755 map
->stripes
[stripe_index
].physical
+
5757 stripe_nr
* map
->stripe_len
;
5758 bbio
->stripes
[i
].dev
=
5759 map
->stripes
[stripe_index
].dev
;
5764 if (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
)
5765 max_errors
= btrfs_chunk_max_errors(map
);
5768 sort_parity_stripes(bbio
, num_stripes
);
5771 if (dev_replace_is_ongoing
&&
5772 (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_DISCARD
) &&
5773 dev_replace
->tgtdev
!= NULL
) {
5774 int index_where_to_add
;
5775 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5778 * duplicate the write operations while the dev replace
5779 * procedure is running. Since the copying of the old disk
5780 * to the new disk takes place at run time while the
5781 * filesystem is mounted writable, the regular write
5782 * operations to the old disk have to be duplicated to go
5783 * to the new disk as well.
5784 * Note that device->missing is handled by the caller, and
5785 * that the write to the old disk is already set up in the
5788 index_where_to_add
= num_stripes
;
5789 for (i
= 0; i
< num_stripes
; i
++) {
5790 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5791 /* write to new disk, too */
5792 struct btrfs_bio_stripe
*new =
5793 bbio
->stripes
+ index_where_to_add
;
5794 struct btrfs_bio_stripe
*old
=
5797 new->physical
= old
->physical
;
5798 new->length
= old
->length
;
5799 new->dev
= dev_replace
->tgtdev
;
5800 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5801 index_where_to_add
++;
5806 num_stripes
= index_where_to_add
;
5807 } else if (dev_replace_is_ongoing
&&
5808 op
== BTRFS_MAP_GET_READ_MIRRORS
&&
5809 dev_replace
->tgtdev
!= NULL
) {
5810 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5811 int index_srcdev
= 0;
5813 u64 physical_of_found
= 0;
5816 * During the dev-replace procedure, the target drive can
5817 * also be used to read data in case it is needed to repair
5818 * a corrupt block elsewhere. This is possible if the
5819 * requested area is left of the left cursor. In this area,
5820 * the target drive is a full copy of the source drive.
5822 for (i
= 0; i
< num_stripes
; i
++) {
5823 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5825 * In case of DUP, in order to keep it
5826 * simple, only add the mirror with the
5827 * lowest physical address
5830 physical_of_found
<=
5831 bbio
->stripes
[i
].physical
)
5835 physical_of_found
= bbio
->stripes
[i
].physical
;
5839 struct btrfs_bio_stripe
*tgtdev_stripe
=
5840 bbio
->stripes
+ num_stripes
;
5842 tgtdev_stripe
->physical
= physical_of_found
;
5843 tgtdev_stripe
->length
=
5844 bbio
->stripes
[index_srcdev
].length
;
5845 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5846 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5854 bbio
->map_type
= map
->type
;
5855 bbio
->num_stripes
= num_stripes
;
5856 bbio
->max_errors
= max_errors
;
5857 bbio
->mirror_num
= mirror_num
;
5858 bbio
->num_tgtdevs
= tgtdev_indexes
;
5861 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5862 * mirror_num == num_stripes + 1 && dev_replace target drive is
5863 * available as a mirror
5865 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5866 WARN_ON(num_stripes
> 1);
5867 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5868 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5869 bbio
->mirror_num
= map
->num_stripes
+ 1;
5872 if (dev_replace_is_ongoing
) {
5873 btrfs_dev_replace_clear_lock_blocking(dev_replace
);
5874 btrfs_dev_replace_unlock(dev_replace
, 0);
5876 free_extent_map(em
);
5880 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5881 u64 logical
, u64
*length
,
5882 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5884 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
5888 /* For Scrub/replace */
5889 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5890 u64 logical
, u64
*length
,
5891 struct btrfs_bio
**bbio_ret
, int mirror_num
,
5894 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
5895 mirror_num
, need_raid_map
);
5898 int btrfs_rmap_block(struct btrfs_fs_info
*fs_info
,
5899 u64 chunk_start
, u64 physical
, u64 devid
,
5900 u64
**logical
, int *naddrs
, int *stripe_len
)
5902 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5903 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5904 struct extent_map
*em
;
5905 struct map_lookup
*map
;
5913 read_lock(&em_tree
->lock
);
5914 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
5915 read_unlock(&em_tree
->lock
);
5918 btrfs_err(fs_info
, "couldn't find em for chunk %Lu",
5923 if (em
->start
!= chunk_start
) {
5924 btrfs_err(fs_info
, "bad chunk start, em=%Lu, wanted=%Lu",
5925 em
->start
, chunk_start
);
5926 free_extent_map(em
);
5929 map
= em
->map_lookup
;
5932 rmap_len
= map
->stripe_len
;
5934 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5935 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
5936 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5937 length
= div_u64(length
, map
->num_stripes
);
5938 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5939 length
= div_u64(length
, nr_data_stripes(map
));
5940 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5943 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
5944 BUG_ON(!buf
); /* -ENOMEM */
5946 for (i
= 0; i
< map
->num_stripes
; i
++) {
5947 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5949 if (map
->stripes
[i
].physical
> physical
||
5950 map
->stripes
[i
].physical
+ length
<= physical
)
5953 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5954 stripe_nr
= div_u64(stripe_nr
, map
->stripe_len
);
5956 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5957 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5958 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
5959 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5960 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5961 } /* else if RAID[56], multiply by nr_data_stripes().
5962 * Alternatively, just use rmap_len below instead of
5963 * map->stripe_len */
5965 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
5966 WARN_ON(nr
>= map
->num_stripes
);
5967 for (j
= 0; j
< nr
; j
++) {
5968 if (buf
[j
] == bytenr
)
5972 WARN_ON(nr
>= map
->num_stripes
);
5979 *stripe_len
= rmap_len
;
5981 free_extent_map(em
);
5985 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
5987 bio
->bi_private
= bbio
->private;
5988 bio
->bi_end_io
= bbio
->end_io
;
5991 btrfs_put_bbio(bbio
);
5994 static void btrfs_end_bio(struct bio
*bio
)
5996 struct btrfs_bio
*bbio
= bio
->bi_private
;
5997 int is_orig_bio
= 0;
5999 if (bio
->bi_error
) {
6000 atomic_inc(&bbio
->error
);
6001 if (bio
->bi_error
== -EIO
|| bio
->bi_error
== -EREMOTEIO
) {
6002 unsigned int stripe_index
=
6003 btrfs_io_bio(bio
)->stripe_index
;
6004 struct btrfs_device
*dev
;
6006 BUG_ON(stripe_index
>= bbio
->num_stripes
);
6007 dev
= bbio
->stripes
[stripe_index
].dev
;
6009 if (bio_op(bio
) == REQ_OP_WRITE
)
6010 btrfs_dev_stat_inc(dev
,
6011 BTRFS_DEV_STAT_WRITE_ERRS
);
6013 btrfs_dev_stat_inc(dev
,
6014 BTRFS_DEV_STAT_READ_ERRS
);
6015 if (bio
->bi_opf
& REQ_PREFLUSH
)
6016 btrfs_dev_stat_inc(dev
,
6017 BTRFS_DEV_STAT_FLUSH_ERRS
);
6018 btrfs_dev_stat_print_on_error(dev
);
6023 if (bio
== bbio
->orig_bio
)
6026 btrfs_bio_counter_dec(bbio
->fs_info
);
6028 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6031 bio
= bbio
->orig_bio
;
6034 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6035 /* only send an error to the higher layers if it is
6036 * beyond the tolerance of the btrfs bio
6038 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6039 bio
->bi_error
= -EIO
;
6042 * this bio is actually up to date, we didn't
6043 * go over the max number of errors
6048 btrfs_end_bbio(bbio
, bio
);
6049 } else if (!is_orig_bio
) {
6055 * see run_scheduled_bios for a description of why bios are collected for
6058 * This will add one bio to the pending list for a device and make sure
6059 * the work struct is scheduled.
6061 static noinline
void btrfs_schedule_bio(struct btrfs_device
*device
,
6064 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
6065 int should_queue
= 1;
6066 struct btrfs_pending_bios
*pending_bios
;
6068 if (device
->missing
|| !device
->bdev
) {
6073 /* don't bother with additional async steps for reads, right now */
6074 if (bio_op(bio
) == REQ_OP_READ
) {
6076 btrfsic_submit_bio(bio
);
6082 * nr_async_bios allows us to reliably return congestion to the
6083 * higher layers. Otherwise, the async bio makes it appear we have
6084 * made progress against dirty pages when we've really just put it
6085 * on a queue for later
6087 atomic_inc(&fs_info
->nr_async_bios
);
6088 WARN_ON(bio
->bi_next
);
6089 bio
->bi_next
= NULL
;
6091 spin_lock(&device
->io_lock
);
6092 if (op_is_sync(bio
->bi_opf
))
6093 pending_bios
= &device
->pending_sync_bios
;
6095 pending_bios
= &device
->pending_bios
;
6097 if (pending_bios
->tail
)
6098 pending_bios
->tail
->bi_next
= bio
;
6100 pending_bios
->tail
= bio
;
6101 if (!pending_bios
->head
)
6102 pending_bios
->head
= bio
;
6103 if (device
->running_pending
)
6106 spin_unlock(&device
->io_lock
);
6109 btrfs_queue_work(fs_info
->submit_workers
, &device
->work
);
6112 static void submit_stripe_bio(struct btrfs_bio
*bbio
, struct bio
*bio
,
6113 u64 physical
, int dev_nr
, int async
)
6115 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6116 struct btrfs_fs_info
*fs_info
= bbio
->fs_info
;
6118 bio
->bi_private
= bbio
;
6119 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6120 bio
->bi_end_io
= btrfs_end_bio
;
6121 bio
->bi_iter
.bi_sector
= physical
>> 9;
6124 struct rcu_string
*name
;
6127 name
= rcu_dereference(dev
->name
);
6128 btrfs_debug(fs_info
,
6129 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6130 bio_op(bio
), bio
->bi_opf
,
6131 (u64
)bio
->bi_iter
.bi_sector
,
6132 (u_long
)dev
->bdev
->bd_dev
, name
->str
, dev
->devid
,
6133 bio
->bi_iter
.bi_size
);
6137 bio
->bi_bdev
= dev
->bdev
;
6139 btrfs_bio_counter_inc_noblocked(fs_info
);
6142 btrfs_schedule_bio(dev
, bio
);
6144 btrfsic_submit_bio(bio
);
6147 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6149 atomic_inc(&bbio
->error
);
6150 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6151 /* Should be the original bio. */
6152 WARN_ON(bio
!= bbio
->orig_bio
);
6154 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6155 bio
->bi_iter
.bi_sector
= logical
>> 9;
6156 bio
->bi_error
= -EIO
;
6157 btrfs_end_bbio(bbio
, bio
);
6161 int btrfs_map_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
6162 int mirror_num
, int async_submit
)
6164 struct btrfs_device
*dev
;
6165 struct bio
*first_bio
= bio
;
6166 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6172 struct btrfs_bio
*bbio
= NULL
;
6174 length
= bio
->bi_iter
.bi_size
;
6175 map_length
= length
;
6177 btrfs_bio_counter_inc_blocked(fs_info
);
6178 ret
= __btrfs_map_block(fs_info
, bio_op(bio
), logical
,
6179 &map_length
, &bbio
, mirror_num
, 1);
6181 btrfs_bio_counter_dec(fs_info
);
6185 total_devs
= bbio
->num_stripes
;
6186 bbio
->orig_bio
= first_bio
;
6187 bbio
->private = first_bio
->bi_private
;
6188 bbio
->end_io
= first_bio
->bi_end_io
;
6189 bbio
->fs_info
= fs_info
;
6190 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6192 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6193 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6194 /* In this case, map_length has been set to the length of
6195 a single stripe; not the whole write */
6196 if (bio_op(bio
) == REQ_OP_WRITE
) {
6197 ret
= raid56_parity_write(fs_info
, bio
, bbio
,
6200 ret
= raid56_parity_recover(fs_info
, bio
, bbio
,
6201 map_length
, mirror_num
, 1);
6204 btrfs_bio_counter_dec(fs_info
);
6208 if (map_length
< length
) {
6210 "mapping failed logical %llu bio len %llu len %llu",
6211 logical
, length
, map_length
);
6215 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6216 dev
= bbio
->stripes
[dev_nr
].dev
;
6217 if (!dev
|| !dev
->bdev
||
6218 (bio_op(bio
) == REQ_OP_WRITE
&& !dev
->writeable
)) {
6219 bbio_error(bbio
, first_bio
, logical
);
6223 if (dev_nr
< total_devs
- 1) {
6224 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
6225 BUG_ON(!bio
); /* -ENOMEM */
6229 submit_stripe_bio(bbio
, bio
, bbio
->stripes
[dev_nr
].physical
,
6230 dev_nr
, async_submit
);
6232 btrfs_bio_counter_dec(fs_info
);
6236 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6239 struct btrfs_device
*device
;
6240 struct btrfs_fs_devices
*cur_devices
;
6242 cur_devices
= fs_info
->fs_devices
;
6243 while (cur_devices
) {
6245 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
6246 device
= __find_device(&cur_devices
->devices
,
6251 cur_devices
= cur_devices
->seed
;
6256 static struct btrfs_device
*add_missing_dev(struct btrfs_fs_devices
*fs_devices
,
6257 u64 devid
, u8
*dev_uuid
)
6259 struct btrfs_device
*device
;
6261 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6265 list_add(&device
->dev_list
, &fs_devices
->devices
);
6266 device
->fs_devices
= fs_devices
;
6267 fs_devices
->num_devices
++;
6269 device
->missing
= 1;
6270 fs_devices
->missing_devices
++;
6276 * btrfs_alloc_device - allocate struct btrfs_device
6277 * @fs_info: used only for generating a new devid, can be NULL if
6278 * devid is provided (i.e. @devid != NULL).
6279 * @devid: a pointer to devid for this device. If NULL a new devid
6281 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6284 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6285 * on error. Returned struct is not linked onto any lists and can be
6286 * destroyed with kfree() right away.
6288 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6292 struct btrfs_device
*dev
;
6295 if (WARN_ON(!devid
&& !fs_info
))
6296 return ERR_PTR(-EINVAL
);
6298 dev
= __alloc_device();
6307 ret
= find_next_devid(fs_info
, &tmp
);
6310 return ERR_PTR(ret
);
6316 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6318 generate_random_uuid(dev
->uuid
);
6320 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6321 pending_bios_fn
, NULL
, NULL
);
6326 /* Return -EIO if any error, otherwise return 0. */
6327 static int btrfs_check_chunk_valid(struct btrfs_fs_info
*fs_info
,
6328 struct extent_buffer
*leaf
,
6329 struct btrfs_chunk
*chunk
, u64 logical
)
6337 length
= btrfs_chunk_length(leaf
, chunk
);
6338 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6339 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6340 sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6341 type
= btrfs_chunk_type(leaf
, chunk
);
6344 btrfs_err(fs_info
, "invalid chunk num_stripes: %u",
6348 if (!IS_ALIGNED(logical
, fs_info
->sectorsize
)) {
6349 btrfs_err(fs_info
, "invalid chunk logical %llu", logical
);
6352 if (btrfs_chunk_sector_size(leaf
, chunk
) != fs_info
->sectorsize
) {
6353 btrfs_err(fs_info
, "invalid chunk sectorsize %u",
6354 btrfs_chunk_sector_size(leaf
, chunk
));
6357 if (!length
|| !IS_ALIGNED(length
, fs_info
->sectorsize
)) {
6358 btrfs_err(fs_info
, "invalid chunk length %llu", length
);
6361 if (!is_power_of_2(stripe_len
) || stripe_len
!= BTRFS_STRIPE_LEN
) {
6362 btrfs_err(fs_info
, "invalid chunk stripe length: %llu",
6366 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK
| BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6368 btrfs_err(fs_info
, "unrecognized chunk type: %llu",
6369 ~(BTRFS_BLOCK_GROUP_TYPE_MASK
|
6370 BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6371 btrfs_chunk_type(leaf
, chunk
));
6374 if ((type
& BTRFS_BLOCK_GROUP_RAID10
&& sub_stripes
!= 2) ||
6375 (type
& BTRFS_BLOCK_GROUP_RAID1
&& num_stripes
< 1) ||
6376 (type
& BTRFS_BLOCK_GROUP_RAID5
&& num_stripes
< 2) ||
6377 (type
& BTRFS_BLOCK_GROUP_RAID6
&& num_stripes
< 3) ||
6378 (type
& BTRFS_BLOCK_GROUP_DUP
&& num_stripes
> 2) ||
6379 ((type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 &&
6380 num_stripes
!= 1)) {
6382 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6383 num_stripes
, sub_stripes
,
6384 type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
);
6391 static int read_one_chunk(struct btrfs_fs_info
*fs_info
, struct btrfs_key
*key
,
6392 struct extent_buffer
*leaf
,
6393 struct btrfs_chunk
*chunk
)
6395 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6396 struct map_lookup
*map
;
6397 struct extent_map
*em
;
6402 u8 uuid
[BTRFS_UUID_SIZE
];
6407 logical
= key
->offset
;
6408 length
= btrfs_chunk_length(leaf
, chunk
);
6409 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6410 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6412 ret
= btrfs_check_chunk_valid(fs_info
, leaf
, chunk
, logical
);
6416 read_lock(&map_tree
->map_tree
.lock
);
6417 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6418 read_unlock(&map_tree
->map_tree
.lock
);
6420 /* already mapped? */
6421 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6422 free_extent_map(em
);
6425 free_extent_map(em
);
6428 em
= alloc_extent_map();
6431 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6433 free_extent_map(em
);
6437 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6438 em
->map_lookup
= map
;
6439 em
->start
= logical
;
6442 em
->block_start
= 0;
6443 em
->block_len
= em
->len
;
6445 map
->num_stripes
= num_stripes
;
6446 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6447 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6448 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
6449 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6450 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6451 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6452 for (i
= 0; i
< num_stripes
; i
++) {
6453 map
->stripes
[i
].physical
=
6454 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6455 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6456 read_extent_buffer(leaf
, uuid
, (unsigned long)
6457 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6459 map
->stripes
[i
].dev
= btrfs_find_device(fs_info
, devid
,
6461 if (!map
->stripes
[i
].dev
&&
6462 !btrfs_test_opt(fs_info
, DEGRADED
)) {
6463 free_extent_map(em
);
6466 if (!map
->stripes
[i
].dev
) {
6467 map
->stripes
[i
].dev
=
6468 add_missing_dev(fs_info
->fs_devices
, devid
,
6470 if (!map
->stripes
[i
].dev
) {
6471 free_extent_map(em
);
6474 btrfs_warn(fs_info
, "devid %llu uuid %pU is missing",
6477 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
6480 write_lock(&map_tree
->map_tree
.lock
);
6481 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6482 write_unlock(&map_tree
->map_tree
.lock
);
6483 BUG_ON(ret
); /* Tree corruption */
6484 free_extent_map(em
);
6489 static void fill_device_from_item(struct extent_buffer
*leaf
,
6490 struct btrfs_dev_item
*dev_item
,
6491 struct btrfs_device
*device
)
6495 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6496 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6497 device
->total_bytes
= device
->disk_total_bytes
;
6498 device
->commit_total_bytes
= device
->disk_total_bytes
;
6499 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6500 device
->commit_bytes_used
= device
->bytes_used
;
6501 device
->type
= btrfs_device_type(leaf
, dev_item
);
6502 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6503 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6504 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6505 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6506 device
->is_tgtdev_for_dev_replace
= 0;
6508 ptr
= btrfs_device_uuid(dev_item
);
6509 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6512 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_fs_info
*fs_info
,
6515 struct btrfs_fs_devices
*fs_devices
;
6518 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6520 fs_devices
= fs_info
->fs_devices
->seed
;
6521 while (fs_devices
) {
6522 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
))
6525 fs_devices
= fs_devices
->seed
;
6528 fs_devices
= find_fsid(fsid
);
6530 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6531 return ERR_PTR(-ENOENT
);
6533 fs_devices
= alloc_fs_devices(fsid
);
6534 if (IS_ERR(fs_devices
))
6537 fs_devices
->seeding
= 1;
6538 fs_devices
->opened
= 1;
6542 fs_devices
= clone_fs_devices(fs_devices
);
6543 if (IS_ERR(fs_devices
))
6546 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6547 fs_info
->bdev_holder
);
6549 free_fs_devices(fs_devices
);
6550 fs_devices
= ERR_PTR(ret
);
6554 if (!fs_devices
->seeding
) {
6555 __btrfs_close_devices(fs_devices
);
6556 free_fs_devices(fs_devices
);
6557 fs_devices
= ERR_PTR(-EINVAL
);
6561 fs_devices
->seed
= fs_info
->fs_devices
->seed
;
6562 fs_info
->fs_devices
->seed
= fs_devices
;
6567 static int read_one_dev(struct btrfs_fs_info
*fs_info
,
6568 struct extent_buffer
*leaf
,
6569 struct btrfs_dev_item
*dev_item
)
6571 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6572 struct btrfs_device
*device
;
6575 u8 fs_uuid
[BTRFS_UUID_SIZE
];
6576 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6578 devid
= btrfs_device_id(leaf
, dev_item
);
6579 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6581 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6584 if (memcmp(fs_uuid
, fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
6585 fs_devices
= open_seed_devices(fs_info
, fs_uuid
);
6586 if (IS_ERR(fs_devices
))
6587 return PTR_ERR(fs_devices
);
6590 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
6592 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6595 device
= add_missing_dev(fs_devices
, devid
, dev_uuid
);
6598 btrfs_warn(fs_info
, "devid %llu uuid %pU missing",
6601 if (!device
->bdev
&& !btrfs_test_opt(fs_info
, DEGRADED
))
6604 if(!device
->bdev
&& !device
->missing
) {
6606 * this happens when a device that was properly setup
6607 * in the device info lists suddenly goes bad.
6608 * device->bdev is NULL, and so we have to set
6609 * device->missing to one here
6611 device
->fs_devices
->missing_devices
++;
6612 device
->missing
= 1;
6615 /* Move the device to its own fs_devices */
6616 if (device
->fs_devices
!= fs_devices
) {
6617 ASSERT(device
->missing
);
6619 list_move(&device
->dev_list
, &fs_devices
->devices
);
6620 device
->fs_devices
->num_devices
--;
6621 fs_devices
->num_devices
++;
6623 device
->fs_devices
->missing_devices
--;
6624 fs_devices
->missing_devices
++;
6626 device
->fs_devices
= fs_devices
;
6630 if (device
->fs_devices
!= fs_info
->fs_devices
) {
6631 BUG_ON(device
->writeable
);
6632 if (device
->generation
!=
6633 btrfs_device_generation(leaf
, dev_item
))
6637 fill_device_from_item(leaf
, dev_item
, device
);
6638 device
->in_fs_metadata
= 1;
6639 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
6640 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6641 spin_lock(&fs_info
->free_chunk_lock
);
6642 fs_info
->free_chunk_space
+= device
->total_bytes
-
6644 spin_unlock(&fs_info
->free_chunk_lock
);
6650 int btrfs_read_sys_array(struct btrfs_fs_info
*fs_info
)
6652 struct btrfs_root
*root
= fs_info
->tree_root
;
6653 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
6654 struct extent_buffer
*sb
;
6655 struct btrfs_disk_key
*disk_key
;
6656 struct btrfs_chunk
*chunk
;
6658 unsigned long sb_array_offset
;
6665 struct btrfs_key key
;
6667 ASSERT(BTRFS_SUPER_INFO_SIZE
<= fs_info
->nodesize
);
6669 * This will create extent buffer of nodesize, superblock size is
6670 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6671 * overallocate but we can keep it as-is, only the first page is used.
6673 sb
= btrfs_find_create_tree_block(fs_info
, BTRFS_SUPER_INFO_OFFSET
);
6676 set_extent_buffer_uptodate(sb
);
6677 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6679 * The sb extent buffer is artificial and just used to read the system array.
6680 * set_extent_buffer_uptodate() call does not properly mark all it's
6681 * pages up-to-date when the page is larger: extent does not cover the
6682 * whole page and consequently check_page_uptodate does not find all
6683 * the page's extents up-to-date (the hole beyond sb),
6684 * write_extent_buffer then triggers a WARN_ON.
6686 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6687 * but sb spans only this function. Add an explicit SetPageUptodate call
6688 * to silence the warning eg. on PowerPC 64.
6690 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6691 SetPageUptodate(sb
->pages
[0]);
6693 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6694 array_size
= btrfs_super_sys_array_size(super_copy
);
6696 array_ptr
= super_copy
->sys_chunk_array
;
6697 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6700 while (cur_offset
< array_size
) {
6701 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6702 len
= sizeof(*disk_key
);
6703 if (cur_offset
+ len
> array_size
)
6704 goto out_short_read
;
6706 btrfs_disk_key_to_cpu(&key
, disk_key
);
6709 sb_array_offset
+= len
;
6712 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6713 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6715 * At least one btrfs_chunk with one stripe must be
6716 * present, exact stripe count check comes afterwards
6718 len
= btrfs_chunk_item_size(1);
6719 if (cur_offset
+ len
> array_size
)
6720 goto out_short_read
;
6722 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6725 "invalid number of stripes %u in sys_array at offset %u",
6726 num_stripes
, cur_offset
);
6731 type
= btrfs_chunk_type(sb
, chunk
);
6732 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6734 "invalid chunk type %llu in sys_array at offset %u",
6740 len
= btrfs_chunk_item_size(num_stripes
);
6741 if (cur_offset
+ len
> array_size
)
6742 goto out_short_read
;
6744 ret
= read_one_chunk(fs_info
, &key
, sb
, chunk
);
6749 "unexpected item type %u in sys_array at offset %u",
6750 (u32
)key
.type
, cur_offset
);
6755 sb_array_offset
+= len
;
6758 clear_extent_buffer_uptodate(sb
);
6759 free_extent_buffer_stale(sb
);
6763 btrfs_err(fs_info
, "sys_array too short to read %u bytes at offset %u",
6765 clear_extent_buffer_uptodate(sb
);
6766 free_extent_buffer_stale(sb
);
6770 int btrfs_read_chunk_tree(struct btrfs_fs_info
*fs_info
)
6772 struct btrfs_root
*root
= fs_info
->chunk_root
;
6773 struct btrfs_path
*path
;
6774 struct extent_buffer
*leaf
;
6775 struct btrfs_key key
;
6776 struct btrfs_key found_key
;
6781 path
= btrfs_alloc_path();
6785 mutex_lock(&uuid_mutex
);
6786 mutex_lock(&fs_info
->chunk_mutex
);
6789 * Read all device items, and then all the chunk items. All
6790 * device items are found before any chunk item (their object id
6791 * is smaller than the lowest possible object id for a chunk
6792 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6794 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6797 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6801 leaf
= path
->nodes
[0];
6802 slot
= path
->slots
[0];
6803 if (slot
>= btrfs_header_nritems(leaf
)) {
6804 ret
= btrfs_next_leaf(root
, path
);
6811 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6812 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6813 struct btrfs_dev_item
*dev_item
;
6814 dev_item
= btrfs_item_ptr(leaf
, slot
,
6815 struct btrfs_dev_item
);
6816 ret
= read_one_dev(fs_info
, leaf
, dev_item
);
6820 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6821 struct btrfs_chunk
*chunk
;
6822 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6823 ret
= read_one_chunk(fs_info
, &found_key
, leaf
, chunk
);
6831 * After loading chunk tree, we've got all device information,
6832 * do another round of validation checks.
6834 if (total_dev
!= fs_info
->fs_devices
->total_devices
) {
6836 "super_num_devices %llu mismatch with num_devices %llu found here",
6837 btrfs_super_num_devices(fs_info
->super_copy
),
6842 if (btrfs_super_total_bytes(fs_info
->super_copy
) <
6843 fs_info
->fs_devices
->total_rw_bytes
) {
6845 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6846 btrfs_super_total_bytes(fs_info
->super_copy
),
6847 fs_info
->fs_devices
->total_rw_bytes
);
6853 mutex_unlock(&fs_info
->chunk_mutex
);
6854 mutex_unlock(&uuid_mutex
);
6856 btrfs_free_path(path
);
6860 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6862 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6863 struct btrfs_device
*device
;
6865 while (fs_devices
) {
6866 mutex_lock(&fs_devices
->device_list_mutex
);
6867 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6868 device
->fs_info
= fs_info
;
6869 mutex_unlock(&fs_devices
->device_list_mutex
);
6871 fs_devices
= fs_devices
->seed
;
6875 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6879 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6880 btrfs_dev_stat_reset(dev
, i
);
6883 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6885 struct btrfs_key key
;
6886 struct btrfs_key found_key
;
6887 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6888 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6889 struct extent_buffer
*eb
;
6892 struct btrfs_device
*device
;
6893 struct btrfs_path
*path
= NULL
;
6896 path
= btrfs_alloc_path();
6902 mutex_lock(&fs_devices
->device_list_mutex
);
6903 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6905 struct btrfs_dev_stats_item
*ptr
;
6907 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
6908 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
6909 key
.offset
= device
->devid
;
6910 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6912 __btrfs_reset_dev_stats(device
);
6913 device
->dev_stats_valid
= 1;
6914 btrfs_release_path(path
);
6917 slot
= path
->slots
[0];
6918 eb
= path
->nodes
[0];
6919 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6920 item_size
= btrfs_item_size_nr(eb
, slot
);
6922 ptr
= btrfs_item_ptr(eb
, slot
,
6923 struct btrfs_dev_stats_item
);
6925 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6926 if (item_size
>= (1 + i
) * sizeof(__le64
))
6927 btrfs_dev_stat_set(device
, i
,
6928 btrfs_dev_stats_value(eb
, ptr
, i
));
6930 btrfs_dev_stat_reset(device
, i
);
6933 device
->dev_stats_valid
= 1;
6934 btrfs_dev_stat_print_on_load(device
);
6935 btrfs_release_path(path
);
6937 mutex_unlock(&fs_devices
->device_list_mutex
);
6940 btrfs_free_path(path
);
6941 return ret
< 0 ? ret
: 0;
6944 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
6945 struct btrfs_fs_info
*fs_info
,
6946 struct btrfs_device
*device
)
6948 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6949 struct btrfs_path
*path
;
6950 struct btrfs_key key
;
6951 struct extent_buffer
*eb
;
6952 struct btrfs_dev_stats_item
*ptr
;
6956 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
6957 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
6958 key
.offset
= device
->devid
;
6960 path
= btrfs_alloc_path();
6962 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
6964 btrfs_warn_in_rcu(fs_info
,
6965 "error %d while searching for dev_stats item for device %s",
6966 ret
, rcu_str_deref(device
->name
));
6971 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
6972 /* need to delete old one and insert a new one */
6973 ret
= btrfs_del_item(trans
, dev_root
, path
);
6975 btrfs_warn_in_rcu(fs_info
,
6976 "delete too small dev_stats item for device %s failed %d",
6977 rcu_str_deref(device
->name
), ret
);
6984 /* need to insert a new item */
6985 btrfs_release_path(path
);
6986 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
6987 &key
, sizeof(*ptr
));
6989 btrfs_warn_in_rcu(fs_info
,
6990 "insert dev_stats item for device %s failed %d",
6991 rcu_str_deref(device
->name
), ret
);
6996 eb
= path
->nodes
[0];
6997 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
6998 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6999 btrfs_set_dev_stats_value(eb
, ptr
, i
,
7000 btrfs_dev_stat_read(device
, i
));
7001 btrfs_mark_buffer_dirty(eb
);
7004 btrfs_free_path(path
);
7009 * called from commit_transaction. Writes all changed device stats to disk.
7011 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
7012 struct btrfs_fs_info
*fs_info
)
7014 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7015 struct btrfs_device
*device
;
7019 mutex_lock(&fs_devices
->device_list_mutex
);
7020 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7021 if (!device
->dev_stats_valid
|| !btrfs_dev_stats_dirty(device
))
7024 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7025 ret
= update_dev_stat_item(trans
, fs_info
, device
);
7027 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7029 mutex_unlock(&fs_devices
->device_list_mutex
);
7034 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7036 btrfs_dev_stat_inc(dev
, index
);
7037 btrfs_dev_stat_print_on_error(dev
);
7040 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7042 if (!dev
->dev_stats_valid
)
7044 btrfs_err_rl_in_rcu(dev
->fs_info
,
7045 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7046 rcu_str_deref(dev
->name
),
7047 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7048 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7049 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7050 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7051 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7054 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7058 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7059 if (btrfs_dev_stat_read(dev
, i
) != 0)
7061 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7062 return; /* all values == 0, suppress message */
7064 btrfs_info_in_rcu(dev
->fs_info
,
7065 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7066 rcu_str_deref(dev
->name
),
7067 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7068 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7069 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7070 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7071 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7074 int btrfs_get_dev_stats(struct btrfs_fs_info
*fs_info
,
7075 struct btrfs_ioctl_get_dev_stats
*stats
)
7077 struct btrfs_device
*dev
;
7078 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7081 mutex_lock(&fs_devices
->device_list_mutex
);
7082 dev
= btrfs_find_device(fs_info
, stats
->devid
, NULL
, NULL
);
7083 mutex_unlock(&fs_devices
->device_list_mutex
);
7086 btrfs_warn(fs_info
, "get dev_stats failed, device not found");
7088 } else if (!dev
->dev_stats_valid
) {
7089 btrfs_warn(fs_info
, "get dev_stats failed, not yet valid");
7091 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7092 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7093 if (stats
->nr_items
> i
)
7095 btrfs_dev_stat_read_and_reset(dev
, i
);
7097 btrfs_dev_stat_reset(dev
, i
);
7100 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7101 if (stats
->nr_items
> i
)
7102 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7104 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7105 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7109 void btrfs_scratch_superblocks(struct block_device
*bdev
, char *device_path
)
7111 struct buffer_head
*bh
;
7112 struct btrfs_super_block
*disk_super
;
7118 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7121 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7124 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7126 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7127 set_buffer_dirty(bh
);
7128 sync_dirty_buffer(bh
);
7132 /* Notify udev that device has changed */
7133 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7135 /* Update ctime/mtime for device path for libblkid */
7136 update_dev_time(device_path
);
7140 * Update the size of all devices, which is used for writing out the
7143 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
7145 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7146 struct btrfs_device
*curr
, *next
;
7148 if (list_empty(&fs_devices
->resized_devices
))
7151 mutex_lock(&fs_devices
->device_list_mutex
);
7152 mutex_lock(&fs_info
->chunk_mutex
);
7153 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
7155 list_del_init(&curr
->resized_list
);
7156 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7158 mutex_unlock(&fs_info
->chunk_mutex
);
7159 mutex_unlock(&fs_devices
->device_list_mutex
);
7162 /* Must be invoked during the transaction commit */
7163 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info
*fs_info
,
7164 struct btrfs_transaction
*transaction
)
7166 struct extent_map
*em
;
7167 struct map_lookup
*map
;
7168 struct btrfs_device
*dev
;
7171 if (list_empty(&transaction
->pending_chunks
))
7174 /* In order to kick the device replace finish process */
7175 mutex_lock(&fs_info
->chunk_mutex
);
7176 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
7177 map
= em
->map_lookup
;
7179 for (i
= 0; i
< map
->num_stripes
; i
++) {
7180 dev
= map
->stripes
[i
].dev
;
7181 dev
->commit_bytes_used
= dev
->bytes_used
;
7184 mutex_unlock(&fs_info
->chunk_mutex
);
7187 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7189 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7190 while (fs_devices
) {
7191 fs_devices
->fs_info
= fs_info
;
7192 fs_devices
= fs_devices
->seed
;
7196 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7198 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7199 while (fs_devices
) {
7200 fs_devices
->fs_info
= NULL
;
7201 fs_devices
= fs_devices
->seed
;