sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / fs / buffer.c
blob0e87401cf33535b03a1d2aa9da6e919d8a56a906
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/export.h>
34 #include <linux/backing-dev.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/task_io_accounting_ops.h>
40 #include <linux/bio.h>
41 #include <linux/notifier.h>
42 #include <linux/cpu.h>
43 #include <linux/bitops.h>
44 #include <linux/mpage.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/pagevec.h>
47 #include <trace/events/block.h>
49 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
50 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
51 unsigned long bio_flags,
52 struct writeback_control *wbc);
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
58 bh->b_end_io = handler;
59 bh->b_private = private;
61 EXPORT_SYMBOL(init_buffer);
63 inline void touch_buffer(struct buffer_head *bh)
65 trace_block_touch_buffer(bh);
66 mark_page_accessed(bh->b_page);
68 EXPORT_SYMBOL(touch_buffer);
70 void __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
74 EXPORT_SYMBOL(__lock_buffer);
76 void unlock_buffer(struct buffer_head *bh)
78 clear_bit_unlock(BH_Lock, &bh->b_state);
79 smp_mb__after_atomic();
80 wake_up_bit(&bh->b_state, BH_Lock);
82 EXPORT_SYMBOL(unlock_buffer);
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
89 void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
96 BUG_ON(!PageLocked(page));
98 if (!page_has_buffers(page))
99 return;
101 if (PageWriteback(page))
102 *writeback = true;
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
110 if (buffer_dirty(bh))
111 *dirty = true;
113 bh = bh->b_this_page;
114 } while (bh != head);
116 EXPORT_SYMBOL(buffer_check_dirty_writeback);
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
123 void __wait_on_buffer(struct buffer_head * bh)
125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
127 EXPORT_SYMBOL(__wait_on_buffer);
129 static void
130 __clear_page_buffers(struct page *page)
132 ClearPagePrivate(page);
133 set_page_private(page, 0);
134 put_page(page);
137 static void buffer_io_error(struct buffer_head *bh, char *msg)
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
146 * End-of-IO handler helper function which does not touch the bh after
147 * unlocking it.
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
151 * itself.
153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
158 /* This happens, due to failed read-ahead attempts. */
159 clear_buffer_uptodate(bh);
161 unlock_buffer(bh);
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
170 __end_buffer_read_notouch(bh, uptodate);
171 put_bh(bh);
173 EXPORT_SYMBOL(end_buffer_read_sync);
175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
177 if (uptodate) {
178 set_buffer_uptodate(bh);
179 } else {
180 buffer_io_error(bh, ", lost sync page write");
181 set_buffer_write_io_error(bh);
182 clear_buffer_uptodate(bh);
184 unlock_buffer(bh);
185 put_bh(bh);
187 EXPORT_SYMBOL(end_buffer_write_sync);
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
193 * private_lock.
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
200 static struct buffer_head *
201 __find_get_block_slow(struct block_device *bdev, sector_t block)
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
206 pgoff_t index;
207 struct buffer_head *bh;
208 struct buffer_head *head;
209 struct page *page;
210 int all_mapped = 1;
212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
214 if (!page)
215 goto out;
217 spin_lock(&bd_mapping->private_lock);
218 if (!page_has_buffers(page))
219 goto out_unlock;
220 head = page_buffers(page);
221 bh = head;
222 do {
223 if (!buffer_mapped(bh))
224 all_mapped = 0;
225 else if (bh->b_blocknr == block) {
226 ret = bh;
227 get_bh(bh);
228 goto out_unlock;
230 bh = bh->b_this_page;
231 } while (bh != head);
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
238 if (all_mapped) {
239 printk("__find_get_block_slow() failed. "
240 "block=%llu, b_blocknr=%llu\n",
241 (unsigned long long)block,
242 (unsigned long long)bh->b_blocknr);
243 printk("b_state=0x%08lx, b_size=%zu\n",
244 bh->b_state, bh->b_size);
245 printk("device %pg blocksize: %d\n", bdev,
246 1 << bd_inode->i_blkbits);
248 out_unlock:
249 spin_unlock(&bd_mapping->private_lock);
250 put_page(page);
251 out:
252 return ret;
256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
258 static void free_more_memory(void)
260 struct zoneref *z;
261 int nid;
263 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
264 yield();
266 for_each_online_node(nid) {
268 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269 gfp_zone(GFP_NOFS), NULL);
270 if (z->zone)
271 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
272 GFP_NOFS, NULL);
277 * I/O completion handler for block_read_full_page() - pages
278 * which come unlocked at the end of I/O.
280 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
282 unsigned long flags;
283 struct buffer_head *first;
284 struct buffer_head *tmp;
285 struct page *page;
286 int page_uptodate = 1;
288 BUG_ON(!buffer_async_read(bh));
290 page = bh->b_page;
291 if (uptodate) {
292 set_buffer_uptodate(bh);
293 } else {
294 clear_buffer_uptodate(bh);
295 buffer_io_error(bh, ", async page read");
296 SetPageError(page);
300 * Be _very_ careful from here on. Bad things can happen if
301 * two buffer heads end IO at almost the same time and both
302 * decide that the page is now completely done.
304 first = page_buffers(page);
305 local_irq_save(flags);
306 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
307 clear_buffer_async_read(bh);
308 unlock_buffer(bh);
309 tmp = bh;
310 do {
311 if (!buffer_uptodate(tmp))
312 page_uptodate = 0;
313 if (buffer_async_read(tmp)) {
314 BUG_ON(!buffer_locked(tmp));
315 goto still_busy;
317 tmp = tmp->b_this_page;
318 } while (tmp != bh);
319 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320 local_irq_restore(flags);
323 * If none of the buffers had errors and they are all
324 * uptodate then we can set the page uptodate.
326 if (page_uptodate && !PageError(page))
327 SetPageUptodate(page);
328 unlock_page(page);
329 return;
331 still_busy:
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
334 return;
338 * Completion handler for block_write_full_page() - pages which are unlocked
339 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 unsigned long flags;
344 struct buffer_head *first;
345 struct buffer_head *tmp;
346 struct page *page;
348 BUG_ON(!buffer_async_write(bh));
350 page = bh->b_page;
351 if (uptodate) {
352 set_buffer_uptodate(bh);
353 } else {
354 buffer_io_error(bh, ", lost async page write");
355 mapping_set_error(page->mapping, -EIO);
356 set_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
361 first = page_buffers(page);
362 local_irq_save(flags);
363 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
365 clear_buffer_async_write(bh);
366 unlock_buffer(bh);
367 tmp = bh->b_this_page;
368 while (tmp != bh) {
369 if (buffer_async_write(tmp)) {
370 BUG_ON(!buffer_locked(tmp));
371 goto still_busy;
373 tmp = tmp->b_this_page;
375 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
376 local_irq_restore(flags);
377 end_page_writeback(page);
378 return;
380 still_busy:
381 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
382 local_irq_restore(flags);
383 return;
385 EXPORT_SYMBOL(end_buffer_async_write);
388 * If a page's buffers are under async readin (end_buffer_async_read
389 * completion) then there is a possibility that another thread of
390 * control could lock one of the buffers after it has completed
391 * but while some of the other buffers have not completed. This
392 * locked buffer would confuse end_buffer_async_read() into not unlocking
393 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
394 * that this buffer is not under async I/O.
396 * The page comes unlocked when it has no locked buffer_async buffers
397 * left.
399 * PageLocked prevents anyone starting new async I/O reads any of
400 * the buffers.
402 * PageWriteback is used to prevent simultaneous writeout of the same
403 * page.
405 * PageLocked prevents anyone from starting writeback of a page which is
406 * under read I/O (PageWriteback is only ever set against a locked page).
408 static void mark_buffer_async_read(struct buffer_head *bh)
410 bh->b_end_io = end_buffer_async_read;
411 set_buffer_async_read(bh);
414 static void mark_buffer_async_write_endio(struct buffer_head *bh,
415 bh_end_io_t *handler)
417 bh->b_end_io = handler;
418 set_buffer_async_write(bh);
421 void mark_buffer_async_write(struct buffer_head *bh)
423 mark_buffer_async_write_endio(bh, end_buffer_async_write);
425 EXPORT_SYMBOL(mark_buffer_async_write);
429 * fs/buffer.c contains helper functions for buffer-backed address space's
430 * fsync functions. A common requirement for buffer-based filesystems is
431 * that certain data from the backing blockdev needs to be written out for
432 * a successful fsync(). For example, ext2 indirect blocks need to be
433 * written back and waited upon before fsync() returns.
435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
437 * management of a list of dependent buffers at ->i_mapping->private_list.
439 * Locking is a little subtle: try_to_free_buffers() will remove buffers
440 * from their controlling inode's queue when they are being freed. But
441 * try_to_free_buffers() will be operating against the *blockdev* mapping
442 * at the time, not against the S_ISREG file which depends on those buffers.
443 * So the locking for private_list is via the private_lock in the address_space
444 * which backs the buffers. Which is different from the address_space
445 * against which the buffers are listed. So for a particular address_space,
446 * mapping->private_lock does *not* protect mapping->private_list! In fact,
447 * mapping->private_list will always be protected by the backing blockdev's
448 * ->private_lock.
450 * Which introduces a requirement: all buffers on an address_space's
451 * ->private_list must be from the same address_space: the blockdev's.
453 * address_spaces which do not place buffers at ->private_list via these
454 * utility functions are free to use private_lock and private_list for
455 * whatever they want. The only requirement is that list_empty(private_list)
456 * be true at clear_inode() time.
458 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
459 * filesystems should do that. invalidate_inode_buffers() should just go
460 * BUG_ON(!list_empty).
462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
463 * take an address_space, not an inode. And it should be called
464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
465 * queued up.
467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
468 * list if it is already on a list. Because if the buffer is on a list,
469 * it *must* already be on the right one. If not, the filesystem is being
470 * silly. This will save a ton of locking. But first we have to ensure
471 * that buffers are taken *off* the old inode's list when they are freed
472 * (presumably in truncate). That requires careful auditing of all
473 * filesystems (do it inside bforget()). It could also be done by bringing
474 * b_inode back.
478 * The buffer's backing address_space's private_lock must be held
480 static void __remove_assoc_queue(struct buffer_head *bh)
482 list_del_init(&bh->b_assoc_buffers);
483 WARN_ON(!bh->b_assoc_map);
484 if (buffer_write_io_error(bh))
485 set_bit(AS_EIO, &bh->b_assoc_map->flags);
486 bh->b_assoc_map = NULL;
489 int inode_has_buffers(struct inode *inode)
491 return !list_empty(&inode->i_data.private_list);
495 * osync is designed to support O_SYNC io. It waits synchronously for
496 * all already-submitted IO to complete, but does not queue any new
497 * writes to the disk.
499 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
500 * you dirty the buffers, and then use osync_inode_buffers to wait for
501 * completion. Any other dirty buffers which are not yet queued for
502 * write will not be flushed to disk by the osync.
504 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
506 struct buffer_head *bh;
507 struct list_head *p;
508 int err = 0;
510 spin_lock(lock);
511 repeat:
512 list_for_each_prev(p, list) {
513 bh = BH_ENTRY(p);
514 if (buffer_locked(bh)) {
515 get_bh(bh);
516 spin_unlock(lock);
517 wait_on_buffer(bh);
518 if (!buffer_uptodate(bh))
519 err = -EIO;
520 brelse(bh);
521 spin_lock(lock);
522 goto repeat;
525 spin_unlock(lock);
526 return err;
529 static void do_thaw_one(struct super_block *sb, void *unused)
531 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
532 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
535 static void do_thaw_all(struct work_struct *work)
537 iterate_supers(do_thaw_one, NULL);
538 kfree(work);
539 printk(KERN_WARNING "Emergency Thaw complete\n");
543 * emergency_thaw_all -- forcibly thaw every frozen filesystem
545 * Used for emergency unfreeze of all filesystems via SysRq
547 void emergency_thaw_all(void)
549 struct work_struct *work;
551 work = kmalloc(sizeof(*work), GFP_ATOMIC);
552 if (work) {
553 INIT_WORK(work, do_thaw_all);
554 schedule_work(work);
559 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
560 * @mapping: the mapping which wants those buffers written
562 * Starts I/O against the buffers at mapping->private_list, and waits upon
563 * that I/O.
565 * Basically, this is a convenience function for fsync().
566 * @mapping is a file or directory which needs those buffers to be written for
567 * a successful fsync().
569 int sync_mapping_buffers(struct address_space *mapping)
571 struct address_space *buffer_mapping = mapping->private_data;
573 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
574 return 0;
576 return fsync_buffers_list(&buffer_mapping->private_lock,
577 &mapping->private_list);
579 EXPORT_SYMBOL(sync_mapping_buffers);
582 * Called when we've recently written block `bblock', and it is known that
583 * `bblock' was for a buffer_boundary() buffer. This means that the block at
584 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
585 * dirty, schedule it for IO. So that indirects merge nicely with their data.
587 void write_boundary_block(struct block_device *bdev,
588 sector_t bblock, unsigned blocksize)
590 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
591 if (bh) {
592 if (buffer_dirty(bh))
593 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
594 put_bh(bh);
598 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
600 struct address_space *mapping = inode->i_mapping;
601 struct address_space *buffer_mapping = bh->b_page->mapping;
603 mark_buffer_dirty(bh);
604 if (!mapping->private_data) {
605 mapping->private_data = buffer_mapping;
606 } else {
607 BUG_ON(mapping->private_data != buffer_mapping);
609 if (!bh->b_assoc_map) {
610 spin_lock(&buffer_mapping->private_lock);
611 list_move_tail(&bh->b_assoc_buffers,
612 &mapping->private_list);
613 bh->b_assoc_map = mapping;
614 spin_unlock(&buffer_mapping->private_lock);
617 EXPORT_SYMBOL(mark_buffer_dirty_inode);
620 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
621 * dirty.
623 * If warn is true, then emit a warning if the page is not uptodate and has
624 * not been truncated.
626 * The caller must hold lock_page_memcg().
628 static void __set_page_dirty(struct page *page, struct address_space *mapping,
629 int warn)
631 unsigned long flags;
633 spin_lock_irqsave(&mapping->tree_lock, flags);
634 if (page->mapping) { /* Race with truncate? */
635 WARN_ON_ONCE(warn && !PageUptodate(page));
636 account_page_dirtied(page, mapping);
637 radix_tree_tag_set(&mapping->page_tree,
638 page_index(page), PAGECACHE_TAG_DIRTY);
640 spin_unlock_irqrestore(&mapping->tree_lock, flags);
644 * Add a page to the dirty page list.
646 * It is a sad fact of life that this function is called from several places
647 * deeply under spinlocking. It may not sleep.
649 * If the page has buffers, the uptodate buffers are set dirty, to preserve
650 * dirty-state coherency between the page and the buffers. It the page does
651 * not have buffers then when they are later attached they will all be set
652 * dirty.
654 * The buffers are dirtied before the page is dirtied. There's a small race
655 * window in which a writepage caller may see the page cleanness but not the
656 * buffer dirtiness. That's fine. If this code were to set the page dirty
657 * before the buffers, a concurrent writepage caller could clear the page dirty
658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
659 * page on the dirty page list.
661 * We use private_lock to lock against try_to_free_buffers while using the
662 * page's buffer list. Also use this to protect against clean buffers being
663 * added to the page after it was set dirty.
665 * FIXME: may need to call ->reservepage here as well. That's rather up to the
666 * address_space though.
668 int __set_page_dirty_buffers(struct page *page)
670 int newly_dirty;
671 struct address_space *mapping = page_mapping(page);
673 if (unlikely(!mapping))
674 return !TestSetPageDirty(page);
676 spin_lock(&mapping->private_lock);
677 if (page_has_buffers(page)) {
678 struct buffer_head *head = page_buffers(page);
679 struct buffer_head *bh = head;
681 do {
682 set_buffer_dirty(bh);
683 bh = bh->b_this_page;
684 } while (bh != head);
687 * Lock out page->mem_cgroup migration to keep PageDirty
688 * synchronized with per-memcg dirty page counters.
690 lock_page_memcg(page);
691 newly_dirty = !TestSetPageDirty(page);
692 spin_unlock(&mapping->private_lock);
694 if (newly_dirty)
695 __set_page_dirty(page, mapping, 1);
697 unlock_page_memcg(page);
699 if (newly_dirty)
700 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
702 return newly_dirty;
704 EXPORT_SYMBOL(__set_page_dirty_buffers);
707 * Write out and wait upon a list of buffers.
709 * We have conflicting pressures: we want to make sure that all
710 * initially dirty buffers get waited on, but that any subsequently
711 * dirtied buffers don't. After all, we don't want fsync to last
712 * forever if somebody is actively writing to the file.
714 * Do this in two main stages: first we copy dirty buffers to a
715 * temporary inode list, queueing the writes as we go. Then we clean
716 * up, waiting for those writes to complete.
718 * During this second stage, any subsequent updates to the file may end
719 * up refiling the buffer on the original inode's dirty list again, so
720 * there is a chance we will end up with a buffer queued for write but
721 * not yet completed on that list. So, as a final cleanup we go through
722 * the osync code to catch these locked, dirty buffers without requeuing
723 * any newly dirty buffers for write.
725 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
727 struct buffer_head *bh;
728 struct list_head tmp;
729 struct address_space *mapping;
730 int err = 0, err2;
731 struct blk_plug plug;
733 INIT_LIST_HEAD(&tmp);
734 blk_start_plug(&plug);
736 spin_lock(lock);
737 while (!list_empty(list)) {
738 bh = BH_ENTRY(list->next);
739 mapping = bh->b_assoc_map;
740 __remove_assoc_queue(bh);
741 /* Avoid race with mark_buffer_dirty_inode() which does
742 * a lockless check and we rely on seeing the dirty bit */
743 smp_mb();
744 if (buffer_dirty(bh) || buffer_locked(bh)) {
745 list_add(&bh->b_assoc_buffers, &tmp);
746 bh->b_assoc_map = mapping;
747 if (buffer_dirty(bh)) {
748 get_bh(bh);
749 spin_unlock(lock);
751 * Ensure any pending I/O completes so that
752 * write_dirty_buffer() actually writes the
753 * current contents - it is a noop if I/O is
754 * still in flight on potentially older
755 * contents.
757 write_dirty_buffer(bh, REQ_SYNC);
760 * Kick off IO for the previous mapping. Note
761 * that we will not run the very last mapping,
762 * wait_on_buffer() will do that for us
763 * through sync_buffer().
765 brelse(bh);
766 spin_lock(lock);
771 spin_unlock(lock);
772 blk_finish_plug(&plug);
773 spin_lock(lock);
775 while (!list_empty(&tmp)) {
776 bh = BH_ENTRY(tmp.prev);
777 get_bh(bh);
778 mapping = bh->b_assoc_map;
779 __remove_assoc_queue(bh);
780 /* Avoid race with mark_buffer_dirty_inode() which does
781 * a lockless check and we rely on seeing the dirty bit */
782 smp_mb();
783 if (buffer_dirty(bh)) {
784 list_add(&bh->b_assoc_buffers,
785 &mapping->private_list);
786 bh->b_assoc_map = mapping;
788 spin_unlock(lock);
789 wait_on_buffer(bh);
790 if (!buffer_uptodate(bh))
791 err = -EIO;
792 brelse(bh);
793 spin_lock(lock);
796 spin_unlock(lock);
797 err2 = osync_buffers_list(lock, list);
798 if (err)
799 return err;
800 else
801 return err2;
805 * Invalidate any and all dirty buffers on a given inode. We are
806 * probably unmounting the fs, but that doesn't mean we have already
807 * done a sync(). Just drop the buffers from the inode list.
809 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
810 * assumes that all the buffers are against the blockdev. Not true
811 * for reiserfs.
813 void invalidate_inode_buffers(struct inode *inode)
815 if (inode_has_buffers(inode)) {
816 struct address_space *mapping = &inode->i_data;
817 struct list_head *list = &mapping->private_list;
818 struct address_space *buffer_mapping = mapping->private_data;
820 spin_lock(&buffer_mapping->private_lock);
821 while (!list_empty(list))
822 __remove_assoc_queue(BH_ENTRY(list->next));
823 spin_unlock(&buffer_mapping->private_lock);
826 EXPORT_SYMBOL(invalidate_inode_buffers);
829 * Remove any clean buffers from the inode's buffer list. This is called
830 * when we're trying to free the inode itself. Those buffers can pin it.
832 * Returns true if all buffers were removed.
834 int remove_inode_buffers(struct inode *inode)
836 int ret = 1;
838 if (inode_has_buffers(inode)) {
839 struct address_space *mapping = &inode->i_data;
840 struct list_head *list = &mapping->private_list;
841 struct address_space *buffer_mapping = mapping->private_data;
843 spin_lock(&buffer_mapping->private_lock);
844 while (!list_empty(list)) {
845 struct buffer_head *bh = BH_ENTRY(list->next);
846 if (buffer_dirty(bh)) {
847 ret = 0;
848 break;
850 __remove_assoc_queue(bh);
852 spin_unlock(&buffer_mapping->private_lock);
854 return ret;
858 * Create the appropriate buffers when given a page for data area and
859 * the size of each buffer.. Use the bh->b_this_page linked list to
860 * follow the buffers created. Return NULL if unable to create more
861 * buffers.
863 * The retry flag is used to differentiate async IO (paging, swapping)
864 * which may not fail from ordinary buffer allocations.
866 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
867 int retry)
869 struct buffer_head *bh, *head;
870 long offset;
872 try_again:
873 head = NULL;
874 offset = PAGE_SIZE;
875 while ((offset -= size) >= 0) {
876 bh = alloc_buffer_head(GFP_NOFS);
877 if (!bh)
878 goto no_grow;
880 bh->b_this_page = head;
881 bh->b_blocknr = -1;
882 head = bh;
884 bh->b_size = size;
886 /* Link the buffer to its page */
887 set_bh_page(bh, page, offset);
889 return head;
891 * In case anything failed, we just free everything we got.
893 no_grow:
894 if (head) {
895 do {
896 bh = head;
897 head = head->b_this_page;
898 free_buffer_head(bh);
899 } while (head);
903 * Return failure for non-async IO requests. Async IO requests
904 * are not allowed to fail, so we have to wait until buffer heads
905 * become available. But we don't want tasks sleeping with
906 * partially complete buffers, so all were released above.
908 if (!retry)
909 return NULL;
911 /* We're _really_ low on memory. Now we just
912 * wait for old buffer heads to become free due to
913 * finishing IO. Since this is an async request and
914 * the reserve list is empty, we're sure there are
915 * async buffer heads in use.
917 free_more_memory();
918 goto try_again;
920 EXPORT_SYMBOL_GPL(alloc_page_buffers);
922 static inline void
923 link_dev_buffers(struct page *page, struct buffer_head *head)
925 struct buffer_head *bh, *tail;
927 bh = head;
928 do {
929 tail = bh;
930 bh = bh->b_this_page;
931 } while (bh);
932 tail->b_this_page = head;
933 attach_page_buffers(page, head);
936 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
938 sector_t retval = ~((sector_t)0);
939 loff_t sz = i_size_read(bdev->bd_inode);
941 if (sz) {
942 unsigned int sizebits = blksize_bits(size);
943 retval = (sz >> sizebits);
945 return retval;
949 * Initialise the state of a blockdev page's buffers.
951 static sector_t
952 init_page_buffers(struct page *page, struct block_device *bdev,
953 sector_t block, int size)
955 struct buffer_head *head = page_buffers(page);
956 struct buffer_head *bh = head;
957 int uptodate = PageUptodate(page);
958 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
960 do {
961 if (!buffer_mapped(bh)) {
962 init_buffer(bh, NULL, NULL);
963 bh->b_bdev = bdev;
964 bh->b_blocknr = block;
965 if (uptodate)
966 set_buffer_uptodate(bh);
967 if (block < end_block)
968 set_buffer_mapped(bh);
970 block++;
971 bh = bh->b_this_page;
972 } while (bh != head);
975 * Caller needs to validate requested block against end of device.
977 return end_block;
981 * Create the page-cache page that contains the requested block.
983 * This is used purely for blockdev mappings.
985 static int
986 grow_dev_page(struct block_device *bdev, sector_t block,
987 pgoff_t index, int size, int sizebits, gfp_t gfp)
989 struct inode *inode = bdev->bd_inode;
990 struct page *page;
991 struct buffer_head *bh;
992 sector_t end_block;
993 int ret = 0; /* Will call free_more_memory() */
994 gfp_t gfp_mask;
996 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
999 * XXX: __getblk_slow() can not really deal with failure and
1000 * will endlessly loop on improvised global reclaim. Prefer
1001 * looping in the allocator rather than here, at least that
1002 * code knows what it's doing.
1004 gfp_mask |= __GFP_NOFAIL;
1006 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1007 if (!page)
1008 return ret;
1010 BUG_ON(!PageLocked(page));
1012 if (page_has_buffers(page)) {
1013 bh = page_buffers(page);
1014 if (bh->b_size == size) {
1015 end_block = init_page_buffers(page, bdev,
1016 (sector_t)index << sizebits,
1017 size);
1018 goto done;
1020 if (!try_to_free_buffers(page))
1021 goto failed;
1025 * Allocate some buffers for this page
1027 bh = alloc_page_buffers(page, size, 0);
1028 if (!bh)
1029 goto failed;
1032 * Link the page to the buffers and initialise them. Take the
1033 * lock to be atomic wrt __find_get_block(), which does not
1034 * run under the page lock.
1036 spin_lock(&inode->i_mapping->private_lock);
1037 link_dev_buffers(page, bh);
1038 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1039 size);
1040 spin_unlock(&inode->i_mapping->private_lock);
1041 done:
1042 ret = (block < end_block) ? 1 : -ENXIO;
1043 failed:
1044 unlock_page(page);
1045 put_page(page);
1046 return ret;
1050 * Create buffers for the specified block device block's page. If
1051 * that page was dirty, the buffers are set dirty also.
1053 static int
1054 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1056 pgoff_t index;
1057 int sizebits;
1059 sizebits = -1;
1060 do {
1061 sizebits++;
1062 } while ((size << sizebits) < PAGE_SIZE);
1064 index = block >> sizebits;
1067 * Check for a block which wants to lie outside our maximum possible
1068 * pagecache index. (this comparison is done using sector_t types).
1070 if (unlikely(index != block >> sizebits)) {
1071 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1072 "device %pg\n",
1073 __func__, (unsigned long long)block,
1074 bdev);
1075 return -EIO;
1078 /* Create a page with the proper size buffers.. */
1079 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1082 static struct buffer_head *
1083 __getblk_slow(struct block_device *bdev, sector_t block,
1084 unsigned size, gfp_t gfp)
1086 /* Size must be multiple of hard sectorsize */
1087 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088 (size < 512 || size > PAGE_SIZE))) {
1089 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 size);
1091 printk(KERN_ERR "logical block size: %d\n",
1092 bdev_logical_block_size(bdev));
1094 dump_stack();
1095 return NULL;
1098 for (;;) {
1099 struct buffer_head *bh;
1100 int ret;
1102 bh = __find_get_block(bdev, block, size);
1103 if (bh)
1104 return bh;
1106 ret = grow_buffers(bdev, block, size, gfp);
1107 if (ret < 0)
1108 return NULL;
1109 if (ret == 0)
1110 free_more_memory();
1115 * The relationship between dirty buffers and dirty pages:
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page. If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1130 * Also. When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate. But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate. A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
1139 * @bh: the buffer_head to mark dirty
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and mapping->host->i_lock.
1149 void mark_buffer_dirty(struct buffer_head *bh)
1151 WARN_ON_ONCE(!buffer_uptodate(bh));
1153 trace_block_dirty_buffer(bh);
1156 * Very *carefully* optimize the it-is-already-dirty case.
1158 * Don't let the final "is it dirty" escape to before we
1159 * perhaps modified the buffer.
1161 if (buffer_dirty(bh)) {
1162 smp_mb();
1163 if (buffer_dirty(bh))
1164 return;
1167 if (!test_set_buffer_dirty(bh)) {
1168 struct page *page = bh->b_page;
1169 struct address_space *mapping = NULL;
1171 lock_page_memcg(page);
1172 if (!TestSetPageDirty(page)) {
1173 mapping = page_mapping(page);
1174 if (mapping)
1175 __set_page_dirty(page, mapping, 0);
1177 unlock_page_memcg(page);
1178 if (mapping)
1179 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1182 EXPORT_SYMBOL(mark_buffer_dirty);
1185 * Decrement a buffer_head's reference count. If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1191 void __brelse(struct buffer_head * buf)
1193 if (atomic_read(&buf->b_count)) {
1194 put_bh(buf);
1195 return;
1197 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1199 EXPORT_SYMBOL(__brelse);
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1205 void __bforget(struct buffer_head *bh)
1207 clear_buffer_dirty(bh);
1208 if (bh->b_assoc_map) {
1209 struct address_space *buffer_mapping = bh->b_page->mapping;
1211 spin_lock(&buffer_mapping->private_lock);
1212 list_del_init(&bh->b_assoc_buffers);
1213 bh->b_assoc_map = NULL;
1214 spin_unlock(&buffer_mapping->private_lock);
1216 __brelse(bh);
1218 EXPORT_SYMBOL(__bforget);
1220 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1222 lock_buffer(bh);
1223 if (buffer_uptodate(bh)) {
1224 unlock_buffer(bh);
1225 return bh;
1226 } else {
1227 get_bh(bh);
1228 bh->b_end_io = end_buffer_read_sync;
1229 submit_bh(REQ_OP_READ, 0, bh);
1230 wait_on_buffer(bh);
1231 if (buffer_uptodate(bh))
1232 return bh;
1234 brelse(bh);
1235 return NULL;
1239 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1241 * refcount elevated by one when they're in an LRU. A buffer can only appear
1242 * once in a particular CPU's LRU. A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1248 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1249 * a local interrupt disable for that.
1252 #define BH_LRU_SIZE 16
1254 struct bh_lru {
1255 struct buffer_head *bhs[BH_LRU_SIZE];
1258 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1260 #ifdef CONFIG_SMP
1261 #define bh_lru_lock() local_irq_disable()
1262 #define bh_lru_unlock() local_irq_enable()
1263 #else
1264 #define bh_lru_lock() preempt_disable()
1265 #define bh_lru_unlock() preempt_enable()
1266 #endif
1268 static inline void check_irqs_on(void)
1270 #ifdef irqs_disabled
1271 BUG_ON(irqs_disabled());
1272 #endif
1276 * The LRU management algorithm is dopey-but-simple. Sorry.
1278 static void bh_lru_install(struct buffer_head *bh)
1280 struct buffer_head *evictee = NULL;
1282 check_irqs_on();
1283 bh_lru_lock();
1284 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1285 struct buffer_head *bhs[BH_LRU_SIZE];
1286 int in;
1287 int out = 0;
1289 get_bh(bh);
1290 bhs[out++] = bh;
1291 for (in = 0; in < BH_LRU_SIZE; in++) {
1292 struct buffer_head *bh2 =
1293 __this_cpu_read(bh_lrus.bhs[in]);
1295 if (bh2 == bh) {
1296 __brelse(bh2);
1297 } else {
1298 if (out >= BH_LRU_SIZE) {
1299 BUG_ON(evictee != NULL);
1300 evictee = bh2;
1301 } else {
1302 bhs[out++] = bh2;
1306 while (out < BH_LRU_SIZE)
1307 bhs[out++] = NULL;
1308 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1310 bh_lru_unlock();
1312 if (evictee)
1313 __brelse(evictee);
1317 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1319 static struct buffer_head *
1320 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1322 struct buffer_head *ret = NULL;
1323 unsigned int i;
1325 check_irqs_on();
1326 bh_lru_lock();
1327 for (i = 0; i < BH_LRU_SIZE; i++) {
1328 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1330 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331 bh->b_size == size) {
1332 if (i) {
1333 while (i) {
1334 __this_cpu_write(bh_lrus.bhs[i],
1335 __this_cpu_read(bh_lrus.bhs[i - 1]));
1336 i--;
1338 __this_cpu_write(bh_lrus.bhs[0], bh);
1340 get_bh(bh);
1341 ret = bh;
1342 break;
1345 bh_lru_unlock();
1346 return ret;
1350 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1351 * it in the LRU and mark it as accessed. If it is not present then return
1352 * NULL
1354 struct buffer_head *
1355 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1357 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1359 if (bh == NULL) {
1360 /* __find_get_block_slow will mark the page accessed */
1361 bh = __find_get_block_slow(bdev, block);
1362 if (bh)
1363 bh_lru_install(bh);
1364 } else
1365 touch_buffer(bh);
1367 return bh;
1369 EXPORT_SYMBOL(__find_get_block);
1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1379 struct buffer_head *
1380 __getblk_gfp(struct block_device *bdev, sector_t block,
1381 unsigned size, gfp_t gfp)
1383 struct buffer_head *bh = __find_get_block(bdev, block, size);
1385 might_sleep();
1386 if (bh == NULL)
1387 bh = __getblk_slow(bdev, block, size, gfp);
1388 return bh;
1390 EXPORT_SYMBOL(__getblk_gfp);
1393 * Do async read-ahead on a buffer..
1395 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1397 struct buffer_head *bh = __getblk(bdev, block, size);
1398 if (likely(bh)) {
1399 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1400 brelse(bh);
1403 EXPORT_SYMBOL(__breadahead);
1406 * __bread_gfp() - reads a specified block and returns the bh
1407 * @bdev: the block_device to read from
1408 * @block: number of block
1409 * @size: size (in bytes) to read
1410 * @gfp: page allocation flag
1412 * Reads a specified block, and returns buffer head that contains it.
1413 * The page cache can be allocated from non-movable area
1414 * not to prevent page migration if you set gfp to zero.
1415 * It returns NULL if the block was unreadable.
1417 struct buffer_head *
1418 __bread_gfp(struct block_device *bdev, sector_t block,
1419 unsigned size, gfp_t gfp)
1421 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1423 if (likely(bh) && !buffer_uptodate(bh))
1424 bh = __bread_slow(bh);
1425 return bh;
1427 EXPORT_SYMBOL(__bread_gfp);
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1434 static void invalidate_bh_lru(void *arg)
1436 struct bh_lru *b = &get_cpu_var(bh_lrus);
1437 int i;
1439 for (i = 0; i < BH_LRU_SIZE; i++) {
1440 brelse(b->bhs[i]);
1441 b->bhs[i] = NULL;
1443 put_cpu_var(bh_lrus);
1446 static bool has_bh_in_lru(int cpu, void *dummy)
1448 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449 int i;
1451 for (i = 0; i < BH_LRU_SIZE; i++) {
1452 if (b->bhs[i])
1453 return 1;
1456 return 0;
1459 void invalidate_bh_lrus(void)
1461 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1463 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1465 void set_bh_page(struct buffer_head *bh,
1466 struct page *page, unsigned long offset)
1468 bh->b_page = page;
1469 BUG_ON(offset >= PAGE_SIZE);
1470 if (PageHighMem(page))
1472 * This catches illegal uses and preserves the offset:
1474 bh->b_data = (char *)(0 + offset);
1475 else
1476 bh->b_data = page_address(page) + offset;
1478 EXPORT_SYMBOL(set_bh_page);
1481 * Called when truncating a buffer on a page completely.
1484 /* Bits that are cleared during an invalidate */
1485 #define BUFFER_FLAGS_DISCARD \
1486 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487 1 << BH_Delay | 1 << BH_Unwritten)
1489 static void discard_buffer(struct buffer_head * bh)
1491 unsigned long b_state, b_state_old;
1493 lock_buffer(bh);
1494 clear_buffer_dirty(bh);
1495 bh->b_bdev = NULL;
1496 b_state = bh->b_state;
1497 for (;;) {
1498 b_state_old = cmpxchg(&bh->b_state, b_state,
1499 (b_state & ~BUFFER_FLAGS_DISCARD));
1500 if (b_state_old == b_state)
1501 break;
1502 b_state = b_state_old;
1504 unlock_buffer(bh);
1508 * block_invalidatepage - invalidate part or all of a buffer-backed page
1510 * @page: the page which is affected
1511 * @offset: start of the range to invalidate
1512 * @length: length of the range to invalidate
1514 * block_invalidatepage() is called when all or part of the page has become
1515 * invalidated by a truncate operation.
1517 * block_invalidatepage() does not have to release all buffers, but it must
1518 * ensure that no dirty buffer is left outside @offset and that no I/O
1519 * is underway against any of the blocks which are outside the truncation
1520 * point. Because the caller is about to free (and possibly reuse) those
1521 * blocks on-disk.
1523 void block_invalidatepage(struct page *page, unsigned int offset,
1524 unsigned int length)
1526 struct buffer_head *head, *bh, *next;
1527 unsigned int curr_off = 0;
1528 unsigned int stop = length + offset;
1530 BUG_ON(!PageLocked(page));
1531 if (!page_has_buffers(page))
1532 goto out;
1535 * Check for overflow
1537 BUG_ON(stop > PAGE_SIZE || stop < length);
1539 head = page_buffers(page);
1540 bh = head;
1541 do {
1542 unsigned int next_off = curr_off + bh->b_size;
1543 next = bh->b_this_page;
1546 * Are we still fully in range ?
1548 if (next_off > stop)
1549 goto out;
1552 * is this block fully invalidated?
1554 if (offset <= curr_off)
1555 discard_buffer(bh);
1556 curr_off = next_off;
1557 bh = next;
1558 } while (bh != head);
1561 * We release buffers only if the entire page is being invalidated.
1562 * The get_block cached value has been unconditionally invalidated,
1563 * so real IO is not possible anymore.
1565 if (offset == 0)
1566 try_to_release_page(page, 0);
1567 out:
1568 return;
1570 EXPORT_SYMBOL(block_invalidatepage);
1574 * We attach and possibly dirty the buffers atomically wrt
1575 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1576 * is already excluded via the page lock.
1578 void create_empty_buffers(struct page *page,
1579 unsigned long blocksize, unsigned long b_state)
1581 struct buffer_head *bh, *head, *tail;
1583 head = alloc_page_buffers(page, blocksize, 1);
1584 bh = head;
1585 do {
1586 bh->b_state |= b_state;
1587 tail = bh;
1588 bh = bh->b_this_page;
1589 } while (bh);
1590 tail->b_this_page = head;
1592 spin_lock(&page->mapping->private_lock);
1593 if (PageUptodate(page) || PageDirty(page)) {
1594 bh = head;
1595 do {
1596 if (PageDirty(page))
1597 set_buffer_dirty(bh);
1598 if (PageUptodate(page))
1599 set_buffer_uptodate(bh);
1600 bh = bh->b_this_page;
1601 } while (bh != head);
1603 attach_page_buffers(page, head);
1604 spin_unlock(&page->mapping->private_lock);
1606 EXPORT_SYMBOL(create_empty_buffers);
1609 * clean_bdev_aliases: clean a range of buffers in block device
1610 * @bdev: Block device to clean buffers in
1611 * @block: Start of a range of blocks to clean
1612 * @len: Number of blocks to clean
1614 * We are taking a range of blocks for data and we don't want writeback of any
1615 * buffer-cache aliases starting from return from this function and until the
1616 * moment when something will explicitly mark the buffer dirty (hopefully that
1617 * will not happen until we will free that block ;-) We don't even need to mark
1618 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1619 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1620 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1621 * would confuse anyone who might pick it with bread() afterwards...
1623 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1624 * writeout I/O going on against recently-freed buffers. We don't wait on that
1625 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1626 * need to. That happens here.
1628 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1630 struct inode *bd_inode = bdev->bd_inode;
1631 struct address_space *bd_mapping = bd_inode->i_mapping;
1632 struct pagevec pvec;
1633 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1634 pgoff_t end;
1635 int i;
1636 struct buffer_head *bh;
1637 struct buffer_head *head;
1639 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1640 pagevec_init(&pvec, 0);
1641 while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1642 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1643 for (i = 0; i < pagevec_count(&pvec); i++) {
1644 struct page *page = pvec.pages[i];
1646 index = page->index;
1647 if (index > end)
1648 break;
1649 if (!page_has_buffers(page))
1650 continue;
1652 * We use page lock instead of bd_mapping->private_lock
1653 * to pin buffers here since we can afford to sleep and
1654 * it scales better than a global spinlock lock.
1656 lock_page(page);
1657 /* Recheck when the page is locked which pins bhs */
1658 if (!page_has_buffers(page))
1659 goto unlock_page;
1660 head = page_buffers(page);
1661 bh = head;
1662 do {
1663 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1664 goto next;
1665 if (bh->b_blocknr >= block + len)
1666 break;
1667 clear_buffer_dirty(bh);
1668 wait_on_buffer(bh);
1669 clear_buffer_req(bh);
1670 next:
1671 bh = bh->b_this_page;
1672 } while (bh != head);
1673 unlock_page:
1674 unlock_page(page);
1676 pagevec_release(&pvec);
1677 cond_resched();
1678 index++;
1681 EXPORT_SYMBOL(clean_bdev_aliases);
1684 * Size is a power-of-two in the range 512..PAGE_SIZE,
1685 * and the case we care about most is PAGE_SIZE.
1687 * So this *could* possibly be written with those
1688 * constraints in mind (relevant mostly if some
1689 * architecture has a slow bit-scan instruction)
1691 static inline int block_size_bits(unsigned int blocksize)
1693 return ilog2(blocksize);
1696 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1698 BUG_ON(!PageLocked(page));
1700 if (!page_has_buffers(page))
1701 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1702 return page_buffers(page);
1706 * NOTE! All mapped/uptodate combinations are valid:
1708 * Mapped Uptodate Meaning
1710 * No No "unknown" - must do get_block()
1711 * No Yes "hole" - zero-filled
1712 * Yes No "allocated" - allocated on disk, not read in
1713 * Yes Yes "valid" - allocated and up-to-date in memory.
1715 * "Dirty" is valid only with the last case (mapped+uptodate).
1719 * While block_write_full_page is writing back the dirty buffers under
1720 * the page lock, whoever dirtied the buffers may decide to clean them
1721 * again at any time. We handle that by only looking at the buffer
1722 * state inside lock_buffer().
1724 * If block_write_full_page() is called for regular writeback
1725 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1726 * locked buffer. This only can happen if someone has written the buffer
1727 * directly, with submit_bh(). At the address_space level PageWriteback
1728 * prevents this contention from occurring.
1730 * If block_write_full_page() is called with wbc->sync_mode ==
1731 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1732 * causes the writes to be flagged as synchronous writes.
1734 int __block_write_full_page(struct inode *inode, struct page *page,
1735 get_block_t *get_block, struct writeback_control *wbc,
1736 bh_end_io_t *handler)
1738 int err;
1739 sector_t block;
1740 sector_t last_block;
1741 struct buffer_head *bh, *head;
1742 unsigned int blocksize, bbits;
1743 int nr_underway = 0;
1744 int write_flags = wbc_to_write_flags(wbc);
1746 head = create_page_buffers(page, inode,
1747 (1 << BH_Dirty)|(1 << BH_Uptodate));
1750 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1751 * here, and the (potentially unmapped) buffers may become dirty at
1752 * any time. If a buffer becomes dirty here after we've inspected it
1753 * then we just miss that fact, and the page stays dirty.
1755 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1756 * handle that here by just cleaning them.
1759 bh = head;
1760 blocksize = bh->b_size;
1761 bbits = block_size_bits(blocksize);
1763 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1764 last_block = (i_size_read(inode) - 1) >> bbits;
1767 * Get all the dirty buffers mapped to disk addresses and
1768 * handle any aliases from the underlying blockdev's mapping.
1770 do {
1771 if (block > last_block) {
1773 * mapped buffers outside i_size will occur, because
1774 * this page can be outside i_size when there is a
1775 * truncate in progress.
1778 * The buffer was zeroed by block_write_full_page()
1780 clear_buffer_dirty(bh);
1781 set_buffer_uptodate(bh);
1782 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1783 buffer_dirty(bh)) {
1784 WARN_ON(bh->b_size != blocksize);
1785 err = get_block(inode, block, bh, 1);
1786 if (err)
1787 goto recover;
1788 clear_buffer_delay(bh);
1789 if (buffer_new(bh)) {
1790 /* blockdev mappings never come here */
1791 clear_buffer_new(bh);
1792 clean_bdev_bh_alias(bh);
1795 bh = bh->b_this_page;
1796 block++;
1797 } while (bh != head);
1799 do {
1800 if (!buffer_mapped(bh))
1801 continue;
1803 * If it's a fully non-blocking write attempt and we cannot
1804 * lock the buffer then redirty the page. Note that this can
1805 * potentially cause a busy-wait loop from writeback threads
1806 * and kswapd activity, but those code paths have their own
1807 * higher-level throttling.
1809 if (wbc->sync_mode != WB_SYNC_NONE) {
1810 lock_buffer(bh);
1811 } else if (!trylock_buffer(bh)) {
1812 redirty_page_for_writepage(wbc, page);
1813 continue;
1815 if (test_clear_buffer_dirty(bh)) {
1816 mark_buffer_async_write_endio(bh, handler);
1817 } else {
1818 unlock_buffer(bh);
1820 } while ((bh = bh->b_this_page) != head);
1823 * The page and its buffers are protected by PageWriteback(), so we can
1824 * drop the bh refcounts early.
1826 BUG_ON(PageWriteback(page));
1827 set_page_writeback(page);
1829 do {
1830 struct buffer_head *next = bh->b_this_page;
1831 if (buffer_async_write(bh)) {
1832 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1833 nr_underway++;
1835 bh = next;
1836 } while (bh != head);
1837 unlock_page(page);
1839 err = 0;
1840 done:
1841 if (nr_underway == 0) {
1843 * The page was marked dirty, but the buffers were
1844 * clean. Someone wrote them back by hand with
1845 * ll_rw_block/submit_bh. A rare case.
1847 end_page_writeback(page);
1850 * The page and buffer_heads can be released at any time from
1851 * here on.
1854 return err;
1856 recover:
1858 * ENOSPC, or some other error. We may already have added some
1859 * blocks to the file, so we need to write these out to avoid
1860 * exposing stale data.
1861 * The page is currently locked and not marked for writeback
1863 bh = head;
1864 /* Recovery: lock and submit the mapped buffers */
1865 do {
1866 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1867 !buffer_delay(bh)) {
1868 lock_buffer(bh);
1869 mark_buffer_async_write_endio(bh, handler);
1870 } else {
1872 * The buffer may have been set dirty during
1873 * attachment to a dirty page.
1875 clear_buffer_dirty(bh);
1877 } while ((bh = bh->b_this_page) != head);
1878 SetPageError(page);
1879 BUG_ON(PageWriteback(page));
1880 mapping_set_error(page->mapping, err);
1881 set_page_writeback(page);
1882 do {
1883 struct buffer_head *next = bh->b_this_page;
1884 if (buffer_async_write(bh)) {
1885 clear_buffer_dirty(bh);
1886 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1887 nr_underway++;
1889 bh = next;
1890 } while (bh != head);
1891 unlock_page(page);
1892 goto done;
1894 EXPORT_SYMBOL(__block_write_full_page);
1897 * If a page has any new buffers, zero them out here, and mark them uptodate
1898 * and dirty so they'll be written out (in order to prevent uninitialised
1899 * block data from leaking). And clear the new bit.
1901 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1903 unsigned int block_start, block_end;
1904 struct buffer_head *head, *bh;
1906 BUG_ON(!PageLocked(page));
1907 if (!page_has_buffers(page))
1908 return;
1910 bh = head = page_buffers(page);
1911 block_start = 0;
1912 do {
1913 block_end = block_start + bh->b_size;
1915 if (buffer_new(bh)) {
1916 if (block_end > from && block_start < to) {
1917 if (!PageUptodate(page)) {
1918 unsigned start, size;
1920 start = max(from, block_start);
1921 size = min(to, block_end) - start;
1923 zero_user(page, start, size);
1924 set_buffer_uptodate(bh);
1927 clear_buffer_new(bh);
1928 mark_buffer_dirty(bh);
1932 block_start = block_end;
1933 bh = bh->b_this_page;
1934 } while (bh != head);
1936 EXPORT_SYMBOL(page_zero_new_buffers);
1938 static void
1939 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1940 struct iomap *iomap)
1942 loff_t offset = block << inode->i_blkbits;
1944 bh->b_bdev = iomap->bdev;
1947 * Block points to offset in file we need to map, iomap contains
1948 * the offset at which the map starts. If the map ends before the
1949 * current block, then do not map the buffer and let the caller
1950 * handle it.
1952 BUG_ON(offset >= iomap->offset + iomap->length);
1954 switch (iomap->type) {
1955 case IOMAP_HOLE:
1957 * If the buffer is not up to date or beyond the current EOF,
1958 * we need to mark it as new to ensure sub-block zeroing is
1959 * executed if necessary.
1961 if (!buffer_uptodate(bh) ||
1962 (offset >= i_size_read(inode)))
1963 set_buffer_new(bh);
1964 break;
1965 case IOMAP_DELALLOC:
1966 if (!buffer_uptodate(bh) ||
1967 (offset >= i_size_read(inode)))
1968 set_buffer_new(bh);
1969 set_buffer_uptodate(bh);
1970 set_buffer_mapped(bh);
1971 set_buffer_delay(bh);
1972 break;
1973 case IOMAP_UNWRITTEN:
1975 * For unwritten regions, we always need to ensure that
1976 * sub-block writes cause the regions in the block we are not
1977 * writing to are zeroed. Set the buffer as new to ensure this.
1979 set_buffer_new(bh);
1980 set_buffer_unwritten(bh);
1981 /* FALLTHRU */
1982 case IOMAP_MAPPED:
1983 if (offset >= i_size_read(inode))
1984 set_buffer_new(bh);
1985 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1986 ((offset - iomap->offset) >> inode->i_blkbits);
1987 set_buffer_mapped(bh);
1988 break;
1992 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1993 get_block_t *get_block, struct iomap *iomap)
1995 unsigned from = pos & (PAGE_SIZE - 1);
1996 unsigned to = from + len;
1997 struct inode *inode = page->mapping->host;
1998 unsigned block_start, block_end;
1999 sector_t block;
2000 int err = 0;
2001 unsigned blocksize, bbits;
2002 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2004 BUG_ON(!PageLocked(page));
2005 BUG_ON(from > PAGE_SIZE);
2006 BUG_ON(to > PAGE_SIZE);
2007 BUG_ON(from > to);
2009 head = create_page_buffers(page, inode, 0);
2010 blocksize = head->b_size;
2011 bbits = block_size_bits(blocksize);
2013 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2015 for(bh = head, block_start = 0; bh != head || !block_start;
2016 block++, block_start=block_end, bh = bh->b_this_page) {
2017 block_end = block_start + blocksize;
2018 if (block_end <= from || block_start >= to) {
2019 if (PageUptodate(page)) {
2020 if (!buffer_uptodate(bh))
2021 set_buffer_uptodate(bh);
2023 continue;
2025 if (buffer_new(bh))
2026 clear_buffer_new(bh);
2027 if (!buffer_mapped(bh)) {
2028 WARN_ON(bh->b_size != blocksize);
2029 if (get_block) {
2030 err = get_block(inode, block, bh, 1);
2031 if (err)
2032 break;
2033 } else {
2034 iomap_to_bh(inode, block, bh, iomap);
2037 if (buffer_new(bh)) {
2038 clean_bdev_bh_alias(bh);
2039 if (PageUptodate(page)) {
2040 clear_buffer_new(bh);
2041 set_buffer_uptodate(bh);
2042 mark_buffer_dirty(bh);
2043 continue;
2045 if (block_end > to || block_start < from)
2046 zero_user_segments(page,
2047 to, block_end,
2048 block_start, from);
2049 continue;
2052 if (PageUptodate(page)) {
2053 if (!buffer_uptodate(bh))
2054 set_buffer_uptodate(bh);
2055 continue;
2057 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2058 !buffer_unwritten(bh) &&
2059 (block_start < from || block_end > to)) {
2060 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2061 *wait_bh++=bh;
2065 * If we issued read requests - let them complete.
2067 while(wait_bh > wait) {
2068 wait_on_buffer(*--wait_bh);
2069 if (!buffer_uptodate(*wait_bh))
2070 err = -EIO;
2072 if (unlikely(err))
2073 page_zero_new_buffers(page, from, to);
2074 return err;
2077 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2078 get_block_t *get_block)
2080 return __block_write_begin_int(page, pos, len, get_block, NULL);
2082 EXPORT_SYMBOL(__block_write_begin);
2084 static int __block_commit_write(struct inode *inode, struct page *page,
2085 unsigned from, unsigned to)
2087 unsigned block_start, block_end;
2088 int partial = 0;
2089 unsigned blocksize;
2090 struct buffer_head *bh, *head;
2092 bh = head = page_buffers(page);
2093 blocksize = bh->b_size;
2095 block_start = 0;
2096 do {
2097 block_end = block_start + blocksize;
2098 if (block_end <= from || block_start >= to) {
2099 if (!buffer_uptodate(bh))
2100 partial = 1;
2101 } else {
2102 set_buffer_uptodate(bh);
2103 mark_buffer_dirty(bh);
2105 clear_buffer_new(bh);
2107 block_start = block_end;
2108 bh = bh->b_this_page;
2109 } while (bh != head);
2112 * If this is a partial write which happened to make all buffers
2113 * uptodate then we can optimize away a bogus readpage() for
2114 * the next read(). Here we 'discover' whether the page went
2115 * uptodate as a result of this (potentially partial) write.
2117 if (!partial)
2118 SetPageUptodate(page);
2119 return 0;
2123 * block_write_begin takes care of the basic task of block allocation and
2124 * bringing partial write blocks uptodate first.
2126 * The filesystem needs to handle block truncation upon failure.
2128 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2129 unsigned flags, struct page **pagep, get_block_t *get_block)
2131 pgoff_t index = pos >> PAGE_SHIFT;
2132 struct page *page;
2133 int status;
2135 page = grab_cache_page_write_begin(mapping, index, flags);
2136 if (!page)
2137 return -ENOMEM;
2139 status = __block_write_begin(page, pos, len, get_block);
2140 if (unlikely(status)) {
2141 unlock_page(page);
2142 put_page(page);
2143 page = NULL;
2146 *pagep = page;
2147 return status;
2149 EXPORT_SYMBOL(block_write_begin);
2151 int block_write_end(struct file *file, struct address_space *mapping,
2152 loff_t pos, unsigned len, unsigned copied,
2153 struct page *page, void *fsdata)
2155 struct inode *inode = mapping->host;
2156 unsigned start;
2158 start = pos & (PAGE_SIZE - 1);
2160 if (unlikely(copied < len)) {
2162 * The buffers that were written will now be uptodate, so we
2163 * don't have to worry about a readpage reading them and
2164 * overwriting a partial write. However if we have encountered
2165 * a short write and only partially written into a buffer, it
2166 * will not be marked uptodate, so a readpage might come in and
2167 * destroy our partial write.
2169 * Do the simplest thing, and just treat any short write to a
2170 * non uptodate page as a zero-length write, and force the
2171 * caller to redo the whole thing.
2173 if (!PageUptodate(page))
2174 copied = 0;
2176 page_zero_new_buffers(page, start+copied, start+len);
2178 flush_dcache_page(page);
2180 /* This could be a short (even 0-length) commit */
2181 __block_commit_write(inode, page, start, start+copied);
2183 return copied;
2185 EXPORT_SYMBOL(block_write_end);
2187 int generic_write_end(struct file *file, struct address_space *mapping,
2188 loff_t pos, unsigned len, unsigned copied,
2189 struct page *page, void *fsdata)
2191 struct inode *inode = mapping->host;
2192 loff_t old_size = inode->i_size;
2193 int i_size_changed = 0;
2195 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2198 * No need to use i_size_read() here, the i_size
2199 * cannot change under us because we hold i_mutex.
2201 * But it's important to update i_size while still holding page lock:
2202 * page writeout could otherwise come in and zero beyond i_size.
2204 if (pos+copied > inode->i_size) {
2205 i_size_write(inode, pos+copied);
2206 i_size_changed = 1;
2209 unlock_page(page);
2210 put_page(page);
2212 if (old_size < pos)
2213 pagecache_isize_extended(inode, old_size, pos);
2215 * Don't mark the inode dirty under page lock. First, it unnecessarily
2216 * makes the holding time of page lock longer. Second, it forces lock
2217 * ordering of page lock and transaction start for journaling
2218 * filesystems.
2220 if (i_size_changed)
2221 mark_inode_dirty(inode);
2223 return copied;
2225 EXPORT_SYMBOL(generic_write_end);
2228 * block_is_partially_uptodate checks whether buffers within a page are
2229 * uptodate or not.
2231 * Returns true if all buffers which correspond to a file portion
2232 * we want to read are uptodate.
2234 int block_is_partially_uptodate(struct page *page, unsigned long from,
2235 unsigned long count)
2237 unsigned block_start, block_end, blocksize;
2238 unsigned to;
2239 struct buffer_head *bh, *head;
2240 int ret = 1;
2242 if (!page_has_buffers(page))
2243 return 0;
2245 head = page_buffers(page);
2246 blocksize = head->b_size;
2247 to = min_t(unsigned, PAGE_SIZE - from, count);
2248 to = from + to;
2249 if (from < blocksize && to > PAGE_SIZE - blocksize)
2250 return 0;
2252 bh = head;
2253 block_start = 0;
2254 do {
2255 block_end = block_start + blocksize;
2256 if (block_end > from && block_start < to) {
2257 if (!buffer_uptodate(bh)) {
2258 ret = 0;
2259 break;
2261 if (block_end >= to)
2262 break;
2264 block_start = block_end;
2265 bh = bh->b_this_page;
2266 } while (bh != head);
2268 return ret;
2270 EXPORT_SYMBOL(block_is_partially_uptodate);
2273 * Generic "read page" function for block devices that have the normal
2274 * get_block functionality. This is most of the block device filesystems.
2275 * Reads the page asynchronously --- the unlock_buffer() and
2276 * set/clear_buffer_uptodate() functions propagate buffer state into the
2277 * page struct once IO has completed.
2279 int block_read_full_page(struct page *page, get_block_t *get_block)
2281 struct inode *inode = page->mapping->host;
2282 sector_t iblock, lblock;
2283 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2284 unsigned int blocksize, bbits;
2285 int nr, i;
2286 int fully_mapped = 1;
2288 head = create_page_buffers(page, inode, 0);
2289 blocksize = head->b_size;
2290 bbits = block_size_bits(blocksize);
2292 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2293 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2294 bh = head;
2295 nr = 0;
2296 i = 0;
2298 do {
2299 if (buffer_uptodate(bh))
2300 continue;
2302 if (!buffer_mapped(bh)) {
2303 int err = 0;
2305 fully_mapped = 0;
2306 if (iblock < lblock) {
2307 WARN_ON(bh->b_size != blocksize);
2308 err = get_block(inode, iblock, bh, 0);
2309 if (err)
2310 SetPageError(page);
2312 if (!buffer_mapped(bh)) {
2313 zero_user(page, i * blocksize, blocksize);
2314 if (!err)
2315 set_buffer_uptodate(bh);
2316 continue;
2319 * get_block() might have updated the buffer
2320 * synchronously
2322 if (buffer_uptodate(bh))
2323 continue;
2325 arr[nr++] = bh;
2326 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2328 if (fully_mapped)
2329 SetPageMappedToDisk(page);
2331 if (!nr) {
2333 * All buffers are uptodate - we can set the page uptodate
2334 * as well. But not if get_block() returned an error.
2336 if (!PageError(page))
2337 SetPageUptodate(page);
2338 unlock_page(page);
2339 return 0;
2342 /* Stage two: lock the buffers */
2343 for (i = 0; i < nr; i++) {
2344 bh = arr[i];
2345 lock_buffer(bh);
2346 mark_buffer_async_read(bh);
2350 * Stage 3: start the IO. Check for uptodateness
2351 * inside the buffer lock in case another process reading
2352 * the underlying blockdev brought it uptodate (the sct fix).
2354 for (i = 0; i < nr; i++) {
2355 bh = arr[i];
2356 if (buffer_uptodate(bh))
2357 end_buffer_async_read(bh, 1);
2358 else
2359 submit_bh(REQ_OP_READ, 0, bh);
2361 return 0;
2363 EXPORT_SYMBOL(block_read_full_page);
2365 /* utility function for filesystems that need to do work on expanding
2366 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2367 * deal with the hole.
2369 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2371 struct address_space *mapping = inode->i_mapping;
2372 struct page *page;
2373 void *fsdata;
2374 int err;
2376 err = inode_newsize_ok(inode, size);
2377 if (err)
2378 goto out;
2380 err = pagecache_write_begin(NULL, mapping, size, 0,
2381 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2382 &page, &fsdata);
2383 if (err)
2384 goto out;
2386 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2387 BUG_ON(err > 0);
2389 out:
2390 return err;
2392 EXPORT_SYMBOL(generic_cont_expand_simple);
2394 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2395 loff_t pos, loff_t *bytes)
2397 struct inode *inode = mapping->host;
2398 unsigned blocksize = 1 << inode->i_blkbits;
2399 struct page *page;
2400 void *fsdata;
2401 pgoff_t index, curidx;
2402 loff_t curpos;
2403 unsigned zerofrom, offset, len;
2404 int err = 0;
2406 index = pos >> PAGE_SHIFT;
2407 offset = pos & ~PAGE_MASK;
2409 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2410 zerofrom = curpos & ~PAGE_MASK;
2411 if (zerofrom & (blocksize-1)) {
2412 *bytes |= (blocksize-1);
2413 (*bytes)++;
2415 len = PAGE_SIZE - zerofrom;
2417 err = pagecache_write_begin(file, mapping, curpos, len,
2418 AOP_FLAG_UNINTERRUPTIBLE,
2419 &page, &fsdata);
2420 if (err)
2421 goto out;
2422 zero_user(page, zerofrom, len);
2423 err = pagecache_write_end(file, mapping, curpos, len, len,
2424 page, fsdata);
2425 if (err < 0)
2426 goto out;
2427 BUG_ON(err != len);
2428 err = 0;
2430 balance_dirty_pages_ratelimited(mapping);
2432 if (unlikely(fatal_signal_pending(current))) {
2433 err = -EINTR;
2434 goto out;
2438 /* page covers the boundary, find the boundary offset */
2439 if (index == curidx) {
2440 zerofrom = curpos & ~PAGE_MASK;
2441 /* if we will expand the thing last block will be filled */
2442 if (offset <= zerofrom) {
2443 goto out;
2445 if (zerofrom & (blocksize-1)) {
2446 *bytes |= (blocksize-1);
2447 (*bytes)++;
2449 len = offset - zerofrom;
2451 err = pagecache_write_begin(file, mapping, curpos, len,
2452 AOP_FLAG_UNINTERRUPTIBLE,
2453 &page, &fsdata);
2454 if (err)
2455 goto out;
2456 zero_user(page, zerofrom, len);
2457 err = pagecache_write_end(file, mapping, curpos, len, len,
2458 page, fsdata);
2459 if (err < 0)
2460 goto out;
2461 BUG_ON(err != len);
2462 err = 0;
2464 out:
2465 return err;
2469 * For moronic filesystems that do not allow holes in file.
2470 * We may have to extend the file.
2472 int cont_write_begin(struct file *file, struct address_space *mapping,
2473 loff_t pos, unsigned len, unsigned flags,
2474 struct page **pagep, void **fsdata,
2475 get_block_t *get_block, loff_t *bytes)
2477 struct inode *inode = mapping->host;
2478 unsigned blocksize = 1 << inode->i_blkbits;
2479 unsigned zerofrom;
2480 int err;
2482 err = cont_expand_zero(file, mapping, pos, bytes);
2483 if (err)
2484 return err;
2486 zerofrom = *bytes & ~PAGE_MASK;
2487 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2488 *bytes |= (blocksize-1);
2489 (*bytes)++;
2492 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2494 EXPORT_SYMBOL(cont_write_begin);
2496 int block_commit_write(struct page *page, unsigned from, unsigned to)
2498 struct inode *inode = page->mapping->host;
2499 __block_commit_write(inode,page,from,to);
2500 return 0;
2502 EXPORT_SYMBOL(block_commit_write);
2505 * block_page_mkwrite() is not allowed to change the file size as it gets
2506 * called from a page fault handler when a page is first dirtied. Hence we must
2507 * be careful to check for EOF conditions here. We set the page up correctly
2508 * for a written page which means we get ENOSPC checking when writing into
2509 * holes and correct delalloc and unwritten extent mapping on filesystems that
2510 * support these features.
2512 * We are not allowed to take the i_mutex here so we have to play games to
2513 * protect against truncate races as the page could now be beyond EOF. Because
2514 * truncate writes the inode size before removing pages, once we have the
2515 * page lock we can determine safely if the page is beyond EOF. If it is not
2516 * beyond EOF, then the page is guaranteed safe against truncation until we
2517 * unlock the page.
2519 * Direct callers of this function should protect against filesystem freezing
2520 * using sb_start_pagefault() - sb_end_pagefault() functions.
2522 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2523 get_block_t get_block)
2525 struct page *page = vmf->page;
2526 struct inode *inode = file_inode(vma->vm_file);
2527 unsigned long end;
2528 loff_t size;
2529 int ret;
2531 lock_page(page);
2532 size = i_size_read(inode);
2533 if ((page->mapping != inode->i_mapping) ||
2534 (page_offset(page) > size)) {
2535 /* We overload EFAULT to mean page got truncated */
2536 ret = -EFAULT;
2537 goto out_unlock;
2540 /* page is wholly or partially inside EOF */
2541 if (((page->index + 1) << PAGE_SHIFT) > size)
2542 end = size & ~PAGE_MASK;
2543 else
2544 end = PAGE_SIZE;
2546 ret = __block_write_begin(page, 0, end, get_block);
2547 if (!ret)
2548 ret = block_commit_write(page, 0, end);
2550 if (unlikely(ret < 0))
2551 goto out_unlock;
2552 set_page_dirty(page);
2553 wait_for_stable_page(page);
2554 return 0;
2555 out_unlock:
2556 unlock_page(page);
2557 return ret;
2559 EXPORT_SYMBOL(block_page_mkwrite);
2562 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2563 * immediately, while under the page lock. So it needs a special end_io
2564 * handler which does not touch the bh after unlocking it.
2566 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2568 __end_buffer_read_notouch(bh, uptodate);
2572 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2573 * the page (converting it to circular linked list and taking care of page
2574 * dirty races).
2576 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2578 struct buffer_head *bh;
2580 BUG_ON(!PageLocked(page));
2582 spin_lock(&page->mapping->private_lock);
2583 bh = head;
2584 do {
2585 if (PageDirty(page))
2586 set_buffer_dirty(bh);
2587 if (!bh->b_this_page)
2588 bh->b_this_page = head;
2589 bh = bh->b_this_page;
2590 } while (bh != head);
2591 attach_page_buffers(page, head);
2592 spin_unlock(&page->mapping->private_lock);
2596 * On entry, the page is fully not uptodate.
2597 * On exit the page is fully uptodate in the areas outside (from,to)
2598 * The filesystem needs to handle block truncation upon failure.
2600 int nobh_write_begin(struct address_space *mapping,
2601 loff_t pos, unsigned len, unsigned flags,
2602 struct page **pagep, void **fsdata,
2603 get_block_t *get_block)
2605 struct inode *inode = mapping->host;
2606 const unsigned blkbits = inode->i_blkbits;
2607 const unsigned blocksize = 1 << blkbits;
2608 struct buffer_head *head, *bh;
2609 struct page *page;
2610 pgoff_t index;
2611 unsigned from, to;
2612 unsigned block_in_page;
2613 unsigned block_start, block_end;
2614 sector_t block_in_file;
2615 int nr_reads = 0;
2616 int ret = 0;
2617 int is_mapped_to_disk = 1;
2619 index = pos >> PAGE_SHIFT;
2620 from = pos & (PAGE_SIZE - 1);
2621 to = from + len;
2623 page = grab_cache_page_write_begin(mapping, index, flags);
2624 if (!page)
2625 return -ENOMEM;
2626 *pagep = page;
2627 *fsdata = NULL;
2629 if (page_has_buffers(page)) {
2630 ret = __block_write_begin(page, pos, len, get_block);
2631 if (unlikely(ret))
2632 goto out_release;
2633 return ret;
2636 if (PageMappedToDisk(page))
2637 return 0;
2640 * Allocate buffers so that we can keep track of state, and potentially
2641 * attach them to the page if an error occurs. In the common case of
2642 * no error, they will just be freed again without ever being attached
2643 * to the page (which is all OK, because we're under the page lock).
2645 * Be careful: the buffer linked list is a NULL terminated one, rather
2646 * than the circular one we're used to.
2648 head = alloc_page_buffers(page, blocksize, 0);
2649 if (!head) {
2650 ret = -ENOMEM;
2651 goto out_release;
2654 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2657 * We loop across all blocks in the page, whether or not they are
2658 * part of the affected region. This is so we can discover if the
2659 * page is fully mapped-to-disk.
2661 for (block_start = 0, block_in_page = 0, bh = head;
2662 block_start < PAGE_SIZE;
2663 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2664 int create;
2666 block_end = block_start + blocksize;
2667 bh->b_state = 0;
2668 create = 1;
2669 if (block_start >= to)
2670 create = 0;
2671 ret = get_block(inode, block_in_file + block_in_page,
2672 bh, create);
2673 if (ret)
2674 goto failed;
2675 if (!buffer_mapped(bh))
2676 is_mapped_to_disk = 0;
2677 if (buffer_new(bh))
2678 clean_bdev_bh_alias(bh);
2679 if (PageUptodate(page)) {
2680 set_buffer_uptodate(bh);
2681 continue;
2683 if (buffer_new(bh) || !buffer_mapped(bh)) {
2684 zero_user_segments(page, block_start, from,
2685 to, block_end);
2686 continue;
2688 if (buffer_uptodate(bh))
2689 continue; /* reiserfs does this */
2690 if (block_start < from || block_end > to) {
2691 lock_buffer(bh);
2692 bh->b_end_io = end_buffer_read_nobh;
2693 submit_bh(REQ_OP_READ, 0, bh);
2694 nr_reads++;
2698 if (nr_reads) {
2700 * The page is locked, so these buffers are protected from
2701 * any VM or truncate activity. Hence we don't need to care
2702 * for the buffer_head refcounts.
2704 for (bh = head; bh; bh = bh->b_this_page) {
2705 wait_on_buffer(bh);
2706 if (!buffer_uptodate(bh))
2707 ret = -EIO;
2709 if (ret)
2710 goto failed;
2713 if (is_mapped_to_disk)
2714 SetPageMappedToDisk(page);
2716 *fsdata = head; /* to be released by nobh_write_end */
2718 return 0;
2720 failed:
2721 BUG_ON(!ret);
2723 * Error recovery is a bit difficult. We need to zero out blocks that
2724 * were newly allocated, and dirty them to ensure they get written out.
2725 * Buffers need to be attached to the page at this point, otherwise
2726 * the handling of potential IO errors during writeout would be hard
2727 * (could try doing synchronous writeout, but what if that fails too?)
2729 attach_nobh_buffers(page, head);
2730 page_zero_new_buffers(page, from, to);
2732 out_release:
2733 unlock_page(page);
2734 put_page(page);
2735 *pagep = NULL;
2737 return ret;
2739 EXPORT_SYMBOL(nobh_write_begin);
2741 int nobh_write_end(struct file *file, struct address_space *mapping,
2742 loff_t pos, unsigned len, unsigned copied,
2743 struct page *page, void *fsdata)
2745 struct inode *inode = page->mapping->host;
2746 struct buffer_head *head = fsdata;
2747 struct buffer_head *bh;
2748 BUG_ON(fsdata != NULL && page_has_buffers(page));
2750 if (unlikely(copied < len) && head)
2751 attach_nobh_buffers(page, head);
2752 if (page_has_buffers(page))
2753 return generic_write_end(file, mapping, pos, len,
2754 copied, page, fsdata);
2756 SetPageUptodate(page);
2757 set_page_dirty(page);
2758 if (pos+copied > inode->i_size) {
2759 i_size_write(inode, pos+copied);
2760 mark_inode_dirty(inode);
2763 unlock_page(page);
2764 put_page(page);
2766 while (head) {
2767 bh = head;
2768 head = head->b_this_page;
2769 free_buffer_head(bh);
2772 return copied;
2774 EXPORT_SYMBOL(nobh_write_end);
2777 * nobh_writepage() - based on block_full_write_page() except
2778 * that it tries to operate without attaching bufferheads to
2779 * the page.
2781 int nobh_writepage(struct page *page, get_block_t *get_block,
2782 struct writeback_control *wbc)
2784 struct inode * const inode = page->mapping->host;
2785 loff_t i_size = i_size_read(inode);
2786 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2787 unsigned offset;
2788 int ret;
2790 /* Is the page fully inside i_size? */
2791 if (page->index < end_index)
2792 goto out;
2794 /* Is the page fully outside i_size? (truncate in progress) */
2795 offset = i_size & (PAGE_SIZE-1);
2796 if (page->index >= end_index+1 || !offset) {
2798 * The page may have dirty, unmapped buffers. For example,
2799 * they may have been added in ext3_writepage(). Make them
2800 * freeable here, so the page does not leak.
2802 #if 0
2803 /* Not really sure about this - do we need this ? */
2804 if (page->mapping->a_ops->invalidatepage)
2805 page->mapping->a_ops->invalidatepage(page, offset);
2806 #endif
2807 unlock_page(page);
2808 return 0; /* don't care */
2812 * The page straddles i_size. It must be zeroed out on each and every
2813 * writepage invocation because it may be mmapped. "A file is mapped
2814 * in multiples of the page size. For a file that is not a multiple of
2815 * the page size, the remaining memory is zeroed when mapped, and
2816 * writes to that region are not written out to the file."
2818 zero_user_segment(page, offset, PAGE_SIZE);
2819 out:
2820 ret = mpage_writepage(page, get_block, wbc);
2821 if (ret == -EAGAIN)
2822 ret = __block_write_full_page(inode, page, get_block, wbc,
2823 end_buffer_async_write);
2824 return ret;
2826 EXPORT_SYMBOL(nobh_writepage);
2828 int nobh_truncate_page(struct address_space *mapping,
2829 loff_t from, get_block_t *get_block)
2831 pgoff_t index = from >> PAGE_SHIFT;
2832 unsigned offset = from & (PAGE_SIZE-1);
2833 unsigned blocksize;
2834 sector_t iblock;
2835 unsigned length, pos;
2836 struct inode *inode = mapping->host;
2837 struct page *page;
2838 struct buffer_head map_bh;
2839 int err;
2841 blocksize = 1 << inode->i_blkbits;
2842 length = offset & (blocksize - 1);
2844 /* Block boundary? Nothing to do */
2845 if (!length)
2846 return 0;
2848 length = blocksize - length;
2849 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2851 page = grab_cache_page(mapping, index);
2852 err = -ENOMEM;
2853 if (!page)
2854 goto out;
2856 if (page_has_buffers(page)) {
2857 has_buffers:
2858 unlock_page(page);
2859 put_page(page);
2860 return block_truncate_page(mapping, from, get_block);
2863 /* Find the buffer that contains "offset" */
2864 pos = blocksize;
2865 while (offset >= pos) {
2866 iblock++;
2867 pos += blocksize;
2870 map_bh.b_size = blocksize;
2871 map_bh.b_state = 0;
2872 err = get_block(inode, iblock, &map_bh, 0);
2873 if (err)
2874 goto unlock;
2875 /* unmapped? It's a hole - nothing to do */
2876 if (!buffer_mapped(&map_bh))
2877 goto unlock;
2879 /* Ok, it's mapped. Make sure it's up-to-date */
2880 if (!PageUptodate(page)) {
2881 err = mapping->a_ops->readpage(NULL, page);
2882 if (err) {
2883 put_page(page);
2884 goto out;
2886 lock_page(page);
2887 if (!PageUptodate(page)) {
2888 err = -EIO;
2889 goto unlock;
2891 if (page_has_buffers(page))
2892 goto has_buffers;
2894 zero_user(page, offset, length);
2895 set_page_dirty(page);
2896 err = 0;
2898 unlock:
2899 unlock_page(page);
2900 put_page(page);
2901 out:
2902 return err;
2904 EXPORT_SYMBOL(nobh_truncate_page);
2906 int block_truncate_page(struct address_space *mapping,
2907 loff_t from, get_block_t *get_block)
2909 pgoff_t index = from >> PAGE_SHIFT;
2910 unsigned offset = from & (PAGE_SIZE-1);
2911 unsigned blocksize;
2912 sector_t iblock;
2913 unsigned length, pos;
2914 struct inode *inode = mapping->host;
2915 struct page *page;
2916 struct buffer_head *bh;
2917 int err;
2919 blocksize = 1 << inode->i_blkbits;
2920 length = offset & (blocksize - 1);
2922 /* Block boundary? Nothing to do */
2923 if (!length)
2924 return 0;
2926 length = blocksize - length;
2927 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2929 page = grab_cache_page(mapping, index);
2930 err = -ENOMEM;
2931 if (!page)
2932 goto out;
2934 if (!page_has_buffers(page))
2935 create_empty_buffers(page, blocksize, 0);
2937 /* Find the buffer that contains "offset" */
2938 bh = page_buffers(page);
2939 pos = blocksize;
2940 while (offset >= pos) {
2941 bh = bh->b_this_page;
2942 iblock++;
2943 pos += blocksize;
2946 err = 0;
2947 if (!buffer_mapped(bh)) {
2948 WARN_ON(bh->b_size != blocksize);
2949 err = get_block(inode, iblock, bh, 0);
2950 if (err)
2951 goto unlock;
2952 /* unmapped? It's a hole - nothing to do */
2953 if (!buffer_mapped(bh))
2954 goto unlock;
2957 /* Ok, it's mapped. Make sure it's up-to-date */
2958 if (PageUptodate(page))
2959 set_buffer_uptodate(bh);
2961 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2962 err = -EIO;
2963 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2964 wait_on_buffer(bh);
2965 /* Uhhuh. Read error. Complain and punt. */
2966 if (!buffer_uptodate(bh))
2967 goto unlock;
2970 zero_user(page, offset, length);
2971 mark_buffer_dirty(bh);
2972 err = 0;
2974 unlock:
2975 unlock_page(page);
2976 put_page(page);
2977 out:
2978 return err;
2980 EXPORT_SYMBOL(block_truncate_page);
2983 * The generic ->writepage function for buffer-backed address_spaces
2985 int block_write_full_page(struct page *page, get_block_t *get_block,
2986 struct writeback_control *wbc)
2988 struct inode * const inode = page->mapping->host;
2989 loff_t i_size = i_size_read(inode);
2990 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2991 unsigned offset;
2993 /* Is the page fully inside i_size? */
2994 if (page->index < end_index)
2995 return __block_write_full_page(inode, page, get_block, wbc,
2996 end_buffer_async_write);
2998 /* Is the page fully outside i_size? (truncate in progress) */
2999 offset = i_size & (PAGE_SIZE-1);
3000 if (page->index >= end_index+1 || !offset) {
3002 * The page may have dirty, unmapped buffers. For example,
3003 * they may have been added in ext3_writepage(). Make them
3004 * freeable here, so the page does not leak.
3006 do_invalidatepage(page, 0, PAGE_SIZE);
3007 unlock_page(page);
3008 return 0; /* don't care */
3012 * The page straddles i_size. It must be zeroed out on each and every
3013 * writepage invocation because it may be mmapped. "A file is mapped
3014 * in multiples of the page size. For a file that is not a multiple of
3015 * the page size, the remaining memory is zeroed when mapped, and
3016 * writes to that region are not written out to the file."
3018 zero_user_segment(page, offset, PAGE_SIZE);
3019 return __block_write_full_page(inode, page, get_block, wbc,
3020 end_buffer_async_write);
3022 EXPORT_SYMBOL(block_write_full_page);
3024 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3025 get_block_t *get_block)
3027 struct buffer_head tmp;
3028 struct inode *inode = mapping->host;
3029 tmp.b_state = 0;
3030 tmp.b_blocknr = 0;
3031 tmp.b_size = 1 << inode->i_blkbits;
3032 get_block(inode, block, &tmp, 0);
3033 return tmp.b_blocknr;
3035 EXPORT_SYMBOL(generic_block_bmap);
3037 static void end_bio_bh_io_sync(struct bio *bio)
3039 struct buffer_head *bh = bio->bi_private;
3041 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3042 set_bit(BH_Quiet, &bh->b_state);
3044 bh->b_end_io(bh, !bio->bi_error);
3045 bio_put(bio);
3049 * This allows us to do IO even on the odd last sectors
3050 * of a device, even if the block size is some multiple
3051 * of the physical sector size.
3053 * We'll just truncate the bio to the size of the device,
3054 * and clear the end of the buffer head manually.
3056 * Truly out-of-range accesses will turn into actual IO
3057 * errors, this only handles the "we need to be able to
3058 * do IO at the final sector" case.
3060 void guard_bio_eod(int op, struct bio *bio)
3062 sector_t maxsector;
3063 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3064 unsigned truncated_bytes;
3066 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3067 if (!maxsector)
3068 return;
3071 * If the *whole* IO is past the end of the device,
3072 * let it through, and the IO layer will turn it into
3073 * an EIO.
3075 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3076 return;
3078 maxsector -= bio->bi_iter.bi_sector;
3079 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3080 return;
3082 /* Uhhuh. We've got a bio that straddles the device size! */
3083 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3085 /* Truncate the bio.. */
3086 bio->bi_iter.bi_size -= truncated_bytes;
3087 bvec->bv_len -= truncated_bytes;
3089 /* ..and clear the end of the buffer for reads */
3090 if (op == REQ_OP_READ) {
3091 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3092 truncated_bytes);
3096 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3097 unsigned long bio_flags, struct writeback_control *wbc)
3099 struct bio *bio;
3101 BUG_ON(!buffer_locked(bh));
3102 BUG_ON(!buffer_mapped(bh));
3103 BUG_ON(!bh->b_end_io);
3104 BUG_ON(buffer_delay(bh));
3105 BUG_ON(buffer_unwritten(bh));
3108 * Only clear out a write error when rewriting
3110 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3111 clear_buffer_write_io_error(bh);
3114 * from here on down, it's all bio -- do the initial mapping,
3115 * submit_bio -> generic_make_request may further map this bio around
3117 bio = bio_alloc(GFP_NOIO, 1);
3119 if (wbc) {
3120 wbc_init_bio(wbc, bio);
3121 wbc_account_io(wbc, bh->b_page, bh->b_size);
3124 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3125 bio->bi_bdev = bh->b_bdev;
3127 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3128 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3130 bio->bi_end_io = end_bio_bh_io_sync;
3131 bio->bi_private = bh;
3132 bio->bi_flags |= bio_flags;
3134 /* Take care of bh's that straddle the end of the device */
3135 guard_bio_eod(op, bio);
3137 if (buffer_meta(bh))
3138 op_flags |= REQ_META;
3139 if (buffer_prio(bh))
3140 op_flags |= REQ_PRIO;
3141 bio_set_op_attrs(bio, op, op_flags);
3143 submit_bio(bio);
3144 return 0;
3147 int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3148 unsigned long bio_flags)
3150 return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3152 EXPORT_SYMBOL_GPL(_submit_bh);
3154 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3156 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3158 EXPORT_SYMBOL(submit_bh);
3161 * ll_rw_block: low-level access to block devices (DEPRECATED)
3162 * @op: whether to %READ or %WRITE
3163 * @op_flags: req_flag_bits
3164 * @nr: number of &struct buffer_heads in the array
3165 * @bhs: array of pointers to &struct buffer_head
3167 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3168 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3169 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3170 * %REQ_RAHEAD.
3172 * This function drops any buffer that it cannot get a lock on (with the
3173 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3174 * request, and any buffer that appears to be up-to-date when doing read
3175 * request. Further it marks as clean buffers that are processed for
3176 * writing (the buffer cache won't assume that they are actually clean
3177 * until the buffer gets unlocked).
3179 * ll_rw_block sets b_end_io to simple completion handler that marks
3180 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3181 * any waiters.
3183 * All of the buffers must be for the same device, and must also be a
3184 * multiple of the current approved size for the device.
3186 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3188 int i;
3190 for (i = 0; i < nr; i++) {
3191 struct buffer_head *bh = bhs[i];
3193 if (!trylock_buffer(bh))
3194 continue;
3195 if (op == WRITE) {
3196 if (test_clear_buffer_dirty(bh)) {
3197 bh->b_end_io = end_buffer_write_sync;
3198 get_bh(bh);
3199 submit_bh(op, op_flags, bh);
3200 continue;
3202 } else {
3203 if (!buffer_uptodate(bh)) {
3204 bh->b_end_io = end_buffer_read_sync;
3205 get_bh(bh);
3206 submit_bh(op, op_flags, bh);
3207 continue;
3210 unlock_buffer(bh);
3213 EXPORT_SYMBOL(ll_rw_block);
3215 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3217 lock_buffer(bh);
3218 if (!test_clear_buffer_dirty(bh)) {
3219 unlock_buffer(bh);
3220 return;
3222 bh->b_end_io = end_buffer_write_sync;
3223 get_bh(bh);
3224 submit_bh(REQ_OP_WRITE, op_flags, bh);
3226 EXPORT_SYMBOL(write_dirty_buffer);
3229 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3230 * and then start new I/O and then wait upon it. The caller must have a ref on
3231 * the buffer_head.
3233 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3235 int ret = 0;
3237 WARN_ON(atomic_read(&bh->b_count) < 1);
3238 lock_buffer(bh);
3239 if (test_clear_buffer_dirty(bh)) {
3240 get_bh(bh);
3241 bh->b_end_io = end_buffer_write_sync;
3242 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3243 wait_on_buffer(bh);
3244 if (!ret && !buffer_uptodate(bh))
3245 ret = -EIO;
3246 } else {
3247 unlock_buffer(bh);
3249 return ret;
3251 EXPORT_SYMBOL(__sync_dirty_buffer);
3253 int sync_dirty_buffer(struct buffer_head *bh)
3255 return __sync_dirty_buffer(bh, REQ_SYNC);
3257 EXPORT_SYMBOL(sync_dirty_buffer);
3260 * try_to_free_buffers() checks if all the buffers on this particular page
3261 * are unused, and releases them if so.
3263 * Exclusion against try_to_free_buffers may be obtained by either
3264 * locking the page or by holding its mapping's private_lock.
3266 * If the page is dirty but all the buffers are clean then we need to
3267 * be sure to mark the page clean as well. This is because the page
3268 * may be against a block device, and a later reattachment of buffers
3269 * to a dirty page will set *all* buffers dirty. Which would corrupt
3270 * filesystem data on the same device.
3272 * The same applies to regular filesystem pages: if all the buffers are
3273 * clean then we set the page clean and proceed. To do that, we require
3274 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3275 * private_lock.
3277 * try_to_free_buffers() is non-blocking.
3279 static inline int buffer_busy(struct buffer_head *bh)
3281 return atomic_read(&bh->b_count) |
3282 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3285 static int
3286 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3288 struct buffer_head *head = page_buffers(page);
3289 struct buffer_head *bh;
3291 bh = head;
3292 do {
3293 if (buffer_write_io_error(bh) && page->mapping)
3294 mapping_set_error(page->mapping, -EIO);
3295 if (buffer_busy(bh))
3296 goto failed;
3297 bh = bh->b_this_page;
3298 } while (bh != head);
3300 do {
3301 struct buffer_head *next = bh->b_this_page;
3303 if (bh->b_assoc_map)
3304 __remove_assoc_queue(bh);
3305 bh = next;
3306 } while (bh != head);
3307 *buffers_to_free = head;
3308 __clear_page_buffers(page);
3309 return 1;
3310 failed:
3311 return 0;
3314 int try_to_free_buffers(struct page *page)
3316 struct address_space * const mapping = page->mapping;
3317 struct buffer_head *buffers_to_free = NULL;
3318 int ret = 0;
3320 BUG_ON(!PageLocked(page));
3321 if (PageWriteback(page))
3322 return 0;
3324 if (mapping == NULL) { /* can this still happen? */
3325 ret = drop_buffers(page, &buffers_to_free);
3326 goto out;
3329 spin_lock(&mapping->private_lock);
3330 ret = drop_buffers(page, &buffers_to_free);
3333 * If the filesystem writes its buffers by hand (eg ext3)
3334 * then we can have clean buffers against a dirty page. We
3335 * clean the page here; otherwise the VM will never notice
3336 * that the filesystem did any IO at all.
3338 * Also, during truncate, discard_buffer will have marked all
3339 * the page's buffers clean. We discover that here and clean
3340 * the page also.
3342 * private_lock must be held over this entire operation in order
3343 * to synchronise against __set_page_dirty_buffers and prevent the
3344 * dirty bit from being lost.
3346 if (ret)
3347 cancel_dirty_page(page);
3348 spin_unlock(&mapping->private_lock);
3349 out:
3350 if (buffers_to_free) {
3351 struct buffer_head *bh = buffers_to_free;
3353 do {
3354 struct buffer_head *next = bh->b_this_page;
3355 free_buffer_head(bh);
3356 bh = next;
3357 } while (bh != buffers_to_free);
3359 return ret;
3361 EXPORT_SYMBOL(try_to_free_buffers);
3364 * There are no bdflush tunables left. But distributions are
3365 * still running obsolete flush daemons, so we terminate them here.
3367 * Use of bdflush() is deprecated and will be removed in a future kernel.
3368 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3370 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3372 static int msg_count;
3374 if (!capable(CAP_SYS_ADMIN))
3375 return -EPERM;
3377 if (msg_count < 5) {
3378 msg_count++;
3379 printk(KERN_INFO
3380 "warning: process `%s' used the obsolete bdflush"
3381 " system call\n", current->comm);
3382 printk(KERN_INFO "Fix your initscripts?\n");
3385 if (func == 1)
3386 do_exit(0);
3387 return 0;
3391 * Buffer-head allocation
3393 static struct kmem_cache *bh_cachep __read_mostly;
3396 * Once the number of bh's in the machine exceeds this level, we start
3397 * stripping them in writeback.
3399 static unsigned long max_buffer_heads;
3401 int buffer_heads_over_limit;
3403 struct bh_accounting {
3404 int nr; /* Number of live bh's */
3405 int ratelimit; /* Limit cacheline bouncing */
3408 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3410 static void recalc_bh_state(void)
3412 int i;
3413 int tot = 0;
3415 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3416 return;
3417 __this_cpu_write(bh_accounting.ratelimit, 0);
3418 for_each_online_cpu(i)
3419 tot += per_cpu(bh_accounting, i).nr;
3420 buffer_heads_over_limit = (tot > max_buffer_heads);
3423 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3425 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3426 if (ret) {
3427 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3428 preempt_disable();
3429 __this_cpu_inc(bh_accounting.nr);
3430 recalc_bh_state();
3431 preempt_enable();
3433 return ret;
3435 EXPORT_SYMBOL(alloc_buffer_head);
3437 void free_buffer_head(struct buffer_head *bh)
3439 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3440 kmem_cache_free(bh_cachep, bh);
3441 preempt_disable();
3442 __this_cpu_dec(bh_accounting.nr);
3443 recalc_bh_state();
3444 preempt_enable();
3446 EXPORT_SYMBOL(free_buffer_head);
3448 static int buffer_exit_cpu_dead(unsigned int cpu)
3450 int i;
3451 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3453 for (i = 0; i < BH_LRU_SIZE; i++) {
3454 brelse(b->bhs[i]);
3455 b->bhs[i] = NULL;
3457 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3458 per_cpu(bh_accounting, cpu).nr = 0;
3459 return 0;
3463 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3464 * @bh: struct buffer_head
3466 * Return true if the buffer is up-to-date and false,
3467 * with the buffer locked, if not.
3469 int bh_uptodate_or_lock(struct buffer_head *bh)
3471 if (!buffer_uptodate(bh)) {
3472 lock_buffer(bh);
3473 if (!buffer_uptodate(bh))
3474 return 0;
3475 unlock_buffer(bh);
3477 return 1;
3479 EXPORT_SYMBOL(bh_uptodate_or_lock);
3482 * bh_submit_read - Submit a locked buffer for reading
3483 * @bh: struct buffer_head
3485 * Returns zero on success and -EIO on error.
3487 int bh_submit_read(struct buffer_head *bh)
3489 BUG_ON(!buffer_locked(bh));
3491 if (buffer_uptodate(bh)) {
3492 unlock_buffer(bh);
3493 return 0;
3496 get_bh(bh);
3497 bh->b_end_io = end_buffer_read_sync;
3498 submit_bh(REQ_OP_READ, 0, bh);
3499 wait_on_buffer(bh);
3500 if (buffer_uptodate(bh))
3501 return 0;
3502 return -EIO;
3504 EXPORT_SYMBOL(bh_submit_read);
3506 void __init buffer_init(void)
3508 unsigned long nrpages;
3509 int ret;
3511 bh_cachep = kmem_cache_create("buffer_head",
3512 sizeof(struct buffer_head), 0,
3513 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3514 SLAB_MEM_SPREAD),
3515 NULL);
3518 * Limit the bh occupancy to 10% of ZONE_NORMAL
3520 nrpages = (nr_free_buffer_pages() * 10) / 100;
3521 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3522 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3523 NULL, buffer_exit_cpu_dead);
3524 WARN_ON(ret < 0);