sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / fs / exofs / ore.c
blob8bb72807e70d46ae2ab32e7e8d29de4d034454f5
1 /*
2 * Copyright (C) 2005, 2006
3 * Avishay Traeger (avishay@gmail.com)
4 * Copyright (C) 2008, 2009
5 * Boaz Harrosh <ooo@electrozaur.com>
7 * This file is part of exofs.
9 * exofs is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation. Since it is based on ext2, and the only
12 * valid version of GPL for the Linux kernel is version 2, the only valid
13 * version of GPL for exofs is version 2.
15 * exofs is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with exofs; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/slab.h>
26 #include <linux/module.h>
27 #include <asm/div64.h>
28 #include <linux/lcm.h>
30 #include "ore_raid.h"
32 MODULE_AUTHOR("Boaz Harrosh <ooo@electrozaur.com>");
33 MODULE_DESCRIPTION("Objects Raid Engine ore.ko");
34 MODULE_LICENSE("GPL");
36 /* ore_verify_layout does a couple of things:
37 * 1. Given a minimum number of needed parameters fixes up the rest of the
38 * members to be operatonals for the ore. The needed parameters are those
39 * that are defined by the pnfs-objects layout STD.
40 * 2. Check to see if the current ore code actually supports these parameters
41 * for example stripe_unit must be a multple of the system PAGE_SIZE,
42 * and etc...
43 * 3. Cache some havily used calculations that will be needed by users.
46 enum { BIO_MAX_PAGES_KMALLOC =
47 (PAGE_SIZE - sizeof(struct bio)) / sizeof(struct bio_vec),};
49 int ore_verify_layout(unsigned total_comps, struct ore_layout *layout)
51 u64 stripe_length;
53 switch (layout->raid_algorithm) {
54 case PNFS_OSD_RAID_0:
55 layout->parity = 0;
56 break;
57 case PNFS_OSD_RAID_5:
58 layout->parity = 1;
59 break;
60 case PNFS_OSD_RAID_PQ:
61 layout->parity = 2;
62 break;
63 case PNFS_OSD_RAID_4:
64 default:
65 ORE_ERR("Only RAID_0/5/6 for now received-enum=%d\n",
66 layout->raid_algorithm);
67 return -EINVAL;
69 if (0 != (layout->stripe_unit & ~PAGE_MASK)) {
70 ORE_ERR("Stripe Unit(0x%llx)"
71 " must be Multples of PAGE_SIZE(0x%lx)\n",
72 _LLU(layout->stripe_unit), PAGE_SIZE);
73 return -EINVAL;
75 if (layout->group_width) {
76 if (!layout->group_depth) {
77 ORE_ERR("group_depth == 0 && group_width != 0\n");
78 return -EINVAL;
80 if (total_comps < (layout->group_width * layout->mirrors_p1)) {
81 ORE_ERR("Data Map wrong, "
82 "numdevs=%d < group_width=%d * mirrors=%d\n",
83 total_comps, layout->group_width,
84 layout->mirrors_p1);
85 return -EINVAL;
87 layout->group_count = total_comps / layout->mirrors_p1 /
88 layout->group_width;
89 } else {
90 if (layout->group_depth) {
91 printk(KERN_NOTICE "Warning: group_depth ignored "
92 "group_width == 0 && group_depth == %lld\n",
93 _LLU(layout->group_depth));
95 layout->group_width = total_comps / layout->mirrors_p1;
96 layout->group_depth = -1;
97 layout->group_count = 1;
100 stripe_length = (u64)layout->group_width * layout->stripe_unit;
101 if (stripe_length >= (1ULL << 32)) {
102 ORE_ERR("Stripe_length(0x%llx) >= 32bit is not supported\n",
103 _LLU(stripe_length));
104 return -EINVAL;
107 layout->max_io_length =
108 (BIO_MAX_PAGES_KMALLOC * PAGE_SIZE - layout->stripe_unit) *
109 (layout->group_width - layout->parity);
110 if (layout->parity) {
111 unsigned stripe_length =
112 (layout->group_width - layout->parity) *
113 layout->stripe_unit;
115 layout->max_io_length /= stripe_length;
116 layout->max_io_length *= stripe_length;
118 ORE_DBGMSG("max_io_length=0x%lx\n", layout->max_io_length);
120 return 0;
122 EXPORT_SYMBOL(ore_verify_layout);
124 static u8 *_ios_cred(struct ore_io_state *ios, unsigned index)
126 return ios->oc->comps[index & ios->oc->single_comp].cred;
129 static struct osd_obj_id *_ios_obj(struct ore_io_state *ios, unsigned index)
131 return &ios->oc->comps[index & ios->oc->single_comp].obj;
134 static struct osd_dev *_ios_od(struct ore_io_state *ios, unsigned index)
136 ORE_DBGMSG2("oc->first_dev=%d oc->numdevs=%d i=%d oc->ods=%p\n",
137 ios->oc->first_dev, ios->oc->numdevs, index,
138 ios->oc->ods);
140 return ore_comp_dev(ios->oc, index);
143 int _ore_get_io_state(struct ore_layout *layout,
144 struct ore_components *oc, unsigned numdevs,
145 unsigned sgs_per_dev, unsigned num_par_pages,
146 struct ore_io_state **pios)
148 struct ore_io_state *ios;
149 struct page **pages;
150 struct osd_sg_entry *sgilist;
151 struct __alloc_all_io_state {
152 struct ore_io_state ios;
153 struct ore_per_dev_state per_dev[numdevs];
154 union {
155 struct osd_sg_entry sglist[sgs_per_dev * numdevs];
156 struct page *pages[num_par_pages];
158 } *_aios;
160 if (likely(sizeof(*_aios) <= PAGE_SIZE)) {
161 _aios = kzalloc(sizeof(*_aios), GFP_KERNEL);
162 if (unlikely(!_aios)) {
163 ORE_DBGMSG("Failed kzalloc bytes=%zd\n",
164 sizeof(*_aios));
165 *pios = NULL;
166 return -ENOMEM;
168 pages = num_par_pages ? _aios->pages : NULL;
169 sgilist = sgs_per_dev ? _aios->sglist : NULL;
170 ios = &_aios->ios;
171 } else {
172 struct __alloc_small_io_state {
173 struct ore_io_state ios;
174 struct ore_per_dev_state per_dev[numdevs];
175 } *_aio_small;
176 union __extra_part {
177 struct osd_sg_entry sglist[sgs_per_dev * numdevs];
178 struct page *pages[num_par_pages];
179 } *extra_part;
181 _aio_small = kzalloc(sizeof(*_aio_small), GFP_KERNEL);
182 if (unlikely(!_aio_small)) {
183 ORE_DBGMSG("Failed alloc first part bytes=%zd\n",
184 sizeof(*_aio_small));
185 *pios = NULL;
186 return -ENOMEM;
188 extra_part = kzalloc(sizeof(*extra_part), GFP_KERNEL);
189 if (unlikely(!extra_part)) {
190 ORE_DBGMSG("Failed alloc second part bytes=%zd\n",
191 sizeof(*extra_part));
192 kfree(_aio_small);
193 *pios = NULL;
194 return -ENOMEM;
197 pages = num_par_pages ? extra_part->pages : NULL;
198 sgilist = sgs_per_dev ? extra_part->sglist : NULL;
199 /* In this case the per_dev[0].sgilist holds the pointer to
200 * be freed
202 ios = &_aio_small->ios;
203 ios->extra_part_alloc = true;
206 if (pages) {
207 ios->parity_pages = pages;
208 ios->max_par_pages = num_par_pages;
210 if (sgilist) {
211 unsigned d;
213 for (d = 0; d < numdevs; ++d) {
214 ios->per_dev[d].sglist = sgilist;
215 sgilist += sgs_per_dev;
217 ios->sgs_per_dev = sgs_per_dev;
220 ios->layout = layout;
221 ios->oc = oc;
222 *pios = ios;
223 return 0;
226 /* Allocate an io_state for only a single group of devices
228 * If a user needs to call ore_read/write() this version must be used becase it
229 * allocates extra stuff for striping and raid.
230 * The ore might decide to only IO less then @length bytes do to alignmets
231 * and constrains as follows:
232 * - The IO cannot cross group boundary.
233 * - In raid5/6 The end of the IO must align at end of a stripe eg.
234 * (@offset + @length) % strip_size == 0. Or the complete range is within a
235 * single stripe.
236 * - Memory condition only permitted a shorter IO. (A user can use @length=~0
237 * And check the returned ios->length for max_io_size.)
239 * The caller must check returned ios->length (and/or ios->nr_pages) and
240 * re-issue these pages that fall outside of ios->length
242 int ore_get_rw_state(struct ore_layout *layout, struct ore_components *oc,
243 bool is_reading, u64 offset, u64 length,
244 struct ore_io_state **pios)
246 struct ore_io_state *ios;
247 unsigned numdevs = layout->group_width * layout->mirrors_p1;
248 unsigned sgs_per_dev = 0, max_par_pages = 0;
249 int ret;
251 if (layout->parity && length) {
252 unsigned data_devs = layout->group_width - layout->parity;
253 unsigned stripe_size = layout->stripe_unit * data_devs;
254 unsigned pages_in_unit = layout->stripe_unit / PAGE_SIZE;
255 u32 remainder;
256 u64 num_stripes;
257 u64 num_raid_units;
259 num_stripes = div_u64_rem(length, stripe_size, &remainder);
260 if (remainder)
261 ++num_stripes;
263 num_raid_units = num_stripes * layout->parity;
265 if (is_reading) {
266 /* For reads add per_dev sglist array */
267 /* TODO: Raid 6 we need twice more. Actually:
268 * num_stripes / LCMdP(W,P);
269 * if (W%P != 0) num_stripes *= parity;
272 /* first/last seg is split */
273 num_raid_units += layout->group_width;
274 sgs_per_dev = div_u64(num_raid_units, data_devs) + 2;
275 } else {
276 /* For Writes add parity pages array. */
277 max_par_pages = num_raid_units * pages_in_unit *
278 sizeof(struct page *);
282 ret = _ore_get_io_state(layout, oc, numdevs, sgs_per_dev, max_par_pages,
283 pios);
284 if (unlikely(ret))
285 return ret;
287 ios = *pios;
288 ios->reading = is_reading;
289 ios->offset = offset;
291 if (length) {
292 ore_calc_stripe_info(layout, offset, length, &ios->si);
293 ios->length = ios->si.length;
294 ios->nr_pages = ((ios->offset & (PAGE_SIZE - 1)) +
295 ios->length + PAGE_SIZE - 1) / PAGE_SIZE;
296 if (layout->parity)
297 _ore_post_alloc_raid_stuff(ios);
300 return 0;
302 EXPORT_SYMBOL(ore_get_rw_state);
304 /* Allocate an io_state for all the devices in the comps array
306 * This version of io_state allocation is used mostly by create/remove
307 * and trunc where we currently need all the devices. The only wastful
308 * bit is the read/write_attributes with no IO. Those sites should
309 * be converted to use ore_get_rw_state() with length=0
311 int ore_get_io_state(struct ore_layout *layout, struct ore_components *oc,
312 struct ore_io_state **pios)
314 return _ore_get_io_state(layout, oc, oc->numdevs, 0, 0, pios);
316 EXPORT_SYMBOL(ore_get_io_state);
318 void ore_put_io_state(struct ore_io_state *ios)
320 if (ios) {
321 unsigned i;
323 for (i = 0; i < ios->numdevs; i++) {
324 struct ore_per_dev_state *per_dev = &ios->per_dev[i];
326 if (per_dev->or)
327 osd_end_request(per_dev->or);
328 if (per_dev->bio)
329 bio_put(per_dev->bio);
332 _ore_free_raid_stuff(ios);
333 kfree(ios);
336 EXPORT_SYMBOL(ore_put_io_state);
338 static void _sync_done(struct ore_io_state *ios, void *p)
340 struct completion *waiting = p;
342 complete(waiting);
345 static void _last_io(struct kref *kref)
347 struct ore_io_state *ios = container_of(
348 kref, struct ore_io_state, kref);
350 ios->done(ios, ios->private);
353 static void _done_io(struct osd_request *or, void *p)
355 struct ore_io_state *ios = p;
357 kref_put(&ios->kref, _last_io);
360 int ore_io_execute(struct ore_io_state *ios)
362 DECLARE_COMPLETION_ONSTACK(wait);
363 bool sync = (ios->done == NULL);
364 int i, ret;
366 if (sync) {
367 ios->done = _sync_done;
368 ios->private = &wait;
371 for (i = 0; i < ios->numdevs; i++) {
372 struct osd_request *or = ios->per_dev[i].or;
373 if (unlikely(!or))
374 continue;
376 ret = osd_finalize_request(or, 0, _ios_cred(ios, i), NULL);
377 if (unlikely(ret)) {
378 ORE_DBGMSG("Failed to osd_finalize_request() => %d\n",
379 ret);
380 return ret;
384 kref_init(&ios->kref);
386 for (i = 0; i < ios->numdevs; i++) {
387 struct osd_request *or = ios->per_dev[i].or;
388 if (unlikely(!or))
389 continue;
391 kref_get(&ios->kref);
392 osd_execute_request_async(or, _done_io, ios);
395 kref_put(&ios->kref, _last_io);
396 ret = 0;
398 if (sync) {
399 wait_for_completion(&wait);
400 ret = ore_check_io(ios, NULL);
402 return ret;
405 static void _clear_bio(struct bio *bio)
407 struct bio_vec *bv;
408 unsigned i;
410 bio_for_each_segment_all(bv, bio, i) {
411 unsigned this_count = bv->bv_len;
413 if (likely(PAGE_SIZE == this_count))
414 clear_highpage(bv->bv_page);
415 else
416 zero_user(bv->bv_page, bv->bv_offset, this_count);
420 int ore_check_io(struct ore_io_state *ios, ore_on_dev_error on_dev_error)
422 enum osd_err_priority acumulated_osd_err = 0;
423 int acumulated_lin_err = 0;
424 int i;
426 for (i = 0; i < ios->numdevs; i++) {
427 struct osd_sense_info osi;
428 struct ore_per_dev_state *per_dev = &ios->per_dev[i];
429 struct osd_request *or = per_dev->or;
430 int ret;
432 if (unlikely(!or))
433 continue;
435 ret = osd_req_decode_sense(or, &osi);
436 if (likely(!ret))
437 continue;
439 if ((OSD_ERR_PRI_CLEAR_PAGES == osi.osd_err_pri) &&
440 per_dev->bio) {
441 /* start read offset passed endof file.
442 * Note: if we do not have bio it means read-attributes
443 * In this case we should return error to caller.
445 _clear_bio(per_dev->bio);
446 ORE_DBGMSG("start read offset passed end of file "
447 "offset=0x%llx, length=0x%llx\n",
448 _LLU(per_dev->offset),
449 _LLU(per_dev->length));
451 continue; /* we recovered */
454 if (on_dev_error) {
455 u64 residual = ios->reading ?
456 or->in.residual : or->out.residual;
457 u64 offset = (ios->offset + ios->length) - residual;
458 unsigned dev = per_dev->dev - ios->oc->first_dev;
459 struct ore_dev *od = ios->oc->ods[dev];
461 on_dev_error(ios, od, dev, osi.osd_err_pri,
462 offset, residual);
464 if (osi.osd_err_pri >= acumulated_osd_err) {
465 acumulated_osd_err = osi.osd_err_pri;
466 acumulated_lin_err = ret;
470 return acumulated_lin_err;
472 EXPORT_SYMBOL(ore_check_io);
475 * L - logical offset into the file
477 * D - number of Data devices
478 * D = group_width - parity
480 * U - The number of bytes in a stripe within a group
481 * U = stripe_unit * D
483 * T - The number of bytes striped within a group of component objects
484 * (before advancing to the next group)
485 * T = U * group_depth
487 * S - The number of bytes striped across all component objects
488 * before the pattern repeats
489 * S = T * group_count
491 * M - The "major" (i.e., across all components) cycle number
492 * M = L / S
494 * G - Counts the groups from the beginning of the major cycle
495 * G = (L - (M * S)) / T [or (L % S) / T]
497 * H - The byte offset within the group
498 * H = (L - (M * S)) % T [or (L % S) % T]
500 * N - The "minor" (i.e., across the group) stripe number
501 * N = H / U
503 * C - The component index coresponding to L
505 * C = (H - (N * U)) / stripe_unit + G * D
506 * [or (L % U) / stripe_unit + G * D]
508 * O - The component offset coresponding to L
509 * O = L % stripe_unit + N * stripe_unit + M * group_depth * stripe_unit
511 * LCMdP – Parity cycle: Lowest Common Multiple of group_width, parity
512 * divide by parity
513 * LCMdP = lcm(group_width, parity) / parity
515 * R - The parity Rotation stripe
516 * (Note parity cycle always starts at a group's boundary)
517 * R = N % LCMdP
519 * I = the first parity device index
520 * I = (group_width + group_width - R*parity - parity) % group_width
522 * Craid - The component index Rotated
523 * Craid = (group_width + C - R*parity) % group_width
524 * (We add the group_width to avoid negative numbers modulo math)
526 void ore_calc_stripe_info(struct ore_layout *layout, u64 file_offset,
527 u64 length, struct ore_striping_info *si)
529 u32 stripe_unit = layout->stripe_unit;
530 u32 group_width = layout->group_width;
531 u64 group_depth = layout->group_depth;
532 u32 parity = layout->parity;
534 u32 D = group_width - parity;
535 u32 U = D * stripe_unit;
536 u64 T = U * group_depth;
537 u64 S = T * layout->group_count;
538 u64 M = div64_u64(file_offset, S);
541 G = (L - (M * S)) / T
542 H = (L - (M * S)) % T
544 u64 LmodS = file_offset - M * S;
545 u32 G = div64_u64(LmodS, T);
546 u64 H = LmodS - G * T;
548 u32 N = div_u64(H, U);
549 u32 Nlast;
551 /* "H - (N * U)" is just "H % U" so it's bound to u32 */
552 u32 C = (u32)(H - (N * U)) / stripe_unit + G * group_width;
553 u32 first_dev = C - C % group_width;
555 div_u64_rem(file_offset, stripe_unit, &si->unit_off);
557 si->obj_offset = si->unit_off + (N * stripe_unit) +
558 (M * group_depth * stripe_unit);
559 si->cur_comp = C - first_dev;
560 si->cur_pg = si->unit_off / PAGE_SIZE;
562 if (parity) {
563 u32 LCMdP = lcm(group_width, parity) / parity;
564 /* R = N % LCMdP; */
565 u32 RxP = (N % LCMdP) * parity;
567 si->par_dev = (group_width + group_width - parity - RxP) %
568 group_width + first_dev;
569 si->dev = (group_width + group_width + C - RxP) %
570 group_width + first_dev;
571 si->bytes_in_stripe = U;
572 si->first_stripe_start = M * S + G * T + N * U;
573 } else {
574 /* Make the math correct see _prepare_one_group */
575 si->par_dev = group_width;
576 si->dev = C;
579 si->dev *= layout->mirrors_p1;
580 si->par_dev *= layout->mirrors_p1;
581 si->offset = file_offset;
582 si->length = T - H;
583 if (si->length > length)
584 si->length = length;
586 Nlast = div_u64(H + si->length + U - 1, U);
587 si->maxdevUnits = Nlast - N;
589 si->M = M;
591 EXPORT_SYMBOL(ore_calc_stripe_info);
593 int _ore_add_stripe_unit(struct ore_io_state *ios, unsigned *cur_pg,
594 unsigned pgbase, struct page **pages,
595 struct ore_per_dev_state *per_dev, int cur_len)
597 unsigned pg = *cur_pg;
598 struct request_queue *q =
599 osd_request_queue(_ios_od(ios, per_dev->dev));
600 unsigned len = cur_len;
601 int ret;
603 if (per_dev->bio == NULL) {
604 unsigned bio_size;
606 if (!ios->reading) {
607 bio_size = ios->si.maxdevUnits;
608 } else {
609 bio_size = (ios->si.maxdevUnits + 1) *
610 (ios->layout->group_width - ios->layout->parity) /
611 ios->layout->group_width;
613 bio_size *= (ios->layout->stripe_unit / PAGE_SIZE);
615 per_dev->bio = bio_kmalloc(GFP_KERNEL, bio_size);
616 if (unlikely(!per_dev->bio)) {
617 ORE_DBGMSG("Failed to allocate BIO size=%u\n",
618 bio_size);
619 ret = -ENOMEM;
620 goto out;
624 while (cur_len > 0) {
625 unsigned pglen = min_t(unsigned, PAGE_SIZE - pgbase, cur_len);
626 unsigned added_len;
628 cur_len -= pglen;
630 added_len = bio_add_pc_page(q, per_dev->bio, pages[pg],
631 pglen, pgbase);
632 if (unlikely(pglen != added_len)) {
633 /* If bi_vcnt == bi_max then this is a SW BUG */
634 ORE_DBGMSG("Failed bio_add_pc_page bi_vcnt=0x%x "
635 "bi_max=0x%x BIO_MAX=0x%x cur_len=0x%x\n",
636 per_dev->bio->bi_vcnt,
637 per_dev->bio->bi_max_vecs,
638 BIO_MAX_PAGES_KMALLOC, cur_len);
639 ret = -ENOMEM;
640 goto out;
642 _add_stripe_page(ios->sp2d, &ios->si, pages[pg]);
644 pgbase = 0;
645 ++pg;
647 BUG_ON(cur_len);
649 per_dev->length += len;
650 *cur_pg = pg;
651 ret = 0;
652 out: /* we fail the complete unit on an error eg don't advance
653 * per_dev->length and cur_pg. This means that we might have a bigger
654 * bio than the CDB requested length (per_dev->length). That's fine
655 * only the oposite is fatal.
657 return ret;
660 static int _add_parity_units(struct ore_io_state *ios,
661 struct ore_striping_info *si,
662 unsigned dev, unsigned first_dev,
663 unsigned mirrors_p1, unsigned devs_in_group,
664 unsigned cur_len)
666 unsigned do_parity;
667 int ret = 0;
669 for (do_parity = ios->layout->parity; do_parity; --do_parity) {
670 struct ore_per_dev_state *per_dev;
672 per_dev = &ios->per_dev[dev - first_dev];
673 if (!per_dev->length && !per_dev->offset) {
674 /* Only/always the parity unit of the first
675 * stripe will be empty. So this is a chance to
676 * initialize the per_dev info.
678 per_dev->dev = dev;
679 per_dev->offset = si->obj_offset - si->unit_off;
682 ret = _ore_add_parity_unit(ios, si, per_dev, cur_len,
683 do_parity == 1);
684 if (unlikely(ret))
685 break;
687 if (do_parity != 1) {
688 dev = ((dev + mirrors_p1) % devs_in_group) + first_dev;
689 si->cur_comp = (si->cur_comp + 1) %
690 ios->layout->group_width;
694 return ret;
697 static int _prepare_for_striping(struct ore_io_state *ios)
699 struct ore_striping_info *si = &ios->si;
700 unsigned stripe_unit = ios->layout->stripe_unit;
701 unsigned mirrors_p1 = ios->layout->mirrors_p1;
702 unsigned group_width = ios->layout->group_width;
703 unsigned devs_in_group = group_width * mirrors_p1;
704 unsigned dev = si->dev;
705 unsigned first_dev = dev - (dev % devs_in_group);
706 unsigned cur_pg = ios->pages_consumed;
707 u64 length = ios->length;
708 int ret = 0;
710 if (!ios->pages) {
711 ios->numdevs = ios->layout->mirrors_p1;
712 return 0;
715 BUG_ON(length > si->length);
717 while (length) {
718 struct ore_per_dev_state *per_dev =
719 &ios->per_dev[dev - first_dev];
720 unsigned cur_len, page_off = 0;
722 if (!per_dev->length && !per_dev->offset) {
723 /* First time initialize the per_dev info. */
724 per_dev->dev = dev;
725 if (dev == si->dev) {
726 WARN_ON(dev == si->par_dev);
727 per_dev->offset = si->obj_offset;
728 cur_len = stripe_unit - si->unit_off;
729 page_off = si->unit_off & ~PAGE_MASK;
730 BUG_ON(page_off && (page_off != ios->pgbase));
731 } else {
732 per_dev->offset = si->obj_offset - si->unit_off;
733 cur_len = stripe_unit;
735 } else {
736 cur_len = stripe_unit;
738 if (cur_len >= length)
739 cur_len = length;
741 ret = _ore_add_stripe_unit(ios, &cur_pg, page_off, ios->pages,
742 per_dev, cur_len);
743 if (unlikely(ret))
744 goto out;
746 length -= cur_len;
748 dev = ((dev + mirrors_p1) % devs_in_group) + first_dev;
749 si->cur_comp = (si->cur_comp + 1) % group_width;
750 if (unlikely((dev == si->par_dev) || (!length && ios->sp2d))) {
751 if (!length && ios->sp2d) {
752 /* If we are writing and this is the very last
753 * stripe. then operate on parity dev.
755 dev = si->par_dev;
756 /* If last stripe operate on parity comp */
757 si->cur_comp = group_width - ios->layout->parity;
760 /* In writes cur_len just means if it's the
761 * last one. See _ore_add_parity_unit.
763 ret = _add_parity_units(ios, si, dev, first_dev,
764 mirrors_p1, devs_in_group,
765 ios->sp2d ? length : cur_len);
766 if (unlikely(ret))
767 goto out;
769 /* Rotate next par_dev backwards with wraping */
770 si->par_dev = (devs_in_group + si->par_dev -
771 ios->layout->parity * mirrors_p1) %
772 devs_in_group + first_dev;
773 /* Next stripe, start fresh */
774 si->cur_comp = 0;
775 si->cur_pg = 0;
776 si->obj_offset += cur_len;
777 si->unit_off = 0;
780 out:
781 ios->numdevs = devs_in_group;
782 ios->pages_consumed = cur_pg;
783 return ret;
786 int ore_create(struct ore_io_state *ios)
788 int i, ret;
790 for (i = 0; i < ios->oc->numdevs; i++) {
791 struct osd_request *or;
793 or = osd_start_request(_ios_od(ios, i), GFP_KERNEL);
794 if (unlikely(!or)) {
795 ORE_ERR("%s: osd_start_request failed\n", __func__);
796 ret = -ENOMEM;
797 goto out;
799 ios->per_dev[i].or = or;
800 ios->numdevs++;
802 osd_req_create_object(or, _ios_obj(ios, i));
804 ret = ore_io_execute(ios);
806 out:
807 return ret;
809 EXPORT_SYMBOL(ore_create);
811 int ore_remove(struct ore_io_state *ios)
813 int i, ret;
815 for (i = 0; i < ios->oc->numdevs; i++) {
816 struct osd_request *or;
818 or = osd_start_request(_ios_od(ios, i), GFP_KERNEL);
819 if (unlikely(!or)) {
820 ORE_ERR("%s: osd_start_request failed\n", __func__);
821 ret = -ENOMEM;
822 goto out;
824 ios->per_dev[i].or = or;
825 ios->numdevs++;
827 osd_req_remove_object(or, _ios_obj(ios, i));
829 ret = ore_io_execute(ios);
831 out:
832 return ret;
834 EXPORT_SYMBOL(ore_remove);
836 static int _write_mirror(struct ore_io_state *ios, int cur_comp)
838 struct ore_per_dev_state *master_dev = &ios->per_dev[cur_comp];
839 unsigned dev = ios->per_dev[cur_comp].dev;
840 unsigned last_comp = cur_comp + ios->layout->mirrors_p1;
841 int ret = 0;
843 if (ios->pages && !master_dev->length)
844 return 0; /* Just an empty slot */
846 for (; cur_comp < last_comp; ++cur_comp, ++dev) {
847 struct ore_per_dev_state *per_dev = &ios->per_dev[cur_comp];
848 struct osd_request *or;
850 or = osd_start_request(_ios_od(ios, dev), GFP_KERNEL);
851 if (unlikely(!or)) {
852 ORE_ERR("%s: osd_start_request failed\n", __func__);
853 ret = -ENOMEM;
854 goto out;
856 per_dev->or = or;
858 if (ios->pages) {
859 struct bio *bio;
861 if (per_dev != master_dev) {
862 bio = bio_clone_kmalloc(master_dev->bio,
863 GFP_KERNEL);
864 if (unlikely(!bio)) {
865 ORE_DBGMSG(
866 "Failed to allocate BIO size=%u\n",
867 master_dev->bio->bi_max_vecs);
868 ret = -ENOMEM;
869 goto out;
872 bio->bi_bdev = NULL;
873 bio->bi_next = NULL;
874 per_dev->offset = master_dev->offset;
875 per_dev->length = master_dev->length;
876 per_dev->bio = bio;
877 per_dev->dev = dev;
878 } else {
879 bio = master_dev->bio;
880 /* FIXME: bio_set_dir() */
881 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
884 osd_req_write(or, _ios_obj(ios, cur_comp),
885 per_dev->offset, bio, per_dev->length);
886 ORE_DBGMSG("write(0x%llx) offset=0x%llx "
887 "length=0x%llx dev=%d\n",
888 _LLU(_ios_obj(ios, cur_comp)->id),
889 _LLU(per_dev->offset),
890 _LLU(per_dev->length), dev);
891 } else if (ios->kern_buff) {
892 per_dev->offset = ios->si.obj_offset;
893 per_dev->dev = ios->si.dev + dev;
895 /* no cross device without page array */
896 BUG_ON((ios->layout->group_width > 1) &&
897 (ios->si.unit_off + ios->length >
898 ios->layout->stripe_unit));
900 ret = osd_req_write_kern(or, _ios_obj(ios, cur_comp),
901 per_dev->offset,
902 ios->kern_buff, ios->length);
903 if (unlikely(ret))
904 goto out;
905 ORE_DBGMSG2("write_kern(0x%llx) offset=0x%llx "
906 "length=0x%llx dev=%d\n",
907 _LLU(_ios_obj(ios, cur_comp)->id),
908 _LLU(per_dev->offset),
909 _LLU(ios->length), per_dev->dev);
910 } else {
911 osd_req_set_attributes(or, _ios_obj(ios, cur_comp));
912 ORE_DBGMSG2("obj(0x%llx) set_attributes=%d dev=%d\n",
913 _LLU(_ios_obj(ios, cur_comp)->id),
914 ios->out_attr_len, dev);
917 if (ios->out_attr)
918 osd_req_add_set_attr_list(or, ios->out_attr,
919 ios->out_attr_len);
921 if (ios->in_attr)
922 osd_req_add_get_attr_list(or, ios->in_attr,
923 ios->in_attr_len);
926 out:
927 return ret;
930 int ore_write(struct ore_io_state *ios)
932 int i;
933 int ret;
935 if (unlikely(ios->sp2d && !ios->r4w)) {
936 /* A library is attempting a RAID-write without providing
937 * a pages lock interface.
939 WARN_ON_ONCE(1);
940 return -ENOTSUPP;
943 ret = _prepare_for_striping(ios);
944 if (unlikely(ret))
945 return ret;
947 for (i = 0; i < ios->numdevs; i += ios->layout->mirrors_p1) {
948 ret = _write_mirror(ios, i);
949 if (unlikely(ret))
950 return ret;
953 ret = ore_io_execute(ios);
954 return ret;
956 EXPORT_SYMBOL(ore_write);
958 int _ore_read_mirror(struct ore_io_state *ios, unsigned cur_comp)
960 struct osd_request *or;
961 struct ore_per_dev_state *per_dev = &ios->per_dev[cur_comp];
962 struct osd_obj_id *obj = _ios_obj(ios, cur_comp);
963 unsigned first_dev = (unsigned)obj->id;
965 if (ios->pages && !per_dev->length)
966 return 0; /* Just an empty slot */
968 first_dev = per_dev->dev + first_dev % ios->layout->mirrors_p1;
969 or = osd_start_request(_ios_od(ios, first_dev), GFP_KERNEL);
970 if (unlikely(!or)) {
971 ORE_ERR("%s: osd_start_request failed\n", __func__);
972 return -ENOMEM;
974 per_dev->or = or;
976 if (ios->pages) {
977 if (per_dev->cur_sg) {
978 /* finalize the last sg_entry */
979 _ore_add_sg_seg(per_dev, 0, false);
980 if (unlikely(!per_dev->cur_sg))
981 return 0; /* Skip parity only device */
983 osd_req_read_sg(or, obj, per_dev->bio,
984 per_dev->sglist, per_dev->cur_sg);
985 } else {
986 /* The no raid case */
987 osd_req_read(or, obj, per_dev->offset,
988 per_dev->bio, per_dev->length);
991 ORE_DBGMSG("read(0x%llx) offset=0x%llx length=0x%llx"
992 " dev=%d sg_len=%d\n", _LLU(obj->id),
993 _LLU(per_dev->offset), _LLU(per_dev->length),
994 first_dev, per_dev->cur_sg);
995 } else {
996 BUG_ON(ios->kern_buff);
998 osd_req_get_attributes(or, obj);
999 ORE_DBGMSG2("obj(0x%llx) get_attributes=%d dev=%d\n",
1000 _LLU(obj->id),
1001 ios->in_attr_len, first_dev);
1003 if (ios->out_attr)
1004 osd_req_add_set_attr_list(or, ios->out_attr, ios->out_attr_len);
1006 if (ios->in_attr)
1007 osd_req_add_get_attr_list(or, ios->in_attr, ios->in_attr_len);
1009 return 0;
1012 int ore_read(struct ore_io_state *ios)
1014 int i;
1015 int ret;
1017 ret = _prepare_for_striping(ios);
1018 if (unlikely(ret))
1019 return ret;
1021 for (i = 0; i < ios->numdevs; i += ios->layout->mirrors_p1) {
1022 ret = _ore_read_mirror(ios, i);
1023 if (unlikely(ret))
1024 return ret;
1027 ret = ore_io_execute(ios);
1028 return ret;
1030 EXPORT_SYMBOL(ore_read);
1032 int extract_attr_from_ios(struct ore_io_state *ios, struct osd_attr *attr)
1034 struct osd_attr cur_attr = {.attr_page = 0}; /* start with zeros */
1035 void *iter = NULL;
1036 int nelem;
1038 do {
1039 nelem = 1;
1040 osd_req_decode_get_attr_list(ios->per_dev[0].or,
1041 &cur_attr, &nelem, &iter);
1042 if ((cur_attr.attr_page == attr->attr_page) &&
1043 (cur_attr.attr_id == attr->attr_id)) {
1044 attr->len = cur_attr.len;
1045 attr->val_ptr = cur_attr.val_ptr;
1046 return 0;
1048 } while (iter);
1050 return -EIO;
1052 EXPORT_SYMBOL(extract_attr_from_ios);
1054 static int _truncate_mirrors(struct ore_io_state *ios, unsigned cur_comp,
1055 struct osd_attr *attr)
1057 int last_comp = cur_comp + ios->layout->mirrors_p1;
1059 for (; cur_comp < last_comp; ++cur_comp) {
1060 struct ore_per_dev_state *per_dev = &ios->per_dev[cur_comp];
1061 struct osd_request *or;
1063 or = osd_start_request(_ios_od(ios, cur_comp), GFP_KERNEL);
1064 if (unlikely(!or)) {
1065 ORE_ERR("%s: osd_start_request failed\n", __func__);
1066 return -ENOMEM;
1068 per_dev->or = or;
1070 osd_req_set_attributes(or, _ios_obj(ios, cur_comp));
1071 osd_req_add_set_attr_list(or, attr, 1);
1074 return 0;
1077 struct _trunc_info {
1078 struct ore_striping_info si;
1079 u64 prev_group_obj_off;
1080 u64 next_group_obj_off;
1082 unsigned first_group_dev;
1083 unsigned nex_group_dev;
1086 static void _calc_trunk_info(struct ore_layout *layout, u64 file_offset,
1087 struct _trunc_info *ti)
1089 unsigned stripe_unit = layout->stripe_unit;
1091 ore_calc_stripe_info(layout, file_offset, 0, &ti->si);
1093 ti->prev_group_obj_off = ti->si.M * stripe_unit;
1094 ti->next_group_obj_off = ti->si.M ? (ti->si.M - 1) * stripe_unit : 0;
1096 ti->first_group_dev = ti->si.dev - (ti->si.dev % layout->group_width);
1097 ti->nex_group_dev = ti->first_group_dev + layout->group_width;
1100 int ore_truncate(struct ore_layout *layout, struct ore_components *oc,
1101 u64 size)
1103 struct ore_io_state *ios;
1104 struct exofs_trunc_attr {
1105 struct osd_attr attr;
1106 __be64 newsize;
1107 } *size_attrs;
1108 struct _trunc_info ti;
1109 int i, ret;
1111 ret = ore_get_io_state(layout, oc, &ios);
1112 if (unlikely(ret))
1113 return ret;
1115 _calc_trunk_info(ios->layout, size, &ti);
1117 size_attrs = kcalloc(ios->oc->numdevs, sizeof(*size_attrs),
1118 GFP_KERNEL);
1119 if (unlikely(!size_attrs)) {
1120 ret = -ENOMEM;
1121 goto out;
1124 ios->numdevs = ios->oc->numdevs;
1126 for (i = 0; i < ios->numdevs; ++i) {
1127 struct exofs_trunc_attr *size_attr = &size_attrs[i];
1128 u64 obj_size;
1130 if (i < ti.first_group_dev)
1131 obj_size = ti.prev_group_obj_off;
1132 else if (i >= ti.nex_group_dev)
1133 obj_size = ti.next_group_obj_off;
1134 else if (i < ti.si.dev) /* dev within this group */
1135 obj_size = ti.si.obj_offset +
1136 ios->layout->stripe_unit - ti.si.unit_off;
1137 else if (i == ti.si.dev)
1138 obj_size = ti.si.obj_offset;
1139 else /* i > ti.dev */
1140 obj_size = ti.si.obj_offset - ti.si.unit_off;
1142 size_attr->newsize = cpu_to_be64(obj_size);
1143 size_attr->attr = g_attr_logical_length;
1144 size_attr->attr.val_ptr = &size_attr->newsize;
1146 ORE_DBGMSG2("trunc(0x%llx) obj_offset=0x%llx dev=%d\n",
1147 _LLU(oc->comps->obj.id), _LLU(obj_size), i);
1148 ret = _truncate_mirrors(ios, i * ios->layout->mirrors_p1,
1149 &size_attr->attr);
1150 if (unlikely(ret))
1151 goto out;
1153 ret = ore_io_execute(ios);
1155 out:
1156 kfree(size_attrs);
1157 ore_put_io_state(ios);
1158 return ret;
1160 EXPORT_SYMBOL(ore_truncate);
1162 const struct osd_attr g_attr_logical_length = ATTR_DEF(
1163 OSD_APAGE_OBJECT_INFORMATION, OSD_ATTR_OI_LOGICAL_LENGTH, 8);
1164 EXPORT_SYMBOL(g_attr_logical_length);