4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache
*discard_entry_slab
;
29 static struct kmem_cache
*bio_entry_slab
;
30 static struct kmem_cache
*sit_entry_set_slab
;
31 static struct kmem_cache
*inmem_entry_slab
;
33 static unsigned long __reverse_ulong(unsigned char *str
)
35 unsigned long tmp
= 0;
36 int shift
= 24, idx
= 0;
38 #if BITS_PER_LONG == 64
42 tmp
|= (unsigned long)str
[idx
++] << shift
;
43 shift
-= BITS_PER_BYTE
;
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 static inline unsigned long __reverse_ffs(unsigned long word
)
56 #if BITS_PER_LONG == 64
57 if ((word
& 0xffffffff00000000UL
) == 0)
62 if ((word
& 0xffff0000) == 0)
67 if ((word
& 0xff00) == 0)
72 if ((word
& 0xf0) == 0)
77 if ((word
& 0xc) == 0)
82 if ((word
& 0x2) == 0)
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
96 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
97 unsigned long size
, unsigned long offset
)
99 const unsigned long *p
= addr
+ BIT_WORD(offset
);
100 unsigned long result
= size
;
106 size
-= (offset
& ~(BITS_PER_LONG
- 1));
107 offset
%= BITS_PER_LONG
;
113 tmp
= __reverse_ulong((unsigned char *)p
);
115 tmp
&= ~0UL >> offset
;
116 if (size
< BITS_PER_LONG
)
117 tmp
&= (~0UL << (BITS_PER_LONG
- size
));
121 if (size
<= BITS_PER_LONG
)
123 size
-= BITS_PER_LONG
;
129 return result
- size
+ __reverse_ffs(tmp
);
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
133 unsigned long size
, unsigned long offset
)
135 const unsigned long *p
= addr
+ BIT_WORD(offset
);
136 unsigned long result
= size
;
142 size
-= (offset
& ~(BITS_PER_LONG
- 1));
143 offset
%= BITS_PER_LONG
;
149 tmp
= __reverse_ulong((unsigned char *)p
);
152 tmp
|= ~0UL << (BITS_PER_LONG
- offset
);
153 if (size
< BITS_PER_LONG
)
158 if (size
<= BITS_PER_LONG
)
160 size
-= BITS_PER_LONG
;
166 return result
- size
+ __reverse_ffz(tmp
);
169 void register_inmem_page(struct inode
*inode
, struct page
*page
)
171 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
172 struct inmem_pages
*new;
174 f2fs_trace_pid(page
);
176 set_page_private(page
, (unsigned long)ATOMIC_WRITTEN_PAGE
);
177 SetPagePrivate(page
);
179 new = f2fs_kmem_cache_alloc(inmem_entry_slab
, GFP_NOFS
);
181 /* add atomic page indices to the list */
183 INIT_LIST_HEAD(&new->list
);
185 /* increase reference count with clean state */
186 mutex_lock(&fi
->inmem_lock
);
188 list_add_tail(&new->list
, &fi
->inmem_pages
);
189 inc_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
190 mutex_unlock(&fi
->inmem_lock
);
192 trace_f2fs_register_inmem_page(page
, INMEM
);
195 static int __revoke_inmem_pages(struct inode
*inode
,
196 struct list_head
*head
, bool drop
, bool recover
)
198 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
199 struct inmem_pages
*cur
, *tmp
;
202 list_for_each_entry_safe(cur
, tmp
, head
, list
) {
203 struct page
*page
= cur
->page
;
206 trace_f2fs_commit_inmem_page(page
, INMEM_DROP
);
211 struct dnode_of_data dn
;
214 trace_f2fs_commit_inmem_page(page
, INMEM_REVOKE
);
216 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
217 if (get_dnode_of_data(&dn
, page
->index
, LOOKUP_NODE
)) {
221 get_node_info(sbi
, dn
.nid
, &ni
);
222 f2fs_replace_block(sbi
, &dn
, dn
.data_blkaddr
,
223 cur
->old_addr
, ni
.version
, true, true);
227 /* we don't need to invalidate this in the sccessful status */
229 ClearPageUptodate(page
);
230 set_page_private(page
, 0);
231 ClearPagePrivate(page
);
232 f2fs_put_page(page
, 1);
234 list_del(&cur
->list
);
235 kmem_cache_free(inmem_entry_slab
, cur
);
236 dec_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
241 void drop_inmem_pages(struct inode
*inode
)
243 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
245 clear_inode_flag(inode
, FI_ATOMIC_FILE
);
247 mutex_lock(&fi
->inmem_lock
);
248 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
249 mutex_unlock(&fi
->inmem_lock
);
252 static int __commit_inmem_pages(struct inode
*inode
,
253 struct list_head
*revoke_list
)
255 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
256 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
257 struct inmem_pages
*cur
, *tmp
;
258 struct f2fs_io_info fio
= {
262 .op_flags
= REQ_SYNC
| REQ_PRIO
,
263 .encrypted_page
= NULL
,
265 bool submit_bio
= false;
268 list_for_each_entry_safe(cur
, tmp
, &fi
->inmem_pages
, list
) {
269 struct page
*page
= cur
->page
;
272 if (page
->mapping
== inode
->i_mapping
) {
273 trace_f2fs_commit_inmem_page(page
, INMEM
);
275 set_page_dirty(page
);
276 f2fs_wait_on_page_writeback(page
, DATA
, true);
277 if (clear_page_dirty_for_io(page
)) {
278 inode_dec_dirty_pages(inode
);
279 remove_dirty_inode(inode
);
283 err
= do_write_data_page(&fio
);
289 /* record old blkaddr for revoking */
290 cur
->old_addr
= fio
.old_blkaddr
;
295 list_move_tail(&cur
->list
, revoke_list
);
299 f2fs_submit_merged_bio_cond(sbi
, inode
, NULL
, 0, DATA
, WRITE
);
302 __revoke_inmem_pages(inode
, revoke_list
, false, false);
307 int commit_inmem_pages(struct inode
*inode
)
309 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
310 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
311 struct list_head revoke_list
;
314 INIT_LIST_HEAD(&revoke_list
);
315 f2fs_balance_fs(sbi
, true);
318 mutex_lock(&fi
->inmem_lock
);
319 err
= __commit_inmem_pages(inode
, &revoke_list
);
323 * try to revoke all committed pages, but still we could fail
324 * due to no memory or other reason, if that happened, EAGAIN
325 * will be returned, which means in such case, transaction is
326 * already not integrity, caller should use journal to do the
327 * recovery or rewrite & commit last transaction. For other
328 * error number, revoking was done by filesystem itself.
330 ret
= __revoke_inmem_pages(inode
, &revoke_list
, false, true);
334 /* drop all uncommitted pages */
335 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
337 mutex_unlock(&fi
->inmem_lock
);
344 * This function balances dirty node and dentry pages.
345 * In addition, it controls garbage collection.
347 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
, bool need
)
349 #ifdef CONFIG_F2FS_FAULT_INJECTION
350 if (time_to_inject(sbi
, FAULT_CHECKPOINT
))
351 f2fs_stop_checkpoint(sbi
, false);
357 /* balance_fs_bg is able to be pending */
358 if (excess_cached_nats(sbi
))
359 f2fs_balance_fs_bg(sbi
);
362 * We should do GC or end up with checkpoint, if there are so many dirty
363 * dir/node pages without enough free segments.
365 if (has_not_enough_free_secs(sbi
, 0, 0)) {
366 mutex_lock(&sbi
->gc_mutex
);
367 f2fs_gc(sbi
, false, false);
371 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
)
373 /* try to shrink extent cache when there is no enough memory */
374 if (!available_free_memory(sbi
, EXTENT_CACHE
))
375 f2fs_shrink_extent_tree(sbi
, EXTENT_CACHE_SHRINK_NUMBER
);
377 /* check the # of cached NAT entries */
378 if (!available_free_memory(sbi
, NAT_ENTRIES
))
379 try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
);
381 if (!available_free_memory(sbi
, FREE_NIDS
))
382 try_to_free_nids(sbi
, MAX_FREE_NIDS
);
384 build_free_nids(sbi
, false);
389 /* checkpoint is the only way to shrink partial cached entries */
390 if (!available_free_memory(sbi
, NAT_ENTRIES
) ||
391 !available_free_memory(sbi
, INO_ENTRIES
) ||
392 excess_prefree_segs(sbi
) ||
393 excess_dirty_nats(sbi
) ||
394 f2fs_time_over(sbi
, CP_TIME
)) {
395 if (test_opt(sbi
, DATA_FLUSH
)) {
396 struct blk_plug plug
;
398 blk_start_plug(&plug
);
399 sync_dirty_inodes(sbi
, FILE_INODE
);
400 blk_finish_plug(&plug
);
402 f2fs_sync_fs(sbi
->sb
, true);
403 stat_inc_bg_cp_count(sbi
->stat_info
);
407 static int __submit_flush_wait(struct block_device
*bdev
)
409 struct bio
*bio
= f2fs_bio_alloc(0);
412 bio
->bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
414 ret
= submit_bio_wait(bio
);
419 static int submit_flush_wait(struct f2fs_sb_info
*sbi
)
421 int ret
= __submit_flush_wait(sbi
->sb
->s_bdev
);
424 if (sbi
->s_ndevs
&& !ret
) {
425 for (i
= 1; i
< sbi
->s_ndevs
; i
++) {
426 ret
= __submit_flush_wait(FDEV(i
).bdev
);
434 static int issue_flush_thread(void *data
)
436 struct f2fs_sb_info
*sbi
= data
;
437 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
438 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
440 if (kthread_should_stop())
443 if (!llist_empty(&fcc
->issue_list
)) {
444 struct flush_cmd
*cmd
, *next
;
447 fcc
->dispatch_list
= llist_del_all(&fcc
->issue_list
);
448 fcc
->dispatch_list
= llist_reverse_order(fcc
->dispatch_list
);
450 ret
= submit_flush_wait(sbi
);
451 llist_for_each_entry_safe(cmd
, next
,
452 fcc
->dispatch_list
, llnode
) {
454 complete(&cmd
->wait
);
456 fcc
->dispatch_list
= NULL
;
459 wait_event_interruptible(*q
,
460 kthread_should_stop() || !llist_empty(&fcc
->issue_list
));
464 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
)
466 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
467 struct flush_cmd cmd
;
469 trace_f2fs_issue_flush(sbi
->sb
, test_opt(sbi
, NOBARRIER
),
470 test_opt(sbi
, FLUSH_MERGE
));
472 if (test_opt(sbi
, NOBARRIER
))
475 if (!test_opt(sbi
, FLUSH_MERGE
) || !atomic_read(&fcc
->submit_flush
)) {
478 atomic_inc(&fcc
->submit_flush
);
479 ret
= submit_flush_wait(sbi
);
480 atomic_dec(&fcc
->submit_flush
);
484 init_completion(&cmd
.wait
);
486 atomic_inc(&fcc
->submit_flush
);
487 llist_add(&cmd
.llnode
, &fcc
->issue_list
);
489 if (!fcc
->dispatch_list
)
490 wake_up(&fcc
->flush_wait_queue
);
492 if (fcc
->f2fs_issue_flush
) {
493 wait_for_completion(&cmd
.wait
);
494 atomic_dec(&fcc
->submit_flush
);
496 llist_del_all(&fcc
->issue_list
);
497 atomic_set(&fcc
->submit_flush
, 0);
503 int create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
505 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
506 struct flush_cmd_control
*fcc
;
509 if (SM_I(sbi
)->cmd_control_info
) {
510 fcc
= SM_I(sbi
)->cmd_control_info
;
514 fcc
= kzalloc(sizeof(struct flush_cmd_control
), GFP_KERNEL
);
517 atomic_set(&fcc
->submit_flush
, 0);
518 init_waitqueue_head(&fcc
->flush_wait_queue
);
519 init_llist_head(&fcc
->issue_list
);
520 SM_I(sbi
)->cmd_control_info
= fcc
;
522 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
523 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
524 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
525 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
527 SM_I(sbi
)->cmd_control_info
= NULL
;
534 void destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
, bool free
)
536 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
538 if (fcc
&& fcc
->f2fs_issue_flush
) {
539 struct task_struct
*flush_thread
= fcc
->f2fs_issue_flush
;
541 fcc
->f2fs_issue_flush
= NULL
;
542 kthread_stop(flush_thread
);
546 SM_I(sbi
)->cmd_control_info
= NULL
;
550 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
551 enum dirty_type dirty_type
)
553 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
555 /* need not be added */
556 if (IS_CURSEG(sbi
, segno
))
559 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
560 dirty_i
->nr_dirty
[dirty_type
]++;
562 if (dirty_type
== DIRTY
) {
563 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
564 enum dirty_type t
= sentry
->type
;
566 if (unlikely(t
>= DIRTY
)) {
570 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
571 dirty_i
->nr_dirty
[t
]++;
575 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
576 enum dirty_type dirty_type
)
578 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
580 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
581 dirty_i
->nr_dirty
[dirty_type
]--;
583 if (dirty_type
== DIRTY
) {
584 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
585 enum dirty_type t
= sentry
->type
;
587 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
588 dirty_i
->nr_dirty
[t
]--;
590 if (get_valid_blocks(sbi
, segno
, sbi
->segs_per_sec
) == 0)
591 clear_bit(GET_SECNO(sbi
, segno
),
592 dirty_i
->victim_secmap
);
597 * Should not occur error such as -ENOMEM.
598 * Adding dirty entry into seglist is not critical operation.
599 * If a given segment is one of current working segments, it won't be added.
601 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
603 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
604 unsigned short valid_blocks
;
606 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
609 mutex_lock(&dirty_i
->seglist_lock
);
611 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
613 if (valid_blocks
== 0) {
614 __locate_dirty_segment(sbi
, segno
, PRE
);
615 __remove_dirty_segment(sbi
, segno
, DIRTY
);
616 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
617 __locate_dirty_segment(sbi
, segno
, DIRTY
);
619 /* Recovery routine with SSR needs this */
620 __remove_dirty_segment(sbi
, segno
, DIRTY
);
623 mutex_unlock(&dirty_i
->seglist_lock
);
626 static struct bio_entry
*__add_bio_entry(struct f2fs_sb_info
*sbi
,
629 struct list_head
*wait_list
= &(SM_I(sbi
)->wait_list
);
630 struct bio_entry
*be
= f2fs_kmem_cache_alloc(bio_entry_slab
, GFP_NOFS
);
632 INIT_LIST_HEAD(&be
->list
);
634 init_completion(&be
->event
);
635 list_add_tail(&be
->list
, wait_list
);
640 void f2fs_wait_all_discard_bio(struct f2fs_sb_info
*sbi
)
642 struct list_head
*wait_list
= &(SM_I(sbi
)->wait_list
);
643 struct bio_entry
*be
, *tmp
;
645 list_for_each_entry_safe(be
, tmp
, wait_list
, list
) {
646 struct bio
*bio
= be
->bio
;
649 wait_for_completion_io(&be
->event
);
651 if (err
== -EOPNOTSUPP
)
655 f2fs_msg(sbi
->sb
, KERN_INFO
,
656 "Issue discard failed, ret: %d", err
);
660 kmem_cache_free(bio_entry_slab
, be
);
664 static void f2fs_submit_bio_wait_endio(struct bio
*bio
)
666 struct bio_entry
*be
= (struct bio_entry
*)bio
->bi_private
;
668 be
->error
= bio
->bi_error
;
669 complete(&be
->event
);
672 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
673 static int __f2fs_issue_discard_async(struct f2fs_sb_info
*sbi
,
674 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
676 struct bio
*bio
= NULL
;
679 trace_f2fs_issue_discard(sbi
->sb
, blkstart
, blklen
);
682 int devi
= f2fs_target_device_index(sbi
, blkstart
);
684 blkstart
-= FDEV(devi
).start_blk
;
686 err
= __blkdev_issue_discard(bdev
,
687 SECTOR_FROM_BLOCK(blkstart
),
688 SECTOR_FROM_BLOCK(blklen
),
691 struct bio_entry
*be
= __add_bio_entry(sbi
, bio
);
693 bio
->bi_private
= be
;
694 bio
->bi_end_io
= f2fs_submit_bio_wait_endio
;
695 bio
->bi_opf
|= REQ_SYNC
;
702 #ifdef CONFIG_BLK_DEV_ZONED
703 static int __f2fs_issue_discard_zone(struct f2fs_sb_info
*sbi
,
704 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
706 sector_t nr_sects
= SECTOR_FROM_BLOCK(blklen
);
711 devi
= f2fs_target_device_index(sbi
, blkstart
);
712 blkstart
-= FDEV(devi
).start_blk
;
714 sector
= SECTOR_FROM_BLOCK(blkstart
);
716 if (sector
& (bdev_zone_size(bdev
) - 1) ||
717 nr_sects
!= bdev_zone_size(bdev
)) {
718 f2fs_msg(sbi
->sb
, KERN_INFO
,
719 "(%d) %s: Unaligned discard attempted (block %x + %x)",
720 devi
, sbi
->s_ndevs
? FDEV(devi
).path
: "",
726 * We need to know the type of the zone: for conventional zones,
727 * use regular discard if the drive supports it. For sequential
728 * zones, reset the zone write pointer.
730 switch (get_blkz_type(sbi
, bdev
, blkstart
)) {
732 case BLK_ZONE_TYPE_CONVENTIONAL
:
733 if (!blk_queue_discard(bdev_get_queue(bdev
)))
735 return __f2fs_issue_discard_async(sbi
, bdev
, blkstart
, blklen
);
736 case BLK_ZONE_TYPE_SEQWRITE_REQ
:
737 case BLK_ZONE_TYPE_SEQWRITE_PREF
:
738 trace_f2fs_issue_reset_zone(sbi
->sb
, blkstart
);
739 return blkdev_reset_zones(bdev
, sector
,
742 /* Unknown zone type: broken device ? */
748 static int __issue_discard_async(struct f2fs_sb_info
*sbi
,
749 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
751 #ifdef CONFIG_BLK_DEV_ZONED
752 if (f2fs_sb_mounted_blkzoned(sbi
->sb
) &&
753 bdev_zoned_model(bdev
) != BLK_ZONED_NONE
)
754 return __f2fs_issue_discard_zone(sbi
, bdev
, blkstart
, blklen
);
756 return __f2fs_issue_discard_async(sbi
, bdev
, blkstart
, blklen
);
759 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
760 block_t blkstart
, block_t blklen
)
762 sector_t start
= blkstart
, len
= 0;
763 struct block_device
*bdev
;
764 struct seg_entry
*se
;
769 bdev
= f2fs_target_device(sbi
, blkstart
, NULL
);
771 for (i
= blkstart
; i
< blkstart
+ blklen
; i
++, len
++) {
773 struct block_device
*bdev2
=
774 f2fs_target_device(sbi
, i
, NULL
);
777 err
= __issue_discard_async(sbi
, bdev
,
787 se
= get_seg_entry(sbi
, GET_SEGNO(sbi
, i
));
788 offset
= GET_BLKOFF_FROM_SEG0(sbi
, i
);
790 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
795 err
= __issue_discard_async(sbi
, bdev
, start
, len
);
799 static void __add_discard_entry(struct f2fs_sb_info
*sbi
,
800 struct cp_control
*cpc
, struct seg_entry
*se
,
801 unsigned int start
, unsigned int end
)
803 struct list_head
*head
= &SM_I(sbi
)->discard_list
;
804 struct discard_entry
*new, *last
;
806 if (!list_empty(head
)) {
807 last
= list_last_entry(head
, struct discard_entry
, list
);
808 if (START_BLOCK(sbi
, cpc
->trim_start
) + start
==
809 last
->blkaddr
+ last
->len
) {
810 last
->len
+= end
- start
;
815 new = f2fs_kmem_cache_alloc(discard_entry_slab
, GFP_NOFS
);
816 INIT_LIST_HEAD(&new->list
);
817 new->blkaddr
= START_BLOCK(sbi
, cpc
->trim_start
) + start
;
818 new->len
= end
- start
;
819 list_add_tail(&new->list
, head
);
821 SM_I(sbi
)->nr_discards
+= end
- start
;
824 static void add_discard_addrs(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
826 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
827 int max_blocks
= sbi
->blocks_per_seg
;
828 struct seg_entry
*se
= get_seg_entry(sbi
, cpc
->trim_start
);
829 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
830 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
831 unsigned long *discard_map
= (unsigned long *)se
->discard_map
;
832 unsigned long *dmap
= SIT_I(sbi
)->tmp_map
;
833 unsigned int start
= 0, end
= -1;
834 bool force
= (cpc
->reason
== CP_DISCARD
);
837 if (se
->valid_blocks
== max_blocks
|| !f2fs_discard_en(sbi
))
841 if (!test_opt(sbi
, DISCARD
) || !se
->valid_blocks
||
842 SM_I(sbi
)->nr_discards
>= SM_I(sbi
)->max_discards
)
846 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
847 for (i
= 0; i
< entries
; i
++)
848 dmap
[i
] = force
? ~ckpt_map
[i
] & ~discard_map
[i
] :
849 (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
851 while (force
|| SM_I(sbi
)->nr_discards
<= SM_I(sbi
)->max_discards
) {
852 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
853 if (start
>= max_blocks
)
856 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
857 if (force
&& start
&& end
!= max_blocks
858 && (end
- start
) < cpc
->trim_minlen
)
861 __add_discard_entry(sbi
, cpc
, se
, start
, end
);
865 void release_discard_addrs(struct f2fs_sb_info
*sbi
)
867 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
868 struct discard_entry
*entry
, *this;
871 list_for_each_entry_safe(entry
, this, head
, list
) {
872 list_del(&entry
->list
);
873 kmem_cache_free(discard_entry_slab
, entry
);
878 * Should call clear_prefree_segments after checkpoint is done.
880 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
882 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
885 mutex_lock(&dirty_i
->seglist_lock
);
886 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[PRE
], MAIN_SEGS(sbi
))
887 __set_test_and_free(sbi
, segno
);
888 mutex_unlock(&dirty_i
->seglist_lock
);
891 void clear_prefree_segments(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
893 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
894 struct discard_entry
*entry
, *this;
895 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
896 struct blk_plug plug
;
897 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
898 unsigned int start
= 0, end
= -1;
899 unsigned int secno
, start_segno
;
900 bool force
= (cpc
->reason
== CP_DISCARD
);
902 blk_start_plug(&plug
);
904 mutex_lock(&dirty_i
->seglist_lock
);
908 start
= find_next_bit(prefree_map
, MAIN_SEGS(sbi
), end
+ 1);
909 if (start
>= MAIN_SEGS(sbi
))
911 end
= find_next_zero_bit(prefree_map
, MAIN_SEGS(sbi
),
914 for (i
= start
; i
< end
; i
++)
915 clear_bit(i
, prefree_map
);
917 dirty_i
->nr_dirty
[PRE
] -= end
- start
;
919 if (force
|| !test_opt(sbi
, DISCARD
))
922 if (!test_opt(sbi
, LFS
) || sbi
->segs_per_sec
== 1) {
923 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
924 (end
- start
) << sbi
->log_blocks_per_seg
);
928 secno
= GET_SECNO(sbi
, start
);
929 start_segno
= secno
* sbi
->segs_per_sec
;
930 if (!IS_CURSEC(sbi
, secno
) &&
931 !get_valid_blocks(sbi
, start
, sbi
->segs_per_sec
))
932 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start_segno
),
933 sbi
->segs_per_sec
<< sbi
->log_blocks_per_seg
);
935 start
= start_segno
+ sbi
->segs_per_sec
;
939 mutex_unlock(&dirty_i
->seglist_lock
);
941 /* send small discards */
942 list_for_each_entry_safe(entry
, this, head
, list
) {
943 if (force
&& entry
->len
< cpc
->trim_minlen
)
945 f2fs_issue_discard(sbi
, entry
->blkaddr
, entry
->len
);
946 cpc
->trimmed
+= entry
->len
;
948 list_del(&entry
->list
);
949 SM_I(sbi
)->nr_discards
-= entry
->len
;
950 kmem_cache_free(discard_entry_slab
, entry
);
953 blk_finish_plug(&plug
);
956 static bool __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
958 struct sit_info
*sit_i
= SIT_I(sbi
);
960 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
)) {
961 sit_i
->dirty_sentries
++;
968 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
969 unsigned int segno
, int modified
)
971 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
974 __mark_sit_entry_dirty(sbi
, segno
);
977 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
979 struct seg_entry
*se
;
980 unsigned int segno
, offset
;
981 long int new_vblocks
;
983 segno
= GET_SEGNO(sbi
, blkaddr
);
985 se
= get_seg_entry(sbi
, segno
);
986 new_vblocks
= se
->valid_blocks
+ del
;
987 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
989 f2fs_bug_on(sbi
, (new_vblocks
>> (sizeof(unsigned short) << 3) ||
990 (new_vblocks
> sbi
->blocks_per_seg
)));
992 se
->valid_blocks
= new_vblocks
;
993 se
->mtime
= get_mtime(sbi
);
994 SIT_I(sbi
)->max_mtime
= se
->mtime
;
996 /* Update valid block bitmap */
998 if (f2fs_test_and_set_bit(offset
, se
->cur_valid_map
))
1000 if (f2fs_discard_en(sbi
) &&
1001 !f2fs_test_and_set_bit(offset
, se
->discard_map
))
1002 sbi
->discard_blks
--;
1004 if (!f2fs_test_and_clear_bit(offset
, se
->cur_valid_map
))
1005 f2fs_bug_on(sbi
, 1);
1006 if (f2fs_discard_en(sbi
) &&
1007 f2fs_test_and_clear_bit(offset
, se
->discard_map
))
1008 sbi
->discard_blks
++;
1010 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
1011 se
->ckpt_valid_blocks
+= del
;
1013 __mark_sit_entry_dirty(sbi
, segno
);
1015 /* update total number of valid blocks to be written in ckpt area */
1016 SIT_I(sbi
)->written_valid_blocks
+= del
;
1018 if (sbi
->segs_per_sec
> 1)
1019 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
1022 void refresh_sit_entry(struct f2fs_sb_info
*sbi
, block_t old
, block_t
new)
1024 update_sit_entry(sbi
, new, 1);
1025 if (GET_SEGNO(sbi
, old
) != NULL_SEGNO
)
1026 update_sit_entry(sbi
, old
, -1);
1028 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old
));
1029 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new));
1032 void invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
1034 unsigned int segno
= GET_SEGNO(sbi
, addr
);
1035 struct sit_info
*sit_i
= SIT_I(sbi
);
1037 f2fs_bug_on(sbi
, addr
== NULL_ADDR
);
1038 if (addr
== NEW_ADDR
)
1041 /* add it into sit main buffer */
1042 mutex_lock(&sit_i
->sentry_lock
);
1044 update_sit_entry(sbi
, addr
, -1);
1046 /* add it into dirty seglist */
1047 locate_dirty_segment(sbi
, segno
);
1049 mutex_unlock(&sit_i
->sentry_lock
);
1052 bool is_checkpointed_data(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1054 struct sit_info
*sit_i
= SIT_I(sbi
);
1055 unsigned int segno
, offset
;
1056 struct seg_entry
*se
;
1059 if (blkaddr
== NEW_ADDR
|| blkaddr
== NULL_ADDR
)
1062 mutex_lock(&sit_i
->sentry_lock
);
1064 segno
= GET_SEGNO(sbi
, blkaddr
);
1065 se
= get_seg_entry(sbi
, segno
);
1066 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
1068 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
))
1071 mutex_unlock(&sit_i
->sentry_lock
);
1077 * This function should be resided under the curseg_mutex lock
1079 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
1080 struct f2fs_summary
*sum
)
1082 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1083 void *addr
= curseg
->sum_blk
;
1084 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
1085 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
1089 * Calculate the number of current summary pages for writing
1091 int npages_for_summary_flush(struct f2fs_sb_info
*sbi
, bool for_ra
)
1093 int valid_sum_count
= 0;
1096 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1097 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
1098 valid_sum_count
+= sbi
->blocks_per_seg
;
1101 valid_sum_count
+= le16_to_cpu(
1102 F2FS_CKPT(sbi
)->cur_data_blkoff
[i
]);
1104 valid_sum_count
+= curseg_blkoff(sbi
, i
);
1108 sum_in_page
= (PAGE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
1109 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
1110 if (valid_sum_count
<= sum_in_page
)
1112 else if ((valid_sum_count
- sum_in_page
) <=
1113 (PAGE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
1119 * Caller should put this summary page
1121 struct page
*get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
1123 return get_meta_page(sbi
, GET_SUM_BLOCK(sbi
, segno
));
1126 void update_meta_page(struct f2fs_sb_info
*sbi
, void *src
, block_t blk_addr
)
1128 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
1129 void *dst
= page_address(page
);
1132 memcpy(dst
, src
, PAGE_SIZE
);
1134 memset(dst
, 0, PAGE_SIZE
);
1135 set_page_dirty(page
);
1136 f2fs_put_page(page
, 1);
1139 static void write_sum_page(struct f2fs_sb_info
*sbi
,
1140 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
1142 update_meta_page(sbi
, (void *)sum_blk
, blk_addr
);
1145 static void write_current_sum_page(struct f2fs_sb_info
*sbi
,
1146 int type
, block_t blk_addr
)
1148 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1149 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
1150 struct f2fs_summary_block
*src
= curseg
->sum_blk
;
1151 struct f2fs_summary_block
*dst
;
1153 dst
= (struct f2fs_summary_block
*)page_address(page
);
1155 mutex_lock(&curseg
->curseg_mutex
);
1157 down_read(&curseg
->journal_rwsem
);
1158 memcpy(&dst
->journal
, curseg
->journal
, SUM_JOURNAL_SIZE
);
1159 up_read(&curseg
->journal_rwsem
);
1161 memcpy(dst
->entries
, src
->entries
, SUM_ENTRY_SIZE
);
1162 memcpy(&dst
->footer
, &src
->footer
, SUM_FOOTER_SIZE
);
1164 mutex_unlock(&curseg
->curseg_mutex
);
1166 set_page_dirty(page
);
1167 f2fs_put_page(page
, 1);
1170 static int is_next_segment_free(struct f2fs_sb_info
*sbi
, int type
)
1172 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1173 unsigned int segno
= curseg
->segno
+ 1;
1174 struct free_segmap_info
*free_i
= FREE_I(sbi
);
1176 if (segno
< MAIN_SEGS(sbi
) && segno
% sbi
->segs_per_sec
)
1177 return !test_bit(segno
, free_i
->free_segmap
);
1182 * Find a new segment from the free segments bitmap to right order
1183 * This function should be returned with success, otherwise BUG
1185 static void get_new_segment(struct f2fs_sb_info
*sbi
,
1186 unsigned int *newseg
, bool new_sec
, int dir
)
1188 struct free_segmap_info
*free_i
= FREE_I(sbi
);
1189 unsigned int segno
, secno
, zoneno
;
1190 unsigned int total_zones
= MAIN_SECS(sbi
) / sbi
->secs_per_zone
;
1191 unsigned int hint
= *newseg
/ sbi
->segs_per_sec
;
1192 unsigned int old_zoneno
= GET_ZONENO_FROM_SEGNO(sbi
, *newseg
);
1193 unsigned int left_start
= hint
;
1198 spin_lock(&free_i
->segmap_lock
);
1200 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
1201 segno
= find_next_zero_bit(free_i
->free_segmap
,
1202 (hint
+ 1) * sbi
->segs_per_sec
, *newseg
+ 1);
1203 if (segno
< (hint
+ 1) * sbi
->segs_per_sec
)
1207 secno
= find_next_zero_bit(free_i
->free_secmap
, MAIN_SECS(sbi
), hint
);
1208 if (secno
>= MAIN_SECS(sbi
)) {
1209 if (dir
== ALLOC_RIGHT
) {
1210 secno
= find_next_zero_bit(free_i
->free_secmap
,
1212 f2fs_bug_on(sbi
, secno
>= MAIN_SECS(sbi
));
1215 left_start
= hint
- 1;
1221 while (test_bit(left_start
, free_i
->free_secmap
)) {
1222 if (left_start
> 0) {
1226 left_start
= find_next_zero_bit(free_i
->free_secmap
,
1228 f2fs_bug_on(sbi
, left_start
>= MAIN_SECS(sbi
));
1234 segno
= secno
* sbi
->segs_per_sec
;
1235 zoneno
= secno
/ sbi
->secs_per_zone
;
1237 /* give up on finding another zone */
1240 if (sbi
->secs_per_zone
== 1)
1242 if (zoneno
== old_zoneno
)
1244 if (dir
== ALLOC_LEFT
) {
1245 if (!go_left
&& zoneno
+ 1 >= total_zones
)
1247 if (go_left
&& zoneno
== 0)
1250 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
1251 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
1254 if (i
< NR_CURSEG_TYPE
) {
1255 /* zone is in user, try another */
1257 hint
= zoneno
* sbi
->secs_per_zone
- 1;
1258 else if (zoneno
+ 1 >= total_zones
)
1261 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
1263 goto find_other_zone
;
1266 /* set it as dirty segment in free segmap */
1267 f2fs_bug_on(sbi
, test_bit(segno
, free_i
->free_segmap
));
1268 __set_inuse(sbi
, segno
);
1270 spin_unlock(&free_i
->segmap_lock
);
1273 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
1275 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1276 struct summary_footer
*sum_footer
;
1278 curseg
->segno
= curseg
->next_segno
;
1279 curseg
->zone
= GET_ZONENO_FROM_SEGNO(sbi
, curseg
->segno
);
1280 curseg
->next_blkoff
= 0;
1281 curseg
->next_segno
= NULL_SEGNO
;
1283 sum_footer
= &(curseg
->sum_blk
->footer
);
1284 memset(sum_footer
, 0, sizeof(struct summary_footer
));
1285 if (IS_DATASEG(type
))
1286 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
1287 if (IS_NODESEG(type
))
1288 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
1289 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
1293 * Allocate a current working segment.
1294 * This function always allocates a free segment in LFS manner.
1296 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
1298 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1299 unsigned int segno
= curseg
->segno
;
1300 int dir
= ALLOC_LEFT
;
1302 write_sum_page(sbi
, curseg
->sum_blk
,
1303 GET_SUM_BLOCK(sbi
, segno
));
1304 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
1307 if (test_opt(sbi
, NOHEAP
))
1310 get_new_segment(sbi
, &segno
, new_sec
, dir
);
1311 curseg
->next_segno
= segno
;
1312 reset_curseg(sbi
, type
, 1);
1313 curseg
->alloc_type
= LFS
;
1316 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
1317 struct curseg_info
*seg
, block_t start
)
1319 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
1320 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
1321 unsigned long *target_map
= SIT_I(sbi
)->tmp_map
;
1322 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
1323 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
1326 for (i
= 0; i
< entries
; i
++)
1327 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
1329 pos
= __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
1331 seg
->next_blkoff
= pos
;
1335 * If a segment is written by LFS manner, next block offset is just obtained
1336 * by increasing the current block offset. However, if a segment is written by
1337 * SSR manner, next block offset obtained by calling __next_free_blkoff
1339 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
1340 struct curseg_info
*seg
)
1342 if (seg
->alloc_type
== SSR
)
1343 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
1349 * This function always allocates a used segment(from dirty seglist) by SSR
1350 * manner, so it should recover the existing segment information of valid blocks
1352 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
, bool reuse
)
1354 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1355 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1356 unsigned int new_segno
= curseg
->next_segno
;
1357 struct f2fs_summary_block
*sum_node
;
1358 struct page
*sum_page
;
1360 write_sum_page(sbi
, curseg
->sum_blk
,
1361 GET_SUM_BLOCK(sbi
, curseg
->segno
));
1362 __set_test_and_inuse(sbi
, new_segno
);
1364 mutex_lock(&dirty_i
->seglist_lock
);
1365 __remove_dirty_segment(sbi
, new_segno
, PRE
);
1366 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
1367 mutex_unlock(&dirty_i
->seglist_lock
);
1369 reset_curseg(sbi
, type
, 1);
1370 curseg
->alloc_type
= SSR
;
1371 __next_free_blkoff(sbi
, curseg
, 0);
1374 sum_page
= get_sum_page(sbi
, new_segno
);
1375 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
1376 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
1377 f2fs_put_page(sum_page
, 1);
1381 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
)
1383 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1384 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
1386 if (IS_NODESEG(type
) || !has_not_enough_free_secs(sbi
, 0, 0))
1387 return v_ops
->get_victim(sbi
,
1388 &(curseg
)->next_segno
, BG_GC
, type
, SSR
);
1390 /* For data segments, let's do SSR more intensively */
1391 for (; type
>= CURSEG_HOT_DATA
; type
--)
1392 if (v_ops
->get_victim(sbi
, &(curseg
)->next_segno
,
1399 * flush out current segment and replace it with new segment
1400 * This function should be returned with success, otherwise BUG
1402 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
1403 int type
, bool force
)
1405 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1408 new_curseg(sbi
, type
, true);
1409 else if (type
== CURSEG_WARM_NODE
)
1410 new_curseg(sbi
, type
, false);
1411 else if (curseg
->alloc_type
== LFS
&& is_next_segment_free(sbi
, type
))
1412 new_curseg(sbi
, type
, false);
1413 else if (need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
1414 change_curseg(sbi
, type
, true);
1416 new_curseg(sbi
, type
, false);
1418 stat_inc_seg_type(sbi
, curseg
);
1421 void allocate_new_segments(struct f2fs_sb_info
*sbi
)
1423 struct curseg_info
*curseg
;
1424 unsigned int old_segno
;
1427 if (test_opt(sbi
, LFS
))
1430 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1431 curseg
= CURSEG_I(sbi
, i
);
1432 old_segno
= curseg
->segno
;
1433 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, i
, true);
1434 locate_dirty_segment(sbi
, old_segno
);
1438 static const struct segment_allocation default_salloc_ops
= {
1439 .allocate_segment
= allocate_segment_by_default
,
1442 int f2fs_trim_fs(struct f2fs_sb_info
*sbi
, struct fstrim_range
*range
)
1444 __u64 start
= F2FS_BYTES_TO_BLK(range
->start
);
1445 __u64 end
= start
+ F2FS_BYTES_TO_BLK(range
->len
) - 1;
1446 unsigned int start_segno
, end_segno
;
1447 struct cp_control cpc
;
1450 if (start
>= MAX_BLKADDR(sbi
) || range
->len
< sbi
->blocksize
)
1454 if (end
<= MAIN_BLKADDR(sbi
))
1457 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
)) {
1458 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1459 "Found FS corruption, run fsck to fix.");
1463 /* start/end segment number in main_area */
1464 start_segno
= (start
<= MAIN_BLKADDR(sbi
)) ? 0 : GET_SEGNO(sbi
, start
);
1465 end_segno
= (end
>= MAX_BLKADDR(sbi
)) ? MAIN_SEGS(sbi
) - 1 :
1466 GET_SEGNO(sbi
, end
);
1467 cpc
.reason
= CP_DISCARD
;
1468 cpc
.trim_minlen
= max_t(__u64
, 1, F2FS_BYTES_TO_BLK(range
->minlen
));
1470 /* do checkpoint to issue discard commands safely */
1471 for (; start_segno
<= end_segno
; start_segno
= cpc
.trim_end
+ 1) {
1472 cpc
.trim_start
= start_segno
;
1474 if (sbi
->discard_blks
== 0)
1476 else if (sbi
->discard_blks
< BATCHED_TRIM_BLOCKS(sbi
))
1477 cpc
.trim_end
= end_segno
;
1479 cpc
.trim_end
= min_t(unsigned int,
1480 rounddown(start_segno
+
1481 BATCHED_TRIM_SEGMENTS(sbi
),
1482 sbi
->segs_per_sec
) - 1, end_segno
);
1484 mutex_lock(&sbi
->gc_mutex
);
1485 err
= write_checkpoint(sbi
, &cpc
);
1486 mutex_unlock(&sbi
->gc_mutex
);
1493 range
->len
= F2FS_BLK_TO_BYTES(cpc
.trimmed
);
1497 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
1499 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1500 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
1505 static int __get_segment_type_2(struct page
*page
, enum page_type p_type
)
1508 return CURSEG_HOT_DATA
;
1510 return CURSEG_HOT_NODE
;
1513 static int __get_segment_type_4(struct page
*page
, enum page_type p_type
)
1515 if (p_type
== DATA
) {
1516 struct inode
*inode
= page
->mapping
->host
;
1518 if (S_ISDIR(inode
->i_mode
))
1519 return CURSEG_HOT_DATA
;
1521 return CURSEG_COLD_DATA
;
1523 if (IS_DNODE(page
) && is_cold_node(page
))
1524 return CURSEG_WARM_NODE
;
1526 return CURSEG_COLD_NODE
;
1530 static int __get_segment_type_6(struct page
*page
, enum page_type p_type
)
1532 if (p_type
== DATA
) {
1533 struct inode
*inode
= page
->mapping
->host
;
1535 if (S_ISDIR(inode
->i_mode
))
1536 return CURSEG_HOT_DATA
;
1537 else if (is_cold_data(page
) || file_is_cold(inode
))
1538 return CURSEG_COLD_DATA
;
1540 return CURSEG_WARM_DATA
;
1543 return is_cold_node(page
) ? CURSEG_WARM_NODE
:
1546 return CURSEG_COLD_NODE
;
1550 static int __get_segment_type(struct page
*page
, enum page_type p_type
)
1552 switch (F2FS_P_SB(page
)->active_logs
) {
1554 return __get_segment_type_2(page
, p_type
);
1556 return __get_segment_type_4(page
, p_type
);
1558 /* NR_CURSEG_TYPE(6) logs by default */
1559 f2fs_bug_on(F2FS_P_SB(page
),
1560 F2FS_P_SB(page
)->active_logs
!= NR_CURSEG_TYPE
);
1561 return __get_segment_type_6(page
, p_type
);
1564 void allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
1565 block_t old_blkaddr
, block_t
*new_blkaddr
,
1566 struct f2fs_summary
*sum
, int type
)
1568 struct sit_info
*sit_i
= SIT_I(sbi
);
1569 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1571 mutex_lock(&curseg
->curseg_mutex
);
1572 mutex_lock(&sit_i
->sentry_lock
);
1574 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
1577 * __add_sum_entry should be resided under the curseg_mutex
1578 * because, this function updates a summary entry in the
1579 * current summary block.
1581 __add_sum_entry(sbi
, type
, sum
);
1583 __refresh_next_blkoff(sbi
, curseg
);
1585 stat_inc_block_count(sbi
, curseg
);
1587 if (!__has_curseg_space(sbi
, type
))
1588 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
1590 * SIT information should be updated before segment allocation,
1591 * since SSR needs latest valid block information.
1593 refresh_sit_entry(sbi
, old_blkaddr
, *new_blkaddr
);
1595 mutex_unlock(&sit_i
->sentry_lock
);
1597 if (page
&& IS_NODESEG(type
))
1598 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
1600 mutex_unlock(&curseg
->curseg_mutex
);
1603 static void do_write_page(struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
1605 int type
= __get_segment_type(fio
->page
, fio
->type
);
1607 if (fio
->type
== NODE
|| fio
->type
== DATA
)
1608 mutex_lock(&fio
->sbi
->wio_mutex
[fio
->type
]);
1610 allocate_data_block(fio
->sbi
, fio
->page
, fio
->old_blkaddr
,
1611 &fio
->new_blkaddr
, sum
, type
);
1613 /* writeout dirty page into bdev */
1614 f2fs_submit_page_mbio(fio
);
1616 if (fio
->type
== NODE
|| fio
->type
== DATA
)
1617 mutex_unlock(&fio
->sbi
->wio_mutex
[fio
->type
]);
1620 void write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
1622 struct f2fs_io_info fio
= {
1626 .op_flags
= REQ_SYNC
| REQ_META
| REQ_PRIO
,
1627 .old_blkaddr
= page
->index
,
1628 .new_blkaddr
= page
->index
,
1630 .encrypted_page
= NULL
,
1633 if (unlikely(page
->index
>= MAIN_BLKADDR(sbi
)))
1634 fio
.op_flags
&= ~REQ_META
;
1636 set_page_writeback(page
);
1637 f2fs_submit_page_mbio(&fio
);
1640 void write_node_page(unsigned int nid
, struct f2fs_io_info
*fio
)
1642 struct f2fs_summary sum
;
1644 set_summary(&sum
, nid
, 0, 0);
1645 do_write_page(&sum
, fio
);
1648 void write_data_page(struct dnode_of_data
*dn
, struct f2fs_io_info
*fio
)
1650 struct f2fs_sb_info
*sbi
= fio
->sbi
;
1651 struct f2fs_summary sum
;
1652 struct node_info ni
;
1654 f2fs_bug_on(sbi
, dn
->data_blkaddr
== NULL_ADDR
);
1655 get_node_info(sbi
, dn
->nid
, &ni
);
1656 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
1657 do_write_page(&sum
, fio
);
1658 f2fs_update_data_blkaddr(dn
, fio
->new_blkaddr
);
1661 void rewrite_data_page(struct f2fs_io_info
*fio
)
1663 fio
->new_blkaddr
= fio
->old_blkaddr
;
1664 stat_inc_inplace_blocks(fio
->sbi
);
1665 f2fs_submit_page_mbio(fio
);
1668 void __f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
1669 block_t old_blkaddr
, block_t new_blkaddr
,
1670 bool recover_curseg
, bool recover_newaddr
)
1672 struct sit_info
*sit_i
= SIT_I(sbi
);
1673 struct curseg_info
*curseg
;
1674 unsigned int segno
, old_cursegno
;
1675 struct seg_entry
*se
;
1677 unsigned short old_blkoff
;
1679 segno
= GET_SEGNO(sbi
, new_blkaddr
);
1680 se
= get_seg_entry(sbi
, segno
);
1683 if (!recover_curseg
) {
1684 /* for recovery flow */
1685 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
1686 if (old_blkaddr
== NULL_ADDR
)
1687 type
= CURSEG_COLD_DATA
;
1689 type
= CURSEG_WARM_DATA
;
1692 if (!IS_CURSEG(sbi
, segno
))
1693 type
= CURSEG_WARM_DATA
;
1696 curseg
= CURSEG_I(sbi
, type
);
1698 mutex_lock(&curseg
->curseg_mutex
);
1699 mutex_lock(&sit_i
->sentry_lock
);
1701 old_cursegno
= curseg
->segno
;
1702 old_blkoff
= curseg
->next_blkoff
;
1704 /* change the current segment */
1705 if (segno
!= curseg
->segno
) {
1706 curseg
->next_segno
= segno
;
1707 change_curseg(sbi
, type
, true);
1710 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
1711 __add_sum_entry(sbi
, type
, sum
);
1713 if (!recover_curseg
|| recover_newaddr
)
1714 update_sit_entry(sbi
, new_blkaddr
, 1);
1715 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
1716 update_sit_entry(sbi
, old_blkaddr
, -1);
1718 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
1719 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new_blkaddr
));
1721 locate_dirty_segment(sbi
, old_cursegno
);
1723 if (recover_curseg
) {
1724 if (old_cursegno
!= curseg
->segno
) {
1725 curseg
->next_segno
= old_cursegno
;
1726 change_curseg(sbi
, type
, true);
1728 curseg
->next_blkoff
= old_blkoff
;
1731 mutex_unlock(&sit_i
->sentry_lock
);
1732 mutex_unlock(&curseg
->curseg_mutex
);
1735 void f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct dnode_of_data
*dn
,
1736 block_t old_addr
, block_t new_addr
,
1737 unsigned char version
, bool recover_curseg
,
1738 bool recover_newaddr
)
1740 struct f2fs_summary sum
;
1742 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, version
);
1744 __f2fs_replace_block(sbi
, &sum
, old_addr
, new_addr
,
1745 recover_curseg
, recover_newaddr
);
1747 f2fs_update_data_blkaddr(dn
, new_addr
);
1750 void f2fs_wait_on_page_writeback(struct page
*page
,
1751 enum page_type type
, bool ordered
)
1753 if (PageWriteback(page
)) {
1754 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1756 f2fs_submit_merged_bio_cond(sbi
, NULL
, page
, 0, type
, WRITE
);
1758 wait_on_page_writeback(page
);
1760 wait_for_stable_page(page
);
1764 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info
*sbi
,
1769 if (blkaddr
== NEW_ADDR
|| blkaddr
== NULL_ADDR
)
1772 cpage
= find_lock_page(META_MAPPING(sbi
), blkaddr
);
1774 f2fs_wait_on_page_writeback(cpage
, DATA
, true);
1775 f2fs_put_page(cpage
, 1);
1779 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
1781 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1782 struct curseg_info
*seg_i
;
1783 unsigned char *kaddr
;
1788 start
= start_sum_block(sbi
);
1790 page
= get_meta_page(sbi
, start
++);
1791 kaddr
= (unsigned char *)page_address(page
);
1793 /* Step 1: restore nat cache */
1794 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1795 memcpy(seg_i
->journal
, kaddr
, SUM_JOURNAL_SIZE
);
1797 /* Step 2: restore sit cache */
1798 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1799 memcpy(seg_i
->journal
, kaddr
+ SUM_JOURNAL_SIZE
, SUM_JOURNAL_SIZE
);
1800 offset
= 2 * SUM_JOURNAL_SIZE
;
1802 /* Step 3: restore summary entries */
1803 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1804 unsigned short blk_off
;
1807 seg_i
= CURSEG_I(sbi
, i
);
1808 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
1809 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
1810 seg_i
->next_segno
= segno
;
1811 reset_curseg(sbi
, i
, 0);
1812 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
1813 seg_i
->next_blkoff
= blk_off
;
1815 if (seg_i
->alloc_type
== SSR
)
1816 blk_off
= sbi
->blocks_per_seg
;
1818 for (j
= 0; j
< blk_off
; j
++) {
1819 struct f2fs_summary
*s
;
1820 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
1821 seg_i
->sum_blk
->entries
[j
] = *s
;
1822 offset
+= SUMMARY_SIZE
;
1823 if (offset
+ SUMMARY_SIZE
<= PAGE_SIZE
-
1827 f2fs_put_page(page
, 1);
1830 page
= get_meta_page(sbi
, start
++);
1831 kaddr
= (unsigned char *)page_address(page
);
1835 f2fs_put_page(page
, 1);
1839 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
1841 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1842 struct f2fs_summary_block
*sum
;
1843 struct curseg_info
*curseg
;
1845 unsigned short blk_off
;
1846 unsigned int segno
= 0;
1847 block_t blk_addr
= 0;
1849 /* get segment number and block addr */
1850 if (IS_DATASEG(type
)) {
1851 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
1852 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
1854 if (__exist_node_summaries(sbi
))
1855 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
1857 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
1859 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
1861 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
1863 if (__exist_node_summaries(sbi
))
1864 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
1865 type
- CURSEG_HOT_NODE
);
1867 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
1870 new = get_meta_page(sbi
, blk_addr
);
1871 sum
= (struct f2fs_summary_block
*)page_address(new);
1873 if (IS_NODESEG(type
)) {
1874 if (__exist_node_summaries(sbi
)) {
1875 struct f2fs_summary
*ns
= &sum
->entries
[0];
1877 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
1879 ns
->ofs_in_node
= 0;
1884 err
= restore_node_summary(sbi
, segno
, sum
);
1886 f2fs_put_page(new, 1);
1892 /* set uncompleted segment to curseg */
1893 curseg
= CURSEG_I(sbi
, type
);
1894 mutex_lock(&curseg
->curseg_mutex
);
1896 /* update journal info */
1897 down_write(&curseg
->journal_rwsem
);
1898 memcpy(curseg
->journal
, &sum
->journal
, SUM_JOURNAL_SIZE
);
1899 up_write(&curseg
->journal_rwsem
);
1901 memcpy(curseg
->sum_blk
->entries
, sum
->entries
, SUM_ENTRY_SIZE
);
1902 memcpy(&curseg
->sum_blk
->footer
, &sum
->footer
, SUM_FOOTER_SIZE
);
1903 curseg
->next_segno
= segno
;
1904 reset_curseg(sbi
, type
, 0);
1905 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
1906 curseg
->next_blkoff
= blk_off
;
1907 mutex_unlock(&curseg
->curseg_mutex
);
1908 f2fs_put_page(new, 1);
1912 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
1914 int type
= CURSEG_HOT_DATA
;
1917 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
)) {
1918 int npages
= npages_for_summary_flush(sbi
, true);
1921 ra_meta_pages(sbi
, start_sum_block(sbi
), npages
,
1924 /* restore for compacted data summary */
1925 if (read_compacted_summaries(sbi
))
1927 type
= CURSEG_HOT_NODE
;
1930 if (__exist_node_summaries(sbi
))
1931 ra_meta_pages(sbi
, sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
),
1932 NR_CURSEG_TYPE
- type
, META_CP
, true);
1934 for (; type
<= CURSEG_COLD_NODE
; type
++) {
1935 err
= read_normal_summaries(sbi
, type
);
1943 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1946 unsigned char *kaddr
;
1947 struct f2fs_summary
*summary
;
1948 struct curseg_info
*seg_i
;
1949 int written_size
= 0;
1952 page
= grab_meta_page(sbi
, blkaddr
++);
1953 kaddr
= (unsigned char *)page_address(page
);
1955 /* Step 1: write nat cache */
1956 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1957 memcpy(kaddr
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
1958 written_size
+= SUM_JOURNAL_SIZE
;
1960 /* Step 2: write sit cache */
1961 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1962 memcpy(kaddr
+ written_size
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
1963 written_size
+= SUM_JOURNAL_SIZE
;
1965 /* Step 3: write summary entries */
1966 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1967 unsigned short blkoff
;
1968 seg_i
= CURSEG_I(sbi
, i
);
1969 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
1970 blkoff
= sbi
->blocks_per_seg
;
1972 blkoff
= curseg_blkoff(sbi
, i
);
1974 for (j
= 0; j
< blkoff
; j
++) {
1976 page
= grab_meta_page(sbi
, blkaddr
++);
1977 kaddr
= (unsigned char *)page_address(page
);
1980 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
1981 *summary
= seg_i
->sum_blk
->entries
[j
];
1982 written_size
+= SUMMARY_SIZE
;
1984 if (written_size
+ SUMMARY_SIZE
<= PAGE_SIZE
-
1988 set_page_dirty(page
);
1989 f2fs_put_page(page
, 1);
1994 set_page_dirty(page
);
1995 f2fs_put_page(page
, 1);
1999 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
2000 block_t blkaddr
, int type
)
2003 if (IS_DATASEG(type
))
2004 end
= type
+ NR_CURSEG_DATA_TYPE
;
2006 end
= type
+ NR_CURSEG_NODE_TYPE
;
2008 for (i
= type
; i
< end
; i
++)
2009 write_current_sum_page(sbi
, i
, blkaddr
+ (i
- type
));
2012 void write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
2014 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
))
2015 write_compacted_summaries(sbi
, start_blk
);
2017 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
2020 void write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
2022 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
2025 int lookup_journal_in_cursum(struct f2fs_journal
*journal
, int type
,
2026 unsigned int val
, int alloc
)
2030 if (type
== NAT_JOURNAL
) {
2031 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2032 if (le32_to_cpu(nid_in_journal(journal
, i
)) == val
)
2035 if (alloc
&& __has_cursum_space(journal
, 1, NAT_JOURNAL
))
2036 return update_nats_in_cursum(journal
, 1);
2037 } else if (type
== SIT_JOURNAL
) {
2038 for (i
= 0; i
< sits_in_cursum(journal
); i
++)
2039 if (le32_to_cpu(segno_in_journal(journal
, i
)) == val
)
2041 if (alloc
&& __has_cursum_space(journal
, 1, SIT_JOURNAL
))
2042 return update_sits_in_cursum(journal
, 1);
2047 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
2050 return get_meta_page(sbi
, current_sit_addr(sbi
, segno
));
2053 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
2056 struct sit_info
*sit_i
= SIT_I(sbi
);
2057 struct page
*src_page
, *dst_page
;
2058 pgoff_t src_off
, dst_off
;
2059 void *src_addr
, *dst_addr
;
2061 src_off
= current_sit_addr(sbi
, start
);
2062 dst_off
= next_sit_addr(sbi
, src_off
);
2064 /* get current sit block page without lock */
2065 src_page
= get_meta_page(sbi
, src_off
);
2066 dst_page
= grab_meta_page(sbi
, dst_off
);
2067 f2fs_bug_on(sbi
, PageDirty(src_page
));
2069 src_addr
= page_address(src_page
);
2070 dst_addr
= page_address(dst_page
);
2071 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
2073 set_page_dirty(dst_page
);
2074 f2fs_put_page(src_page
, 1);
2076 set_to_next_sit(sit_i
, start
);
2081 static struct sit_entry_set
*grab_sit_entry_set(void)
2083 struct sit_entry_set
*ses
=
2084 f2fs_kmem_cache_alloc(sit_entry_set_slab
, GFP_NOFS
);
2087 INIT_LIST_HEAD(&ses
->set_list
);
2091 static void release_sit_entry_set(struct sit_entry_set
*ses
)
2093 list_del(&ses
->set_list
);
2094 kmem_cache_free(sit_entry_set_slab
, ses
);
2097 static void adjust_sit_entry_set(struct sit_entry_set
*ses
,
2098 struct list_head
*head
)
2100 struct sit_entry_set
*next
= ses
;
2102 if (list_is_last(&ses
->set_list
, head
))
2105 list_for_each_entry_continue(next
, head
, set_list
)
2106 if (ses
->entry_cnt
<= next
->entry_cnt
)
2109 list_move_tail(&ses
->set_list
, &next
->set_list
);
2112 static void add_sit_entry(unsigned int segno
, struct list_head
*head
)
2114 struct sit_entry_set
*ses
;
2115 unsigned int start_segno
= START_SEGNO(segno
);
2117 list_for_each_entry(ses
, head
, set_list
) {
2118 if (ses
->start_segno
== start_segno
) {
2120 adjust_sit_entry_set(ses
, head
);
2125 ses
= grab_sit_entry_set();
2127 ses
->start_segno
= start_segno
;
2129 list_add(&ses
->set_list
, head
);
2132 static void add_sits_in_set(struct f2fs_sb_info
*sbi
)
2134 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
2135 struct list_head
*set_list
= &sm_info
->sit_entry_set
;
2136 unsigned long *bitmap
= SIT_I(sbi
)->dirty_sentries_bitmap
;
2139 for_each_set_bit(segno
, bitmap
, MAIN_SEGS(sbi
))
2140 add_sit_entry(segno
, set_list
);
2143 static void remove_sits_in_journal(struct f2fs_sb_info
*sbi
)
2145 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2146 struct f2fs_journal
*journal
= curseg
->journal
;
2149 down_write(&curseg
->journal_rwsem
);
2150 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
2154 segno
= le32_to_cpu(segno_in_journal(journal
, i
));
2155 dirtied
= __mark_sit_entry_dirty(sbi
, segno
);
2158 add_sit_entry(segno
, &SM_I(sbi
)->sit_entry_set
);
2160 update_sits_in_cursum(journal
, -i
);
2161 up_write(&curseg
->journal_rwsem
);
2165 * CP calls this function, which flushes SIT entries including sit_journal,
2166 * and moves prefree segs to free segs.
2168 void flush_sit_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
2170 struct sit_info
*sit_i
= SIT_I(sbi
);
2171 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
2172 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2173 struct f2fs_journal
*journal
= curseg
->journal
;
2174 struct sit_entry_set
*ses
, *tmp
;
2175 struct list_head
*head
= &SM_I(sbi
)->sit_entry_set
;
2176 bool to_journal
= true;
2177 struct seg_entry
*se
;
2179 mutex_lock(&sit_i
->sentry_lock
);
2181 if (!sit_i
->dirty_sentries
)
2185 * add and account sit entries of dirty bitmap in sit entry
2188 add_sits_in_set(sbi
);
2191 * if there are no enough space in journal to store dirty sit
2192 * entries, remove all entries from journal and add and account
2193 * them in sit entry set.
2195 if (!__has_cursum_space(journal
, sit_i
->dirty_sentries
, SIT_JOURNAL
))
2196 remove_sits_in_journal(sbi
);
2199 * there are two steps to flush sit entries:
2200 * #1, flush sit entries to journal in current cold data summary block.
2201 * #2, flush sit entries to sit page.
2203 list_for_each_entry_safe(ses
, tmp
, head
, set_list
) {
2204 struct page
*page
= NULL
;
2205 struct f2fs_sit_block
*raw_sit
= NULL
;
2206 unsigned int start_segno
= ses
->start_segno
;
2207 unsigned int end
= min(start_segno
+ SIT_ENTRY_PER_BLOCK
,
2208 (unsigned long)MAIN_SEGS(sbi
));
2209 unsigned int segno
= start_segno
;
2212 !__has_cursum_space(journal
, ses
->entry_cnt
, SIT_JOURNAL
))
2216 down_write(&curseg
->journal_rwsem
);
2218 page
= get_next_sit_page(sbi
, start_segno
);
2219 raw_sit
= page_address(page
);
2222 /* flush dirty sit entries in region of current sit set */
2223 for_each_set_bit_from(segno
, bitmap
, end
) {
2224 int offset
, sit_offset
;
2226 se
= get_seg_entry(sbi
, segno
);
2228 /* add discard candidates */
2229 if (cpc
->reason
!= CP_DISCARD
) {
2230 cpc
->trim_start
= segno
;
2231 add_discard_addrs(sbi
, cpc
);
2235 offset
= lookup_journal_in_cursum(journal
,
2236 SIT_JOURNAL
, segno
, 1);
2237 f2fs_bug_on(sbi
, offset
< 0);
2238 segno_in_journal(journal
, offset
) =
2240 seg_info_to_raw_sit(se
,
2241 &sit_in_journal(journal
, offset
));
2243 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
2244 seg_info_to_raw_sit(se
,
2245 &raw_sit
->entries
[sit_offset
]);
2248 __clear_bit(segno
, bitmap
);
2249 sit_i
->dirty_sentries
--;
2254 up_write(&curseg
->journal_rwsem
);
2256 f2fs_put_page(page
, 1);
2258 f2fs_bug_on(sbi
, ses
->entry_cnt
);
2259 release_sit_entry_set(ses
);
2262 f2fs_bug_on(sbi
, !list_empty(head
));
2263 f2fs_bug_on(sbi
, sit_i
->dirty_sentries
);
2265 if (cpc
->reason
== CP_DISCARD
) {
2266 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++)
2267 add_discard_addrs(sbi
, cpc
);
2269 mutex_unlock(&sit_i
->sentry_lock
);
2271 set_prefree_as_free_segments(sbi
);
2274 static int build_sit_info(struct f2fs_sb_info
*sbi
)
2276 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2277 struct sit_info
*sit_i
;
2278 unsigned int sit_segs
, start
;
2279 char *src_bitmap
, *dst_bitmap
;
2280 unsigned int bitmap_size
;
2282 /* allocate memory for SIT information */
2283 sit_i
= kzalloc(sizeof(struct sit_info
), GFP_KERNEL
);
2287 SM_I(sbi
)->sit_info
= sit_i
;
2289 sit_i
->sentries
= f2fs_kvzalloc(MAIN_SEGS(sbi
) *
2290 sizeof(struct seg_entry
), GFP_KERNEL
);
2291 if (!sit_i
->sentries
)
2294 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2295 sit_i
->dirty_sentries_bitmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2296 if (!sit_i
->dirty_sentries_bitmap
)
2299 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2300 sit_i
->sentries
[start
].cur_valid_map
2301 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2302 sit_i
->sentries
[start
].ckpt_valid_map
2303 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2304 if (!sit_i
->sentries
[start
].cur_valid_map
||
2305 !sit_i
->sentries
[start
].ckpt_valid_map
)
2308 if (f2fs_discard_en(sbi
)) {
2309 sit_i
->sentries
[start
].discard_map
2310 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2311 if (!sit_i
->sentries
[start
].discard_map
)
2316 sit_i
->tmp_map
= kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2317 if (!sit_i
->tmp_map
)
2320 if (sbi
->segs_per_sec
> 1) {
2321 sit_i
->sec_entries
= f2fs_kvzalloc(MAIN_SECS(sbi
) *
2322 sizeof(struct sec_entry
), GFP_KERNEL
);
2323 if (!sit_i
->sec_entries
)
2327 /* get information related with SIT */
2328 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
2330 /* setup SIT bitmap from ckeckpoint pack */
2331 bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
2332 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
2334 dst_bitmap
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
2338 /* init SIT information */
2339 sit_i
->s_ops
= &default_salloc_ops
;
2341 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
2342 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
2343 sit_i
->written_valid_blocks
= 0;
2344 sit_i
->sit_bitmap
= dst_bitmap
;
2345 sit_i
->bitmap_size
= bitmap_size
;
2346 sit_i
->dirty_sentries
= 0;
2347 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
2348 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
2349 sit_i
->mounted_time
= CURRENT_TIME_SEC
.tv_sec
;
2350 mutex_init(&sit_i
->sentry_lock
);
2354 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
2356 struct free_segmap_info
*free_i
;
2357 unsigned int bitmap_size
, sec_bitmap_size
;
2359 /* allocate memory for free segmap information */
2360 free_i
= kzalloc(sizeof(struct free_segmap_info
), GFP_KERNEL
);
2364 SM_I(sbi
)->free_info
= free_i
;
2366 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2367 free_i
->free_segmap
= f2fs_kvmalloc(bitmap_size
, GFP_KERNEL
);
2368 if (!free_i
->free_segmap
)
2371 sec_bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2372 free_i
->free_secmap
= f2fs_kvmalloc(sec_bitmap_size
, GFP_KERNEL
);
2373 if (!free_i
->free_secmap
)
2376 /* set all segments as dirty temporarily */
2377 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
2378 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
2380 /* init free segmap information */
2381 free_i
->start_segno
= GET_SEGNO_FROM_SEG0(sbi
, MAIN_BLKADDR(sbi
));
2382 free_i
->free_segments
= 0;
2383 free_i
->free_sections
= 0;
2384 spin_lock_init(&free_i
->segmap_lock
);
2388 static int build_curseg(struct f2fs_sb_info
*sbi
)
2390 struct curseg_info
*array
;
2393 array
= kcalloc(NR_CURSEG_TYPE
, sizeof(*array
), GFP_KERNEL
);
2397 SM_I(sbi
)->curseg_array
= array
;
2399 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
2400 mutex_init(&array
[i
].curseg_mutex
);
2401 array
[i
].sum_blk
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
2402 if (!array
[i
].sum_blk
)
2404 init_rwsem(&array
[i
].journal_rwsem
);
2405 array
[i
].journal
= kzalloc(sizeof(struct f2fs_journal
),
2407 if (!array
[i
].journal
)
2409 array
[i
].segno
= NULL_SEGNO
;
2410 array
[i
].next_blkoff
= 0;
2412 return restore_curseg_summaries(sbi
);
2415 static void build_sit_entries(struct f2fs_sb_info
*sbi
)
2417 struct sit_info
*sit_i
= SIT_I(sbi
);
2418 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2419 struct f2fs_journal
*journal
= curseg
->journal
;
2420 struct seg_entry
*se
;
2421 struct f2fs_sit_entry sit
;
2422 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
2423 unsigned int i
, start
, end
;
2424 unsigned int readed
, start_blk
= 0;
2427 readed
= ra_meta_pages(sbi
, start_blk
, BIO_MAX_PAGES
,
2430 start
= start_blk
* sit_i
->sents_per_block
;
2431 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
2433 for (; start
< end
&& start
< MAIN_SEGS(sbi
); start
++) {
2434 struct f2fs_sit_block
*sit_blk
;
2437 se
= &sit_i
->sentries
[start
];
2438 page
= get_current_sit_page(sbi
, start
);
2439 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
2440 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
2441 f2fs_put_page(page
, 1);
2443 check_block_count(sbi
, start
, &sit
);
2444 seg_info_from_raw_sit(se
, &sit
);
2446 /* build discard map only one time */
2447 if (f2fs_discard_en(sbi
)) {
2448 memcpy(se
->discard_map
, se
->cur_valid_map
,
2449 SIT_VBLOCK_MAP_SIZE
);
2450 sbi
->discard_blks
+= sbi
->blocks_per_seg
-
2454 if (sbi
->segs_per_sec
> 1)
2455 get_sec_entry(sbi
, start
)->valid_blocks
+=
2458 start_blk
+= readed
;
2459 } while (start_blk
< sit_blk_cnt
);
2461 down_read(&curseg
->journal_rwsem
);
2462 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
2463 unsigned int old_valid_blocks
;
2465 start
= le32_to_cpu(segno_in_journal(journal
, i
));
2466 se
= &sit_i
->sentries
[start
];
2467 sit
= sit_in_journal(journal
, i
);
2469 old_valid_blocks
= se
->valid_blocks
;
2471 check_block_count(sbi
, start
, &sit
);
2472 seg_info_from_raw_sit(se
, &sit
);
2474 if (f2fs_discard_en(sbi
)) {
2475 memcpy(se
->discard_map
, se
->cur_valid_map
,
2476 SIT_VBLOCK_MAP_SIZE
);
2477 sbi
->discard_blks
+= old_valid_blocks
-
2481 if (sbi
->segs_per_sec
> 1)
2482 get_sec_entry(sbi
, start
)->valid_blocks
+=
2483 se
->valid_blocks
- old_valid_blocks
;
2485 up_read(&curseg
->journal_rwsem
);
2488 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
2493 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2494 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
2495 if (!sentry
->valid_blocks
)
2496 __set_free(sbi
, start
);
2498 SIT_I(sbi
)->written_valid_blocks
+=
2499 sentry
->valid_blocks
;
2502 /* set use the current segments */
2503 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
2504 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
2505 __set_test_and_inuse(sbi
, curseg_t
->segno
);
2509 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
2511 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2512 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2513 unsigned int segno
= 0, offset
= 0;
2514 unsigned short valid_blocks
;
2517 /* find dirty segment based on free segmap */
2518 segno
= find_next_inuse(free_i
, MAIN_SEGS(sbi
), offset
);
2519 if (segno
>= MAIN_SEGS(sbi
))
2522 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
2523 if (valid_blocks
== sbi
->blocks_per_seg
|| !valid_blocks
)
2525 if (valid_blocks
> sbi
->blocks_per_seg
) {
2526 f2fs_bug_on(sbi
, 1);
2529 mutex_lock(&dirty_i
->seglist_lock
);
2530 __locate_dirty_segment(sbi
, segno
, DIRTY
);
2531 mutex_unlock(&dirty_i
->seglist_lock
);
2535 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
2537 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2538 unsigned int bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2540 dirty_i
->victim_secmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2541 if (!dirty_i
->victim_secmap
)
2546 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
2548 struct dirty_seglist_info
*dirty_i
;
2549 unsigned int bitmap_size
, i
;
2551 /* allocate memory for dirty segments list information */
2552 dirty_i
= kzalloc(sizeof(struct dirty_seglist_info
), GFP_KERNEL
);
2556 SM_I(sbi
)->dirty_info
= dirty_i
;
2557 mutex_init(&dirty_i
->seglist_lock
);
2559 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2561 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
2562 dirty_i
->dirty_segmap
[i
] = f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2563 if (!dirty_i
->dirty_segmap
[i
])
2567 init_dirty_segmap(sbi
);
2568 return init_victim_secmap(sbi
);
2572 * Update min, max modified time for cost-benefit GC algorithm
2574 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
2576 struct sit_info
*sit_i
= SIT_I(sbi
);
2579 mutex_lock(&sit_i
->sentry_lock
);
2581 sit_i
->min_mtime
= LLONG_MAX
;
2583 for (segno
= 0; segno
< MAIN_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
2585 unsigned long long mtime
= 0;
2587 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
2588 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
2590 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
2592 if (sit_i
->min_mtime
> mtime
)
2593 sit_i
->min_mtime
= mtime
;
2595 sit_i
->max_mtime
= get_mtime(sbi
);
2596 mutex_unlock(&sit_i
->sentry_lock
);
2599 int build_segment_manager(struct f2fs_sb_info
*sbi
)
2601 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2602 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2603 struct f2fs_sm_info
*sm_info
;
2606 sm_info
= kzalloc(sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
2611 sbi
->sm_info
= sm_info
;
2612 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
2613 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
2614 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
2615 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
2616 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
2617 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
2618 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
2619 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
2620 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
2621 if (sm_info
->rec_prefree_segments
> DEF_MAX_RECLAIM_PREFREE_SEGMENTS
)
2622 sm_info
->rec_prefree_segments
= DEF_MAX_RECLAIM_PREFREE_SEGMENTS
;
2624 if (!test_opt(sbi
, LFS
))
2625 sm_info
->ipu_policy
= 1 << F2FS_IPU_FSYNC
;
2626 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
2627 sm_info
->min_fsync_blocks
= DEF_MIN_FSYNC_BLOCKS
;
2629 INIT_LIST_HEAD(&sm_info
->discard_list
);
2630 INIT_LIST_HEAD(&sm_info
->wait_list
);
2631 sm_info
->nr_discards
= 0;
2632 sm_info
->max_discards
= 0;
2634 sm_info
->trim_sections
= DEF_BATCHED_TRIM_SECTIONS
;
2636 INIT_LIST_HEAD(&sm_info
->sit_entry_set
);
2638 if (test_opt(sbi
, FLUSH_MERGE
) && !f2fs_readonly(sbi
->sb
)) {
2639 err
= create_flush_cmd_control(sbi
);
2644 err
= build_sit_info(sbi
);
2647 err
= build_free_segmap(sbi
);
2650 err
= build_curseg(sbi
);
2654 /* reinit free segmap based on SIT */
2655 build_sit_entries(sbi
);
2657 init_free_segmap(sbi
);
2658 err
= build_dirty_segmap(sbi
);
2662 init_min_max_mtime(sbi
);
2666 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
2667 enum dirty_type dirty_type
)
2669 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2671 mutex_lock(&dirty_i
->seglist_lock
);
2672 kvfree(dirty_i
->dirty_segmap
[dirty_type
]);
2673 dirty_i
->nr_dirty
[dirty_type
] = 0;
2674 mutex_unlock(&dirty_i
->seglist_lock
);
2677 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
2679 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2680 kvfree(dirty_i
->victim_secmap
);
2683 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
2685 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2691 /* discard pre-free/dirty segments list */
2692 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
2693 discard_dirty_segmap(sbi
, i
);
2695 destroy_victim_secmap(sbi
);
2696 SM_I(sbi
)->dirty_info
= NULL
;
2700 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
2702 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
2707 SM_I(sbi
)->curseg_array
= NULL
;
2708 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
2709 kfree(array
[i
].sum_blk
);
2710 kfree(array
[i
].journal
);
2715 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
2717 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
2720 SM_I(sbi
)->free_info
= NULL
;
2721 kvfree(free_i
->free_segmap
);
2722 kvfree(free_i
->free_secmap
);
2726 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
2728 struct sit_info
*sit_i
= SIT_I(sbi
);
2734 if (sit_i
->sentries
) {
2735 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2736 kfree(sit_i
->sentries
[start
].cur_valid_map
);
2737 kfree(sit_i
->sentries
[start
].ckpt_valid_map
);
2738 kfree(sit_i
->sentries
[start
].discard_map
);
2741 kfree(sit_i
->tmp_map
);
2743 kvfree(sit_i
->sentries
);
2744 kvfree(sit_i
->sec_entries
);
2745 kvfree(sit_i
->dirty_sentries_bitmap
);
2747 SM_I(sbi
)->sit_info
= NULL
;
2748 kfree(sit_i
->sit_bitmap
);
2752 void destroy_segment_manager(struct f2fs_sb_info
*sbi
)
2754 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
2758 destroy_flush_cmd_control(sbi
, true);
2759 destroy_dirty_segmap(sbi
);
2760 destroy_curseg(sbi
);
2761 destroy_free_segmap(sbi
);
2762 destroy_sit_info(sbi
);
2763 sbi
->sm_info
= NULL
;
2767 int __init
create_segment_manager_caches(void)
2769 discard_entry_slab
= f2fs_kmem_cache_create("discard_entry",
2770 sizeof(struct discard_entry
));
2771 if (!discard_entry_slab
)
2774 bio_entry_slab
= f2fs_kmem_cache_create("bio_entry",
2775 sizeof(struct bio_entry
));
2776 if (!bio_entry_slab
)
2777 goto destroy_discard_entry
;
2779 sit_entry_set_slab
= f2fs_kmem_cache_create("sit_entry_set",
2780 sizeof(struct sit_entry_set
));
2781 if (!sit_entry_set_slab
)
2782 goto destroy_bio_entry
;
2784 inmem_entry_slab
= f2fs_kmem_cache_create("inmem_page_entry",
2785 sizeof(struct inmem_pages
));
2786 if (!inmem_entry_slab
)
2787 goto destroy_sit_entry_set
;
2790 destroy_sit_entry_set
:
2791 kmem_cache_destroy(sit_entry_set_slab
);
2793 kmem_cache_destroy(bio_entry_slab
);
2794 destroy_discard_entry
:
2795 kmem_cache_destroy(discard_entry_slab
);
2800 void destroy_segment_manager_caches(void)
2802 kmem_cache_destroy(sit_entry_set_slab
);
2803 kmem_cache_destroy(bio_entry_slab
);
2804 kmem_cache_destroy(discard_entry_slab
);
2805 kmem_cache_destroy(inmem_entry_slab
);