2 * fs/kernfs/dir.c - kernfs directory implementation
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 * This file is released under the GPLv2.
11 #include <linux/sched.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
19 #include "kernfs-internal.h"
21 DEFINE_MUTEX(kernfs_mutex
);
22 static DEFINE_SPINLOCK(kernfs_rename_lock
); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf
[PATH_MAX
]; /* protected by rename_lock */
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 static bool kernfs_active(struct kernfs_node
*kn
)
29 lockdep_assert_held(&kernfs_mutex
);
30 return atomic_read(&kn
->active
) >= 0;
33 static bool kernfs_lockdep(struct kernfs_node
*kn
)
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn
->flags
& KERNFS_LOCKDEP
;
42 static int kernfs_name_locked(struct kernfs_node
*kn
, char *buf
, size_t buflen
)
44 return strlcpy(buf
, kn
->parent
? kn
->name
: "/", buflen
);
47 /* kernfs_node_depth - compute depth from @from to @to */
48 static size_t kernfs_depth(struct kernfs_node
*from
, struct kernfs_node
*to
)
52 while (to
->parent
&& to
!= from
) {
59 static struct kernfs_node
*kernfs_common_ancestor(struct kernfs_node
*a
,
60 struct kernfs_node
*b
)
63 struct kernfs_root
*ra
= kernfs_root(a
), *rb
= kernfs_root(b
);
68 da
= kernfs_depth(ra
->kn
, a
);
69 db
= kernfs_depth(rb
->kn
, b
);
80 /* worst case b and a will be the same at root */
90 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
91 * where kn_from is treated as root of the path.
92 * @kn_from: kernfs node which should be treated as root for the path
93 * @kn_to: kernfs node to which path is needed
94 * @buf: buffer to copy the path into
95 * @buflen: size of @buf
97 * We need to handle couple of scenarios here:
98 * [1] when @kn_from is an ancestor of @kn_to at some level
100 * kn_to: /n1/n2/n3/n4/n5
103 * [2] when @kn_from is on a different hierarchy and we need to find common
104 * ancestor between @kn_from and @kn_to.
105 * kn_from: /n1/n2/n3/n4
109 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
110 * kn_to: /n1/n2/n3 [depth=3]
113 * Returns the length of the full path. If the full length is equal to or
114 * greater than @buflen, @buf contains the truncated path with the trailing
115 * '\0'. On error, -errno is returned.
117 static int kernfs_path_from_node_locked(struct kernfs_node
*kn_to
,
118 struct kernfs_node
*kn_from
,
119 char *buf
, size_t buflen
)
121 struct kernfs_node
*kn
, *common
;
122 const char parent_str
[] = "/..";
123 size_t depth_from
, depth_to
, len
= 0;
127 kn_from
= kernfs_root(kn_to
)->kn
;
129 if (kn_from
== kn_to
)
130 return strlcpy(buf
, "/", buflen
);
132 common
= kernfs_common_ancestor(kn_from
, kn_to
);
133 if (WARN_ON(!common
))
136 depth_to
= kernfs_depth(common
, kn_to
);
137 depth_from
= kernfs_depth(common
, kn_from
);
142 for (i
= 0; i
< depth_from
; i
++)
143 len
+= strlcpy(buf
+ len
, parent_str
,
144 len
< buflen
? buflen
- len
: 0);
146 /* Calculate how many bytes we need for the rest */
147 for (i
= depth_to
- 1; i
>= 0; i
--) {
148 for (kn
= kn_to
, j
= 0; j
< i
; j
++)
150 len
+= strlcpy(buf
+ len
, "/",
151 len
< buflen
? buflen
- len
: 0);
152 len
+= strlcpy(buf
+ len
, kn
->name
,
153 len
< buflen
? buflen
- len
: 0);
160 * kernfs_name - obtain the name of a given node
161 * @kn: kernfs_node of interest
162 * @buf: buffer to copy @kn's name into
163 * @buflen: size of @buf
165 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
166 * similar to strlcpy(). It returns the length of @kn's name and if @buf
167 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
169 * This function can be called from any context.
171 int kernfs_name(struct kernfs_node
*kn
, char *buf
, size_t buflen
)
176 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
177 ret
= kernfs_name_locked(kn
, buf
, buflen
);
178 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
183 * kernfs_path_from_node - build path of node @to relative to @from.
184 * @from: parent kernfs_node relative to which we need to build the path
185 * @to: kernfs_node of interest
186 * @buf: buffer to copy @to's path into
187 * @buflen: size of @buf
189 * Builds @to's path relative to @from in @buf. @from and @to must
190 * be on the same kernfs-root. If @from is not parent of @to, then a relative
191 * path (which includes '..'s) as needed to reach from @from to @to is
194 * Returns the length of the full path. If the full length is equal to or
195 * greater than @buflen, @buf contains the truncated path with the trailing
196 * '\0'. On error, -errno is returned.
198 int kernfs_path_from_node(struct kernfs_node
*to
, struct kernfs_node
*from
,
199 char *buf
, size_t buflen
)
204 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
205 ret
= kernfs_path_from_node_locked(to
, from
, buf
, buflen
);
206 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
209 EXPORT_SYMBOL_GPL(kernfs_path_from_node
);
212 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
213 * @kn: kernfs_node of interest
215 * This function can be called from any context.
217 void pr_cont_kernfs_name(struct kernfs_node
*kn
)
221 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
223 kernfs_name_locked(kn
, kernfs_pr_cont_buf
, sizeof(kernfs_pr_cont_buf
));
224 pr_cont("%s", kernfs_pr_cont_buf
);
226 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
230 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
231 * @kn: kernfs_node of interest
233 * This function can be called from any context.
235 void pr_cont_kernfs_path(struct kernfs_node
*kn
)
240 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
242 sz
= kernfs_path_from_node_locked(kn
, NULL
, kernfs_pr_cont_buf
,
243 sizeof(kernfs_pr_cont_buf
));
249 if (sz
>= sizeof(kernfs_pr_cont_buf
)) {
250 pr_cont("(name too long)");
254 pr_cont("%s", kernfs_pr_cont_buf
);
257 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
261 * kernfs_get_parent - determine the parent node and pin it
262 * @kn: kernfs_node of interest
264 * Determines @kn's parent, pins and returns it. This function can be
265 * called from any context.
267 struct kernfs_node
*kernfs_get_parent(struct kernfs_node
*kn
)
269 struct kernfs_node
*parent
;
272 spin_lock_irqsave(&kernfs_rename_lock
, flags
);
275 spin_unlock_irqrestore(&kernfs_rename_lock
, flags
);
282 * @name: Null terminated string to hash
283 * @ns: Namespace tag to hash
285 * Returns 31 bit hash of ns + name (so it fits in an off_t )
287 static unsigned int kernfs_name_hash(const char *name
, const void *ns
)
289 unsigned long hash
= init_name_hash(ns
);
290 unsigned int len
= strlen(name
);
292 hash
= partial_name_hash(*name
++, hash
);
293 hash
= end_name_hash(hash
);
295 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
303 static int kernfs_name_compare(unsigned int hash
, const char *name
,
304 const void *ns
, const struct kernfs_node
*kn
)
314 return strcmp(name
, kn
->name
);
317 static int kernfs_sd_compare(const struct kernfs_node
*left
,
318 const struct kernfs_node
*right
)
320 return kernfs_name_compare(left
->hash
, left
->name
, left
->ns
, right
);
324 * kernfs_link_sibling - link kernfs_node into sibling rbtree
325 * @kn: kernfs_node of interest
327 * Link @kn into its sibling rbtree which starts from
328 * @kn->parent->dir.children.
331 * mutex_lock(kernfs_mutex)
334 * 0 on susccess -EEXIST on failure.
336 static int kernfs_link_sibling(struct kernfs_node
*kn
)
338 struct rb_node
**node
= &kn
->parent
->dir
.children
.rb_node
;
339 struct rb_node
*parent
= NULL
;
342 struct kernfs_node
*pos
;
345 pos
= rb_to_kn(*node
);
347 result
= kernfs_sd_compare(kn
, pos
);
349 node
= &pos
->rb
.rb_left
;
351 node
= &pos
->rb
.rb_right
;
356 /* add new node and rebalance the tree */
357 rb_link_node(&kn
->rb
, parent
, node
);
358 rb_insert_color(&kn
->rb
, &kn
->parent
->dir
.children
);
360 /* successfully added, account subdir number */
361 if (kernfs_type(kn
) == KERNFS_DIR
)
362 kn
->parent
->dir
.subdirs
++;
368 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
369 * @kn: kernfs_node of interest
371 * Try to unlink @kn from its sibling rbtree which starts from
372 * kn->parent->dir.children. Returns %true if @kn was actually
373 * removed, %false if @kn wasn't on the rbtree.
376 * mutex_lock(kernfs_mutex)
378 static bool kernfs_unlink_sibling(struct kernfs_node
*kn
)
380 if (RB_EMPTY_NODE(&kn
->rb
))
383 if (kernfs_type(kn
) == KERNFS_DIR
)
384 kn
->parent
->dir
.subdirs
--;
386 rb_erase(&kn
->rb
, &kn
->parent
->dir
.children
);
387 RB_CLEAR_NODE(&kn
->rb
);
392 * kernfs_get_active - get an active reference to kernfs_node
393 * @kn: kernfs_node to get an active reference to
395 * Get an active reference of @kn. This function is noop if @kn
399 * Pointer to @kn on success, NULL on failure.
401 struct kernfs_node
*kernfs_get_active(struct kernfs_node
*kn
)
406 if (!atomic_inc_unless_negative(&kn
->active
))
409 if (kernfs_lockdep(kn
))
410 rwsem_acquire_read(&kn
->dep_map
, 0, 1, _RET_IP_
);
415 * kernfs_put_active - put an active reference to kernfs_node
416 * @kn: kernfs_node to put an active reference to
418 * Put an active reference to @kn. This function is noop if @kn
421 void kernfs_put_active(struct kernfs_node
*kn
)
423 struct kernfs_root
*root
= kernfs_root(kn
);
429 if (kernfs_lockdep(kn
))
430 rwsem_release(&kn
->dep_map
, 1, _RET_IP_
);
431 v
= atomic_dec_return(&kn
->active
);
432 if (likely(v
!= KN_DEACTIVATED_BIAS
))
435 wake_up_all(&root
->deactivate_waitq
);
439 * kernfs_drain - drain kernfs_node
440 * @kn: kernfs_node to drain
442 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
443 * removers may invoke this function concurrently on @kn and all will
444 * return after draining is complete.
446 static void kernfs_drain(struct kernfs_node
*kn
)
447 __releases(&kernfs_mutex
) __acquires(&kernfs_mutex
)
449 struct kernfs_root
*root
= kernfs_root(kn
);
451 lockdep_assert_held(&kernfs_mutex
);
452 WARN_ON_ONCE(kernfs_active(kn
));
454 mutex_unlock(&kernfs_mutex
);
456 if (kernfs_lockdep(kn
)) {
457 rwsem_acquire(&kn
->dep_map
, 0, 0, _RET_IP_
);
458 if (atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
)
459 lock_contended(&kn
->dep_map
, _RET_IP_
);
462 /* but everyone should wait for draining */
463 wait_event(root
->deactivate_waitq
,
464 atomic_read(&kn
->active
) == KN_DEACTIVATED_BIAS
);
466 if (kernfs_lockdep(kn
)) {
467 lock_acquired(&kn
->dep_map
, _RET_IP_
);
468 rwsem_release(&kn
->dep_map
, 1, _RET_IP_
);
471 kernfs_unmap_bin_file(kn
);
473 mutex_lock(&kernfs_mutex
);
477 * kernfs_get - get a reference count on a kernfs_node
478 * @kn: the target kernfs_node
480 void kernfs_get(struct kernfs_node
*kn
)
483 WARN_ON(!atomic_read(&kn
->count
));
484 atomic_inc(&kn
->count
);
487 EXPORT_SYMBOL_GPL(kernfs_get
);
490 * kernfs_put - put a reference count on a kernfs_node
491 * @kn: the target kernfs_node
493 * Put a reference count of @kn and destroy it if it reached zero.
495 void kernfs_put(struct kernfs_node
*kn
)
497 struct kernfs_node
*parent
;
498 struct kernfs_root
*root
;
500 if (!kn
|| !atomic_dec_and_test(&kn
->count
))
502 root
= kernfs_root(kn
);
505 * Moving/renaming is always done while holding reference.
506 * kn->parent won't change beneath us.
510 WARN_ONCE(atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
,
511 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
512 parent
? parent
->name
: "", kn
->name
, atomic_read(&kn
->active
));
514 if (kernfs_type(kn
) == KERNFS_LINK
)
515 kernfs_put(kn
->symlink
.target_kn
);
517 kfree_const(kn
->name
);
520 if (kn
->iattr
->ia_secdata
)
521 security_release_secctx(kn
->iattr
->ia_secdata
,
522 kn
->iattr
->ia_secdata_len
);
523 simple_xattrs_free(&kn
->iattr
->xattrs
);
526 ida_simple_remove(&root
->ino_ida
, kn
->ino
);
527 kmem_cache_free(kernfs_node_cache
, kn
);
531 if (atomic_dec_and_test(&kn
->count
))
534 /* just released the root kn, free @root too */
535 ida_destroy(&root
->ino_ida
);
539 EXPORT_SYMBOL_GPL(kernfs_put
);
541 static int kernfs_dop_revalidate(struct dentry
*dentry
, unsigned int flags
)
543 struct kernfs_node
*kn
;
545 if (flags
& LOOKUP_RCU
)
548 /* Always perform fresh lookup for negatives */
549 if (d_really_is_negative(dentry
))
550 goto out_bad_unlocked
;
552 kn
= dentry
->d_fsdata
;
553 mutex_lock(&kernfs_mutex
);
555 /* The kernfs node has been deactivated */
556 if (!kernfs_active(kn
))
559 /* The kernfs node has been moved? */
560 if (dentry
->d_parent
->d_fsdata
!= kn
->parent
)
563 /* The kernfs node has been renamed */
564 if (strcmp(dentry
->d_name
.name
, kn
->name
) != 0)
567 /* The kernfs node has been moved to a different namespace */
568 if (kn
->parent
&& kernfs_ns_enabled(kn
->parent
) &&
569 kernfs_info(dentry
->d_sb
)->ns
!= kn
->ns
)
572 mutex_unlock(&kernfs_mutex
);
575 mutex_unlock(&kernfs_mutex
);
580 static void kernfs_dop_release(struct dentry
*dentry
)
582 kernfs_put(dentry
->d_fsdata
);
585 const struct dentry_operations kernfs_dops
= {
586 .d_revalidate
= kernfs_dop_revalidate
,
587 .d_release
= kernfs_dop_release
,
591 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
592 * @dentry: the dentry in question
594 * Return the kernfs_node associated with @dentry. If @dentry is not a
595 * kernfs one, %NULL is returned.
597 * While the returned kernfs_node will stay accessible as long as @dentry
598 * is accessible, the returned node can be in any state and the caller is
599 * fully responsible for determining what's accessible.
601 struct kernfs_node
*kernfs_node_from_dentry(struct dentry
*dentry
)
603 if (dentry
->d_sb
->s_op
== &kernfs_sops
)
604 return dentry
->d_fsdata
;
608 static struct kernfs_node
*__kernfs_new_node(struct kernfs_root
*root
,
609 const char *name
, umode_t mode
,
612 struct kernfs_node
*kn
;
615 name
= kstrdup_const(name
, GFP_KERNEL
);
619 kn
= kmem_cache_zalloc(kernfs_node_cache
, GFP_KERNEL
);
623 ret
= ida_simple_get(&root
->ino_ida
, 1, 0, GFP_KERNEL
);
628 atomic_set(&kn
->count
, 1);
629 atomic_set(&kn
->active
, KN_DEACTIVATED_BIAS
);
630 RB_CLEAR_NODE(&kn
->rb
);
639 kmem_cache_free(kernfs_node_cache
, kn
);
645 struct kernfs_node
*kernfs_new_node(struct kernfs_node
*parent
,
646 const char *name
, umode_t mode
,
649 struct kernfs_node
*kn
;
651 kn
= __kernfs_new_node(kernfs_root(parent
), name
, mode
, flags
);
660 * kernfs_add_one - add kernfs_node to parent without warning
661 * @kn: kernfs_node to be added
663 * The caller must already have initialized @kn->parent. This
664 * function increments nlink of the parent's inode if @kn is a
665 * directory and link into the children list of the parent.
668 * 0 on success, -EEXIST if entry with the given name already
671 int kernfs_add_one(struct kernfs_node
*kn
)
673 struct kernfs_node
*parent
= kn
->parent
;
674 struct kernfs_iattrs
*ps_iattr
;
678 mutex_lock(&kernfs_mutex
);
681 has_ns
= kernfs_ns_enabled(parent
);
682 if (WARN(has_ns
!= (bool)kn
->ns
, KERN_WARNING
"kernfs: ns %s in '%s' for '%s'\n",
683 has_ns
? "required" : "invalid", parent
->name
, kn
->name
))
686 if (kernfs_type(parent
) != KERNFS_DIR
)
690 if (parent
->flags
& KERNFS_EMPTY_DIR
)
693 if ((parent
->flags
& KERNFS_ACTIVATED
) && !kernfs_active(parent
))
696 kn
->hash
= kernfs_name_hash(kn
->name
, kn
->ns
);
698 ret
= kernfs_link_sibling(kn
);
702 /* Update timestamps on the parent */
703 ps_iattr
= parent
->iattr
;
705 struct iattr
*ps_iattrs
= &ps_iattr
->ia_iattr
;
706 ktime_get_real_ts(&ps_iattrs
->ia_ctime
);
707 ps_iattrs
->ia_mtime
= ps_iattrs
->ia_ctime
;
710 mutex_unlock(&kernfs_mutex
);
713 * Activate the new node unless CREATE_DEACTIVATED is requested.
714 * If not activated here, the kernfs user is responsible for
715 * activating the node with kernfs_activate(). A node which hasn't
716 * been activated is not visible to userland and its removal won't
717 * trigger deactivation.
719 if (!(kernfs_root(kn
)->flags
& KERNFS_ROOT_CREATE_DEACTIVATED
))
724 mutex_unlock(&kernfs_mutex
);
729 * kernfs_find_ns - find kernfs_node with the given name
730 * @parent: kernfs_node to search under
731 * @name: name to look for
732 * @ns: the namespace tag to use
734 * Look for kernfs_node with name @name under @parent. Returns pointer to
735 * the found kernfs_node on success, %NULL on failure.
737 static struct kernfs_node
*kernfs_find_ns(struct kernfs_node
*parent
,
738 const unsigned char *name
,
741 struct rb_node
*node
= parent
->dir
.children
.rb_node
;
742 bool has_ns
= kernfs_ns_enabled(parent
);
745 lockdep_assert_held(&kernfs_mutex
);
747 if (has_ns
!= (bool)ns
) {
748 WARN(1, KERN_WARNING
"kernfs: ns %s in '%s' for '%s'\n",
749 has_ns
? "required" : "invalid", parent
->name
, name
);
753 hash
= kernfs_name_hash(name
, ns
);
755 struct kernfs_node
*kn
;
759 result
= kernfs_name_compare(hash
, name
, ns
, kn
);
761 node
= node
->rb_left
;
763 node
= node
->rb_right
;
770 static struct kernfs_node
*kernfs_walk_ns(struct kernfs_node
*parent
,
771 const unsigned char *path
,
777 lockdep_assert_held(&kernfs_mutex
);
779 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
780 spin_lock_irq(&kernfs_rename_lock
);
782 len
= strlcpy(kernfs_pr_cont_buf
, path
, sizeof(kernfs_pr_cont_buf
));
784 if (len
>= sizeof(kernfs_pr_cont_buf
)) {
785 spin_unlock_irq(&kernfs_rename_lock
);
789 p
= kernfs_pr_cont_buf
;
791 while ((name
= strsep(&p
, "/")) && parent
) {
794 parent
= kernfs_find_ns(parent
, name
, ns
);
797 spin_unlock_irq(&kernfs_rename_lock
);
803 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
804 * @parent: kernfs_node to search under
805 * @name: name to look for
806 * @ns: the namespace tag to use
808 * Look for kernfs_node with name @name under @parent and get a reference
809 * if found. This function may sleep and returns pointer to the found
810 * kernfs_node on success, %NULL on failure.
812 struct kernfs_node
*kernfs_find_and_get_ns(struct kernfs_node
*parent
,
813 const char *name
, const void *ns
)
815 struct kernfs_node
*kn
;
817 mutex_lock(&kernfs_mutex
);
818 kn
= kernfs_find_ns(parent
, name
, ns
);
820 mutex_unlock(&kernfs_mutex
);
824 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns
);
827 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
828 * @parent: kernfs_node to search under
829 * @path: path to look for
830 * @ns: the namespace tag to use
832 * Look for kernfs_node with path @path under @parent and get a reference
833 * if found. This function may sleep and returns pointer to the found
834 * kernfs_node on success, %NULL on failure.
836 struct kernfs_node
*kernfs_walk_and_get_ns(struct kernfs_node
*parent
,
837 const char *path
, const void *ns
)
839 struct kernfs_node
*kn
;
841 mutex_lock(&kernfs_mutex
);
842 kn
= kernfs_walk_ns(parent
, path
, ns
);
844 mutex_unlock(&kernfs_mutex
);
850 * kernfs_create_root - create a new kernfs hierarchy
851 * @scops: optional syscall operations for the hierarchy
852 * @flags: KERNFS_ROOT_* flags
853 * @priv: opaque data associated with the new directory
855 * Returns the root of the new hierarchy on success, ERR_PTR() value on
858 struct kernfs_root
*kernfs_create_root(struct kernfs_syscall_ops
*scops
,
859 unsigned int flags
, void *priv
)
861 struct kernfs_root
*root
;
862 struct kernfs_node
*kn
;
864 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
866 return ERR_PTR(-ENOMEM
);
868 ida_init(&root
->ino_ida
);
869 INIT_LIST_HEAD(&root
->supers
);
871 kn
= __kernfs_new_node(root
, "", S_IFDIR
| S_IRUGO
| S_IXUGO
,
874 ida_destroy(&root
->ino_ida
);
876 return ERR_PTR(-ENOMEM
);
882 root
->syscall_ops
= scops
;
885 init_waitqueue_head(&root
->deactivate_waitq
);
887 if (!(root
->flags
& KERNFS_ROOT_CREATE_DEACTIVATED
))
894 * kernfs_destroy_root - destroy a kernfs hierarchy
895 * @root: root of the hierarchy to destroy
897 * Destroy the hierarchy anchored at @root by removing all existing
898 * directories and destroying @root.
900 void kernfs_destroy_root(struct kernfs_root
*root
)
902 kernfs_remove(root
->kn
); /* will also free @root */
906 * kernfs_create_dir_ns - create a directory
907 * @parent: parent in which to create a new directory
908 * @name: name of the new directory
909 * @mode: mode of the new directory
910 * @priv: opaque data associated with the new directory
911 * @ns: optional namespace tag of the directory
913 * Returns the created node on success, ERR_PTR() value on failure.
915 struct kernfs_node
*kernfs_create_dir_ns(struct kernfs_node
*parent
,
916 const char *name
, umode_t mode
,
917 void *priv
, const void *ns
)
919 struct kernfs_node
*kn
;
923 kn
= kernfs_new_node(parent
, name
, mode
| S_IFDIR
, KERNFS_DIR
);
925 return ERR_PTR(-ENOMEM
);
927 kn
->dir
.root
= parent
->dir
.root
;
932 rc
= kernfs_add_one(kn
);
941 * kernfs_create_empty_dir - create an always empty directory
942 * @parent: parent in which to create a new directory
943 * @name: name of the new directory
945 * Returns the created node on success, ERR_PTR() value on failure.
947 struct kernfs_node
*kernfs_create_empty_dir(struct kernfs_node
*parent
,
950 struct kernfs_node
*kn
;
954 kn
= kernfs_new_node(parent
, name
, S_IRUGO
|S_IXUGO
|S_IFDIR
, KERNFS_DIR
);
956 return ERR_PTR(-ENOMEM
);
958 kn
->flags
|= KERNFS_EMPTY_DIR
;
959 kn
->dir
.root
= parent
->dir
.root
;
964 rc
= kernfs_add_one(kn
);
972 static struct dentry
*kernfs_iop_lookup(struct inode
*dir
,
973 struct dentry
*dentry
,
977 struct kernfs_node
*parent
= dentry
->d_parent
->d_fsdata
;
978 struct kernfs_node
*kn
;
980 const void *ns
= NULL
;
982 mutex_lock(&kernfs_mutex
);
984 if (kernfs_ns_enabled(parent
))
985 ns
= kernfs_info(dir
->i_sb
)->ns
;
987 kn
= kernfs_find_ns(parent
, dentry
->d_name
.name
, ns
);
990 if (!kn
|| !kernfs_active(kn
)) {
995 dentry
->d_fsdata
= kn
;
997 /* attach dentry and inode */
998 inode
= kernfs_get_inode(dir
->i_sb
, kn
);
1000 ret
= ERR_PTR(-ENOMEM
);
1004 /* instantiate and hash dentry */
1005 ret
= d_splice_alias(inode
, dentry
);
1007 mutex_unlock(&kernfs_mutex
);
1011 static int kernfs_iop_mkdir(struct inode
*dir
, struct dentry
*dentry
,
1014 struct kernfs_node
*parent
= dir
->i_private
;
1015 struct kernfs_syscall_ops
*scops
= kernfs_root(parent
)->syscall_ops
;
1018 if (!scops
|| !scops
->mkdir
)
1021 if (!kernfs_get_active(parent
))
1024 ret
= scops
->mkdir(parent
, dentry
->d_name
.name
, mode
);
1026 kernfs_put_active(parent
);
1030 static int kernfs_iop_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1032 struct kernfs_node
*kn
= dentry
->d_fsdata
;
1033 struct kernfs_syscall_ops
*scops
= kernfs_root(kn
)->syscall_ops
;
1036 if (!scops
|| !scops
->rmdir
)
1039 if (!kernfs_get_active(kn
))
1042 ret
= scops
->rmdir(kn
);
1044 kernfs_put_active(kn
);
1048 static int kernfs_iop_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1049 struct inode
*new_dir
, struct dentry
*new_dentry
,
1052 struct kernfs_node
*kn
= old_dentry
->d_fsdata
;
1053 struct kernfs_node
*new_parent
= new_dir
->i_private
;
1054 struct kernfs_syscall_ops
*scops
= kernfs_root(kn
)->syscall_ops
;
1060 if (!scops
|| !scops
->rename
)
1063 if (!kernfs_get_active(kn
))
1066 if (!kernfs_get_active(new_parent
)) {
1067 kernfs_put_active(kn
);
1071 ret
= scops
->rename(kn
, new_parent
, new_dentry
->d_name
.name
);
1073 kernfs_put_active(new_parent
);
1074 kernfs_put_active(kn
);
1078 const struct inode_operations kernfs_dir_iops
= {
1079 .lookup
= kernfs_iop_lookup
,
1080 .permission
= kernfs_iop_permission
,
1081 .setattr
= kernfs_iop_setattr
,
1082 .getattr
= kernfs_iop_getattr
,
1083 .listxattr
= kernfs_iop_listxattr
,
1085 .mkdir
= kernfs_iop_mkdir
,
1086 .rmdir
= kernfs_iop_rmdir
,
1087 .rename
= kernfs_iop_rename
,
1090 static struct kernfs_node
*kernfs_leftmost_descendant(struct kernfs_node
*pos
)
1092 struct kernfs_node
*last
;
1095 struct rb_node
*rbn
;
1099 if (kernfs_type(pos
) != KERNFS_DIR
)
1102 rbn
= rb_first(&pos
->dir
.children
);
1106 pos
= rb_to_kn(rbn
);
1113 * kernfs_next_descendant_post - find the next descendant for post-order walk
1114 * @pos: the current position (%NULL to initiate traversal)
1115 * @root: kernfs_node whose descendants to walk
1117 * Find the next descendant to visit for post-order traversal of @root's
1118 * descendants. @root is included in the iteration and the last node to be
1121 static struct kernfs_node
*kernfs_next_descendant_post(struct kernfs_node
*pos
,
1122 struct kernfs_node
*root
)
1124 struct rb_node
*rbn
;
1126 lockdep_assert_held(&kernfs_mutex
);
1128 /* if first iteration, visit leftmost descendant which may be root */
1130 return kernfs_leftmost_descendant(root
);
1132 /* if we visited @root, we're done */
1136 /* if there's an unvisited sibling, visit its leftmost descendant */
1137 rbn
= rb_next(&pos
->rb
);
1139 return kernfs_leftmost_descendant(rb_to_kn(rbn
));
1141 /* no sibling left, visit parent */
1146 * kernfs_activate - activate a node which started deactivated
1147 * @kn: kernfs_node whose subtree is to be activated
1149 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1150 * needs to be explicitly activated. A node which hasn't been activated
1151 * isn't visible to userland and deactivation is skipped during its
1152 * removal. This is useful to construct atomic init sequences where
1153 * creation of multiple nodes should either succeed or fail atomically.
1155 * The caller is responsible for ensuring that this function is not called
1156 * after kernfs_remove*() is invoked on @kn.
1158 void kernfs_activate(struct kernfs_node
*kn
)
1160 struct kernfs_node
*pos
;
1162 mutex_lock(&kernfs_mutex
);
1165 while ((pos
= kernfs_next_descendant_post(pos
, kn
))) {
1166 if (!pos
|| (pos
->flags
& KERNFS_ACTIVATED
))
1169 WARN_ON_ONCE(pos
->parent
&& RB_EMPTY_NODE(&pos
->rb
));
1170 WARN_ON_ONCE(atomic_read(&pos
->active
) != KN_DEACTIVATED_BIAS
);
1172 atomic_sub(KN_DEACTIVATED_BIAS
, &pos
->active
);
1173 pos
->flags
|= KERNFS_ACTIVATED
;
1176 mutex_unlock(&kernfs_mutex
);
1179 static void __kernfs_remove(struct kernfs_node
*kn
)
1181 struct kernfs_node
*pos
;
1183 lockdep_assert_held(&kernfs_mutex
);
1186 * Short-circuit if non-root @kn has already finished removal.
1187 * This is for kernfs_remove_self() which plays with active ref
1190 if (!kn
|| (kn
->parent
&& RB_EMPTY_NODE(&kn
->rb
)))
1193 pr_debug("kernfs %s: removing\n", kn
->name
);
1195 /* prevent any new usage under @kn by deactivating all nodes */
1197 while ((pos
= kernfs_next_descendant_post(pos
, kn
)))
1198 if (kernfs_active(pos
))
1199 atomic_add(KN_DEACTIVATED_BIAS
, &pos
->active
);
1201 /* deactivate and unlink the subtree node-by-node */
1203 pos
= kernfs_leftmost_descendant(kn
);
1206 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1207 * base ref could have been put by someone else by the time
1208 * the function returns. Make sure it doesn't go away
1214 * Drain iff @kn was activated. This avoids draining and
1215 * its lockdep annotations for nodes which have never been
1216 * activated and allows embedding kernfs_remove() in create
1217 * error paths without worrying about draining.
1219 if (kn
->flags
& KERNFS_ACTIVATED
)
1222 WARN_ON_ONCE(atomic_read(&kn
->active
) != KN_DEACTIVATED_BIAS
);
1225 * kernfs_unlink_sibling() succeeds once per node. Use it
1226 * to decide who's responsible for cleanups.
1228 if (!pos
->parent
|| kernfs_unlink_sibling(pos
)) {
1229 struct kernfs_iattrs
*ps_iattr
=
1230 pos
->parent
? pos
->parent
->iattr
: NULL
;
1232 /* update timestamps on the parent */
1234 ktime_get_real_ts(&ps_iattr
->ia_iattr
.ia_ctime
);
1235 ps_iattr
->ia_iattr
.ia_mtime
=
1236 ps_iattr
->ia_iattr
.ia_ctime
;
1243 } while (pos
!= kn
);
1247 * kernfs_remove - remove a kernfs_node recursively
1248 * @kn: the kernfs_node to remove
1250 * Remove @kn along with all its subdirectories and files.
1252 void kernfs_remove(struct kernfs_node
*kn
)
1254 mutex_lock(&kernfs_mutex
);
1255 __kernfs_remove(kn
);
1256 mutex_unlock(&kernfs_mutex
);
1260 * kernfs_break_active_protection - break out of active protection
1261 * @kn: the self kernfs_node
1263 * The caller must be running off of a kernfs operation which is invoked
1264 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1265 * this function must also be matched with an invocation of
1266 * kernfs_unbreak_active_protection().
1268 * This function releases the active reference of @kn the caller is
1269 * holding. Once this function is called, @kn may be removed at any point
1270 * and the caller is solely responsible for ensuring that the objects it
1271 * dereferences are accessible.
1273 void kernfs_break_active_protection(struct kernfs_node
*kn
)
1276 * Take out ourself out of the active ref dependency chain. If
1277 * we're called without an active ref, lockdep will complain.
1279 kernfs_put_active(kn
);
1283 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1284 * @kn: the self kernfs_node
1286 * If kernfs_break_active_protection() was called, this function must be
1287 * invoked before finishing the kernfs operation. Note that while this
1288 * function restores the active reference, it doesn't and can't actually
1289 * restore the active protection - @kn may already or be in the process of
1290 * being removed. Once kernfs_break_active_protection() is invoked, that
1291 * protection is irreversibly gone for the kernfs operation instance.
1293 * While this function may be called at any point after
1294 * kernfs_break_active_protection() is invoked, its most useful location
1295 * would be right before the enclosing kernfs operation returns.
1297 void kernfs_unbreak_active_protection(struct kernfs_node
*kn
)
1300 * @kn->active could be in any state; however, the increment we do
1301 * here will be undone as soon as the enclosing kernfs operation
1302 * finishes and this temporary bump can't break anything. If @kn
1303 * is alive, nothing changes. If @kn is being deactivated, the
1304 * soon-to-follow put will either finish deactivation or restore
1305 * deactivated state. If @kn is already removed, the temporary
1306 * bump is guaranteed to be gone before @kn is released.
1308 atomic_inc(&kn
->active
);
1309 if (kernfs_lockdep(kn
))
1310 rwsem_acquire(&kn
->dep_map
, 0, 1, _RET_IP_
);
1314 * kernfs_remove_self - remove a kernfs_node from its own method
1315 * @kn: the self kernfs_node to remove
1317 * The caller must be running off of a kernfs operation which is invoked
1318 * with an active reference - e.g. one of kernfs_ops. This can be used to
1319 * implement a file operation which deletes itself.
1321 * For example, the "delete" file for a sysfs device directory can be
1322 * implemented by invoking kernfs_remove_self() on the "delete" file
1323 * itself. This function breaks the circular dependency of trying to
1324 * deactivate self while holding an active ref itself. It isn't necessary
1325 * to modify the usual removal path to use kernfs_remove_self(). The
1326 * "delete" implementation can simply invoke kernfs_remove_self() on self
1327 * before proceeding with the usual removal path. kernfs will ignore later
1328 * kernfs_remove() on self.
1330 * kernfs_remove_self() can be called multiple times concurrently on the
1331 * same kernfs_node. Only the first one actually performs removal and
1332 * returns %true. All others will wait until the kernfs operation which
1333 * won self-removal finishes and return %false. Note that the losers wait
1334 * for the completion of not only the winning kernfs_remove_self() but also
1335 * the whole kernfs_ops which won the arbitration. This can be used to
1336 * guarantee, for example, all concurrent writes to a "delete" file to
1337 * finish only after the whole operation is complete.
1339 bool kernfs_remove_self(struct kernfs_node
*kn
)
1343 mutex_lock(&kernfs_mutex
);
1344 kernfs_break_active_protection(kn
);
1347 * SUICIDAL is used to arbitrate among competing invocations. Only
1348 * the first one will actually perform removal. When the removal
1349 * is complete, SUICIDED is set and the active ref is restored
1350 * while holding kernfs_mutex. The ones which lost arbitration
1351 * waits for SUICDED && drained which can happen only after the
1352 * enclosing kernfs operation which executed the winning instance
1353 * of kernfs_remove_self() finished.
1355 if (!(kn
->flags
& KERNFS_SUICIDAL
)) {
1356 kn
->flags
|= KERNFS_SUICIDAL
;
1357 __kernfs_remove(kn
);
1358 kn
->flags
|= KERNFS_SUICIDED
;
1361 wait_queue_head_t
*waitq
= &kernfs_root(kn
)->deactivate_waitq
;
1365 prepare_to_wait(waitq
, &wait
, TASK_UNINTERRUPTIBLE
);
1367 if ((kn
->flags
& KERNFS_SUICIDED
) &&
1368 atomic_read(&kn
->active
) == KN_DEACTIVATED_BIAS
)
1371 mutex_unlock(&kernfs_mutex
);
1373 mutex_lock(&kernfs_mutex
);
1375 finish_wait(waitq
, &wait
);
1376 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn
->rb
));
1381 * This must be done while holding kernfs_mutex; otherwise, waiting
1382 * for SUICIDED && deactivated could finish prematurely.
1384 kernfs_unbreak_active_protection(kn
);
1386 mutex_unlock(&kernfs_mutex
);
1391 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1392 * @parent: parent of the target
1393 * @name: name of the kernfs_node to remove
1394 * @ns: namespace tag of the kernfs_node to remove
1396 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1397 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1399 int kernfs_remove_by_name_ns(struct kernfs_node
*parent
, const char *name
,
1402 struct kernfs_node
*kn
;
1405 WARN(1, KERN_WARNING
"kernfs: can not remove '%s', no directory\n",
1410 mutex_lock(&kernfs_mutex
);
1412 kn
= kernfs_find_ns(parent
, name
, ns
);
1414 __kernfs_remove(kn
);
1416 mutex_unlock(&kernfs_mutex
);
1425 * kernfs_rename_ns - move and rename a kernfs_node
1427 * @new_parent: new parent to put @sd under
1428 * @new_name: new name
1429 * @new_ns: new namespace tag
1431 int kernfs_rename_ns(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
1432 const char *new_name
, const void *new_ns
)
1434 struct kernfs_node
*old_parent
;
1435 const char *old_name
= NULL
;
1438 /* can't move or rename root */
1442 mutex_lock(&kernfs_mutex
);
1445 if (!kernfs_active(kn
) || !kernfs_active(new_parent
) ||
1446 (new_parent
->flags
& KERNFS_EMPTY_DIR
))
1450 if ((kn
->parent
== new_parent
) && (kn
->ns
== new_ns
) &&
1451 (strcmp(kn
->name
, new_name
) == 0))
1452 goto out
; /* nothing to rename */
1455 if (kernfs_find_ns(new_parent
, new_name
, new_ns
))
1458 /* rename kernfs_node */
1459 if (strcmp(kn
->name
, new_name
) != 0) {
1461 new_name
= kstrdup_const(new_name
, GFP_KERNEL
);
1469 * Move to the appropriate place in the appropriate directories rbtree.
1471 kernfs_unlink_sibling(kn
);
1472 kernfs_get(new_parent
);
1474 /* rename_lock protects ->parent and ->name accessors */
1475 spin_lock_irq(&kernfs_rename_lock
);
1477 old_parent
= kn
->parent
;
1478 kn
->parent
= new_parent
;
1482 old_name
= kn
->name
;
1483 kn
->name
= new_name
;
1486 spin_unlock_irq(&kernfs_rename_lock
);
1488 kn
->hash
= kernfs_name_hash(kn
->name
, kn
->ns
);
1489 kernfs_link_sibling(kn
);
1491 kernfs_put(old_parent
);
1492 kfree_const(old_name
);
1496 mutex_unlock(&kernfs_mutex
);
1500 /* Relationship between s_mode and the DT_xxx types */
1501 static inline unsigned char dt_type(struct kernfs_node
*kn
)
1503 return (kn
->mode
>> 12) & 15;
1506 static int kernfs_dir_fop_release(struct inode
*inode
, struct file
*filp
)
1508 kernfs_put(filp
->private_data
);
1512 static struct kernfs_node
*kernfs_dir_pos(const void *ns
,
1513 struct kernfs_node
*parent
, loff_t hash
, struct kernfs_node
*pos
)
1516 int valid
= kernfs_active(pos
) &&
1517 pos
->parent
== parent
&& hash
== pos
->hash
;
1522 if (!pos
&& (hash
> 1) && (hash
< INT_MAX
)) {
1523 struct rb_node
*node
= parent
->dir
.children
.rb_node
;
1525 pos
= rb_to_kn(node
);
1527 if (hash
< pos
->hash
)
1528 node
= node
->rb_left
;
1529 else if (hash
> pos
->hash
)
1530 node
= node
->rb_right
;
1535 /* Skip over entries which are dying/dead or in the wrong namespace */
1536 while (pos
&& (!kernfs_active(pos
) || pos
->ns
!= ns
)) {
1537 struct rb_node
*node
= rb_next(&pos
->rb
);
1541 pos
= rb_to_kn(node
);
1546 static struct kernfs_node
*kernfs_dir_next_pos(const void *ns
,
1547 struct kernfs_node
*parent
, ino_t ino
, struct kernfs_node
*pos
)
1549 pos
= kernfs_dir_pos(ns
, parent
, ino
, pos
);
1552 struct rb_node
*node
= rb_next(&pos
->rb
);
1556 pos
= rb_to_kn(node
);
1557 } while (pos
&& (!kernfs_active(pos
) || pos
->ns
!= ns
));
1562 static int kernfs_fop_readdir(struct file
*file
, struct dir_context
*ctx
)
1564 struct dentry
*dentry
= file
->f_path
.dentry
;
1565 struct kernfs_node
*parent
= dentry
->d_fsdata
;
1566 struct kernfs_node
*pos
= file
->private_data
;
1567 const void *ns
= NULL
;
1569 if (!dir_emit_dots(file
, ctx
))
1571 mutex_lock(&kernfs_mutex
);
1573 if (kernfs_ns_enabled(parent
))
1574 ns
= kernfs_info(dentry
->d_sb
)->ns
;
1576 for (pos
= kernfs_dir_pos(ns
, parent
, ctx
->pos
, pos
);
1578 pos
= kernfs_dir_next_pos(ns
, parent
, ctx
->pos
, pos
)) {
1579 const char *name
= pos
->name
;
1580 unsigned int type
= dt_type(pos
);
1581 int len
= strlen(name
);
1582 ino_t ino
= pos
->ino
;
1584 ctx
->pos
= pos
->hash
;
1585 file
->private_data
= pos
;
1588 mutex_unlock(&kernfs_mutex
);
1589 if (!dir_emit(ctx
, name
, len
, ino
, type
))
1591 mutex_lock(&kernfs_mutex
);
1593 mutex_unlock(&kernfs_mutex
);
1594 file
->private_data
= NULL
;
1599 const struct file_operations kernfs_dir_fops
= {
1600 .read
= generic_read_dir
,
1601 .iterate_shared
= kernfs_fop_readdir
,
1602 .release
= kernfs_dir_fop_release
,
1603 .llseek
= generic_file_llseek
,