2 * Request reply cache. This is currently a global cache, but this may
3 * change in the future and be a per-client cache.
5 * This code is heavily inspired by the 44BSD implementation, although
6 * it does things a bit differently.
8 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
11 #include <linux/slab.h>
12 #include <linux/vmalloc.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/highmem.h>
15 #include <linux/log2.h>
16 #include <linux/hash.h>
17 #include <net/checksum.h>
22 #define NFSDDBG_FACILITY NFSDDBG_REPCACHE
25 * We use this value to determine the number of hash buckets from the max
26 * cache size, the idea being that when the cache is at its maximum number
27 * of entries, then this should be the average number of entries per bucket.
29 #define TARGET_BUCKET_SIZE 64
31 struct nfsd_drc_bucket
{
32 struct list_head lru_head
;
33 spinlock_t cache_lock
;
36 static struct nfsd_drc_bucket
*drc_hashtbl
;
37 static struct kmem_cache
*drc_slab
;
39 /* max number of entries allowed in the cache */
40 static unsigned int max_drc_entries
;
42 /* number of significant bits in the hash value */
43 static unsigned int maskbits
;
44 static unsigned int drc_hashsize
;
47 * Stats and other tracking of on the duplicate reply cache. All of these and
48 * the "rc" fields in nfsdstats are protected by the cache_lock
51 /* total number of entries */
52 static atomic_t num_drc_entries
;
54 /* cache misses due only to checksum comparison failures */
55 static unsigned int payload_misses
;
57 /* amount of memory (in bytes) currently consumed by the DRC */
58 static unsigned int drc_mem_usage
;
60 /* longest hash chain seen */
61 static unsigned int longest_chain
;
63 /* size of cache when we saw the longest hash chain */
64 static unsigned int longest_chain_cachesize
;
66 static int nfsd_cache_append(struct svc_rqst
*rqstp
, struct kvec
*vec
);
67 static unsigned long nfsd_reply_cache_count(struct shrinker
*shrink
,
68 struct shrink_control
*sc
);
69 static unsigned long nfsd_reply_cache_scan(struct shrinker
*shrink
,
70 struct shrink_control
*sc
);
72 static struct shrinker nfsd_reply_cache_shrinker
= {
73 .scan_objects
= nfsd_reply_cache_scan
,
74 .count_objects
= nfsd_reply_cache_count
,
79 * Put a cap on the size of the DRC based on the amount of available
80 * low memory in the machine.
92 * ...with a hard cap of 256k entries. In the worst case, each entry will be
93 * ~1k, so the above numbers should give a rough max of the amount of memory
97 nfsd_cache_size_limit(void)
100 unsigned long low_pages
= totalram_pages
- totalhigh_pages
;
102 limit
= (16 * int_sqrt(low_pages
)) << (PAGE_SHIFT
-10);
103 return min_t(unsigned int, limit
, 256*1024);
107 * Compute the number of hash buckets we need. Divide the max cachesize by
108 * the "target" max bucket size, and round up to next power of two.
111 nfsd_hashsize(unsigned int limit
)
113 return roundup_pow_of_two(limit
/ TARGET_BUCKET_SIZE
);
117 nfsd_cache_hash(__be32 xid
)
119 return hash_32(be32_to_cpu(xid
), maskbits
);
122 static struct svc_cacherep
*
123 nfsd_reply_cache_alloc(void)
125 struct svc_cacherep
*rp
;
127 rp
= kmem_cache_alloc(drc_slab
, GFP_KERNEL
);
129 rp
->c_state
= RC_UNUSED
;
130 rp
->c_type
= RC_NOCACHE
;
131 INIT_LIST_HEAD(&rp
->c_lru
);
137 nfsd_reply_cache_free_locked(struct svc_cacherep
*rp
)
139 if (rp
->c_type
== RC_REPLBUFF
&& rp
->c_replvec
.iov_base
) {
140 drc_mem_usage
-= rp
->c_replvec
.iov_len
;
141 kfree(rp
->c_replvec
.iov_base
);
143 list_del(&rp
->c_lru
);
144 atomic_dec(&num_drc_entries
);
145 drc_mem_usage
-= sizeof(*rp
);
146 kmem_cache_free(drc_slab
, rp
);
150 nfsd_reply_cache_free(struct nfsd_drc_bucket
*b
, struct svc_cacherep
*rp
)
152 spin_lock(&b
->cache_lock
);
153 nfsd_reply_cache_free_locked(rp
);
154 spin_unlock(&b
->cache_lock
);
157 int nfsd_reply_cache_init(void)
159 unsigned int hashsize
;
163 max_drc_entries
= nfsd_cache_size_limit();
164 atomic_set(&num_drc_entries
, 0);
165 hashsize
= nfsd_hashsize(max_drc_entries
);
166 maskbits
= ilog2(hashsize
);
168 status
= register_shrinker(&nfsd_reply_cache_shrinker
);
172 drc_slab
= kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep
),
177 drc_hashtbl
= kcalloc(hashsize
, sizeof(*drc_hashtbl
), GFP_KERNEL
);
179 drc_hashtbl
= vzalloc(hashsize
* sizeof(*drc_hashtbl
));
184 for (i
= 0; i
< hashsize
; i
++) {
185 INIT_LIST_HEAD(&drc_hashtbl
[i
].lru_head
);
186 spin_lock_init(&drc_hashtbl
[i
].cache_lock
);
188 drc_hashsize
= hashsize
;
192 printk(KERN_ERR
"nfsd: failed to allocate reply cache\n");
193 nfsd_reply_cache_shutdown();
197 void nfsd_reply_cache_shutdown(void)
199 struct svc_cacherep
*rp
;
202 unregister_shrinker(&nfsd_reply_cache_shrinker
);
204 for (i
= 0; i
< drc_hashsize
; i
++) {
205 struct list_head
*head
= &drc_hashtbl
[i
].lru_head
;
206 while (!list_empty(head
)) {
207 rp
= list_first_entry(head
, struct svc_cacherep
, c_lru
);
208 nfsd_reply_cache_free_locked(rp
);
216 kmem_cache_destroy(drc_slab
);
221 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
222 * not already scheduled.
225 lru_put_end(struct nfsd_drc_bucket
*b
, struct svc_cacherep
*rp
)
227 rp
->c_timestamp
= jiffies
;
228 list_move_tail(&rp
->c_lru
, &b
->lru_head
);
232 prune_bucket(struct nfsd_drc_bucket
*b
)
234 struct svc_cacherep
*rp
, *tmp
;
237 list_for_each_entry_safe(rp
, tmp
, &b
->lru_head
, c_lru
) {
239 * Don't free entries attached to calls that are still
240 * in-progress, but do keep scanning the list.
242 if (rp
->c_state
== RC_INPROG
)
244 if (atomic_read(&num_drc_entries
) <= max_drc_entries
&&
245 time_before(jiffies
, rp
->c_timestamp
+ RC_EXPIRE
))
247 nfsd_reply_cache_free_locked(rp
);
254 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
255 * Also prune the oldest ones when the total exceeds the max number of entries.
258 prune_cache_entries(void)
263 for (i
= 0; i
< drc_hashsize
; i
++) {
264 struct nfsd_drc_bucket
*b
= &drc_hashtbl
[i
];
266 if (list_empty(&b
->lru_head
))
268 spin_lock(&b
->cache_lock
);
269 freed
+= prune_bucket(b
);
270 spin_unlock(&b
->cache_lock
);
276 nfsd_reply_cache_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
278 return atomic_read(&num_drc_entries
);
282 nfsd_reply_cache_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
284 return prune_cache_entries();
287 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
290 nfsd_cache_csum(struct svc_rqst
*rqstp
)
295 struct xdr_buf
*buf
= &rqstp
->rq_arg
;
296 const unsigned char *p
= buf
->head
[0].iov_base
;
297 size_t csum_len
= min_t(size_t, buf
->head
[0].iov_len
+ buf
->page_len
,
299 size_t len
= min(buf
->head
[0].iov_len
, csum_len
);
301 /* rq_arg.head first */
302 csum
= csum_partial(p
, len
, 0);
305 /* Continue into page array */
306 idx
= buf
->page_base
/ PAGE_SIZE
;
307 base
= buf
->page_base
& ~PAGE_MASK
;
309 p
= page_address(buf
->pages
[idx
]) + base
;
310 len
= min_t(size_t, PAGE_SIZE
- base
, csum_len
);
311 csum
= csum_partial(p
, len
, csum
);
320 nfsd_cache_match(struct svc_rqst
*rqstp
, __wsum csum
, struct svc_cacherep
*rp
)
322 /* Check RPC XID first */
323 if (rqstp
->rq_xid
!= rp
->c_xid
)
325 /* compare checksum of NFS data */
326 if (csum
!= rp
->c_csum
) {
331 /* Other discriminators */
332 if (rqstp
->rq_proc
!= rp
->c_proc
||
333 rqstp
->rq_prot
!= rp
->c_prot
||
334 rqstp
->rq_vers
!= rp
->c_vers
||
335 rqstp
->rq_arg
.len
!= rp
->c_len
||
336 !rpc_cmp_addr(svc_addr(rqstp
), (struct sockaddr
*)&rp
->c_addr
) ||
337 rpc_get_port(svc_addr(rqstp
)) != rpc_get_port((struct sockaddr
*)&rp
->c_addr
))
344 * Search the request hash for an entry that matches the given rqstp.
345 * Must be called with cache_lock held. Returns the found entry or
348 static struct svc_cacherep
*
349 nfsd_cache_search(struct nfsd_drc_bucket
*b
, struct svc_rqst
*rqstp
,
352 struct svc_cacherep
*rp
, *ret
= NULL
;
353 struct list_head
*rh
= &b
->lru_head
;
354 unsigned int entries
= 0;
356 list_for_each_entry(rp
, rh
, c_lru
) {
358 if (nfsd_cache_match(rqstp
, csum
, rp
)) {
364 /* tally hash chain length stats */
365 if (entries
> longest_chain
) {
366 longest_chain
= entries
;
367 longest_chain_cachesize
= atomic_read(&num_drc_entries
);
368 } else if (entries
== longest_chain
) {
369 /* prefer to keep the smallest cachesize possible here */
370 longest_chain_cachesize
= min_t(unsigned int,
371 longest_chain_cachesize
,
372 atomic_read(&num_drc_entries
));
379 * Try to find an entry matching the current call in the cache. When none
380 * is found, we try to grab the oldest expired entry off the LRU list. If
381 * a suitable one isn't there, then drop the cache_lock and allocate a
382 * new one, then search again in case one got inserted while this thread
383 * didn't hold the lock.
386 nfsd_cache_lookup(struct svc_rqst
*rqstp
)
388 struct svc_cacherep
*rp
, *found
;
389 __be32 xid
= rqstp
->rq_xid
;
390 u32 proto
= rqstp
->rq_prot
,
391 vers
= rqstp
->rq_vers
,
392 proc
= rqstp
->rq_proc
;
394 u32 hash
= nfsd_cache_hash(xid
);
395 struct nfsd_drc_bucket
*b
= &drc_hashtbl
[hash
];
397 int type
= rqstp
->rq_cachetype
;
400 rqstp
->rq_cacherep
= NULL
;
401 if (type
== RC_NOCACHE
) {
402 nfsdstats
.rcnocache
++;
406 csum
= nfsd_cache_csum(rqstp
);
409 * Since the common case is a cache miss followed by an insert,
410 * preallocate an entry.
412 rp
= nfsd_reply_cache_alloc();
413 spin_lock(&b
->cache_lock
);
415 atomic_inc(&num_drc_entries
);
416 drc_mem_usage
+= sizeof(*rp
);
419 /* go ahead and prune the cache */
422 found
= nfsd_cache_search(b
, rqstp
, csum
);
425 nfsd_reply_cache_free_locked(rp
);
431 dprintk("nfsd: unable to allocate DRC entry!\n");
435 nfsdstats
.rcmisses
++;
436 rqstp
->rq_cacherep
= rp
;
437 rp
->c_state
= RC_INPROG
;
440 rpc_copy_addr((struct sockaddr
*)&rp
->c_addr
, svc_addr(rqstp
));
441 rpc_set_port((struct sockaddr
*)&rp
->c_addr
, rpc_get_port(svc_addr(rqstp
)));
444 rp
->c_len
= rqstp
->rq_arg
.len
;
449 /* release any buffer */
450 if (rp
->c_type
== RC_REPLBUFF
) {
451 drc_mem_usage
-= rp
->c_replvec
.iov_len
;
452 kfree(rp
->c_replvec
.iov_base
);
453 rp
->c_replvec
.iov_base
= NULL
;
455 rp
->c_type
= RC_NOCACHE
;
457 spin_unlock(&b
->cache_lock
);
462 /* We found a matching entry which is either in progress or done. */
463 age
= jiffies
- rp
->c_timestamp
;
467 /* Request being processed or excessive rexmits */
468 if (rp
->c_state
== RC_INPROG
|| age
< RC_DELAY
)
471 /* From the hall of fame of impractical attacks:
472 * Is this a user who tries to snoop on the cache? */
474 if (!test_bit(RQ_SECURE
, &rqstp
->rq_flags
) && rp
->c_secure
)
477 /* Compose RPC reply header */
478 switch (rp
->c_type
) {
482 svc_putu32(&rqstp
->rq_res
.head
[0], rp
->c_replstat
);
486 if (!nfsd_cache_append(rqstp
, &rp
->c_replvec
))
487 goto out
; /* should not happen */
491 printk(KERN_WARNING
"nfsd: bad repcache type %d\n", rp
->c_type
);
492 nfsd_reply_cache_free_locked(rp
);
499 * Update a cache entry. This is called from nfsd_dispatch when
500 * the procedure has been executed and the complete reply is in
503 * We're copying around data here rather than swapping buffers because
504 * the toplevel loop requires max-sized buffers, which would be a waste
505 * of memory for a cache with a max reply size of 100 bytes (diropokres).
507 * If we should start to use different types of cache entries tailored
508 * specifically for attrstat and fh's, we may save even more space.
510 * Also note that a cachetype of RC_NOCACHE can legally be passed when
511 * nfsd failed to encode a reply that otherwise would have been cached.
512 * In this case, nfsd_cache_update is called with statp == NULL.
515 nfsd_cache_update(struct svc_rqst
*rqstp
, int cachetype
, __be32
*statp
)
517 struct svc_cacherep
*rp
= rqstp
->rq_cacherep
;
518 struct kvec
*resv
= &rqstp
->rq_res
.head
[0], *cachv
;
520 struct nfsd_drc_bucket
*b
;
527 hash
= nfsd_cache_hash(rp
->c_xid
);
528 b
= &drc_hashtbl
[hash
];
530 len
= resv
->iov_len
- ((char*)statp
- (char*)resv
->iov_base
);
533 /* Don't cache excessive amounts of data and XDR failures */
534 if (!statp
|| len
> (256 >> 2)) {
535 nfsd_reply_cache_free(b
, rp
);
542 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len
);
543 rp
->c_replstat
= *statp
;
546 cachv
= &rp
->c_replvec
;
548 cachv
->iov_base
= kmalloc(bufsize
, GFP_KERNEL
);
549 if (!cachv
->iov_base
) {
550 nfsd_reply_cache_free(b
, rp
);
553 cachv
->iov_len
= bufsize
;
554 memcpy(cachv
->iov_base
, statp
, bufsize
);
557 nfsd_reply_cache_free(b
, rp
);
560 spin_lock(&b
->cache_lock
);
561 drc_mem_usage
+= bufsize
;
563 rp
->c_secure
= test_bit(RQ_SECURE
, &rqstp
->rq_flags
);
564 rp
->c_type
= cachetype
;
565 rp
->c_state
= RC_DONE
;
566 spin_unlock(&b
->cache_lock
);
571 * Copy cached reply to current reply buffer. Should always fit.
572 * FIXME as reply is in a page, we should just attach the page, and
573 * keep a refcount....
576 nfsd_cache_append(struct svc_rqst
*rqstp
, struct kvec
*data
)
578 struct kvec
*vec
= &rqstp
->rq_res
.head
[0];
580 if (vec
->iov_len
+ data
->iov_len
> PAGE_SIZE
) {
581 printk(KERN_WARNING
"nfsd: cached reply too large (%Zd).\n",
585 memcpy((char*)vec
->iov_base
+ vec
->iov_len
, data
->iov_base
, data
->iov_len
);
586 vec
->iov_len
+= data
->iov_len
;
591 * Note that fields may be added, removed or reordered in the future. Programs
592 * scraping this file for info should test the labels to ensure they're
593 * getting the correct field.
595 static int nfsd_reply_cache_stats_show(struct seq_file
*m
, void *v
)
597 seq_printf(m
, "max entries: %u\n", max_drc_entries
);
598 seq_printf(m
, "num entries: %u\n",
599 atomic_read(&num_drc_entries
));
600 seq_printf(m
, "hash buckets: %u\n", 1 << maskbits
);
601 seq_printf(m
, "mem usage: %u\n", drc_mem_usage
);
602 seq_printf(m
, "cache hits: %u\n", nfsdstats
.rchits
);
603 seq_printf(m
, "cache misses: %u\n", nfsdstats
.rcmisses
);
604 seq_printf(m
, "not cached: %u\n", nfsdstats
.rcnocache
);
605 seq_printf(m
, "payload misses: %u\n", payload_misses
);
606 seq_printf(m
, "longest chain len: %u\n", longest_chain
);
607 seq_printf(m
, "cachesize at longest: %u\n", longest_chain_cachesize
);
611 int nfsd_reply_cache_stats_open(struct inode
*inode
, struct file
*file
)
613 return single_open(file
, nfsd_reply_cache_stats_show
, NULL
);