2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <asm/tlbflush.h>
24 void task_mem(struct seq_file
*m
, struct mm_struct
*mm
)
26 unsigned long text
, lib
, swap
, ptes
, pmds
, anon
, file
, shmem
;
27 unsigned long hiwater_vm
, total_vm
, hiwater_rss
, total_rss
;
29 anon
= get_mm_counter(mm
, MM_ANONPAGES
);
30 file
= get_mm_counter(mm
, MM_FILEPAGES
);
31 shmem
= get_mm_counter(mm
, MM_SHMEMPAGES
);
34 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 * hiwater_rss only when about to *lower* total_vm or rss. Any
36 * collector of these hiwater stats must therefore get total_vm
37 * and rss too, which will usually be the higher. Barriers? not
38 * worth the effort, such snapshots can always be inconsistent.
40 hiwater_vm
= total_vm
= mm
->total_vm
;
41 if (hiwater_vm
< mm
->hiwater_vm
)
42 hiwater_vm
= mm
->hiwater_vm
;
43 hiwater_rss
= total_rss
= anon
+ file
+ shmem
;
44 if (hiwater_rss
< mm
->hiwater_rss
)
45 hiwater_rss
= mm
->hiwater_rss
;
47 text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
)) >> 10;
48 lib
= (mm
->exec_vm
<< (PAGE_SHIFT
-10)) - text
;
49 swap
= get_mm_counter(mm
, MM_SWAPENTS
);
50 ptes
= PTRS_PER_PTE
* sizeof(pte_t
) * atomic_long_read(&mm
->nr_ptes
);
51 pmds
= PTRS_PER_PMD
* sizeof(pmd_t
) * mm_nr_pmds(mm
);
61 "RssShmem:\t%8lu kB\n"
69 hiwater_vm
<< (PAGE_SHIFT
-10),
70 total_vm
<< (PAGE_SHIFT
-10),
71 mm
->locked_vm
<< (PAGE_SHIFT
-10),
72 mm
->pinned_vm
<< (PAGE_SHIFT
-10),
73 hiwater_rss
<< (PAGE_SHIFT
-10),
74 total_rss
<< (PAGE_SHIFT
-10),
75 anon
<< (PAGE_SHIFT
-10),
76 file
<< (PAGE_SHIFT
-10),
77 shmem
<< (PAGE_SHIFT
-10),
78 mm
->data_vm
<< (PAGE_SHIFT
-10),
79 mm
->stack_vm
<< (PAGE_SHIFT
-10), text
, lib
,
82 swap
<< (PAGE_SHIFT
-10));
83 hugetlb_report_usage(m
, mm
);
86 unsigned long task_vsize(struct mm_struct
*mm
)
88 return PAGE_SIZE
* mm
->total_vm
;
91 unsigned long task_statm(struct mm_struct
*mm
,
92 unsigned long *shared
, unsigned long *text
,
93 unsigned long *data
, unsigned long *resident
)
95 *shared
= get_mm_counter(mm
, MM_FILEPAGES
) +
96 get_mm_counter(mm
, MM_SHMEMPAGES
);
97 *text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
))
99 *data
= mm
->data_vm
+ mm
->stack_vm
;
100 *resident
= *shared
+ get_mm_counter(mm
, MM_ANONPAGES
);
106 * Save get_task_policy() for show_numa_map().
108 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
110 struct task_struct
*task
= priv
->task
;
113 priv
->task_mempolicy
= get_task_policy(task
);
114 mpol_get(priv
->task_mempolicy
);
117 static void release_task_mempolicy(struct proc_maps_private
*priv
)
119 mpol_put(priv
->task_mempolicy
);
122 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
125 static void release_task_mempolicy(struct proc_maps_private
*priv
)
130 static void vma_stop(struct proc_maps_private
*priv
)
132 struct mm_struct
*mm
= priv
->mm
;
134 release_task_mempolicy(priv
);
135 up_read(&mm
->mmap_sem
);
139 static struct vm_area_struct
*
140 m_next_vma(struct proc_maps_private
*priv
, struct vm_area_struct
*vma
)
142 if (vma
== priv
->tail_vma
)
144 return vma
->vm_next
?: priv
->tail_vma
;
147 static void m_cache_vma(struct seq_file
*m
, struct vm_area_struct
*vma
)
149 if (m
->count
< m
->size
) /* vma is copied successfully */
150 m
->version
= m_next_vma(m
->private, vma
) ? vma
->vm_end
: -1UL;
153 static void *m_start(struct seq_file
*m
, loff_t
*ppos
)
155 struct proc_maps_private
*priv
= m
->private;
156 unsigned long last_addr
= m
->version
;
157 struct mm_struct
*mm
;
158 struct vm_area_struct
*vma
;
159 unsigned int pos
= *ppos
;
161 /* See m_cache_vma(). Zero at the start or after lseek. */
162 if (last_addr
== -1UL)
165 priv
->task
= get_proc_task(priv
->inode
);
167 return ERR_PTR(-ESRCH
);
170 if (!mm
|| !atomic_inc_not_zero(&mm
->mm_users
))
173 down_read(&mm
->mmap_sem
);
174 hold_task_mempolicy(priv
);
175 priv
->tail_vma
= get_gate_vma(mm
);
178 vma
= find_vma(mm
, last_addr
- 1);
179 if (vma
&& vma
->vm_start
<= last_addr
)
180 vma
= m_next_vma(priv
, vma
);
186 if (pos
< mm
->map_count
) {
187 for (vma
= mm
->mmap
; pos
; pos
--) {
188 m
->version
= vma
->vm_start
;
194 /* we do not bother to update m->version in this case */
195 if (pos
== mm
->map_count
&& priv
->tail_vma
)
196 return priv
->tail_vma
;
202 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
204 struct proc_maps_private
*priv
= m
->private;
205 struct vm_area_struct
*next
;
208 next
= m_next_vma(priv
, v
);
214 static void m_stop(struct seq_file
*m
, void *v
)
216 struct proc_maps_private
*priv
= m
->private;
218 if (!IS_ERR_OR_NULL(v
))
221 put_task_struct(priv
->task
);
226 static int proc_maps_open(struct inode
*inode
, struct file
*file
,
227 const struct seq_operations
*ops
, int psize
)
229 struct proc_maps_private
*priv
= __seq_open_private(file
, ops
, psize
);
235 priv
->mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
236 if (IS_ERR(priv
->mm
)) {
237 int err
= PTR_ERR(priv
->mm
);
239 seq_release_private(inode
, file
);
246 static int proc_map_release(struct inode
*inode
, struct file
*file
)
248 struct seq_file
*seq
= file
->private_data
;
249 struct proc_maps_private
*priv
= seq
->private;
254 return seq_release_private(inode
, file
);
257 static int do_maps_open(struct inode
*inode
, struct file
*file
,
258 const struct seq_operations
*ops
)
260 return proc_maps_open(inode
, file
, ops
,
261 sizeof(struct proc_maps_private
));
265 * Indicate if the VMA is a stack for the given task; for
266 * /proc/PID/maps that is the stack of the main task.
268 static int is_stack(struct proc_maps_private
*priv
,
269 struct vm_area_struct
*vma
)
272 * We make no effort to guess what a given thread considers to be
273 * its "stack". It's not even well-defined for programs written
276 return vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
277 vma
->vm_end
>= vma
->vm_mm
->start_stack
;
281 show_map_vma(struct seq_file
*m
, struct vm_area_struct
*vma
, int is_pid
)
283 struct mm_struct
*mm
= vma
->vm_mm
;
284 struct file
*file
= vma
->vm_file
;
285 struct proc_maps_private
*priv
= m
->private;
286 vm_flags_t flags
= vma
->vm_flags
;
287 unsigned long ino
= 0;
288 unsigned long long pgoff
= 0;
289 unsigned long start
, end
;
291 const char *name
= NULL
;
294 struct inode
*inode
= file_inode(vma
->vm_file
);
295 dev
= inode
->i_sb
->s_dev
;
297 pgoff
= ((loff_t
)vma
->vm_pgoff
) << PAGE_SHIFT
;
300 /* We don't show the stack guard page in /proc/maps */
301 start
= vma
->vm_start
;
302 if (stack_guard_page_start(vma
, start
))
305 if (stack_guard_page_end(vma
, end
))
308 seq_setwidth(m
, 25 + sizeof(void *) * 6 - 1);
309 seq_printf(m
, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
312 flags
& VM_READ
? 'r' : '-',
313 flags
& VM_WRITE
? 'w' : '-',
314 flags
& VM_EXEC
? 'x' : '-',
315 flags
& VM_MAYSHARE
? 's' : 'p',
317 MAJOR(dev
), MINOR(dev
), ino
);
320 * Print the dentry name for named mappings, and a
321 * special [heap] marker for the heap:
325 seq_file_path(m
, file
, "\n");
329 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
330 name
= vma
->vm_ops
->name(vma
);
335 name
= arch_vma_name(vma
);
342 if (vma
->vm_start
<= mm
->brk
&&
343 vma
->vm_end
>= mm
->start_brk
) {
348 if (is_stack(priv
, vma
))
360 static int show_map(struct seq_file
*m
, void *v
, int is_pid
)
362 show_map_vma(m
, v
, is_pid
);
367 static int show_pid_map(struct seq_file
*m
, void *v
)
369 return show_map(m
, v
, 1);
372 static int show_tid_map(struct seq_file
*m
, void *v
)
374 return show_map(m
, v
, 0);
377 static const struct seq_operations proc_pid_maps_op
= {
384 static const struct seq_operations proc_tid_maps_op
= {
391 static int pid_maps_open(struct inode
*inode
, struct file
*file
)
393 return do_maps_open(inode
, file
, &proc_pid_maps_op
);
396 static int tid_maps_open(struct inode
*inode
, struct file
*file
)
398 return do_maps_open(inode
, file
, &proc_tid_maps_op
);
401 const struct file_operations proc_pid_maps_operations
= {
402 .open
= pid_maps_open
,
405 .release
= proc_map_release
,
408 const struct file_operations proc_tid_maps_operations
= {
409 .open
= tid_maps_open
,
412 .release
= proc_map_release
,
416 * Proportional Set Size(PSS): my share of RSS.
418 * PSS of a process is the count of pages it has in memory, where each
419 * page is divided by the number of processes sharing it. So if a
420 * process has 1000 pages all to itself, and 1000 shared with one other
421 * process, its PSS will be 1500.
423 * To keep (accumulated) division errors low, we adopt a 64bit
424 * fixed-point pss counter to minimize division errors. So (pss >>
425 * PSS_SHIFT) would be the real byte count.
427 * A shift of 12 before division means (assuming 4K page size):
428 * - 1M 3-user-pages add up to 8KB errors;
429 * - supports mapcount up to 2^24, or 16M;
430 * - supports PSS up to 2^52 bytes, or 4PB.
434 #ifdef CONFIG_PROC_PAGE_MONITOR
435 struct mem_size_stats
{
436 unsigned long resident
;
437 unsigned long shared_clean
;
438 unsigned long shared_dirty
;
439 unsigned long private_clean
;
440 unsigned long private_dirty
;
441 unsigned long referenced
;
442 unsigned long anonymous
;
443 unsigned long anonymous_thp
;
444 unsigned long shmem_thp
;
446 unsigned long shared_hugetlb
;
447 unsigned long private_hugetlb
;
450 bool check_shmem_swap
;
453 static void smaps_account(struct mem_size_stats
*mss
, struct page
*page
,
454 bool compound
, bool young
, bool dirty
)
456 int i
, nr
= compound
? 1 << compound_order(page
) : 1;
457 unsigned long size
= nr
* PAGE_SIZE
;
460 mss
->anonymous
+= size
;
462 mss
->resident
+= size
;
463 /* Accumulate the size in pages that have been accessed. */
464 if (young
|| page_is_young(page
) || PageReferenced(page
))
465 mss
->referenced
+= size
;
468 * page_count(page) == 1 guarantees the page is mapped exactly once.
469 * If any subpage of the compound page mapped with PTE it would elevate
472 if (page_count(page
) == 1) {
473 if (dirty
|| PageDirty(page
))
474 mss
->private_dirty
+= size
;
476 mss
->private_clean
+= size
;
477 mss
->pss
+= (u64
)size
<< PSS_SHIFT
;
481 for (i
= 0; i
< nr
; i
++, page
++) {
482 int mapcount
= page_mapcount(page
);
485 if (dirty
|| PageDirty(page
))
486 mss
->shared_dirty
+= PAGE_SIZE
;
488 mss
->shared_clean
+= PAGE_SIZE
;
489 mss
->pss
+= (PAGE_SIZE
<< PSS_SHIFT
) / mapcount
;
491 if (dirty
|| PageDirty(page
))
492 mss
->private_dirty
+= PAGE_SIZE
;
494 mss
->private_clean
+= PAGE_SIZE
;
495 mss
->pss
+= PAGE_SIZE
<< PSS_SHIFT
;
501 static int smaps_pte_hole(unsigned long addr
, unsigned long end
,
502 struct mm_walk
*walk
)
504 struct mem_size_stats
*mss
= walk
->private;
506 mss
->swap
+= shmem_partial_swap_usage(
507 walk
->vma
->vm_file
->f_mapping
, addr
, end
);
513 static void smaps_pte_entry(pte_t
*pte
, unsigned long addr
,
514 struct mm_walk
*walk
)
516 struct mem_size_stats
*mss
= walk
->private;
517 struct vm_area_struct
*vma
= walk
->vma
;
518 struct page
*page
= NULL
;
520 if (pte_present(*pte
)) {
521 page
= vm_normal_page(vma
, addr
, *pte
);
522 } else if (is_swap_pte(*pte
)) {
523 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
525 if (!non_swap_entry(swpent
)) {
528 mss
->swap
+= PAGE_SIZE
;
529 mapcount
= swp_swapcount(swpent
);
531 u64 pss_delta
= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
533 do_div(pss_delta
, mapcount
);
534 mss
->swap_pss
+= pss_delta
;
536 mss
->swap_pss
+= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
538 } else if (is_migration_entry(swpent
))
539 page
= migration_entry_to_page(swpent
);
540 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM
) && mss
->check_shmem_swap
541 && pte_none(*pte
))) {
542 page
= find_get_entry(vma
->vm_file
->f_mapping
,
543 linear_page_index(vma
, addr
));
547 if (radix_tree_exceptional_entry(page
))
548 mss
->swap
+= PAGE_SIZE
;
558 smaps_account(mss
, page
, false, pte_young(*pte
), pte_dirty(*pte
));
561 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
562 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
563 struct mm_walk
*walk
)
565 struct mem_size_stats
*mss
= walk
->private;
566 struct vm_area_struct
*vma
= walk
->vma
;
569 /* FOLL_DUMP will return -EFAULT on huge zero page */
570 page
= follow_trans_huge_pmd(vma
, addr
, pmd
, FOLL_DUMP
);
571 if (IS_ERR_OR_NULL(page
))
574 mss
->anonymous_thp
+= HPAGE_PMD_SIZE
;
575 else if (PageSwapBacked(page
))
576 mss
->shmem_thp
+= HPAGE_PMD_SIZE
;
577 else if (is_zone_device_page(page
))
580 VM_BUG_ON_PAGE(1, page
);
581 smaps_account(mss
, page
, true, pmd_young(*pmd
), pmd_dirty(*pmd
));
584 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
585 struct mm_walk
*walk
)
590 static int smaps_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
591 struct mm_walk
*walk
)
593 struct vm_area_struct
*vma
= walk
->vma
;
597 ptl
= pmd_trans_huge_lock(pmd
, vma
);
599 smaps_pmd_entry(pmd
, addr
, walk
);
604 if (pmd_trans_unstable(pmd
))
607 * The mmap_sem held all the way back in m_start() is what
608 * keeps khugepaged out of here and from collapsing things
611 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
612 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
613 smaps_pte_entry(pte
, addr
, walk
);
614 pte_unmap_unlock(pte
- 1, ptl
);
619 static void show_smap_vma_flags(struct seq_file
*m
, struct vm_area_struct
*vma
)
622 * Don't forget to update Documentation/ on changes.
624 static const char mnemonics
[BITS_PER_LONG
][2] = {
626 * In case if we meet a flag we don't know about.
628 [0 ... (BITS_PER_LONG
-1)] = "??",
630 [ilog2(VM_READ
)] = "rd",
631 [ilog2(VM_WRITE
)] = "wr",
632 [ilog2(VM_EXEC
)] = "ex",
633 [ilog2(VM_SHARED
)] = "sh",
634 [ilog2(VM_MAYREAD
)] = "mr",
635 [ilog2(VM_MAYWRITE
)] = "mw",
636 [ilog2(VM_MAYEXEC
)] = "me",
637 [ilog2(VM_MAYSHARE
)] = "ms",
638 [ilog2(VM_GROWSDOWN
)] = "gd",
639 [ilog2(VM_PFNMAP
)] = "pf",
640 [ilog2(VM_DENYWRITE
)] = "dw",
641 #ifdef CONFIG_X86_INTEL_MPX
642 [ilog2(VM_MPX
)] = "mp",
644 [ilog2(VM_LOCKED
)] = "lo",
645 [ilog2(VM_IO
)] = "io",
646 [ilog2(VM_SEQ_READ
)] = "sr",
647 [ilog2(VM_RAND_READ
)] = "rr",
648 [ilog2(VM_DONTCOPY
)] = "dc",
649 [ilog2(VM_DONTEXPAND
)] = "de",
650 [ilog2(VM_ACCOUNT
)] = "ac",
651 [ilog2(VM_NORESERVE
)] = "nr",
652 [ilog2(VM_HUGETLB
)] = "ht",
653 [ilog2(VM_ARCH_1
)] = "ar",
654 [ilog2(VM_DONTDUMP
)] = "dd",
655 #ifdef CONFIG_MEM_SOFT_DIRTY
656 [ilog2(VM_SOFTDIRTY
)] = "sd",
658 [ilog2(VM_MIXEDMAP
)] = "mm",
659 [ilog2(VM_HUGEPAGE
)] = "hg",
660 [ilog2(VM_NOHUGEPAGE
)] = "nh",
661 [ilog2(VM_MERGEABLE
)] = "mg",
662 [ilog2(VM_UFFD_MISSING
)]= "um",
663 [ilog2(VM_UFFD_WP
)] = "uw",
664 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
665 /* These come out via ProtectionKey: */
666 [ilog2(VM_PKEY_BIT0
)] = "",
667 [ilog2(VM_PKEY_BIT1
)] = "",
668 [ilog2(VM_PKEY_BIT2
)] = "",
669 [ilog2(VM_PKEY_BIT3
)] = "",
674 seq_puts(m
, "VmFlags: ");
675 for (i
= 0; i
< BITS_PER_LONG
; i
++) {
676 if (!mnemonics
[i
][0])
678 if (vma
->vm_flags
& (1UL << i
)) {
679 seq_printf(m
, "%c%c ",
680 mnemonics
[i
][0], mnemonics
[i
][1]);
686 #ifdef CONFIG_HUGETLB_PAGE
687 static int smaps_hugetlb_range(pte_t
*pte
, unsigned long hmask
,
688 unsigned long addr
, unsigned long end
,
689 struct mm_walk
*walk
)
691 struct mem_size_stats
*mss
= walk
->private;
692 struct vm_area_struct
*vma
= walk
->vma
;
693 struct page
*page
= NULL
;
695 if (pte_present(*pte
)) {
696 page
= vm_normal_page(vma
, addr
, *pte
);
697 } else if (is_swap_pte(*pte
)) {
698 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
700 if (is_migration_entry(swpent
))
701 page
= migration_entry_to_page(swpent
);
704 int mapcount
= page_mapcount(page
);
707 mss
->shared_hugetlb
+= huge_page_size(hstate_vma(vma
));
709 mss
->private_hugetlb
+= huge_page_size(hstate_vma(vma
));
713 #endif /* HUGETLB_PAGE */
715 void __weak
arch_show_smap(struct seq_file
*m
, struct vm_area_struct
*vma
)
719 static int show_smap(struct seq_file
*m
, void *v
, int is_pid
)
721 struct vm_area_struct
*vma
= v
;
722 struct mem_size_stats mss
;
723 struct mm_walk smaps_walk
= {
724 .pmd_entry
= smaps_pte_range
,
725 #ifdef CONFIG_HUGETLB_PAGE
726 .hugetlb_entry
= smaps_hugetlb_range
,
732 memset(&mss
, 0, sizeof mss
);
735 if (vma
->vm_file
&& shmem_mapping(vma
->vm_file
->f_mapping
)) {
737 * For shared or readonly shmem mappings we know that all
738 * swapped out pages belong to the shmem object, and we can
739 * obtain the swap value much more efficiently. For private
740 * writable mappings, we might have COW pages that are
741 * not affected by the parent swapped out pages of the shmem
742 * object, so we have to distinguish them during the page walk.
743 * Unless we know that the shmem object (or the part mapped by
744 * our VMA) has no swapped out pages at all.
746 unsigned long shmem_swapped
= shmem_swap_usage(vma
);
748 if (!shmem_swapped
|| (vma
->vm_flags
& VM_SHARED
) ||
749 !(vma
->vm_flags
& VM_WRITE
)) {
750 mss
.swap
= shmem_swapped
;
752 mss
.check_shmem_swap
= true;
753 smaps_walk
.pte_hole
= smaps_pte_hole
;
758 /* mmap_sem is held in m_start */
759 walk_page_vma(vma
, &smaps_walk
);
761 show_map_vma(m
, vma
, is_pid
);
767 "Shared_Clean: %8lu kB\n"
768 "Shared_Dirty: %8lu kB\n"
769 "Private_Clean: %8lu kB\n"
770 "Private_Dirty: %8lu kB\n"
771 "Referenced: %8lu kB\n"
772 "Anonymous: %8lu kB\n"
773 "AnonHugePages: %8lu kB\n"
774 "ShmemPmdMapped: %8lu kB\n"
775 "Shared_Hugetlb: %8lu kB\n"
776 "Private_Hugetlb: %7lu kB\n"
779 "KernelPageSize: %8lu kB\n"
780 "MMUPageSize: %8lu kB\n"
782 (vma
->vm_end
- vma
->vm_start
) >> 10,
784 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)),
785 mss
.shared_clean
>> 10,
786 mss
.shared_dirty
>> 10,
787 mss
.private_clean
>> 10,
788 mss
.private_dirty
>> 10,
789 mss
.referenced
>> 10,
791 mss
.anonymous_thp
>> 10,
793 mss
.shared_hugetlb
>> 10,
794 mss
.private_hugetlb
>> 10,
796 (unsigned long)(mss
.swap_pss
>> (10 + PSS_SHIFT
)),
797 vma_kernel_pagesize(vma
) >> 10,
798 vma_mmu_pagesize(vma
) >> 10,
799 (vma
->vm_flags
& VM_LOCKED
) ?
800 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)) : 0);
802 arch_show_smap(m
, vma
);
803 show_smap_vma_flags(m
, vma
);
808 static int show_pid_smap(struct seq_file
*m
, void *v
)
810 return show_smap(m
, v
, 1);
813 static int show_tid_smap(struct seq_file
*m
, void *v
)
815 return show_smap(m
, v
, 0);
818 static const struct seq_operations proc_pid_smaps_op
= {
822 .show
= show_pid_smap
825 static const struct seq_operations proc_tid_smaps_op
= {
829 .show
= show_tid_smap
832 static int pid_smaps_open(struct inode
*inode
, struct file
*file
)
834 return do_maps_open(inode
, file
, &proc_pid_smaps_op
);
837 static int tid_smaps_open(struct inode
*inode
, struct file
*file
)
839 return do_maps_open(inode
, file
, &proc_tid_smaps_op
);
842 const struct file_operations proc_pid_smaps_operations
= {
843 .open
= pid_smaps_open
,
846 .release
= proc_map_release
,
849 const struct file_operations proc_tid_smaps_operations
= {
850 .open
= tid_smaps_open
,
853 .release
= proc_map_release
,
856 enum clear_refs_types
{
860 CLEAR_REFS_SOFT_DIRTY
,
861 CLEAR_REFS_MM_HIWATER_RSS
,
865 struct clear_refs_private
{
866 enum clear_refs_types type
;
869 #ifdef CONFIG_MEM_SOFT_DIRTY
870 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
871 unsigned long addr
, pte_t
*pte
)
874 * The soft-dirty tracker uses #PF-s to catch writes
875 * to pages, so write-protect the pte as well. See the
876 * Documentation/vm/soft-dirty.txt for full description
877 * of how soft-dirty works.
881 if (pte_present(ptent
)) {
882 ptent
= ptep_modify_prot_start(vma
->vm_mm
, addr
, pte
);
883 ptent
= pte_wrprotect(ptent
);
884 ptent
= pte_clear_soft_dirty(ptent
);
885 ptep_modify_prot_commit(vma
->vm_mm
, addr
, pte
, ptent
);
886 } else if (is_swap_pte(ptent
)) {
887 ptent
= pte_swp_clear_soft_dirty(ptent
);
888 set_pte_at(vma
->vm_mm
, addr
, pte
, ptent
);
892 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
893 unsigned long addr
, pte_t
*pte
)
898 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
899 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
900 unsigned long addr
, pmd_t
*pmdp
)
902 pmd_t pmd
= pmdp_huge_get_and_clear(vma
->vm_mm
, addr
, pmdp
);
904 pmd
= pmd_wrprotect(pmd
);
905 pmd
= pmd_clear_soft_dirty(pmd
);
907 set_pmd_at(vma
->vm_mm
, addr
, pmdp
, pmd
);
910 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
911 unsigned long addr
, pmd_t
*pmdp
)
916 static int clear_refs_pte_range(pmd_t
*pmd
, unsigned long addr
,
917 unsigned long end
, struct mm_walk
*walk
)
919 struct clear_refs_private
*cp
= walk
->private;
920 struct vm_area_struct
*vma
= walk
->vma
;
925 ptl
= pmd_trans_huge_lock(pmd
, vma
);
927 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
928 clear_soft_dirty_pmd(vma
, addr
, pmd
);
932 page
= pmd_page(*pmd
);
934 /* Clear accessed and referenced bits. */
935 pmdp_test_and_clear_young(vma
, addr
, pmd
);
936 test_and_clear_page_young(page
);
937 ClearPageReferenced(page
);
943 if (pmd_trans_unstable(pmd
))
946 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
947 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
950 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
951 clear_soft_dirty(vma
, addr
, pte
);
955 if (!pte_present(ptent
))
958 page
= vm_normal_page(vma
, addr
, ptent
);
962 /* Clear accessed and referenced bits. */
963 ptep_test_and_clear_young(vma
, addr
, pte
);
964 test_and_clear_page_young(page
);
965 ClearPageReferenced(page
);
967 pte_unmap_unlock(pte
- 1, ptl
);
972 static int clear_refs_test_walk(unsigned long start
, unsigned long end
,
973 struct mm_walk
*walk
)
975 struct clear_refs_private
*cp
= walk
->private;
976 struct vm_area_struct
*vma
= walk
->vma
;
978 if (vma
->vm_flags
& VM_PFNMAP
)
982 * Writing 1 to /proc/pid/clear_refs affects all pages.
983 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
984 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
985 * Writing 4 to /proc/pid/clear_refs affects all pages.
987 if (cp
->type
== CLEAR_REFS_ANON
&& vma
->vm_file
)
989 if (cp
->type
== CLEAR_REFS_MAPPED
&& !vma
->vm_file
)
994 static ssize_t
clear_refs_write(struct file
*file
, const char __user
*buf
,
995 size_t count
, loff_t
*ppos
)
997 struct task_struct
*task
;
998 char buffer
[PROC_NUMBUF
];
999 struct mm_struct
*mm
;
1000 struct vm_area_struct
*vma
;
1001 enum clear_refs_types type
;
1005 memset(buffer
, 0, sizeof(buffer
));
1006 if (count
> sizeof(buffer
) - 1)
1007 count
= sizeof(buffer
) - 1;
1008 if (copy_from_user(buffer
, buf
, count
))
1010 rv
= kstrtoint(strstrip(buffer
), 10, &itype
);
1013 type
= (enum clear_refs_types
)itype
;
1014 if (type
< CLEAR_REFS_ALL
|| type
>= CLEAR_REFS_LAST
)
1017 task
= get_proc_task(file_inode(file
));
1020 mm
= get_task_mm(task
);
1022 struct clear_refs_private cp
= {
1025 struct mm_walk clear_refs_walk
= {
1026 .pmd_entry
= clear_refs_pte_range
,
1027 .test_walk
= clear_refs_test_walk
,
1032 if (type
== CLEAR_REFS_MM_HIWATER_RSS
) {
1033 if (down_write_killable(&mm
->mmap_sem
)) {
1039 * Writing 5 to /proc/pid/clear_refs resets the peak
1040 * resident set size to this mm's current rss value.
1042 reset_mm_hiwater_rss(mm
);
1043 up_write(&mm
->mmap_sem
);
1047 down_read(&mm
->mmap_sem
);
1048 if (type
== CLEAR_REFS_SOFT_DIRTY
) {
1049 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1050 if (!(vma
->vm_flags
& VM_SOFTDIRTY
))
1052 up_read(&mm
->mmap_sem
);
1053 if (down_write_killable(&mm
->mmap_sem
)) {
1057 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1058 vma
->vm_flags
&= ~VM_SOFTDIRTY
;
1059 vma_set_page_prot(vma
);
1061 downgrade_write(&mm
->mmap_sem
);
1064 mmu_notifier_invalidate_range_start(mm
, 0, -1);
1066 walk_page_range(0, mm
->highest_vm_end
, &clear_refs_walk
);
1067 if (type
== CLEAR_REFS_SOFT_DIRTY
)
1068 mmu_notifier_invalidate_range_end(mm
, 0, -1);
1070 up_read(&mm
->mmap_sem
);
1074 put_task_struct(task
);
1079 const struct file_operations proc_clear_refs_operations
= {
1080 .write
= clear_refs_write
,
1081 .llseek
= noop_llseek
,
1088 struct pagemapread
{
1089 int pos
, len
; /* units: PM_ENTRY_BYTES, not bytes */
1090 pagemap_entry_t
*buffer
;
1094 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1095 #define PAGEMAP_WALK_MASK (PMD_MASK)
1097 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1098 #define PM_PFRAME_BITS 55
1099 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1100 #define PM_SOFT_DIRTY BIT_ULL(55)
1101 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1102 #define PM_FILE BIT_ULL(61)
1103 #define PM_SWAP BIT_ULL(62)
1104 #define PM_PRESENT BIT_ULL(63)
1106 #define PM_END_OF_BUFFER 1
1108 static inline pagemap_entry_t
make_pme(u64 frame
, u64 flags
)
1110 return (pagemap_entry_t
) { .pme
= (frame
& PM_PFRAME_MASK
) | flags
};
1113 static int add_to_pagemap(unsigned long addr
, pagemap_entry_t
*pme
,
1114 struct pagemapread
*pm
)
1116 pm
->buffer
[pm
->pos
++] = *pme
;
1117 if (pm
->pos
>= pm
->len
)
1118 return PM_END_OF_BUFFER
;
1122 static int pagemap_pte_hole(unsigned long start
, unsigned long end
,
1123 struct mm_walk
*walk
)
1125 struct pagemapread
*pm
= walk
->private;
1126 unsigned long addr
= start
;
1129 while (addr
< end
) {
1130 struct vm_area_struct
*vma
= find_vma(walk
->mm
, addr
);
1131 pagemap_entry_t pme
= make_pme(0, 0);
1132 /* End of address space hole, which we mark as non-present. */
1133 unsigned long hole_end
;
1136 hole_end
= min(end
, vma
->vm_start
);
1140 for (; addr
< hole_end
; addr
+= PAGE_SIZE
) {
1141 err
= add_to_pagemap(addr
, &pme
, pm
);
1149 /* Addresses in the VMA. */
1150 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1151 pme
= make_pme(0, PM_SOFT_DIRTY
);
1152 for (; addr
< min(end
, vma
->vm_end
); addr
+= PAGE_SIZE
) {
1153 err
= add_to_pagemap(addr
, &pme
, pm
);
1162 static pagemap_entry_t
pte_to_pagemap_entry(struct pagemapread
*pm
,
1163 struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
1165 u64 frame
= 0, flags
= 0;
1166 struct page
*page
= NULL
;
1168 if (pte_present(pte
)) {
1170 frame
= pte_pfn(pte
);
1171 flags
|= PM_PRESENT
;
1172 page
= vm_normal_page(vma
, addr
, pte
);
1173 if (pte_soft_dirty(pte
))
1174 flags
|= PM_SOFT_DIRTY
;
1175 } else if (is_swap_pte(pte
)) {
1177 if (pte_swp_soft_dirty(pte
))
1178 flags
|= PM_SOFT_DIRTY
;
1179 entry
= pte_to_swp_entry(pte
);
1180 frame
= swp_type(entry
) |
1181 (swp_offset(entry
) << MAX_SWAPFILES_SHIFT
);
1183 if (is_migration_entry(entry
))
1184 page
= migration_entry_to_page(entry
);
1187 if (page
&& !PageAnon(page
))
1189 if (page
&& page_mapcount(page
) == 1)
1190 flags
|= PM_MMAP_EXCLUSIVE
;
1191 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1192 flags
|= PM_SOFT_DIRTY
;
1194 return make_pme(frame
, flags
);
1197 static int pagemap_pmd_range(pmd_t
*pmdp
, unsigned long addr
, unsigned long end
,
1198 struct mm_walk
*walk
)
1200 struct vm_area_struct
*vma
= walk
->vma
;
1201 struct pagemapread
*pm
= walk
->private;
1203 pte_t
*pte
, *orig_pte
;
1206 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1207 ptl
= pmd_trans_huge_lock(pmdp
, vma
);
1209 u64 flags
= 0, frame
= 0;
1212 if ((vma
->vm_flags
& VM_SOFTDIRTY
) || pmd_soft_dirty(pmd
))
1213 flags
|= PM_SOFT_DIRTY
;
1216 * Currently pmd for thp is always present because thp
1217 * can not be swapped-out, migrated, or HWPOISONed
1218 * (split in such cases instead.)
1219 * This if-check is just to prepare for future implementation.
1221 if (pmd_present(pmd
)) {
1222 struct page
*page
= pmd_page(pmd
);
1224 if (page_mapcount(page
) == 1)
1225 flags
|= PM_MMAP_EXCLUSIVE
;
1227 flags
|= PM_PRESENT
;
1229 frame
= pmd_pfn(pmd
) +
1230 ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1233 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1234 pagemap_entry_t pme
= make_pme(frame
, flags
);
1236 err
= add_to_pagemap(addr
, &pme
, pm
);
1239 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1246 if (pmd_trans_unstable(pmdp
))
1248 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1251 * We can assume that @vma always points to a valid one and @end never
1252 * goes beyond vma->vm_end.
1254 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmdp
, addr
, &ptl
);
1255 for (; addr
< end
; pte
++, addr
+= PAGE_SIZE
) {
1256 pagemap_entry_t pme
;
1258 pme
= pte_to_pagemap_entry(pm
, vma
, addr
, *pte
);
1259 err
= add_to_pagemap(addr
, &pme
, pm
);
1263 pte_unmap_unlock(orig_pte
, ptl
);
1270 #ifdef CONFIG_HUGETLB_PAGE
1271 /* This function walks within one hugetlb entry in the single call */
1272 static int pagemap_hugetlb_range(pte_t
*ptep
, unsigned long hmask
,
1273 unsigned long addr
, unsigned long end
,
1274 struct mm_walk
*walk
)
1276 struct pagemapread
*pm
= walk
->private;
1277 struct vm_area_struct
*vma
= walk
->vma
;
1278 u64 flags
= 0, frame
= 0;
1282 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1283 flags
|= PM_SOFT_DIRTY
;
1285 pte
= huge_ptep_get(ptep
);
1286 if (pte_present(pte
)) {
1287 struct page
*page
= pte_page(pte
);
1289 if (!PageAnon(page
))
1292 if (page_mapcount(page
) == 1)
1293 flags
|= PM_MMAP_EXCLUSIVE
;
1295 flags
|= PM_PRESENT
;
1297 frame
= pte_pfn(pte
) +
1298 ((addr
& ~hmask
) >> PAGE_SHIFT
);
1301 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1302 pagemap_entry_t pme
= make_pme(frame
, flags
);
1304 err
= add_to_pagemap(addr
, &pme
, pm
);
1307 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1315 #endif /* HUGETLB_PAGE */
1318 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1320 * For each page in the address space, this file contains one 64-bit entry
1321 * consisting of the following:
1323 * Bits 0-54 page frame number (PFN) if present
1324 * Bits 0-4 swap type if swapped
1325 * Bits 5-54 swap offset if swapped
1326 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1327 * Bit 56 page exclusively mapped
1329 * Bit 61 page is file-page or shared-anon
1330 * Bit 62 page swapped
1331 * Bit 63 page present
1333 * If the page is not present but in swap, then the PFN contains an
1334 * encoding of the swap file number and the page's offset into the
1335 * swap. Unmapped pages return a null PFN. This allows determining
1336 * precisely which pages are mapped (or in swap) and comparing mapped
1337 * pages between processes.
1339 * Efficient users of this interface will use /proc/pid/maps to
1340 * determine which areas of memory are actually mapped and llseek to
1341 * skip over unmapped regions.
1343 static ssize_t
pagemap_read(struct file
*file
, char __user
*buf
,
1344 size_t count
, loff_t
*ppos
)
1346 struct mm_struct
*mm
= file
->private_data
;
1347 struct pagemapread pm
;
1348 struct mm_walk pagemap_walk
= {};
1350 unsigned long svpfn
;
1351 unsigned long start_vaddr
;
1352 unsigned long end_vaddr
;
1353 int ret
= 0, copied
= 0;
1355 if (!mm
|| !atomic_inc_not_zero(&mm
->mm_users
))
1359 /* file position must be aligned */
1360 if ((*ppos
% PM_ENTRY_BYTES
) || (count
% PM_ENTRY_BYTES
))
1367 /* do not disclose physical addresses: attack vector */
1368 pm
.show_pfn
= file_ns_capable(file
, &init_user_ns
, CAP_SYS_ADMIN
);
1370 pm
.len
= (PAGEMAP_WALK_SIZE
>> PAGE_SHIFT
);
1371 pm
.buffer
= kmalloc(pm
.len
* PM_ENTRY_BYTES
, GFP_TEMPORARY
);
1376 pagemap_walk
.pmd_entry
= pagemap_pmd_range
;
1377 pagemap_walk
.pte_hole
= pagemap_pte_hole
;
1378 #ifdef CONFIG_HUGETLB_PAGE
1379 pagemap_walk
.hugetlb_entry
= pagemap_hugetlb_range
;
1381 pagemap_walk
.mm
= mm
;
1382 pagemap_walk
.private = &pm
;
1385 svpfn
= src
/ PM_ENTRY_BYTES
;
1386 start_vaddr
= svpfn
<< PAGE_SHIFT
;
1387 end_vaddr
= mm
->task_size
;
1389 /* watch out for wraparound */
1390 if (svpfn
> mm
->task_size
>> PAGE_SHIFT
)
1391 start_vaddr
= end_vaddr
;
1394 * The odds are that this will stop walking way
1395 * before end_vaddr, because the length of the
1396 * user buffer is tracked in "pm", and the walk
1397 * will stop when we hit the end of the buffer.
1400 while (count
&& (start_vaddr
< end_vaddr
)) {
1405 end
= (start_vaddr
+ PAGEMAP_WALK_SIZE
) & PAGEMAP_WALK_MASK
;
1407 if (end
< start_vaddr
|| end
> end_vaddr
)
1409 down_read(&mm
->mmap_sem
);
1410 ret
= walk_page_range(start_vaddr
, end
, &pagemap_walk
);
1411 up_read(&mm
->mmap_sem
);
1414 len
= min(count
, PM_ENTRY_BYTES
* pm
.pos
);
1415 if (copy_to_user(buf
, pm
.buffer
, len
)) {
1424 if (!ret
|| ret
== PM_END_OF_BUFFER
)
1435 static int pagemap_open(struct inode
*inode
, struct file
*file
)
1437 struct mm_struct
*mm
;
1439 mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
1442 file
->private_data
= mm
;
1446 static int pagemap_release(struct inode
*inode
, struct file
*file
)
1448 struct mm_struct
*mm
= file
->private_data
;
1455 const struct file_operations proc_pagemap_operations
= {
1456 .llseek
= mem_lseek
, /* borrow this */
1457 .read
= pagemap_read
,
1458 .open
= pagemap_open
,
1459 .release
= pagemap_release
,
1461 #endif /* CONFIG_PROC_PAGE_MONITOR */
1466 unsigned long pages
;
1468 unsigned long active
;
1469 unsigned long writeback
;
1470 unsigned long mapcount_max
;
1471 unsigned long dirty
;
1472 unsigned long swapcache
;
1473 unsigned long node
[MAX_NUMNODES
];
1476 struct numa_maps_private
{
1477 struct proc_maps_private proc_maps
;
1478 struct numa_maps md
;
1481 static void gather_stats(struct page
*page
, struct numa_maps
*md
, int pte_dirty
,
1482 unsigned long nr_pages
)
1484 int count
= page_mapcount(page
);
1486 md
->pages
+= nr_pages
;
1487 if (pte_dirty
|| PageDirty(page
))
1488 md
->dirty
+= nr_pages
;
1490 if (PageSwapCache(page
))
1491 md
->swapcache
+= nr_pages
;
1493 if (PageActive(page
) || PageUnevictable(page
))
1494 md
->active
+= nr_pages
;
1496 if (PageWriteback(page
))
1497 md
->writeback
+= nr_pages
;
1500 md
->anon
+= nr_pages
;
1502 if (count
> md
->mapcount_max
)
1503 md
->mapcount_max
= count
;
1505 md
->node
[page_to_nid(page
)] += nr_pages
;
1508 static struct page
*can_gather_numa_stats(pte_t pte
, struct vm_area_struct
*vma
,
1514 if (!pte_present(pte
))
1517 page
= vm_normal_page(vma
, addr
, pte
);
1521 if (PageReserved(page
))
1524 nid
= page_to_nid(page
);
1525 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1532 static struct page
*can_gather_numa_stats_pmd(pmd_t pmd
,
1533 struct vm_area_struct
*vma
,
1539 if (!pmd_present(pmd
))
1542 page
= vm_normal_page_pmd(vma
, addr
, pmd
);
1546 if (PageReserved(page
))
1549 nid
= page_to_nid(page
);
1550 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1557 static int gather_pte_stats(pmd_t
*pmd
, unsigned long addr
,
1558 unsigned long end
, struct mm_walk
*walk
)
1560 struct numa_maps
*md
= walk
->private;
1561 struct vm_area_struct
*vma
= walk
->vma
;
1566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1567 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1571 page
= can_gather_numa_stats_pmd(*pmd
, vma
, addr
);
1573 gather_stats(page
, md
, pmd_dirty(*pmd
),
1574 HPAGE_PMD_SIZE
/PAGE_SIZE
);
1579 if (pmd_trans_unstable(pmd
))
1582 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
1584 struct page
*page
= can_gather_numa_stats(*pte
, vma
, addr
);
1587 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1589 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1590 pte_unmap_unlock(orig_pte
, ptl
);
1594 #ifdef CONFIG_HUGETLB_PAGE
1595 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1596 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1598 pte_t huge_pte
= huge_ptep_get(pte
);
1599 struct numa_maps
*md
;
1602 if (!pte_present(huge_pte
))
1605 page
= pte_page(huge_pte
);
1610 gather_stats(page
, md
, pte_dirty(huge_pte
), 1);
1615 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1616 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1623 * Display pages allocated per node and memory policy via /proc.
1625 static int show_numa_map(struct seq_file
*m
, void *v
, int is_pid
)
1627 struct numa_maps_private
*numa_priv
= m
->private;
1628 struct proc_maps_private
*proc_priv
= &numa_priv
->proc_maps
;
1629 struct vm_area_struct
*vma
= v
;
1630 struct numa_maps
*md
= &numa_priv
->md
;
1631 struct file
*file
= vma
->vm_file
;
1632 struct mm_struct
*mm
= vma
->vm_mm
;
1633 struct mm_walk walk
= {
1634 .hugetlb_entry
= gather_hugetlb_stats
,
1635 .pmd_entry
= gather_pte_stats
,
1639 struct mempolicy
*pol
;
1646 /* Ensure we start with an empty set of numa_maps statistics. */
1647 memset(md
, 0, sizeof(*md
));
1649 pol
= __get_vma_policy(vma
, vma
->vm_start
);
1651 mpol_to_str(buffer
, sizeof(buffer
), pol
);
1654 mpol_to_str(buffer
, sizeof(buffer
), proc_priv
->task_mempolicy
);
1657 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1660 seq_puts(m
, " file=");
1661 seq_file_path(m
, file
, "\n\t= ");
1662 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1663 seq_puts(m
, " heap");
1664 } else if (is_stack(proc_priv
, vma
)) {
1665 seq_puts(m
, " stack");
1668 if (is_vm_hugetlb_page(vma
))
1669 seq_puts(m
, " huge");
1671 /* mmap_sem is held by m_start */
1672 walk_page_vma(vma
, &walk
);
1678 seq_printf(m
, " anon=%lu", md
->anon
);
1681 seq_printf(m
, " dirty=%lu", md
->dirty
);
1683 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1684 seq_printf(m
, " mapped=%lu", md
->pages
);
1686 if (md
->mapcount_max
> 1)
1687 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1690 seq_printf(m
, " swapcache=%lu", md
->swapcache
);
1692 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1693 seq_printf(m
, " active=%lu", md
->active
);
1696 seq_printf(m
, " writeback=%lu", md
->writeback
);
1698 for_each_node_state(nid
, N_MEMORY
)
1700 seq_printf(m
, " N%d=%lu", nid
, md
->node
[nid
]);
1702 seq_printf(m
, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma
) >> 10);
1705 m_cache_vma(m
, vma
);
1709 static int show_pid_numa_map(struct seq_file
*m
, void *v
)
1711 return show_numa_map(m
, v
, 1);
1714 static int show_tid_numa_map(struct seq_file
*m
, void *v
)
1716 return show_numa_map(m
, v
, 0);
1719 static const struct seq_operations proc_pid_numa_maps_op
= {
1723 .show
= show_pid_numa_map
,
1726 static const struct seq_operations proc_tid_numa_maps_op
= {
1730 .show
= show_tid_numa_map
,
1733 static int numa_maps_open(struct inode
*inode
, struct file
*file
,
1734 const struct seq_operations
*ops
)
1736 return proc_maps_open(inode
, file
, ops
,
1737 sizeof(struct numa_maps_private
));
1740 static int pid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1742 return numa_maps_open(inode
, file
, &proc_pid_numa_maps_op
);
1745 static int tid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1747 return numa_maps_open(inode
, file
, &proc_tid_numa_maps_op
);
1750 const struct file_operations proc_pid_numa_maps_operations
= {
1751 .open
= pid_numa_maps_open
,
1753 .llseek
= seq_lseek
,
1754 .release
= proc_map_release
,
1757 const struct file_operations proc_tid_numa_maps_operations
= {
1758 .open
= tid_numa_maps_open
,
1760 .llseek
= seq_lseek
,
1761 .release
= proc_map_release
,
1763 #endif /* CONFIG_NUMA */