sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / fs / ubifs / debug.c
blob1e712a36468064a75910e8ba9c0e1cfb2bd3ab28
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
37 static DEFINE_SPINLOCK(dbg_lock);
39 static const char *get_key_fmt(int fmt)
41 switch (fmt) {
42 case UBIFS_SIMPLE_KEY_FMT:
43 return "simple";
44 default:
45 return "unknown/invalid format";
49 static const char *get_key_hash(int hash)
51 switch (hash) {
52 case UBIFS_KEY_HASH_R5:
53 return "R5";
54 case UBIFS_KEY_HASH_TEST:
55 return "test";
56 default:
57 return "unknown/invalid name hash";
61 static const char *get_key_type(int type)
63 switch (type) {
64 case UBIFS_INO_KEY:
65 return "inode";
66 case UBIFS_DENT_KEY:
67 return "direntry";
68 case UBIFS_XENT_KEY:
69 return "xentry";
70 case UBIFS_DATA_KEY:
71 return "data";
72 case UBIFS_TRUN_KEY:
73 return "truncate";
74 default:
75 return "unknown/invalid key";
79 static const char *get_dent_type(int type)
81 switch (type) {
82 case UBIFS_ITYPE_REG:
83 return "file";
84 case UBIFS_ITYPE_DIR:
85 return "dir";
86 case UBIFS_ITYPE_LNK:
87 return "symlink";
88 case UBIFS_ITYPE_BLK:
89 return "blkdev";
90 case UBIFS_ITYPE_CHR:
91 return "char dev";
92 case UBIFS_ITYPE_FIFO:
93 return "fifo";
94 case UBIFS_ITYPE_SOCK:
95 return "socket";
96 default:
97 return "unknown/invalid type";
101 const char *dbg_snprintf_key(const struct ubifs_info *c,
102 const union ubifs_key *key, char *buffer, int len)
104 char *p = buffer;
105 int type = key_type(c, key);
107 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108 switch (type) {
109 case UBIFS_INO_KEY:
110 len -= snprintf(p, len, "(%lu, %s)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type));
113 break;
114 case UBIFS_DENT_KEY:
115 case UBIFS_XENT_KEY:
116 len -= snprintf(p, len, "(%lu, %s, %#08x)",
117 (unsigned long)key_inum(c, key),
118 get_key_type(type), key_hash(c, key));
119 break;
120 case UBIFS_DATA_KEY:
121 len -= snprintf(p, len, "(%lu, %s, %u)",
122 (unsigned long)key_inum(c, key),
123 get_key_type(type), key_block(c, key));
124 break;
125 case UBIFS_TRUN_KEY:
126 len -= snprintf(p, len, "(%lu, %s)",
127 (unsigned long)key_inum(c, key),
128 get_key_type(type));
129 break;
130 default:
131 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132 key->u32[0], key->u32[1]);
134 } else
135 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136 ubifs_assert(len > 0);
137 return p;
140 const char *dbg_ntype(int type)
142 switch (type) {
143 case UBIFS_PAD_NODE:
144 return "padding node";
145 case UBIFS_SB_NODE:
146 return "superblock node";
147 case UBIFS_MST_NODE:
148 return "master node";
149 case UBIFS_REF_NODE:
150 return "reference node";
151 case UBIFS_INO_NODE:
152 return "inode node";
153 case UBIFS_DENT_NODE:
154 return "direntry node";
155 case UBIFS_XENT_NODE:
156 return "xentry node";
157 case UBIFS_DATA_NODE:
158 return "data node";
159 case UBIFS_TRUN_NODE:
160 return "truncate node";
161 case UBIFS_IDX_NODE:
162 return "indexing node";
163 case UBIFS_CS_NODE:
164 return "commit start node";
165 case UBIFS_ORPH_NODE:
166 return "orphan node";
167 default:
168 return "unknown node";
172 static const char *dbg_gtype(int type)
174 switch (type) {
175 case UBIFS_NO_NODE_GROUP:
176 return "no node group";
177 case UBIFS_IN_NODE_GROUP:
178 return "in node group";
179 case UBIFS_LAST_OF_NODE_GROUP:
180 return "last of node group";
181 default:
182 return "unknown";
186 const char *dbg_cstate(int cmt_state)
188 switch (cmt_state) {
189 case COMMIT_RESTING:
190 return "commit resting";
191 case COMMIT_BACKGROUND:
192 return "background commit requested";
193 case COMMIT_REQUIRED:
194 return "commit required";
195 case COMMIT_RUNNING_BACKGROUND:
196 return "BACKGROUND commit running";
197 case COMMIT_RUNNING_REQUIRED:
198 return "commit running and required";
199 case COMMIT_BROKEN:
200 return "broken commit";
201 default:
202 return "unknown commit state";
206 const char *dbg_jhead(int jhead)
208 switch (jhead) {
209 case GCHD:
210 return "0 (GC)";
211 case BASEHD:
212 return "1 (base)";
213 case DATAHD:
214 return "2 (data)";
215 default:
216 return "unknown journal head";
220 static void dump_ch(const struct ubifs_ch *ch)
222 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
223 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
224 pr_err("\tnode_type %d (%s)\n", ch->node_type,
225 dbg_ntype(ch->node_type));
226 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
227 dbg_gtype(ch->group_type));
228 pr_err("\tsqnum %llu\n",
229 (unsigned long long)le64_to_cpu(ch->sqnum));
230 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
233 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
235 const struct ubifs_inode *ui = ubifs_inode(inode);
236 struct fscrypt_name nm = {0};
237 union ubifs_key key;
238 struct ubifs_dent_node *dent, *pdent = NULL;
239 int count = 2;
241 pr_err("Dump in-memory inode:");
242 pr_err("\tinode %lu\n", inode->i_ino);
243 pr_err("\tsize %llu\n",
244 (unsigned long long)i_size_read(inode));
245 pr_err("\tnlink %u\n", inode->i_nlink);
246 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
247 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
248 pr_err("\tatime %u.%u\n",
249 (unsigned int)inode->i_atime.tv_sec,
250 (unsigned int)inode->i_atime.tv_nsec);
251 pr_err("\tmtime %u.%u\n",
252 (unsigned int)inode->i_mtime.tv_sec,
253 (unsigned int)inode->i_mtime.tv_nsec);
254 pr_err("\tctime %u.%u\n",
255 (unsigned int)inode->i_ctime.tv_sec,
256 (unsigned int)inode->i_ctime.tv_nsec);
257 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
258 pr_err("\txattr_size %u\n", ui->xattr_size);
259 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
260 pr_err("\txattr_names %u\n", ui->xattr_names);
261 pr_err("\tdirty %u\n", ui->dirty);
262 pr_err("\txattr %u\n", ui->xattr);
263 pr_err("\tbulk_read %u\n", ui->bulk_read);
264 pr_err("\tsynced_i_size %llu\n",
265 (unsigned long long)ui->synced_i_size);
266 pr_err("\tui_size %llu\n",
267 (unsigned long long)ui->ui_size);
268 pr_err("\tflags %d\n", ui->flags);
269 pr_err("\tcompr_type %d\n", ui->compr_type);
270 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
271 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
272 pr_err("\tdata_len %d\n", ui->data_len);
274 if (!S_ISDIR(inode->i_mode))
275 return;
277 pr_err("List of directory entries:\n");
278 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
280 lowest_dent_key(c, &key, inode->i_ino);
281 while (1) {
282 dent = ubifs_tnc_next_ent(c, &key, &nm);
283 if (IS_ERR(dent)) {
284 if (PTR_ERR(dent) != -ENOENT)
285 pr_err("error %ld\n", PTR_ERR(dent));
286 break;
289 pr_err("\t%d: %s (%s)\n",
290 count++, dent->name, get_dent_type(dent->type));
292 fname_name(&nm) = dent->name;
293 fname_len(&nm) = le16_to_cpu(dent->nlen);
294 kfree(pdent);
295 pdent = dent;
296 key_read(c, &dent->key, &key);
298 kfree(pdent);
301 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
303 int i, n;
304 union ubifs_key key;
305 const struct ubifs_ch *ch = node;
306 char key_buf[DBG_KEY_BUF_LEN];
308 /* If the magic is incorrect, just hexdump the first bytes */
309 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
311 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312 (void *)node, UBIFS_CH_SZ, 1);
313 return;
316 spin_lock(&dbg_lock);
317 dump_ch(node);
319 switch (ch->node_type) {
320 case UBIFS_PAD_NODE:
322 const struct ubifs_pad_node *pad = node;
324 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
325 break;
327 case UBIFS_SB_NODE:
329 const struct ubifs_sb_node *sup = node;
330 unsigned int sup_flags = le32_to_cpu(sup->flags);
332 pr_err("\tkey_hash %d (%s)\n",
333 (int)sup->key_hash, get_key_hash(sup->key_hash));
334 pr_err("\tkey_fmt %d (%s)\n",
335 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
336 pr_err("\tflags %#x\n", sup_flags);
337 pr_err("\tbig_lpt %u\n",
338 !!(sup_flags & UBIFS_FLG_BIGLPT));
339 pr_err("\tspace_fixup %u\n",
340 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
341 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
342 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
343 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
344 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
345 pr_err("\tmax_bud_bytes %llu\n",
346 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
347 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
348 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
349 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
350 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
351 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
352 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
353 pr_err("\tdefault_compr %u\n",
354 (int)le16_to_cpu(sup->default_compr));
355 pr_err("\trp_size %llu\n",
356 (unsigned long long)le64_to_cpu(sup->rp_size));
357 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
358 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
359 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
360 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
361 pr_err("\tUUID %pUB\n", sup->uuid);
362 break;
364 case UBIFS_MST_NODE:
366 const struct ubifs_mst_node *mst = node;
368 pr_err("\thighest_inum %llu\n",
369 (unsigned long long)le64_to_cpu(mst->highest_inum));
370 pr_err("\tcommit number %llu\n",
371 (unsigned long long)le64_to_cpu(mst->cmt_no));
372 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
373 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
374 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
375 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
376 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
377 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
378 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
379 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
380 pr_err("\tindex_size %llu\n",
381 (unsigned long long)le64_to_cpu(mst->index_size));
382 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
383 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
384 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
385 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
386 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
387 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
388 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
389 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
390 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
391 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
392 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
393 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
394 pr_err("\ttotal_free %llu\n",
395 (unsigned long long)le64_to_cpu(mst->total_free));
396 pr_err("\ttotal_dirty %llu\n",
397 (unsigned long long)le64_to_cpu(mst->total_dirty));
398 pr_err("\ttotal_used %llu\n",
399 (unsigned long long)le64_to_cpu(mst->total_used));
400 pr_err("\ttotal_dead %llu\n",
401 (unsigned long long)le64_to_cpu(mst->total_dead));
402 pr_err("\ttotal_dark %llu\n",
403 (unsigned long long)le64_to_cpu(mst->total_dark));
404 break;
406 case UBIFS_REF_NODE:
408 const struct ubifs_ref_node *ref = node;
410 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
411 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
412 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
413 break;
415 case UBIFS_INO_NODE:
417 const struct ubifs_ino_node *ino = node;
419 key_read(c, &ino->key, &key);
420 pr_err("\tkey %s\n",
421 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
422 pr_err("\tcreat_sqnum %llu\n",
423 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
424 pr_err("\tsize %llu\n",
425 (unsigned long long)le64_to_cpu(ino->size));
426 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
427 pr_err("\tatime %lld.%u\n",
428 (long long)le64_to_cpu(ino->atime_sec),
429 le32_to_cpu(ino->atime_nsec));
430 pr_err("\tmtime %lld.%u\n",
431 (long long)le64_to_cpu(ino->mtime_sec),
432 le32_to_cpu(ino->mtime_nsec));
433 pr_err("\tctime %lld.%u\n",
434 (long long)le64_to_cpu(ino->ctime_sec),
435 le32_to_cpu(ino->ctime_nsec));
436 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
437 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
438 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
439 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
440 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
441 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
442 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
443 pr_err("\tcompr_type %#x\n",
444 (int)le16_to_cpu(ino->compr_type));
445 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
446 break;
448 case UBIFS_DENT_NODE:
449 case UBIFS_XENT_NODE:
451 const struct ubifs_dent_node *dent = node;
452 int nlen = le16_to_cpu(dent->nlen);
454 key_read(c, &dent->key, &key);
455 pr_err("\tkey %s\n",
456 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
457 pr_err("\tinum %llu\n",
458 (unsigned long long)le64_to_cpu(dent->inum));
459 pr_err("\ttype %d\n", (int)dent->type);
460 pr_err("\tnlen %d\n", nlen);
461 pr_err("\tname ");
463 if (nlen > UBIFS_MAX_NLEN)
464 pr_err("(bad name length, not printing, bad or corrupted node)");
465 else {
466 for (i = 0; i < nlen && dent->name[i]; i++)
467 pr_cont("%c", dent->name[i]);
469 pr_cont("\n");
471 break;
473 case UBIFS_DATA_NODE:
475 const struct ubifs_data_node *dn = node;
476 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
478 key_read(c, &dn->key, &key);
479 pr_err("\tkey %s\n",
480 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
481 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
482 pr_err("\tcompr_typ %d\n",
483 (int)le16_to_cpu(dn->compr_type));
484 pr_err("\tdata size %d\n", dlen);
485 pr_err("\tdata:\n");
486 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
487 (void *)&dn->data, dlen, 0);
488 break;
490 case UBIFS_TRUN_NODE:
492 const struct ubifs_trun_node *trun = node;
494 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
495 pr_err("\told_size %llu\n",
496 (unsigned long long)le64_to_cpu(trun->old_size));
497 pr_err("\tnew_size %llu\n",
498 (unsigned long long)le64_to_cpu(trun->new_size));
499 break;
501 case UBIFS_IDX_NODE:
503 const struct ubifs_idx_node *idx = node;
505 n = le16_to_cpu(idx->child_cnt);
506 pr_err("\tchild_cnt %d\n", n);
507 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
508 pr_err("\tBranches:\n");
510 for (i = 0; i < n && i < c->fanout - 1; i++) {
511 const struct ubifs_branch *br;
513 br = ubifs_idx_branch(c, idx, i);
514 key_read(c, &br->key, &key);
515 pr_err("\t%d: LEB %d:%d len %d key %s\n",
516 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
517 le32_to_cpu(br->len),
518 dbg_snprintf_key(c, &key, key_buf,
519 DBG_KEY_BUF_LEN));
521 break;
523 case UBIFS_CS_NODE:
524 break;
525 case UBIFS_ORPH_NODE:
527 const struct ubifs_orph_node *orph = node;
529 pr_err("\tcommit number %llu\n",
530 (unsigned long long)
531 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
532 pr_err("\tlast node flag %llu\n",
533 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
534 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
535 pr_err("\t%d orphan inode numbers:\n", n);
536 for (i = 0; i < n; i++)
537 pr_err("\t ino %llu\n",
538 (unsigned long long)le64_to_cpu(orph->inos[i]));
539 break;
541 default:
542 pr_err("node type %d was not recognized\n",
543 (int)ch->node_type);
545 spin_unlock(&dbg_lock);
548 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
550 spin_lock(&dbg_lock);
551 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
552 req->new_ino, req->dirtied_ino);
553 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
554 req->new_ino_d, req->dirtied_ino_d);
555 pr_err("\tnew_page %d, dirtied_page %d\n",
556 req->new_page, req->dirtied_page);
557 pr_err("\tnew_dent %d, mod_dent %d\n",
558 req->new_dent, req->mod_dent);
559 pr_err("\tidx_growth %d\n", req->idx_growth);
560 pr_err("\tdata_growth %d dd_growth %d\n",
561 req->data_growth, req->dd_growth);
562 spin_unlock(&dbg_lock);
565 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
567 spin_lock(&dbg_lock);
568 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
569 current->pid, lst->empty_lebs, lst->idx_lebs);
570 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
571 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
572 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
573 lst->total_used, lst->total_dark, lst->total_dead);
574 spin_unlock(&dbg_lock);
577 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
579 int i;
580 struct rb_node *rb;
581 struct ubifs_bud *bud;
582 struct ubifs_gced_idx_leb *idx_gc;
583 long long available, outstanding, free;
585 spin_lock(&c->space_lock);
586 spin_lock(&dbg_lock);
587 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
588 current->pid, bi->data_growth + bi->dd_growth,
589 bi->data_growth + bi->dd_growth + bi->idx_growth);
590 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
591 bi->data_growth, bi->dd_growth, bi->idx_growth);
592 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
593 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
594 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
595 bi->page_budget, bi->inode_budget, bi->dent_budget);
596 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
597 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
598 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
600 if (bi != &c->bi)
602 * If we are dumping saved budgeting data, do not print
603 * additional information which is about the current state, not
604 * the old one which corresponded to the saved budgeting data.
606 goto out_unlock;
608 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
609 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
610 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
611 atomic_long_read(&c->dirty_pg_cnt),
612 atomic_long_read(&c->dirty_zn_cnt),
613 atomic_long_read(&c->clean_zn_cnt));
614 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
616 /* If we are in R/O mode, journal heads do not exist */
617 if (c->jheads)
618 for (i = 0; i < c->jhead_cnt; i++)
619 pr_err("\tjhead %s\t LEB %d\n",
620 dbg_jhead(c->jheads[i].wbuf.jhead),
621 c->jheads[i].wbuf.lnum);
622 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
623 bud = rb_entry(rb, struct ubifs_bud, rb);
624 pr_err("\tbud LEB %d\n", bud->lnum);
626 list_for_each_entry(bud, &c->old_buds, list)
627 pr_err("\told bud LEB %d\n", bud->lnum);
628 list_for_each_entry(idx_gc, &c->idx_gc, list)
629 pr_err("\tGC'ed idx LEB %d unmap %d\n",
630 idx_gc->lnum, idx_gc->unmap);
631 pr_err("\tcommit state %d\n", c->cmt_state);
633 /* Print budgeting predictions */
634 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
635 outstanding = c->bi.data_growth + c->bi.dd_growth;
636 free = ubifs_get_free_space_nolock(c);
637 pr_err("Budgeting predictions:\n");
638 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
639 available, outstanding, free);
640 out_unlock:
641 spin_unlock(&dbg_lock);
642 spin_unlock(&c->space_lock);
645 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
647 int i, spc, dark = 0, dead = 0;
648 struct rb_node *rb;
649 struct ubifs_bud *bud;
651 spc = lp->free + lp->dirty;
652 if (spc < c->dead_wm)
653 dead = spc;
654 else
655 dark = ubifs_calc_dark(c, spc);
657 if (lp->flags & LPROPS_INDEX)
658 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
659 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
660 lp->flags);
661 else
662 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
663 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
664 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
666 if (lp->flags & LPROPS_TAKEN) {
667 if (lp->flags & LPROPS_INDEX)
668 pr_cont("index, taken");
669 else
670 pr_cont("taken");
671 } else {
672 const char *s;
674 if (lp->flags & LPROPS_INDEX) {
675 switch (lp->flags & LPROPS_CAT_MASK) {
676 case LPROPS_DIRTY_IDX:
677 s = "dirty index";
678 break;
679 case LPROPS_FRDI_IDX:
680 s = "freeable index";
681 break;
682 default:
683 s = "index";
685 } else {
686 switch (lp->flags & LPROPS_CAT_MASK) {
687 case LPROPS_UNCAT:
688 s = "not categorized";
689 break;
690 case LPROPS_DIRTY:
691 s = "dirty";
692 break;
693 case LPROPS_FREE:
694 s = "free";
695 break;
696 case LPROPS_EMPTY:
697 s = "empty";
698 break;
699 case LPROPS_FREEABLE:
700 s = "freeable";
701 break;
702 default:
703 s = NULL;
704 break;
707 pr_cont("%s", s);
710 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
711 bud = rb_entry(rb, struct ubifs_bud, rb);
712 if (bud->lnum == lp->lnum) {
713 int head = 0;
714 for (i = 0; i < c->jhead_cnt; i++) {
716 * Note, if we are in R/O mode or in the middle
717 * of mounting/re-mounting, the write-buffers do
718 * not exist.
720 if (c->jheads &&
721 lp->lnum == c->jheads[i].wbuf.lnum) {
722 pr_cont(", jhead %s", dbg_jhead(i));
723 head = 1;
726 if (!head)
727 pr_cont(", bud of jhead %s",
728 dbg_jhead(bud->jhead));
731 if (lp->lnum == c->gc_lnum)
732 pr_cont(", GC LEB");
733 pr_cont(")\n");
736 void ubifs_dump_lprops(struct ubifs_info *c)
738 int lnum, err;
739 struct ubifs_lprops lp;
740 struct ubifs_lp_stats lst;
742 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
743 ubifs_get_lp_stats(c, &lst);
744 ubifs_dump_lstats(&lst);
746 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
747 err = ubifs_read_one_lp(c, lnum, &lp);
748 if (err) {
749 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
750 continue;
753 ubifs_dump_lprop(c, &lp);
755 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
758 void ubifs_dump_lpt_info(struct ubifs_info *c)
760 int i;
762 spin_lock(&dbg_lock);
763 pr_err("(pid %d) dumping LPT information\n", current->pid);
764 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
765 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
766 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
767 pr_err("\tltab_sz: %d\n", c->ltab_sz);
768 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
769 pr_err("\tbig_lpt: %d\n", c->big_lpt);
770 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
771 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
772 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
773 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
774 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
775 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
776 pr_err("\tspace_bits: %d\n", c->space_bits);
777 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
778 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
779 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
780 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
781 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
782 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
783 pr_err("\tLPT head is at %d:%d\n",
784 c->nhead_lnum, c->nhead_offs);
785 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
786 if (c->big_lpt)
787 pr_err("\tLPT lsave is at %d:%d\n",
788 c->lsave_lnum, c->lsave_offs);
789 for (i = 0; i < c->lpt_lebs; i++)
790 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
791 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
792 c->ltab[i].tgc, c->ltab[i].cmt);
793 spin_unlock(&dbg_lock);
796 void ubifs_dump_sleb(const struct ubifs_info *c,
797 const struct ubifs_scan_leb *sleb, int offs)
799 struct ubifs_scan_node *snod;
801 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
802 current->pid, sleb->lnum, offs);
804 list_for_each_entry(snod, &sleb->nodes, list) {
805 cond_resched();
806 pr_err("Dumping node at LEB %d:%d len %d\n",
807 sleb->lnum, snod->offs, snod->len);
808 ubifs_dump_node(c, snod->node);
812 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
814 struct ubifs_scan_leb *sleb;
815 struct ubifs_scan_node *snod;
816 void *buf;
818 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
820 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
821 if (!buf) {
822 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
823 return;
826 sleb = ubifs_scan(c, lnum, 0, buf, 0);
827 if (IS_ERR(sleb)) {
828 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
829 goto out;
832 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
833 sleb->nodes_cnt, sleb->endpt);
835 list_for_each_entry(snod, &sleb->nodes, list) {
836 cond_resched();
837 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
838 snod->offs, snod->len);
839 ubifs_dump_node(c, snod->node);
842 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
843 ubifs_scan_destroy(sleb);
845 out:
846 vfree(buf);
847 return;
850 void ubifs_dump_znode(const struct ubifs_info *c,
851 const struct ubifs_znode *znode)
853 int n;
854 const struct ubifs_zbranch *zbr;
855 char key_buf[DBG_KEY_BUF_LEN];
857 spin_lock(&dbg_lock);
858 if (znode->parent)
859 zbr = &znode->parent->zbranch[znode->iip];
860 else
861 zbr = &c->zroot;
863 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
864 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
865 znode->level, znode->child_cnt, znode->flags);
867 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
868 spin_unlock(&dbg_lock);
869 return;
872 pr_err("zbranches:\n");
873 for (n = 0; n < znode->child_cnt; n++) {
874 zbr = &znode->zbranch[n];
875 if (znode->level > 0)
876 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
877 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
878 dbg_snprintf_key(c, &zbr->key, key_buf,
879 DBG_KEY_BUF_LEN));
880 else
881 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
882 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
883 dbg_snprintf_key(c, &zbr->key, key_buf,
884 DBG_KEY_BUF_LEN));
886 spin_unlock(&dbg_lock);
889 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
891 int i;
893 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
894 current->pid, cat, heap->cnt);
895 for (i = 0; i < heap->cnt; i++) {
896 struct ubifs_lprops *lprops = heap->arr[i];
898 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
899 i, lprops->lnum, lprops->hpos, lprops->free,
900 lprops->dirty, lprops->flags);
902 pr_err("(pid %d) finish dumping heap\n", current->pid);
905 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
906 struct ubifs_nnode *parent, int iip)
908 int i;
910 pr_err("(pid %d) dumping pnode:\n", current->pid);
911 pr_err("\taddress %zx parent %zx cnext %zx\n",
912 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
913 pr_err("\tflags %lu iip %d level %d num %d\n",
914 pnode->flags, iip, pnode->level, pnode->num);
915 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
916 struct ubifs_lprops *lp = &pnode->lprops[i];
918 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
919 i, lp->free, lp->dirty, lp->flags, lp->lnum);
923 void ubifs_dump_tnc(struct ubifs_info *c)
925 struct ubifs_znode *znode;
926 int level;
928 pr_err("\n");
929 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
930 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
931 level = znode->level;
932 pr_err("== Level %d ==\n", level);
933 while (znode) {
934 if (level != znode->level) {
935 level = znode->level;
936 pr_err("== Level %d ==\n", level);
938 ubifs_dump_znode(c, znode);
939 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
941 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
944 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
945 void *priv)
947 ubifs_dump_znode(c, znode);
948 return 0;
952 * ubifs_dump_index - dump the on-flash index.
953 * @c: UBIFS file-system description object
955 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
956 * which dumps only in-memory znodes and does not read znodes which from flash.
958 void ubifs_dump_index(struct ubifs_info *c)
960 dbg_walk_index(c, NULL, dump_znode, NULL);
964 * dbg_save_space_info - save information about flash space.
965 * @c: UBIFS file-system description object
967 * This function saves information about UBIFS free space, dirty space, etc, in
968 * order to check it later.
970 void dbg_save_space_info(struct ubifs_info *c)
972 struct ubifs_debug_info *d = c->dbg;
973 int freeable_cnt;
975 spin_lock(&c->space_lock);
976 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
977 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
978 d->saved_idx_gc_cnt = c->idx_gc_cnt;
981 * We use a dirty hack here and zero out @c->freeable_cnt, because it
982 * affects the free space calculations, and UBIFS might not know about
983 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
984 * only when we read their lprops, and we do this only lazily, upon the
985 * need. So at any given point of time @c->freeable_cnt might be not
986 * exactly accurate.
988 * Just one example about the issue we hit when we did not zero
989 * @c->freeable_cnt.
990 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
991 * amount of free space in @d->saved_free
992 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
993 * information from flash, where we cache LEBs from various
994 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
995 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
996 * -> 'ubifs_get_pnode()' -> 'update_cats()'
997 * -> 'ubifs_add_to_cat()').
998 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
999 * becomes %1.
1000 * 4. We calculate the amount of free space when the re-mount is
1001 * finished in 'dbg_check_space_info()' and it does not match
1002 * @d->saved_free.
1004 freeable_cnt = c->freeable_cnt;
1005 c->freeable_cnt = 0;
1006 d->saved_free = ubifs_get_free_space_nolock(c);
1007 c->freeable_cnt = freeable_cnt;
1008 spin_unlock(&c->space_lock);
1012 * dbg_check_space_info - check flash space information.
1013 * @c: UBIFS file-system description object
1015 * This function compares current flash space information with the information
1016 * which was saved when the 'dbg_save_space_info()' function was called.
1017 * Returns zero if the information has not changed, and %-EINVAL it it has
1018 * changed.
1020 int dbg_check_space_info(struct ubifs_info *c)
1022 struct ubifs_debug_info *d = c->dbg;
1023 struct ubifs_lp_stats lst;
1024 long long free;
1025 int freeable_cnt;
1027 spin_lock(&c->space_lock);
1028 freeable_cnt = c->freeable_cnt;
1029 c->freeable_cnt = 0;
1030 free = ubifs_get_free_space_nolock(c);
1031 c->freeable_cnt = freeable_cnt;
1032 spin_unlock(&c->space_lock);
1034 if (free != d->saved_free) {
1035 ubifs_err(c, "free space changed from %lld to %lld",
1036 d->saved_free, free);
1037 goto out;
1040 return 0;
1042 out:
1043 ubifs_msg(c, "saved lprops statistics dump");
1044 ubifs_dump_lstats(&d->saved_lst);
1045 ubifs_msg(c, "saved budgeting info dump");
1046 ubifs_dump_budg(c, &d->saved_bi);
1047 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1048 ubifs_msg(c, "current lprops statistics dump");
1049 ubifs_get_lp_stats(c, &lst);
1050 ubifs_dump_lstats(&lst);
1051 ubifs_msg(c, "current budgeting info dump");
1052 ubifs_dump_budg(c, &c->bi);
1053 dump_stack();
1054 return -EINVAL;
1058 * dbg_check_synced_i_size - check synchronized inode size.
1059 * @c: UBIFS file-system description object
1060 * @inode: inode to check
1062 * If inode is clean, synchronized inode size has to be equivalent to current
1063 * inode size. This function has to be called only for locked inodes (@i_mutex
1064 * has to be locked). Returns %0 if synchronized inode size if correct, and
1065 * %-EINVAL if not.
1067 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1069 int err = 0;
1070 struct ubifs_inode *ui = ubifs_inode(inode);
1072 if (!dbg_is_chk_gen(c))
1073 return 0;
1074 if (!S_ISREG(inode->i_mode))
1075 return 0;
1077 mutex_lock(&ui->ui_mutex);
1078 spin_lock(&ui->ui_lock);
1079 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1080 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1081 ui->ui_size, ui->synced_i_size);
1082 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1083 inode->i_mode, i_size_read(inode));
1084 dump_stack();
1085 err = -EINVAL;
1087 spin_unlock(&ui->ui_lock);
1088 mutex_unlock(&ui->ui_mutex);
1089 return err;
1093 * dbg_check_dir - check directory inode size and link count.
1094 * @c: UBIFS file-system description object
1095 * @dir: the directory to calculate size for
1096 * @size: the result is returned here
1098 * This function makes sure that directory size and link count are correct.
1099 * Returns zero in case of success and a negative error code in case of
1100 * failure.
1102 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1103 * calling this function.
1105 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1107 unsigned int nlink = 2;
1108 union ubifs_key key;
1109 struct ubifs_dent_node *dent, *pdent = NULL;
1110 struct fscrypt_name nm = {0};
1111 loff_t size = UBIFS_INO_NODE_SZ;
1113 if (!dbg_is_chk_gen(c))
1114 return 0;
1116 if (!S_ISDIR(dir->i_mode))
1117 return 0;
1119 lowest_dent_key(c, &key, dir->i_ino);
1120 while (1) {
1121 int err;
1123 dent = ubifs_tnc_next_ent(c, &key, &nm);
1124 if (IS_ERR(dent)) {
1125 err = PTR_ERR(dent);
1126 if (err == -ENOENT)
1127 break;
1128 return err;
1131 fname_name(&nm) = dent->name;
1132 fname_len(&nm) = le16_to_cpu(dent->nlen);
1133 size += CALC_DENT_SIZE(fname_len(&nm));
1134 if (dent->type == UBIFS_ITYPE_DIR)
1135 nlink += 1;
1136 kfree(pdent);
1137 pdent = dent;
1138 key_read(c, &dent->key, &key);
1140 kfree(pdent);
1142 if (i_size_read(dir) != size) {
1143 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1144 dir->i_ino, (unsigned long long)i_size_read(dir),
1145 (unsigned long long)size);
1146 ubifs_dump_inode(c, dir);
1147 dump_stack();
1148 return -EINVAL;
1150 if (dir->i_nlink != nlink) {
1151 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1152 dir->i_ino, dir->i_nlink, nlink);
1153 ubifs_dump_inode(c, dir);
1154 dump_stack();
1155 return -EINVAL;
1158 return 0;
1162 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1163 * @c: UBIFS file-system description object
1164 * @zbr1: first zbranch
1165 * @zbr2: following zbranch
1167 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1168 * names of the direntries/xentries which are referred by the keys. This
1169 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1170 * sure the name of direntry/xentry referred by @zbr1 is less than
1171 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1172 * and a negative error code in case of failure.
1174 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1175 struct ubifs_zbranch *zbr2)
1177 int err, nlen1, nlen2, cmp;
1178 struct ubifs_dent_node *dent1, *dent2;
1179 union ubifs_key key;
1180 char key_buf[DBG_KEY_BUF_LEN];
1182 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1183 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1184 if (!dent1)
1185 return -ENOMEM;
1186 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1187 if (!dent2) {
1188 err = -ENOMEM;
1189 goto out_free;
1192 err = ubifs_tnc_read_node(c, zbr1, dent1);
1193 if (err)
1194 goto out_free;
1195 err = ubifs_validate_entry(c, dent1);
1196 if (err)
1197 goto out_free;
1199 err = ubifs_tnc_read_node(c, zbr2, dent2);
1200 if (err)
1201 goto out_free;
1202 err = ubifs_validate_entry(c, dent2);
1203 if (err)
1204 goto out_free;
1206 /* Make sure node keys are the same as in zbranch */
1207 err = 1;
1208 key_read(c, &dent1->key, &key);
1209 if (keys_cmp(c, &zbr1->key, &key)) {
1210 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1211 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1212 DBG_KEY_BUF_LEN));
1213 ubifs_err(c, "but it should have key %s according to tnc",
1214 dbg_snprintf_key(c, &zbr1->key, key_buf,
1215 DBG_KEY_BUF_LEN));
1216 ubifs_dump_node(c, dent1);
1217 goto out_free;
1220 key_read(c, &dent2->key, &key);
1221 if (keys_cmp(c, &zbr2->key, &key)) {
1222 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1223 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1224 DBG_KEY_BUF_LEN));
1225 ubifs_err(c, "but it should have key %s according to tnc",
1226 dbg_snprintf_key(c, &zbr2->key, key_buf,
1227 DBG_KEY_BUF_LEN));
1228 ubifs_dump_node(c, dent2);
1229 goto out_free;
1232 nlen1 = le16_to_cpu(dent1->nlen);
1233 nlen2 = le16_to_cpu(dent2->nlen);
1235 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1236 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1237 err = 0;
1238 goto out_free;
1240 if (cmp == 0 && nlen1 == nlen2)
1241 ubifs_err(c, "2 xent/dent nodes with the same name");
1242 else
1243 ubifs_err(c, "bad order of colliding key %s",
1244 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1246 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1247 ubifs_dump_node(c, dent1);
1248 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1249 ubifs_dump_node(c, dent2);
1251 out_free:
1252 kfree(dent2);
1253 kfree(dent1);
1254 return err;
1258 * dbg_check_znode - check if znode is all right.
1259 * @c: UBIFS file-system description object
1260 * @zbr: zbranch which points to this znode
1262 * This function makes sure that znode referred to by @zbr is all right.
1263 * Returns zero if it is, and %-EINVAL if it is not.
1265 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1267 struct ubifs_znode *znode = zbr->znode;
1268 struct ubifs_znode *zp = znode->parent;
1269 int n, err, cmp;
1271 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1272 err = 1;
1273 goto out;
1275 if (znode->level < 0) {
1276 err = 2;
1277 goto out;
1279 if (znode->iip < 0 || znode->iip >= c->fanout) {
1280 err = 3;
1281 goto out;
1284 if (zbr->len == 0)
1285 /* Only dirty zbranch may have no on-flash nodes */
1286 if (!ubifs_zn_dirty(znode)) {
1287 err = 4;
1288 goto out;
1291 if (ubifs_zn_dirty(znode)) {
1293 * If znode is dirty, its parent has to be dirty as well. The
1294 * order of the operation is important, so we have to have
1295 * memory barriers.
1297 smp_mb();
1298 if (zp && !ubifs_zn_dirty(zp)) {
1300 * The dirty flag is atomic and is cleared outside the
1301 * TNC mutex, so znode's dirty flag may now have
1302 * been cleared. The child is always cleared before the
1303 * parent, so we just need to check again.
1305 smp_mb();
1306 if (ubifs_zn_dirty(znode)) {
1307 err = 5;
1308 goto out;
1313 if (zp) {
1314 const union ubifs_key *min, *max;
1316 if (znode->level != zp->level - 1) {
1317 err = 6;
1318 goto out;
1321 /* Make sure the 'parent' pointer in our znode is correct */
1322 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1323 if (!err) {
1324 /* This zbranch does not exist in the parent */
1325 err = 7;
1326 goto out;
1329 if (znode->iip >= zp->child_cnt) {
1330 err = 8;
1331 goto out;
1334 if (znode->iip != n) {
1335 /* This may happen only in case of collisions */
1336 if (keys_cmp(c, &zp->zbranch[n].key,
1337 &zp->zbranch[znode->iip].key)) {
1338 err = 9;
1339 goto out;
1341 n = znode->iip;
1345 * Make sure that the first key in our znode is greater than or
1346 * equal to the key in the pointing zbranch.
1348 min = &zbr->key;
1349 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1350 if (cmp == 1) {
1351 err = 10;
1352 goto out;
1355 if (n + 1 < zp->child_cnt) {
1356 max = &zp->zbranch[n + 1].key;
1359 * Make sure the last key in our znode is less or
1360 * equivalent than the key in the zbranch which goes
1361 * after our pointing zbranch.
1363 cmp = keys_cmp(c, max,
1364 &znode->zbranch[znode->child_cnt - 1].key);
1365 if (cmp == -1) {
1366 err = 11;
1367 goto out;
1370 } else {
1371 /* This may only be root znode */
1372 if (zbr != &c->zroot) {
1373 err = 12;
1374 goto out;
1379 * Make sure that next key is greater or equivalent then the previous
1380 * one.
1382 for (n = 1; n < znode->child_cnt; n++) {
1383 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1384 &znode->zbranch[n].key);
1385 if (cmp > 0) {
1386 err = 13;
1387 goto out;
1389 if (cmp == 0) {
1390 /* This can only be keys with colliding hash */
1391 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1392 err = 14;
1393 goto out;
1396 if (znode->level != 0 || c->replaying)
1397 continue;
1400 * Colliding keys should follow binary order of
1401 * corresponding xentry/dentry names.
1403 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1404 &znode->zbranch[n]);
1405 if (err < 0)
1406 return err;
1407 if (err) {
1408 err = 15;
1409 goto out;
1414 for (n = 0; n < znode->child_cnt; n++) {
1415 if (!znode->zbranch[n].znode &&
1416 (znode->zbranch[n].lnum == 0 ||
1417 znode->zbranch[n].len == 0)) {
1418 err = 16;
1419 goto out;
1422 if (znode->zbranch[n].lnum != 0 &&
1423 znode->zbranch[n].len == 0) {
1424 err = 17;
1425 goto out;
1428 if (znode->zbranch[n].lnum == 0 &&
1429 znode->zbranch[n].len != 0) {
1430 err = 18;
1431 goto out;
1434 if (znode->zbranch[n].lnum == 0 &&
1435 znode->zbranch[n].offs != 0) {
1436 err = 19;
1437 goto out;
1440 if (znode->level != 0 && znode->zbranch[n].znode)
1441 if (znode->zbranch[n].znode->parent != znode) {
1442 err = 20;
1443 goto out;
1447 return 0;
1449 out:
1450 ubifs_err(c, "failed, error %d", err);
1451 ubifs_msg(c, "dump of the znode");
1452 ubifs_dump_znode(c, znode);
1453 if (zp) {
1454 ubifs_msg(c, "dump of the parent znode");
1455 ubifs_dump_znode(c, zp);
1457 dump_stack();
1458 return -EINVAL;
1462 * dbg_check_tnc - check TNC tree.
1463 * @c: UBIFS file-system description object
1464 * @extra: do extra checks that are possible at start commit
1466 * This function traverses whole TNC tree and checks every znode. Returns zero
1467 * if everything is all right and %-EINVAL if something is wrong with TNC.
1469 int dbg_check_tnc(struct ubifs_info *c, int extra)
1471 struct ubifs_znode *znode;
1472 long clean_cnt = 0, dirty_cnt = 0;
1473 int err, last;
1475 if (!dbg_is_chk_index(c))
1476 return 0;
1478 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1479 if (!c->zroot.znode)
1480 return 0;
1482 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1483 while (1) {
1484 struct ubifs_znode *prev;
1485 struct ubifs_zbranch *zbr;
1487 if (!znode->parent)
1488 zbr = &c->zroot;
1489 else
1490 zbr = &znode->parent->zbranch[znode->iip];
1492 err = dbg_check_znode(c, zbr);
1493 if (err)
1494 return err;
1496 if (extra) {
1497 if (ubifs_zn_dirty(znode))
1498 dirty_cnt += 1;
1499 else
1500 clean_cnt += 1;
1503 prev = znode;
1504 znode = ubifs_tnc_postorder_next(znode);
1505 if (!znode)
1506 break;
1509 * If the last key of this znode is equivalent to the first key
1510 * of the next znode (collision), then check order of the keys.
1512 last = prev->child_cnt - 1;
1513 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1514 !keys_cmp(c, &prev->zbranch[last].key,
1515 &znode->zbranch[0].key)) {
1516 err = dbg_check_key_order(c, &prev->zbranch[last],
1517 &znode->zbranch[0]);
1518 if (err < 0)
1519 return err;
1520 if (err) {
1521 ubifs_msg(c, "first znode");
1522 ubifs_dump_znode(c, prev);
1523 ubifs_msg(c, "second znode");
1524 ubifs_dump_znode(c, znode);
1525 return -EINVAL;
1530 if (extra) {
1531 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1532 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1533 atomic_long_read(&c->clean_zn_cnt),
1534 clean_cnt);
1535 return -EINVAL;
1537 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1538 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1539 atomic_long_read(&c->dirty_zn_cnt),
1540 dirty_cnt);
1541 return -EINVAL;
1545 return 0;
1549 * dbg_walk_index - walk the on-flash index.
1550 * @c: UBIFS file-system description object
1551 * @leaf_cb: called for each leaf node
1552 * @znode_cb: called for each indexing node
1553 * @priv: private data which is passed to callbacks
1555 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1556 * node and @znode_cb for each indexing node. Returns zero in case of success
1557 * and a negative error code in case of failure.
1559 * It would be better if this function removed every znode it pulled to into
1560 * the TNC, so that the behavior more closely matched the non-debugging
1561 * behavior.
1563 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1564 dbg_znode_callback znode_cb, void *priv)
1566 int err;
1567 struct ubifs_zbranch *zbr;
1568 struct ubifs_znode *znode, *child;
1570 mutex_lock(&c->tnc_mutex);
1571 /* If the root indexing node is not in TNC - pull it */
1572 if (!c->zroot.znode) {
1573 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1574 if (IS_ERR(c->zroot.znode)) {
1575 err = PTR_ERR(c->zroot.znode);
1576 c->zroot.znode = NULL;
1577 goto out_unlock;
1582 * We are going to traverse the indexing tree in the postorder manner.
1583 * Go down and find the leftmost indexing node where we are going to
1584 * start from.
1586 znode = c->zroot.znode;
1587 while (znode->level > 0) {
1588 zbr = &znode->zbranch[0];
1589 child = zbr->znode;
1590 if (!child) {
1591 child = ubifs_load_znode(c, zbr, znode, 0);
1592 if (IS_ERR(child)) {
1593 err = PTR_ERR(child);
1594 goto out_unlock;
1596 zbr->znode = child;
1599 znode = child;
1602 /* Iterate over all indexing nodes */
1603 while (1) {
1604 int idx;
1606 cond_resched();
1608 if (znode_cb) {
1609 err = znode_cb(c, znode, priv);
1610 if (err) {
1611 ubifs_err(c, "znode checking function returned error %d",
1612 err);
1613 ubifs_dump_znode(c, znode);
1614 goto out_dump;
1617 if (leaf_cb && znode->level == 0) {
1618 for (idx = 0; idx < znode->child_cnt; idx++) {
1619 zbr = &znode->zbranch[idx];
1620 err = leaf_cb(c, zbr, priv);
1621 if (err) {
1622 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1623 err, zbr->lnum, zbr->offs);
1624 goto out_dump;
1629 if (!znode->parent)
1630 break;
1632 idx = znode->iip + 1;
1633 znode = znode->parent;
1634 if (idx < znode->child_cnt) {
1635 /* Switch to the next index in the parent */
1636 zbr = &znode->zbranch[idx];
1637 child = zbr->znode;
1638 if (!child) {
1639 child = ubifs_load_znode(c, zbr, znode, idx);
1640 if (IS_ERR(child)) {
1641 err = PTR_ERR(child);
1642 goto out_unlock;
1644 zbr->znode = child;
1646 znode = child;
1647 } else
1649 * This is the last child, switch to the parent and
1650 * continue.
1652 continue;
1654 /* Go to the lowest leftmost znode in the new sub-tree */
1655 while (znode->level > 0) {
1656 zbr = &znode->zbranch[0];
1657 child = zbr->znode;
1658 if (!child) {
1659 child = ubifs_load_znode(c, zbr, znode, 0);
1660 if (IS_ERR(child)) {
1661 err = PTR_ERR(child);
1662 goto out_unlock;
1664 zbr->znode = child;
1666 znode = child;
1670 mutex_unlock(&c->tnc_mutex);
1671 return 0;
1673 out_dump:
1674 if (znode->parent)
1675 zbr = &znode->parent->zbranch[znode->iip];
1676 else
1677 zbr = &c->zroot;
1678 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1679 ubifs_dump_znode(c, znode);
1680 out_unlock:
1681 mutex_unlock(&c->tnc_mutex);
1682 return err;
1686 * add_size - add znode size to partially calculated index size.
1687 * @c: UBIFS file-system description object
1688 * @znode: znode to add size for
1689 * @priv: partially calculated index size
1691 * This is a helper function for 'dbg_check_idx_size()' which is called for
1692 * every indexing node and adds its size to the 'long long' variable pointed to
1693 * by @priv.
1695 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1697 long long *idx_size = priv;
1698 int add;
1700 add = ubifs_idx_node_sz(c, znode->child_cnt);
1701 add = ALIGN(add, 8);
1702 *idx_size += add;
1703 return 0;
1707 * dbg_check_idx_size - check index size.
1708 * @c: UBIFS file-system description object
1709 * @idx_size: size to check
1711 * This function walks the UBIFS index, calculates its size and checks that the
1712 * size is equivalent to @idx_size. Returns zero in case of success and a
1713 * negative error code in case of failure.
1715 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1717 int err;
1718 long long calc = 0;
1720 if (!dbg_is_chk_index(c))
1721 return 0;
1723 err = dbg_walk_index(c, NULL, add_size, &calc);
1724 if (err) {
1725 ubifs_err(c, "error %d while walking the index", err);
1726 return err;
1729 if (calc != idx_size) {
1730 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1731 calc, idx_size);
1732 dump_stack();
1733 return -EINVAL;
1736 return 0;
1740 * struct fsck_inode - information about an inode used when checking the file-system.
1741 * @rb: link in the RB-tree of inodes
1742 * @inum: inode number
1743 * @mode: inode type, permissions, etc
1744 * @nlink: inode link count
1745 * @xattr_cnt: count of extended attributes
1746 * @references: how many directory/xattr entries refer this inode (calculated
1747 * while walking the index)
1748 * @calc_cnt: for directory inode count of child directories
1749 * @size: inode size (read from on-flash inode)
1750 * @xattr_sz: summary size of all extended attributes (read from on-flash
1751 * inode)
1752 * @calc_sz: for directories calculated directory size
1753 * @calc_xcnt: count of extended attributes
1754 * @calc_xsz: calculated summary size of all extended attributes
1755 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1756 * inode (read from on-flash inode)
1757 * @calc_xnms: calculated sum of lengths of all extended attribute names
1759 struct fsck_inode {
1760 struct rb_node rb;
1761 ino_t inum;
1762 umode_t mode;
1763 unsigned int nlink;
1764 unsigned int xattr_cnt;
1765 int references;
1766 int calc_cnt;
1767 long long size;
1768 unsigned int xattr_sz;
1769 long long calc_sz;
1770 long long calc_xcnt;
1771 long long calc_xsz;
1772 unsigned int xattr_nms;
1773 long long calc_xnms;
1777 * struct fsck_data - private FS checking information.
1778 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1780 struct fsck_data {
1781 struct rb_root inodes;
1785 * add_inode - add inode information to RB-tree of inodes.
1786 * @c: UBIFS file-system description object
1787 * @fsckd: FS checking information
1788 * @ino: raw UBIFS inode to add
1790 * This is a helper function for 'check_leaf()' which adds information about
1791 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1792 * case of success and a negative error code in case of failure.
1794 static struct fsck_inode *add_inode(struct ubifs_info *c,
1795 struct fsck_data *fsckd,
1796 struct ubifs_ino_node *ino)
1798 struct rb_node **p, *parent = NULL;
1799 struct fsck_inode *fscki;
1800 ino_t inum = key_inum_flash(c, &ino->key);
1801 struct inode *inode;
1802 struct ubifs_inode *ui;
1804 p = &fsckd->inodes.rb_node;
1805 while (*p) {
1806 parent = *p;
1807 fscki = rb_entry(parent, struct fsck_inode, rb);
1808 if (inum < fscki->inum)
1809 p = &(*p)->rb_left;
1810 else if (inum > fscki->inum)
1811 p = &(*p)->rb_right;
1812 else
1813 return fscki;
1816 if (inum > c->highest_inum) {
1817 ubifs_err(c, "too high inode number, max. is %lu",
1818 (unsigned long)c->highest_inum);
1819 return ERR_PTR(-EINVAL);
1822 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1823 if (!fscki)
1824 return ERR_PTR(-ENOMEM);
1826 inode = ilookup(c->vfs_sb, inum);
1828 fscki->inum = inum;
1830 * If the inode is present in the VFS inode cache, use it instead of
1831 * the on-flash inode which might be out-of-date. E.g., the size might
1832 * be out-of-date. If we do not do this, the following may happen, for
1833 * example:
1834 * 1. A power cut happens
1835 * 2. We mount the file-system R/O, the replay process fixes up the
1836 * inode size in the VFS cache, but on on-flash.
1837 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1838 * size.
1840 if (!inode) {
1841 fscki->nlink = le32_to_cpu(ino->nlink);
1842 fscki->size = le64_to_cpu(ino->size);
1843 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1844 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1845 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1846 fscki->mode = le32_to_cpu(ino->mode);
1847 } else {
1848 ui = ubifs_inode(inode);
1849 fscki->nlink = inode->i_nlink;
1850 fscki->size = inode->i_size;
1851 fscki->xattr_cnt = ui->xattr_cnt;
1852 fscki->xattr_sz = ui->xattr_size;
1853 fscki->xattr_nms = ui->xattr_names;
1854 fscki->mode = inode->i_mode;
1855 iput(inode);
1858 if (S_ISDIR(fscki->mode)) {
1859 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1860 fscki->calc_cnt = 2;
1863 rb_link_node(&fscki->rb, parent, p);
1864 rb_insert_color(&fscki->rb, &fsckd->inodes);
1866 return fscki;
1870 * search_inode - search inode in the RB-tree of inodes.
1871 * @fsckd: FS checking information
1872 * @inum: inode number to search
1874 * This is a helper function for 'check_leaf()' which searches inode @inum in
1875 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1876 * the inode was not found.
1878 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1880 struct rb_node *p;
1881 struct fsck_inode *fscki;
1883 p = fsckd->inodes.rb_node;
1884 while (p) {
1885 fscki = rb_entry(p, struct fsck_inode, rb);
1886 if (inum < fscki->inum)
1887 p = p->rb_left;
1888 else if (inum > fscki->inum)
1889 p = p->rb_right;
1890 else
1891 return fscki;
1893 return NULL;
1897 * read_add_inode - read inode node and add it to RB-tree of inodes.
1898 * @c: UBIFS file-system description object
1899 * @fsckd: FS checking information
1900 * @inum: inode number to read
1902 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1903 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1904 * information pointer in case of success and a negative error code in case of
1905 * failure.
1907 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1908 struct fsck_data *fsckd, ino_t inum)
1910 int n, err;
1911 union ubifs_key key;
1912 struct ubifs_znode *znode;
1913 struct ubifs_zbranch *zbr;
1914 struct ubifs_ino_node *ino;
1915 struct fsck_inode *fscki;
1917 fscki = search_inode(fsckd, inum);
1918 if (fscki)
1919 return fscki;
1921 ino_key_init(c, &key, inum);
1922 err = ubifs_lookup_level0(c, &key, &znode, &n);
1923 if (!err) {
1924 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1925 return ERR_PTR(-ENOENT);
1926 } else if (err < 0) {
1927 ubifs_err(c, "error %d while looking up inode %lu",
1928 err, (unsigned long)inum);
1929 return ERR_PTR(err);
1932 zbr = &znode->zbranch[n];
1933 if (zbr->len < UBIFS_INO_NODE_SZ) {
1934 ubifs_err(c, "bad node %lu node length %d",
1935 (unsigned long)inum, zbr->len);
1936 return ERR_PTR(-EINVAL);
1939 ino = kmalloc(zbr->len, GFP_NOFS);
1940 if (!ino)
1941 return ERR_PTR(-ENOMEM);
1943 err = ubifs_tnc_read_node(c, zbr, ino);
1944 if (err) {
1945 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1946 zbr->lnum, zbr->offs, err);
1947 kfree(ino);
1948 return ERR_PTR(err);
1951 fscki = add_inode(c, fsckd, ino);
1952 kfree(ino);
1953 if (IS_ERR(fscki)) {
1954 ubifs_err(c, "error %ld while adding inode %lu node",
1955 PTR_ERR(fscki), (unsigned long)inum);
1956 return fscki;
1959 return fscki;
1963 * check_leaf - check leaf node.
1964 * @c: UBIFS file-system description object
1965 * @zbr: zbranch of the leaf node to check
1966 * @priv: FS checking information
1968 * This is a helper function for 'dbg_check_filesystem()' which is called for
1969 * every single leaf node while walking the indexing tree. It checks that the
1970 * leaf node referred from the indexing tree exists, has correct CRC, and does
1971 * some other basic validation. This function is also responsible for building
1972 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1973 * calculates reference count, size, etc for each inode in order to later
1974 * compare them to the information stored inside the inodes and detect possible
1975 * inconsistencies. Returns zero in case of success and a negative error code
1976 * in case of failure.
1978 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1979 void *priv)
1981 ino_t inum;
1982 void *node;
1983 struct ubifs_ch *ch;
1984 int err, type = key_type(c, &zbr->key);
1985 struct fsck_inode *fscki;
1987 if (zbr->len < UBIFS_CH_SZ) {
1988 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1989 zbr->len, zbr->lnum, zbr->offs);
1990 return -EINVAL;
1993 node = kmalloc(zbr->len, GFP_NOFS);
1994 if (!node)
1995 return -ENOMEM;
1997 err = ubifs_tnc_read_node(c, zbr, node);
1998 if (err) {
1999 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2000 zbr->lnum, zbr->offs, err);
2001 goto out_free;
2004 /* If this is an inode node, add it to RB-tree of inodes */
2005 if (type == UBIFS_INO_KEY) {
2006 fscki = add_inode(c, priv, node);
2007 if (IS_ERR(fscki)) {
2008 err = PTR_ERR(fscki);
2009 ubifs_err(c, "error %d while adding inode node", err);
2010 goto out_dump;
2012 goto out;
2015 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2016 type != UBIFS_DATA_KEY) {
2017 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2018 type, zbr->lnum, zbr->offs);
2019 err = -EINVAL;
2020 goto out_free;
2023 ch = node;
2024 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2025 ubifs_err(c, "too high sequence number, max. is %llu",
2026 c->max_sqnum);
2027 err = -EINVAL;
2028 goto out_dump;
2031 if (type == UBIFS_DATA_KEY) {
2032 long long blk_offs;
2033 struct ubifs_data_node *dn = node;
2035 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2038 * Search the inode node this data node belongs to and insert
2039 * it to the RB-tree of inodes.
2041 inum = key_inum_flash(c, &dn->key);
2042 fscki = read_add_inode(c, priv, inum);
2043 if (IS_ERR(fscki)) {
2044 err = PTR_ERR(fscki);
2045 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2046 err, (unsigned long)inum);
2047 goto out_dump;
2050 /* Make sure the data node is within inode size */
2051 blk_offs = key_block_flash(c, &dn->key);
2052 blk_offs <<= UBIFS_BLOCK_SHIFT;
2053 blk_offs += le32_to_cpu(dn->size);
2054 if (blk_offs > fscki->size) {
2055 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2056 zbr->lnum, zbr->offs, fscki->size);
2057 err = -EINVAL;
2058 goto out_dump;
2060 } else {
2061 int nlen;
2062 struct ubifs_dent_node *dent = node;
2063 struct fsck_inode *fscki1;
2065 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2067 err = ubifs_validate_entry(c, dent);
2068 if (err)
2069 goto out_dump;
2072 * Search the inode node this entry refers to and the parent
2073 * inode node and insert them to the RB-tree of inodes.
2075 inum = le64_to_cpu(dent->inum);
2076 fscki = read_add_inode(c, priv, inum);
2077 if (IS_ERR(fscki)) {
2078 err = PTR_ERR(fscki);
2079 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2080 err, (unsigned long)inum);
2081 goto out_dump;
2084 /* Count how many direntries or xentries refers this inode */
2085 fscki->references += 1;
2087 inum = key_inum_flash(c, &dent->key);
2088 fscki1 = read_add_inode(c, priv, inum);
2089 if (IS_ERR(fscki1)) {
2090 err = PTR_ERR(fscki1);
2091 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2092 err, (unsigned long)inum);
2093 goto out_dump;
2096 nlen = le16_to_cpu(dent->nlen);
2097 if (type == UBIFS_XENT_KEY) {
2098 fscki1->calc_xcnt += 1;
2099 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2100 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2101 fscki1->calc_xnms += nlen;
2102 } else {
2103 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2104 if (dent->type == UBIFS_ITYPE_DIR)
2105 fscki1->calc_cnt += 1;
2109 out:
2110 kfree(node);
2111 return 0;
2113 out_dump:
2114 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2115 ubifs_dump_node(c, node);
2116 out_free:
2117 kfree(node);
2118 return err;
2122 * free_inodes - free RB-tree of inodes.
2123 * @fsckd: FS checking information
2125 static void free_inodes(struct fsck_data *fsckd)
2127 struct fsck_inode *fscki, *n;
2129 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2130 kfree(fscki);
2134 * check_inodes - checks all inodes.
2135 * @c: UBIFS file-system description object
2136 * @fsckd: FS checking information
2138 * This is a helper function for 'dbg_check_filesystem()' which walks the
2139 * RB-tree of inodes after the index scan has been finished, and checks that
2140 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2141 * %-EINVAL if not, and a negative error code in case of failure.
2143 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2145 int n, err;
2146 union ubifs_key key;
2147 struct ubifs_znode *znode;
2148 struct ubifs_zbranch *zbr;
2149 struct ubifs_ino_node *ino;
2150 struct fsck_inode *fscki;
2151 struct rb_node *this = rb_first(&fsckd->inodes);
2153 while (this) {
2154 fscki = rb_entry(this, struct fsck_inode, rb);
2155 this = rb_next(this);
2157 if (S_ISDIR(fscki->mode)) {
2159 * Directories have to have exactly one reference (they
2160 * cannot have hardlinks), although root inode is an
2161 * exception.
2163 if (fscki->inum != UBIFS_ROOT_INO &&
2164 fscki->references != 1) {
2165 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2166 (unsigned long)fscki->inum,
2167 fscki->references);
2168 goto out_dump;
2170 if (fscki->inum == UBIFS_ROOT_INO &&
2171 fscki->references != 0) {
2172 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2173 (unsigned long)fscki->inum,
2174 fscki->references);
2175 goto out_dump;
2177 if (fscki->calc_sz != fscki->size) {
2178 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2179 (unsigned long)fscki->inum,
2180 fscki->size, fscki->calc_sz);
2181 goto out_dump;
2183 if (fscki->calc_cnt != fscki->nlink) {
2184 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2185 (unsigned long)fscki->inum,
2186 fscki->nlink, fscki->calc_cnt);
2187 goto out_dump;
2189 } else {
2190 if (fscki->references != fscki->nlink) {
2191 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2192 (unsigned long)fscki->inum,
2193 fscki->nlink, fscki->references);
2194 goto out_dump;
2197 if (fscki->xattr_sz != fscki->calc_xsz) {
2198 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2199 (unsigned long)fscki->inum, fscki->xattr_sz,
2200 fscki->calc_xsz);
2201 goto out_dump;
2203 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2204 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2205 (unsigned long)fscki->inum,
2206 fscki->xattr_cnt, fscki->calc_xcnt);
2207 goto out_dump;
2209 if (fscki->xattr_nms != fscki->calc_xnms) {
2210 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2211 (unsigned long)fscki->inum, fscki->xattr_nms,
2212 fscki->calc_xnms);
2213 goto out_dump;
2217 return 0;
2219 out_dump:
2220 /* Read the bad inode and dump it */
2221 ino_key_init(c, &key, fscki->inum);
2222 err = ubifs_lookup_level0(c, &key, &znode, &n);
2223 if (!err) {
2224 ubifs_err(c, "inode %lu not found in index",
2225 (unsigned long)fscki->inum);
2226 return -ENOENT;
2227 } else if (err < 0) {
2228 ubifs_err(c, "error %d while looking up inode %lu",
2229 err, (unsigned long)fscki->inum);
2230 return err;
2233 zbr = &znode->zbranch[n];
2234 ino = kmalloc(zbr->len, GFP_NOFS);
2235 if (!ino)
2236 return -ENOMEM;
2238 err = ubifs_tnc_read_node(c, zbr, ino);
2239 if (err) {
2240 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2241 zbr->lnum, zbr->offs, err);
2242 kfree(ino);
2243 return err;
2246 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2247 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2248 ubifs_dump_node(c, ino);
2249 kfree(ino);
2250 return -EINVAL;
2254 * dbg_check_filesystem - check the file-system.
2255 * @c: UBIFS file-system description object
2257 * This function checks the file system, namely:
2258 * o makes sure that all leaf nodes exist and their CRCs are correct;
2259 * o makes sure inode nlink, size, xattr size/count are correct (for all
2260 * inodes).
2262 * The function reads whole indexing tree and all nodes, so it is pretty
2263 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2264 * not, and a negative error code in case of failure.
2266 int dbg_check_filesystem(struct ubifs_info *c)
2268 int err;
2269 struct fsck_data fsckd;
2271 if (!dbg_is_chk_fs(c))
2272 return 0;
2274 fsckd.inodes = RB_ROOT;
2275 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2276 if (err)
2277 goto out_free;
2279 err = check_inodes(c, &fsckd);
2280 if (err)
2281 goto out_free;
2283 free_inodes(&fsckd);
2284 return 0;
2286 out_free:
2287 ubifs_err(c, "file-system check failed with error %d", err);
2288 dump_stack();
2289 free_inodes(&fsckd);
2290 return err;
2294 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2295 * @c: UBIFS file-system description object
2296 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2298 * This function returns zero if the list of data nodes is sorted correctly,
2299 * and %-EINVAL if not.
2301 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2303 struct list_head *cur;
2304 struct ubifs_scan_node *sa, *sb;
2306 if (!dbg_is_chk_gen(c))
2307 return 0;
2309 for (cur = head->next; cur->next != head; cur = cur->next) {
2310 ino_t inuma, inumb;
2311 uint32_t blka, blkb;
2313 cond_resched();
2314 sa = container_of(cur, struct ubifs_scan_node, list);
2315 sb = container_of(cur->next, struct ubifs_scan_node, list);
2317 if (sa->type != UBIFS_DATA_NODE) {
2318 ubifs_err(c, "bad node type %d", sa->type);
2319 ubifs_dump_node(c, sa->node);
2320 return -EINVAL;
2322 if (sb->type != UBIFS_DATA_NODE) {
2323 ubifs_err(c, "bad node type %d", sb->type);
2324 ubifs_dump_node(c, sb->node);
2325 return -EINVAL;
2328 inuma = key_inum(c, &sa->key);
2329 inumb = key_inum(c, &sb->key);
2331 if (inuma < inumb)
2332 continue;
2333 if (inuma > inumb) {
2334 ubifs_err(c, "larger inum %lu goes before inum %lu",
2335 (unsigned long)inuma, (unsigned long)inumb);
2336 goto error_dump;
2339 blka = key_block(c, &sa->key);
2340 blkb = key_block(c, &sb->key);
2342 if (blka > blkb) {
2343 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2344 goto error_dump;
2346 if (blka == blkb) {
2347 ubifs_err(c, "two data nodes for the same block");
2348 goto error_dump;
2352 return 0;
2354 error_dump:
2355 ubifs_dump_node(c, sa->node);
2356 ubifs_dump_node(c, sb->node);
2357 return -EINVAL;
2361 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2362 * @c: UBIFS file-system description object
2363 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2365 * This function returns zero if the list of non-data nodes is sorted correctly,
2366 * and %-EINVAL if not.
2368 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2370 struct list_head *cur;
2371 struct ubifs_scan_node *sa, *sb;
2373 if (!dbg_is_chk_gen(c))
2374 return 0;
2376 for (cur = head->next; cur->next != head; cur = cur->next) {
2377 ino_t inuma, inumb;
2378 uint32_t hasha, hashb;
2380 cond_resched();
2381 sa = container_of(cur, struct ubifs_scan_node, list);
2382 sb = container_of(cur->next, struct ubifs_scan_node, list);
2384 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2385 sa->type != UBIFS_XENT_NODE) {
2386 ubifs_err(c, "bad node type %d", sa->type);
2387 ubifs_dump_node(c, sa->node);
2388 return -EINVAL;
2390 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2391 sa->type != UBIFS_XENT_NODE) {
2392 ubifs_err(c, "bad node type %d", sb->type);
2393 ubifs_dump_node(c, sb->node);
2394 return -EINVAL;
2397 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2398 ubifs_err(c, "non-inode node goes before inode node");
2399 goto error_dump;
2402 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2403 continue;
2405 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2406 /* Inode nodes are sorted in descending size order */
2407 if (sa->len < sb->len) {
2408 ubifs_err(c, "smaller inode node goes first");
2409 goto error_dump;
2411 continue;
2415 * This is either a dentry or xentry, which should be sorted in
2416 * ascending (parent ino, hash) order.
2418 inuma = key_inum(c, &sa->key);
2419 inumb = key_inum(c, &sb->key);
2421 if (inuma < inumb)
2422 continue;
2423 if (inuma > inumb) {
2424 ubifs_err(c, "larger inum %lu goes before inum %lu",
2425 (unsigned long)inuma, (unsigned long)inumb);
2426 goto error_dump;
2429 hasha = key_block(c, &sa->key);
2430 hashb = key_block(c, &sb->key);
2432 if (hasha > hashb) {
2433 ubifs_err(c, "larger hash %u goes before %u",
2434 hasha, hashb);
2435 goto error_dump;
2439 return 0;
2441 error_dump:
2442 ubifs_msg(c, "dumping first node");
2443 ubifs_dump_node(c, sa->node);
2444 ubifs_msg(c, "dumping second node");
2445 ubifs_dump_node(c, sb->node);
2446 return -EINVAL;
2447 return 0;
2450 static inline int chance(unsigned int n, unsigned int out_of)
2452 return !!((prandom_u32() % out_of) + 1 <= n);
2456 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2458 struct ubifs_debug_info *d = c->dbg;
2460 ubifs_assert(dbg_is_tst_rcvry(c));
2462 if (!d->pc_cnt) {
2463 /* First call - decide delay to the power cut */
2464 if (chance(1, 2)) {
2465 unsigned long delay;
2467 if (chance(1, 2)) {
2468 d->pc_delay = 1;
2469 /* Fail within 1 minute */
2470 delay = prandom_u32() % 60000;
2471 d->pc_timeout = jiffies;
2472 d->pc_timeout += msecs_to_jiffies(delay);
2473 ubifs_warn(c, "failing after %lums", delay);
2474 } else {
2475 d->pc_delay = 2;
2476 delay = prandom_u32() % 10000;
2477 /* Fail within 10000 operations */
2478 d->pc_cnt_max = delay;
2479 ubifs_warn(c, "failing after %lu calls", delay);
2483 d->pc_cnt += 1;
2486 /* Determine if failure delay has expired */
2487 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2488 return 0;
2489 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2490 return 0;
2492 if (lnum == UBIFS_SB_LNUM) {
2493 if (write && chance(1, 2))
2494 return 0;
2495 if (chance(19, 20))
2496 return 0;
2497 ubifs_warn(c, "failing in super block LEB %d", lnum);
2498 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2499 if (chance(19, 20))
2500 return 0;
2501 ubifs_warn(c, "failing in master LEB %d", lnum);
2502 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2503 if (write && chance(99, 100))
2504 return 0;
2505 if (chance(399, 400))
2506 return 0;
2507 ubifs_warn(c, "failing in log LEB %d", lnum);
2508 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2509 if (write && chance(7, 8))
2510 return 0;
2511 if (chance(19, 20))
2512 return 0;
2513 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2514 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2515 if (write && chance(1, 2))
2516 return 0;
2517 if (chance(9, 10))
2518 return 0;
2519 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2520 } else if (lnum == c->ihead_lnum) {
2521 if (chance(99, 100))
2522 return 0;
2523 ubifs_warn(c, "failing in index head LEB %d", lnum);
2524 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2525 if (chance(9, 10))
2526 return 0;
2527 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2528 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2529 !ubifs_search_bud(c, lnum)) {
2530 if (chance(19, 20))
2531 return 0;
2532 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2533 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2534 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2535 if (chance(999, 1000))
2536 return 0;
2537 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2538 } else {
2539 if (chance(9999, 10000))
2540 return 0;
2541 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2544 d->pc_happened = 1;
2545 ubifs_warn(c, "========== Power cut emulated ==========");
2546 dump_stack();
2547 return 1;
2550 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2551 unsigned int len)
2553 unsigned int from, to, ffs = chance(1, 2);
2554 unsigned char *p = (void *)buf;
2556 from = prandom_u32() % len;
2557 /* Corruption span max to end of write unit */
2558 to = min(len, ALIGN(from + 1, c->max_write_size));
2560 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2561 ffs ? "0xFFs" : "random data");
2563 if (ffs)
2564 memset(p + from, 0xFF, to - from);
2565 else
2566 prandom_bytes(p + from, to - from);
2568 return to;
2571 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2572 int offs, int len)
2574 int err, failing;
2576 if (dbg_is_power_cut(c))
2577 return -EROFS;
2579 failing = power_cut_emulated(c, lnum, 1);
2580 if (failing) {
2581 len = corrupt_data(c, buf, len);
2582 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2583 len, lnum, offs);
2585 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2586 if (err)
2587 return err;
2588 if (failing)
2589 return -EROFS;
2590 return 0;
2593 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2594 int len)
2596 int err;
2598 if (dbg_is_power_cut(c))
2599 return -EROFS;
2600 if (power_cut_emulated(c, lnum, 1))
2601 return -EROFS;
2602 err = ubi_leb_change(c->ubi, lnum, buf, len);
2603 if (err)
2604 return err;
2605 if (power_cut_emulated(c, lnum, 1))
2606 return -EROFS;
2607 return 0;
2610 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2612 int err;
2614 if (dbg_is_power_cut(c))
2615 return -EROFS;
2616 if (power_cut_emulated(c, lnum, 0))
2617 return -EROFS;
2618 err = ubi_leb_unmap(c->ubi, lnum);
2619 if (err)
2620 return err;
2621 if (power_cut_emulated(c, lnum, 0))
2622 return -EROFS;
2623 return 0;
2626 int dbg_leb_map(struct ubifs_info *c, int lnum)
2628 int err;
2630 if (dbg_is_power_cut(c))
2631 return -EROFS;
2632 if (power_cut_emulated(c, lnum, 0))
2633 return -EROFS;
2634 err = ubi_leb_map(c->ubi, lnum);
2635 if (err)
2636 return err;
2637 if (power_cut_emulated(c, lnum, 0))
2638 return -EROFS;
2639 return 0;
2643 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2644 * contain the stuff specific to particular file-system mounts.
2646 static struct dentry *dfs_rootdir;
2648 static int dfs_file_open(struct inode *inode, struct file *file)
2650 file->private_data = inode->i_private;
2651 return nonseekable_open(inode, file);
2655 * provide_user_output - provide output to the user reading a debugfs file.
2656 * @val: boolean value for the answer
2657 * @u: the buffer to store the answer at
2658 * @count: size of the buffer
2659 * @ppos: position in the @u output buffer
2661 * This is a simple helper function which stores @val boolean value in the user
2662 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2663 * bytes written to @u in case of success and a negative error code in case of
2664 * failure.
2666 static int provide_user_output(int val, char __user *u, size_t count,
2667 loff_t *ppos)
2669 char buf[3];
2671 if (val)
2672 buf[0] = '1';
2673 else
2674 buf[0] = '0';
2675 buf[1] = '\n';
2676 buf[2] = 0x00;
2678 return simple_read_from_buffer(u, count, ppos, buf, 2);
2681 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2682 loff_t *ppos)
2684 struct dentry *dent = file->f_path.dentry;
2685 struct ubifs_info *c = file->private_data;
2686 struct ubifs_debug_info *d = c->dbg;
2687 int val;
2689 if (dent == d->dfs_chk_gen)
2690 val = d->chk_gen;
2691 else if (dent == d->dfs_chk_index)
2692 val = d->chk_index;
2693 else if (dent == d->dfs_chk_orph)
2694 val = d->chk_orph;
2695 else if (dent == d->dfs_chk_lprops)
2696 val = d->chk_lprops;
2697 else if (dent == d->dfs_chk_fs)
2698 val = d->chk_fs;
2699 else if (dent == d->dfs_tst_rcvry)
2700 val = d->tst_rcvry;
2701 else if (dent == d->dfs_ro_error)
2702 val = c->ro_error;
2703 else
2704 return -EINVAL;
2706 return provide_user_output(val, u, count, ppos);
2710 * interpret_user_input - interpret user debugfs file input.
2711 * @u: user-provided buffer with the input
2712 * @count: buffer size
2714 * This is a helper function which interpret user input to a boolean UBIFS
2715 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2716 * in case of failure.
2718 static int interpret_user_input(const char __user *u, size_t count)
2720 size_t buf_size;
2721 char buf[8];
2723 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2724 if (copy_from_user(buf, u, buf_size))
2725 return -EFAULT;
2727 if (buf[0] == '1')
2728 return 1;
2729 else if (buf[0] == '0')
2730 return 0;
2732 return -EINVAL;
2735 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2736 size_t count, loff_t *ppos)
2738 struct ubifs_info *c = file->private_data;
2739 struct ubifs_debug_info *d = c->dbg;
2740 struct dentry *dent = file->f_path.dentry;
2741 int val;
2744 * TODO: this is racy - the file-system might have already been
2745 * unmounted and we'd oops in this case. The plan is to fix it with
2746 * help of 'iterate_supers_type()' which we should have in v3.0: when
2747 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2748 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2749 * superblocks and fine the one with the same UUID, and take the
2750 * locking right.
2752 * The other way to go suggested by Al Viro is to create a separate
2753 * 'ubifs-debug' file-system instead.
2755 if (file->f_path.dentry == d->dfs_dump_lprops) {
2756 ubifs_dump_lprops(c);
2757 return count;
2759 if (file->f_path.dentry == d->dfs_dump_budg) {
2760 ubifs_dump_budg(c, &c->bi);
2761 return count;
2763 if (file->f_path.dentry == d->dfs_dump_tnc) {
2764 mutex_lock(&c->tnc_mutex);
2765 ubifs_dump_tnc(c);
2766 mutex_unlock(&c->tnc_mutex);
2767 return count;
2770 val = interpret_user_input(u, count);
2771 if (val < 0)
2772 return val;
2774 if (dent == d->dfs_chk_gen)
2775 d->chk_gen = val;
2776 else if (dent == d->dfs_chk_index)
2777 d->chk_index = val;
2778 else if (dent == d->dfs_chk_orph)
2779 d->chk_orph = val;
2780 else if (dent == d->dfs_chk_lprops)
2781 d->chk_lprops = val;
2782 else if (dent == d->dfs_chk_fs)
2783 d->chk_fs = val;
2784 else if (dent == d->dfs_tst_rcvry)
2785 d->tst_rcvry = val;
2786 else if (dent == d->dfs_ro_error)
2787 c->ro_error = !!val;
2788 else
2789 return -EINVAL;
2791 return count;
2794 static const struct file_operations dfs_fops = {
2795 .open = dfs_file_open,
2796 .read = dfs_file_read,
2797 .write = dfs_file_write,
2798 .owner = THIS_MODULE,
2799 .llseek = no_llseek,
2803 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2804 * @c: UBIFS file-system description object
2806 * This function creates all debugfs files for this instance of UBIFS. Returns
2807 * zero in case of success and a negative error code in case of failure.
2809 * Note, the only reason we have not merged this function with the
2810 * 'ubifs_debugging_init()' function is because it is better to initialize
2811 * debugfs interfaces at the very end of the mount process, and remove them at
2812 * the very beginning of the mount process.
2814 int dbg_debugfs_init_fs(struct ubifs_info *c)
2816 int err, n;
2817 const char *fname;
2818 struct dentry *dent;
2819 struct ubifs_debug_info *d = c->dbg;
2821 if (!IS_ENABLED(CONFIG_DEBUG_FS))
2822 return 0;
2824 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2825 c->vi.ubi_num, c->vi.vol_id);
2826 if (n == UBIFS_DFS_DIR_LEN) {
2827 /* The array size is too small */
2828 fname = UBIFS_DFS_DIR_NAME;
2829 dent = ERR_PTR(-EINVAL);
2830 goto out;
2833 fname = d->dfs_dir_name;
2834 dent = debugfs_create_dir(fname, dfs_rootdir);
2835 if (IS_ERR_OR_NULL(dent))
2836 goto out;
2837 d->dfs_dir = dent;
2839 fname = "dump_lprops";
2840 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2841 if (IS_ERR_OR_NULL(dent))
2842 goto out_remove;
2843 d->dfs_dump_lprops = dent;
2845 fname = "dump_budg";
2846 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2847 if (IS_ERR_OR_NULL(dent))
2848 goto out_remove;
2849 d->dfs_dump_budg = dent;
2851 fname = "dump_tnc";
2852 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2853 if (IS_ERR_OR_NULL(dent))
2854 goto out_remove;
2855 d->dfs_dump_tnc = dent;
2857 fname = "chk_general";
2858 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2859 &dfs_fops);
2860 if (IS_ERR_OR_NULL(dent))
2861 goto out_remove;
2862 d->dfs_chk_gen = dent;
2864 fname = "chk_index";
2865 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2866 &dfs_fops);
2867 if (IS_ERR_OR_NULL(dent))
2868 goto out_remove;
2869 d->dfs_chk_index = dent;
2871 fname = "chk_orphans";
2872 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2873 &dfs_fops);
2874 if (IS_ERR_OR_NULL(dent))
2875 goto out_remove;
2876 d->dfs_chk_orph = dent;
2878 fname = "chk_lprops";
2879 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2880 &dfs_fops);
2881 if (IS_ERR_OR_NULL(dent))
2882 goto out_remove;
2883 d->dfs_chk_lprops = dent;
2885 fname = "chk_fs";
2886 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2887 &dfs_fops);
2888 if (IS_ERR_OR_NULL(dent))
2889 goto out_remove;
2890 d->dfs_chk_fs = dent;
2892 fname = "tst_recovery";
2893 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2894 &dfs_fops);
2895 if (IS_ERR_OR_NULL(dent))
2896 goto out_remove;
2897 d->dfs_tst_rcvry = dent;
2899 fname = "ro_error";
2900 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2901 &dfs_fops);
2902 if (IS_ERR_OR_NULL(dent))
2903 goto out_remove;
2904 d->dfs_ro_error = dent;
2906 return 0;
2908 out_remove:
2909 debugfs_remove_recursive(d->dfs_dir);
2910 out:
2911 err = dent ? PTR_ERR(dent) : -ENODEV;
2912 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2913 fname, err);
2914 return err;
2918 * dbg_debugfs_exit_fs - remove all debugfs files.
2919 * @c: UBIFS file-system description object
2921 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2923 if (IS_ENABLED(CONFIG_DEBUG_FS))
2924 debugfs_remove_recursive(c->dbg->dfs_dir);
2927 struct ubifs_global_debug_info ubifs_dbg;
2929 static struct dentry *dfs_chk_gen;
2930 static struct dentry *dfs_chk_index;
2931 static struct dentry *dfs_chk_orph;
2932 static struct dentry *dfs_chk_lprops;
2933 static struct dentry *dfs_chk_fs;
2934 static struct dentry *dfs_tst_rcvry;
2936 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2937 size_t count, loff_t *ppos)
2939 struct dentry *dent = file->f_path.dentry;
2940 int val;
2942 if (dent == dfs_chk_gen)
2943 val = ubifs_dbg.chk_gen;
2944 else if (dent == dfs_chk_index)
2945 val = ubifs_dbg.chk_index;
2946 else if (dent == dfs_chk_orph)
2947 val = ubifs_dbg.chk_orph;
2948 else if (dent == dfs_chk_lprops)
2949 val = ubifs_dbg.chk_lprops;
2950 else if (dent == dfs_chk_fs)
2951 val = ubifs_dbg.chk_fs;
2952 else if (dent == dfs_tst_rcvry)
2953 val = ubifs_dbg.tst_rcvry;
2954 else
2955 return -EINVAL;
2957 return provide_user_output(val, u, count, ppos);
2960 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2961 size_t count, loff_t *ppos)
2963 struct dentry *dent = file->f_path.dentry;
2964 int val;
2966 val = interpret_user_input(u, count);
2967 if (val < 0)
2968 return val;
2970 if (dent == dfs_chk_gen)
2971 ubifs_dbg.chk_gen = val;
2972 else if (dent == dfs_chk_index)
2973 ubifs_dbg.chk_index = val;
2974 else if (dent == dfs_chk_orph)
2975 ubifs_dbg.chk_orph = val;
2976 else if (dent == dfs_chk_lprops)
2977 ubifs_dbg.chk_lprops = val;
2978 else if (dent == dfs_chk_fs)
2979 ubifs_dbg.chk_fs = val;
2980 else if (dent == dfs_tst_rcvry)
2981 ubifs_dbg.tst_rcvry = val;
2982 else
2983 return -EINVAL;
2985 return count;
2988 static const struct file_operations dfs_global_fops = {
2989 .read = dfs_global_file_read,
2990 .write = dfs_global_file_write,
2991 .owner = THIS_MODULE,
2992 .llseek = no_llseek,
2996 * dbg_debugfs_init - initialize debugfs file-system.
2998 * UBIFS uses debugfs file-system to expose various debugging knobs to
2999 * user-space. This function creates "ubifs" directory in the debugfs
3000 * file-system. Returns zero in case of success and a negative error code in
3001 * case of failure.
3003 int dbg_debugfs_init(void)
3005 int err;
3006 const char *fname;
3007 struct dentry *dent;
3009 if (!IS_ENABLED(CONFIG_DEBUG_FS))
3010 return 0;
3012 fname = "ubifs";
3013 dent = debugfs_create_dir(fname, NULL);
3014 if (IS_ERR_OR_NULL(dent))
3015 goto out;
3016 dfs_rootdir = dent;
3018 fname = "chk_general";
3019 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3020 &dfs_global_fops);
3021 if (IS_ERR_OR_NULL(dent))
3022 goto out_remove;
3023 dfs_chk_gen = dent;
3025 fname = "chk_index";
3026 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3027 &dfs_global_fops);
3028 if (IS_ERR_OR_NULL(dent))
3029 goto out_remove;
3030 dfs_chk_index = dent;
3032 fname = "chk_orphans";
3033 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3034 &dfs_global_fops);
3035 if (IS_ERR_OR_NULL(dent))
3036 goto out_remove;
3037 dfs_chk_orph = dent;
3039 fname = "chk_lprops";
3040 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3041 &dfs_global_fops);
3042 if (IS_ERR_OR_NULL(dent))
3043 goto out_remove;
3044 dfs_chk_lprops = dent;
3046 fname = "chk_fs";
3047 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3048 &dfs_global_fops);
3049 if (IS_ERR_OR_NULL(dent))
3050 goto out_remove;
3051 dfs_chk_fs = dent;
3053 fname = "tst_recovery";
3054 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3055 &dfs_global_fops);
3056 if (IS_ERR_OR_NULL(dent))
3057 goto out_remove;
3058 dfs_tst_rcvry = dent;
3060 return 0;
3062 out_remove:
3063 debugfs_remove_recursive(dfs_rootdir);
3064 out:
3065 err = dent ? PTR_ERR(dent) : -ENODEV;
3066 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3067 current->pid, fname, err);
3068 return err;
3072 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3074 void dbg_debugfs_exit(void)
3076 if (IS_ENABLED(CONFIG_DEBUG_FS))
3077 debugfs_remove_recursive(dfs_rootdir);
3081 * ubifs_debugging_init - initialize UBIFS debugging.
3082 * @c: UBIFS file-system description object
3084 * This function initializes debugging-related data for the file system.
3085 * Returns zero in case of success and a negative error code in case of
3086 * failure.
3088 int ubifs_debugging_init(struct ubifs_info *c)
3090 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3091 if (!c->dbg)
3092 return -ENOMEM;
3094 return 0;
3098 * ubifs_debugging_exit - free debugging data.
3099 * @c: UBIFS file-system description object
3101 void ubifs_debugging_exit(struct ubifs_info *c)
3103 kfree(c->dbg);