2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
45 static kmem_zone_t
*xfs_buf_zone
;
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
66 * Return true if the buffer is vmapped.
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
72 return bp
->b_addr
&& bp
->b_page_count
> 1;
79 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
99 if (bp
->b_flags
& (XBF_NO_IOACCT
|_XBF_IN_FLIGHT
))
102 ASSERT(bp
->b_flags
& XBF_ASYNC
);
103 bp
->b_flags
|= _XBF_IN_FLIGHT
;
104 percpu_counter_inc(&bp
->b_target
->bt_io_count
);
108 * Clear the in-flight state on a buffer about to be released to the LRU or
109 * freed and unaccount from the buftarg.
115 if (!(bp
->b_flags
& _XBF_IN_FLIGHT
))
118 bp
->b_flags
&= ~_XBF_IN_FLIGHT
;
119 percpu_counter_dec(&bp
->b_target
->bt_io_count
);
123 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
124 * b_lru_ref count so that the buffer is freed immediately when the buffer
125 * reference count falls to zero. If the buffer is already on the LRU, we need
126 * to remove the reference that LRU holds on the buffer.
128 * This prevents build-up of stale buffers on the LRU.
134 ASSERT(xfs_buf_islocked(bp
));
136 bp
->b_flags
|= XBF_STALE
;
139 * Clear the delwri status so that a delwri queue walker will not
140 * flush this buffer to disk now that it is stale. The delwri queue has
141 * a reference to the buffer, so this is safe to do.
143 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
146 * Once the buffer is marked stale and unlocked, a subsequent lookup
147 * could reset b_flags. There is no guarantee that the buffer is
148 * unaccounted (released to LRU) before that occurs. Drop in-flight
149 * status now to preserve accounting consistency.
151 xfs_buf_ioacct_dec(bp
);
153 spin_lock(&bp
->b_lock
);
154 atomic_set(&bp
->b_lru_ref
, 0);
155 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
) &&
156 (list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
)))
157 atomic_dec(&bp
->b_hold
);
159 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
160 spin_unlock(&bp
->b_lock
);
168 ASSERT(bp
->b_maps
== NULL
);
169 bp
->b_map_count
= map_count
;
171 if (map_count
== 1) {
172 bp
->b_maps
= &bp
->__b_map
;
176 bp
->b_maps
= kmem_zalloc(map_count
* sizeof(struct xfs_buf_map
),
184 * Frees b_pages if it was allocated.
190 if (bp
->b_maps
!= &bp
->__b_map
) {
191 kmem_free(bp
->b_maps
);
198 struct xfs_buftarg
*target
,
199 struct xfs_buf_map
*map
,
201 xfs_buf_flags_t flags
)
207 bp
= kmem_zone_zalloc(xfs_buf_zone
, KM_NOFS
);
212 * We don't want certain flags to appear in b_flags unless they are
213 * specifically set by later operations on the buffer.
215 flags
&= ~(XBF_UNMAPPED
| XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
);
217 atomic_set(&bp
->b_hold
, 1);
218 atomic_set(&bp
->b_lru_ref
, 1);
219 init_completion(&bp
->b_iowait
);
220 INIT_LIST_HEAD(&bp
->b_lru
);
221 INIT_LIST_HEAD(&bp
->b_list
);
222 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
223 spin_lock_init(&bp
->b_lock
);
225 bp
->b_target
= target
;
229 * Set length and io_length to the same value initially.
230 * I/O routines should use io_length, which will be the same in
231 * most cases but may be reset (e.g. XFS recovery).
233 error
= xfs_buf_get_maps(bp
, nmaps
);
235 kmem_zone_free(xfs_buf_zone
, bp
);
239 bp
->b_bn
= map
[0].bm_bn
;
241 for (i
= 0; i
< nmaps
; i
++) {
242 bp
->b_maps
[i
].bm_bn
= map
[i
].bm_bn
;
243 bp
->b_maps
[i
].bm_len
= map
[i
].bm_len
;
244 bp
->b_length
+= map
[i
].bm_len
;
246 bp
->b_io_length
= bp
->b_length
;
248 atomic_set(&bp
->b_pin_count
, 0);
249 init_waitqueue_head(&bp
->b_waiters
);
251 XFS_STATS_INC(target
->bt_mount
, xb_create
);
252 trace_xfs_buf_init(bp
, _RET_IP_
);
258 * Allocate a page array capable of holding a specified number
259 * of pages, and point the page buf at it.
266 /* Make sure that we have a page list */
267 if (bp
->b_pages
== NULL
) {
268 bp
->b_page_count
= page_count
;
269 if (page_count
<= XB_PAGES
) {
270 bp
->b_pages
= bp
->b_page_array
;
272 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
273 page_count
, KM_NOFS
);
274 if (bp
->b_pages
== NULL
)
277 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
283 * Frees b_pages if it was allocated.
289 if (bp
->b_pages
!= bp
->b_page_array
) {
290 kmem_free(bp
->b_pages
);
296 * Releases the specified buffer.
298 * The modification state of any associated pages is left unchanged.
299 * The buffer must not be on any hash - use xfs_buf_rele instead for
300 * hashed and refcounted buffers
306 trace_xfs_buf_free(bp
, _RET_IP_
);
308 ASSERT(list_empty(&bp
->b_lru
));
310 if (bp
->b_flags
& _XBF_PAGES
) {
313 if (xfs_buf_is_vmapped(bp
))
314 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
317 for (i
= 0; i
< bp
->b_page_count
; i
++) {
318 struct page
*page
= bp
->b_pages
[i
];
322 } else if (bp
->b_flags
& _XBF_KMEM
)
323 kmem_free(bp
->b_addr
);
324 _xfs_buf_free_pages(bp
);
325 xfs_buf_free_maps(bp
);
326 kmem_zone_free(xfs_buf_zone
, bp
);
330 * Allocates all the pages for buffer in question and builds it's page list.
333 xfs_buf_allocate_memory(
338 size_t nbytes
, offset
;
339 gfp_t gfp_mask
= xb_to_gfp(flags
);
340 unsigned short page_count
, i
;
341 xfs_off_t start
, end
;
345 * for buffers that are contained within a single page, just allocate
346 * the memory from the heap - there's no need for the complexity of
347 * page arrays to keep allocation down to order 0.
349 size
= BBTOB(bp
->b_length
);
350 if (size
< PAGE_SIZE
) {
351 bp
->b_addr
= kmem_alloc(size
, KM_NOFS
);
353 /* low memory - use alloc_page loop instead */
357 if (((unsigned long)(bp
->b_addr
+ size
- 1) & PAGE_MASK
) !=
358 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
359 /* b_addr spans two pages - use alloc_page instead */
360 kmem_free(bp
->b_addr
);
364 bp
->b_offset
= offset_in_page(bp
->b_addr
);
365 bp
->b_pages
= bp
->b_page_array
;
366 bp
->b_pages
[0] = virt_to_page(bp
->b_addr
);
367 bp
->b_page_count
= 1;
368 bp
->b_flags
|= _XBF_KMEM
;
373 start
= BBTOB(bp
->b_maps
[0].bm_bn
) >> PAGE_SHIFT
;
374 end
= (BBTOB(bp
->b_maps
[0].bm_bn
+ bp
->b_length
) + PAGE_SIZE
- 1)
376 page_count
= end
- start
;
377 error
= _xfs_buf_get_pages(bp
, page_count
);
381 offset
= bp
->b_offset
;
382 bp
->b_flags
|= _XBF_PAGES
;
384 for (i
= 0; i
< bp
->b_page_count
; i
++) {
388 page
= alloc_page(gfp_mask
);
389 if (unlikely(page
== NULL
)) {
390 if (flags
& XBF_READ_AHEAD
) {
391 bp
->b_page_count
= i
;
397 * This could deadlock.
399 * But until all the XFS lowlevel code is revamped to
400 * handle buffer allocation failures we can't do much.
402 if (!(++retries
% 100))
404 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
405 current
->comm
, current
->pid
,
408 XFS_STATS_INC(bp
->b_target
->bt_mount
, xb_page_retries
);
409 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
413 XFS_STATS_INC(bp
->b_target
->bt_mount
, xb_page_found
);
415 nbytes
= min_t(size_t, size
, PAGE_SIZE
- offset
);
417 bp
->b_pages
[i
] = page
;
423 for (i
= 0; i
< bp
->b_page_count
; i
++)
424 __free_page(bp
->b_pages
[i
]);
429 * Map buffer into kernel address-space if necessary.
436 ASSERT(bp
->b_flags
& _XBF_PAGES
);
437 if (bp
->b_page_count
== 1) {
438 /* A single page buffer is always mappable */
439 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
440 } else if (flags
& XBF_UNMAPPED
) {
447 * vm_map_ram() will allocate auxillary structures (e.g.
448 * pagetables) with GFP_KERNEL, yet we are likely to be under
449 * GFP_NOFS context here. Hence we need to tell memory reclaim
450 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
451 * memory reclaim re-entering the filesystem here and
452 * potentially deadlocking.
454 noio_flag
= memalloc_noio_save();
456 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
461 } while (retried
++ <= 1);
462 memalloc_noio_restore(noio_flag
);
466 bp
->b_addr
+= bp
->b_offset
;
473 * Finding and Reading Buffers
477 struct rhashtable_compare_arg
*arg
,
480 const struct xfs_buf_map
*map
= arg
->key
;
481 const struct xfs_buf
*bp
= obj
;
484 * The key hashing in the lookup path depends on the key being the
485 * first element of the compare_arg, make sure to assert this.
487 BUILD_BUG_ON(offsetof(struct xfs_buf_map
, bm_bn
) != 0);
489 if (bp
->b_bn
!= map
->bm_bn
)
492 if (unlikely(bp
->b_length
!= map
->bm_len
)) {
494 * found a block number match. If the range doesn't
495 * match, the only way this is allowed is if the buffer
496 * in the cache is stale and the transaction that made
497 * it stale has not yet committed. i.e. we are
498 * reallocating a busy extent. Skip this buffer and
499 * continue searching for an exact match.
501 ASSERT(bp
->b_flags
& XBF_STALE
);
507 static const struct rhashtable_params xfs_buf_hash_params
= {
508 .min_size
= 32, /* empty AGs have minimal footprint */
510 .key_len
= sizeof(xfs_daddr_t
),
511 .key_offset
= offsetof(struct xfs_buf
, b_bn
),
512 .head_offset
= offsetof(struct xfs_buf
, b_rhash_head
),
513 .automatic_shrinking
= true,
514 .obj_cmpfn
= _xfs_buf_obj_cmp
,
519 struct xfs_perag
*pag
)
521 spin_lock_init(&pag
->pag_buf_lock
);
522 return rhashtable_init(&pag
->pag_buf_hash
, &xfs_buf_hash_params
);
526 xfs_buf_hash_destroy(
527 struct xfs_perag
*pag
)
529 rhashtable_destroy(&pag
->pag_buf_hash
);
533 * Look up, and creates if absent, a lockable buffer for
534 * a given range of an inode. The buffer is returned
535 * locked. No I/O is implied by this call.
539 struct xfs_buftarg
*btp
,
540 struct xfs_buf_map
*map
,
542 xfs_buf_flags_t flags
,
545 struct xfs_perag
*pag
;
547 struct xfs_buf_map cmap
= { .bm_bn
= map
[0].bm_bn
};
551 for (i
= 0; i
< nmaps
; i
++)
552 cmap
.bm_len
+= map
[i
].bm_len
;
554 /* Check for IOs smaller than the sector size / not sector aligned */
555 ASSERT(!(BBTOB(cmap
.bm_len
) < btp
->bt_meta_sectorsize
));
556 ASSERT(!(BBTOB(cmap
.bm_bn
) & (xfs_off_t
)btp
->bt_meta_sectormask
));
559 * Corrupted block numbers can get through to here, unfortunately, so we
560 * have to check that the buffer falls within the filesystem bounds.
562 eofs
= XFS_FSB_TO_BB(btp
->bt_mount
, btp
->bt_mount
->m_sb
.sb_dblocks
);
563 if (cmap
.bm_bn
< 0 || cmap
.bm_bn
>= eofs
) {
565 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
566 * but none of the higher level infrastructure supports
567 * returning a specific error on buffer lookup failures.
569 xfs_alert(btp
->bt_mount
,
570 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
571 __func__
, cmap
.bm_bn
, eofs
);
576 pag
= xfs_perag_get(btp
->bt_mount
,
577 xfs_daddr_to_agno(btp
->bt_mount
, cmap
.bm_bn
));
579 spin_lock(&pag
->pag_buf_lock
);
580 bp
= rhashtable_lookup_fast(&pag
->pag_buf_hash
, &cmap
,
581 xfs_buf_hash_params
);
583 atomic_inc(&bp
->b_hold
);
589 /* the buffer keeps the perag reference until it is freed */
591 rhashtable_insert_fast(&pag
->pag_buf_hash
,
592 &new_bp
->b_rhash_head
,
593 xfs_buf_hash_params
);
594 spin_unlock(&pag
->pag_buf_lock
);
596 XFS_STATS_INC(btp
->bt_mount
, xb_miss_locked
);
597 spin_unlock(&pag
->pag_buf_lock
);
603 spin_unlock(&pag
->pag_buf_lock
);
606 if (!xfs_buf_trylock(bp
)) {
607 if (flags
& XBF_TRYLOCK
) {
609 XFS_STATS_INC(btp
->bt_mount
, xb_busy_locked
);
613 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked_waited
);
617 * if the buffer is stale, clear all the external state associated with
618 * it. We need to keep flags such as how we allocated the buffer memory
621 if (bp
->b_flags
& XBF_STALE
) {
622 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
623 ASSERT(bp
->b_iodone
== NULL
);
624 bp
->b_flags
&= _XBF_KMEM
| _XBF_PAGES
;
628 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
629 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked
);
634 * Assembles a buffer covering the specified range. The code is optimised for
635 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
636 * more hits than misses.
640 struct xfs_buftarg
*target
,
641 struct xfs_buf_map
*map
,
643 xfs_buf_flags_t flags
)
646 struct xfs_buf
*new_bp
;
649 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, NULL
);
653 new_bp
= _xfs_buf_alloc(target
, map
, nmaps
, flags
);
654 if (unlikely(!new_bp
))
657 error
= xfs_buf_allocate_memory(new_bp
, flags
);
659 xfs_buf_free(new_bp
);
663 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, new_bp
);
665 xfs_buf_free(new_bp
);
670 xfs_buf_free(new_bp
);
674 error
= _xfs_buf_map_pages(bp
, flags
);
675 if (unlikely(error
)) {
676 xfs_warn(target
->bt_mount
,
677 "%s: failed to map pagesn", __func__
);
684 * Clear b_error if this is a lookup from a caller that doesn't expect
685 * valid data to be found in the buffer.
687 if (!(flags
& XBF_READ
))
688 xfs_buf_ioerror(bp
, 0);
690 XFS_STATS_INC(target
->bt_mount
, xb_get
);
691 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
698 xfs_buf_flags_t flags
)
700 ASSERT(!(flags
& XBF_WRITE
));
701 ASSERT(bp
->b_maps
[0].bm_bn
!= XFS_BUF_DADDR_NULL
);
703 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_READ_AHEAD
);
704 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
706 if (flags
& XBF_ASYNC
) {
710 return xfs_buf_submit_wait(bp
);
715 struct xfs_buftarg
*target
,
716 struct xfs_buf_map
*map
,
718 xfs_buf_flags_t flags
,
719 const struct xfs_buf_ops
*ops
)
725 bp
= xfs_buf_get_map(target
, map
, nmaps
, flags
);
727 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
729 if (!(bp
->b_flags
& XBF_DONE
)) {
730 XFS_STATS_INC(target
->bt_mount
, xb_get_read
);
732 _xfs_buf_read(bp
, flags
);
733 } else if (flags
& XBF_ASYNC
) {
735 * Read ahead call which is already satisfied,
741 /* We do not want read in the flags */
742 bp
->b_flags
&= ~XBF_READ
;
750 * If we are not low on memory then do the readahead in a deadlock
754 xfs_buf_readahead_map(
755 struct xfs_buftarg
*target
,
756 struct xfs_buf_map
*map
,
758 const struct xfs_buf_ops
*ops
)
760 if (bdi_read_congested(target
->bt_bdi
))
763 xfs_buf_read_map(target
, map
, nmaps
,
764 XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
, ops
);
768 * Read an uncached buffer from disk. Allocates and returns a locked
769 * buffer containing the disk contents or nothing.
772 xfs_buf_read_uncached(
773 struct xfs_buftarg
*target
,
777 struct xfs_buf
**bpp
,
778 const struct xfs_buf_ops
*ops
)
784 bp
= xfs_buf_get_uncached(target
, numblks
, flags
);
788 /* set up the buffer for a read IO */
789 ASSERT(bp
->b_map_count
== 1);
790 bp
->b_bn
= XFS_BUF_DADDR_NULL
; /* always null for uncached buffers */
791 bp
->b_maps
[0].bm_bn
= daddr
;
792 bp
->b_flags
|= XBF_READ
;
795 xfs_buf_submit_wait(bp
);
797 int error
= bp
->b_error
;
807 * Return a buffer allocated as an empty buffer and associated to external
808 * memory via xfs_buf_associate_memory() back to it's empty state.
816 _xfs_buf_free_pages(bp
);
819 bp
->b_page_count
= 0;
821 bp
->b_length
= numblks
;
822 bp
->b_io_length
= numblks
;
824 ASSERT(bp
->b_map_count
== 1);
825 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
826 bp
->b_maps
[0].bm_bn
= XFS_BUF_DADDR_NULL
;
827 bp
->b_maps
[0].bm_len
= bp
->b_length
;
830 static inline struct page
*
834 if ((!is_vmalloc_addr(addr
))) {
835 return virt_to_page(addr
);
837 return vmalloc_to_page(addr
);
842 xfs_buf_associate_memory(
849 unsigned long pageaddr
;
850 unsigned long offset
;
854 pageaddr
= (unsigned long)mem
& PAGE_MASK
;
855 offset
= (unsigned long)mem
- pageaddr
;
856 buflen
= PAGE_ALIGN(len
+ offset
);
857 page_count
= buflen
>> PAGE_SHIFT
;
859 /* Free any previous set of page pointers */
861 _xfs_buf_free_pages(bp
);
866 rval
= _xfs_buf_get_pages(bp
, page_count
);
870 bp
->b_offset
= offset
;
872 for (i
= 0; i
< bp
->b_page_count
; i
++) {
873 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
874 pageaddr
+= PAGE_SIZE
;
877 bp
->b_io_length
= BTOBB(len
);
878 bp
->b_length
= BTOBB(buflen
);
884 xfs_buf_get_uncached(
885 struct xfs_buftarg
*target
,
889 unsigned long page_count
;
892 DEFINE_SINGLE_BUF_MAP(map
, XFS_BUF_DADDR_NULL
, numblks
);
894 /* flags might contain irrelevant bits, pass only what we care about */
895 bp
= _xfs_buf_alloc(target
, &map
, 1, flags
& XBF_NO_IOACCT
);
896 if (unlikely(bp
== NULL
))
899 page_count
= PAGE_ALIGN(numblks
<< BBSHIFT
) >> PAGE_SHIFT
;
900 error
= _xfs_buf_get_pages(bp
, page_count
);
904 for (i
= 0; i
< page_count
; i
++) {
905 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
909 bp
->b_flags
|= _XBF_PAGES
;
911 error
= _xfs_buf_map_pages(bp
, 0);
912 if (unlikely(error
)) {
913 xfs_warn(target
->bt_mount
,
914 "%s: failed to map pages", __func__
);
918 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
923 __free_page(bp
->b_pages
[i
]);
924 _xfs_buf_free_pages(bp
);
926 xfs_buf_free_maps(bp
);
927 kmem_zone_free(xfs_buf_zone
, bp
);
933 * Increment reference count on buffer, to hold the buffer concurrently
934 * with another thread which may release (free) the buffer asynchronously.
935 * Must hold the buffer already to call this function.
941 trace_xfs_buf_hold(bp
, _RET_IP_
);
942 atomic_inc(&bp
->b_hold
);
946 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
947 * placed on LRU or freed (depending on b_lru_ref).
953 struct xfs_perag
*pag
= bp
->b_pag
;
955 bool freebuf
= false;
957 trace_xfs_buf_rele(bp
, _RET_IP_
);
960 ASSERT(list_empty(&bp
->b_lru
));
961 if (atomic_dec_and_test(&bp
->b_hold
)) {
962 xfs_buf_ioacct_dec(bp
);
968 ASSERT(atomic_read(&bp
->b_hold
) > 0);
970 release
= atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
);
971 spin_lock(&bp
->b_lock
);
974 * Drop the in-flight state if the buffer is already on the LRU
975 * and it holds the only reference. This is racy because we
976 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
977 * ensures the decrement occurs only once per-buf.
979 if ((atomic_read(&bp
->b_hold
) == 1) && !list_empty(&bp
->b_lru
))
980 xfs_buf_ioacct_dec(bp
);
984 /* the last reference has been dropped ... */
985 xfs_buf_ioacct_dec(bp
);
986 if (!(bp
->b_flags
& XBF_STALE
) && atomic_read(&bp
->b_lru_ref
)) {
988 * If the buffer is added to the LRU take a new reference to the
989 * buffer for the LRU and clear the (now stale) dispose list
992 if (list_lru_add(&bp
->b_target
->bt_lru
, &bp
->b_lru
)) {
993 bp
->b_state
&= ~XFS_BSTATE_DISPOSE
;
994 atomic_inc(&bp
->b_hold
);
996 spin_unlock(&pag
->pag_buf_lock
);
999 * most of the time buffers will already be removed from the
1000 * LRU, so optimise that case by checking for the
1001 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1002 * was on was the disposal list
1004 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
)) {
1005 list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
);
1007 ASSERT(list_empty(&bp
->b_lru
));
1010 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1011 rhashtable_remove_fast(&pag
->pag_buf_hash
, &bp
->b_rhash_head
,
1012 xfs_buf_hash_params
);
1013 spin_unlock(&pag
->pag_buf_lock
);
1019 spin_unlock(&bp
->b_lock
);
1027 * Lock a buffer object, if it is not already locked.
1029 * If we come across a stale, pinned, locked buffer, we know that we are
1030 * being asked to lock a buffer that has been reallocated. Because it is
1031 * pinned, we know that the log has not been pushed to disk and hence it
1032 * will still be locked. Rather than continuing to have trylock attempts
1033 * fail until someone else pushes the log, push it ourselves before
1034 * returning. This means that the xfsaild will not get stuck trying
1035 * to push on stale inode buffers.
1043 locked
= down_trylock(&bp
->b_sema
) == 0;
1046 trace_xfs_buf_trylock(bp
, _RET_IP_
);
1048 trace_xfs_buf_trylock_fail(bp
, _RET_IP_
);
1054 * Lock a buffer object.
1056 * If we come across a stale, pinned, locked buffer, we know that we
1057 * are being asked to lock a buffer that has been reallocated. Because
1058 * it is pinned, we know that the log has not been pushed to disk and
1059 * hence it will still be locked. Rather than sleeping until someone
1060 * else pushes the log, push it ourselves before trying to get the lock.
1066 trace_xfs_buf_lock(bp
, _RET_IP_
);
1068 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
1069 xfs_log_force(bp
->b_target
->bt_mount
, 0);
1073 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
1083 trace_xfs_buf_unlock(bp
, _RET_IP_
);
1090 DECLARE_WAITQUEUE (wait
, current
);
1092 if (atomic_read(&bp
->b_pin_count
) == 0)
1095 add_wait_queue(&bp
->b_waiters
, &wait
);
1097 set_current_state(TASK_UNINTERRUPTIBLE
);
1098 if (atomic_read(&bp
->b_pin_count
) == 0)
1102 remove_wait_queue(&bp
->b_waiters
, &wait
);
1103 set_current_state(TASK_RUNNING
);
1107 * Buffer Utility Routines
1114 bool read
= bp
->b_flags
& XBF_READ
;
1116 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1118 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1121 * Pull in IO completion errors now. We are guaranteed to be running
1122 * single threaded, so we don't need the lock to read b_io_error.
1124 if (!bp
->b_error
&& bp
->b_io_error
)
1125 xfs_buf_ioerror(bp
, bp
->b_io_error
);
1127 /* Only validate buffers that were read without errors */
1128 if (read
&& !bp
->b_error
&& bp
->b_ops
) {
1129 ASSERT(!bp
->b_iodone
);
1130 bp
->b_ops
->verify_read(bp
);
1134 bp
->b_flags
|= XBF_DONE
;
1137 (*(bp
->b_iodone
))(bp
);
1138 else if (bp
->b_flags
& XBF_ASYNC
)
1141 complete(&bp
->b_iowait
);
1146 struct work_struct
*work
)
1148 struct xfs_buf
*bp
=
1149 container_of(work
, xfs_buf_t
, b_ioend_work
);
1155 xfs_buf_ioend_async(
1158 INIT_WORK(&bp
->b_ioend_work
, xfs_buf_ioend_work
);
1159 queue_work(bp
->b_ioend_wq
, &bp
->b_ioend_work
);
1167 ASSERT(error
<= 0 && error
>= -1000);
1168 bp
->b_error
= error
;
1169 trace_xfs_buf_ioerror(bp
, error
, _RET_IP_
);
1173 xfs_buf_ioerror_alert(
1177 xfs_alert(bp
->b_target
->bt_mount
,
1178 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1179 (__uint64_t
)XFS_BUF_ADDR(bp
), func
, -bp
->b_error
, bp
->b_length
);
1188 ASSERT(xfs_buf_islocked(bp
));
1190 bp
->b_flags
|= XBF_WRITE
;
1191 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
| _XBF_DELWRI_Q
|
1192 XBF_WRITE_FAIL
| XBF_DONE
);
1194 error
= xfs_buf_submit_wait(bp
);
1196 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1197 SHUTDOWN_META_IO_ERROR
);
1206 struct xfs_buf
*bp
= (struct xfs_buf
*)bio
->bi_private
;
1209 * don't overwrite existing errors - otherwise we can lose errors on
1210 * buffers that require multiple bios to complete.
1213 cmpxchg(&bp
->b_io_error
, 0, bio
->bi_error
);
1215 if (!bp
->b_error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1216 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1218 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1219 xfs_buf_ioend_async(bp
);
1224 xfs_buf_ioapply_map(
1233 int total_nr_pages
= bp
->b_page_count
;
1236 sector_t sector
= bp
->b_maps
[map
].bm_bn
;
1240 total_nr_pages
= bp
->b_page_count
;
1242 /* skip the pages in the buffer before the start offset */
1244 offset
= *buf_offset
;
1245 while (offset
>= PAGE_SIZE
) {
1247 offset
-= PAGE_SIZE
;
1251 * Limit the IO size to the length of the current vector, and update the
1252 * remaining IO count for the next time around.
1254 size
= min_t(int, BBTOB(bp
->b_maps
[map
].bm_len
), *count
);
1256 *buf_offset
+= size
;
1259 atomic_inc(&bp
->b_io_remaining
);
1260 nr_pages
= min(total_nr_pages
, BIO_MAX_PAGES
);
1262 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1263 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1264 bio
->bi_iter
.bi_sector
= sector
;
1265 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1266 bio
->bi_private
= bp
;
1267 bio_set_op_attrs(bio
, op
, op_flags
);
1269 for (; size
&& nr_pages
; nr_pages
--, page_index
++) {
1270 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1275 rbytes
= bio_add_page(bio
, bp
->b_pages
[page_index
], nbytes
,
1277 if (rbytes
< nbytes
)
1281 sector
+= BTOBB(nbytes
);
1286 if (likely(bio
->bi_iter
.bi_size
)) {
1287 if (xfs_buf_is_vmapped(bp
)) {
1288 flush_kernel_vmap_range(bp
->b_addr
,
1289 xfs_buf_vmap_len(bp
));
1296 * This is guaranteed not to be the last io reference count
1297 * because the caller (xfs_buf_submit) holds a count itself.
1299 atomic_dec(&bp
->b_io_remaining
);
1300 xfs_buf_ioerror(bp
, -EIO
);
1310 struct blk_plug plug
;
1318 * Make sure we capture only current IO errors rather than stale errors
1319 * left over from previous use of the buffer (e.g. failed readahead).
1324 * Initialize the I/O completion workqueue if we haven't yet or the
1325 * submitter has not opted to specify a custom one.
1327 if (!bp
->b_ioend_wq
)
1328 bp
->b_ioend_wq
= bp
->b_target
->bt_mount
->m_buf_workqueue
;
1330 if (bp
->b_flags
& XBF_WRITE
) {
1332 if (bp
->b_flags
& XBF_SYNCIO
)
1333 op_flags
= REQ_SYNC
;
1334 if (bp
->b_flags
& XBF_FUA
)
1335 op_flags
|= REQ_FUA
;
1336 if (bp
->b_flags
& XBF_FLUSH
)
1337 op_flags
|= REQ_PREFLUSH
;
1340 * Run the write verifier callback function if it exists. If
1341 * this function fails it will mark the buffer with an error and
1342 * the IO should not be dispatched.
1345 bp
->b_ops
->verify_write(bp
);
1347 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1348 SHUTDOWN_CORRUPT_INCORE
);
1351 } else if (bp
->b_bn
!= XFS_BUF_DADDR_NULL
) {
1352 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
1355 * non-crc filesystems don't attach verifiers during
1356 * log recovery, so don't warn for such filesystems.
1358 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
1360 "%s: no ops on block 0x%llx/0x%x",
1361 __func__
, bp
->b_bn
, bp
->b_length
);
1362 xfs_hex_dump(bp
->b_addr
, 64);
1366 } else if (bp
->b_flags
& XBF_READ_AHEAD
) {
1368 op_flags
= REQ_RAHEAD
;
1373 /* we only use the buffer cache for meta-data */
1374 op_flags
|= REQ_META
;
1377 * Walk all the vectors issuing IO on them. Set up the initial offset
1378 * into the buffer and the desired IO size before we start -
1379 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1382 offset
= bp
->b_offset
;
1383 size
= BBTOB(bp
->b_io_length
);
1384 blk_start_plug(&plug
);
1385 for (i
= 0; i
< bp
->b_map_count
; i
++) {
1386 xfs_buf_ioapply_map(bp
, i
, &offset
, &size
, op
, op_flags
);
1390 break; /* all done */
1392 blk_finish_plug(&plug
);
1396 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1397 * the current reference to the IO. It is not safe to reference the buffer after
1398 * a call to this function unless the caller holds an additional reference
1405 trace_xfs_buf_submit(bp
, _RET_IP_
);
1407 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1408 ASSERT(bp
->b_flags
& XBF_ASYNC
);
1410 /* on shutdown we stale and complete the buffer immediately */
1411 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1412 xfs_buf_ioerror(bp
, -EIO
);
1413 bp
->b_flags
&= ~XBF_DONE
;
1419 if (bp
->b_flags
& XBF_WRITE
)
1420 xfs_buf_wait_unpin(bp
);
1422 /* clear the internal error state to avoid spurious errors */
1426 * The caller's reference is released during I/O completion.
1427 * This occurs some time after the last b_io_remaining reference is
1428 * released, so after we drop our Io reference we have to have some
1429 * other reference to ensure the buffer doesn't go away from underneath
1430 * us. Take a direct reference to ensure we have safe access to the
1431 * buffer until we are finished with it.
1436 * Set the count to 1 initially, this will stop an I/O completion
1437 * callout which happens before we have started all the I/O from calling
1438 * xfs_buf_ioend too early.
1440 atomic_set(&bp
->b_io_remaining
, 1);
1441 xfs_buf_ioacct_inc(bp
);
1442 _xfs_buf_ioapply(bp
);
1445 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1446 * reference we took above. If we drop it to zero, run completion so
1447 * that we don't return to the caller with completion still pending.
1449 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1) {
1453 xfs_buf_ioend_async(bp
);
1457 /* Note: it is not safe to reference bp now we've dropped our ref */
1461 * Synchronous buffer IO submission path, read or write.
1464 xfs_buf_submit_wait(
1469 trace_xfs_buf_submit_wait(bp
, _RET_IP_
);
1471 ASSERT(!(bp
->b_flags
& (_XBF_DELWRI_Q
| XBF_ASYNC
)));
1473 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1474 xfs_buf_ioerror(bp
, -EIO
);
1476 bp
->b_flags
&= ~XBF_DONE
;
1480 if (bp
->b_flags
& XBF_WRITE
)
1481 xfs_buf_wait_unpin(bp
);
1483 /* clear the internal error state to avoid spurious errors */
1487 * For synchronous IO, the IO does not inherit the submitters reference
1488 * count, nor the buffer lock. Hence we cannot release the reference we
1489 * are about to take until we've waited for all IO completion to occur,
1490 * including any xfs_buf_ioend_async() work that may be pending.
1495 * Set the count to 1 initially, this will stop an I/O completion
1496 * callout which happens before we have started all the I/O from calling
1497 * xfs_buf_ioend too early.
1499 atomic_set(&bp
->b_io_remaining
, 1);
1500 _xfs_buf_ioapply(bp
);
1503 * make sure we run completion synchronously if it raced with us and is
1506 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1509 /* wait for completion before gathering the error from the buffer */
1510 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1511 wait_for_completion(&bp
->b_iowait
);
1512 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1513 error
= bp
->b_error
;
1516 * all done now, we can release the hold that keeps the buffer
1517 * referenced for the entire IO.
1531 return bp
->b_addr
+ offset
;
1533 offset
+= bp
->b_offset
;
1534 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1535 return page_address(page
) + (offset
& (PAGE_SIZE
-1));
1539 * Move data into or out of a buffer.
1543 xfs_buf_t
*bp
, /* buffer to process */
1544 size_t boff
, /* starting buffer offset */
1545 size_t bsize
, /* length to copy */
1546 void *data
, /* data address */
1547 xfs_buf_rw_t mode
) /* read/write/zero flag */
1551 bend
= boff
+ bsize
;
1552 while (boff
< bend
) {
1554 int page_index
, page_offset
, csize
;
1556 page_index
= (boff
+ bp
->b_offset
) >> PAGE_SHIFT
;
1557 page_offset
= (boff
+ bp
->b_offset
) & ~PAGE_MASK
;
1558 page
= bp
->b_pages
[page_index
];
1559 csize
= min_t(size_t, PAGE_SIZE
- page_offset
,
1560 BBTOB(bp
->b_io_length
) - boff
);
1562 ASSERT((csize
+ page_offset
) <= PAGE_SIZE
);
1566 memset(page_address(page
) + page_offset
, 0, csize
);
1569 memcpy(data
, page_address(page
) + page_offset
, csize
);
1572 memcpy(page_address(page
) + page_offset
, data
, csize
);
1581 * Handling of buffer targets (buftargs).
1585 * Wait for any bufs with callbacks that have been submitted but have not yet
1586 * returned. These buffers will have an elevated hold count, so wait on those
1587 * while freeing all the buffers only held by the LRU.
1589 static enum lru_status
1590 xfs_buftarg_wait_rele(
1591 struct list_head
*item
,
1592 struct list_lru_one
*lru
,
1593 spinlock_t
*lru_lock
,
1597 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1598 struct list_head
*dispose
= arg
;
1600 if (atomic_read(&bp
->b_hold
) > 1) {
1601 /* need to wait, so skip it this pass */
1602 trace_xfs_buf_wait_buftarg(bp
, _RET_IP_
);
1605 if (!spin_trylock(&bp
->b_lock
))
1609 * clear the LRU reference count so the buffer doesn't get
1610 * ignored in xfs_buf_rele().
1612 atomic_set(&bp
->b_lru_ref
, 0);
1613 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1614 list_lru_isolate_move(lru
, item
, dispose
);
1615 spin_unlock(&bp
->b_lock
);
1621 struct xfs_buftarg
*btp
)
1627 * First wait on the buftarg I/O count for all in-flight buffers to be
1628 * released. This is critical as new buffers do not make the LRU until
1629 * they are released.
1631 * Next, flush the buffer workqueue to ensure all completion processing
1632 * has finished. Just waiting on buffer locks is not sufficient for
1633 * async IO as the reference count held over IO is not released until
1634 * after the buffer lock is dropped. Hence we need to ensure here that
1635 * all reference counts have been dropped before we start walking the
1638 while (percpu_counter_sum(&btp
->bt_io_count
))
1640 flush_workqueue(btp
->bt_mount
->m_buf_workqueue
);
1642 /* loop until there is nothing left on the lru list. */
1643 while (list_lru_count(&btp
->bt_lru
)) {
1644 list_lru_walk(&btp
->bt_lru
, xfs_buftarg_wait_rele
,
1645 &dispose
, LONG_MAX
);
1647 while (!list_empty(&dispose
)) {
1649 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1650 list_del_init(&bp
->b_lru
);
1651 if (bp
->b_flags
& XBF_WRITE_FAIL
) {
1652 xfs_alert(btp
->bt_mount
,
1653 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1654 (long long)bp
->b_bn
);
1655 xfs_alert(btp
->bt_mount
,
1656 "Please run xfs_repair to determine the extent of the problem.");
1665 static enum lru_status
1666 xfs_buftarg_isolate(
1667 struct list_head
*item
,
1668 struct list_lru_one
*lru
,
1669 spinlock_t
*lru_lock
,
1672 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1673 struct list_head
*dispose
= arg
;
1676 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1677 * If we fail to get the lock, just skip it.
1679 if (!spin_trylock(&bp
->b_lock
))
1682 * Decrement the b_lru_ref count unless the value is already
1683 * zero. If the value is already zero, we need to reclaim the
1684 * buffer, otherwise it gets another trip through the LRU.
1686 if (!atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1687 spin_unlock(&bp
->b_lock
);
1691 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1692 list_lru_isolate_move(lru
, item
, dispose
);
1693 spin_unlock(&bp
->b_lock
);
1697 static unsigned long
1698 xfs_buftarg_shrink_scan(
1699 struct shrinker
*shrink
,
1700 struct shrink_control
*sc
)
1702 struct xfs_buftarg
*btp
= container_of(shrink
,
1703 struct xfs_buftarg
, bt_shrinker
);
1705 unsigned long freed
;
1707 freed
= list_lru_shrink_walk(&btp
->bt_lru
, sc
,
1708 xfs_buftarg_isolate
, &dispose
);
1710 while (!list_empty(&dispose
)) {
1712 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1713 list_del_init(&bp
->b_lru
);
1720 static unsigned long
1721 xfs_buftarg_shrink_count(
1722 struct shrinker
*shrink
,
1723 struct shrink_control
*sc
)
1725 struct xfs_buftarg
*btp
= container_of(shrink
,
1726 struct xfs_buftarg
, bt_shrinker
);
1727 return list_lru_shrink_count(&btp
->bt_lru
, sc
);
1732 struct xfs_mount
*mp
,
1733 struct xfs_buftarg
*btp
)
1735 unregister_shrinker(&btp
->bt_shrinker
);
1736 ASSERT(percpu_counter_sum(&btp
->bt_io_count
) == 0);
1737 percpu_counter_destroy(&btp
->bt_io_count
);
1738 list_lru_destroy(&btp
->bt_lru
);
1740 xfs_blkdev_issue_flush(btp
);
1746 xfs_setsize_buftarg(
1748 unsigned int sectorsize
)
1750 /* Set up metadata sector size info */
1751 btp
->bt_meta_sectorsize
= sectorsize
;
1752 btp
->bt_meta_sectormask
= sectorsize
- 1;
1754 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1755 xfs_warn(btp
->bt_mount
,
1756 "Cannot set_blocksize to %u on device %pg",
1757 sectorsize
, btp
->bt_bdev
);
1761 /* Set up device logical sector size mask */
1762 btp
->bt_logical_sectorsize
= bdev_logical_block_size(btp
->bt_bdev
);
1763 btp
->bt_logical_sectormask
= bdev_logical_block_size(btp
->bt_bdev
) - 1;
1769 * When allocating the initial buffer target we have not yet
1770 * read in the superblock, so don't know what sized sectors
1771 * are being used at this early stage. Play safe.
1774 xfs_setsize_buftarg_early(
1776 struct block_device
*bdev
)
1778 return xfs_setsize_buftarg(btp
, bdev_logical_block_size(bdev
));
1783 struct xfs_mount
*mp
,
1784 struct block_device
*bdev
)
1788 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
| KM_NOFS
);
1791 btp
->bt_dev
= bdev
->bd_dev
;
1792 btp
->bt_bdev
= bdev
;
1793 btp
->bt_bdi
= blk_get_backing_dev_info(bdev
);
1795 if (xfs_setsize_buftarg_early(btp
, bdev
))
1798 if (list_lru_init(&btp
->bt_lru
))
1801 if (percpu_counter_init(&btp
->bt_io_count
, 0, GFP_KERNEL
))
1804 btp
->bt_shrinker
.count_objects
= xfs_buftarg_shrink_count
;
1805 btp
->bt_shrinker
.scan_objects
= xfs_buftarg_shrink_scan
;
1806 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1807 btp
->bt_shrinker
.flags
= SHRINKER_NUMA_AWARE
;
1808 register_shrinker(&btp
->bt_shrinker
);
1817 * Add a buffer to the delayed write list.
1819 * This queues a buffer for writeout if it hasn't already been. Note that
1820 * neither this routine nor the buffer list submission functions perform
1821 * any internal synchronization. It is expected that the lists are thread-local
1824 * Returns true if we queued up the buffer, or false if it already had
1825 * been on the buffer list.
1828 xfs_buf_delwri_queue(
1830 struct list_head
*list
)
1832 ASSERT(xfs_buf_islocked(bp
));
1833 ASSERT(!(bp
->b_flags
& XBF_READ
));
1836 * If the buffer is already marked delwri it already is queued up
1837 * by someone else for imediate writeout. Just ignore it in that
1840 if (bp
->b_flags
& _XBF_DELWRI_Q
) {
1841 trace_xfs_buf_delwri_queued(bp
, _RET_IP_
);
1845 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1848 * If a buffer gets written out synchronously or marked stale while it
1849 * is on a delwri list we lazily remove it. To do this, the other party
1850 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1851 * It remains referenced and on the list. In a rare corner case it
1852 * might get readded to a delwri list after the synchronous writeout, in
1853 * which case we need just need to re-add the flag here.
1855 bp
->b_flags
|= _XBF_DELWRI_Q
;
1856 if (list_empty(&bp
->b_list
)) {
1857 atomic_inc(&bp
->b_hold
);
1858 list_add_tail(&bp
->b_list
, list
);
1865 * Compare function is more complex than it needs to be because
1866 * the return value is only 32 bits and we are doing comparisons
1872 struct list_head
*a
,
1873 struct list_head
*b
)
1875 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1876 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1879 diff
= ap
->b_maps
[0].bm_bn
- bp
->b_maps
[0].bm_bn
;
1888 * submit buffers for write.
1890 * When we have a large buffer list, we do not want to hold all the buffers
1891 * locked while we block on the request queue waiting for IO dispatch. To avoid
1892 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1893 * the lock hold times for lists which may contain thousands of objects.
1895 * To do this, we sort the buffer list before we walk the list to lock and
1896 * submit buffers, and we plug and unplug around each group of buffers we
1900 xfs_buf_delwri_submit_buffers(
1901 struct list_head
*buffer_list
,
1902 struct list_head
*wait_list
)
1904 struct xfs_buf
*bp
, *n
;
1905 LIST_HEAD (submit_list
);
1907 struct blk_plug plug
;
1909 list_sort(NULL
, buffer_list
, xfs_buf_cmp
);
1911 blk_start_plug(&plug
);
1912 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
1914 if (xfs_buf_ispinned(bp
)) {
1918 if (!xfs_buf_trylock(bp
))
1925 * Someone else might have written the buffer synchronously or
1926 * marked it stale in the meantime. In that case only the
1927 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1928 * reference and remove it from the list here.
1930 if (!(bp
->b_flags
& _XBF_DELWRI_Q
)) {
1931 list_del_init(&bp
->b_list
);
1936 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
1939 * We do all IO submission async. This means if we need
1940 * to wait for IO completion we need to take an extra
1941 * reference so the buffer is still valid on the other
1942 * side. We need to move the buffer onto the io_list
1943 * at this point so the caller can still access it.
1945 bp
->b_flags
&= ~(_XBF_DELWRI_Q
| XBF_WRITE_FAIL
);
1946 bp
->b_flags
|= XBF_WRITE
| XBF_ASYNC
;
1949 list_move_tail(&bp
->b_list
, wait_list
);
1951 list_del_init(&bp
->b_list
);
1955 blk_finish_plug(&plug
);
1961 * Write out a buffer list asynchronously.
1963 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1964 * out and not wait for I/O completion on any of the buffers. This interface
1965 * is only safely useable for callers that can track I/O completion by higher
1966 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1970 xfs_buf_delwri_submit_nowait(
1971 struct list_head
*buffer_list
)
1973 return xfs_buf_delwri_submit_buffers(buffer_list
, NULL
);
1977 * Write out a buffer list synchronously.
1979 * This will take the @buffer_list, write all buffers out and wait for I/O
1980 * completion on all of the buffers. @buffer_list is consumed by the function,
1981 * so callers must have some other way of tracking buffers if they require such
1985 xfs_buf_delwri_submit(
1986 struct list_head
*buffer_list
)
1988 LIST_HEAD (wait_list
);
1989 int error
= 0, error2
;
1992 xfs_buf_delwri_submit_buffers(buffer_list
, &wait_list
);
1994 /* Wait for IO to complete. */
1995 while (!list_empty(&wait_list
)) {
1996 bp
= list_first_entry(&wait_list
, struct xfs_buf
, b_list
);
1998 list_del_init(&bp
->b_list
);
2000 /* locking the buffer will wait for async IO completion. */
2002 error2
= bp
->b_error
;
2014 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
2015 KM_ZONE_HWALIGN
, NULL
);
2026 xfs_buf_terminate(void)
2028 kmem_zone_destroy(xfs_buf_zone
);