2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
38 #include "xfs_icache.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
48 static const struct vm_operations_struct xfs_file_vm_ops
;
51 * Clear the specified ranges to zero through either the pagecache or DAX.
52 * Holes and unwritten extents will be left as-is as they already are zeroed.
61 return iomap_zero_range(VFS_I(ip
), pos
, count
, NULL
, &xfs_iomap_ops
);
65 xfs_update_prealloc_flags(
67 enum xfs_prealloc_flags flags
)
72 error
= xfs_trans_alloc(ip
->i_mount
, &M_RES(ip
->i_mount
)->tr_writeid
,
77 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
78 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
80 if (!(flags
& XFS_PREALLOC_INVISIBLE
)) {
81 VFS_I(ip
)->i_mode
&= ~S_ISUID
;
82 if (VFS_I(ip
)->i_mode
& S_IXGRP
)
83 VFS_I(ip
)->i_mode
&= ~S_ISGID
;
84 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
87 if (flags
& XFS_PREALLOC_SET
)
88 ip
->i_d
.di_flags
|= XFS_DIFLAG_PREALLOC
;
89 if (flags
& XFS_PREALLOC_CLEAR
)
90 ip
->i_d
.di_flags
&= ~XFS_DIFLAG_PREALLOC
;
92 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
93 if (flags
& XFS_PREALLOC_SYNC
)
94 xfs_trans_set_sync(tp
);
95 return xfs_trans_commit(tp
);
99 * Fsync operations on directories are much simpler than on regular files,
100 * as there is no file data to flush, and thus also no need for explicit
101 * cache flush operations, and there are no non-transaction metadata updates
102 * on directories either.
111 struct xfs_inode
*ip
= XFS_I(file
->f_mapping
->host
);
112 struct xfs_mount
*mp
= ip
->i_mount
;
115 trace_xfs_dir_fsync(ip
);
117 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
118 if (xfs_ipincount(ip
))
119 lsn
= ip
->i_itemp
->ili_last_lsn
;
120 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
124 return _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, NULL
);
134 struct inode
*inode
= file
->f_mapping
->host
;
135 struct xfs_inode
*ip
= XFS_I(inode
);
136 struct xfs_mount
*mp
= ip
->i_mount
;
141 trace_xfs_file_fsync(ip
);
143 error
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
147 if (XFS_FORCED_SHUTDOWN(mp
))
150 xfs_iflags_clear(ip
, XFS_ITRUNCATED
);
153 * If we have an RT and/or log subvolume we need to make sure to flush
154 * the write cache the device used for file data first. This is to
155 * ensure newly written file data make it to disk before logging the new
156 * inode size in case of an extending write.
158 if (XFS_IS_REALTIME_INODE(ip
))
159 xfs_blkdev_issue_flush(mp
->m_rtdev_targp
);
160 else if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
161 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
164 * All metadata updates are logged, which means that we just have to
165 * flush the log up to the latest LSN that touched the inode. If we have
166 * concurrent fsync/fdatasync() calls, we need them to all block on the
167 * log force before we clear the ili_fsync_fields field. This ensures
168 * that we don't get a racing sync operation that does not wait for the
169 * metadata to hit the journal before returning. If we race with
170 * clearing the ili_fsync_fields, then all that will happen is the log
171 * force will do nothing as the lsn will already be on disk. We can't
172 * race with setting ili_fsync_fields because that is done under
173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
174 * until after the ili_fsync_fields is cleared.
176 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
177 if (xfs_ipincount(ip
)) {
179 (ip
->i_itemp
->ili_fsync_fields
& ~XFS_ILOG_TIMESTAMP
))
180 lsn
= ip
->i_itemp
->ili_last_lsn
;
184 error
= _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, &log_flushed
);
185 ip
->i_itemp
->ili_fsync_fields
= 0;
187 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
190 * If we only have a single device, and the log force about was
191 * a no-op we might have to flush the data device cache here.
192 * This can only happen for fdatasync/O_DSYNC if we were overwriting
193 * an already allocated file and thus do not have any metadata to
196 if (!log_flushed
&& !XFS_IS_REALTIME_INODE(ip
) &&
197 mp
->m_logdev_targp
== mp
->m_ddev_targp
)
198 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
204 xfs_file_dio_aio_read(
208 struct xfs_inode
*ip
= XFS_I(file_inode(iocb
->ki_filp
));
209 size_t count
= iov_iter_count(to
);
212 trace_xfs_file_direct_read(ip
, count
, iocb
->ki_pos
);
215 return 0; /* skip atime */
217 file_accessed(iocb
->ki_filp
);
219 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
220 ret
= iomap_dio_rw(iocb
, to
, &xfs_iomap_ops
, NULL
);
221 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
226 static noinline ssize_t
231 struct xfs_inode
*ip
= XFS_I(iocb
->ki_filp
->f_mapping
->host
);
232 size_t count
= iov_iter_count(to
);
235 trace_xfs_file_dax_read(ip
, count
, iocb
->ki_pos
);
238 return 0; /* skip atime */
240 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
241 ret
= dax_iomap_rw(iocb
, to
, &xfs_iomap_ops
);
242 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
244 file_accessed(iocb
->ki_filp
);
249 xfs_file_buffered_aio_read(
253 struct xfs_inode
*ip
= XFS_I(file_inode(iocb
->ki_filp
));
256 trace_xfs_file_buffered_read(ip
, iov_iter_count(to
), iocb
->ki_pos
);
258 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
259 ret
= generic_file_read_iter(iocb
, to
);
260 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
270 struct inode
*inode
= file_inode(iocb
->ki_filp
);
271 struct xfs_mount
*mp
= XFS_I(inode
)->i_mount
;
274 XFS_STATS_INC(mp
, xs_read_calls
);
276 if (XFS_FORCED_SHUTDOWN(mp
))
280 ret
= xfs_file_dax_read(iocb
, to
);
281 else if (iocb
->ki_flags
& IOCB_DIRECT
)
282 ret
= xfs_file_dio_aio_read(iocb
, to
);
284 ret
= xfs_file_buffered_aio_read(iocb
, to
);
287 XFS_STATS_ADD(mp
, xs_read_bytes
, ret
);
292 * Zero any on disk space between the current EOF and the new, larger EOF.
294 * This handles the normal case of zeroing the remainder of the last block in
295 * the file and the unusual case of zeroing blocks out beyond the size of the
296 * file. This second case only happens with fixed size extents and when the
297 * system crashes before the inode size was updated but after blocks were
300 * Expects the iolock to be held exclusive, and will take the ilock internally.
302 int /* error (positive) */
304 struct xfs_inode
*ip
,
305 xfs_off_t offset
, /* starting I/O offset */
306 xfs_fsize_t isize
, /* current inode size */
309 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
310 ASSERT(offset
> isize
);
312 trace_xfs_zero_eof(ip
, isize
, offset
- isize
);
313 return xfs_zero_range(ip
, isize
, offset
- isize
, did_zeroing
);
317 * Common pre-write limit and setup checks.
319 * Called with the iolocked held either shared and exclusive according to
320 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
321 * if called for a direct write beyond i_size.
324 xfs_file_aio_write_checks(
326 struct iov_iter
*from
,
329 struct file
*file
= iocb
->ki_filp
;
330 struct inode
*inode
= file
->f_mapping
->host
;
331 struct xfs_inode
*ip
= XFS_I(inode
);
333 size_t count
= iov_iter_count(from
);
334 bool drained_dio
= false;
337 error
= generic_write_checks(iocb
, from
);
341 error
= xfs_break_layouts(inode
, iolock
);
346 * For changing security info in file_remove_privs() we need i_rwsem
349 if (*iolock
== XFS_IOLOCK_SHARED
&& !IS_NOSEC(inode
)) {
350 xfs_iunlock(ip
, *iolock
);
351 *iolock
= XFS_IOLOCK_EXCL
;
352 xfs_ilock(ip
, *iolock
);
356 * If the offset is beyond the size of the file, we need to zero any
357 * blocks that fall between the existing EOF and the start of this
358 * write. If zeroing is needed and we are currently holding the
359 * iolock shared, we need to update it to exclusive which implies
360 * having to redo all checks before.
362 * We need to serialise against EOF updates that occur in IO
363 * completions here. We want to make sure that nobody is changing the
364 * size while we do this check until we have placed an IO barrier (i.e.
365 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
366 * The spinlock effectively forms a memory barrier once we have the
367 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
368 * and hence be able to correctly determine if we need to run zeroing.
370 spin_lock(&ip
->i_flags_lock
);
371 if (iocb
->ki_pos
> i_size_read(inode
)) {
374 spin_unlock(&ip
->i_flags_lock
);
376 if (*iolock
== XFS_IOLOCK_SHARED
) {
377 xfs_iunlock(ip
, *iolock
);
378 *iolock
= XFS_IOLOCK_EXCL
;
379 xfs_ilock(ip
, *iolock
);
380 iov_iter_reexpand(from
, count
);
383 * We now have an IO submission barrier in place, but
384 * AIO can do EOF updates during IO completion and hence
385 * we now need to wait for all of them to drain. Non-AIO
386 * DIO will have drained before we are given the
387 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
390 inode_dio_wait(inode
);
394 error
= xfs_zero_eof(ip
, iocb
->ki_pos
, i_size_read(inode
), &zero
);
398 spin_unlock(&ip
->i_flags_lock
);
401 * Updating the timestamps will grab the ilock again from
402 * xfs_fs_dirty_inode, so we have to call it after dropping the
403 * lock above. Eventually we should look into a way to avoid
404 * the pointless lock roundtrip.
406 if (likely(!(file
->f_mode
& FMODE_NOCMTIME
))) {
407 error
= file_update_time(file
);
413 * If we're writing the file then make sure to clear the setuid and
414 * setgid bits if the process is not being run by root. This keeps
415 * people from modifying setuid and setgid binaries.
417 if (!IS_NOSEC(inode
))
418 return file_remove_privs(file
);
423 xfs_dio_write_end_io(
428 struct inode
*inode
= file_inode(iocb
->ki_filp
);
429 struct xfs_inode
*ip
= XFS_I(inode
);
430 loff_t offset
= iocb
->ki_pos
;
431 bool update_size
= false;
434 trace_xfs_end_io_direct_write(ip
, offset
, size
);
436 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
443 * We need to update the in-core inode size here so that we don't end up
444 * with the on-disk inode size being outside the in-core inode size. We
445 * have no other method of updating EOF for AIO, so always do it here
448 * We need to lock the test/set EOF update as we can be racing with
449 * other IO completions here to update the EOF. Failing to serialise
450 * here can result in EOF moving backwards and Bad Things Happen when
453 spin_lock(&ip
->i_flags_lock
);
454 if (offset
+ size
> i_size_read(inode
)) {
455 i_size_write(inode
, offset
+ size
);
458 spin_unlock(&ip
->i_flags_lock
);
460 if (flags
& IOMAP_DIO_COW
) {
461 error
= xfs_reflink_end_cow(ip
, offset
, size
);
466 if (flags
& IOMAP_DIO_UNWRITTEN
)
467 error
= xfs_iomap_write_unwritten(ip
, offset
, size
);
468 else if (update_size
)
469 error
= xfs_setfilesize(ip
, offset
, size
);
475 * xfs_file_dio_aio_write - handle direct IO writes
477 * Lock the inode appropriately to prepare for and issue a direct IO write.
478 * By separating it from the buffered write path we remove all the tricky to
479 * follow locking changes and looping.
481 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
482 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
483 * pages are flushed out.
485 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
486 * allowing them to be done in parallel with reads and other direct IO writes.
487 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
488 * needs to do sub-block zeroing and that requires serialisation against other
489 * direct IOs to the same block. In this case we need to serialise the
490 * submission of the unaligned IOs so that we don't get racing block zeroing in
491 * the dio layer. To avoid the problem with aio, we also need to wait for
492 * outstanding IOs to complete so that unwritten extent conversion is completed
493 * before we try to map the overlapping block. This is currently implemented by
494 * hitting it with a big hammer (i.e. inode_dio_wait()).
496 * Returns with locks held indicated by @iolock and errors indicated by
497 * negative return values.
500 xfs_file_dio_aio_write(
502 struct iov_iter
*from
)
504 struct file
*file
= iocb
->ki_filp
;
505 struct address_space
*mapping
= file
->f_mapping
;
506 struct inode
*inode
= mapping
->host
;
507 struct xfs_inode
*ip
= XFS_I(inode
);
508 struct xfs_mount
*mp
= ip
->i_mount
;
510 int unaligned_io
= 0;
512 size_t count
= iov_iter_count(from
);
513 struct xfs_buftarg
*target
= XFS_IS_REALTIME_INODE(ip
) ?
514 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
516 /* DIO must be aligned to device logical sector size */
517 if ((iocb
->ki_pos
| count
) & target
->bt_logical_sectormask
)
521 * Don't take the exclusive iolock here unless the I/O is unaligned to
522 * the file system block size. We don't need to consider the EOF
523 * extension case here because xfs_file_aio_write_checks() will relock
524 * the inode as necessary for EOF zeroing cases and fill out the new
525 * inode size as appropriate.
527 if ((iocb
->ki_pos
& mp
->m_blockmask
) ||
528 ((iocb
->ki_pos
+ count
) & mp
->m_blockmask
)) {
530 iolock
= XFS_IOLOCK_EXCL
;
532 iolock
= XFS_IOLOCK_SHARED
;
535 xfs_ilock(ip
, iolock
);
537 ret
= xfs_file_aio_write_checks(iocb
, from
, &iolock
);
540 count
= iov_iter_count(from
);
543 * If we are doing unaligned IO, wait for all other IO to drain,
544 * otherwise demote the lock if we had to take the exclusive lock
545 * for other reasons in xfs_file_aio_write_checks.
548 inode_dio_wait(inode
);
549 else if (iolock
== XFS_IOLOCK_EXCL
) {
550 xfs_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
551 iolock
= XFS_IOLOCK_SHARED
;
554 trace_xfs_file_direct_write(ip
, count
, iocb
->ki_pos
);
556 /* If this is a block-aligned directio CoW, remap immediately. */
557 if (xfs_is_reflink_inode(ip
) && !unaligned_io
) {
558 ret
= xfs_reflink_allocate_cow_range(ip
, iocb
->ki_pos
, count
);
563 ret
= iomap_dio_rw(iocb
, from
, &xfs_iomap_ops
, xfs_dio_write_end_io
);
565 xfs_iunlock(ip
, iolock
);
568 * No fallback to buffered IO on errors for XFS, direct IO will either
569 * complete fully or fail.
571 ASSERT(ret
< 0 || ret
== count
);
575 static noinline ssize_t
578 struct iov_iter
*from
)
580 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
581 struct xfs_inode
*ip
= XFS_I(inode
);
582 int iolock
= XFS_IOLOCK_EXCL
;
583 ssize_t ret
, error
= 0;
587 xfs_ilock(ip
, iolock
);
588 ret
= xfs_file_aio_write_checks(iocb
, from
, &iolock
);
593 count
= iov_iter_count(from
);
595 trace_xfs_file_dax_write(ip
, count
, pos
);
596 ret
= dax_iomap_rw(iocb
, from
, &xfs_iomap_ops
);
597 if (ret
> 0 && iocb
->ki_pos
> i_size_read(inode
)) {
598 i_size_write(inode
, iocb
->ki_pos
);
599 error
= xfs_setfilesize(ip
, pos
, ret
);
602 xfs_iunlock(ip
, iolock
);
603 return error
? error
: ret
;
607 xfs_file_buffered_aio_write(
609 struct iov_iter
*from
)
611 struct file
*file
= iocb
->ki_filp
;
612 struct address_space
*mapping
= file
->f_mapping
;
613 struct inode
*inode
= mapping
->host
;
614 struct xfs_inode
*ip
= XFS_I(inode
);
617 int iolock
= XFS_IOLOCK_EXCL
;
619 xfs_ilock(ip
, iolock
);
621 ret
= xfs_file_aio_write_checks(iocb
, from
, &iolock
);
625 /* We can write back this queue in page reclaim */
626 current
->backing_dev_info
= inode_to_bdi(inode
);
629 trace_xfs_file_buffered_write(ip
, iov_iter_count(from
), iocb
->ki_pos
);
630 ret
= iomap_file_buffered_write(iocb
, from
, &xfs_iomap_ops
);
631 if (likely(ret
>= 0))
635 * If we hit a space limit, try to free up some lingering preallocated
636 * space before returning an error. In the case of ENOSPC, first try to
637 * write back all dirty inodes to free up some of the excess reserved
638 * metadata space. This reduces the chances that the eofblocks scan
639 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
640 * also behaves as a filter to prevent too many eofblocks scans from
641 * running at the same time.
643 if (ret
== -EDQUOT
&& !enospc
) {
644 enospc
= xfs_inode_free_quota_eofblocks(ip
);
647 enospc
= xfs_inode_free_quota_cowblocks(ip
);
650 } else if (ret
== -ENOSPC
&& !enospc
) {
651 struct xfs_eofblocks eofb
= {0};
654 xfs_flush_inodes(ip
->i_mount
);
655 eofb
.eof_scan_owner
= ip
->i_ino
; /* for locking */
656 eofb
.eof_flags
= XFS_EOF_FLAGS_SYNC
;
657 xfs_icache_free_eofblocks(ip
->i_mount
, &eofb
);
661 current
->backing_dev_info
= NULL
;
663 xfs_iunlock(ip
, iolock
);
670 struct iov_iter
*from
)
672 struct file
*file
= iocb
->ki_filp
;
673 struct address_space
*mapping
= file
->f_mapping
;
674 struct inode
*inode
= mapping
->host
;
675 struct xfs_inode
*ip
= XFS_I(inode
);
677 size_t ocount
= iov_iter_count(from
);
679 XFS_STATS_INC(ip
->i_mount
, xs_write_calls
);
684 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
688 ret
= xfs_file_dax_write(iocb
, from
);
689 else if (iocb
->ki_flags
& IOCB_DIRECT
) {
691 * Allow a directio write to fall back to a buffered
692 * write *only* in the case that we're doing a reflink
693 * CoW. In all other directio scenarios we do not
694 * allow an operation to fall back to buffered mode.
696 ret
= xfs_file_dio_aio_write(iocb
, from
);
701 ret
= xfs_file_buffered_aio_write(iocb
, from
);
705 XFS_STATS_ADD(ip
->i_mount
, xs_write_bytes
, ret
);
707 /* Handle various SYNC-type writes */
708 ret
= generic_write_sync(iocb
, ret
);
713 #define XFS_FALLOC_FL_SUPPORTED \
714 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
715 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
716 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
725 struct inode
*inode
= file_inode(file
);
726 struct xfs_inode
*ip
= XFS_I(inode
);
728 enum xfs_prealloc_flags flags
= 0;
729 uint iolock
= XFS_IOLOCK_EXCL
;
731 bool do_file_insert
= 0;
733 if (!S_ISREG(inode
->i_mode
))
735 if (mode
& ~XFS_FALLOC_FL_SUPPORTED
)
738 xfs_ilock(ip
, iolock
);
739 error
= xfs_break_layouts(inode
, &iolock
);
743 xfs_ilock(ip
, XFS_MMAPLOCK_EXCL
);
744 iolock
|= XFS_MMAPLOCK_EXCL
;
746 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
747 error
= xfs_free_file_space(ip
, offset
, len
);
750 } else if (mode
& FALLOC_FL_COLLAPSE_RANGE
) {
751 unsigned blksize_mask
= (1 << inode
->i_blkbits
) - 1;
753 if (offset
& blksize_mask
|| len
& blksize_mask
) {
759 * There is no need to overlap collapse range with EOF,
760 * in which case it is effectively a truncate operation
762 if (offset
+ len
>= i_size_read(inode
)) {
767 new_size
= i_size_read(inode
) - len
;
769 error
= xfs_collapse_file_space(ip
, offset
, len
);
772 } else if (mode
& FALLOC_FL_INSERT_RANGE
) {
773 unsigned blksize_mask
= (1 << inode
->i_blkbits
) - 1;
775 new_size
= i_size_read(inode
) + len
;
776 if (offset
& blksize_mask
|| len
& blksize_mask
) {
781 /* check the new inode size does not wrap through zero */
782 if (new_size
> inode
->i_sb
->s_maxbytes
) {
787 /* Offset should be less than i_size */
788 if (offset
>= i_size_read(inode
)) {
794 flags
|= XFS_PREALLOC_SET
;
796 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
797 offset
+ len
> i_size_read(inode
)) {
798 new_size
= offset
+ len
;
799 error
= inode_newsize_ok(inode
, new_size
);
804 if (mode
& FALLOC_FL_ZERO_RANGE
)
805 error
= xfs_zero_file_space(ip
, offset
, len
);
807 if (mode
& FALLOC_FL_UNSHARE_RANGE
) {
808 error
= xfs_reflink_unshare(ip
, offset
, len
);
812 error
= xfs_alloc_file_space(ip
, offset
, len
,
819 if (file
->f_flags
& O_DSYNC
)
820 flags
|= XFS_PREALLOC_SYNC
;
822 error
= xfs_update_prealloc_flags(ip
, flags
);
826 /* Change file size if needed */
830 iattr
.ia_valid
= ATTR_SIZE
;
831 iattr
.ia_size
= new_size
;
832 error
= xfs_vn_setattr_size(file_dentry(file
), &iattr
);
838 * Perform hole insertion now that the file size has been
839 * updated so that if we crash during the operation we don't
840 * leave shifted extents past EOF and hence losing access to
841 * the data that is contained within them.
844 error
= xfs_insert_file_space(ip
, offset
, len
);
847 xfs_iunlock(ip
, iolock
);
852 xfs_file_clone_range(
853 struct file
*file_in
,
855 struct file
*file_out
,
859 return xfs_reflink_remap_range(file_in
, pos_in
, file_out
, pos_out
,
864 xfs_file_dedupe_range(
865 struct file
*src_file
,
868 struct file
*dst_file
,
873 error
= xfs_reflink_remap_range(src_file
, loff
, dst_file
, dst_loff
,
885 if (!(file
->f_flags
& O_LARGEFILE
) && i_size_read(inode
) > MAX_NON_LFS
)
887 if (XFS_FORCED_SHUTDOWN(XFS_M(inode
->i_sb
)))
897 struct xfs_inode
*ip
= XFS_I(inode
);
901 error
= xfs_file_open(inode
, file
);
906 * If there are any blocks, read-ahead block 0 as we're almost
907 * certain to have the next operation be a read there.
909 mode
= xfs_ilock_data_map_shared(ip
);
910 if (ip
->i_d
.di_nextents
> 0)
911 xfs_dir3_data_readahead(ip
, 0, -1);
912 xfs_iunlock(ip
, mode
);
921 return xfs_release(XFS_I(inode
));
927 struct dir_context
*ctx
)
929 struct inode
*inode
= file_inode(file
);
930 xfs_inode_t
*ip
= XFS_I(inode
);
934 * The Linux API doesn't pass down the total size of the buffer
935 * we read into down to the filesystem. With the filldir concept
936 * it's not needed for correct information, but the XFS dir2 leaf
937 * code wants an estimate of the buffer size to calculate it's
938 * readahead window and size the buffers used for mapping to
941 * Try to give it an estimate that's good enough, maybe at some
942 * point we can change the ->readdir prototype to include the
943 * buffer size. For now we use the current glibc buffer size.
945 bufsize
= (size_t)min_t(loff_t
, 32768, ip
->i_d
.di_size
);
947 return xfs_readdir(ip
, ctx
, bufsize
);
951 * This type is designed to indicate the type of offset we would like
952 * to search from page cache for xfs_seek_hole_data().
960 * Lookup the desired type of offset from the given page.
962 * On success, return true and the offset argument will point to the
963 * start of the region that was found. Otherwise this function will
964 * return false and keep the offset argument unchanged.
967 xfs_lookup_buffer_offset(
972 loff_t lastoff
= page_offset(page
);
974 struct buffer_head
*bh
, *head
;
976 bh
= head
= page_buffers(page
);
979 * Unwritten extents that have data in the page
980 * cache covering them can be identified by the
981 * BH_Unwritten state flag. Pages with multiple
982 * buffers might have a mix of holes, data and
983 * unwritten extents - any buffer with valid
984 * data in it should have BH_Uptodate flag set
987 if (buffer_unwritten(bh
) ||
988 buffer_uptodate(bh
)) {
989 if (type
== DATA_OFF
)
992 if (type
== HOLE_OFF
)
1000 lastoff
+= bh
->b_size
;
1001 } while ((bh
= bh
->b_this_page
) != head
);
1007 * This routine is called to find out and return a data or hole offset
1008 * from the page cache for unwritten extents according to the desired
1009 * type for xfs_seek_hole_data().
1011 * The argument offset is used to tell where we start to search from the
1012 * page cache. Map is used to figure out the end points of the range to
1015 * Return true if the desired type of offset was found, and the argument
1016 * offset is filled with that address. Otherwise, return false and keep
1020 xfs_find_get_desired_pgoff(
1021 struct inode
*inode
,
1022 struct xfs_bmbt_irec
*map
,
1026 struct xfs_inode
*ip
= XFS_I(inode
);
1027 struct xfs_mount
*mp
= ip
->i_mount
;
1028 struct pagevec pvec
;
1032 loff_t startoff
= *offset
;
1033 loff_t lastoff
= startoff
;
1036 pagevec_init(&pvec
, 0);
1038 index
= startoff
>> PAGE_SHIFT
;
1039 endoff
= XFS_FSB_TO_B(mp
, map
->br_startoff
+ map
->br_blockcount
);
1040 end
= endoff
>> PAGE_SHIFT
;
1046 want
= min_t(pgoff_t
, end
- index
, PAGEVEC_SIZE
);
1047 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, index
,
1050 * No page mapped into given range. If we are searching holes
1051 * and if this is the first time we got into the loop, it means
1052 * that the given offset is landed in a hole, return it.
1054 * If we have already stepped through some block buffers to find
1055 * holes but they all contains data. In this case, the last
1056 * offset is already updated and pointed to the end of the last
1057 * mapped page, if it does not reach the endpoint to search,
1058 * that means there should be a hole between them.
1060 if (nr_pages
== 0) {
1061 /* Data search found nothing */
1062 if (type
== DATA_OFF
)
1065 ASSERT(type
== HOLE_OFF
);
1066 if (lastoff
== startoff
|| lastoff
< endoff
) {
1074 * At lease we found one page. If this is the first time we
1075 * step into the loop, and if the first page index offset is
1076 * greater than the given search offset, a hole was found.
1078 if (type
== HOLE_OFF
&& lastoff
== startoff
&&
1079 lastoff
< page_offset(pvec
.pages
[0])) {
1084 for (i
= 0; i
< nr_pages
; i
++) {
1085 struct page
*page
= pvec
.pages
[i
];
1089 * At this point, the page may be truncated or
1090 * invalidated (changing page->mapping to NULL),
1091 * or even swizzled back from swapper_space to tmpfs
1092 * file mapping. However, page->index will not change
1093 * because we have a reference on the page.
1095 * Searching done if the page index is out of range.
1096 * If the current offset is not reaches the end of
1097 * the specified search range, there should be a hole
1100 if (page
->index
> end
) {
1101 if (type
== HOLE_OFF
&& lastoff
< endoff
) {
1110 * Page truncated or invalidated(page->mapping == NULL).
1111 * We can freely skip it and proceed to check the next
1114 if (unlikely(page
->mapping
!= inode
->i_mapping
)) {
1119 if (!page_has_buffers(page
)) {
1124 found
= xfs_lookup_buffer_offset(page
, &b_offset
, type
);
1127 * The found offset may be less than the start
1128 * point to search if this is the first time to
1131 *offset
= max_t(loff_t
, startoff
, b_offset
);
1137 * We either searching data but nothing was found, or
1138 * searching hole but found a data buffer. In either
1139 * case, probably the next page contains the desired
1140 * things, update the last offset to it so.
1142 lastoff
= page_offset(page
) + PAGE_SIZE
;
1147 * The number of returned pages less than our desired, search
1148 * done. In this case, nothing was found for searching data,
1149 * but we found a hole behind the last offset.
1151 if (nr_pages
< want
) {
1152 if (type
== HOLE_OFF
) {
1159 index
= pvec
.pages
[i
- 1]->index
+ 1;
1160 pagevec_release(&pvec
);
1161 } while (index
<= end
);
1164 pagevec_release(&pvec
);
1169 * caller must lock inode with xfs_ilock_data_map_shared,
1170 * can we craft an appropriate ASSERT?
1172 * end is because the VFS-level lseek interface is defined such that any
1173 * offset past i_size shall return -ENXIO, but we use this for quota code
1174 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1177 __xfs_seek_hole_data(
1178 struct inode
*inode
,
1183 struct xfs_inode
*ip
= XFS_I(inode
);
1184 struct xfs_mount
*mp
= ip
->i_mount
;
1185 loff_t
uninitialized_var(offset
);
1186 xfs_fileoff_t fsbno
;
1187 xfs_filblks_t lastbno
;
1196 * Try to read extents from the first block indicated
1197 * by fsbno to the end block of the file.
1199 fsbno
= XFS_B_TO_FSBT(mp
, start
);
1200 lastbno
= XFS_B_TO_FSB(mp
, end
);
1203 struct xfs_bmbt_irec map
[2];
1207 error
= xfs_bmapi_read(ip
, fsbno
, lastbno
- fsbno
, map
, &nmap
,
1212 /* No extents at given offset, must be beyond EOF */
1218 for (i
= 0; i
< nmap
; i
++) {
1219 offset
= max_t(loff_t
, start
,
1220 XFS_FSB_TO_B(mp
, map
[i
].br_startoff
));
1222 /* Landed in the hole we wanted? */
1223 if (whence
== SEEK_HOLE
&&
1224 map
[i
].br_startblock
== HOLESTARTBLOCK
)
1227 /* Landed in the data extent we wanted? */
1228 if (whence
== SEEK_DATA
&&
1229 (map
[i
].br_startblock
== DELAYSTARTBLOCK
||
1230 (map
[i
].br_state
== XFS_EXT_NORM
&&
1231 !isnullstartblock(map
[i
].br_startblock
))))
1235 * Landed in an unwritten extent, try to search
1236 * for hole or data from page cache.
1238 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
) {
1239 if (xfs_find_get_desired_pgoff(inode
, &map
[i
],
1240 whence
== SEEK_HOLE
? HOLE_OFF
: DATA_OFF
,
1247 * We only received one extent out of the two requested. This
1248 * means we've hit EOF and didn't find what we are looking for.
1252 * If we were looking for a hole, set offset to
1253 * the end of the file (i.e., there is an implicit
1254 * hole at the end of any file).
1256 if (whence
== SEEK_HOLE
) {
1261 * If we were looking for data, it's nowhere to be found
1263 ASSERT(whence
== SEEK_DATA
);
1271 * Nothing was found, proceed to the next round of search
1272 * if the next reading offset is not at or beyond EOF.
1274 fsbno
= map
[i
- 1].br_startoff
+ map
[i
- 1].br_blockcount
;
1275 start
= XFS_FSB_TO_B(mp
, fsbno
);
1277 if (whence
== SEEK_HOLE
) {
1281 ASSERT(whence
== SEEK_DATA
);
1289 * If at this point we have found the hole we wanted, the returned
1290 * offset may be bigger than the file size as it may be aligned to
1291 * page boundary for unwritten extents. We need to deal with this
1292 * situation in particular.
1294 if (whence
== SEEK_HOLE
)
1295 offset
= min_t(loff_t
, offset
, end
);
1309 struct inode
*inode
= file
->f_mapping
->host
;
1310 struct xfs_inode
*ip
= XFS_I(inode
);
1311 struct xfs_mount
*mp
= ip
->i_mount
;
1316 if (XFS_FORCED_SHUTDOWN(mp
))
1319 lock
= xfs_ilock_data_map_shared(ip
);
1321 end
= i_size_read(inode
);
1322 offset
= __xfs_seek_hole_data(inode
, start
, end
, whence
);
1328 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
1331 xfs_iunlock(ip
, lock
);
1348 return generic_file_llseek(file
, offset
, whence
);
1351 return xfs_seek_hole_data(file
, offset
, whence
);
1358 * Locking for serialisation of IO during page faults. This results in a lock
1362 * sb_start_pagefault(vfs, freeze)
1363 * i_mmaplock (XFS - truncate serialisation)
1365 * i_lock (XFS - extent map serialisation)
1369 * mmap()d file has taken write protection fault and is being made writable. We
1370 * can set the page state up correctly for a writable page, which means we can
1371 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1375 xfs_filemap_page_mkwrite(
1376 struct vm_area_struct
*vma
,
1377 struct vm_fault
*vmf
)
1379 struct inode
*inode
= file_inode(vma
->vm_file
);
1382 trace_xfs_filemap_page_mkwrite(XFS_I(inode
));
1384 sb_start_pagefault(inode
->i_sb
);
1385 file_update_time(vma
->vm_file
);
1386 xfs_ilock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1388 if (IS_DAX(inode
)) {
1389 ret
= dax_iomap_fault(vma
, vmf
, &xfs_iomap_ops
);
1391 ret
= iomap_page_mkwrite(vma
, vmf
, &xfs_iomap_ops
);
1392 ret
= block_page_mkwrite_return(ret
);
1395 xfs_iunlock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1396 sb_end_pagefault(inode
->i_sb
);
1403 struct vm_area_struct
*vma
,
1404 struct vm_fault
*vmf
)
1406 struct inode
*inode
= file_inode(vma
->vm_file
);
1409 trace_xfs_filemap_fault(XFS_I(inode
));
1411 /* DAX can shortcut the normal fault path on write faults! */
1412 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && IS_DAX(inode
))
1413 return xfs_filemap_page_mkwrite(vma
, vmf
);
1415 xfs_ilock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1417 ret
= dax_iomap_fault(vma
, vmf
, &xfs_iomap_ops
);
1419 ret
= filemap_fault(vma
, vmf
);
1420 xfs_iunlock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1426 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1427 * both read and write faults. Hence we need to handle both cases. There is no
1428 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1429 * handle both cases here. @flags carries the information on the type of fault
1433 xfs_filemap_pmd_fault(
1434 struct vm_area_struct
*vma
,
1439 struct inode
*inode
= file_inode(vma
->vm_file
);
1440 struct xfs_inode
*ip
= XFS_I(inode
);
1444 return VM_FAULT_FALLBACK
;
1446 trace_xfs_filemap_pmd_fault(ip
);
1448 if (flags
& FAULT_FLAG_WRITE
) {
1449 sb_start_pagefault(inode
->i_sb
);
1450 file_update_time(vma
->vm_file
);
1453 xfs_ilock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1454 ret
= dax_iomap_pmd_fault(vma
, addr
, pmd
, flags
, &xfs_iomap_ops
);
1455 xfs_iunlock(XFS_I(inode
), XFS_MMAPLOCK_SHARED
);
1457 if (flags
& FAULT_FLAG_WRITE
)
1458 sb_end_pagefault(inode
->i_sb
);
1464 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1465 * updates on write faults. In reality, it's need to serialise against
1466 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1467 * to ensure we serialise the fault barrier in place.
1470 xfs_filemap_pfn_mkwrite(
1471 struct vm_area_struct
*vma
,
1472 struct vm_fault
*vmf
)
1475 struct inode
*inode
= file_inode(vma
->vm_file
);
1476 struct xfs_inode
*ip
= XFS_I(inode
);
1477 int ret
= VM_FAULT_NOPAGE
;
1480 trace_xfs_filemap_pfn_mkwrite(ip
);
1482 sb_start_pagefault(inode
->i_sb
);
1483 file_update_time(vma
->vm_file
);
1485 /* check if the faulting page hasn't raced with truncate */
1486 xfs_ilock(ip
, XFS_MMAPLOCK_SHARED
);
1487 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1488 if (vmf
->pgoff
>= size
)
1489 ret
= VM_FAULT_SIGBUS
;
1490 else if (IS_DAX(inode
))
1491 ret
= dax_pfn_mkwrite(vma
, vmf
);
1492 xfs_iunlock(ip
, XFS_MMAPLOCK_SHARED
);
1493 sb_end_pagefault(inode
->i_sb
);
1498 static const struct vm_operations_struct xfs_file_vm_ops
= {
1499 .fault
= xfs_filemap_fault
,
1500 .pmd_fault
= xfs_filemap_pmd_fault
,
1501 .map_pages
= filemap_map_pages
,
1502 .page_mkwrite
= xfs_filemap_page_mkwrite
,
1503 .pfn_mkwrite
= xfs_filemap_pfn_mkwrite
,
1509 struct vm_area_struct
*vma
)
1511 file_accessed(filp
);
1512 vma
->vm_ops
= &xfs_file_vm_ops
;
1513 if (IS_DAX(file_inode(filp
)))
1514 vma
->vm_flags
|= VM_MIXEDMAP
| VM_HUGEPAGE
;
1518 const struct file_operations xfs_file_operations
= {
1519 .llseek
= xfs_file_llseek
,
1520 .read_iter
= xfs_file_read_iter
,
1521 .write_iter
= xfs_file_write_iter
,
1522 .splice_read
= generic_file_splice_read
,
1523 .splice_write
= iter_file_splice_write
,
1524 .unlocked_ioctl
= xfs_file_ioctl
,
1525 #ifdef CONFIG_COMPAT
1526 .compat_ioctl
= xfs_file_compat_ioctl
,
1528 .mmap
= xfs_file_mmap
,
1529 .open
= xfs_file_open
,
1530 .release
= xfs_file_release
,
1531 .fsync
= xfs_file_fsync
,
1532 .get_unmapped_area
= thp_get_unmapped_area
,
1533 .fallocate
= xfs_file_fallocate
,
1534 .clone_file_range
= xfs_file_clone_range
,
1535 .dedupe_file_range
= xfs_file_dedupe_range
,
1538 const struct file_operations xfs_dir_file_operations
= {
1539 .open
= xfs_dir_open
,
1540 .read
= generic_read_dir
,
1541 .iterate_shared
= xfs_file_readdir
,
1542 .llseek
= generic_file_llseek
,
1543 .unlocked_ioctl
= xfs_file_ioctl
,
1544 #ifdef CONFIG_COMPAT
1545 .compat_ioctl
= xfs_file_compat_ioctl
,
1547 .fsync
= xfs_dir_fsync
,