sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / fs / xfs / xfs_file.c
blobbbb9eb6811b2e07f05652be729a9142fbcc169d0
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
48 static const struct vm_operations_struct xfs_file_vm_ops;
51 * Clear the specified ranges to zero through either the pagecache or DAX.
52 * Holes and unwritten extents will be left as-is as they already are zeroed.
54 int
55 xfs_zero_range(
56 struct xfs_inode *ip,
57 xfs_off_t pos,
58 xfs_off_t count,
59 bool *did_zero)
61 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
64 int
65 xfs_update_prealloc_flags(
66 struct xfs_inode *ip,
67 enum xfs_prealloc_flags flags)
69 struct xfs_trans *tp;
70 int error;
72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
73 0, 0, 0, &tp);
74 if (error)
75 return error;
77 xfs_ilock(ip, XFS_ILOCK_EXCL);
78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
80 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
81 VFS_I(ip)->i_mode &= ~S_ISUID;
82 if (VFS_I(ip)->i_mode & S_IXGRP)
83 VFS_I(ip)->i_mode &= ~S_ISGID;
84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
87 if (flags & XFS_PREALLOC_SET)
88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
89 if (flags & XFS_PREALLOC_CLEAR)
90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
93 if (flags & XFS_PREALLOC_SYNC)
94 xfs_trans_set_sync(tp);
95 return xfs_trans_commit(tp);
99 * Fsync operations on directories are much simpler than on regular files,
100 * as there is no file data to flush, and thus also no need for explicit
101 * cache flush operations, and there are no non-transaction metadata updates
102 * on directories either.
104 STATIC int
105 xfs_dir_fsync(
106 struct file *file,
107 loff_t start,
108 loff_t end,
109 int datasync)
111 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
112 struct xfs_mount *mp = ip->i_mount;
113 xfs_lsn_t lsn = 0;
115 trace_xfs_dir_fsync(ip);
117 xfs_ilock(ip, XFS_ILOCK_SHARED);
118 if (xfs_ipincount(ip))
119 lsn = ip->i_itemp->ili_last_lsn;
120 xfs_iunlock(ip, XFS_ILOCK_SHARED);
122 if (!lsn)
123 return 0;
124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
127 STATIC int
128 xfs_file_fsync(
129 struct file *file,
130 loff_t start,
131 loff_t end,
132 int datasync)
134 struct inode *inode = file->f_mapping->host;
135 struct xfs_inode *ip = XFS_I(inode);
136 struct xfs_mount *mp = ip->i_mount;
137 int error = 0;
138 int log_flushed = 0;
139 xfs_lsn_t lsn = 0;
141 trace_xfs_file_fsync(ip);
143 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
144 if (error)
145 return error;
147 if (XFS_FORCED_SHUTDOWN(mp))
148 return -EIO;
150 xfs_iflags_clear(ip, XFS_ITRUNCATED);
153 * If we have an RT and/or log subvolume we need to make sure to flush
154 * the write cache the device used for file data first. This is to
155 * ensure newly written file data make it to disk before logging the new
156 * inode size in case of an extending write.
158 if (XFS_IS_REALTIME_INODE(ip))
159 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
160 else if (mp->m_logdev_targp != mp->m_ddev_targp)
161 xfs_blkdev_issue_flush(mp->m_ddev_targp);
164 * All metadata updates are logged, which means that we just have to
165 * flush the log up to the latest LSN that touched the inode. If we have
166 * concurrent fsync/fdatasync() calls, we need them to all block on the
167 * log force before we clear the ili_fsync_fields field. This ensures
168 * that we don't get a racing sync operation that does not wait for the
169 * metadata to hit the journal before returning. If we race with
170 * clearing the ili_fsync_fields, then all that will happen is the log
171 * force will do nothing as the lsn will already be on disk. We can't
172 * race with setting ili_fsync_fields because that is done under
173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
174 * until after the ili_fsync_fields is cleared.
176 xfs_ilock(ip, XFS_ILOCK_SHARED);
177 if (xfs_ipincount(ip)) {
178 if (!datasync ||
179 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
180 lsn = ip->i_itemp->ili_last_lsn;
183 if (lsn) {
184 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
185 ip->i_itemp->ili_fsync_fields = 0;
187 xfs_iunlock(ip, XFS_ILOCK_SHARED);
190 * If we only have a single device, and the log force about was
191 * a no-op we might have to flush the data device cache here.
192 * This can only happen for fdatasync/O_DSYNC if we were overwriting
193 * an already allocated file and thus do not have any metadata to
194 * commit.
196 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
197 mp->m_logdev_targp == mp->m_ddev_targp)
198 xfs_blkdev_issue_flush(mp->m_ddev_targp);
200 return error;
203 STATIC ssize_t
204 xfs_file_dio_aio_read(
205 struct kiocb *iocb,
206 struct iov_iter *to)
208 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
209 size_t count = iov_iter_count(to);
210 ssize_t ret;
212 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
214 if (!count)
215 return 0; /* skip atime */
217 file_accessed(iocb->ki_filp);
219 xfs_ilock(ip, XFS_IOLOCK_SHARED);
220 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
221 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
223 return ret;
226 static noinline ssize_t
227 xfs_file_dax_read(
228 struct kiocb *iocb,
229 struct iov_iter *to)
231 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
232 size_t count = iov_iter_count(to);
233 ssize_t ret = 0;
235 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
237 if (!count)
238 return 0; /* skip atime */
240 xfs_ilock(ip, XFS_IOLOCK_SHARED);
241 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
242 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
244 file_accessed(iocb->ki_filp);
245 return ret;
248 STATIC ssize_t
249 xfs_file_buffered_aio_read(
250 struct kiocb *iocb,
251 struct iov_iter *to)
253 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
254 ssize_t ret;
256 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
258 xfs_ilock(ip, XFS_IOLOCK_SHARED);
259 ret = generic_file_read_iter(iocb, to);
260 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
262 return ret;
265 STATIC ssize_t
266 xfs_file_read_iter(
267 struct kiocb *iocb,
268 struct iov_iter *to)
270 struct inode *inode = file_inode(iocb->ki_filp);
271 struct xfs_mount *mp = XFS_I(inode)->i_mount;
272 ssize_t ret = 0;
274 XFS_STATS_INC(mp, xs_read_calls);
276 if (XFS_FORCED_SHUTDOWN(mp))
277 return -EIO;
279 if (IS_DAX(inode))
280 ret = xfs_file_dax_read(iocb, to);
281 else if (iocb->ki_flags & IOCB_DIRECT)
282 ret = xfs_file_dio_aio_read(iocb, to);
283 else
284 ret = xfs_file_buffered_aio_read(iocb, to);
286 if (ret > 0)
287 XFS_STATS_ADD(mp, xs_read_bytes, ret);
288 return ret;
292 * Zero any on disk space between the current EOF and the new, larger EOF.
294 * This handles the normal case of zeroing the remainder of the last block in
295 * the file and the unusual case of zeroing blocks out beyond the size of the
296 * file. This second case only happens with fixed size extents and when the
297 * system crashes before the inode size was updated but after blocks were
298 * allocated.
300 * Expects the iolock to be held exclusive, and will take the ilock internally.
302 int /* error (positive) */
303 xfs_zero_eof(
304 struct xfs_inode *ip,
305 xfs_off_t offset, /* starting I/O offset */
306 xfs_fsize_t isize, /* current inode size */
307 bool *did_zeroing)
309 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
310 ASSERT(offset > isize);
312 trace_xfs_zero_eof(ip, isize, offset - isize);
313 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
317 * Common pre-write limit and setup checks.
319 * Called with the iolocked held either shared and exclusive according to
320 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
321 * if called for a direct write beyond i_size.
323 STATIC ssize_t
324 xfs_file_aio_write_checks(
325 struct kiocb *iocb,
326 struct iov_iter *from,
327 int *iolock)
329 struct file *file = iocb->ki_filp;
330 struct inode *inode = file->f_mapping->host;
331 struct xfs_inode *ip = XFS_I(inode);
332 ssize_t error = 0;
333 size_t count = iov_iter_count(from);
334 bool drained_dio = false;
336 restart:
337 error = generic_write_checks(iocb, from);
338 if (error <= 0)
339 return error;
341 error = xfs_break_layouts(inode, iolock);
342 if (error)
343 return error;
346 * For changing security info in file_remove_privs() we need i_rwsem
347 * exclusively.
349 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
350 xfs_iunlock(ip, *iolock);
351 *iolock = XFS_IOLOCK_EXCL;
352 xfs_ilock(ip, *iolock);
353 goto restart;
356 * If the offset is beyond the size of the file, we need to zero any
357 * blocks that fall between the existing EOF and the start of this
358 * write. If zeroing is needed and we are currently holding the
359 * iolock shared, we need to update it to exclusive which implies
360 * having to redo all checks before.
362 * We need to serialise against EOF updates that occur in IO
363 * completions here. We want to make sure that nobody is changing the
364 * size while we do this check until we have placed an IO barrier (i.e.
365 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
366 * The spinlock effectively forms a memory barrier once we have the
367 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
368 * and hence be able to correctly determine if we need to run zeroing.
370 spin_lock(&ip->i_flags_lock);
371 if (iocb->ki_pos > i_size_read(inode)) {
372 bool zero = false;
374 spin_unlock(&ip->i_flags_lock);
375 if (!drained_dio) {
376 if (*iolock == XFS_IOLOCK_SHARED) {
377 xfs_iunlock(ip, *iolock);
378 *iolock = XFS_IOLOCK_EXCL;
379 xfs_ilock(ip, *iolock);
380 iov_iter_reexpand(from, count);
383 * We now have an IO submission barrier in place, but
384 * AIO can do EOF updates during IO completion and hence
385 * we now need to wait for all of them to drain. Non-AIO
386 * DIO will have drained before we are given the
387 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
388 * no-op.
390 inode_dio_wait(inode);
391 drained_dio = true;
392 goto restart;
394 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
395 if (error)
396 return error;
397 } else
398 spin_unlock(&ip->i_flags_lock);
401 * Updating the timestamps will grab the ilock again from
402 * xfs_fs_dirty_inode, so we have to call it after dropping the
403 * lock above. Eventually we should look into a way to avoid
404 * the pointless lock roundtrip.
406 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
407 error = file_update_time(file);
408 if (error)
409 return error;
413 * If we're writing the file then make sure to clear the setuid and
414 * setgid bits if the process is not being run by root. This keeps
415 * people from modifying setuid and setgid binaries.
417 if (!IS_NOSEC(inode))
418 return file_remove_privs(file);
419 return 0;
422 static int
423 xfs_dio_write_end_io(
424 struct kiocb *iocb,
425 ssize_t size,
426 unsigned flags)
428 struct inode *inode = file_inode(iocb->ki_filp);
429 struct xfs_inode *ip = XFS_I(inode);
430 loff_t offset = iocb->ki_pos;
431 bool update_size = false;
432 int error = 0;
434 trace_xfs_end_io_direct_write(ip, offset, size);
436 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
437 return -EIO;
439 if (size <= 0)
440 return size;
443 * We need to update the in-core inode size here so that we don't end up
444 * with the on-disk inode size being outside the in-core inode size. We
445 * have no other method of updating EOF for AIO, so always do it here
446 * if necessary.
448 * We need to lock the test/set EOF update as we can be racing with
449 * other IO completions here to update the EOF. Failing to serialise
450 * here can result in EOF moving backwards and Bad Things Happen when
451 * that occurs.
453 spin_lock(&ip->i_flags_lock);
454 if (offset + size > i_size_read(inode)) {
455 i_size_write(inode, offset + size);
456 update_size = true;
458 spin_unlock(&ip->i_flags_lock);
460 if (flags & IOMAP_DIO_COW) {
461 error = xfs_reflink_end_cow(ip, offset, size);
462 if (error)
463 return error;
466 if (flags & IOMAP_DIO_UNWRITTEN)
467 error = xfs_iomap_write_unwritten(ip, offset, size);
468 else if (update_size)
469 error = xfs_setfilesize(ip, offset, size);
471 return error;
475 * xfs_file_dio_aio_write - handle direct IO writes
477 * Lock the inode appropriately to prepare for and issue a direct IO write.
478 * By separating it from the buffered write path we remove all the tricky to
479 * follow locking changes and looping.
481 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
482 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
483 * pages are flushed out.
485 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
486 * allowing them to be done in parallel with reads and other direct IO writes.
487 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
488 * needs to do sub-block zeroing and that requires serialisation against other
489 * direct IOs to the same block. In this case we need to serialise the
490 * submission of the unaligned IOs so that we don't get racing block zeroing in
491 * the dio layer. To avoid the problem with aio, we also need to wait for
492 * outstanding IOs to complete so that unwritten extent conversion is completed
493 * before we try to map the overlapping block. This is currently implemented by
494 * hitting it with a big hammer (i.e. inode_dio_wait()).
496 * Returns with locks held indicated by @iolock and errors indicated by
497 * negative return values.
499 STATIC ssize_t
500 xfs_file_dio_aio_write(
501 struct kiocb *iocb,
502 struct iov_iter *from)
504 struct file *file = iocb->ki_filp;
505 struct address_space *mapping = file->f_mapping;
506 struct inode *inode = mapping->host;
507 struct xfs_inode *ip = XFS_I(inode);
508 struct xfs_mount *mp = ip->i_mount;
509 ssize_t ret = 0;
510 int unaligned_io = 0;
511 int iolock;
512 size_t count = iov_iter_count(from);
513 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
514 mp->m_rtdev_targp : mp->m_ddev_targp;
516 /* DIO must be aligned to device logical sector size */
517 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
518 return -EINVAL;
521 * Don't take the exclusive iolock here unless the I/O is unaligned to
522 * the file system block size. We don't need to consider the EOF
523 * extension case here because xfs_file_aio_write_checks() will relock
524 * the inode as necessary for EOF zeroing cases and fill out the new
525 * inode size as appropriate.
527 if ((iocb->ki_pos & mp->m_blockmask) ||
528 ((iocb->ki_pos + count) & mp->m_blockmask)) {
529 unaligned_io = 1;
530 iolock = XFS_IOLOCK_EXCL;
531 } else {
532 iolock = XFS_IOLOCK_SHARED;
535 xfs_ilock(ip, iolock);
537 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
538 if (ret)
539 goto out;
540 count = iov_iter_count(from);
543 * If we are doing unaligned IO, wait for all other IO to drain,
544 * otherwise demote the lock if we had to take the exclusive lock
545 * for other reasons in xfs_file_aio_write_checks.
547 if (unaligned_io)
548 inode_dio_wait(inode);
549 else if (iolock == XFS_IOLOCK_EXCL) {
550 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
551 iolock = XFS_IOLOCK_SHARED;
554 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
556 /* If this is a block-aligned directio CoW, remap immediately. */
557 if (xfs_is_reflink_inode(ip) && !unaligned_io) {
558 ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count);
559 if (ret)
560 goto out;
563 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
564 out:
565 xfs_iunlock(ip, iolock);
568 * No fallback to buffered IO on errors for XFS, direct IO will either
569 * complete fully or fail.
571 ASSERT(ret < 0 || ret == count);
572 return ret;
575 static noinline ssize_t
576 xfs_file_dax_write(
577 struct kiocb *iocb,
578 struct iov_iter *from)
580 struct inode *inode = iocb->ki_filp->f_mapping->host;
581 struct xfs_inode *ip = XFS_I(inode);
582 int iolock = XFS_IOLOCK_EXCL;
583 ssize_t ret, error = 0;
584 size_t count;
585 loff_t pos;
587 xfs_ilock(ip, iolock);
588 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
589 if (ret)
590 goto out;
592 pos = iocb->ki_pos;
593 count = iov_iter_count(from);
595 trace_xfs_file_dax_write(ip, count, pos);
596 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
597 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
598 i_size_write(inode, iocb->ki_pos);
599 error = xfs_setfilesize(ip, pos, ret);
601 out:
602 xfs_iunlock(ip, iolock);
603 return error ? error : ret;
606 STATIC ssize_t
607 xfs_file_buffered_aio_write(
608 struct kiocb *iocb,
609 struct iov_iter *from)
611 struct file *file = iocb->ki_filp;
612 struct address_space *mapping = file->f_mapping;
613 struct inode *inode = mapping->host;
614 struct xfs_inode *ip = XFS_I(inode);
615 ssize_t ret;
616 int enospc = 0;
617 int iolock = XFS_IOLOCK_EXCL;
619 xfs_ilock(ip, iolock);
621 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
622 if (ret)
623 goto out;
625 /* We can write back this queue in page reclaim */
626 current->backing_dev_info = inode_to_bdi(inode);
628 write_retry:
629 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
630 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
631 if (likely(ret >= 0))
632 iocb->ki_pos += ret;
635 * If we hit a space limit, try to free up some lingering preallocated
636 * space before returning an error. In the case of ENOSPC, first try to
637 * write back all dirty inodes to free up some of the excess reserved
638 * metadata space. This reduces the chances that the eofblocks scan
639 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
640 * also behaves as a filter to prevent too many eofblocks scans from
641 * running at the same time.
643 if (ret == -EDQUOT && !enospc) {
644 enospc = xfs_inode_free_quota_eofblocks(ip);
645 if (enospc)
646 goto write_retry;
647 enospc = xfs_inode_free_quota_cowblocks(ip);
648 if (enospc)
649 goto write_retry;
650 } else if (ret == -ENOSPC && !enospc) {
651 struct xfs_eofblocks eofb = {0};
653 enospc = 1;
654 xfs_flush_inodes(ip->i_mount);
655 eofb.eof_scan_owner = ip->i_ino; /* for locking */
656 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
657 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
658 goto write_retry;
661 current->backing_dev_info = NULL;
662 out:
663 xfs_iunlock(ip, iolock);
664 return ret;
667 STATIC ssize_t
668 xfs_file_write_iter(
669 struct kiocb *iocb,
670 struct iov_iter *from)
672 struct file *file = iocb->ki_filp;
673 struct address_space *mapping = file->f_mapping;
674 struct inode *inode = mapping->host;
675 struct xfs_inode *ip = XFS_I(inode);
676 ssize_t ret;
677 size_t ocount = iov_iter_count(from);
679 XFS_STATS_INC(ip->i_mount, xs_write_calls);
681 if (ocount == 0)
682 return 0;
684 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
685 return -EIO;
687 if (IS_DAX(inode))
688 ret = xfs_file_dax_write(iocb, from);
689 else if (iocb->ki_flags & IOCB_DIRECT) {
691 * Allow a directio write to fall back to a buffered
692 * write *only* in the case that we're doing a reflink
693 * CoW. In all other directio scenarios we do not
694 * allow an operation to fall back to buffered mode.
696 ret = xfs_file_dio_aio_write(iocb, from);
697 if (ret == -EREMCHG)
698 goto buffered;
699 } else {
700 buffered:
701 ret = xfs_file_buffered_aio_write(iocb, from);
704 if (ret > 0) {
705 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
707 /* Handle various SYNC-type writes */
708 ret = generic_write_sync(iocb, ret);
710 return ret;
713 #define XFS_FALLOC_FL_SUPPORTED \
714 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
715 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
716 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
718 STATIC long
719 xfs_file_fallocate(
720 struct file *file,
721 int mode,
722 loff_t offset,
723 loff_t len)
725 struct inode *inode = file_inode(file);
726 struct xfs_inode *ip = XFS_I(inode);
727 long error;
728 enum xfs_prealloc_flags flags = 0;
729 uint iolock = XFS_IOLOCK_EXCL;
730 loff_t new_size = 0;
731 bool do_file_insert = 0;
733 if (!S_ISREG(inode->i_mode))
734 return -EINVAL;
735 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
736 return -EOPNOTSUPP;
738 xfs_ilock(ip, iolock);
739 error = xfs_break_layouts(inode, &iolock);
740 if (error)
741 goto out_unlock;
743 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
744 iolock |= XFS_MMAPLOCK_EXCL;
746 if (mode & FALLOC_FL_PUNCH_HOLE) {
747 error = xfs_free_file_space(ip, offset, len);
748 if (error)
749 goto out_unlock;
750 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
751 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
753 if (offset & blksize_mask || len & blksize_mask) {
754 error = -EINVAL;
755 goto out_unlock;
759 * There is no need to overlap collapse range with EOF,
760 * in which case it is effectively a truncate operation
762 if (offset + len >= i_size_read(inode)) {
763 error = -EINVAL;
764 goto out_unlock;
767 new_size = i_size_read(inode) - len;
769 error = xfs_collapse_file_space(ip, offset, len);
770 if (error)
771 goto out_unlock;
772 } else if (mode & FALLOC_FL_INSERT_RANGE) {
773 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
775 new_size = i_size_read(inode) + len;
776 if (offset & blksize_mask || len & blksize_mask) {
777 error = -EINVAL;
778 goto out_unlock;
781 /* check the new inode size does not wrap through zero */
782 if (new_size > inode->i_sb->s_maxbytes) {
783 error = -EFBIG;
784 goto out_unlock;
787 /* Offset should be less than i_size */
788 if (offset >= i_size_read(inode)) {
789 error = -EINVAL;
790 goto out_unlock;
792 do_file_insert = 1;
793 } else {
794 flags |= XFS_PREALLOC_SET;
796 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
797 offset + len > i_size_read(inode)) {
798 new_size = offset + len;
799 error = inode_newsize_ok(inode, new_size);
800 if (error)
801 goto out_unlock;
804 if (mode & FALLOC_FL_ZERO_RANGE)
805 error = xfs_zero_file_space(ip, offset, len);
806 else {
807 if (mode & FALLOC_FL_UNSHARE_RANGE) {
808 error = xfs_reflink_unshare(ip, offset, len);
809 if (error)
810 goto out_unlock;
812 error = xfs_alloc_file_space(ip, offset, len,
813 XFS_BMAPI_PREALLOC);
815 if (error)
816 goto out_unlock;
819 if (file->f_flags & O_DSYNC)
820 flags |= XFS_PREALLOC_SYNC;
822 error = xfs_update_prealloc_flags(ip, flags);
823 if (error)
824 goto out_unlock;
826 /* Change file size if needed */
827 if (new_size) {
828 struct iattr iattr;
830 iattr.ia_valid = ATTR_SIZE;
831 iattr.ia_size = new_size;
832 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
833 if (error)
834 goto out_unlock;
838 * Perform hole insertion now that the file size has been
839 * updated so that if we crash during the operation we don't
840 * leave shifted extents past EOF and hence losing access to
841 * the data that is contained within them.
843 if (do_file_insert)
844 error = xfs_insert_file_space(ip, offset, len);
846 out_unlock:
847 xfs_iunlock(ip, iolock);
848 return error;
851 STATIC int
852 xfs_file_clone_range(
853 struct file *file_in,
854 loff_t pos_in,
855 struct file *file_out,
856 loff_t pos_out,
857 u64 len)
859 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
860 len, false);
863 STATIC ssize_t
864 xfs_file_dedupe_range(
865 struct file *src_file,
866 u64 loff,
867 u64 len,
868 struct file *dst_file,
869 u64 dst_loff)
871 int error;
873 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
874 len, true);
875 if (error)
876 return error;
877 return len;
880 STATIC int
881 xfs_file_open(
882 struct inode *inode,
883 struct file *file)
885 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
886 return -EFBIG;
887 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
888 return -EIO;
889 return 0;
892 STATIC int
893 xfs_dir_open(
894 struct inode *inode,
895 struct file *file)
897 struct xfs_inode *ip = XFS_I(inode);
898 int mode;
899 int error;
901 error = xfs_file_open(inode, file);
902 if (error)
903 return error;
906 * If there are any blocks, read-ahead block 0 as we're almost
907 * certain to have the next operation be a read there.
909 mode = xfs_ilock_data_map_shared(ip);
910 if (ip->i_d.di_nextents > 0)
911 xfs_dir3_data_readahead(ip, 0, -1);
912 xfs_iunlock(ip, mode);
913 return 0;
916 STATIC int
917 xfs_file_release(
918 struct inode *inode,
919 struct file *filp)
921 return xfs_release(XFS_I(inode));
924 STATIC int
925 xfs_file_readdir(
926 struct file *file,
927 struct dir_context *ctx)
929 struct inode *inode = file_inode(file);
930 xfs_inode_t *ip = XFS_I(inode);
931 size_t bufsize;
934 * The Linux API doesn't pass down the total size of the buffer
935 * we read into down to the filesystem. With the filldir concept
936 * it's not needed for correct information, but the XFS dir2 leaf
937 * code wants an estimate of the buffer size to calculate it's
938 * readahead window and size the buffers used for mapping to
939 * physical blocks.
941 * Try to give it an estimate that's good enough, maybe at some
942 * point we can change the ->readdir prototype to include the
943 * buffer size. For now we use the current glibc buffer size.
945 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
947 return xfs_readdir(ip, ctx, bufsize);
951 * This type is designed to indicate the type of offset we would like
952 * to search from page cache for xfs_seek_hole_data().
954 enum {
955 HOLE_OFF = 0,
956 DATA_OFF,
960 * Lookup the desired type of offset from the given page.
962 * On success, return true and the offset argument will point to the
963 * start of the region that was found. Otherwise this function will
964 * return false and keep the offset argument unchanged.
966 STATIC bool
967 xfs_lookup_buffer_offset(
968 struct page *page,
969 loff_t *offset,
970 unsigned int type)
972 loff_t lastoff = page_offset(page);
973 bool found = false;
974 struct buffer_head *bh, *head;
976 bh = head = page_buffers(page);
977 do {
979 * Unwritten extents that have data in the page
980 * cache covering them can be identified by the
981 * BH_Unwritten state flag. Pages with multiple
982 * buffers might have a mix of holes, data and
983 * unwritten extents - any buffer with valid
984 * data in it should have BH_Uptodate flag set
985 * on it.
987 if (buffer_unwritten(bh) ||
988 buffer_uptodate(bh)) {
989 if (type == DATA_OFF)
990 found = true;
991 } else {
992 if (type == HOLE_OFF)
993 found = true;
996 if (found) {
997 *offset = lastoff;
998 break;
1000 lastoff += bh->b_size;
1001 } while ((bh = bh->b_this_page) != head);
1003 return found;
1007 * This routine is called to find out and return a data or hole offset
1008 * from the page cache for unwritten extents according to the desired
1009 * type for xfs_seek_hole_data().
1011 * The argument offset is used to tell where we start to search from the
1012 * page cache. Map is used to figure out the end points of the range to
1013 * lookup pages.
1015 * Return true if the desired type of offset was found, and the argument
1016 * offset is filled with that address. Otherwise, return false and keep
1017 * offset unchanged.
1019 STATIC bool
1020 xfs_find_get_desired_pgoff(
1021 struct inode *inode,
1022 struct xfs_bmbt_irec *map,
1023 unsigned int type,
1024 loff_t *offset)
1026 struct xfs_inode *ip = XFS_I(inode);
1027 struct xfs_mount *mp = ip->i_mount;
1028 struct pagevec pvec;
1029 pgoff_t index;
1030 pgoff_t end;
1031 loff_t endoff;
1032 loff_t startoff = *offset;
1033 loff_t lastoff = startoff;
1034 bool found = false;
1036 pagevec_init(&pvec, 0);
1038 index = startoff >> PAGE_SHIFT;
1039 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1040 end = endoff >> PAGE_SHIFT;
1041 do {
1042 int want;
1043 unsigned nr_pages;
1044 unsigned int i;
1046 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1047 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1048 want);
1050 * No page mapped into given range. If we are searching holes
1051 * and if this is the first time we got into the loop, it means
1052 * that the given offset is landed in a hole, return it.
1054 * If we have already stepped through some block buffers to find
1055 * holes but they all contains data. In this case, the last
1056 * offset is already updated and pointed to the end of the last
1057 * mapped page, if it does not reach the endpoint to search,
1058 * that means there should be a hole between them.
1060 if (nr_pages == 0) {
1061 /* Data search found nothing */
1062 if (type == DATA_OFF)
1063 break;
1065 ASSERT(type == HOLE_OFF);
1066 if (lastoff == startoff || lastoff < endoff) {
1067 found = true;
1068 *offset = lastoff;
1070 break;
1074 * At lease we found one page. If this is the first time we
1075 * step into the loop, and if the first page index offset is
1076 * greater than the given search offset, a hole was found.
1078 if (type == HOLE_OFF && lastoff == startoff &&
1079 lastoff < page_offset(pvec.pages[0])) {
1080 found = true;
1081 break;
1084 for (i = 0; i < nr_pages; i++) {
1085 struct page *page = pvec.pages[i];
1086 loff_t b_offset;
1089 * At this point, the page may be truncated or
1090 * invalidated (changing page->mapping to NULL),
1091 * or even swizzled back from swapper_space to tmpfs
1092 * file mapping. However, page->index will not change
1093 * because we have a reference on the page.
1095 * Searching done if the page index is out of range.
1096 * If the current offset is not reaches the end of
1097 * the specified search range, there should be a hole
1098 * between them.
1100 if (page->index > end) {
1101 if (type == HOLE_OFF && lastoff < endoff) {
1102 *offset = lastoff;
1103 found = true;
1105 goto out;
1108 lock_page(page);
1110 * Page truncated or invalidated(page->mapping == NULL).
1111 * We can freely skip it and proceed to check the next
1112 * page.
1114 if (unlikely(page->mapping != inode->i_mapping)) {
1115 unlock_page(page);
1116 continue;
1119 if (!page_has_buffers(page)) {
1120 unlock_page(page);
1121 continue;
1124 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1125 if (found) {
1127 * The found offset may be less than the start
1128 * point to search if this is the first time to
1129 * come here.
1131 *offset = max_t(loff_t, startoff, b_offset);
1132 unlock_page(page);
1133 goto out;
1137 * We either searching data but nothing was found, or
1138 * searching hole but found a data buffer. In either
1139 * case, probably the next page contains the desired
1140 * things, update the last offset to it so.
1142 lastoff = page_offset(page) + PAGE_SIZE;
1143 unlock_page(page);
1147 * The number of returned pages less than our desired, search
1148 * done. In this case, nothing was found for searching data,
1149 * but we found a hole behind the last offset.
1151 if (nr_pages < want) {
1152 if (type == HOLE_OFF) {
1153 *offset = lastoff;
1154 found = true;
1156 break;
1159 index = pvec.pages[i - 1]->index + 1;
1160 pagevec_release(&pvec);
1161 } while (index <= end);
1163 out:
1164 pagevec_release(&pvec);
1165 return found;
1169 * caller must lock inode with xfs_ilock_data_map_shared,
1170 * can we craft an appropriate ASSERT?
1172 * end is because the VFS-level lseek interface is defined such that any
1173 * offset past i_size shall return -ENXIO, but we use this for quota code
1174 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1176 loff_t
1177 __xfs_seek_hole_data(
1178 struct inode *inode,
1179 loff_t start,
1180 loff_t end,
1181 int whence)
1183 struct xfs_inode *ip = XFS_I(inode);
1184 struct xfs_mount *mp = ip->i_mount;
1185 loff_t uninitialized_var(offset);
1186 xfs_fileoff_t fsbno;
1187 xfs_filblks_t lastbno;
1188 int error;
1190 if (start >= end) {
1191 error = -ENXIO;
1192 goto out_error;
1196 * Try to read extents from the first block indicated
1197 * by fsbno to the end block of the file.
1199 fsbno = XFS_B_TO_FSBT(mp, start);
1200 lastbno = XFS_B_TO_FSB(mp, end);
1202 for (;;) {
1203 struct xfs_bmbt_irec map[2];
1204 int nmap = 2;
1205 unsigned int i;
1207 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1208 XFS_BMAPI_ENTIRE);
1209 if (error)
1210 goto out_error;
1212 /* No extents at given offset, must be beyond EOF */
1213 if (nmap == 0) {
1214 error = -ENXIO;
1215 goto out_error;
1218 for (i = 0; i < nmap; i++) {
1219 offset = max_t(loff_t, start,
1220 XFS_FSB_TO_B(mp, map[i].br_startoff));
1222 /* Landed in the hole we wanted? */
1223 if (whence == SEEK_HOLE &&
1224 map[i].br_startblock == HOLESTARTBLOCK)
1225 goto out;
1227 /* Landed in the data extent we wanted? */
1228 if (whence == SEEK_DATA &&
1229 (map[i].br_startblock == DELAYSTARTBLOCK ||
1230 (map[i].br_state == XFS_EXT_NORM &&
1231 !isnullstartblock(map[i].br_startblock))))
1232 goto out;
1235 * Landed in an unwritten extent, try to search
1236 * for hole or data from page cache.
1238 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1239 if (xfs_find_get_desired_pgoff(inode, &map[i],
1240 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1241 &offset))
1242 goto out;
1247 * We only received one extent out of the two requested. This
1248 * means we've hit EOF and didn't find what we are looking for.
1250 if (nmap == 1) {
1252 * If we were looking for a hole, set offset to
1253 * the end of the file (i.e., there is an implicit
1254 * hole at the end of any file).
1256 if (whence == SEEK_HOLE) {
1257 offset = end;
1258 break;
1261 * If we were looking for data, it's nowhere to be found
1263 ASSERT(whence == SEEK_DATA);
1264 error = -ENXIO;
1265 goto out_error;
1268 ASSERT(i > 1);
1271 * Nothing was found, proceed to the next round of search
1272 * if the next reading offset is not at or beyond EOF.
1274 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1275 start = XFS_FSB_TO_B(mp, fsbno);
1276 if (start >= end) {
1277 if (whence == SEEK_HOLE) {
1278 offset = end;
1279 break;
1281 ASSERT(whence == SEEK_DATA);
1282 error = -ENXIO;
1283 goto out_error;
1287 out:
1289 * If at this point we have found the hole we wanted, the returned
1290 * offset may be bigger than the file size as it may be aligned to
1291 * page boundary for unwritten extents. We need to deal with this
1292 * situation in particular.
1294 if (whence == SEEK_HOLE)
1295 offset = min_t(loff_t, offset, end);
1297 return offset;
1299 out_error:
1300 return error;
1303 STATIC loff_t
1304 xfs_seek_hole_data(
1305 struct file *file,
1306 loff_t start,
1307 int whence)
1309 struct inode *inode = file->f_mapping->host;
1310 struct xfs_inode *ip = XFS_I(inode);
1311 struct xfs_mount *mp = ip->i_mount;
1312 uint lock;
1313 loff_t offset, end;
1314 int error = 0;
1316 if (XFS_FORCED_SHUTDOWN(mp))
1317 return -EIO;
1319 lock = xfs_ilock_data_map_shared(ip);
1321 end = i_size_read(inode);
1322 offset = __xfs_seek_hole_data(inode, start, end, whence);
1323 if (offset < 0) {
1324 error = offset;
1325 goto out_unlock;
1328 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1330 out_unlock:
1331 xfs_iunlock(ip, lock);
1333 if (error)
1334 return error;
1335 return offset;
1338 STATIC loff_t
1339 xfs_file_llseek(
1340 struct file *file,
1341 loff_t offset,
1342 int whence)
1344 switch (whence) {
1345 case SEEK_END:
1346 case SEEK_CUR:
1347 case SEEK_SET:
1348 return generic_file_llseek(file, offset, whence);
1349 case SEEK_HOLE:
1350 case SEEK_DATA:
1351 return xfs_seek_hole_data(file, offset, whence);
1352 default:
1353 return -EINVAL;
1358 * Locking for serialisation of IO during page faults. This results in a lock
1359 * ordering of:
1361 * mmap_sem (MM)
1362 * sb_start_pagefault(vfs, freeze)
1363 * i_mmaplock (XFS - truncate serialisation)
1364 * page_lock (MM)
1365 * i_lock (XFS - extent map serialisation)
1369 * mmap()d file has taken write protection fault and is being made writable. We
1370 * can set the page state up correctly for a writable page, which means we can
1371 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1372 * mapping.
1374 STATIC int
1375 xfs_filemap_page_mkwrite(
1376 struct vm_area_struct *vma,
1377 struct vm_fault *vmf)
1379 struct inode *inode = file_inode(vma->vm_file);
1380 int ret;
1382 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1384 sb_start_pagefault(inode->i_sb);
1385 file_update_time(vma->vm_file);
1386 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1388 if (IS_DAX(inode)) {
1389 ret = dax_iomap_fault(vma, vmf, &xfs_iomap_ops);
1390 } else {
1391 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1392 ret = block_page_mkwrite_return(ret);
1395 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1396 sb_end_pagefault(inode->i_sb);
1398 return ret;
1401 STATIC int
1402 xfs_filemap_fault(
1403 struct vm_area_struct *vma,
1404 struct vm_fault *vmf)
1406 struct inode *inode = file_inode(vma->vm_file);
1407 int ret;
1409 trace_xfs_filemap_fault(XFS_I(inode));
1411 /* DAX can shortcut the normal fault path on write faults! */
1412 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1413 return xfs_filemap_page_mkwrite(vma, vmf);
1415 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1416 if (IS_DAX(inode))
1417 ret = dax_iomap_fault(vma, vmf, &xfs_iomap_ops);
1418 else
1419 ret = filemap_fault(vma, vmf);
1420 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1422 return ret;
1426 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1427 * both read and write faults. Hence we need to handle both cases. There is no
1428 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1429 * handle both cases here. @flags carries the information on the type of fault
1430 * occuring.
1432 STATIC int
1433 xfs_filemap_pmd_fault(
1434 struct vm_area_struct *vma,
1435 unsigned long addr,
1436 pmd_t *pmd,
1437 unsigned int flags)
1439 struct inode *inode = file_inode(vma->vm_file);
1440 struct xfs_inode *ip = XFS_I(inode);
1441 int ret;
1443 if (!IS_DAX(inode))
1444 return VM_FAULT_FALLBACK;
1446 trace_xfs_filemap_pmd_fault(ip);
1448 if (flags & FAULT_FLAG_WRITE) {
1449 sb_start_pagefault(inode->i_sb);
1450 file_update_time(vma->vm_file);
1453 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1454 ret = dax_iomap_pmd_fault(vma, addr, pmd, flags, &xfs_iomap_ops);
1455 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1457 if (flags & FAULT_FLAG_WRITE)
1458 sb_end_pagefault(inode->i_sb);
1460 return ret;
1464 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1465 * updates on write faults. In reality, it's need to serialise against
1466 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1467 * to ensure we serialise the fault barrier in place.
1469 static int
1470 xfs_filemap_pfn_mkwrite(
1471 struct vm_area_struct *vma,
1472 struct vm_fault *vmf)
1475 struct inode *inode = file_inode(vma->vm_file);
1476 struct xfs_inode *ip = XFS_I(inode);
1477 int ret = VM_FAULT_NOPAGE;
1478 loff_t size;
1480 trace_xfs_filemap_pfn_mkwrite(ip);
1482 sb_start_pagefault(inode->i_sb);
1483 file_update_time(vma->vm_file);
1485 /* check if the faulting page hasn't raced with truncate */
1486 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1487 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1488 if (vmf->pgoff >= size)
1489 ret = VM_FAULT_SIGBUS;
1490 else if (IS_DAX(inode))
1491 ret = dax_pfn_mkwrite(vma, vmf);
1492 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1493 sb_end_pagefault(inode->i_sb);
1494 return ret;
1498 static const struct vm_operations_struct xfs_file_vm_ops = {
1499 .fault = xfs_filemap_fault,
1500 .pmd_fault = xfs_filemap_pmd_fault,
1501 .map_pages = filemap_map_pages,
1502 .page_mkwrite = xfs_filemap_page_mkwrite,
1503 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1506 STATIC int
1507 xfs_file_mmap(
1508 struct file *filp,
1509 struct vm_area_struct *vma)
1511 file_accessed(filp);
1512 vma->vm_ops = &xfs_file_vm_ops;
1513 if (IS_DAX(file_inode(filp)))
1514 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1515 return 0;
1518 const struct file_operations xfs_file_operations = {
1519 .llseek = xfs_file_llseek,
1520 .read_iter = xfs_file_read_iter,
1521 .write_iter = xfs_file_write_iter,
1522 .splice_read = generic_file_splice_read,
1523 .splice_write = iter_file_splice_write,
1524 .unlocked_ioctl = xfs_file_ioctl,
1525 #ifdef CONFIG_COMPAT
1526 .compat_ioctl = xfs_file_compat_ioctl,
1527 #endif
1528 .mmap = xfs_file_mmap,
1529 .open = xfs_file_open,
1530 .release = xfs_file_release,
1531 .fsync = xfs_file_fsync,
1532 .get_unmapped_area = thp_get_unmapped_area,
1533 .fallocate = xfs_file_fallocate,
1534 .clone_file_range = xfs_file_clone_range,
1535 .dedupe_file_range = xfs_file_dedupe_range,
1538 const struct file_operations xfs_dir_file_operations = {
1539 .open = xfs_dir_open,
1540 .read = generic_read_dir,
1541 .iterate_shared = xfs_file_readdir,
1542 .llseek = generic_file_llseek,
1543 .unlocked_ioctl = xfs_file_ioctl,
1544 #ifdef CONFIG_COMPAT
1545 .compat_ioctl = xfs_file_compat_ioctl,
1546 #endif
1547 .fsync = xfs_dir_fsync,