2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
42 * Allocate and initialise an xfs_inode.
52 * if this didn't occur in transactions, we could use
53 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
54 * code up to do this anyway.
56 ip
= kmem_zone_alloc(xfs_inode_zone
, KM_SLEEP
);
59 if (inode_init_always(mp
->m_super
, VFS_I(ip
))) {
60 kmem_zone_free(xfs_inode_zone
, ip
);
64 /* VFS doesn't initialise i_mode! */
65 VFS_I(ip
)->i_mode
= 0;
67 XFS_STATS_INC(mp
, vn_active
);
68 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
69 ASSERT(!spin_is_locked(&ip
->i_flags_lock
));
70 ASSERT(!xfs_isiflocked(ip
));
71 ASSERT(ip
->i_ino
== 0);
73 /* initialise the xfs inode */
76 memset(&ip
->i_imap
, 0, sizeof(struct xfs_imap
));
80 ip
->i_cformat
= XFS_DINODE_FMT_EXTENTS
;
81 memset(&ip
->i_df
, 0, sizeof(xfs_ifork_t
));
83 ip
->i_delayed_blks
= 0;
84 memset(&ip
->i_d
, 0, sizeof(ip
->i_d
));
90 xfs_inode_free_callback(
91 struct rcu_head
*head
)
93 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
94 struct xfs_inode
*ip
= XFS_I(inode
);
96 switch (VFS_I(ip
)->i_mode
& S_IFMT
) {
100 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
105 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
107 xfs_idestroy_fork(ip
, XFS_COW_FORK
);
110 ASSERT(!(ip
->i_itemp
->ili_item
.li_flags
& XFS_LI_IN_AIL
));
111 xfs_inode_item_destroy(ip
);
115 kmem_zone_free(xfs_inode_zone
, ip
);
120 struct xfs_inode
*ip
)
122 /* asserts to verify all state is correct here */
123 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
124 XFS_STATS_DEC(ip
->i_mount
, vn_active
);
126 call_rcu(&VFS_I(ip
)->i_rcu
, xfs_inode_free_callback
);
131 struct xfs_inode
*ip
)
133 ASSERT(!xfs_isiflocked(ip
));
136 * Because we use RCU freeing we need to ensure the inode always
137 * appears to be reclaimed with an invalid inode number when in the
138 * free state. The ip->i_flags_lock provides the barrier against lookup
141 spin_lock(&ip
->i_flags_lock
);
142 ip
->i_flags
= XFS_IRECLAIM
;
144 spin_unlock(&ip
->i_flags_lock
);
146 __xfs_inode_free(ip
);
150 * Queue a new inode reclaim pass if there are reclaimable inodes and there
151 * isn't a reclaim pass already in progress. By default it runs every 5s based
152 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
153 * tunable, but that can be done if this method proves to be ineffective or too
157 xfs_reclaim_work_queue(
158 struct xfs_mount
*mp
)
162 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_RECLAIM_TAG
)) {
163 queue_delayed_work(mp
->m_reclaim_workqueue
, &mp
->m_reclaim_work
,
164 msecs_to_jiffies(xfs_syncd_centisecs
/ 6 * 10));
170 * This is a fast pass over the inode cache to try to get reclaim moving on as
171 * many inodes as possible in a short period of time. It kicks itself every few
172 * seconds, as well as being kicked by the inode cache shrinker when memory
173 * goes low. It scans as quickly as possible avoiding locked inodes or those
174 * already being flushed, and once done schedules a future pass.
178 struct work_struct
*work
)
180 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
181 struct xfs_mount
, m_reclaim_work
);
183 xfs_reclaim_inodes(mp
, SYNC_TRYLOCK
);
184 xfs_reclaim_work_queue(mp
);
188 xfs_perag_set_reclaim_tag(
189 struct xfs_perag
*pag
)
191 struct xfs_mount
*mp
= pag
->pag_mount
;
193 ASSERT(spin_is_locked(&pag
->pag_ici_lock
));
194 if (pag
->pag_ici_reclaimable
++)
197 /* propagate the reclaim tag up into the perag radix tree */
198 spin_lock(&mp
->m_perag_lock
);
199 radix_tree_tag_set(&mp
->m_perag_tree
, pag
->pag_agno
,
200 XFS_ICI_RECLAIM_TAG
);
201 spin_unlock(&mp
->m_perag_lock
);
203 /* schedule periodic background inode reclaim */
204 xfs_reclaim_work_queue(mp
);
206 trace_xfs_perag_set_reclaim(mp
, pag
->pag_agno
, -1, _RET_IP_
);
210 xfs_perag_clear_reclaim_tag(
211 struct xfs_perag
*pag
)
213 struct xfs_mount
*mp
= pag
->pag_mount
;
215 ASSERT(spin_is_locked(&pag
->pag_ici_lock
));
216 if (--pag
->pag_ici_reclaimable
)
219 /* clear the reclaim tag from the perag radix tree */
220 spin_lock(&mp
->m_perag_lock
);
221 radix_tree_tag_clear(&mp
->m_perag_tree
, pag
->pag_agno
,
222 XFS_ICI_RECLAIM_TAG
);
223 spin_unlock(&mp
->m_perag_lock
);
224 trace_xfs_perag_clear_reclaim(mp
, pag
->pag_agno
, -1, _RET_IP_
);
229 * We set the inode flag atomically with the radix tree tag.
230 * Once we get tag lookups on the radix tree, this inode flag
234 xfs_inode_set_reclaim_tag(
235 struct xfs_inode
*ip
)
237 struct xfs_mount
*mp
= ip
->i_mount
;
238 struct xfs_perag
*pag
;
240 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
241 spin_lock(&pag
->pag_ici_lock
);
242 spin_lock(&ip
->i_flags_lock
);
244 radix_tree_tag_set(&pag
->pag_ici_root
, XFS_INO_TO_AGINO(mp
, ip
->i_ino
),
245 XFS_ICI_RECLAIM_TAG
);
246 xfs_perag_set_reclaim_tag(pag
);
247 __xfs_iflags_set(ip
, XFS_IRECLAIMABLE
);
249 spin_unlock(&ip
->i_flags_lock
);
250 spin_unlock(&pag
->pag_ici_lock
);
255 xfs_inode_clear_reclaim_tag(
256 struct xfs_perag
*pag
,
259 radix_tree_tag_clear(&pag
->pag_ici_root
,
260 XFS_INO_TO_AGINO(pag
->pag_mount
, ino
),
261 XFS_ICI_RECLAIM_TAG
);
262 xfs_perag_clear_reclaim_tag(pag
);
266 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
267 * part of the structure. This is made more complex by the fact we store
268 * information about the on-disk values in the VFS inode and so we can't just
269 * overwrite the values unconditionally. Hence we save the parameters we
270 * need to retain across reinitialisation, and rewrite them into the VFS inode
271 * after reinitialisation even if it fails.
275 struct xfs_mount
*mp
,
279 uint32_t nlink
= inode
->i_nlink
;
280 uint32_t generation
= inode
->i_generation
;
281 uint64_t version
= inode
->i_version
;
282 umode_t mode
= inode
->i_mode
;
284 error
= inode_init_always(mp
->m_super
, inode
);
286 set_nlink(inode
, nlink
);
287 inode
->i_generation
= generation
;
288 inode
->i_version
= version
;
289 inode
->i_mode
= mode
;
294 * Check the validity of the inode we just found it the cache
298 struct xfs_perag
*pag
,
299 struct xfs_inode
*ip
,
302 int lock_flags
) __releases(RCU
)
304 struct inode
*inode
= VFS_I(ip
);
305 struct xfs_mount
*mp
= ip
->i_mount
;
309 * check for re-use of an inode within an RCU grace period due to the
310 * radix tree nodes not being updated yet. We monitor for this by
311 * setting the inode number to zero before freeing the inode structure.
312 * If the inode has been reallocated and set up, then the inode number
313 * will not match, so check for that, too.
315 spin_lock(&ip
->i_flags_lock
);
316 if (ip
->i_ino
!= ino
) {
317 trace_xfs_iget_skip(ip
);
318 XFS_STATS_INC(mp
, xs_ig_frecycle
);
325 * If we are racing with another cache hit that is currently
326 * instantiating this inode or currently recycling it out of
327 * reclaimabe state, wait for the initialisation to complete
330 * XXX(hch): eventually we should do something equivalent to
331 * wait_on_inode to wait for these flags to be cleared
332 * instead of polling for it.
334 if (ip
->i_flags
& (XFS_INEW
|XFS_IRECLAIM
)) {
335 trace_xfs_iget_skip(ip
);
336 XFS_STATS_INC(mp
, xs_ig_frecycle
);
342 * If lookup is racing with unlink return an error immediately.
344 if (VFS_I(ip
)->i_mode
== 0 && !(flags
& XFS_IGET_CREATE
)) {
350 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
351 * Need to carefully get it back into useable state.
353 if (ip
->i_flags
& XFS_IRECLAIMABLE
) {
354 trace_xfs_iget_reclaim(ip
);
357 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
358 * from stomping over us while we recycle the inode. We can't
359 * clear the radix tree reclaimable tag yet as it requires
360 * pag_ici_lock to be held exclusive.
362 ip
->i_flags
|= XFS_IRECLAIM
;
364 spin_unlock(&ip
->i_flags_lock
);
367 error
= xfs_reinit_inode(mp
, inode
);
370 * Re-initializing the inode failed, and we are in deep
371 * trouble. Try to re-add it to the reclaim list.
374 spin_lock(&ip
->i_flags_lock
);
376 ip
->i_flags
&= ~(XFS_INEW
| XFS_IRECLAIM
);
377 ASSERT(ip
->i_flags
& XFS_IRECLAIMABLE
);
378 trace_xfs_iget_reclaim_fail(ip
);
382 spin_lock(&pag
->pag_ici_lock
);
383 spin_lock(&ip
->i_flags_lock
);
386 * Clear the per-lifetime state in the inode as we are now
387 * effectively a new inode and need to return to the initial
388 * state before reuse occurs.
390 ip
->i_flags
&= ~XFS_IRECLAIM_RESET_FLAGS
;
391 ip
->i_flags
|= XFS_INEW
;
392 xfs_inode_clear_reclaim_tag(pag
, ip
->i_ino
);
393 inode
->i_state
= I_NEW
;
395 ASSERT(!rwsem_is_locked(&inode
->i_rwsem
));
396 init_rwsem(&inode
->i_rwsem
);
398 spin_unlock(&ip
->i_flags_lock
);
399 spin_unlock(&pag
->pag_ici_lock
);
401 /* If the VFS inode is being torn down, pause and try again. */
403 trace_xfs_iget_skip(ip
);
408 /* We've got a live one. */
409 spin_unlock(&ip
->i_flags_lock
);
411 trace_xfs_iget_hit(ip
);
415 xfs_ilock(ip
, lock_flags
);
417 xfs_iflags_clear(ip
, XFS_ISTALE
| XFS_IDONTCACHE
);
418 XFS_STATS_INC(mp
, xs_ig_found
);
423 spin_unlock(&ip
->i_flags_lock
);
431 struct xfs_mount
*mp
,
432 struct xfs_perag
*pag
,
435 struct xfs_inode
**ipp
,
439 struct xfs_inode
*ip
;
441 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ino
);
444 ip
= xfs_inode_alloc(mp
, ino
);
448 error
= xfs_iread(mp
, tp
, ip
, flags
);
452 trace_xfs_iget_miss(ip
);
454 if ((VFS_I(ip
)->i_mode
== 0) && !(flags
& XFS_IGET_CREATE
)) {
460 * Preload the radix tree so we can insert safely under the
461 * write spinlock. Note that we cannot sleep inside the preload
462 * region. Since we can be called from transaction context, don't
463 * recurse into the file system.
465 if (radix_tree_preload(GFP_NOFS
)) {
471 * Because the inode hasn't been added to the radix-tree yet it can't
472 * be found by another thread, so we can do the non-sleeping lock here.
475 if (!xfs_ilock_nowait(ip
, lock_flags
))
480 * These values must be set before inserting the inode into the radix
481 * tree as the moment it is inserted a concurrent lookup (allowed by the
482 * RCU locking mechanism) can find it and that lookup must see that this
483 * is an inode currently under construction (i.e. that XFS_INEW is set).
484 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
485 * memory barrier that ensures this detection works correctly at lookup
489 if (flags
& XFS_IGET_DONTCACHE
)
490 iflags
|= XFS_IDONTCACHE
;
494 xfs_iflags_set(ip
, iflags
);
496 /* insert the new inode */
497 spin_lock(&pag
->pag_ici_lock
);
498 error
= radix_tree_insert(&pag
->pag_ici_root
, agino
, ip
);
499 if (unlikely(error
)) {
500 WARN_ON(error
!= -EEXIST
);
501 XFS_STATS_INC(mp
, xs_ig_dup
);
503 goto out_preload_end
;
505 spin_unlock(&pag
->pag_ici_lock
);
506 radix_tree_preload_end();
512 spin_unlock(&pag
->pag_ici_lock
);
513 radix_tree_preload_end();
515 xfs_iunlock(ip
, lock_flags
);
517 __destroy_inode(VFS_I(ip
));
523 * Look up an inode by number in the given file system.
524 * The inode is looked up in the cache held in each AG.
525 * If the inode is found in the cache, initialise the vfs inode
528 * If it is not in core, read it in from the file system's device,
529 * add it to the cache and initialise the vfs inode.
531 * The inode is locked according to the value of the lock_flags parameter.
532 * This flag parameter indicates how and if the inode's IO lock and inode lock
535 * mp -- the mount point structure for the current file system. It points
536 * to the inode hash table.
537 * tp -- a pointer to the current transaction if there is one. This is
538 * simply passed through to the xfs_iread() call.
539 * ino -- the number of the inode desired. This is the unique identifier
540 * within the file system for the inode being requested.
541 * lock_flags -- flags indicating how to lock the inode. See the comment
542 * for xfs_ilock() for a list of valid values.
559 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
560 * doesn't get freed while it's being referenced during a
561 * radix tree traversal here. It assumes this function
562 * aqcuires only the ILOCK (and therefore it has no need to
563 * involve the IOLOCK in this synchronization).
565 ASSERT((lock_flags
& (XFS_IOLOCK_EXCL
| XFS_IOLOCK_SHARED
)) == 0);
567 /* reject inode numbers outside existing AGs */
568 if (!ino
|| XFS_INO_TO_AGNO(mp
, ino
) >= mp
->m_sb
.sb_agcount
)
571 XFS_STATS_INC(mp
, xs_ig_attempts
);
573 /* get the perag structure and ensure that it's inode capable */
574 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ino
));
575 agino
= XFS_INO_TO_AGINO(mp
, ino
);
580 ip
= radix_tree_lookup(&pag
->pag_ici_root
, agino
);
583 error
= xfs_iget_cache_hit(pag
, ip
, ino
, flags
, lock_flags
);
585 goto out_error_or_again
;
588 XFS_STATS_INC(mp
, xs_ig_missed
);
590 error
= xfs_iget_cache_miss(mp
, pag
, tp
, ino
, &ip
,
593 goto out_error_or_again
;
600 * If we have a real type for an on-disk inode, we can setup the inode
601 * now. If it's a new inode being created, xfs_ialloc will handle it.
603 if (xfs_iflags_test(ip
, XFS_INEW
) && VFS_I(ip
)->i_mode
!= 0)
604 xfs_setup_existing_inode(ip
);
608 if (error
== -EAGAIN
) {
617 * The inode lookup is done in batches to keep the amount of lock traffic and
618 * radix tree lookups to a minimum. The batch size is a trade off between
619 * lookup reduction and stack usage. This is in the reclaim path, so we can't
622 #define XFS_LOOKUP_BATCH 32
625 xfs_inode_ag_walk_grab(
626 struct xfs_inode
*ip
)
628 struct inode
*inode
= VFS_I(ip
);
630 ASSERT(rcu_read_lock_held());
633 * check for stale RCU freed inode
635 * If the inode has been reallocated, it doesn't matter if it's not in
636 * the AG we are walking - we are walking for writeback, so if it
637 * passes all the "valid inode" checks and is dirty, then we'll write
638 * it back anyway. If it has been reallocated and still being
639 * initialised, the XFS_INEW check below will catch it.
641 spin_lock(&ip
->i_flags_lock
);
643 goto out_unlock_noent
;
645 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
646 if (__xfs_iflags_test(ip
, XFS_INEW
| XFS_IRECLAIMABLE
| XFS_IRECLAIM
))
647 goto out_unlock_noent
;
648 spin_unlock(&ip
->i_flags_lock
);
650 /* nothing to sync during shutdown */
651 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
652 return -EFSCORRUPTED
;
654 /* If we can't grab the inode, it must on it's way to reclaim. */
662 spin_unlock(&ip
->i_flags_lock
);
668 struct xfs_mount
*mp
,
669 struct xfs_perag
*pag
,
670 int (*execute
)(struct xfs_inode
*ip
, int flags
,
676 uint32_t first_index
;
688 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
695 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
,
696 (void **)batch
, first_index
,
699 nr_found
= radix_tree_gang_lookup_tag(
701 (void **) batch
, first_index
,
702 XFS_LOOKUP_BATCH
, tag
);
710 * Grab the inodes before we drop the lock. if we found
711 * nothing, nr == 0 and the loop will be skipped.
713 for (i
= 0; i
< nr_found
; i
++) {
714 struct xfs_inode
*ip
= batch
[i
];
716 if (done
|| xfs_inode_ag_walk_grab(ip
))
720 * Update the index for the next lookup. Catch
721 * overflows into the next AG range which can occur if
722 * we have inodes in the last block of the AG and we
723 * are currently pointing to the last inode.
725 * Because we may see inodes that are from the wrong AG
726 * due to RCU freeing and reallocation, only update the
727 * index if it lies in this AG. It was a race that lead
728 * us to see this inode, so another lookup from the
729 * same index will not find it again.
731 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) != pag
->pag_agno
)
733 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
734 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
738 /* unlock now we've grabbed the inodes. */
741 for (i
= 0; i
< nr_found
; i
++) {
744 error
= execute(batch
[i
], flags
, args
);
746 if (error
== -EAGAIN
) {
750 if (error
&& last_error
!= -EFSCORRUPTED
)
754 /* bail out if the filesystem is corrupted. */
755 if (error
== -EFSCORRUPTED
)
760 } while (nr_found
&& !done
);
770 * Background scanning to trim post-EOF preallocated space. This is queued
771 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
775 struct xfs_mount
*mp
)
778 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_EOFBLOCKS_TAG
))
779 queue_delayed_work(mp
->m_eofblocks_workqueue
,
780 &mp
->m_eofblocks_work
,
781 msecs_to_jiffies(xfs_eofb_secs
* 1000));
786 xfs_eofblocks_worker(
787 struct work_struct
*work
)
789 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
790 struct xfs_mount
, m_eofblocks_work
);
791 xfs_icache_free_eofblocks(mp
, NULL
);
792 xfs_queue_eofblocks(mp
);
796 * Background scanning to trim preallocated CoW space. This is queued
797 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
798 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
802 struct xfs_mount
*mp
)
805 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_COWBLOCKS_TAG
))
806 queue_delayed_work(mp
->m_eofblocks_workqueue
,
807 &mp
->m_cowblocks_work
,
808 msecs_to_jiffies(xfs_cowb_secs
* 1000));
813 xfs_cowblocks_worker(
814 struct work_struct
*work
)
816 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
817 struct xfs_mount
, m_cowblocks_work
);
818 xfs_icache_free_cowblocks(mp
, NULL
);
819 xfs_queue_cowblocks(mp
);
823 xfs_inode_ag_iterator(
824 struct xfs_mount
*mp
,
825 int (*execute
)(struct xfs_inode
*ip
, int flags
,
830 struct xfs_perag
*pag
;
836 while ((pag
= xfs_perag_get(mp
, ag
))) {
837 ag
= pag
->pag_agno
+ 1;
838 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, -1);
842 if (error
== -EFSCORRUPTED
)
850 xfs_inode_ag_iterator_tag(
851 struct xfs_mount
*mp
,
852 int (*execute
)(struct xfs_inode
*ip
, int flags
,
858 struct xfs_perag
*pag
;
864 while ((pag
= xfs_perag_get_tag(mp
, ag
, tag
))) {
865 ag
= pag
->pag_agno
+ 1;
866 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, tag
);
870 if (error
== -EFSCORRUPTED
)
878 * Grab the inode for reclaim exclusively.
879 * Return 0 if we grabbed it, non-zero otherwise.
882 xfs_reclaim_inode_grab(
883 struct xfs_inode
*ip
,
886 ASSERT(rcu_read_lock_held());
888 /* quick check for stale RCU freed inode */
893 * If we are asked for non-blocking operation, do unlocked checks to
894 * see if the inode already is being flushed or in reclaim to avoid
897 if ((flags
& SYNC_TRYLOCK
) &&
898 __xfs_iflags_test(ip
, XFS_IFLOCK
| XFS_IRECLAIM
))
902 * The radix tree lock here protects a thread in xfs_iget from racing
903 * with us starting reclaim on the inode. Once we have the
904 * XFS_IRECLAIM flag set it will not touch us.
906 * Due to RCU lookup, we may find inodes that have been freed and only
907 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
908 * aren't candidates for reclaim at all, so we must check the
909 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
911 spin_lock(&ip
->i_flags_lock
);
912 if (!__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
) ||
913 __xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
914 /* not a reclaim candidate. */
915 spin_unlock(&ip
->i_flags_lock
);
918 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
919 spin_unlock(&ip
->i_flags_lock
);
924 * Inodes in different states need to be treated differently. The following
925 * table lists the inode states and the reclaim actions necessary:
927 * inode state iflush ret required action
928 * --------------- ---------- ---------------
930 * shutdown EIO unpin and reclaim
931 * clean, unpinned 0 reclaim
932 * stale, unpinned 0 reclaim
933 * clean, pinned(*) 0 requeue
934 * stale, pinned EAGAIN requeue
935 * dirty, async - requeue
936 * dirty, sync 0 reclaim
938 * (*) dgc: I don't think the clean, pinned state is possible but it gets
939 * handled anyway given the order of checks implemented.
941 * Also, because we get the flush lock first, we know that any inode that has
942 * been flushed delwri has had the flush completed by the time we check that
943 * the inode is clean.
945 * Note that because the inode is flushed delayed write by AIL pushing, the
946 * flush lock may already be held here and waiting on it can result in very
947 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
948 * the caller should push the AIL first before trying to reclaim inodes to
949 * minimise the amount of time spent waiting. For background relaim, we only
950 * bother to reclaim clean inodes anyway.
952 * Hence the order of actions after gaining the locks should be:
954 * shutdown => unpin and reclaim
955 * pinned, async => requeue
956 * pinned, sync => unpin
959 * dirty, async => requeue
960 * dirty, sync => flush, wait and reclaim
964 struct xfs_inode
*ip
,
965 struct xfs_perag
*pag
,
968 struct xfs_buf
*bp
= NULL
;
969 xfs_ino_t ino
= ip
->i_ino
; /* for radix_tree_delete */
974 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
975 if (!xfs_iflock_nowait(ip
)) {
976 if (!(sync_mode
& SYNC_WAIT
))
981 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
983 /* xfs_iflush_abort() drops the flush lock */
984 xfs_iflush_abort(ip
, false);
987 if (xfs_ipincount(ip
)) {
988 if (!(sync_mode
& SYNC_WAIT
))
992 if (xfs_iflags_test(ip
, XFS_ISTALE
) || xfs_inode_clean(ip
)) {
998 * Never flush out dirty data during non-blocking reclaim, as it would
999 * just contend with AIL pushing trying to do the same job.
1001 if (!(sync_mode
& SYNC_WAIT
))
1005 * Now we have an inode that needs flushing.
1007 * Note that xfs_iflush will never block on the inode buffer lock, as
1008 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1009 * ip->i_lock, and we are doing the exact opposite here. As a result,
1010 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1011 * result in an ABBA deadlock with xfs_ifree_cluster().
1013 * As xfs_ifree_cluser() must gather all inodes that are active in the
1014 * cache to mark them stale, if we hit this case we don't actually want
1015 * to do IO here - we want the inode marked stale so we can simply
1016 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1017 * inode, back off and try again. Hopefully the next pass through will
1018 * see the stale flag set on the inode.
1020 error
= xfs_iflush(ip
, &bp
);
1021 if (error
== -EAGAIN
) {
1022 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1023 /* backoff longer than in xfs_ifree_cluster */
1029 error
= xfs_bwrite(bp
);
1034 ASSERT(!xfs_isiflocked(ip
));
1037 * Because we use RCU freeing we need to ensure the inode always appears
1038 * to be reclaimed with an invalid inode number when in the free state.
1039 * We do this as early as possible under the ILOCK so that
1040 * xfs_iflush_cluster() can be guaranteed to detect races with us here.
1041 * By doing this, we guarantee that once xfs_iflush_cluster has locked
1042 * XFS_ILOCK that it will see either a valid, flushable inode that will
1043 * serialise correctly, or it will see a clean (and invalid) inode that
1046 spin_lock(&ip
->i_flags_lock
);
1047 ip
->i_flags
= XFS_IRECLAIM
;
1049 spin_unlock(&ip
->i_flags_lock
);
1051 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1053 XFS_STATS_INC(ip
->i_mount
, xs_ig_reclaims
);
1055 * Remove the inode from the per-AG radix tree.
1057 * Because radix_tree_delete won't complain even if the item was never
1058 * added to the tree assert that it's been there before to catch
1059 * problems with the inode life time early on.
1061 spin_lock(&pag
->pag_ici_lock
);
1062 if (!radix_tree_delete(&pag
->pag_ici_root
,
1063 XFS_INO_TO_AGINO(ip
->i_mount
, ino
)))
1065 xfs_perag_clear_reclaim_tag(pag
);
1066 spin_unlock(&pag
->pag_ici_lock
);
1069 * Here we do an (almost) spurious inode lock in order to coordinate
1070 * with inode cache radix tree lookups. This is because the lookup
1071 * can reference the inodes in the cache without taking references.
1073 * We make that OK here by ensuring that we wait until the inode is
1074 * unlocked after the lookup before we go ahead and free it.
1076 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1077 xfs_qm_dqdetach(ip
);
1078 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1080 __xfs_inode_free(ip
);
1086 xfs_iflags_clear(ip
, XFS_IRECLAIM
);
1087 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1089 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1090 * a short while. However, this just burns CPU time scanning the tree
1091 * waiting for IO to complete and the reclaim work never goes back to
1092 * the idle state. Instead, return 0 to let the next scheduled
1093 * background reclaim attempt to reclaim the inode again.
1099 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1100 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1101 * then a shut down during filesystem unmount reclaim walk leak all the
1102 * unreclaimed inodes.
1105 xfs_reclaim_inodes_ag(
1106 struct xfs_mount
*mp
,
1110 struct xfs_perag
*pag
;
1114 int trylock
= flags
& SYNC_TRYLOCK
;
1120 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1121 unsigned long first_index
= 0;
1125 ag
= pag
->pag_agno
+ 1;
1128 if (!mutex_trylock(&pag
->pag_ici_reclaim_lock
)) {
1133 first_index
= pag
->pag_ici_reclaim_cursor
;
1135 mutex_lock(&pag
->pag_ici_reclaim_lock
);
1138 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
1142 nr_found
= radix_tree_gang_lookup_tag(
1144 (void **)batch
, first_index
,
1146 XFS_ICI_RECLAIM_TAG
);
1154 * Grab the inodes before we drop the lock. if we found
1155 * nothing, nr == 0 and the loop will be skipped.
1157 for (i
= 0; i
< nr_found
; i
++) {
1158 struct xfs_inode
*ip
= batch
[i
];
1160 if (done
|| xfs_reclaim_inode_grab(ip
, flags
))
1164 * Update the index for the next lookup. Catch
1165 * overflows into the next AG range which can
1166 * occur if we have inodes in the last block of
1167 * the AG and we are currently pointing to the
1170 * Because we may see inodes that are from the
1171 * wrong AG due to RCU freeing and
1172 * reallocation, only update the index if it
1173 * lies in this AG. It was a race that lead us
1174 * to see this inode, so another lookup from
1175 * the same index will not find it again.
1177 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) !=
1180 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
1181 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
1185 /* unlock now we've grabbed the inodes. */
1188 for (i
= 0; i
< nr_found
; i
++) {
1191 error
= xfs_reclaim_inode(batch
[i
], pag
, flags
);
1192 if (error
&& last_error
!= -EFSCORRUPTED
)
1196 *nr_to_scan
-= XFS_LOOKUP_BATCH
;
1200 } while (nr_found
&& !done
&& *nr_to_scan
> 0);
1202 if (trylock
&& !done
)
1203 pag
->pag_ici_reclaim_cursor
= first_index
;
1205 pag
->pag_ici_reclaim_cursor
= 0;
1206 mutex_unlock(&pag
->pag_ici_reclaim_lock
);
1211 * if we skipped any AG, and we still have scan count remaining, do
1212 * another pass this time using blocking reclaim semantics (i.e
1213 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1214 * ensure that when we get more reclaimers than AGs we block rather
1215 * than spin trying to execute reclaim.
1217 if (skipped
&& (flags
& SYNC_WAIT
) && *nr_to_scan
> 0) {
1229 int nr_to_scan
= INT_MAX
;
1231 return xfs_reclaim_inodes_ag(mp
, mode
, &nr_to_scan
);
1235 * Scan a certain number of inodes for reclaim.
1237 * When called we make sure that there is a background (fast) inode reclaim in
1238 * progress, while we will throttle the speed of reclaim via doing synchronous
1239 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1240 * them to be cleaned, which we hope will not be very long due to the
1241 * background walker having already kicked the IO off on those dirty inodes.
1244 xfs_reclaim_inodes_nr(
1245 struct xfs_mount
*mp
,
1248 /* kick background reclaimer and push the AIL */
1249 xfs_reclaim_work_queue(mp
);
1250 xfs_ail_push_all(mp
->m_ail
);
1252 return xfs_reclaim_inodes_ag(mp
, SYNC_TRYLOCK
| SYNC_WAIT
, &nr_to_scan
);
1256 * Return the number of reclaimable inodes in the filesystem for
1257 * the shrinker to determine how much to reclaim.
1260 xfs_reclaim_inodes_count(
1261 struct xfs_mount
*mp
)
1263 struct xfs_perag
*pag
;
1264 xfs_agnumber_t ag
= 0;
1265 int reclaimable
= 0;
1267 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1268 ag
= pag
->pag_agno
+ 1;
1269 reclaimable
+= pag
->pag_ici_reclaimable
;
1277 struct xfs_inode
*ip
,
1278 struct xfs_eofblocks
*eofb
)
1280 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1281 !uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1284 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1285 !gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1288 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1289 xfs_get_projid(ip
) != eofb
->eof_prid
)
1296 * A union-based inode filtering algorithm. Process the inode if any of the
1297 * criteria match. This is for global/internal scans only.
1300 xfs_inode_match_id_union(
1301 struct xfs_inode
*ip
,
1302 struct xfs_eofblocks
*eofb
)
1304 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1305 uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1308 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1309 gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1312 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1313 xfs_get_projid(ip
) == eofb
->eof_prid
)
1320 xfs_inode_free_eofblocks(
1321 struct xfs_inode
*ip
,
1326 struct xfs_eofblocks
*eofb
= args
;
1327 bool need_iolock
= true;
1330 ASSERT(!eofb
|| (eofb
&& eofb
->eof_scan_owner
!= 0));
1332 if (!xfs_can_free_eofblocks(ip
, false)) {
1333 /* inode could be preallocated or append-only */
1334 trace_xfs_inode_free_eofblocks_invalid(ip
);
1335 xfs_inode_clear_eofblocks_tag(ip
);
1340 * If the mapping is dirty the operation can block and wait for some
1341 * time. Unless we are waiting, skip it.
1343 if (!(flags
& SYNC_WAIT
) &&
1344 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
))
1348 if (eofb
->eof_flags
& XFS_EOF_FLAGS_UNION
)
1349 match
= xfs_inode_match_id_union(ip
, eofb
);
1351 match
= xfs_inode_match_id(ip
, eofb
);
1355 /* skip the inode if the file size is too small */
1356 if (eofb
->eof_flags
& XFS_EOF_FLAGS_MINFILESIZE
&&
1357 XFS_ISIZE(ip
) < eofb
->eof_min_file_size
)
1361 * A scan owner implies we already hold the iolock. Skip it in
1362 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1363 * the possibility of EAGAIN being returned.
1365 if (eofb
->eof_scan_owner
== ip
->i_ino
)
1366 need_iolock
= false;
1369 ret
= xfs_free_eofblocks(ip
->i_mount
, ip
, need_iolock
);
1371 /* don't revisit the inode if we're not waiting */
1372 if (ret
== -EAGAIN
&& !(flags
& SYNC_WAIT
))
1379 __xfs_icache_free_eofblocks(
1380 struct xfs_mount
*mp
,
1381 struct xfs_eofblocks
*eofb
,
1382 int (*execute
)(struct xfs_inode
*ip
, int flags
,
1386 int flags
= SYNC_TRYLOCK
;
1388 if (eofb
&& (eofb
->eof_flags
& XFS_EOF_FLAGS_SYNC
))
1391 return xfs_inode_ag_iterator_tag(mp
, execute
, flags
,
1396 xfs_icache_free_eofblocks(
1397 struct xfs_mount
*mp
,
1398 struct xfs_eofblocks
*eofb
)
1400 return __xfs_icache_free_eofblocks(mp
, eofb
, xfs_inode_free_eofblocks
,
1401 XFS_ICI_EOFBLOCKS_TAG
);
1405 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1406 * multiple quotas, we don't know exactly which quota caused an allocation
1407 * failure. We make a best effort by including each quota under low free space
1408 * conditions (less than 1% free space) in the scan.
1411 __xfs_inode_free_quota_eofblocks(
1412 struct xfs_inode
*ip
,
1413 int (*execute
)(struct xfs_mount
*mp
,
1414 struct xfs_eofblocks
*eofb
))
1417 struct xfs_eofblocks eofb
= {0};
1418 struct xfs_dquot
*dq
;
1420 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1423 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1424 * can repeatedly trylock on the inode we're currently processing. We
1425 * run a sync scan to increase effectiveness and use the union filter to
1426 * cover all applicable quotas in a single scan.
1428 eofb
.eof_scan_owner
= ip
->i_ino
;
1429 eofb
.eof_flags
= XFS_EOF_FLAGS_UNION
|XFS_EOF_FLAGS_SYNC
;
1431 if (XFS_IS_UQUOTA_ENFORCED(ip
->i_mount
)) {
1432 dq
= xfs_inode_dquot(ip
, XFS_DQ_USER
);
1433 if (dq
&& xfs_dquot_lowsp(dq
)) {
1434 eofb
.eof_uid
= VFS_I(ip
)->i_uid
;
1435 eofb
.eof_flags
|= XFS_EOF_FLAGS_UID
;
1440 if (XFS_IS_GQUOTA_ENFORCED(ip
->i_mount
)) {
1441 dq
= xfs_inode_dquot(ip
, XFS_DQ_GROUP
);
1442 if (dq
&& xfs_dquot_lowsp(dq
)) {
1443 eofb
.eof_gid
= VFS_I(ip
)->i_gid
;
1444 eofb
.eof_flags
|= XFS_EOF_FLAGS_GID
;
1450 execute(ip
->i_mount
, &eofb
);
1456 xfs_inode_free_quota_eofblocks(
1457 struct xfs_inode
*ip
)
1459 return __xfs_inode_free_quota_eofblocks(ip
, xfs_icache_free_eofblocks
);
1463 __xfs_inode_set_eofblocks_tag(
1465 void (*execute
)(struct xfs_mount
*mp
),
1466 void (*set_tp
)(struct xfs_mount
*mp
, xfs_agnumber_t agno
,
1467 int error
, unsigned long caller_ip
),
1470 struct xfs_mount
*mp
= ip
->i_mount
;
1471 struct xfs_perag
*pag
;
1475 * Don't bother locking the AG and looking up in the radix trees
1476 * if we already know that we have the tag set.
1478 if (ip
->i_flags
& XFS_IEOFBLOCKS
)
1480 spin_lock(&ip
->i_flags_lock
);
1481 ip
->i_flags
|= XFS_IEOFBLOCKS
;
1482 spin_unlock(&ip
->i_flags_lock
);
1484 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1485 spin_lock(&pag
->pag_ici_lock
);
1487 tagged
= radix_tree_tagged(&pag
->pag_ici_root
, tag
);
1488 radix_tree_tag_set(&pag
->pag_ici_root
,
1489 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
), tag
);
1491 /* propagate the eofblocks tag up into the perag radix tree */
1492 spin_lock(&ip
->i_mount
->m_perag_lock
);
1493 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
1494 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1496 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1498 /* kick off background trimming */
1499 execute(ip
->i_mount
);
1501 set_tp(ip
->i_mount
, pag
->pag_agno
, -1, _RET_IP_
);
1504 spin_unlock(&pag
->pag_ici_lock
);
1509 xfs_inode_set_eofblocks_tag(
1512 trace_xfs_inode_set_eofblocks_tag(ip
);
1513 return __xfs_inode_set_eofblocks_tag(ip
, xfs_queue_eofblocks
,
1514 trace_xfs_perag_set_eofblocks
,
1515 XFS_ICI_EOFBLOCKS_TAG
);
1519 __xfs_inode_clear_eofblocks_tag(
1521 void (*clear_tp
)(struct xfs_mount
*mp
, xfs_agnumber_t agno
,
1522 int error
, unsigned long caller_ip
),
1525 struct xfs_mount
*mp
= ip
->i_mount
;
1526 struct xfs_perag
*pag
;
1528 spin_lock(&ip
->i_flags_lock
);
1529 ip
->i_flags
&= ~XFS_IEOFBLOCKS
;
1530 spin_unlock(&ip
->i_flags_lock
);
1532 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1533 spin_lock(&pag
->pag_ici_lock
);
1535 radix_tree_tag_clear(&pag
->pag_ici_root
,
1536 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
), tag
);
1537 if (!radix_tree_tagged(&pag
->pag_ici_root
, tag
)) {
1538 /* clear the eofblocks tag from the perag radix tree */
1539 spin_lock(&ip
->i_mount
->m_perag_lock
);
1540 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
1541 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1543 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1544 clear_tp(ip
->i_mount
, pag
->pag_agno
, -1, _RET_IP_
);
1547 spin_unlock(&pag
->pag_ici_lock
);
1552 xfs_inode_clear_eofblocks_tag(
1555 trace_xfs_inode_clear_eofblocks_tag(ip
);
1556 return __xfs_inode_clear_eofblocks_tag(ip
,
1557 trace_xfs_perag_clear_eofblocks
, XFS_ICI_EOFBLOCKS_TAG
);
1561 * Automatic CoW Reservation Freeing
1563 * These functions automatically garbage collect leftover CoW reservations
1564 * that were made on behalf of a cowextsize hint when we start to run out
1565 * of quota or when the reservations sit around for too long. If the file
1566 * has dirty pages or is undergoing writeback, its CoW reservations will
1569 * The actual garbage collection piggybacks off the same code that runs
1570 * the speculative EOF preallocation garbage collector.
1573 xfs_inode_free_cowblocks(
1574 struct xfs_inode
*ip
,
1579 struct xfs_eofblocks
*eofb
= args
;
1580 bool need_iolock
= true;
1582 struct xfs_ifork
*ifp
= XFS_IFORK_PTR(ip
, XFS_COW_FORK
);
1584 ASSERT(!eofb
|| (eofb
&& eofb
->eof_scan_owner
!= 0));
1587 * Just clear the tag if we have an empty cow fork or none at all. It's
1588 * possible the inode was fully unshared since it was originally tagged.
1590 if (!xfs_is_reflink_inode(ip
) || !ifp
->if_bytes
) {
1591 trace_xfs_inode_free_cowblocks_invalid(ip
);
1592 xfs_inode_clear_cowblocks_tag(ip
);
1597 * If the mapping is dirty or under writeback we cannot touch the
1598 * CoW fork. Leave it alone if we're in the midst of a directio.
1600 if ((VFS_I(ip
)->i_state
& I_DIRTY_PAGES
) ||
1601 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
) ||
1602 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_WRITEBACK
) ||
1603 atomic_read(&VFS_I(ip
)->i_dio_count
))
1607 if (eofb
->eof_flags
& XFS_EOF_FLAGS_UNION
)
1608 match
= xfs_inode_match_id_union(ip
, eofb
);
1610 match
= xfs_inode_match_id(ip
, eofb
);
1614 /* skip the inode if the file size is too small */
1615 if (eofb
->eof_flags
& XFS_EOF_FLAGS_MINFILESIZE
&&
1616 XFS_ISIZE(ip
) < eofb
->eof_min_file_size
)
1620 * A scan owner implies we already hold the iolock. Skip it in
1621 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1622 * the possibility of EAGAIN being returned.
1624 if (eofb
->eof_scan_owner
== ip
->i_ino
)
1625 need_iolock
= false;
1628 /* Free the CoW blocks */
1630 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
1631 xfs_ilock(ip
, XFS_MMAPLOCK_EXCL
);
1634 ret
= xfs_reflink_cancel_cow_range(ip
, 0, NULLFILEOFF
);
1637 xfs_iunlock(ip
, XFS_MMAPLOCK_EXCL
);
1638 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
1645 xfs_icache_free_cowblocks(
1646 struct xfs_mount
*mp
,
1647 struct xfs_eofblocks
*eofb
)
1649 return __xfs_icache_free_eofblocks(mp
, eofb
, xfs_inode_free_cowblocks
,
1650 XFS_ICI_COWBLOCKS_TAG
);
1654 xfs_inode_free_quota_cowblocks(
1655 struct xfs_inode
*ip
)
1657 return __xfs_inode_free_quota_eofblocks(ip
, xfs_icache_free_cowblocks
);
1661 xfs_inode_set_cowblocks_tag(
1664 trace_xfs_inode_set_cowblocks_tag(ip
);
1665 return __xfs_inode_set_eofblocks_tag(ip
, xfs_queue_cowblocks
,
1666 trace_xfs_perag_set_cowblocks
,
1667 XFS_ICI_COWBLOCKS_TAG
);
1671 xfs_inode_clear_cowblocks_tag(
1674 trace_xfs_inode_clear_cowblocks_tag(ip
);
1675 return __xfs_inode_clear_eofblocks_tag(ip
,
1676 trace_xfs_perag_clear_cowblocks
, XFS_ICI_COWBLOCKS_TAG
);