2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47 #include "xfs_reflink.h"
50 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
51 static int xfs_uuid_table_size
;
52 static uuid_t
*xfs_uuid_table
;
55 xfs_uuid_table_free(void)
57 if (xfs_uuid_table_size
== 0)
59 kmem_free(xfs_uuid_table
);
60 xfs_uuid_table
= NULL
;
61 xfs_uuid_table_size
= 0;
65 * See if the UUID is unique among mounted XFS filesystems.
66 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
72 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
75 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
78 if (uuid_is_nil(uuid
)) {
79 xfs_warn(mp
, "Filesystem has nil UUID - can't mount");
83 mutex_lock(&xfs_uuid_table_mutex
);
84 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
85 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
89 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
94 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
95 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
97 hole
= xfs_uuid_table_size
++;
99 xfs_uuid_table
[hole
] = *uuid
;
100 mutex_unlock(&xfs_uuid_table_mutex
);
105 mutex_unlock(&xfs_uuid_table_mutex
);
106 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
112 struct xfs_mount
*mp
)
114 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
117 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
120 mutex_lock(&xfs_uuid_table_mutex
);
121 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
122 if (uuid_is_nil(&xfs_uuid_table
[i
]))
124 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
126 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
129 ASSERT(i
< xfs_uuid_table_size
);
130 mutex_unlock(&xfs_uuid_table_mutex
);
136 struct rcu_head
*head
)
138 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
140 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
145 * Free up the per-ag resources associated with the mount structure.
152 struct xfs_perag
*pag
;
154 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
155 spin_lock(&mp
->m_perag_lock
);
156 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
157 spin_unlock(&mp
->m_perag_lock
);
159 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
160 xfs_buf_hash_destroy(pag
);
161 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
166 * Check size of device based on the (data/realtime) block count.
167 * Note: this check is used by the growfs code as well as mount.
170 xfs_sb_validate_fsb_count(
174 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
175 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
177 /* Limited by ULONG_MAX of page cache index */
178 if (nblocks
>> (PAGE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
184 xfs_initialize_perag(
186 xfs_agnumber_t agcount
,
187 xfs_agnumber_t
*maxagi
)
189 xfs_agnumber_t index
;
190 xfs_agnumber_t first_initialised
= 0;
195 * Walk the current per-ag tree so we don't try to initialise AGs
196 * that already exist (growfs case). Allocate and insert all the
197 * AGs we don't find ready for initialisation.
199 for (index
= 0; index
< agcount
; index
++) {
200 pag
= xfs_perag_get(mp
, index
);
205 if (!first_initialised
)
206 first_initialised
= index
;
208 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
211 pag
->pag_agno
= index
;
213 spin_lock_init(&pag
->pag_ici_lock
);
214 mutex_init(&pag
->pag_ici_reclaim_lock
);
215 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
216 if (xfs_buf_hash_init(pag
))
219 if (radix_tree_preload(GFP_NOFS
))
222 spin_lock(&mp
->m_perag_lock
);
223 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
225 spin_unlock(&mp
->m_perag_lock
);
226 radix_tree_preload_end();
230 spin_unlock(&mp
->m_perag_lock
);
231 radix_tree_preload_end();
234 index
= xfs_set_inode_alloc(mp
, agcount
);
239 mp
->m_ag_prealloc_blocks
= xfs_prealloc_blocks(mp
);
243 xfs_buf_hash_destroy(pag
);
245 for (; index
> first_initialised
; index
--) {
246 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
247 xfs_buf_hash_destroy(pag
);
256 * Does the initial read of the superblock.
260 struct xfs_mount
*mp
,
263 unsigned int sector_size
;
265 struct xfs_sb
*sbp
= &mp
->m_sb
;
267 int loud
= !(flags
& XFS_MFSI_QUIET
);
268 const struct xfs_buf_ops
*buf_ops
;
270 ASSERT(mp
->m_sb_bp
== NULL
);
271 ASSERT(mp
->m_ddev_targp
!= NULL
);
274 * For the initial read, we must guess at the sector
275 * size based on the block device. It's enough to
276 * get the sb_sectsize out of the superblock and
277 * then reread with the proper length.
278 * We don't verify it yet, because it may not be complete.
280 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
284 * Allocate a (locked) buffer to hold the superblock. This will be kept
285 * around at all times to optimize access to the superblock. Therefore,
286 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
290 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
291 BTOBB(sector_size
), XBF_NO_IOACCT
, &bp
,
295 xfs_warn(mp
, "SB validate failed with error %d.", error
);
296 /* bad CRC means corrupted metadata */
297 if (error
== -EFSBADCRC
)
298 error
= -EFSCORRUPTED
;
303 * Initialize the mount structure from the superblock.
305 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
308 * If we haven't validated the superblock, do so now before we try
309 * to check the sector size and reread the superblock appropriately.
311 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
313 xfs_warn(mp
, "Invalid superblock magic number");
319 * We must be able to do sector-sized and sector-aligned IO.
321 if (sector_size
> sbp
->sb_sectsize
) {
323 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
324 sector_size
, sbp
->sb_sectsize
);
329 if (buf_ops
== NULL
) {
331 * Re-read the superblock so the buffer is correctly sized,
332 * and properly verified.
335 sector_size
= sbp
->sb_sectsize
;
336 buf_ops
= loud
? &xfs_sb_buf_ops
: &xfs_sb_quiet_buf_ops
;
340 xfs_reinit_percpu_counters(mp
);
342 /* no need to be quiet anymore, so reset the buf ops */
343 bp
->b_ops
= &xfs_sb_buf_ops
;
355 * Update alignment values based on mount options and sb values
358 xfs_update_alignment(xfs_mount_t
*mp
)
360 xfs_sb_t
*sbp
= &(mp
->m_sb
);
364 * If stripe unit and stripe width are not multiples
365 * of the fs blocksize turn off alignment.
367 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
368 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
370 "alignment check failed: sunit/swidth vs. blocksize(%d)",
375 * Convert the stripe unit and width to FSBs.
377 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
378 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
380 "alignment check failed: sunit/swidth vs. agsize(%d)",
383 } else if (mp
->m_dalign
) {
384 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
387 "alignment check failed: sunit(%d) less than bsize(%d)",
388 mp
->m_dalign
, sbp
->sb_blocksize
);
394 * Update superblock with new values
397 if (xfs_sb_version_hasdalign(sbp
)) {
398 if (sbp
->sb_unit
!= mp
->m_dalign
) {
399 sbp
->sb_unit
= mp
->m_dalign
;
400 mp
->m_update_sb
= true;
402 if (sbp
->sb_width
!= mp
->m_swidth
) {
403 sbp
->sb_width
= mp
->m_swidth
;
404 mp
->m_update_sb
= true;
408 "cannot change alignment: superblock does not support data alignment");
411 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
412 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
413 mp
->m_dalign
= sbp
->sb_unit
;
414 mp
->m_swidth
= sbp
->sb_width
;
421 * Set the maximum inode count for this filesystem
424 xfs_set_maxicount(xfs_mount_t
*mp
)
426 xfs_sb_t
*sbp
= &(mp
->m_sb
);
429 if (sbp
->sb_imax_pct
) {
431 * Make sure the maximum inode count is a multiple
432 * of the units we allocate inodes in.
434 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
436 do_div(icount
, mp
->m_ialloc_blks
);
437 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
445 * Set the default minimum read and write sizes unless
446 * already specified in a mount option.
447 * We use smaller I/O sizes when the file system
448 * is being used for NFS service (wsync mount option).
451 xfs_set_rw_sizes(xfs_mount_t
*mp
)
453 xfs_sb_t
*sbp
= &(mp
->m_sb
);
454 int readio_log
, writeio_log
;
456 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
457 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
458 readio_log
= XFS_WSYNC_READIO_LOG
;
459 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
461 readio_log
= XFS_READIO_LOG_LARGE
;
462 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
465 readio_log
= mp
->m_readio_log
;
466 writeio_log
= mp
->m_writeio_log
;
469 if (sbp
->sb_blocklog
> readio_log
) {
470 mp
->m_readio_log
= sbp
->sb_blocklog
;
472 mp
->m_readio_log
= readio_log
;
474 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
475 if (sbp
->sb_blocklog
> writeio_log
) {
476 mp
->m_writeio_log
= sbp
->sb_blocklog
;
478 mp
->m_writeio_log
= writeio_log
;
480 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
484 * precalculate the low space thresholds for dynamic speculative preallocation.
487 xfs_set_low_space_thresholds(
488 struct xfs_mount
*mp
)
492 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
493 __uint64_t space
= mp
->m_sb
.sb_dblocks
;
496 mp
->m_low_space
[i
] = space
* (i
+ 1);
502 * Set whether we're using inode alignment.
505 xfs_set_inoalignment(xfs_mount_t
*mp
)
507 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
508 mp
->m_sb
.sb_inoalignmt
>=
509 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
510 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
512 mp
->m_inoalign_mask
= 0;
514 * If we are using stripe alignment, check whether
515 * the stripe unit is a multiple of the inode alignment
517 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
518 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
519 mp
->m_sinoalign
= mp
->m_dalign
;
525 * Check that the data (and log if separate) is an ok size.
529 struct xfs_mount
*mp
)
535 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
536 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
537 xfs_warn(mp
, "filesystem size mismatch detected");
540 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
541 d
- XFS_FSS_TO_BB(mp
, 1),
542 XFS_FSS_TO_BB(mp
, 1), 0, &bp
, NULL
);
544 xfs_warn(mp
, "last sector read failed");
549 if (mp
->m_logdev_targp
== mp
->m_ddev_targp
)
552 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
553 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
554 xfs_warn(mp
, "log size mismatch detected");
557 error
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
558 d
- XFS_FSB_TO_BB(mp
, 1),
559 XFS_FSB_TO_BB(mp
, 1), 0, &bp
, NULL
);
561 xfs_warn(mp
, "log device read failed");
569 * Clear the quotaflags in memory and in the superblock.
572 xfs_mount_reset_sbqflags(
573 struct xfs_mount
*mp
)
577 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
578 if (mp
->m_sb
.sb_qflags
== 0)
580 spin_lock(&mp
->m_sb_lock
);
581 mp
->m_sb
.sb_qflags
= 0;
582 spin_unlock(&mp
->m_sb_lock
);
584 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
587 return xfs_sync_sb(mp
, false);
591 xfs_default_resblks(xfs_mount_t
*mp
)
596 * We default to 5% or 8192 fsbs of space reserved, whichever is
597 * smaller. This is intended to cover concurrent allocation
598 * transactions when we initially hit enospc. These each require a 4
599 * block reservation. Hence by default we cover roughly 2000 concurrent
600 * allocation reservations.
602 resblks
= mp
->m_sb
.sb_dblocks
;
604 resblks
= min_t(__uint64_t
, resblks
, 8192);
609 * This function does the following on an initial mount of a file system:
610 * - reads the superblock from disk and init the mount struct
611 * - if we're a 32-bit kernel, do a size check on the superblock
612 * so we don't mount terabyte filesystems
613 * - init mount struct realtime fields
614 * - allocate inode hash table for fs
615 * - init directory manager
616 * - perform recovery and init the log manager
620 struct xfs_mount
*mp
)
622 struct xfs_sb
*sbp
= &(mp
->m_sb
);
623 struct xfs_inode
*rip
;
629 xfs_sb_mount_common(mp
, sbp
);
632 * Check for a mismatched features2 values. Older kernels read & wrote
633 * into the wrong sb offset for sb_features2 on some platforms due to
634 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
635 * which made older superblock reading/writing routines swap it as a
638 * For backwards compatibility, we make both slots equal.
640 * If we detect a mismatched field, we OR the set bits into the existing
641 * features2 field in case it has already been modified; we don't want
642 * to lose any features. We then update the bad location with the ORed
643 * value so that older kernels will see any features2 flags. The
644 * superblock writeback code ensures the new sb_features2 is copied to
645 * sb_bad_features2 before it is logged or written to disk.
647 if (xfs_sb_has_mismatched_features2(sbp
)) {
648 xfs_warn(mp
, "correcting sb_features alignment problem");
649 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
650 mp
->m_update_sb
= true;
653 * Re-check for ATTR2 in case it was found in bad_features2
656 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
657 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
658 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
661 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
662 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
663 xfs_sb_version_removeattr2(&mp
->m_sb
);
664 mp
->m_update_sb
= true;
666 /* update sb_versionnum for the clearing of the morebits */
667 if (!sbp
->sb_features2
)
668 mp
->m_update_sb
= true;
671 /* always use v2 inodes by default now */
672 if (!(mp
->m_sb
.sb_versionnum
& XFS_SB_VERSION_NLINKBIT
)) {
673 mp
->m_sb
.sb_versionnum
|= XFS_SB_VERSION_NLINKBIT
;
674 mp
->m_update_sb
= true;
678 * Check if sb_agblocks is aligned at stripe boundary
679 * If sb_agblocks is NOT aligned turn off m_dalign since
680 * allocator alignment is within an ag, therefore ag has
681 * to be aligned at stripe boundary.
683 error
= xfs_update_alignment(mp
);
687 xfs_alloc_compute_maxlevels(mp
);
688 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
689 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
690 xfs_ialloc_compute_maxlevels(mp
);
691 xfs_rmapbt_compute_maxlevels(mp
);
692 xfs_refcountbt_compute_maxlevels(mp
);
694 xfs_set_maxicount(mp
);
696 /* enable fail_at_unmount as default */
697 mp
->m_fail_unmount
= 1;
699 error
= xfs_sysfs_init(&mp
->m_kobj
, &xfs_mp_ktype
, NULL
, mp
->m_fsname
);
703 error
= xfs_sysfs_init(&mp
->m_stats
.xs_kobj
, &xfs_stats_ktype
,
704 &mp
->m_kobj
, "stats");
706 goto out_remove_sysfs
;
708 error
= xfs_error_sysfs_init(mp
);
713 error
= xfs_uuid_mount(mp
);
715 goto out_remove_error_sysfs
;
718 * Set the minimum read and write sizes
720 xfs_set_rw_sizes(mp
);
722 /* set the low space thresholds for dynamic preallocation */
723 xfs_set_low_space_thresholds(mp
);
726 * Set the inode cluster size.
727 * This may still be overridden by the file system
728 * block size if it is larger than the chosen cluster size.
730 * For v5 filesystems, scale the cluster size with the inode size to
731 * keep a constant ratio of inode per cluster buffer, but only if mkfs
732 * has set the inode alignment value appropriately for larger cluster
735 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
736 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
737 int new_size
= mp
->m_inode_cluster_size
;
739 new_size
*= mp
->m_sb
.sb_inodesize
/ XFS_DINODE_MIN_SIZE
;
740 if (mp
->m_sb
.sb_inoalignmt
>= XFS_B_TO_FSBT(mp
, new_size
))
741 mp
->m_inode_cluster_size
= new_size
;
745 * If enabled, sparse inode chunk alignment is expected to match the
746 * cluster size. Full inode chunk alignment must match the chunk size,
747 * but that is checked on sb read verification...
749 if (xfs_sb_version_hassparseinodes(&mp
->m_sb
) &&
750 mp
->m_sb
.sb_spino_align
!=
751 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
)) {
753 "Sparse inode block alignment (%u) must match cluster size (%llu).",
754 mp
->m_sb
.sb_spino_align
,
755 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
));
757 goto out_remove_uuid
;
761 * Set inode alignment fields
763 xfs_set_inoalignment(mp
);
766 * Check that the data (and log if separate) is an ok size.
768 error
= xfs_check_sizes(mp
);
770 goto out_remove_uuid
;
773 * Initialize realtime fields in the mount structure
775 error
= xfs_rtmount_init(mp
);
777 xfs_warn(mp
, "RT mount failed");
778 goto out_remove_uuid
;
782 * Copies the low order bits of the timestamp and the randomly
783 * set "sequence" number out of a UUID.
785 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
787 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
789 error
= xfs_da_mount(mp
);
791 xfs_warn(mp
, "Failed dir/attr init: %d", error
);
792 goto out_remove_uuid
;
796 * Initialize the precomputed transaction reservations values.
801 * Allocate and initialize the per-ag data.
803 spin_lock_init(&mp
->m_perag_lock
);
804 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
805 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
807 xfs_warn(mp
, "Failed per-ag init: %d", error
);
811 if (!sbp
->sb_logblocks
) {
812 xfs_warn(mp
, "no log defined");
813 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
814 error
= -EFSCORRUPTED
;
819 * Log's mount-time initialization. The first part of recovery can place
820 * some items on the AIL, to be handled when recovery is finished or
823 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
824 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
825 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
827 xfs_warn(mp
, "log mount failed");
832 * Now the log is mounted, we know if it was an unclean shutdown or
833 * not. If it was, with the first phase of recovery has completed, we
834 * have consistent AG blocks on disk. We have not recovered EFIs yet,
835 * but they are recovered transactionally in the second recovery phase
838 * Hence we can safely re-initialise incore superblock counters from
839 * the per-ag data. These may not be correct if the filesystem was not
840 * cleanly unmounted, so we need to wait for recovery to finish before
843 * If the filesystem was cleanly unmounted, then we can trust the
844 * values in the superblock to be correct and we don't need to do
847 * If we are currently making the filesystem, the initialisation will
848 * fail as the perag data is in an undefined state.
850 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
851 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
852 !mp
->m_sb
.sb_inprogress
) {
853 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
855 goto out_log_dealloc
;
859 * Get and sanity-check the root inode.
860 * Save the pointer to it in the mount structure.
862 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
864 xfs_warn(mp
, "failed to read root inode");
865 goto out_log_dealloc
;
870 if (unlikely(!S_ISDIR(VFS_I(rip
)->i_mode
))) {
871 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
872 (unsigned long long)rip
->i_ino
);
873 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
874 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
876 error
= -EFSCORRUPTED
;
879 mp
->m_rootip
= rip
; /* save it */
881 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
884 * Initialize realtime inode pointers in the mount structure
886 error
= xfs_rtmount_inodes(mp
);
889 * Free up the root inode.
891 xfs_warn(mp
, "failed to read RT inodes");
896 * If this is a read-only mount defer the superblock updates until
897 * the next remount into writeable mode. Otherwise we would never
898 * perform the update e.g. for the root filesystem.
900 if (mp
->m_update_sb
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
901 error
= xfs_sync_sb(mp
, false);
903 xfs_warn(mp
, "failed to write sb changes");
909 * Initialise the XFS quota management subsystem for this mount
911 if (XFS_IS_QUOTA_RUNNING(mp
)) {
912 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
916 ASSERT(!XFS_IS_QUOTA_ON(mp
));
919 * If a file system had quotas running earlier, but decided to
920 * mount without -o uquota/pquota/gquota options, revoke the
921 * quotachecked license.
923 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
924 xfs_notice(mp
, "resetting quota flags");
925 error
= xfs_mount_reset_sbqflags(mp
);
932 * During the second phase of log recovery, we need iget and
933 * iput to behave like they do for an active filesystem.
934 * xfs_fs_drop_inode needs to be able to prevent the deletion
935 * of inodes before we're done replaying log items on those
938 mp
->m_super
->s_flags
|= MS_ACTIVE
;
941 * Finish recovering the file system. This part needed to be delayed
942 * until after the root and real-time bitmap inodes were consistently
945 error
= xfs_log_mount_finish(mp
);
947 xfs_warn(mp
, "log mount finish failed");
952 * Now the log is fully replayed, we can transition to full read-only
953 * mode for read-only mounts. This will sync all the metadata and clean
954 * the log so that the recovery we just performed does not have to be
955 * replayed again on the next mount.
957 * We use the same quiesce mechanism as the rw->ro remount, as they are
958 * semantically identical operations.
960 if ((mp
->m_flags
& (XFS_MOUNT_RDONLY
|XFS_MOUNT_NORECOVERY
)) ==
962 xfs_quiesce_attr(mp
);
966 * Complete the quota initialisation, post-log-replay component.
969 ASSERT(mp
->m_qflags
== 0);
970 mp
->m_qflags
= quotaflags
;
972 xfs_qm_mount_quotas(mp
);
976 * Now we are mounted, reserve a small amount of unused space for
977 * privileged transactions. This is needed so that transaction
978 * space required for critical operations can dip into this pool
979 * when at ENOSPC. This is needed for operations like create with
980 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
981 * are not allowed to use this reserved space.
983 * This may drive us straight to ENOSPC on mount, but that implies
984 * we were already there on the last unmount. Warn if this occurs.
986 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
987 resblks
= xfs_default_resblks(mp
);
988 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
991 "Unable to allocate reserve blocks. Continuing without reserve pool.");
993 /* Recover any CoW blocks that never got remapped. */
994 error
= xfs_reflink_recover_cow(mp
);
997 "Error %d recovering leftover CoW allocations.", error
);
998 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
1002 /* Reserve AG blocks for future btree expansion. */
1003 error
= xfs_fs_reserve_ag_blocks(mp
);
1004 if (error
&& error
!= -ENOSPC
)
1011 xfs_fs_unreserve_ag_blocks(mp
);
1013 xfs_qm_unmount_quotas(mp
);
1015 mp
->m_super
->s_flags
&= ~MS_ACTIVE
;
1016 xfs_rtunmount_inodes(mp
);
1019 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1020 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1022 mp
->m_flags
|= XFS_MOUNT_UNMOUNTING
;
1023 xfs_log_mount_cancel(mp
);
1025 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1026 xfs_wait_buftarg(mp
->m_logdev_targp
);
1027 xfs_wait_buftarg(mp
->m_ddev_targp
);
1033 xfs_uuid_unmount(mp
);
1034 out_remove_error_sysfs
:
1035 xfs_error_sysfs_del(mp
);
1037 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1039 xfs_sysfs_del(&mp
->m_kobj
);
1045 * This flushes out the inodes,dquots and the superblock, unmounts the
1046 * log and makes sure that incore structures are freed.
1050 struct xfs_mount
*mp
)
1055 cancel_delayed_work_sync(&mp
->m_eofblocks_work
);
1056 cancel_delayed_work_sync(&mp
->m_cowblocks_work
);
1058 xfs_fs_unreserve_ag_blocks(mp
);
1059 xfs_qm_unmount_quotas(mp
);
1060 xfs_rtunmount_inodes(mp
);
1061 IRELE(mp
->m_rootip
);
1064 * We can potentially deadlock here if we have an inode cluster
1065 * that has been freed has its buffer still pinned in memory because
1066 * the transaction is still sitting in a iclog. The stale inodes
1067 * on that buffer will have their flush locks held until the
1068 * transaction hits the disk and the callbacks run. the inode
1069 * flush takes the flush lock unconditionally and with nothing to
1070 * push out the iclog we will never get that unlocked. hence we
1071 * need to force the log first.
1073 xfs_log_force(mp
, XFS_LOG_SYNC
);
1076 * We now need to tell the world we are unmounting. This will allow
1077 * us to detect that the filesystem is going away and we should error
1078 * out anything that we have been retrying in the background. This will
1079 * prevent neverending retries in AIL pushing from hanging the unmount.
1081 mp
->m_flags
|= XFS_MOUNT_UNMOUNTING
;
1084 * Flush all pending changes from the AIL.
1086 xfs_ail_push_all_sync(mp
->m_ail
);
1089 * And reclaim all inodes. At this point there should be no dirty
1090 * inodes and none should be pinned or locked, but use synchronous
1091 * reclaim just to be sure. We can stop background inode reclaim
1092 * here as well if it is still running.
1094 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1095 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1100 * Unreserve any blocks we have so that when we unmount we don't account
1101 * the reserved free space as used. This is really only necessary for
1102 * lazy superblock counting because it trusts the incore superblock
1103 * counters to be absolutely correct on clean unmount.
1105 * We don't bother correcting this elsewhere for lazy superblock
1106 * counting because on mount of an unclean filesystem we reconstruct the
1107 * correct counter value and this is irrelevant.
1109 * For non-lazy counter filesystems, this doesn't matter at all because
1110 * we only every apply deltas to the superblock and hence the incore
1111 * value does not matter....
1114 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1116 xfs_warn(mp
, "Unable to free reserved block pool. "
1117 "Freespace may not be correct on next mount.");
1119 error
= xfs_log_sbcount(mp
);
1121 xfs_warn(mp
, "Unable to update superblock counters. "
1122 "Freespace may not be correct on next mount.");
1125 xfs_log_unmount(mp
);
1127 xfs_uuid_unmount(mp
);
1130 xfs_errortag_clearall(mp
, 0);
1134 xfs_error_sysfs_del(mp
);
1135 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1136 xfs_sysfs_del(&mp
->m_kobj
);
1140 * Determine whether modifications can proceed. The caller specifies the minimum
1141 * freeze level for which modifications should not be allowed. This allows
1142 * certain operations to proceed while the freeze sequence is in progress, if
1147 struct xfs_mount
*mp
,
1150 ASSERT(level
> SB_UNFROZEN
);
1151 if ((mp
->m_super
->s_writers
.frozen
>= level
) ||
1152 XFS_FORCED_SHUTDOWN(mp
) || (mp
->m_flags
& XFS_MOUNT_RDONLY
))
1161 * Sync the superblock counters to disk.
1163 * Note this code can be called during the process of freezing, so we use the
1164 * transaction allocator that does not block when the transaction subsystem is
1165 * in its frozen state.
1168 xfs_log_sbcount(xfs_mount_t
*mp
)
1170 /* allow this to proceed during the freeze sequence... */
1171 if (!xfs_fs_writable(mp
, SB_FREEZE_COMPLETE
))
1175 * we don't need to do this if we are updating the superblock
1176 * counters on every modification.
1178 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1181 return xfs_sync_sb(mp
, true);
1185 * Deltas for the inode count are +/-64, hence we use a large batch size
1186 * of 128 so we don't need to take the counter lock on every update.
1188 #define XFS_ICOUNT_BATCH 128
1191 struct xfs_mount
*mp
,
1194 __percpu_counter_add(&mp
->m_icount
, delta
, XFS_ICOUNT_BATCH
);
1195 if (__percpu_counter_compare(&mp
->m_icount
, 0, XFS_ICOUNT_BATCH
) < 0) {
1197 percpu_counter_add(&mp
->m_icount
, -delta
);
1205 struct xfs_mount
*mp
,
1208 percpu_counter_add(&mp
->m_ifree
, delta
);
1209 if (percpu_counter_compare(&mp
->m_ifree
, 0) < 0) {
1211 percpu_counter_add(&mp
->m_ifree
, -delta
);
1218 * Deltas for the block count can vary from 1 to very large, but lock contention
1219 * only occurs on frequent small block count updates such as in the delayed
1220 * allocation path for buffered writes (page a time updates). Hence we set
1221 * a large batch count (1024) to minimise global counter updates except when
1222 * we get near to ENOSPC and we have to be very accurate with our updates.
1224 #define XFS_FDBLOCKS_BATCH 1024
1227 struct xfs_mount
*mp
,
1237 * If the reserve pool is depleted, put blocks back into it
1238 * first. Most of the time the pool is full.
1240 if (likely(mp
->m_resblks
== mp
->m_resblks_avail
)) {
1241 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1245 spin_lock(&mp
->m_sb_lock
);
1246 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1248 if (res_used
> delta
) {
1249 mp
->m_resblks_avail
+= delta
;
1252 mp
->m_resblks_avail
= mp
->m_resblks
;
1253 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1255 spin_unlock(&mp
->m_sb_lock
);
1260 * Taking blocks away, need to be more accurate the closer we
1263 * If the counter has a value of less than 2 * max batch size,
1264 * then make everything serialise as we are real close to
1267 if (__percpu_counter_compare(&mp
->m_fdblocks
, 2 * XFS_FDBLOCKS_BATCH
,
1268 XFS_FDBLOCKS_BATCH
) < 0)
1271 batch
= XFS_FDBLOCKS_BATCH
;
1273 __percpu_counter_add(&mp
->m_fdblocks
, delta
, batch
);
1274 if (__percpu_counter_compare(&mp
->m_fdblocks
, mp
->m_alloc_set_aside
,
1275 XFS_FDBLOCKS_BATCH
) >= 0) {
1281 * lock up the sb for dipping into reserves before releasing the space
1282 * that took us to ENOSPC.
1284 spin_lock(&mp
->m_sb_lock
);
1285 percpu_counter_add(&mp
->m_fdblocks
, -delta
);
1287 goto fdblocks_enospc
;
1289 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1290 if (lcounter
>= 0) {
1291 mp
->m_resblks_avail
= lcounter
;
1292 spin_unlock(&mp
->m_sb_lock
);
1295 printk_once(KERN_WARNING
1296 "Filesystem \"%s\": reserve blocks depleted! "
1297 "Consider increasing reserve pool size.",
1300 spin_unlock(&mp
->m_sb_lock
);
1306 struct xfs_mount
*mp
,
1312 spin_lock(&mp
->m_sb_lock
);
1313 lcounter
= mp
->m_sb
.sb_frextents
+ delta
;
1317 mp
->m_sb
.sb_frextents
= lcounter
;
1318 spin_unlock(&mp
->m_sb_lock
);
1323 * xfs_getsb() is called to obtain the buffer for the superblock.
1324 * The buffer is returned locked and read in from disk.
1325 * The buffer should be released with a call to xfs_brelse().
1327 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1328 * the superblock buffer if it can be locked without sleeping.
1329 * If it can't then we'll return NULL.
1333 struct xfs_mount
*mp
,
1336 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1338 if (!xfs_buf_trylock(bp
)) {
1339 if (flags
& XBF_TRYLOCK
)
1345 ASSERT(bp
->b_flags
& XBF_DONE
);
1350 * Used to free the superblock along various error paths.
1354 struct xfs_mount
*mp
)
1356 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1364 * If the underlying (data/log/rt) device is readonly, there are some
1365 * operations that cannot proceed.
1368 xfs_dev_is_read_only(
1369 struct xfs_mount
*mp
,
1372 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1373 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1374 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1375 xfs_notice(mp
, "%s required on read-only device.", message
);
1376 xfs_notice(mp
, "write access unavailable, cannot proceed.");