2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
52 #include <asm/irq_regs.h>
54 typedef int (*remote_function_f
)(void *);
56 struct remote_function_call
{
57 struct task_struct
*p
;
58 remote_function_f func
;
63 static void remote_function(void *data
)
65 struct remote_function_call
*tfc
= data
;
66 struct task_struct
*p
= tfc
->p
;
70 if (task_cpu(p
) != smp_processor_id())
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
78 tfc
->ret
= -ESRCH
; /* No such (running) process */
83 tfc
->ret
= tfc
->func(tfc
->info
);
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
100 task_function_call(struct task_struct
*p
, remote_function_f func
, void *info
)
102 struct remote_function_call data
= {
111 ret
= smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
114 } while (ret
== -EAGAIN
);
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
124 * Calls the function @func on the remote cpu.
126 * returns: @func return value or -ENXIO when the cpu is offline
128 static int cpu_function_call(int cpu
, remote_function_f func
, void *info
)
130 struct remote_function_call data
= {
134 .ret
= -ENXIO
, /* No such CPU */
137 smp_call_function_single(cpu
, remote_function
, &data
, 1);
142 static inline struct perf_cpu_context
*
143 __get_cpu_context(struct perf_event_context
*ctx
)
145 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
148 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
149 struct perf_event_context
*ctx
)
151 raw_spin_lock(&cpuctx
->ctx
.lock
);
153 raw_spin_lock(&ctx
->lock
);
156 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
157 struct perf_event_context
*ctx
)
160 raw_spin_unlock(&ctx
->lock
);
161 raw_spin_unlock(&cpuctx
->ctx
.lock
);
164 #define TASK_TOMBSTONE ((void *)-1L)
166 static bool is_kernel_event(struct perf_event
*event
)
168 return READ_ONCE(event
->owner
) == TASK_TOMBSTONE
;
172 * On task ctx scheduling...
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
178 * This however results in two special cases:
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
190 typedef void (*event_f
)(struct perf_event
*, struct perf_cpu_context
*,
191 struct perf_event_context
*, void *);
193 struct event_function_struct
{
194 struct perf_event
*event
;
199 static int event_function(void *info
)
201 struct event_function_struct
*efs
= info
;
202 struct perf_event
*event
= efs
->event
;
203 struct perf_event_context
*ctx
= event
->ctx
;
204 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
205 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
208 WARN_ON_ONCE(!irqs_disabled());
210 perf_ctx_lock(cpuctx
, task_ctx
);
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
216 if (ctx
->task
!= current
) {
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
228 WARN_ON_ONCE(!ctx
->is_active
);
230 * And since we have ctx->is_active, cpuctx->task_ctx must
233 WARN_ON_ONCE(task_ctx
!= ctx
);
235 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
238 efs
->func(event
, cpuctx
, ctx
, efs
->data
);
240 perf_ctx_unlock(cpuctx
, task_ctx
);
245 static void event_function_call(struct perf_event
*event
, event_f func
, void *data
)
247 struct perf_event_context
*ctx
= event
->ctx
;
248 struct task_struct
*task
= READ_ONCE(ctx
->task
); /* verified in event_function */
249 struct event_function_struct efs
= {
255 if (!event
->parent
) {
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
261 lockdep_assert_held(&ctx
->mutex
);
265 cpu_function_call(event
->cpu
, event_function
, &efs
);
269 if (task
== TASK_TOMBSTONE
)
273 if (!task_function_call(task
, event_function
, &efs
))
276 raw_spin_lock_irq(&ctx
->lock
);
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
282 if (task
== TASK_TOMBSTONE
) {
283 raw_spin_unlock_irq(&ctx
->lock
);
286 if (ctx
->is_active
) {
287 raw_spin_unlock_irq(&ctx
->lock
);
290 func(event
, NULL
, ctx
, data
);
291 raw_spin_unlock_irq(&ctx
->lock
);
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
298 static void event_function_local(struct perf_event
*event
, event_f func
, void *data
)
300 struct perf_event_context
*ctx
= event
->ctx
;
301 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
302 struct task_struct
*task
= READ_ONCE(ctx
->task
);
303 struct perf_event_context
*task_ctx
= NULL
;
305 WARN_ON_ONCE(!irqs_disabled());
308 if (task
== TASK_TOMBSTONE
)
314 perf_ctx_lock(cpuctx
, task_ctx
);
317 if (task
== TASK_TOMBSTONE
)
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
326 if (ctx
->is_active
) {
327 if (WARN_ON_ONCE(task
!= current
))
330 if (WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
))
334 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
337 func(event
, cpuctx
, ctx
, data
);
339 perf_ctx_unlock(cpuctx
, task_ctx
);
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
348 * branch priv levels that need permission checks
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
355 EVENT_FLEXIBLE
= 0x1,
358 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
366 static void perf_sched_delayed(struct work_struct
*work
);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events
);
368 static DECLARE_DELAYED_WORK(perf_sched_work
, perf_sched_delayed
);
369 static DEFINE_MUTEX(perf_sched_mutex
);
370 static atomic_t perf_sched_count
;
372 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages
);
374 static DEFINE_PER_CPU(struct pmu_event_list
, pmu_sb_events
);
376 static atomic_t nr_mmap_events __read_mostly
;
377 static atomic_t nr_comm_events __read_mostly
;
378 static atomic_t nr_task_events __read_mostly
;
379 static atomic_t nr_freq_events __read_mostly
;
380 static atomic_t nr_switch_events __read_mostly
;
382 static LIST_HEAD(pmus
);
383 static DEFINE_MUTEX(pmus_lock
);
384 static struct srcu_struct pmus_srcu
;
387 * perf event paranoia level:
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
390 * 1 - disallow cpu events for unpriv
391 * 2 - disallow kernel profiling for unpriv
393 int sysctl_perf_event_paranoid __read_mostly
= 2;
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
399 * max perf event sample rate
401 #define DEFAULT_MAX_SAMPLE_RATE 100000
402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
405 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
407 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
408 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
410 static int perf_sample_allowed_ns __read_mostly
=
411 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
413 static void update_perf_cpu_limits(void)
415 u64 tmp
= perf_sample_period_ns
;
417 tmp
*= sysctl_perf_cpu_time_max_percent
;
418 tmp
= div_u64(tmp
, 100);
422 WRITE_ONCE(perf_sample_allowed_ns
, tmp
);
425 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
);
427 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
428 void __user
*buffer
, size_t *lenp
,
431 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
437 * If throttling is disabled don't allow the write:
439 if (sysctl_perf_cpu_time_max_percent
== 100 ||
440 sysctl_perf_cpu_time_max_percent
== 0)
443 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
444 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
445 update_perf_cpu_limits();
450 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
452 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
453 void __user
*buffer
, size_t *lenp
,
456 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
461 if (sysctl_perf_cpu_time_max_percent
== 100 ||
462 sysctl_perf_cpu_time_max_percent
== 0) {
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns
, 0);
467 update_perf_cpu_limits();
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64
, running_sample_length
);
482 static u64 __report_avg
;
483 static u64 __report_allowed
;
485 static void perf_duration_warn(struct irq_work
*w
)
487 printk_ratelimited(KERN_INFO
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg
, __report_allowed
,
491 sysctl_perf_event_sample_rate
);
494 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
496 void perf_sample_event_took(u64 sample_len_ns
)
498 u64 max_len
= READ_ONCE(perf_sample_allowed_ns
);
506 /* Decay the counter by 1 average sample. */
507 running_len
= __this_cpu_read(running_sample_length
);
508 running_len
-= running_len
/NR_ACCUMULATED_SAMPLES
;
509 running_len
+= sample_len_ns
;
510 __this_cpu_write(running_sample_length
, running_len
);
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 * from having to maintain a count.
517 avg_len
= running_len
/NR_ACCUMULATED_SAMPLES
;
518 if (avg_len
<= max_len
)
521 __report_avg
= avg_len
;
522 __report_allowed
= max_len
;
525 * Compute a throttle threshold 25% below the current duration.
527 avg_len
+= avg_len
/ 4;
528 max
= (TICK_NSEC
/ 100) * sysctl_perf_cpu_time_max_percent
;
534 WRITE_ONCE(perf_sample_allowed_ns
, avg_len
);
535 WRITE_ONCE(max_samples_per_tick
, max
);
537 sysctl_perf_event_sample_rate
= max
* HZ
;
538 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
540 if (!irq_work_queue(&perf_duration_work
)) {
541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 "kernel.perf_event_max_sample_rate to %d\n",
543 __report_avg
, __report_allowed
,
544 sysctl_perf_event_sample_rate
);
548 static atomic64_t perf_event_id
;
550 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
551 enum event_type_t event_type
);
553 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
554 enum event_type_t event_type
,
555 struct task_struct
*task
);
557 static void update_context_time(struct perf_event_context
*ctx
);
558 static u64
perf_event_time(struct perf_event
*event
);
560 void __weak
perf_event_print_debug(void) { }
562 extern __weak
const char *perf_pmu_name(void)
567 static inline u64
perf_clock(void)
569 return local_clock();
572 static inline u64
perf_event_clock(struct perf_event
*event
)
574 return event
->clock();
577 #ifdef CONFIG_CGROUP_PERF
580 perf_cgroup_match(struct perf_event
*event
)
582 struct perf_event_context
*ctx
= event
->ctx
;
583 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
585 /* @event doesn't care about cgroup */
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
599 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
600 event
->cgrp
->css
.cgroup
);
603 static inline void perf_detach_cgroup(struct perf_event
*event
)
605 css_put(&event
->cgrp
->css
);
609 static inline int is_cgroup_event(struct perf_event
*event
)
611 return event
->cgrp
!= NULL
;
614 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
616 struct perf_cgroup_info
*t
;
618 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
622 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
624 struct perf_cgroup_info
*info
;
629 info
= this_cpu_ptr(cgrp
->info
);
631 info
->time
+= now
- info
->timestamp
;
632 info
->timestamp
= now
;
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
637 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
639 __update_cgrp_time(cgrp_out
);
642 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
644 struct perf_cgroup
*cgrp
;
647 * ensure we access cgroup data only when needed and
648 * when we know the cgroup is pinned (css_get)
650 if (!is_cgroup_event(event
))
653 cgrp
= perf_cgroup_from_task(current
, event
->ctx
);
655 * Do not update time when cgroup is not active
657 if (cgrp
== event
->cgrp
)
658 __update_cgrp_time(event
->cgrp
);
662 perf_cgroup_set_timestamp(struct task_struct
*task
,
663 struct perf_event_context
*ctx
)
665 struct perf_cgroup
*cgrp
;
666 struct perf_cgroup_info
*info
;
669 * ctx->lock held by caller
670 * ensure we do not access cgroup data
671 * unless we have the cgroup pinned (css_get)
673 if (!task
|| !ctx
->nr_cgroups
)
676 cgrp
= perf_cgroup_from_task(task
, ctx
);
677 info
= this_cpu_ptr(cgrp
->info
);
678 info
->timestamp
= ctx
->timestamp
;
681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
685 * reschedule events based on the cgroup constraint of task.
687 * mode SWOUT : schedule out everything
688 * mode SWIN : schedule in based on cgroup for next
690 static void perf_cgroup_switch(struct task_struct
*task
, int mode
)
692 struct perf_cpu_context
*cpuctx
;
697 * disable interrupts to avoid geting nr_cgroup
698 * changes via __perf_event_disable(). Also
701 local_irq_save(flags
);
704 * we reschedule only in the presence of cgroup
705 * constrained events.
708 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
709 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
710 if (cpuctx
->unique_pmu
!= pmu
)
711 continue; /* ensure we process each cpuctx once */
714 * perf_cgroup_events says at least one
715 * context on this CPU has cgroup events.
717 * ctx->nr_cgroups reports the number of cgroup
718 * events for a context.
720 if (cpuctx
->ctx
.nr_cgroups
> 0) {
721 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
722 perf_pmu_disable(cpuctx
->ctx
.pmu
);
724 if (mode
& PERF_CGROUP_SWOUT
) {
725 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
733 if (mode
& PERF_CGROUP_SWIN
) {
734 WARN_ON_ONCE(cpuctx
->cgrp
);
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
742 cpuctx
->cgrp
= perf_cgroup_from_task(task
, &cpuctx
->ctx
);
743 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
745 perf_pmu_enable(cpuctx
->ctx
.pmu
);
746 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
750 local_irq_restore(flags
);
753 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
754 struct task_struct
*next
)
756 struct perf_cgroup
*cgrp1
;
757 struct perf_cgroup
*cgrp2
= NULL
;
761 * we come here when we know perf_cgroup_events > 0
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
765 cgrp1
= perf_cgroup_from_task(task
, NULL
);
766 cgrp2
= perf_cgroup_from_task(next
, NULL
);
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
774 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
779 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
780 struct task_struct
*task
)
782 struct perf_cgroup
*cgrp1
;
783 struct perf_cgroup
*cgrp2
= NULL
;
787 * we come here when we know perf_cgroup_events > 0
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
791 cgrp1
= perf_cgroup_from_task(task
, NULL
);
792 cgrp2
= perf_cgroup_from_task(prev
, NULL
);
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
800 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
805 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
806 struct perf_event_attr
*attr
,
807 struct perf_event
*group_leader
)
809 struct perf_cgroup
*cgrp
;
810 struct cgroup_subsys_state
*css
;
811 struct fd f
= fdget(fd
);
817 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
818 &perf_event_cgrp_subsys
);
824 cgrp
= container_of(css
, struct perf_cgroup
, css
);
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
832 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
833 perf_detach_cgroup(event
);
842 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
844 struct perf_cgroup_info
*t
;
845 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
846 event
->shadow_ctx_time
= now
- t
->timestamp
;
850 perf_cgroup_defer_enabled(struct perf_event
*event
)
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
858 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
859 event
->cgrp_defer_enabled
= 1;
863 perf_cgroup_mark_enabled(struct perf_event
*event
,
864 struct perf_event_context
*ctx
)
866 struct perf_event
*sub
;
867 u64 tstamp
= perf_event_time(event
);
869 if (!event
->cgrp_defer_enabled
)
872 event
->cgrp_defer_enabled
= 0;
874 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
875 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
876 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
877 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
878 sub
->cgrp_defer_enabled
= 0;
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
888 list_update_cgroup_event(struct perf_event
*event
,
889 struct perf_event_context
*ctx
, bool add
)
891 struct perf_cpu_context
*cpuctx
;
893 if (!is_cgroup_event(event
))
896 if (add
&& ctx
->nr_cgroups
++)
898 else if (!add
&& --ctx
->nr_cgroups
)
901 * Because cgroup events are always per-cpu events,
902 * this will always be called from the right CPU.
904 cpuctx
= __get_cpu_context(ctx
);
907 * cpuctx->cgrp is NULL until a cgroup event is sched in or
908 * ctx->nr_cgroup == 0 .
910 if (add
&& perf_cgroup_from_task(current
, ctx
) == event
->cgrp
)
911 cpuctx
->cgrp
= event
->cgrp
;
916 #else /* !CONFIG_CGROUP_PERF */
919 perf_cgroup_match(struct perf_event
*event
)
924 static inline void perf_detach_cgroup(struct perf_event
*event
)
927 static inline int is_cgroup_event(struct perf_event
*event
)
932 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
937 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
945 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
946 struct task_struct
*next
)
950 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
951 struct task_struct
*task
)
955 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
956 struct perf_event_attr
*attr
,
957 struct perf_event
*group_leader
)
963 perf_cgroup_set_timestamp(struct task_struct
*task
,
964 struct perf_event_context
*ctx
)
969 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
974 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
978 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
984 perf_cgroup_defer_enabled(struct perf_event
*event
)
989 perf_cgroup_mark_enabled(struct perf_event
*event
,
990 struct perf_event_context
*ctx
)
995 list_update_cgroup_event(struct perf_event
*event
,
996 struct perf_event_context
*ctx
, bool add
)
1003 * set default to be dependent on timer tick just
1004 * like original code
1006 #define PERF_CPU_HRTIMER (1000 / HZ)
1008 * function must be called with interrupts disbled
1010 static enum hrtimer_restart
perf_mux_hrtimer_handler(struct hrtimer
*hr
)
1012 struct perf_cpu_context
*cpuctx
;
1015 WARN_ON(!irqs_disabled());
1017 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
1018 rotations
= perf_rotate_context(cpuctx
);
1020 raw_spin_lock(&cpuctx
->hrtimer_lock
);
1022 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
1024 cpuctx
->hrtimer_active
= 0;
1025 raw_spin_unlock(&cpuctx
->hrtimer_lock
);
1027 return rotations
? HRTIMER_RESTART
: HRTIMER_NORESTART
;
1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
1032 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1033 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1036 /* no multiplexing needed for SW PMU */
1037 if (pmu
->task_ctx_nr
== perf_sw_context
)
1041 * check default is sane, if not set then force to
1042 * default interval (1/tick)
1044 interval
= pmu
->hrtimer_interval_ms
;
1046 interval
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
1048 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* interval
);
1050 raw_spin_lock_init(&cpuctx
->hrtimer_lock
);
1051 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
1052 timer
->function
= perf_mux_hrtimer_handler
;
1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
1057 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1058 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1059 unsigned long flags
;
1061 /* not for SW PMU */
1062 if (pmu
->task_ctx_nr
== perf_sw_context
)
1065 raw_spin_lock_irqsave(&cpuctx
->hrtimer_lock
, flags
);
1066 if (!cpuctx
->hrtimer_active
) {
1067 cpuctx
->hrtimer_active
= 1;
1068 hrtimer_forward_now(timer
, cpuctx
->hrtimer_interval
);
1069 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
1071 raw_spin_unlock_irqrestore(&cpuctx
->hrtimer_lock
, flags
);
1076 void perf_pmu_disable(struct pmu
*pmu
)
1078 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1080 pmu
->pmu_disable(pmu
);
1083 void perf_pmu_enable(struct pmu
*pmu
)
1085 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1087 pmu
->pmu_enable(pmu
);
1090 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
1093 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094 * perf_event_task_tick() are fully serialized because they're strictly cpu
1095 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096 * disabled, while perf_event_task_tick is called from IRQ context.
1098 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
1100 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
1102 WARN_ON(!irqs_disabled());
1104 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
1106 list_add(&ctx
->active_ctx_list
, head
);
1109 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
1111 WARN_ON(!irqs_disabled());
1113 WARN_ON(list_empty(&ctx
->active_ctx_list
));
1115 list_del_init(&ctx
->active_ctx_list
);
1118 static void get_ctx(struct perf_event_context
*ctx
)
1120 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
1123 static void free_ctx(struct rcu_head
*head
)
1125 struct perf_event_context
*ctx
;
1127 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
1128 kfree(ctx
->task_ctx_data
);
1132 static void put_ctx(struct perf_event_context
*ctx
)
1134 if (atomic_dec_and_test(&ctx
->refcount
)) {
1135 if (ctx
->parent_ctx
)
1136 put_ctx(ctx
->parent_ctx
);
1137 if (ctx
->task
&& ctx
->task
!= TASK_TOMBSTONE
)
1138 put_task_struct(ctx
->task
);
1139 call_rcu(&ctx
->rcu_head
, free_ctx
);
1144 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145 * perf_pmu_migrate_context() we need some magic.
1147 * Those places that change perf_event::ctx will hold both
1148 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1150 * Lock ordering is by mutex address. There are two other sites where
1151 * perf_event_context::mutex nests and those are:
1153 * - perf_event_exit_task_context() [ child , 0 ]
1154 * perf_event_exit_event()
1155 * put_event() [ parent, 1 ]
1157 * - perf_event_init_context() [ parent, 0 ]
1158 * inherit_task_group()
1161 * perf_event_alloc()
1163 * perf_try_init_event() [ child , 1 ]
1165 * While it appears there is an obvious deadlock here -- the parent and child
1166 * nesting levels are inverted between the two. This is in fact safe because
1167 * life-time rules separate them. That is an exiting task cannot fork, and a
1168 * spawning task cannot (yet) exit.
1170 * But remember that that these are parent<->child context relations, and
1171 * migration does not affect children, therefore these two orderings should not
1174 * The change in perf_event::ctx does not affect children (as claimed above)
1175 * because the sys_perf_event_open() case will install a new event and break
1176 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177 * concerned with cpuctx and that doesn't have children.
1179 * The places that change perf_event::ctx will issue:
1181 * perf_remove_from_context();
1182 * synchronize_rcu();
1183 * perf_install_in_context();
1185 * to affect the change. The remove_from_context() + synchronize_rcu() should
1186 * quiesce the event, after which we can install it in the new location. This
1187 * means that only external vectors (perf_fops, prctl) can perturb the event
1188 * while in transit. Therefore all such accessors should also acquire
1189 * perf_event_context::mutex to serialize against this.
1191 * However; because event->ctx can change while we're waiting to acquire
1192 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1197 * task_struct::perf_event_mutex
1198 * perf_event_context::mutex
1199 * perf_event::child_mutex;
1200 * perf_event_context::lock
1201 * perf_event::mmap_mutex
1204 static struct perf_event_context
*
1205 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
1207 struct perf_event_context
*ctx
;
1211 ctx
= ACCESS_ONCE(event
->ctx
);
1212 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
1218 mutex_lock_nested(&ctx
->mutex
, nesting
);
1219 if (event
->ctx
!= ctx
) {
1220 mutex_unlock(&ctx
->mutex
);
1228 static inline struct perf_event_context
*
1229 perf_event_ctx_lock(struct perf_event
*event
)
1231 return perf_event_ctx_lock_nested(event
, 0);
1234 static void perf_event_ctx_unlock(struct perf_event
*event
,
1235 struct perf_event_context
*ctx
)
1237 mutex_unlock(&ctx
->mutex
);
1242 * This must be done under the ctx->lock, such as to serialize against
1243 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244 * calling scheduler related locks and ctx->lock nests inside those.
1246 static __must_check
struct perf_event_context
*
1247 unclone_ctx(struct perf_event_context
*ctx
)
1249 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1251 lockdep_assert_held(&ctx
->lock
);
1254 ctx
->parent_ctx
= NULL
;
1260 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1263 * only top level events have the pid namespace they were created in
1266 event
= event
->parent
;
1268 return task_tgid_nr_ns(p
, event
->ns
);
1271 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1274 * only top level events have the pid namespace they were created in
1277 event
= event
->parent
;
1279 return task_pid_nr_ns(p
, event
->ns
);
1283 * If we inherit events we want to return the parent event id
1286 static u64
primary_event_id(struct perf_event
*event
)
1291 id
= event
->parent
->id
;
1297 * Get the perf_event_context for a task and lock it.
1299 * This has to cope with with the fact that until it is locked,
1300 * the context could get moved to another task.
1302 static struct perf_event_context
*
1303 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1305 struct perf_event_context
*ctx
;
1309 * One of the few rules of preemptible RCU is that one cannot do
1310 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311 * part of the read side critical section was irqs-enabled -- see
1312 * rcu_read_unlock_special().
1314 * Since ctx->lock nests under rq->lock we must ensure the entire read
1315 * side critical section has interrupts disabled.
1317 local_irq_save(*flags
);
1319 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1322 * If this context is a clone of another, it might
1323 * get swapped for another underneath us by
1324 * perf_event_task_sched_out, though the
1325 * rcu_read_lock() protects us from any context
1326 * getting freed. Lock the context and check if it
1327 * got swapped before we could get the lock, and retry
1328 * if so. If we locked the right context, then it
1329 * can't get swapped on us any more.
1331 raw_spin_lock(&ctx
->lock
);
1332 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1333 raw_spin_unlock(&ctx
->lock
);
1335 local_irq_restore(*flags
);
1339 if (ctx
->task
== TASK_TOMBSTONE
||
1340 !atomic_inc_not_zero(&ctx
->refcount
)) {
1341 raw_spin_unlock(&ctx
->lock
);
1344 WARN_ON_ONCE(ctx
->task
!= task
);
1349 local_irq_restore(*flags
);
1354 * Get the context for a task and increment its pin_count so it
1355 * can't get swapped to another task. This also increments its
1356 * reference count so that the context can't get freed.
1358 static struct perf_event_context
*
1359 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1361 struct perf_event_context
*ctx
;
1362 unsigned long flags
;
1364 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1367 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1372 static void perf_unpin_context(struct perf_event_context
*ctx
)
1374 unsigned long flags
;
1376 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1378 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1382 * Update the record of the current time in a context.
1384 static void update_context_time(struct perf_event_context
*ctx
)
1386 u64 now
= perf_clock();
1388 ctx
->time
+= now
- ctx
->timestamp
;
1389 ctx
->timestamp
= now
;
1392 static u64
perf_event_time(struct perf_event
*event
)
1394 struct perf_event_context
*ctx
= event
->ctx
;
1396 if (is_cgroup_event(event
))
1397 return perf_cgroup_event_time(event
);
1399 return ctx
? ctx
->time
: 0;
1403 * Update the total_time_enabled and total_time_running fields for a event.
1405 static void update_event_times(struct perf_event
*event
)
1407 struct perf_event_context
*ctx
= event
->ctx
;
1410 lockdep_assert_held(&ctx
->lock
);
1412 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
1413 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
1417 * in cgroup mode, time_enabled represents
1418 * the time the event was enabled AND active
1419 * tasks were in the monitored cgroup. This is
1420 * independent of the activity of the context as
1421 * there may be a mix of cgroup and non-cgroup events.
1423 * That is why we treat cgroup events differently
1426 if (is_cgroup_event(event
))
1427 run_end
= perf_cgroup_event_time(event
);
1428 else if (ctx
->is_active
)
1429 run_end
= ctx
->time
;
1431 run_end
= event
->tstamp_stopped
;
1433 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
1435 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
1436 run_end
= event
->tstamp_stopped
;
1438 run_end
= perf_event_time(event
);
1440 event
->total_time_running
= run_end
- event
->tstamp_running
;
1445 * Update total_time_enabled and total_time_running for all events in a group.
1447 static void update_group_times(struct perf_event
*leader
)
1449 struct perf_event
*event
;
1451 update_event_times(leader
);
1452 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
1453 update_event_times(event
);
1456 static struct list_head
*
1457 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
1459 if (event
->attr
.pinned
)
1460 return &ctx
->pinned_groups
;
1462 return &ctx
->flexible_groups
;
1466 * Add a event from the lists for its context.
1467 * Must be called with ctx->mutex and ctx->lock held.
1470 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1473 lockdep_assert_held(&ctx
->lock
);
1475 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1476 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1479 * If we're a stand alone event or group leader, we go to the context
1480 * list, group events are kept attached to the group so that
1481 * perf_group_detach can, at all times, locate all siblings.
1483 if (event
->group_leader
== event
) {
1484 struct list_head
*list
;
1486 event
->group_caps
= event
->event_caps
;
1488 list
= ctx_group_list(event
, ctx
);
1489 list_add_tail(&event
->group_entry
, list
);
1492 list_update_cgroup_event(event
, ctx
, true);
1494 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1496 if (event
->attr
.inherit_stat
)
1503 * Initialize event state based on the perf_event_attr::disabled.
1505 static inline void perf_event__state_init(struct perf_event
*event
)
1507 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1508 PERF_EVENT_STATE_INACTIVE
;
1511 static void __perf_event_read_size(struct perf_event
*event
, int nr_siblings
)
1513 int entry
= sizeof(u64
); /* value */
1517 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1518 size
+= sizeof(u64
);
1520 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1521 size
+= sizeof(u64
);
1523 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1524 entry
+= sizeof(u64
);
1526 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1528 size
+= sizeof(u64
);
1532 event
->read_size
= size
;
1535 static void __perf_event_header_size(struct perf_event
*event
, u64 sample_type
)
1537 struct perf_sample_data
*data
;
1540 if (sample_type
& PERF_SAMPLE_IP
)
1541 size
+= sizeof(data
->ip
);
1543 if (sample_type
& PERF_SAMPLE_ADDR
)
1544 size
+= sizeof(data
->addr
);
1546 if (sample_type
& PERF_SAMPLE_PERIOD
)
1547 size
+= sizeof(data
->period
);
1549 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1550 size
+= sizeof(data
->weight
);
1552 if (sample_type
& PERF_SAMPLE_READ
)
1553 size
+= event
->read_size
;
1555 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1556 size
+= sizeof(data
->data_src
.val
);
1558 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1559 size
+= sizeof(data
->txn
);
1561 event
->header_size
= size
;
1565 * Called at perf_event creation and when events are attached/detached from a
1568 static void perf_event__header_size(struct perf_event
*event
)
1570 __perf_event_read_size(event
,
1571 event
->group_leader
->nr_siblings
);
1572 __perf_event_header_size(event
, event
->attr
.sample_type
);
1575 static void perf_event__id_header_size(struct perf_event
*event
)
1577 struct perf_sample_data
*data
;
1578 u64 sample_type
= event
->attr
.sample_type
;
1581 if (sample_type
& PERF_SAMPLE_TID
)
1582 size
+= sizeof(data
->tid_entry
);
1584 if (sample_type
& PERF_SAMPLE_TIME
)
1585 size
+= sizeof(data
->time
);
1587 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1588 size
+= sizeof(data
->id
);
1590 if (sample_type
& PERF_SAMPLE_ID
)
1591 size
+= sizeof(data
->id
);
1593 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1594 size
+= sizeof(data
->stream_id
);
1596 if (sample_type
& PERF_SAMPLE_CPU
)
1597 size
+= sizeof(data
->cpu_entry
);
1599 event
->id_header_size
= size
;
1602 static bool perf_event_validate_size(struct perf_event
*event
)
1605 * The values computed here will be over-written when we actually
1608 __perf_event_read_size(event
, event
->group_leader
->nr_siblings
+ 1);
1609 __perf_event_header_size(event
, event
->attr
.sample_type
& ~PERF_SAMPLE_READ
);
1610 perf_event__id_header_size(event
);
1613 * Sum the lot; should not exceed the 64k limit we have on records.
1614 * Conservative limit to allow for callchains and other variable fields.
1616 if (event
->read_size
+ event
->header_size
+
1617 event
->id_header_size
+ sizeof(struct perf_event_header
) >= 16*1024)
1623 static void perf_group_attach(struct perf_event
*event
)
1625 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1628 * We can have double attach due to group movement in perf_event_open.
1630 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1633 event
->attach_state
|= PERF_ATTACH_GROUP
;
1635 if (group_leader
== event
)
1638 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1640 group_leader
->group_caps
&= event
->event_caps
;
1642 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
1643 group_leader
->nr_siblings
++;
1645 perf_event__header_size(group_leader
);
1647 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
1648 perf_event__header_size(pos
);
1652 * Remove a event from the lists for its context.
1653 * Must be called with ctx->mutex and ctx->lock held.
1656 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1658 WARN_ON_ONCE(event
->ctx
!= ctx
);
1659 lockdep_assert_held(&ctx
->lock
);
1662 * We can have double detach due to exit/hot-unplug + close.
1664 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1667 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1669 list_update_cgroup_event(event
, ctx
, false);
1672 if (event
->attr
.inherit_stat
)
1675 list_del_rcu(&event
->event_entry
);
1677 if (event
->group_leader
== event
)
1678 list_del_init(&event
->group_entry
);
1680 update_group_times(event
);
1683 * If event was in error state, then keep it
1684 * that way, otherwise bogus counts will be
1685 * returned on read(). The only way to get out
1686 * of error state is by explicit re-enabling
1689 if (event
->state
> PERF_EVENT_STATE_OFF
)
1690 event
->state
= PERF_EVENT_STATE_OFF
;
1695 static void perf_group_detach(struct perf_event
*event
)
1697 struct perf_event
*sibling
, *tmp
;
1698 struct list_head
*list
= NULL
;
1701 * We can have double detach due to exit/hot-unplug + close.
1703 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1706 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1709 * If this is a sibling, remove it from its group.
1711 if (event
->group_leader
!= event
) {
1712 list_del_init(&event
->group_entry
);
1713 event
->group_leader
->nr_siblings
--;
1717 if (!list_empty(&event
->group_entry
))
1718 list
= &event
->group_entry
;
1721 * If this was a group event with sibling events then
1722 * upgrade the siblings to singleton events by adding them
1723 * to whatever list we are on.
1725 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1727 list_move_tail(&sibling
->group_entry
, list
);
1728 sibling
->group_leader
= sibling
;
1730 /* Inherit group flags from the previous leader */
1731 sibling
->group_caps
= event
->group_caps
;
1733 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
1737 perf_event__header_size(event
->group_leader
);
1739 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1740 perf_event__header_size(tmp
);
1743 static bool is_orphaned_event(struct perf_event
*event
)
1745 return event
->state
== PERF_EVENT_STATE_DEAD
;
1748 static inline int __pmu_filter_match(struct perf_event
*event
)
1750 struct pmu
*pmu
= event
->pmu
;
1751 return pmu
->filter_match
? pmu
->filter_match(event
) : 1;
1755 * Check whether we should attempt to schedule an event group based on
1756 * PMU-specific filtering. An event group can consist of HW and SW events,
1757 * potentially with a SW leader, so we must check all the filters, to
1758 * determine whether a group is schedulable:
1760 static inline int pmu_filter_match(struct perf_event
*event
)
1762 struct perf_event
*child
;
1764 if (!__pmu_filter_match(event
))
1767 list_for_each_entry(child
, &event
->sibling_list
, group_entry
) {
1768 if (!__pmu_filter_match(child
))
1776 event_filter_match(struct perf_event
*event
)
1778 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id()) &&
1779 perf_cgroup_match(event
) && pmu_filter_match(event
);
1783 event_sched_out(struct perf_event
*event
,
1784 struct perf_cpu_context
*cpuctx
,
1785 struct perf_event_context
*ctx
)
1787 u64 tstamp
= perf_event_time(event
);
1790 WARN_ON_ONCE(event
->ctx
!= ctx
);
1791 lockdep_assert_held(&ctx
->lock
);
1794 * An event which could not be activated because of
1795 * filter mismatch still needs to have its timings
1796 * maintained, otherwise bogus information is return
1797 * via read() for time_enabled, time_running:
1799 if (event
->state
== PERF_EVENT_STATE_INACTIVE
&&
1800 !event_filter_match(event
)) {
1801 delta
= tstamp
- event
->tstamp_stopped
;
1802 event
->tstamp_running
+= delta
;
1803 event
->tstamp_stopped
= tstamp
;
1806 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1809 perf_pmu_disable(event
->pmu
);
1811 event
->tstamp_stopped
= tstamp
;
1812 event
->pmu
->del(event
, 0);
1814 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1815 if (event
->pending_disable
) {
1816 event
->pending_disable
= 0;
1817 event
->state
= PERF_EVENT_STATE_OFF
;
1820 if (!is_software_event(event
))
1821 cpuctx
->active_oncpu
--;
1822 if (!--ctx
->nr_active
)
1823 perf_event_ctx_deactivate(ctx
);
1824 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1826 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1827 cpuctx
->exclusive
= 0;
1829 perf_pmu_enable(event
->pmu
);
1833 group_sched_out(struct perf_event
*group_event
,
1834 struct perf_cpu_context
*cpuctx
,
1835 struct perf_event_context
*ctx
)
1837 struct perf_event
*event
;
1838 int state
= group_event
->state
;
1840 perf_pmu_disable(ctx
->pmu
);
1842 event_sched_out(group_event
, cpuctx
, ctx
);
1845 * Schedule out siblings (if any):
1847 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1848 event_sched_out(event
, cpuctx
, ctx
);
1850 perf_pmu_enable(ctx
->pmu
);
1852 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1853 cpuctx
->exclusive
= 0;
1856 #define DETACH_GROUP 0x01UL
1859 * Cross CPU call to remove a performance event
1861 * We disable the event on the hardware level first. After that we
1862 * remove it from the context list.
1865 __perf_remove_from_context(struct perf_event
*event
,
1866 struct perf_cpu_context
*cpuctx
,
1867 struct perf_event_context
*ctx
,
1870 unsigned long flags
= (unsigned long)info
;
1872 event_sched_out(event
, cpuctx
, ctx
);
1873 if (flags
& DETACH_GROUP
)
1874 perf_group_detach(event
);
1875 list_del_event(event
, ctx
);
1877 if (!ctx
->nr_events
&& ctx
->is_active
) {
1880 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
1881 cpuctx
->task_ctx
= NULL
;
1887 * Remove the event from a task's (or a CPU's) list of events.
1889 * If event->ctx is a cloned context, callers must make sure that
1890 * every task struct that event->ctx->task could possibly point to
1891 * remains valid. This is OK when called from perf_release since
1892 * that only calls us on the top-level context, which can't be a clone.
1893 * When called from perf_event_exit_task, it's OK because the
1894 * context has been detached from its task.
1896 static void perf_remove_from_context(struct perf_event
*event
, unsigned long flags
)
1898 lockdep_assert_held(&event
->ctx
->mutex
);
1900 event_function_call(event
, __perf_remove_from_context
, (void *)flags
);
1904 * Cross CPU call to disable a performance event
1906 static void __perf_event_disable(struct perf_event
*event
,
1907 struct perf_cpu_context
*cpuctx
,
1908 struct perf_event_context
*ctx
,
1911 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
1914 update_context_time(ctx
);
1915 update_cgrp_time_from_event(event
);
1916 update_group_times(event
);
1917 if (event
== event
->group_leader
)
1918 group_sched_out(event
, cpuctx
, ctx
);
1920 event_sched_out(event
, cpuctx
, ctx
);
1921 event
->state
= PERF_EVENT_STATE_OFF
;
1927 * If event->ctx is a cloned context, callers must make sure that
1928 * every task struct that event->ctx->task could possibly point to
1929 * remains valid. This condition is satisifed when called through
1930 * perf_event_for_each_child or perf_event_for_each because they
1931 * hold the top-level event's child_mutex, so any descendant that
1932 * goes to exit will block in perf_event_exit_event().
1934 * When called from perf_pending_event it's OK because event->ctx
1935 * is the current context on this CPU and preemption is disabled,
1936 * hence we can't get into perf_event_task_sched_out for this context.
1938 static void _perf_event_disable(struct perf_event
*event
)
1940 struct perf_event_context
*ctx
= event
->ctx
;
1942 raw_spin_lock_irq(&ctx
->lock
);
1943 if (event
->state
<= PERF_EVENT_STATE_OFF
) {
1944 raw_spin_unlock_irq(&ctx
->lock
);
1947 raw_spin_unlock_irq(&ctx
->lock
);
1949 event_function_call(event
, __perf_event_disable
, NULL
);
1952 void perf_event_disable_local(struct perf_event
*event
)
1954 event_function_local(event
, __perf_event_disable
, NULL
);
1958 * Strictly speaking kernel users cannot create groups and therefore this
1959 * interface does not need the perf_event_ctx_lock() magic.
1961 void perf_event_disable(struct perf_event
*event
)
1963 struct perf_event_context
*ctx
;
1965 ctx
= perf_event_ctx_lock(event
);
1966 _perf_event_disable(event
);
1967 perf_event_ctx_unlock(event
, ctx
);
1969 EXPORT_SYMBOL_GPL(perf_event_disable
);
1971 void perf_event_disable_inatomic(struct perf_event
*event
)
1973 event
->pending_disable
= 1;
1974 irq_work_queue(&event
->pending
);
1977 static void perf_set_shadow_time(struct perf_event
*event
,
1978 struct perf_event_context
*ctx
,
1982 * use the correct time source for the time snapshot
1984 * We could get by without this by leveraging the
1985 * fact that to get to this function, the caller
1986 * has most likely already called update_context_time()
1987 * and update_cgrp_time_xx() and thus both timestamp
1988 * are identical (or very close). Given that tstamp is,
1989 * already adjusted for cgroup, we could say that:
1990 * tstamp - ctx->timestamp
1992 * tstamp - cgrp->timestamp.
1994 * Then, in perf_output_read(), the calculation would
1995 * work with no changes because:
1996 * - event is guaranteed scheduled in
1997 * - no scheduled out in between
1998 * - thus the timestamp would be the same
2000 * But this is a bit hairy.
2002 * So instead, we have an explicit cgroup call to remain
2003 * within the time time source all along. We believe it
2004 * is cleaner and simpler to understand.
2006 if (is_cgroup_event(event
))
2007 perf_cgroup_set_shadow_time(event
, tstamp
);
2009 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
2012 #define MAX_INTERRUPTS (~0ULL)
2014 static void perf_log_throttle(struct perf_event
*event
, int enable
);
2015 static void perf_log_itrace_start(struct perf_event
*event
);
2018 event_sched_in(struct perf_event
*event
,
2019 struct perf_cpu_context
*cpuctx
,
2020 struct perf_event_context
*ctx
)
2022 u64 tstamp
= perf_event_time(event
);
2025 lockdep_assert_held(&ctx
->lock
);
2027 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2030 WRITE_ONCE(event
->oncpu
, smp_processor_id());
2032 * Order event::oncpu write to happen before the ACTIVE state
2036 WRITE_ONCE(event
->state
, PERF_EVENT_STATE_ACTIVE
);
2039 * Unthrottle events, since we scheduled we might have missed several
2040 * ticks already, also for a heavily scheduling task there is little
2041 * guarantee it'll get a tick in a timely manner.
2043 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
2044 perf_log_throttle(event
, 1);
2045 event
->hw
.interrupts
= 0;
2049 * The new state must be visible before we turn it on in the hardware:
2053 perf_pmu_disable(event
->pmu
);
2055 perf_set_shadow_time(event
, ctx
, tstamp
);
2057 perf_log_itrace_start(event
);
2059 if (event
->pmu
->add(event
, PERF_EF_START
)) {
2060 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2066 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
2068 if (!is_software_event(event
))
2069 cpuctx
->active_oncpu
++;
2070 if (!ctx
->nr_active
++)
2071 perf_event_ctx_activate(ctx
);
2072 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2075 if (event
->attr
.exclusive
)
2076 cpuctx
->exclusive
= 1;
2079 perf_pmu_enable(event
->pmu
);
2085 group_sched_in(struct perf_event
*group_event
,
2086 struct perf_cpu_context
*cpuctx
,
2087 struct perf_event_context
*ctx
)
2089 struct perf_event
*event
, *partial_group
= NULL
;
2090 struct pmu
*pmu
= ctx
->pmu
;
2091 u64 now
= ctx
->time
;
2092 bool simulate
= false;
2094 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
2097 pmu
->start_txn(pmu
, PERF_PMU_TXN_ADD
);
2099 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
2100 pmu
->cancel_txn(pmu
);
2101 perf_mux_hrtimer_restart(cpuctx
);
2106 * Schedule in siblings as one group (if any):
2108 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
2109 if (event_sched_in(event
, cpuctx
, ctx
)) {
2110 partial_group
= event
;
2115 if (!pmu
->commit_txn(pmu
))
2120 * Groups can be scheduled in as one unit only, so undo any
2121 * partial group before returning:
2122 * The events up to the failed event are scheduled out normally,
2123 * tstamp_stopped will be updated.
2125 * The failed events and the remaining siblings need to have
2126 * their timings updated as if they had gone thru event_sched_in()
2127 * and event_sched_out(). This is required to get consistent timings
2128 * across the group. This also takes care of the case where the group
2129 * could never be scheduled by ensuring tstamp_stopped is set to mark
2130 * the time the event was actually stopped, such that time delta
2131 * calculation in update_event_times() is correct.
2133 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
2134 if (event
== partial_group
)
2138 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
2139 event
->tstamp_stopped
= now
;
2141 event_sched_out(event
, cpuctx
, ctx
);
2144 event_sched_out(group_event
, cpuctx
, ctx
);
2146 pmu
->cancel_txn(pmu
);
2148 perf_mux_hrtimer_restart(cpuctx
);
2154 * Work out whether we can put this event group on the CPU now.
2156 static int group_can_go_on(struct perf_event
*event
,
2157 struct perf_cpu_context
*cpuctx
,
2161 * Groups consisting entirely of software events can always go on.
2163 if (event
->group_caps
& PERF_EV_CAP_SOFTWARE
)
2166 * If an exclusive group is already on, no other hardware
2169 if (cpuctx
->exclusive
)
2172 * If this group is exclusive and there are already
2173 * events on the CPU, it can't go on.
2175 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
2178 * Otherwise, try to add it if all previous groups were able
2184 static void add_event_to_ctx(struct perf_event
*event
,
2185 struct perf_event_context
*ctx
)
2187 u64 tstamp
= perf_event_time(event
);
2189 list_add_event(event
, ctx
);
2190 perf_group_attach(event
);
2191 event
->tstamp_enabled
= tstamp
;
2192 event
->tstamp_running
= tstamp
;
2193 event
->tstamp_stopped
= tstamp
;
2196 static void ctx_sched_out(struct perf_event_context
*ctx
,
2197 struct perf_cpu_context
*cpuctx
,
2198 enum event_type_t event_type
);
2200 ctx_sched_in(struct perf_event_context
*ctx
,
2201 struct perf_cpu_context
*cpuctx
,
2202 enum event_type_t event_type
,
2203 struct task_struct
*task
);
2205 static void task_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2206 struct perf_event_context
*ctx
)
2208 if (!cpuctx
->task_ctx
)
2211 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2214 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2217 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2218 struct perf_event_context
*ctx
,
2219 struct task_struct
*task
)
2221 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2223 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2224 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2226 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2229 static void ctx_resched(struct perf_cpu_context
*cpuctx
,
2230 struct perf_event_context
*task_ctx
)
2232 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2234 task_ctx_sched_out(cpuctx
, task_ctx
);
2235 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
2236 perf_event_sched_in(cpuctx
, task_ctx
, current
);
2237 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2241 * Cross CPU call to install and enable a performance event
2243 * Very similar to remote_function() + event_function() but cannot assume that
2244 * things like ctx->is_active and cpuctx->task_ctx are set.
2246 static int __perf_install_in_context(void *info
)
2248 struct perf_event
*event
= info
;
2249 struct perf_event_context
*ctx
= event
->ctx
;
2250 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2251 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2252 bool activate
= true;
2255 raw_spin_lock(&cpuctx
->ctx
.lock
);
2257 raw_spin_lock(&ctx
->lock
);
2260 /* If we're on the wrong CPU, try again */
2261 if (task_cpu(ctx
->task
) != smp_processor_id()) {
2267 * If we're on the right CPU, see if the task we target is
2268 * current, if not we don't have to activate the ctx, a future
2269 * context switch will do that for us.
2271 if (ctx
->task
!= current
)
2274 WARN_ON_ONCE(cpuctx
->task_ctx
&& cpuctx
->task_ctx
!= ctx
);
2276 } else if (task_ctx
) {
2277 raw_spin_lock(&task_ctx
->lock
);
2281 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2282 add_event_to_ctx(event
, ctx
);
2283 ctx_resched(cpuctx
, task_ctx
);
2285 add_event_to_ctx(event
, ctx
);
2289 perf_ctx_unlock(cpuctx
, task_ctx
);
2295 * Attach a performance event to a context.
2297 * Very similar to event_function_call, see comment there.
2300 perf_install_in_context(struct perf_event_context
*ctx
,
2301 struct perf_event
*event
,
2304 struct task_struct
*task
= READ_ONCE(ctx
->task
);
2306 lockdep_assert_held(&ctx
->mutex
);
2308 if (event
->cpu
!= -1)
2312 * Ensures that if we can observe event->ctx, both the event and ctx
2313 * will be 'complete'. See perf_iterate_sb_cpu().
2315 smp_store_release(&event
->ctx
, ctx
);
2318 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2323 * Should not happen, we validate the ctx is still alive before calling.
2325 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
))
2329 * Installing events is tricky because we cannot rely on ctx->is_active
2330 * to be set in case this is the nr_events 0 -> 1 transition.
2334 * Cannot use task_function_call() because we need to run on the task's
2335 * CPU regardless of whether its current or not.
2337 if (!cpu_function_call(task_cpu(task
), __perf_install_in_context
, event
))
2340 raw_spin_lock_irq(&ctx
->lock
);
2342 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
)) {
2344 * Cannot happen because we already checked above (which also
2345 * cannot happen), and we hold ctx->mutex, which serializes us
2346 * against perf_event_exit_task_context().
2348 raw_spin_unlock_irq(&ctx
->lock
);
2351 raw_spin_unlock_irq(&ctx
->lock
);
2353 * Since !ctx->is_active doesn't mean anything, we must IPI
2360 * Put a event into inactive state and update time fields.
2361 * Enabling the leader of a group effectively enables all
2362 * the group members that aren't explicitly disabled, so we
2363 * have to update their ->tstamp_enabled also.
2364 * Note: this works for group members as well as group leaders
2365 * since the non-leader members' sibling_lists will be empty.
2367 static void __perf_event_mark_enabled(struct perf_event
*event
)
2369 struct perf_event
*sub
;
2370 u64 tstamp
= perf_event_time(event
);
2372 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2373 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
2374 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
2375 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
2376 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
2381 * Cross CPU call to enable a performance event
2383 static void __perf_event_enable(struct perf_event
*event
,
2384 struct perf_cpu_context
*cpuctx
,
2385 struct perf_event_context
*ctx
,
2388 struct perf_event
*leader
= event
->group_leader
;
2389 struct perf_event_context
*task_ctx
;
2391 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2392 event
->state
<= PERF_EVENT_STATE_ERROR
)
2396 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2398 __perf_event_mark_enabled(event
);
2400 if (!ctx
->is_active
)
2403 if (!event_filter_match(event
)) {
2404 if (is_cgroup_event(event
))
2405 perf_cgroup_defer_enabled(event
);
2406 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2411 * If the event is in a group and isn't the group leader,
2412 * then don't put it on unless the group is on.
2414 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
) {
2415 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2419 task_ctx
= cpuctx
->task_ctx
;
2421 WARN_ON_ONCE(task_ctx
!= ctx
);
2423 ctx_resched(cpuctx
, task_ctx
);
2429 * If event->ctx is a cloned context, callers must make sure that
2430 * every task struct that event->ctx->task could possibly point to
2431 * remains valid. This condition is satisfied when called through
2432 * perf_event_for_each_child or perf_event_for_each as described
2433 * for perf_event_disable.
2435 static void _perf_event_enable(struct perf_event
*event
)
2437 struct perf_event_context
*ctx
= event
->ctx
;
2439 raw_spin_lock_irq(&ctx
->lock
);
2440 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2441 event
->state
< PERF_EVENT_STATE_ERROR
) {
2442 raw_spin_unlock_irq(&ctx
->lock
);
2447 * If the event is in error state, clear that first.
2449 * That way, if we see the event in error state below, we know that it
2450 * has gone back into error state, as distinct from the task having
2451 * been scheduled away before the cross-call arrived.
2453 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2454 event
->state
= PERF_EVENT_STATE_OFF
;
2455 raw_spin_unlock_irq(&ctx
->lock
);
2457 event_function_call(event
, __perf_event_enable
, NULL
);
2461 * See perf_event_disable();
2463 void perf_event_enable(struct perf_event
*event
)
2465 struct perf_event_context
*ctx
;
2467 ctx
= perf_event_ctx_lock(event
);
2468 _perf_event_enable(event
);
2469 perf_event_ctx_unlock(event
, ctx
);
2471 EXPORT_SYMBOL_GPL(perf_event_enable
);
2473 struct stop_event_data
{
2474 struct perf_event
*event
;
2475 unsigned int restart
;
2478 static int __perf_event_stop(void *info
)
2480 struct stop_event_data
*sd
= info
;
2481 struct perf_event
*event
= sd
->event
;
2483 /* if it's already INACTIVE, do nothing */
2484 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2487 /* matches smp_wmb() in event_sched_in() */
2491 * There is a window with interrupts enabled before we get here,
2492 * so we need to check again lest we try to stop another CPU's event.
2494 if (READ_ONCE(event
->oncpu
) != smp_processor_id())
2497 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2500 * May race with the actual stop (through perf_pmu_output_stop()),
2501 * but it is only used for events with AUX ring buffer, and such
2502 * events will refuse to restart because of rb::aux_mmap_count==0,
2503 * see comments in perf_aux_output_begin().
2505 * Since this is happening on a event-local CPU, no trace is lost
2509 event
->pmu
->start(event
, 0);
2514 static int perf_event_stop(struct perf_event
*event
, int restart
)
2516 struct stop_event_data sd
= {
2523 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2526 /* matches smp_wmb() in event_sched_in() */
2530 * We only want to restart ACTIVE events, so if the event goes
2531 * inactive here (event->oncpu==-1), there's nothing more to do;
2532 * fall through with ret==-ENXIO.
2534 ret
= cpu_function_call(READ_ONCE(event
->oncpu
),
2535 __perf_event_stop
, &sd
);
2536 } while (ret
== -EAGAIN
);
2542 * In order to contain the amount of racy and tricky in the address filter
2543 * configuration management, it is a two part process:
2545 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2546 * we update the addresses of corresponding vmas in
2547 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2548 * (p2) when an event is scheduled in (pmu::add), it calls
2549 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2550 * if the generation has changed since the previous call.
2552 * If (p1) happens while the event is active, we restart it to force (p2).
2554 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2555 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2557 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2558 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2560 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2563 void perf_event_addr_filters_sync(struct perf_event
*event
)
2565 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
2567 if (!has_addr_filter(event
))
2570 raw_spin_lock(&ifh
->lock
);
2571 if (event
->addr_filters_gen
!= event
->hw
.addr_filters_gen
) {
2572 event
->pmu
->addr_filters_sync(event
);
2573 event
->hw
.addr_filters_gen
= event
->addr_filters_gen
;
2575 raw_spin_unlock(&ifh
->lock
);
2577 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync
);
2579 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
2582 * not supported on inherited events
2584 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2587 atomic_add(refresh
, &event
->event_limit
);
2588 _perf_event_enable(event
);
2594 * See perf_event_disable()
2596 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2598 struct perf_event_context
*ctx
;
2601 ctx
= perf_event_ctx_lock(event
);
2602 ret
= _perf_event_refresh(event
, refresh
);
2603 perf_event_ctx_unlock(event
, ctx
);
2607 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2609 static void ctx_sched_out(struct perf_event_context
*ctx
,
2610 struct perf_cpu_context
*cpuctx
,
2611 enum event_type_t event_type
)
2613 int is_active
= ctx
->is_active
;
2614 struct perf_event
*event
;
2616 lockdep_assert_held(&ctx
->lock
);
2618 if (likely(!ctx
->nr_events
)) {
2620 * See __perf_remove_from_context().
2622 WARN_ON_ONCE(ctx
->is_active
);
2624 WARN_ON_ONCE(cpuctx
->task_ctx
);
2628 ctx
->is_active
&= ~event_type
;
2629 if (!(ctx
->is_active
& EVENT_ALL
))
2633 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2634 if (!ctx
->is_active
)
2635 cpuctx
->task_ctx
= NULL
;
2639 * Always update time if it was set; not only when it changes.
2640 * Otherwise we can 'forget' to update time for any but the last
2641 * context we sched out. For example:
2643 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2644 * ctx_sched_out(.event_type = EVENT_PINNED)
2646 * would only update time for the pinned events.
2648 if (is_active
& EVENT_TIME
) {
2649 /* update (and stop) ctx time */
2650 update_context_time(ctx
);
2651 update_cgrp_time_from_cpuctx(cpuctx
);
2654 is_active
^= ctx
->is_active
; /* changed bits */
2656 if (!ctx
->nr_active
|| !(is_active
& EVENT_ALL
))
2659 perf_pmu_disable(ctx
->pmu
);
2660 if (is_active
& EVENT_PINNED
) {
2661 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
2662 group_sched_out(event
, cpuctx
, ctx
);
2665 if (is_active
& EVENT_FLEXIBLE
) {
2666 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
2667 group_sched_out(event
, cpuctx
, ctx
);
2669 perf_pmu_enable(ctx
->pmu
);
2673 * Test whether two contexts are equivalent, i.e. whether they have both been
2674 * cloned from the same version of the same context.
2676 * Equivalence is measured using a generation number in the context that is
2677 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2678 * and list_del_event().
2680 static int context_equiv(struct perf_event_context
*ctx1
,
2681 struct perf_event_context
*ctx2
)
2683 lockdep_assert_held(&ctx1
->lock
);
2684 lockdep_assert_held(&ctx2
->lock
);
2686 /* Pinning disables the swap optimization */
2687 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2690 /* If ctx1 is the parent of ctx2 */
2691 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2694 /* If ctx2 is the parent of ctx1 */
2695 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2699 * If ctx1 and ctx2 have the same parent; we flatten the parent
2700 * hierarchy, see perf_event_init_context().
2702 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2703 ctx1
->parent_gen
== ctx2
->parent_gen
)
2710 static void __perf_event_sync_stat(struct perf_event
*event
,
2711 struct perf_event
*next_event
)
2715 if (!event
->attr
.inherit_stat
)
2719 * Update the event value, we cannot use perf_event_read()
2720 * because we're in the middle of a context switch and have IRQs
2721 * disabled, which upsets smp_call_function_single(), however
2722 * we know the event must be on the current CPU, therefore we
2723 * don't need to use it.
2725 switch (event
->state
) {
2726 case PERF_EVENT_STATE_ACTIVE
:
2727 event
->pmu
->read(event
);
2730 case PERF_EVENT_STATE_INACTIVE
:
2731 update_event_times(event
);
2739 * In order to keep per-task stats reliable we need to flip the event
2740 * values when we flip the contexts.
2742 value
= local64_read(&next_event
->count
);
2743 value
= local64_xchg(&event
->count
, value
);
2744 local64_set(&next_event
->count
, value
);
2746 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
2747 swap(event
->total_time_running
, next_event
->total_time_running
);
2750 * Since we swizzled the values, update the user visible data too.
2752 perf_event_update_userpage(event
);
2753 perf_event_update_userpage(next_event
);
2756 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
2757 struct perf_event_context
*next_ctx
)
2759 struct perf_event
*event
, *next_event
;
2764 update_context_time(ctx
);
2766 event
= list_first_entry(&ctx
->event_list
,
2767 struct perf_event
, event_entry
);
2769 next_event
= list_first_entry(&next_ctx
->event_list
,
2770 struct perf_event
, event_entry
);
2772 while (&event
->event_entry
!= &ctx
->event_list
&&
2773 &next_event
->event_entry
!= &next_ctx
->event_list
) {
2775 __perf_event_sync_stat(event
, next_event
);
2777 event
= list_next_entry(event
, event_entry
);
2778 next_event
= list_next_entry(next_event
, event_entry
);
2782 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
2783 struct task_struct
*next
)
2785 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
2786 struct perf_event_context
*next_ctx
;
2787 struct perf_event_context
*parent
, *next_parent
;
2788 struct perf_cpu_context
*cpuctx
;
2794 cpuctx
= __get_cpu_context(ctx
);
2795 if (!cpuctx
->task_ctx
)
2799 next_ctx
= next
->perf_event_ctxp
[ctxn
];
2803 parent
= rcu_dereference(ctx
->parent_ctx
);
2804 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
2806 /* If neither context have a parent context; they cannot be clones. */
2807 if (!parent
&& !next_parent
)
2810 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
2812 * Looks like the two contexts are clones, so we might be
2813 * able to optimize the context switch. We lock both
2814 * contexts and check that they are clones under the
2815 * lock (including re-checking that neither has been
2816 * uncloned in the meantime). It doesn't matter which
2817 * order we take the locks because no other cpu could
2818 * be trying to lock both of these tasks.
2820 raw_spin_lock(&ctx
->lock
);
2821 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
2822 if (context_equiv(ctx
, next_ctx
)) {
2823 WRITE_ONCE(ctx
->task
, next
);
2824 WRITE_ONCE(next_ctx
->task
, task
);
2826 swap(ctx
->task_ctx_data
, next_ctx
->task_ctx_data
);
2829 * RCU_INIT_POINTER here is safe because we've not
2830 * modified the ctx and the above modification of
2831 * ctx->task and ctx->task_ctx_data are immaterial
2832 * since those values are always verified under
2833 * ctx->lock which we're now holding.
2835 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], next_ctx
);
2836 RCU_INIT_POINTER(next
->perf_event_ctxp
[ctxn
], ctx
);
2840 perf_event_sync_stat(ctx
, next_ctx
);
2842 raw_spin_unlock(&next_ctx
->lock
);
2843 raw_spin_unlock(&ctx
->lock
);
2849 raw_spin_lock(&ctx
->lock
);
2850 task_ctx_sched_out(cpuctx
, ctx
);
2851 raw_spin_unlock(&ctx
->lock
);
2855 static DEFINE_PER_CPU(struct list_head
, sched_cb_list
);
2857 void perf_sched_cb_dec(struct pmu
*pmu
)
2859 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2861 this_cpu_dec(perf_sched_cb_usages
);
2863 if (!--cpuctx
->sched_cb_usage
)
2864 list_del(&cpuctx
->sched_cb_entry
);
2868 void perf_sched_cb_inc(struct pmu
*pmu
)
2870 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2872 if (!cpuctx
->sched_cb_usage
++)
2873 list_add(&cpuctx
->sched_cb_entry
, this_cpu_ptr(&sched_cb_list
));
2875 this_cpu_inc(perf_sched_cb_usages
);
2879 * This function provides the context switch callback to the lower code
2880 * layer. It is invoked ONLY when the context switch callback is enabled.
2882 * This callback is relevant even to per-cpu events; for example multi event
2883 * PEBS requires this to provide PID/TID information. This requires we flush
2884 * all queued PEBS records before we context switch to a new task.
2886 static void perf_pmu_sched_task(struct task_struct
*prev
,
2887 struct task_struct
*next
,
2890 struct perf_cpu_context
*cpuctx
;
2896 list_for_each_entry(cpuctx
, this_cpu_ptr(&sched_cb_list
), sched_cb_entry
) {
2897 pmu
= cpuctx
->unique_pmu
; /* software PMUs will not have sched_task */
2899 if (WARN_ON_ONCE(!pmu
->sched_task
))
2902 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2903 perf_pmu_disable(pmu
);
2905 pmu
->sched_task(cpuctx
->task_ctx
, sched_in
);
2907 perf_pmu_enable(pmu
);
2908 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2912 static void perf_event_switch(struct task_struct
*task
,
2913 struct task_struct
*next_prev
, bool sched_in
);
2915 #define for_each_task_context_nr(ctxn) \
2916 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2919 * Called from scheduler to remove the events of the current task,
2920 * with interrupts disabled.
2922 * We stop each event and update the event value in event->count.
2924 * This does not protect us against NMI, but disable()
2925 * sets the disabled bit in the control field of event _before_
2926 * accessing the event control register. If a NMI hits, then it will
2927 * not restart the event.
2929 void __perf_event_task_sched_out(struct task_struct
*task
,
2930 struct task_struct
*next
)
2934 if (__this_cpu_read(perf_sched_cb_usages
))
2935 perf_pmu_sched_task(task
, next
, false);
2937 if (atomic_read(&nr_switch_events
))
2938 perf_event_switch(task
, next
, false);
2940 for_each_task_context_nr(ctxn
)
2941 perf_event_context_sched_out(task
, ctxn
, next
);
2944 * if cgroup events exist on this CPU, then we need
2945 * to check if we have to switch out PMU state.
2946 * cgroup event are system-wide mode only
2948 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2949 perf_cgroup_sched_out(task
, next
);
2953 * Called with IRQs disabled
2955 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2956 enum event_type_t event_type
)
2958 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2962 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2963 struct perf_cpu_context
*cpuctx
)
2965 struct perf_event
*event
;
2967 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2968 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2970 if (!event_filter_match(event
))
2973 /* may need to reset tstamp_enabled */
2974 if (is_cgroup_event(event
))
2975 perf_cgroup_mark_enabled(event
, ctx
);
2977 if (group_can_go_on(event
, cpuctx
, 1))
2978 group_sched_in(event
, cpuctx
, ctx
);
2981 * If this pinned group hasn't been scheduled,
2982 * put it in error state.
2984 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2985 update_group_times(event
);
2986 event
->state
= PERF_EVENT_STATE_ERROR
;
2992 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2993 struct perf_cpu_context
*cpuctx
)
2995 struct perf_event
*event
;
2998 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2999 /* Ignore events in OFF or ERROR state */
3000 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3003 * Listen to the 'cpu' scheduling filter constraint
3006 if (!event_filter_match(event
))
3009 /* may need to reset tstamp_enabled */
3010 if (is_cgroup_event(event
))
3011 perf_cgroup_mark_enabled(event
, ctx
);
3013 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
3014 if (group_sched_in(event
, cpuctx
, ctx
))
3021 ctx_sched_in(struct perf_event_context
*ctx
,
3022 struct perf_cpu_context
*cpuctx
,
3023 enum event_type_t event_type
,
3024 struct task_struct
*task
)
3026 int is_active
= ctx
->is_active
;
3029 lockdep_assert_held(&ctx
->lock
);
3031 if (likely(!ctx
->nr_events
))
3034 ctx
->is_active
|= (event_type
| EVENT_TIME
);
3037 cpuctx
->task_ctx
= ctx
;
3039 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3042 is_active
^= ctx
->is_active
; /* changed bits */
3044 if (is_active
& EVENT_TIME
) {
3045 /* start ctx time */
3047 ctx
->timestamp
= now
;
3048 perf_cgroup_set_timestamp(task
, ctx
);
3052 * First go through the list and put on any pinned groups
3053 * in order to give them the best chance of going on.
3055 if (is_active
& EVENT_PINNED
)
3056 ctx_pinned_sched_in(ctx
, cpuctx
);
3058 /* Then walk through the lower prio flexible groups */
3059 if (is_active
& EVENT_FLEXIBLE
)
3060 ctx_flexible_sched_in(ctx
, cpuctx
);
3063 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
3064 enum event_type_t event_type
,
3065 struct task_struct
*task
)
3067 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
3069 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
3072 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
3073 struct task_struct
*task
)
3075 struct perf_cpu_context
*cpuctx
;
3077 cpuctx
= __get_cpu_context(ctx
);
3078 if (cpuctx
->task_ctx
== ctx
)
3081 perf_ctx_lock(cpuctx
, ctx
);
3082 perf_pmu_disable(ctx
->pmu
);
3084 * We want to keep the following priority order:
3085 * cpu pinned (that don't need to move), task pinned,
3086 * cpu flexible, task flexible.
3088 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3089 perf_event_sched_in(cpuctx
, ctx
, task
);
3090 perf_pmu_enable(ctx
->pmu
);
3091 perf_ctx_unlock(cpuctx
, ctx
);
3095 * Called from scheduler to add the events of the current task
3096 * with interrupts disabled.
3098 * We restore the event value and then enable it.
3100 * This does not protect us against NMI, but enable()
3101 * sets the enabled bit in the control field of event _before_
3102 * accessing the event control register. If a NMI hits, then it will
3103 * keep the event running.
3105 void __perf_event_task_sched_in(struct task_struct
*prev
,
3106 struct task_struct
*task
)
3108 struct perf_event_context
*ctx
;
3112 * If cgroup events exist on this CPU, then we need to check if we have
3113 * to switch in PMU state; cgroup event are system-wide mode only.
3115 * Since cgroup events are CPU events, we must schedule these in before
3116 * we schedule in the task events.
3118 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3119 perf_cgroup_sched_in(prev
, task
);
3121 for_each_task_context_nr(ctxn
) {
3122 ctx
= task
->perf_event_ctxp
[ctxn
];
3126 perf_event_context_sched_in(ctx
, task
);
3129 if (atomic_read(&nr_switch_events
))
3130 perf_event_switch(task
, prev
, true);
3132 if (__this_cpu_read(perf_sched_cb_usages
))
3133 perf_pmu_sched_task(prev
, task
, true);
3136 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
3138 u64 frequency
= event
->attr
.sample_freq
;
3139 u64 sec
= NSEC_PER_SEC
;
3140 u64 divisor
, dividend
;
3142 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
3144 count_fls
= fls64(count
);
3145 nsec_fls
= fls64(nsec
);
3146 frequency_fls
= fls64(frequency
);
3150 * We got @count in @nsec, with a target of sample_freq HZ
3151 * the target period becomes:
3154 * period = -------------------
3155 * @nsec * sample_freq
3160 * Reduce accuracy by one bit such that @a and @b converge
3161 * to a similar magnitude.
3163 #define REDUCE_FLS(a, b) \
3165 if (a##_fls > b##_fls) { \
3175 * Reduce accuracy until either term fits in a u64, then proceed with
3176 * the other, so that finally we can do a u64/u64 division.
3178 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
3179 REDUCE_FLS(nsec
, frequency
);
3180 REDUCE_FLS(sec
, count
);
3183 if (count_fls
+ sec_fls
> 64) {
3184 divisor
= nsec
* frequency
;
3186 while (count_fls
+ sec_fls
> 64) {
3187 REDUCE_FLS(count
, sec
);
3191 dividend
= count
* sec
;
3193 dividend
= count
* sec
;
3195 while (nsec_fls
+ frequency_fls
> 64) {
3196 REDUCE_FLS(nsec
, frequency
);
3200 divisor
= nsec
* frequency
;
3206 return div64_u64(dividend
, divisor
);
3209 static DEFINE_PER_CPU(int, perf_throttled_count
);
3210 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
3212 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
3214 struct hw_perf_event
*hwc
= &event
->hw
;
3215 s64 period
, sample_period
;
3218 period
= perf_calculate_period(event
, nsec
, count
);
3220 delta
= (s64
)(period
- hwc
->sample_period
);
3221 delta
= (delta
+ 7) / 8; /* low pass filter */
3223 sample_period
= hwc
->sample_period
+ delta
;
3228 hwc
->sample_period
= sample_period
;
3230 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
3232 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3234 local64_set(&hwc
->period_left
, 0);
3237 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3242 * combine freq adjustment with unthrottling to avoid two passes over the
3243 * events. At the same time, make sure, having freq events does not change
3244 * the rate of unthrottling as that would introduce bias.
3246 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
3249 struct perf_event
*event
;
3250 struct hw_perf_event
*hwc
;
3251 u64 now
, period
= TICK_NSEC
;
3255 * only need to iterate over all events iff:
3256 * - context have events in frequency mode (needs freq adjust)
3257 * - there are events to unthrottle on this cpu
3259 if (!(ctx
->nr_freq
|| needs_unthr
))
3262 raw_spin_lock(&ctx
->lock
);
3263 perf_pmu_disable(ctx
->pmu
);
3265 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3266 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3269 if (!event_filter_match(event
))
3272 perf_pmu_disable(event
->pmu
);
3276 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
3277 hwc
->interrupts
= 0;
3278 perf_log_throttle(event
, 1);
3279 event
->pmu
->start(event
, 0);
3282 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
3286 * stop the event and update event->count
3288 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3290 now
= local64_read(&event
->count
);
3291 delta
= now
- hwc
->freq_count_stamp
;
3292 hwc
->freq_count_stamp
= now
;
3296 * reload only if value has changed
3297 * we have stopped the event so tell that
3298 * to perf_adjust_period() to avoid stopping it
3302 perf_adjust_period(event
, period
, delta
, false);
3304 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
3306 perf_pmu_enable(event
->pmu
);
3309 perf_pmu_enable(ctx
->pmu
);
3310 raw_spin_unlock(&ctx
->lock
);
3314 * Round-robin a context's events:
3316 static void rotate_ctx(struct perf_event_context
*ctx
)
3319 * Rotate the first entry last of non-pinned groups. Rotation might be
3320 * disabled by the inheritance code.
3322 if (!ctx
->rotate_disable
)
3323 list_rotate_left(&ctx
->flexible_groups
);
3326 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
)
3328 struct perf_event_context
*ctx
= NULL
;
3331 if (cpuctx
->ctx
.nr_events
) {
3332 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
3336 ctx
= cpuctx
->task_ctx
;
3337 if (ctx
&& ctx
->nr_events
) {
3338 if (ctx
->nr_events
!= ctx
->nr_active
)
3345 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3346 perf_pmu_disable(cpuctx
->ctx
.pmu
);
3348 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3350 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
3352 rotate_ctx(&cpuctx
->ctx
);
3356 perf_event_sched_in(cpuctx
, ctx
, current
);
3358 perf_pmu_enable(cpuctx
->ctx
.pmu
);
3359 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3365 void perf_event_task_tick(void)
3367 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
3368 struct perf_event_context
*ctx
, *tmp
;
3371 WARN_ON(!irqs_disabled());
3373 __this_cpu_inc(perf_throttled_seq
);
3374 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
3375 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
3377 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
3378 perf_adjust_freq_unthr_context(ctx
, throttled
);
3381 static int event_enable_on_exec(struct perf_event
*event
,
3382 struct perf_event_context
*ctx
)
3384 if (!event
->attr
.enable_on_exec
)
3387 event
->attr
.enable_on_exec
= 0;
3388 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
3391 __perf_event_mark_enabled(event
);
3397 * Enable all of a task's events that have been marked enable-on-exec.
3398 * This expects task == current.
3400 static void perf_event_enable_on_exec(int ctxn
)
3402 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3403 struct perf_cpu_context
*cpuctx
;
3404 struct perf_event
*event
;
3405 unsigned long flags
;
3408 local_irq_save(flags
);
3409 ctx
= current
->perf_event_ctxp
[ctxn
];
3410 if (!ctx
|| !ctx
->nr_events
)
3413 cpuctx
= __get_cpu_context(ctx
);
3414 perf_ctx_lock(cpuctx
, ctx
);
3415 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
3416 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
3417 enabled
|= event_enable_on_exec(event
, ctx
);
3420 * Unclone and reschedule this context if we enabled any event.
3423 clone_ctx
= unclone_ctx(ctx
);
3424 ctx_resched(cpuctx
, ctx
);
3426 perf_ctx_unlock(cpuctx
, ctx
);
3429 local_irq_restore(flags
);
3435 struct perf_read_data
{
3436 struct perf_event
*event
;
3441 static int find_cpu_to_read(struct perf_event
*event
, int local_cpu
)
3443 int event_cpu
= event
->oncpu
;
3444 u16 local_pkg
, event_pkg
;
3446 if (event
->group_caps
& PERF_EV_CAP_READ_ACTIVE_PKG
) {
3447 event_pkg
= topology_physical_package_id(event_cpu
);
3448 local_pkg
= topology_physical_package_id(local_cpu
);
3450 if (event_pkg
== local_pkg
)
3458 * Cross CPU call to read the hardware event
3460 static void __perf_event_read(void *info
)
3462 struct perf_read_data
*data
= info
;
3463 struct perf_event
*sub
, *event
= data
->event
;
3464 struct perf_event_context
*ctx
= event
->ctx
;
3465 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3466 struct pmu
*pmu
= event
->pmu
;
3469 * If this is a task context, we need to check whether it is
3470 * the current task context of this cpu. If not it has been
3471 * scheduled out before the smp call arrived. In that case
3472 * event->count would have been updated to a recent sample
3473 * when the event was scheduled out.
3475 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
3478 raw_spin_lock(&ctx
->lock
);
3479 if (ctx
->is_active
) {
3480 update_context_time(ctx
);
3481 update_cgrp_time_from_event(event
);
3484 update_event_times(event
);
3485 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3494 pmu
->start_txn(pmu
, PERF_PMU_TXN_READ
);
3498 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
3499 update_event_times(sub
);
3500 if (sub
->state
== PERF_EVENT_STATE_ACTIVE
) {
3502 * Use sibling's PMU rather than @event's since
3503 * sibling could be on different (eg: software) PMU.
3505 sub
->pmu
->read(sub
);
3509 data
->ret
= pmu
->commit_txn(pmu
);
3512 raw_spin_unlock(&ctx
->lock
);
3515 static inline u64
perf_event_count(struct perf_event
*event
)
3517 if (event
->pmu
->count
)
3518 return event
->pmu
->count(event
);
3520 return __perf_event_count(event
);
3524 * NMI-safe method to read a local event, that is an event that
3526 * - either for the current task, or for this CPU
3527 * - does not have inherit set, for inherited task events
3528 * will not be local and we cannot read them atomically
3529 * - must not have a pmu::count method
3531 u64
perf_event_read_local(struct perf_event
*event
)
3533 unsigned long flags
;
3537 * Disabling interrupts avoids all counter scheduling (context
3538 * switches, timer based rotation and IPIs).
3540 local_irq_save(flags
);
3542 /* If this is a per-task event, it must be for current */
3543 WARN_ON_ONCE((event
->attach_state
& PERF_ATTACH_TASK
) &&
3544 event
->hw
.target
!= current
);
3546 /* If this is a per-CPU event, it must be for this CPU */
3547 WARN_ON_ONCE(!(event
->attach_state
& PERF_ATTACH_TASK
) &&
3548 event
->cpu
!= smp_processor_id());
3551 * It must not be an event with inherit set, we cannot read
3552 * all child counters from atomic context.
3554 WARN_ON_ONCE(event
->attr
.inherit
);
3557 * It must not have a pmu::count method, those are not
3560 WARN_ON_ONCE(event
->pmu
->count
);
3563 * If the event is currently on this CPU, its either a per-task event,
3564 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3567 if (event
->oncpu
== smp_processor_id())
3568 event
->pmu
->read(event
);
3570 val
= local64_read(&event
->count
);
3571 local_irq_restore(flags
);
3576 static int perf_event_read(struct perf_event
*event
, bool group
)
3578 int ret
= 0, cpu_to_read
, local_cpu
;
3581 * If event is enabled and currently active on a CPU, update the
3582 * value in the event structure:
3584 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
3585 struct perf_read_data data
= {
3591 local_cpu
= get_cpu();
3592 cpu_to_read
= find_cpu_to_read(event
, local_cpu
);
3596 * Purposely ignore the smp_call_function_single() return
3599 * If event->oncpu isn't a valid CPU it means the event got
3600 * scheduled out and that will have updated the event count.
3602 * Therefore, either way, we'll have an up-to-date event count
3605 (void)smp_call_function_single(cpu_to_read
, __perf_event_read
, &data
, 1);
3607 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3608 struct perf_event_context
*ctx
= event
->ctx
;
3609 unsigned long flags
;
3611 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
3613 * may read while context is not active
3614 * (e.g., thread is blocked), in that case
3615 * we cannot update context time
3617 if (ctx
->is_active
) {
3618 update_context_time(ctx
);
3619 update_cgrp_time_from_event(event
);
3622 update_group_times(event
);
3624 update_event_times(event
);
3625 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3632 * Initialize the perf_event context in a task_struct:
3634 static void __perf_event_init_context(struct perf_event_context
*ctx
)
3636 raw_spin_lock_init(&ctx
->lock
);
3637 mutex_init(&ctx
->mutex
);
3638 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
3639 INIT_LIST_HEAD(&ctx
->pinned_groups
);
3640 INIT_LIST_HEAD(&ctx
->flexible_groups
);
3641 INIT_LIST_HEAD(&ctx
->event_list
);
3642 atomic_set(&ctx
->refcount
, 1);
3645 static struct perf_event_context
*
3646 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
3648 struct perf_event_context
*ctx
;
3650 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
3654 __perf_event_init_context(ctx
);
3657 get_task_struct(task
);
3664 static struct task_struct
*
3665 find_lively_task_by_vpid(pid_t vpid
)
3667 struct task_struct
*task
;
3673 task
= find_task_by_vpid(vpid
);
3675 get_task_struct(task
);
3679 return ERR_PTR(-ESRCH
);
3685 * Returns a matching context with refcount and pincount.
3687 static struct perf_event_context
*
3688 find_get_context(struct pmu
*pmu
, struct task_struct
*task
,
3689 struct perf_event
*event
)
3691 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3692 struct perf_cpu_context
*cpuctx
;
3693 void *task_ctx_data
= NULL
;
3694 unsigned long flags
;
3696 int cpu
= event
->cpu
;
3699 /* Must be root to operate on a CPU event: */
3700 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3701 return ERR_PTR(-EACCES
);
3704 * We could be clever and allow to attach a event to an
3705 * offline CPU and activate it when the CPU comes up, but
3708 if (!cpu_online(cpu
))
3709 return ERR_PTR(-ENODEV
);
3711 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
3720 ctxn
= pmu
->task_ctx_nr
;
3724 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
3725 task_ctx_data
= kzalloc(pmu
->task_ctx_size
, GFP_KERNEL
);
3726 if (!task_ctx_data
) {
3733 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
3735 clone_ctx
= unclone_ctx(ctx
);
3738 if (task_ctx_data
&& !ctx
->task_ctx_data
) {
3739 ctx
->task_ctx_data
= task_ctx_data
;
3740 task_ctx_data
= NULL
;
3742 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3747 ctx
= alloc_perf_context(pmu
, task
);
3752 if (task_ctx_data
) {
3753 ctx
->task_ctx_data
= task_ctx_data
;
3754 task_ctx_data
= NULL
;
3758 mutex_lock(&task
->perf_event_mutex
);
3760 * If it has already passed perf_event_exit_task().
3761 * we must see PF_EXITING, it takes this mutex too.
3763 if (task
->flags
& PF_EXITING
)
3765 else if (task
->perf_event_ctxp
[ctxn
])
3770 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
3772 mutex_unlock(&task
->perf_event_mutex
);
3774 if (unlikely(err
)) {
3783 kfree(task_ctx_data
);
3787 kfree(task_ctx_data
);
3788 return ERR_PTR(err
);
3791 static void perf_event_free_filter(struct perf_event
*event
);
3792 static void perf_event_free_bpf_prog(struct perf_event
*event
);
3794 static void free_event_rcu(struct rcu_head
*head
)
3796 struct perf_event
*event
;
3798 event
= container_of(head
, struct perf_event
, rcu_head
);
3800 put_pid_ns(event
->ns
);
3801 perf_event_free_filter(event
);
3805 static void ring_buffer_attach(struct perf_event
*event
,
3806 struct ring_buffer
*rb
);
3808 static void detach_sb_event(struct perf_event
*event
)
3810 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
3812 raw_spin_lock(&pel
->lock
);
3813 list_del_rcu(&event
->sb_list
);
3814 raw_spin_unlock(&pel
->lock
);
3817 static bool is_sb_event(struct perf_event
*event
)
3819 struct perf_event_attr
*attr
= &event
->attr
;
3824 if (event
->attach_state
& PERF_ATTACH_TASK
)
3827 if (attr
->mmap
|| attr
->mmap_data
|| attr
->mmap2
||
3828 attr
->comm
|| attr
->comm_exec
||
3830 attr
->context_switch
)
3835 static void unaccount_pmu_sb_event(struct perf_event
*event
)
3837 if (is_sb_event(event
))
3838 detach_sb_event(event
);
3841 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
3846 if (is_cgroup_event(event
))
3847 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
3850 #ifdef CONFIG_NO_HZ_FULL
3851 static DEFINE_SPINLOCK(nr_freq_lock
);
3854 static void unaccount_freq_event_nohz(void)
3856 #ifdef CONFIG_NO_HZ_FULL
3857 spin_lock(&nr_freq_lock
);
3858 if (atomic_dec_and_test(&nr_freq_events
))
3859 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS
);
3860 spin_unlock(&nr_freq_lock
);
3864 static void unaccount_freq_event(void)
3866 if (tick_nohz_full_enabled())
3867 unaccount_freq_event_nohz();
3869 atomic_dec(&nr_freq_events
);
3872 static void unaccount_event(struct perf_event
*event
)
3879 if (event
->attach_state
& PERF_ATTACH_TASK
)
3881 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
3882 atomic_dec(&nr_mmap_events
);
3883 if (event
->attr
.comm
)
3884 atomic_dec(&nr_comm_events
);
3885 if (event
->attr
.task
)
3886 atomic_dec(&nr_task_events
);
3887 if (event
->attr
.freq
)
3888 unaccount_freq_event();
3889 if (event
->attr
.context_switch
) {
3891 atomic_dec(&nr_switch_events
);
3893 if (is_cgroup_event(event
))
3895 if (has_branch_stack(event
))
3899 if (!atomic_add_unless(&perf_sched_count
, -1, 1))
3900 schedule_delayed_work(&perf_sched_work
, HZ
);
3903 unaccount_event_cpu(event
, event
->cpu
);
3905 unaccount_pmu_sb_event(event
);
3908 static void perf_sched_delayed(struct work_struct
*work
)
3910 mutex_lock(&perf_sched_mutex
);
3911 if (atomic_dec_and_test(&perf_sched_count
))
3912 static_branch_disable(&perf_sched_events
);
3913 mutex_unlock(&perf_sched_mutex
);
3917 * The following implement mutual exclusion of events on "exclusive" pmus
3918 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3919 * at a time, so we disallow creating events that might conflict, namely:
3921 * 1) cpu-wide events in the presence of per-task events,
3922 * 2) per-task events in the presence of cpu-wide events,
3923 * 3) two matching events on the same context.
3925 * The former two cases are handled in the allocation path (perf_event_alloc(),
3926 * _free_event()), the latter -- before the first perf_install_in_context().
3928 static int exclusive_event_init(struct perf_event
*event
)
3930 struct pmu
*pmu
= event
->pmu
;
3932 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3936 * Prevent co-existence of per-task and cpu-wide events on the
3937 * same exclusive pmu.
3939 * Negative pmu::exclusive_cnt means there are cpu-wide
3940 * events on this "exclusive" pmu, positive means there are
3943 * Since this is called in perf_event_alloc() path, event::ctx
3944 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3945 * to mean "per-task event", because unlike other attach states it
3946 * never gets cleared.
3948 if (event
->attach_state
& PERF_ATTACH_TASK
) {
3949 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
3952 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
3959 static void exclusive_event_destroy(struct perf_event
*event
)
3961 struct pmu
*pmu
= event
->pmu
;
3963 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3966 /* see comment in exclusive_event_init() */
3967 if (event
->attach_state
& PERF_ATTACH_TASK
)
3968 atomic_dec(&pmu
->exclusive_cnt
);
3970 atomic_inc(&pmu
->exclusive_cnt
);
3973 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
3975 if ((e1
->pmu
== e2
->pmu
) &&
3976 (e1
->cpu
== e2
->cpu
||
3983 /* Called under the same ctx::mutex as perf_install_in_context() */
3984 static bool exclusive_event_installable(struct perf_event
*event
,
3985 struct perf_event_context
*ctx
)
3987 struct perf_event
*iter_event
;
3988 struct pmu
*pmu
= event
->pmu
;
3990 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3993 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
3994 if (exclusive_event_match(iter_event
, event
))
4001 static void perf_addr_filters_splice(struct perf_event
*event
,
4002 struct list_head
*head
);
4004 static void _free_event(struct perf_event
*event
)
4006 irq_work_sync(&event
->pending
);
4008 unaccount_event(event
);
4012 * Can happen when we close an event with re-directed output.
4014 * Since we have a 0 refcount, perf_mmap_close() will skip
4015 * over us; possibly making our ring_buffer_put() the last.
4017 mutex_lock(&event
->mmap_mutex
);
4018 ring_buffer_attach(event
, NULL
);
4019 mutex_unlock(&event
->mmap_mutex
);
4022 if (is_cgroup_event(event
))
4023 perf_detach_cgroup(event
);
4025 if (!event
->parent
) {
4026 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
4027 put_callchain_buffers();
4030 perf_event_free_bpf_prog(event
);
4031 perf_addr_filters_splice(event
, NULL
);
4032 kfree(event
->addr_filters_offs
);
4035 event
->destroy(event
);
4038 put_ctx(event
->ctx
);
4040 exclusive_event_destroy(event
);
4041 module_put(event
->pmu
->module
);
4043 call_rcu(&event
->rcu_head
, free_event_rcu
);
4047 * Used to free events which have a known refcount of 1, such as in error paths
4048 * where the event isn't exposed yet and inherited events.
4050 static void free_event(struct perf_event
*event
)
4052 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
4053 "unexpected event refcount: %ld; ptr=%p\n",
4054 atomic_long_read(&event
->refcount
), event
)) {
4055 /* leak to avoid use-after-free */
4063 * Remove user event from the owner task.
4065 static void perf_remove_from_owner(struct perf_event
*event
)
4067 struct task_struct
*owner
;
4071 * Matches the smp_store_release() in perf_event_exit_task(). If we
4072 * observe !owner it means the list deletion is complete and we can
4073 * indeed free this event, otherwise we need to serialize on
4074 * owner->perf_event_mutex.
4076 owner
= lockless_dereference(event
->owner
);
4079 * Since delayed_put_task_struct() also drops the last
4080 * task reference we can safely take a new reference
4081 * while holding the rcu_read_lock().
4083 get_task_struct(owner
);
4089 * If we're here through perf_event_exit_task() we're already
4090 * holding ctx->mutex which would be an inversion wrt. the
4091 * normal lock order.
4093 * However we can safely take this lock because its the child
4096 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
4099 * We have to re-check the event->owner field, if it is cleared
4100 * we raced with perf_event_exit_task(), acquiring the mutex
4101 * ensured they're done, and we can proceed with freeing the
4105 list_del_init(&event
->owner_entry
);
4106 smp_store_release(&event
->owner
, NULL
);
4108 mutex_unlock(&owner
->perf_event_mutex
);
4109 put_task_struct(owner
);
4113 static void put_event(struct perf_event
*event
)
4115 if (!atomic_long_dec_and_test(&event
->refcount
))
4122 * Kill an event dead; while event:refcount will preserve the event
4123 * object, it will not preserve its functionality. Once the last 'user'
4124 * gives up the object, we'll destroy the thing.
4126 int perf_event_release_kernel(struct perf_event
*event
)
4128 struct perf_event_context
*ctx
= event
->ctx
;
4129 struct perf_event
*child
, *tmp
;
4132 * If we got here through err_file: fput(event_file); we will not have
4133 * attached to a context yet.
4136 WARN_ON_ONCE(event
->attach_state
&
4137 (PERF_ATTACH_CONTEXT
|PERF_ATTACH_GROUP
));
4141 if (!is_kernel_event(event
))
4142 perf_remove_from_owner(event
);
4144 ctx
= perf_event_ctx_lock(event
);
4145 WARN_ON_ONCE(ctx
->parent_ctx
);
4146 perf_remove_from_context(event
, DETACH_GROUP
);
4148 raw_spin_lock_irq(&ctx
->lock
);
4150 * Mark this even as STATE_DEAD, there is no external reference to it
4153 * Anybody acquiring event->child_mutex after the below loop _must_
4154 * also see this, most importantly inherit_event() which will avoid
4155 * placing more children on the list.
4157 * Thus this guarantees that we will in fact observe and kill _ALL_
4160 event
->state
= PERF_EVENT_STATE_DEAD
;
4161 raw_spin_unlock_irq(&ctx
->lock
);
4163 perf_event_ctx_unlock(event
, ctx
);
4166 mutex_lock(&event
->child_mutex
);
4167 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4170 * Cannot change, child events are not migrated, see the
4171 * comment with perf_event_ctx_lock_nested().
4173 ctx
= lockless_dereference(child
->ctx
);
4175 * Since child_mutex nests inside ctx::mutex, we must jump
4176 * through hoops. We start by grabbing a reference on the ctx.
4178 * Since the event cannot get freed while we hold the
4179 * child_mutex, the context must also exist and have a !0
4185 * Now that we have a ctx ref, we can drop child_mutex, and
4186 * acquire ctx::mutex without fear of it going away. Then we
4187 * can re-acquire child_mutex.
4189 mutex_unlock(&event
->child_mutex
);
4190 mutex_lock(&ctx
->mutex
);
4191 mutex_lock(&event
->child_mutex
);
4194 * Now that we hold ctx::mutex and child_mutex, revalidate our
4195 * state, if child is still the first entry, it didn't get freed
4196 * and we can continue doing so.
4198 tmp
= list_first_entry_or_null(&event
->child_list
,
4199 struct perf_event
, child_list
);
4201 perf_remove_from_context(child
, DETACH_GROUP
);
4202 list_del(&child
->child_list
);
4205 * This matches the refcount bump in inherit_event();
4206 * this can't be the last reference.
4211 mutex_unlock(&event
->child_mutex
);
4212 mutex_unlock(&ctx
->mutex
);
4216 mutex_unlock(&event
->child_mutex
);
4219 put_event(event
); /* Must be the 'last' reference */
4222 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
4225 * Called when the last reference to the file is gone.
4227 static int perf_release(struct inode
*inode
, struct file
*file
)
4229 perf_event_release_kernel(file
->private_data
);
4233 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
4235 struct perf_event
*child
;
4241 mutex_lock(&event
->child_mutex
);
4243 (void)perf_event_read(event
, false);
4244 total
+= perf_event_count(event
);
4246 *enabled
+= event
->total_time_enabled
+
4247 atomic64_read(&event
->child_total_time_enabled
);
4248 *running
+= event
->total_time_running
+
4249 atomic64_read(&event
->child_total_time_running
);
4251 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4252 (void)perf_event_read(child
, false);
4253 total
+= perf_event_count(child
);
4254 *enabled
+= child
->total_time_enabled
;
4255 *running
+= child
->total_time_running
;
4257 mutex_unlock(&event
->child_mutex
);
4261 EXPORT_SYMBOL_GPL(perf_event_read_value
);
4263 static int __perf_read_group_add(struct perf_event
*leader
,
4264 u64 read_format
, u64
*values
)
4266 struct perf_event
*sub
;
4267 int n
= 1; /* skip @nr */
4270 ret
= perf_event_read(leader
, true);
4275 * Since we co-schedule groups, {enabled,running} times of siblings
4276 * will be identical to those of the leader, so we only publish one
4279 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4280 values
[n
++] += leader
->total_time_enabled
+
4281 atomic64_read(&leader
->child_total_time_enabled
);
4284 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4285 values
[n
++] += leader
->total_time_running
+
4286 atomic64_read(&leader
->child_total_time_running
);
4290 * Write {count,id} tuples for every sibling.
4292 values
[n
++] += perf_event_count(leader
);
4293 if (read_format
& PERF_FORMAT_ID
)
4294 values
[n
++] = primary_event_id(leader
);
4296 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
4297 values
[n
++] += perf_event_count(sub
);
4298 if (read_format
& PERF_FORMAT_ID
)
4299 values
[n
++] = primary_event_id(sub
);
4305 static int perf_read_group(struct perf_event
*event
,
4306 u64 read_format
, char __user
*buf
)
4308 struct perf_event
*leader
= event
->group_leader
, *child
;
4309 struct perf_event_context
*ctx
= leader
->ctx
;
4313 lockdep_assert_held(&ctx
->mutex
);
4315 values
= kzalloc(event
->read_size
, GFP_KERNEL
);
4319 values
[0] = 1 + leader
->nr_siblings
;
4322 * By locking the child_mutex of the leader we effectively
4323 * lock the child list of all siblings.. XXX explain how.
4325 mutex_lock(&leader
->child_mutex
);
4327 ret
= __perf_read_group_add(leader
, read_format
, values
);
4331 list_for_each_entry(child
, &leader
->child_list
, child_list
) {
4332 ret
= __perf_read_group_add(child
, read_format
, values
);
4337 mutex_unlock(&leader
->child_mutex
);
4339 ret
= event
->read_size
;
4340 if (copy_to_user(buf
, values
, event
->read_size
))
4345 mutex_unlock(&leader
->child_mutex
);
4351 static int perf_read_one(struct perf_event
*event
,
4352 u64 read_format
, char __user
*buf
)
4354 u64 enabled
, running
;
4358 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
4359 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4360 values
[n
++] = enabled
;
4361 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4362 values
[n
++] = running
;
4363 if (read_format
& PERF_FORMAT_ID
)
4364 values
[n
++] = primary_event_id(event
);
4366 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
4369 return n
* sizeof(u64
);
4372 static bool is_event_hup(struct perf_event
*event
)
4376 if (event
->state
> PERF_EVENT_STATE_EXIT
)
4379 mutex_lock(&event
->child_mutex
);
4380 no_children
= list_empty(&event
->child_list
);
4381 mutex_unlock(&event
->child_mutex
);
4386 * Read the performance event - simple non blocking version for now
4389 __perf_read(struct perf_event
*event
, char __user
*buf
, size_t count
)
4391 u64 read_format
= event
->attr
.read_format
;
4395 * Return end-of-file for a read on a event that is in
4396 * error state (i.e. because it was pinned but it couldn't be
4397 * scheduled on to the CPU at some point).
4399 if (event
->state
== PERF_EVENT_STATE_ERROR
)
4402 if (count
< event
->read_size
)
4405 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4406 if (read_format
& PERF_FORMAT_GROUP
)
4407 ret
= perf_read_group(event
, read_format
, buf
);
4409 ret
= perf_read_one(event
, read_format
, buf
);
4415 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
4417 struct perf_event
*event
= file
->private_data
;
4418 struct perf_event_context
*ctx
;
4421 ctx
= perf_event_ctx_lock(event
);
4422 ret
= __perf_read(event
, buf
, count
);
4423 perf_event_ctx_unlock(event
, ctx
);
4428 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
4430 struct perf_event
*event
= file
->private_data
;
4431 struct ring_buffer
*rb
;
4432 unsigned int events
= POLLHUP
;
4434 poll_wait(file
, &event
->waitq
, wait
);
4436 if (is_event_hup(event
))
4440 * Pin the event->rb by taking event->mmap_mutex; otherwise
4441 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4443 mutex_lock(&event
->mmap_mutex
);
4446 events
= atomic_xchg(&rb
->poll
, 0);
4447 mutex_unlock(&event
->mmap_mutex
);
4451 static void _perf_event_reset(struct perf_event
*event
)
4453 (void)perf_event_read(event
, false);
4454 local64_set(&event
->count
, 0);
4455 perf_event_update_userpage(event
);
4459 * Holding the top-level event's child_mutex means that any
4460 * descendant process that has inherited this event will block
4461 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4462 * task existence requirements of perf_event_enable/disable.
4464 static void perf_event_for_each_child(struct perf_event
*event
,
4465 void (*func
)(struct perf_event
*))
4467 struct perf_event
*child
;
4469 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4471 mutex_lock(&event
->child_mutex
);
4473 list_for_each_entry(child
, &event
->child_list
, child_list
)
4475 mutex_unlock(&event
->child_mutex
);
4478 static void perf_event_for_each(struct perf_event
*event
,
4479 void (*func
)(struct perf_event
*))
4481 struct perf_event_context
*ctx
= event
->ctx
;
4482 struct perf_event
*sibling
;
4484 lockdep_assert_held(&ctx
->mutex
);
4486 event
= event
->group_leader
;
4488 perf_event_for_each_child(event
, func
);
4489 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
4490 perf_event_for_each_child(sibling
, func
);
4493 static void __perf_event_period(struct perf_event
*event
,
4494 struct perf_cpu_context
*cpuctx
,
4495 struct perf_event_context
*ctx
,
4498 u64 value
= *((u64
*)info
);
4501 if (event
->attr
.freq
) {
4502 event
->attr
.sample_freq
= value
;
4504 event
->attr
.sample_period
= value
;
4505 event
->hw
.sample_period
= value
;
4508 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
4510 perf_pmu_disable(ctx
->pmu
);
4512 * We could be throttled; unthrottle now to avoid the tick
4513 * trying to unthrottle while we already re-started the event.
4515 if (event
->hw
.interrupts
== MAX_INTERRUPTS
) {
4516 event
->hw
.interrupts
= 0;
4517 perf_log_throttle(event
, 1);
4519 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
4522 local64_set(&event
->hw
.period_left
, 0);
4525 event
->pmu
->start(event
, PERF_EF_RELOAD
);
4526 perf_pmu_enable(ctx
->pmu
);
4530 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
4534 if (!is_sampling_event(event
))
4537 if (copy_from_user(&value
, arg
, sizeof(value
)))
4543 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
4546 event_function_call(event
, __perf_event_period
, &value
);
4551 static const struct file_operations perf_fops
;
4553 static inline int perf_fget_light(int fd
, struct fd
*p
)
4555 struct fd f
= fdget(fd
);
4559 if (f
.file
->f_op
!= &perf_fops
) {
4567 static int perf_event_set_output(struct perf_event
*event
,
4568 struct perf_event
*output_event
);
4569 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
4570 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
);
4572 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
4574 void (*func
)(struct perf_event
*);
4578 case PERF_EVENT_IOC_ENABLE
:
4579 func
= _perf_event_enable
;
4581 case PERF_EVENT_IOC_DISABLE
:
4582 func
= _perf_event_disable
;
4584 case PERF_EVENT_IOC_RESET
:
4585 func
= _perf_event_reset
;
4588 case PERF_EVENT_IOC_REFRESH
:
4589 return _perf_event_refresh(event
, arg
);
4591 case PERF_EVENT_IOC_PERIOD
:
4592 return perf_event_period(event
, (u64 __user
*)arg
);
4594 case PERF_EVENT_IOC_ID
:
4596 u64 id
= primary_event_id(event
);
4598 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
4603 case PERF_EVENT_IOC_SET_OUTPUT
:
4607 struct perf_event
*output_event
;
4609 ret
= perf_fget_light(arg
, &output
);
4612 output_event
= output
.file
->private_data
;
4613 ret
= perf_event_set_output(event
, output_event
);
4616 ret
= perf_event_set_output(event
, NULL
);
4621 case PERF_EVENT_IOC_SET_FILTER
:
4622 return perf_event_set_filter(event
, (void __user
*)arg
);
4624 case PERF_EVENT_IOC_SET_BPF
:
4625 return perf_event_set_bpf_prog(event
, arg
);
4627 case PERF_EVENT_IOC_PAUSE_OUTPUT
: {
4628 struct ring_buffer
*rb
;
4631 rb
= rcu_dereference(event
->rb
);
4632 if (!rb
|| !rb
->nr_pages
) {
4636 rb_toggle_paused(rb
, !!arg
);
4644 if (flags
& PERF_IOC_FLAG_GROUP
)
4645 perf_event_for_each(event
, func
);
4647 perf_event_for_each_child(event
, func
);
4652 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
4654 struct perf_event
*event
= file
->private_data
;
4655 struct perf_event_context
*ctx
;
4658 ctx
= perf_event_ctx_lock(event
);
4659 ret
= _perf_ioctl(event
, cmd
, arg
);
4660 perf_event_ctx_unlock(event
, ctx
);
4665 #ifdef CONFIG_COMPAT
4666 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
4669 switch (_IOC_NR(cmd
)) {
4670 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
4671 case _IOC_NR(PERF_EVENT_IOC_ID
):
4672 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4673 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
4674 cmd
&= ~IOCSIZE_MASK
;
4675 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
4679 return perf_ioctl(file
, cmd
, arg
);
4682 # define perf_compat_ioctl NULL
4685 int perf_event_task_enable(void)
4687 struct perf_event_context
*ctx
;
4688 struct perf_event
*event
;
4690 mutex_lock(¤t
->perf_event_mutex
);
4691 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4692 ctx
= perf_event_ctx_lock(event
);
4693 perf_event_for_each_child(event
, _perf_event_enable
);
4694 perf_event_ctx_unlock(event
, ctx
);
4696 mutex_unlock(¤t
->perf_event_mutex
);
4701 int perf_event_task_disable(void)
4703 struct perf_event_context
*ctx
;
4704 struct perf_event
*event
;
4706 mutex_lock(¤t
->perf_event_mutex
);
4707 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4708 ctx
= perf_event_ctx_lock(event
);
4709 perf_event_for_each_child(event
, _perf_event_disable
);
4710 perf_event_ctx_unlock(event
, ctx
);
4712 mutex_unlock(¤t
->perf_event_mutex
);
4717 static int perf_event_index(struct perf_event
*event
)
4719 if (event
->hw
.state
& PERF_HES_STOPPED
)
4722 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4725 return event
->pmu
->event_idx(event
);
4728 static void calc_timer_values(struct perf_event
*event
,
4735 *now
= perf_clock();
4736 ctx_time
= event
->shadow_ctx_time
+ *now
;
4737 *enabled
= ctx_time
- event
->tstamp_enabled
;
4738 *running
= ctx_time
- event
->tstamp_running
;
4741 static void perf_event_init_userpage(struct perf_event
*event
)
4743 struct perf_event_mmap_page
*userpg
;
4744 struct ring_buffer
*rb
;
4747 rb
= rcu_dereference(event
->rb
);
4751 userpg
= rb
->user_page
;
4753 /* Allow new userspace to detect that bit 0 is deprecated */
4754 userpg
->cap_bit0_is_deprecated
= 1;
4755 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
4756 userpg
->data_offset
= PAGE_SIZE
;
4757 userpg
->data_size
= perf_data_size(rb
);
4763 void __weak
arch_perf_update_userpage(
4764 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
4769 * Callers need to ensure there can be no nesting of this function, otherwise
4770 * the seqlock logic goes bad. We can not serialize this because the arch
4771 * code calls this from NMI context.
4773 void perf_event_update_userpage(struct perf_event
*event
)
4775 struct perf_event_mmap_page
*userpg
;
4776 struct ring_buffer
*rb
;
4777 u64 enabled
, running
, now
;
4780 rb
= rcu_dereference(event
->rb
);
4785 * compute total_time_enabled, total_time_running
4786 * based on snapshot values taken when the event
4787 * was last scheduled in.
4789 * we cannot simply called update_context_time()
4790 * because of locking issue as we can be called in
4793 calc_timer_values(event
, &now
, &enabled
, &running
);
4795 userpg
= rb
->user_page
;
4797 * Disable preemption so as to not let the corresponding user-space
4798 * spin too long if we get preempted.
4803 userpg
->index
= perf_event_index(event
);
4804 userpg
->offset
= perf_event_count(event
);
4806 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
4808 userpg
->time_enabled
= enabled
+
4809 atomic64_read(&event
->child_total_time_enabled
);
4811 userpg
->time_running
= running
+
4812 atomic64_read(&event
->child_total_time_running
);
4814 arch_perf_update_userpage(event
, userpg
, now
);
4823 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4825 struct perf_event
*event
= vma
->vm_file
->private_data
;
4826 struct ring_buffer
*rb
;
4827 int ret
= VM_FAULT_SIGBUS
;
4829 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
4830 if (vmf
->pgoff
== 0)
4836 rb
= rcu_dereference(event
->rb
);
4840 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
4843 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
4847 get_page(vmf
->page
);
4848 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
4849 vmf
->page
->index
= vmf
->pgoff
;
4858 static void ring_buffer_attach(struct perf_event
*event
,
4859 struct ring_buffer
*rb
)
4861 struct ring_buffer
*old_rb
= NULL
;
4862 unsigned long flags
;
4866 * Should be impossible, we set this when removing
4867 * event->rb_entry and wait/clear when adding event->rb_entry.
4869 WARN_ON_ONCE(event
->rcu_pending
);
4872 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
4873 list_del_rcu(&event
->rb_entry
);
4874 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
4876 event
->rcu_batches
= get_state_synchronize_rcu();
4877 event
->rcu_pending
= 1;
4881 if (event
->rcu_pending
) {
4882 cond_synchronize_rcu(event
->rcu_batches
);
4883 event
->rcu_pending
= 0;
4886 spin_lock_irqsave(&rb
->event_lock
, flags
);
4887 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
4888 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
4892 * Avoid racing with perf_mmap_close(AUX): stop the event
4893 * before swizzling the event::rb pointer; if it's getting
4894 * unmapped, its aux_mmap_count will be 0 and it won't
4895 * restart. See the comment in __perf_pmu_output_stop().
4897 * Data will inevitably be lost when set_output is done in
4898 * mid-air, but then again, whoever does it like this is
4899 * not in for the data anyway.
4902 perf_event_stop(event
, 0);
4904 rcu_assign_pointer(event
->rb
, rb
);
4907 ring_buffer_put(old_rb
);
4909 * Since we detached before setting the new rb, so that we
4910 * could attach the new rb, we could have missed a wakeup.
4913 wake_up_all(&event
->waitq
);
4917 static void ring_buffer_wakeup(struct perf_event
*event
)
4919 struct ring_buffer
*rb
;
4922 rb
= rcu_dereference(event
->rb
);
4924 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
4925 wake_up_all(&event
->waitq
);
4930 struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
4932 struct ring_buffer
*rb
;
4935 rb
= rcu_dereference(event
->rb
);
4937 if (!atomic_inc_not_zero(&rb
->refcount
))
4945 void ring_buffer_put(struct ring_buffer
*rb
)
4947 if (!atomic_dec_and_test(&rb
->refcount
))
4950 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
4952 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
4955 static void perf_mmap_open(struct vm_area_struct
*vma
)
4957 struct perf_event
*event
= vma
->vm_file
->private_data
;
4959 atomic_inc(&event
->mmap_count
);
4960 atomic_inc(&event
->rb
->mmap_count
);
4963 atomic_inc(&event
->rb
->aux_mmap_count
);
4965 if (event
->pmu
->event_mapped
)
4966 event
->pmu
->event_mapped(event
);
4969 static void perf_pmu_output_stop(struct perf_event
*event
);
4972 * A buffer can be mmap()ed multiple times; either directly through the same
4973 * event, or through other events by use of perf_event_set_output().
4975 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4976 * the buffer here, where we still have a VM context. This means we need
4977 * to detach all events redirecting to us.
4979 static void perf_mmap_close(struct vm_area_struct
*vma
)
4981 struct perf_event
*event
= vma
->vm_file
->private_data
;
4983 struct ring_buffer
*rb
= ring_buffer_get(event
);
4984 struct user_struct
*mmap_user
= rb
->mmap_user
;
4985 int mmap_locked
= rb
->mmap_locked
;
4986 unsigned long size
= perf_data_size(rb
);
4988 if (event
->pmu
->event_unmapped
)
4989 event
->pmu
->event_unmapped(event
);
4992 * rb->aux_mmap_count will always drop before rb->mmap_count and
4993 * event->mmap_count, so it is ok to use event->mmap_mutex to
4994 * serialize with perf_mmap here.
4996 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
4997 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &event
->mmap_mutex
)) {
4999 * Stop all AUX events that are writing to this buffer,
5000 * so that we can free its AUX pages and corresponding PMU
5001 * data. Note that after rb::aux_mmap_count dropped to zero,
5002 * they won't start any more (see perf_aux_output_begin()).
5004 perf_pmu_output_stop(event
);
5006 /* now it's safe to free the pages */
5007 atomic_long_sub(rb
->aux_nr_pages
, &mmap_user
->locked_vm
);
5008 vma
->vm_mm
->pinned_vm
-= rb
->aux_mmap_locked
;
5010 /* this has to be the last one */
5012 WARN_ON_ONCE(atomic_read(&rb
->aux_refcount
));
5014 mutex_unlock(&event
->mmap_mutex
);
5017 atomic_dec(&rb
->mmap_count
);
5019 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
5022 ring_buffer_attach(event
, NULL
);
5023 mutex_unlock(&event
->mmap_mutex
);
5025 /* If there's still other mmap()s of this buffer, we're done. */
5026 if (atomic_read(&rb
->mmap_count
))
5030 * No other mmap()s, detach from all other events that might redirect
5031 * into the now unreachable buffer. Somewhat complicated by the
5032 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5036 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
5037 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
5039 * This event is en-route to free_event() which will
5040 * detach it and remove it from the list.
5046 mutex_lock(&event
->mmap_mutex
);
5048 * Check we didn't race with perf_event_set_output() which can
5049 * swizzle the rb from under us while we were waiting to
5050 * acquire mmap_mutex.
5052 * If we find a different rb; ignore this event, a next
5053 * iteration will no longer find it on the list. We have to
5054 * still restart the iteration to make sure we're not now
5055 * iterating the wrong list.
5057 if (event
->rb
== rb
)
5058 ring_buffer_attach(event
, NULL
);
5060 mutex_unlock(&event
->mmap_mutex
);
5064 * Restart the iteration; either we're on the wrong list or
5065 * destroyed its integrity by doing a deletion.
5072 * It could be there's still a few 0-ref events on the list; they'll
5073 * get cleaned up by free_event() -- they'll also still have their
5074 * ref on the rb and will free it whenever they are done with it.
5076 * Aside from that, this buffer is 'fully' detached and unmapped,
5077 * undo the VM accounting.
5080 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
5081 vma
->vm_mm
->pinned_vm
-= mmap_locked
;
5082 free_uid(mmap_user
);
5085 ring_buffer_put(rb
); /* could be last */
5088 static const struct vm_operations_struct perf_mmap_vmops
= {
5089 .open
= perf_mmap_open
,
5090 .close
= perf_mmap_close
, /* non mergable */
5091 .fault
= perf_mmap_fault
,
5092 .page_mkwrite
= perf_mmap_fault
,
5095 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
5097 struct perf_event
*event
= file
->private_data
;
5098 unsigned long user_locked
, user_lock_limit
;
5099 struct user_struct
*user
= current_user();
5100 unsigned long locked
, lock_limit
;
5101 struct ring_buffer
*rb
= NULL
;
5102 unsigned long vma_size
;
5103 unsigned long nr_pages
;
5104 long user_extra
= 0, extra
= 0;
5105 int ret
= 0, flags
= 0;
5108 * Don't allow mmap() of inherited per-task counters. This would
5109 * create a performance issue due to all children writing to the
5112 if (event
->cpu
== -1 && event
->attr
.inherit
)
5115 if (!(vma
->vm_flags
& VM_SHARED
))
5118 vma_size
= vma
->vm_end
- vma
->vm_start
;
5120 if (vma
->vm_pgoff
== 0) {
5121 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
5124 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5125 * mapped, all subsequent mappings should have the same size
5126 * and offset. Must be above the normal perf buffer.
5128 u64 aux_offset
, aux_size
;
5133 nr_pages
= vma_size
/ PAGE_SIZE
;
5135 mutex_lock(&event
->mmap_mutex
);
5142 aux_offset
= ACCESS_ONCE(rb
->user_page
->aux_offset
);
5143 aux_size
= ACCESS_ONCE(rb
->user_page
->aux_size
);
5145 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
5148 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
5151 /* already mapped with a different offset */
5152 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
5155 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
5158 /* already mapped with a different size */
5159 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
5162 if (!is_power_of_2(nr_pages
))
5165 if (!atomic_inc_not_zero(&rb
->mmap_count
))
5168 if (rb_has_aux(rb
)) {
5169 atomic_inc(&rb
->aux_mmap_count
);
5174 atomic_set(&rb
->aux_mmap_count
, 1);
5175 user_extra
= nr_pages
;
5181 * If we have rb pages ensure they're a power-of-two number, so we
5182 * can do bitmasks instead of modulo.
5184 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
5187 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
5190 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5192 mutex_lock(&event
->mmap_mutex
);
5194 if (event
->rb
->nr_pages
!= nr_pages
) {
5199 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
5201 * Raced against perf_mmap_close() through
5202 * perf_event_set_output(). Try again, hope for better
5205 mutex_unlock(&event
->mmap_mutex
);
5212 user_extra
= nr_pages
+ 1;
5215 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
5218 * Increase the limit linearly with more CPUs:
5220 user_lock_limit
*= num_online_cpus();
5222 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
5224 if (user_locked
> user_lock_limit
)
5225 extra
= user_locked
- user_lock_limit
;
5227 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
5228 lock_limit
>>= PAGE_SHIFT
;
5229 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
5231 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
5232 !capable(CAP_IPC_LOCK
)) {
5237 WARN_ON(!rb
&& event
->rb
);
5239 if (vma
->vm_flags
& VM_WRITE
)
5240 flags
|= RING_BUFFER_WRITABLE
;
5243 rb
= rb_alloc(nr_pages
,
5244 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
5252 atomic_set(&rb
->mmap_count
, 1);
5253 rb
->mmap_user
= get_current_user();
5254 rb
->mmap_locked
= extra
;
5256 ring_buffer_attach(event
, rb
);
5258 perf_event_init_userpage(event
);
5259 perf_event_update_userpage(event
);
5261 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
5262 event
->attr
.aux_watermark
, flags
);
5264 rb
->aux_mmap_locked
= extra
;
5269 atomic_long_add(user_extra
, &user
->locked_vm
);
5270 vma
->vm_mm
->pinned_vm
+= extra
;
5272 atomic_inc(&event
->mmap_count
);
5274 atomic_dec(&rb
->mmap_count
);
5277 mutex_unlock(&event
->mmap_mutex
);
5280 * Since pinned accounting is per vm we cannot allow fork() to copy our
5283 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
5284 vma
->vm_ops
= &perf_mmap_vmops
;
5286 if (event
->pmu
->event_mapped
)
5287 event
->pmu
->event_mapped(event
);
5292 static int perf_fasync(int fd
, struct file
*filp
, int on
)
5294 struct inode
*inode
= file_inode(filp
);
5295 struct perf_event
*event
= filp
->private_data
;
5299 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
5300 inode_unlock(inode
);
5308 static const struct file_operations perf_fops
= {
5309 .llseek
= no_llseek
,
5310 .release
= perf_release
,
5313 .unlocked_ioctl
= perf_ioctl
,
5314 .compat_ioctl
= perf_compat_ioctl
,
5316 .fasync
= perf_fasync
,
5322 * If there's data, ensure we set the poll() state and publish everything
5323 * to user-space before waking everybody up.
5326 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
5328 /* only the parent has fasync state */
5330 event
= event
->parent
;
5331 return &event
->fasync
;
5334 void perf_event_wakeup(struct perf_event
*event
)
5336 ring_buffer_wakeup(event
);
5338 if (event
->pending_kill
) {
5339 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
5340 event
->pending_kill
= 0;
5344 static void perf_pending_event(struct irq_work
*entry
)
5346 struct perf_event
*event
= container_of(entry
,
5347 struct perf_event
, pending
);
5350 rctx
= perf_swevent_get_recursion_context();
5352 * If we 'fail' here, that's OK, it means recursion is already disabled
5353 * and we won't recurse 'further'.
5356 if (event
->pending_disable
) {
5357 event
->pending_disable
= 0;
5358 perf_event_disable_local(event
);
5361 if (event
->pending_wakeup
) {
5362 event
->pending_wakeup
= 0;
5363 perf_event_wakeup(event
);
5367 perf_swevent_put_recursion_context(rctx
);
5371 * We assume there is only KVM supporting the callbacks.
5372 * Later on, we might change it to a list if there is
5373 * another virtualization implementation supporting the callbacks.
5375 struct perf_guest_info_callbacks
*perf_guest_cbs
;
5377 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5379 perf_guest_cbs
= cbs
;
5382 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
5384 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5386 perf_guest_cbs
= NULL
;
5389 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
5392 perf_output_sample_regs(struct perf_output_handle
*handle
,
5393 struct pt_regs
*regs
, u64 mask
)
5396 DECLARE_BITMAP(_mask
, 64);
5398 bitmap_from_u64(_mask
, mask
);
5399 for_each_set_bit(bit
, _mask
, sizeof(mask
) * BITS_PER_BYTE
) {
5402 val
= perf_reg_value(regs
, bit
);
5403 perf_output_put(handle
, val
);
5407 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
5408 struct pt_regs
*regs
,
5409 struct pt_regs
*regs_user_copy
)
5411 if (user_mode(regs
)) {
5412 regs_user
->abi
= perf_reg_abi(current
);
5413 regs_user
->regs
= regs
;
5414 } else if (current
->mm
) {
5415 perf_get_regs_user(regs_user
, regs
, regs_user_copy
);
5417 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
5418 regs_user
->regs
= NULL
;
5422 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
5423 struct pt_regs
*regs
)
5425 regs_intr
->regs
= regs
;
5426 regs_intr
->abi
= perf_reg_abi(current
);
5431 * Get remaining task size from user stack pointer.
5433 * It'd be better to take stack vma map and limit this more
5434 * precisly, but there's no way to get it safely under interrupt,
5435 * so using TASK_SIZE as limit.
5437 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
5439 unsigned long addr
= perf_user_stack_pointer(regs
);
5441 if (!addr
|| addr
>= TASK_SIZE
)
5444 return TASK_SIZE
- addr
;
5448 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
5449 struct pt_regs
*regs
)
5453 /* No regs, no stack pointer, no dump. */
5458 * Check if we fit in with the requested stack size into the:
5460 * If we don't, we limit the size to the TASK_SIZE.
5462 * - remaining sample size
5463 * If we don't, we customize the stack size to
5464 * fit in to the remaining sample size.
5467 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
5468 stack_size
= min(stack_size
, (u16
) task_size
);
5470 /* Current header size plus static size and dynamic size. */
5471 header_size
+= 2 * sizeof(u64
);
5473 /* Do we fit in with the current stack dump size? */
5474 if ((u16
) (header_size
+ stack_size
) < header_size
) {
5476 * If we overflow the maximum size for the sample,
5477 * we customize the stack dump size to fit in.
5479 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
5480 stack_size
= round_up(stack_size
, sizeof(u64
));
5487 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
5488 struct pt_regs
*regs
)
5490 /* Case of a kernel thread, nothing to dump */
5493 perf_output_put(handle
, size
);
5502 * - the size requested by user or the best one we can fit
5503 * in to the sample max size
5505 * - user stack dump data
5507 * - the actual dumped size
5511 perf_output_put(handle
, dump_size
);
5514 sp
= perf_user_stack_pointer(regs
);
5515 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
5516 dyn_size
= dump_size
- rem
;
5518 perf_output_skip(handle
, rem
);
5521 perf_output_put(handle
, dyn_size
);
5525 static void __perf_event_header__init_id(struct perf_event_header
*header
,
5526 struct perf_sample_data
*data
,
5527 struct perf_event
*event
)
5529 u64 sample_type
= event
->attr
.sample_type
;
5531 data
->type
= sample_type
;
5532 header
->size
+= event
->id_header_size
;
5534 if (sample_type
& PERF_SAMPLE_TID
) {
5535 /* namespace issues */
5536 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
5537 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
5540 if (sample_type
& PERF_SAMPLE_TIME
)
5541 data
->time
= perf_event_clock(event
);
5543 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
5544 data
->id
= primary_event_id(event
);
5546 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5547 data
->stream_id
= event
->id
;
5549 if (sample_type
& PERF_SAMPLE_CPU
) {
5550 data
->cpu_entry
.cpu
= raw_smp_processor_id();
5551 data
->cpu_entry
.reserved
= 0;
5555 void perf_event_header__init_id(struct perf_event_header
*header
,
5556 struct perf_sample_data
*data
,
5557 struct perf_event
*event
)
5559 if (event
->attr
.sample_id_all
)
5560 __perf_event_header__init_id(header
, data
, event
);
5563 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
5564 struct perf_sample_data
*data
)
5566 u64 sample_type
= data
->type
;
5568 if (sample_type
& PERF_SAMPLE_TID
)
5569 perf_output_put(handle
, data
->tid_entry
);
5571 if (sample_type
& PERF_SAMPLE_TIME
)
5572 perf_output_put(handle
, data
->time
);
5574 if (sample_type
& PERF_SAMPLE_ID
)
5575 perf_output_put(handle
, data
->id
);
5577 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5578 perf_output_put(handle
, data
->stream_id
);
5580 if (sample_type
& PERF_SAMPLE_CPU
)
5581 perf_output_put(handle
, data
->cpu_entry
);
5583 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5584 perf_output_put(handle
, data
->id
);
5587 void perf_event__output_id_sample(struct perf_event
*event
,
5588 struct perf_output_handle
*handle
,
5589 struct perf_sample_data
*sample
)
5591 if (event
->attr
.sample_id_all
)
5592 __perf_event__output_id_sample(handle
, sample
);
5595 static void perf_output_read_one(struct perf_output_handle
*handle
,
5596 struct perf_event
*event
,
5597 u64 enabled
, u64 running
)
5599 u64 read_format
= event
->attr
.read_format
;
5603 values
[n
++] = perf_event_count(event
);
5604 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
5605 values
[n
++] = enabled
+
5606 atomic64_read(&event
->child_total_time_enabled
);
5608 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
5609 values
[n
++] = running
+
5610 atomic64_read(&event
->child_total_time_running
);
5612 if (read_format
& PERF_FORMAT_ID
)
5613 values
[n
++] = primary_event_id(event
);
5615 __output_copy(handle
, values
, n
* sizeof(u64
));
5619 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5621 static void perf_output_read_group(struct perf_output_handle
*handle
,
5622 struct perf_event
*event
,
5623 u64 enabled
, u64 running
)
5625 struct perf_event
*leader
= event
->group_leader
, *sub
;
5626 u64 read_format
= event
->attr
.read_format
;
5630 values
[n
++] = 1 + leader
->nr_siblings
;
5632 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
5633 values
[n
++] = enabled
;
5635 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
5636 values
[n
++] = running
;
5638 if (leader
!= event
)
5639 leader
->pmu
->read(leader
);
5641 values
[n
++] = perf_event_count(leader
);
5642 if (read_format
& PERF_FORMAT_ID
)
5643 values
[n
++] = primary_event_id(leader
);
5645 __output_copy(handle
, values
, n
* sizeof(u64
));
5647 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
5650 if ((sub
!= event
) &&
5651 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
5652 sub
->pmu
->read(sub
);
5654 values
[n
++] = perf_event_count(sub
);
5655 if (read_format
& PERF_FORMAT_ID
)
5656 values
[n
++] = primary_event_id(sub
);
5658 __output_copy(handle
, values
, n
* sizeof(u64
));
5662 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5663 PERF_FORMAT_TOTAL_TIME_RUNNING)
5665 static void perf_output_read(struct perf_output_handle
*handle
,
5666 struct perf_event
*event
)
5668 u64 enabled
= 0, running
= 0, now
;
5669 u64 read_format
= event
->attr
.read_format
;
5672 * compute total_time_enabled, total_time_running
5673 * based on snapshot values taken when the event
5674 * was last scheduled in.
5676 * we cannot simply called update_context_time()
5677 * because of locking issue as we are called in
5680 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
5681 calc_timer_values(event
, &now
, &enabled
, &running
);
5683 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
5684 perf_output_read_group(handle
, event
, enabled
, running
);
5686 perf_output_read_one(handle
, event
, enabled
, running
);
5689 void perf_output_sample(struct perf_output_handle
*handle
,
5690 struct perf_event_header
*header
,
5691 struct perf_sample_data
*data
,
5692 struct perf_event
*event
)
5694 u64 sample_type
= data
->type
;
5696 perf_output_put(handle
, *header
);
5698 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5699 perf_output_put(handle
, data
->id
);
5701 if (sample_type
& PERF_SAMPLE_IP
)
5702 perf_output_put(handle
, data
->ip
);
5704 if (sample_type
& PERF_SAMPLE_TID
)
5705 perf_output_put(handle
, data
->tid_entry
);
5707 if (sample_type
& PERF_SAMPLE_TIME
)
5708 perf_output_put(handle
, data
->time
);
5710 if (sample_type
& PERF_SAMPLE_ADDR
)
5711 perf_output_put(handle
, data
->addr
);
5713 if (sample_type
& PERF_SAMPLE_ID
)
5714 perf_output_put(handle
, data
->id
);
5716 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5717 perf_output_put(handle
, data
->stream_id
);
5719 if (sample_type
& PERF_SAMPLE_CPU
)
5720 perf_output_put(handle
, data
->cpu_entry
);
5722 if (sample_type
& PERF_SAMPLE_PERIOD
)
5723 perf_output_put(handle
, data
->period
);
5725 if (sample_type
& PERF_SAMPLE_READ
)
5726 perf_output_read(handle
, event
);
5728 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5729 if (data
->callchain
) {
5732 if (data
->callchain
)
5733 size
+= data
->callchain
->nr
;
5735 size
*= sizeof(u64
);
5737 __output_copy(handle
, data
->callchain
, size
);
5740 perf_output_put(handle
, nr
);
5744 if (sample_type
& PERF_SAMPLE_RAW
) {
5745 struct perf_raw_record
*raw
= data
->raw
;
5748 struct perf_raw_frag
*frag
= &raw
->frag
;
5750 perf_output_put(handle
, raw
->size
);
5753 __output_custom(handle
, frag
->copy
,
5754 frag
->data
, frag
->size
);
5756 __output_copy(handle
, frag
->data
,
5759 if (perf_raw_frag_last(frag
))
5764 __output_skip(handle
, NULL
, frag
->pad
);
5770 .size
= sizeof(u32
),
5773 perf_output_put(handle
, raw
);
5777 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5778 if (data
->br_stack
) {
5781 size
= data
->br_stack
->nr
5782 * sizeof(struct perf_branch_entry
);
5784 perf_output_put(handle
, data
->br_stack
->nr
);
5785 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
5788 * we always store at least the value of nr
5791 perf_output_put(handle
, nr
);
5795 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5796 u64 abi
= data
->regs_user
.abi
;
5799 * If there are no regs to dump, notice it through
5800 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5802 perf_output_put(handle
, abi
);
5805 u64 mask
= event
->attr
.sample_regs_user
;
5806 perf_output_sample_regs(handle
,
5807 data
->regs_user
.regs
,
5812 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5813 perf_output_sample_ustack(handle
,
5814 data
->stack_user_size
,
5815 data
->regs_user
.regs
);
5818 if (sample_type
& PERF_SAMPLE_WEIGHT
)
5819 perf_output_put(handle
, data
->weight
);
5821 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
5822 perf_output_put(handle
, data
->data_src
.val
);
5824 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
5825 perf_output_put(handle
, data
->txn
);
5827 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5828 u64 abi
= data
->regs_intr
.abi
;
5830 * If there are no regs to dump, notice it through
5831 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5833 perf_output_put(handle
, abi
);
5836 u64 mask
= event
->attr
.sample_regs_intr
;
5838 perf_output_sample_regs(handle
,
5839 data
->regs_intr
.regs
,
5844 if (!event
->attr
.watermark
) {
5845 int wakeup_events
= event
->attr
.wakeup_events
;
5847 if (wakeup_events
) {
5848 struct ring_buffer
*rb
= handle
->rb
;
5849 int events
= local_inc_return(&rb
->events
);
5851 if (events
>= wakeup_events
) {
5852 local_sub(wakeup_events
, &rb
->events
);
5853 local_inc(&rb
->wakeup
);
5859 void perf_prepare_sample(struct perf_event_header
*header
,
5860 struct perf_sample_data
*data
,
5861 struct perf_event
*event
,
5862 struct pt_regs
*regs
)
5864 u64 sample_type
= event
->attr
.sample_type
;
5866 header
->type
= PERF_RECORD_SAMPLE
;
5867 header
->size
= sizeof(*header
) + event
->header_size
;
5870 header
->misc
|= perf_misc_flags(regs
);
5872 __perf_event_header__init_id(header
, data
, event
);
5874 if (sample_type
& PERF_SAMPLE_IP
)
5875 data
->ip
= perf_instruction_pointer(regs
);
5877 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5880 data
->callchain
= perf_callchain(event
, regs
);
5882 if (data
->callchain
)
5883 size
+= data
->callchain
->nr
;
5885 header
->size
+= size
* sizeof(u64
);
5888 if (sample_type
& PERF_SAMPLE_RAW
) {
5889 struct perf_raw_record
*raw
= data
->raw
;
5893 struct perf_raw_frag
*frag
= &raw
->frag
;
5898 if (perf_raw_frag_last(frag
))
5903 size
= round_up(sum
+ sizeof(u32
), sizeof(u64
));
5904 raw
->size
= size
- sizeof(u32
);
5905 frag
->pad
= raw
->size
- sum
;
5910 header
->size
+= size
;
5913 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5914 int size
= sizeof(u64
); /* nr */
5915 if (data
->br_stack
) {
5916 size
+= data
->br_stack
->nr
5917 * sizeof(struct perf_branch_entry
);
5919 header
->size
+= size
;
5922 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
5923 perf_sample_regs_user(&data
->regs_user
, regs
,
5924 &data
->regs_user_copy
);
5926 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5927 /* regs dump ABI info */
5928 int size
= sizeof(u64
);
5930 if (data
->regs_user
.regs
) {
5931 u64 mask
= event
->attr
.sample_regs_user
;
5932 size
+= hweight64(mask
) * sizeof(u64
);
5935 header
->size
+= size
;
5938 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5940 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5941 * processed as the last one or have additional check added
5942 * in case new sample type is added, because we could eat
5943 * up the rest of the sample size.
5945 u16 stack_size
= event
->attr
.sample_stack_user
;
5946 u16 size
= sizeof(u64
);
5948 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
5949 data
->regs_user
.regs
);
5952 * If there is something to dump, add space for the dump
5953 * itself and for the field that tells the dynamic size,
5954 * which is how many have been actually dumped.
5957 size
+= sizeof(u64
) + stack_size
;
5959 data
->stack_user_size
= stack_size
;
5960 header
->size
+= size
;
5963 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5964 /* regs dump ABI info */
5965 int size
= sizeof(u64
);
5967 perf_sample_regs_intr(&data
->regs_intr
, regs
);
5969 if (data
->regs_intr
.regs
) {
5970 u64 mask
= event
->attr
.sample_regs_intr
;
5972 size
+= hweight64(mask
) * sizeof(u64
);
5975 header
->size
+= size
;
5979 static void __always_inline
5980 __perf_event_output(struct perf_event
*event
,
5981 struct perf_sample_data
*data
,
5982 struct pt_regs
*regs
,
5983 int (*output_begin
)(struct perf_output_handle
*,
5984 struct perf_event
*,
5987 struct perf_output_handle handle
;
5988 struct perf_event_header header
;
5990 /* protect the callchain buffers */
5993 perf_prepare_sample(&header
, data
, event
, regs
);
5995 if (output_begin(&handle
, event
, header
.size
))
5998 perf_output_sample(&handle
, &header
, data
, event
);
6000 perf_output_end(&handle
);
6007 perf_event_output_forward(struct perf_event
*event
,
6008 struct perf_sample_data
*data
,
6009 struct pt_regs
*regs
)
6011 __perf_event_output(event
, data
, regs
, perf_output_begin_forward
);
6015 perf_event_output_backward(struct perf_event
*event
,
6016 struct perf_sample_data
*data
,
6017 struct pt_regs
*regs
)
6019 __perf_event_output(event
, data
, regs
, perf_output_begin_backward
);
6023 perf_event_output(struct perf_event
*event
,
6024 struct perf_sample_data
*data
,
6025 struct pt_regs
*regs
)
6027 __perf_event_output(event
, data
, regs
, perf_output_begin
);
6034 struct perf_read_event
{
6035 struct perf_event_header header
;
6042 perf_event_read_event(struct perf_event
*event
,
6043 struct task_struct
*task
)
6045 struct perf_output_handle handle
;
6046 struct perf_sample_data sample
;
6047 struct perf_read_event read_event
= {
6049 .type
= PERF_RECORD_READ
,
6051 .size
= sizeof(read_event
) + event
->read_size
,
6053 .pid
= perf_event_pid(event
, task
),
6054 .tid
= perf_event_tid(event
, task
),
6058 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
6059 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
6063 perf_output_put(&handle
, read_event
);
6064 perf_output_read(&handle
, event
);
6065 perf_event__output_id_sample(event
, &handle
, &sample
);
6067 perf_output_end(&handle
);
6070 typedef void (perf_iterate_f
)(struct perf_event
*event
, void *data
);
6073 perf_iterate_ctx(struct perf_event_context
*ctx
,
6074 perf_iterate_f output
,
6075 void *data
, bool all
)
6077 struct perf_event
*event
;
6079 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
6081 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6083 if (!event_filter_match(event
))
6087 output(event
, data
);
6091 static void perf_iterate_sb_cpu(perf_iterate_f output
, void *data
)
6093 struct pmu_event_list
*pel
= this_cpu_ptr(&pmu_sb_events
);
6094 struct perf_event
*event
;
6096 list_for_each_entry_rcu(event
, &pel
->list
, sb_list
) {
6098 * Skip events that are not fully formed yet; ensure that
6099 * if we observe event->ctx, both event and ctx will be
6100 * complete enough. See perf_install_in_context().
6102 if (!smp_load_acquire(&event
->ctx
))
6105 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6107 if (!event_filter_match(event
))
6109 output(event
, data
);
6114 * Iterate all events that need to receive side-band events.
6116 * For new callers; ensure that account_pmu_sb_event() includes
6117 * your event, otherwise it might not get delivered.
6120 perf_iterate_sb(perf_iterate_f output
, void *data
,
6121 struct perf_event_context
*task_ctx
)
6123 struct perf_event_context
*ctx
;
6130 * If we have task_ctx != NULL we only notify the task context itself.
6131 * The task_ctx is set only for EXIT events before releasing task
6135 perf_iterate_ctx(task_ctx
, output
, data
, false);
6139 perf_iterate_sb_cpu(output
, data
);
6141 for_each_task_context_nr(ctxn
) {
6142 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
6144 perf_iterate_ctx(ctx
, output
, data
, false);
6152 * Clear all file-based filters at exec, they'll have to be
6153 * re-instated when/if these objects are mmapped again.
6155 static void perf_event_addr_filters_exec(struct perf_event
*event
, void *data
)
6157 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
6158 struct perf_addr_filter
*filter
;
6159 unsigned int restart
= 0, count
= 0;
6160 unsigned long flags
;
6162 if (!has_addr_filter(event
))
6165 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
6166 list_for_each_entry(filter
, &ifh
->list
, entry
) {
6167 if (filter
->inode
) {
6168 event
->addr_filters_offs
[count
] = 0;
6176 event
->addr_filters_gen
++;
6177 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
6180 perf_event_stop(event
, 1);
6183 void perf_event_exec(void)
6185 struct perf_event_context
*ctx
;
6189 for_each_task_context_nr(ctxn
) {
6190 ctx
= current
->perf_event_ctxp
[ctxn
];
6194 perf_event_enable_on_exec(ctxn
);
6196 perf_iterate_ctx(ctx
, perf_event_addr_filters_exec
, NULL
,
6202 struct remote_output
{
6203 struct ring_buffer
*rb
;
6207 static void __perf_event_output_stop(struct perf_event
*event
, void *data
)
6209 struct perf_event
*parent
= event
->parent
;
6210 struct remote_output
*ro
= data
;
6211 struct ring_buffer
*rb
= ro
->rb
;
6212 struct stop_event_data sd
= {
6216 if (!has_aux(event
))
6223 * In case of inheritance, it will be the parent that links to the
6224 * ring-buffer, but it will be the child that's actually using it.
6226 * We are using event::rb to determine if the event should be stopped,
6227 * however this may race with ring_buffer_attach() (through set_output),
6228 * which will make us skip the event that actually needs to be stopped.
6229 * So ring_buffer_attach() has to stop an aux event before re-assigning
6232 if (rcu_dereference(parent
->rb
) == rb
)
6233 ro
->err
= __perf_event_stop(&sd
);
6236 static int __perf_pmu_output_stop(void *info
)
6238 struct perf_event
*event
= info
;
6239 struct pmu
*pmu
= event
->pmu
;
6240 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6241 struct remote_output ro
= {
6246 perf_iterate_ctx(&cpuctx
->ctx
, __perf_event_output_stop
, &ro
, false);
6247 if (cpuctx
->task_ctx
)
6248 perf_iterate_ctx(cpuctx
->task_ctx
, __perf_event_output_stop
,
6255 static void perf_pmu_output_stop(struct perf_event
*event
)
6257 struct perf_event
*iter
;
6262 list_for_each_entry_rcu(iter
, &event
->rb
->event_list
, rb_entry
) {
6264 * For per-CPU events, we need to make sure that neither they
6265 * nor their children are running; for cpu==-1 events it's
6266 * sufficient to stop the event itself if it's active, since
6267 * it can't have children.
6271 cpu
= READ_ONCE(iter
->oncpu
);
6276 err
= cpu_function_call(cpu
, __perf_pmu_output_stop
, event
);
6277 if (err
== -EAGAIN
) {
6286 * task tracking -- fork/exit
6288 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6291 struct perf_task_event
{
6292 struct task_struct
*task
;
6293 struct perf_event_context
*task_ctx
;
6296 struct perf_event_header header
;
6306 static int perf_event_task_match(struct perf_event
*event
)
6308 return event
->attr
.comm
|| event
->attr
.mmap
||
6309 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
6313 static void perf_event_task_output(struct perf_event
*event
,
6316 struct perf_task_event
*task_event
= data
;
6317 struct perf_output_handle handle
;
6318 struct perf_sample_data sample
;
6319 struct task_struct
*task
= task_event
->task
;
6320 int ret
, size
= task_event
->event_id
.header
.size
;
6322 if (!perf_event_task_match(event
))
6325 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
6327 ret
= perf_output_begin(&handle
, event
,
6328 task_event
->event_id
.header
.size
);
6332 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
6333 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
6335 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
6336 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
6338 task_event
->event_id
.time
= perf_event_clock(event
);
6340 perf_output_put(&handle
, task_event
->event_id
);
6342 perf_event__output_id_sample(event
, &handle
, &sample
);
6344 perf_output_end(&handle
);
6346 task_event
->event_id
.header
.size
= size
;
6349 static void perf_event_task(struct task_struct
*task
,
6350 struct perf_event_context
*task_ctx
,
6353 struct perf_task_event task_event
;
6355 if (!atomic_read(&nr_comm_events
) &&
6356 !atomic_read(&nr_mmap_events
) &&
6357 !atomic_read(&nr_task_events
))
6360 task_event
= (struct perf_task_event
){
6362 .task_ctx
= task_ctx
,
6365 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
6367 .size
= sizeof(task_event
.event_id
),
6377 perf_iterate_sb(perf_event_task_output
,
6382 void perf_event_fork(struct task_struct
*task
)
6384 perf_event_task(task
, NULL
, 1);
6391 struct perf_comm_event
{
6392 struct task_struct
*task
;
6397 struct perf_event_header header
;
6404 static int perf_event_comm_match(struct perf_event
*event
)
6406 return event
->attr
.comm
;
6409 static void perf_event_comm_output(struct perf_event
*event
,
6412 struct perf_comm_event
*comm_event
= data
;
6413 struct perf_output_handle handle
;
6414 struct perf_sample_data sample
;
6415 int size
= comm_event
->event_id
.header
.size
;
6418 if (!perf_event_comm_match(event
))
6421 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
6422 ret
= perf_output_begin(&handle
, event
,
6423 comm_event
->event_id
.header
.size
);
6428 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
6429 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
6431 perf_output_put(&handle
, comm_event
->event_id
);
6432 __output_copy(&handle
, comm_event
->comm
,
6433 comm_event
->comm_size
);
6435 perf_event__output_id_sample(event
, &handle
, &sample
);
6437 perf_output_end(&handle
);
6439 comm_event
->event_id
.header
.size
= size
;
6442 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
6444 char comm
[TASK_COMM_LEN
];
6447 memset(comm
, 0, sizeof(comm
));
6448 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
6449 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
6451 comm_event
->comm
= comm
;
6452 comm_event
->comm_size
= size
;
6454 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
6456 perf_iterate_sb(perf_event_comm_output
,
6461 void perf_event_comm(struct task_struct
*task
, bool exec
)
6463 struct perf_comm_event comm_event
;
6465 if (!atomic_read(&nr_comm_events
))
6468 comm_event
= (struct perf_comm_event
){
6474 .type
= PERF_RECORD_COMM
,
6475 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
6483 perf_event_comm_event(&comm_event
);
6490 struct perf_mmap_event
{
6491 struct vm_area_struct
*vma
;
6493 const char *file_name
;
6501 struct perf_event_header header
;
6511 static int perf_event_mmap_match(struct perf_event
*event
,
6514 struct perf_mmap_event
*mmap_event
= data
;
6515 struct vm_area_struct
*vma
= mmap_event
->vma
;
6516 int executable
= vma
->vm_flags
& VM_EXEC
;
6518 return (!executable
&& event
->attr
.mmap_data
) ||
6519 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
6522 static void perf_event_mmap_output(struct perf_event
*event
,
6525 struct perf_mmap_event
*mmap_event
= data
;
6526 struct perf_output_handle handle
;
6527 struct perf_sample_data sample
;
6528 int size
= mmap_event
->event_id
.header
.size
;
6531 if (!perf_event_mmap_match(event
, data
))
6534 if (event
->attr
.mmap2
) {
6535 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
6536 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
6537 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
6538 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
6539 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
6540 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
6541 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
6544 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
6545 ret
= perf_output_begin(&handle
, event
,
6546 mmap_event
->event_id
.header
.size
);
6550 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
6551 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
6553 perf_output_put(&handle
, mmap_event
->event_id
);
6555 if (event
->attr
.mmap2
) {
6556 perf_output_put(&handle
, mmap_event
->maj
);
6557 perf_output_put(&handle
, mmap_event
->min
);
6558 perf_output_put(&handle
, mmap_event
->ino
);
6559 perf_output_put(&handle
, mmap_event
->ino_generation
);
6560 perf_output_put(&handle
, mmap_event
->prot
);
6561 perf_output_put(&handle
, mmap_event
->flags
);
6564 __output_copy(&handle
, mmap_event
->file_name
,
6565 mmap_event
->file_size
);
6567 perf_event__output_id_sample(event
, &handle
, &sample
);
6569 perf_output_end(&handle
);
6571 mmap_event
->event_id
.header
.size
= size
;
6574 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
6576 struct vm_area_struct
*vma
= mmap_event
->vma
;
6577 struct file
*file
= vma
->vm_file
;
6578 int maj
= 0, min
= 0;
6579 u64 ino
= 0, gen
= 0;
6580 u32 prot
= 0, flags
= 0;
6587 struct inode
*inode
;
6590 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
6596 * d_path() works from the end of the rb backwards, so we
6597 * need to add enough zero bytes after the string to handle
6598 * the 64bit alignment we do later.
6600 name
= file_path(file
, buf
, PATH_MAX
- sizeof(u64
));
6605 inode
= file_inode(vma
->vm_file
);
6606 dev
= inode
->i_sb
->s_dev
;
6608 gen
= inode
->i_generation
;
6612 if (vma
->vm_flags
& VM_READ
)
6614 if (vma
->vm_flags
& VM_WRITE
)
6616 if (vma
->vm_flags
& VM_EXEC
)
6619 if (vma
->vm_flags
& VM_MAYSHARE
)
6622 flags
= MAP_PRIVATE
;
6624 if (vma
->vm_flags
& VM_DENYWRITE
)
6625 flags
|= MAP_DENYWRITE
;
6626 if (vma
->vm_flags
& VM_MAYEXEC
)
6627 flags
|= MAP_EXECUTABLE
;
6628 if (vma
->vm_flags
& VM_LOCKED
)
6629 flags
|= MAP_LOCKED
;
6630 if (vma
->vm_flags
& VM_HUGETLB
)
6631 flags
|= MAP_HUGETLB
;
6635 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
6636 name
= (char *) vma
->vm_ops
->name(vma
);
6641 name
= (char *)arch_vma_name(vma
);
6645 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
6646 vma
->vm_end
>= vma
->vm_mm
->brk
) {
6650 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
6651 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
6661 strlcpy(tmp
, name
, sizeof(tmp
));
6665 * Since our buffer works in 8 byte units we need to align our string
6666 * size to a multiple of 8. However, we must guarantee the tail end is
6667 * zero'd out to avoid leaking random bits to userspace.
6669 size
= strlen(name
)+1;
6670 while (!IS_ALIGNED(size
, sizeof(u64
)))
6671 name
[size
++] = '\0';
6673 mmap_event
->file_name
= name
;
6674 mmap_event
->file_size
= size
;
6675 mmap_event
->maj
= maj
;
6676 mmap_event
->min
= min
;
6677 mmap_event
->ino
= ino
;
6678 mmap_event
->ino_generation
= gen
;
6679 mmap_event
->prot
= prot
;
6680 mmap_event
->flags
= flags
;
6682 if (!(vma
->vm_flags
& VM_EXEC
))
6683 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
6685 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
6687 perf_iterate_sb(perf_event_mmap_output
,
6695 * Check whether inode and address range match filter criteria.
6697 static bool perf_addr_filter_match(struct perf_addr_filter
*filter
,
6698 struct file
*file
, unsigned long offset
,
6701 if (filter
->inode
!= file_inode(file
))
6704 if (filter
->offset
> offset
+ size
)
6707 if (filter
->offset
+ filter
->size
< offset
)
6713 static void __perf_addr_filters_adjust(struct perf_event
*event
, void *data
)
6715 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
6716 struct vm_area_struct
*vma
= data
;
6717 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
, flags
;
6718 struct file
*file
= vma
->vm_file
;
6719 struct perf_addr_filter
*filter
;
6720 unsigned int restart
= 0, count
= 0;
6722 if (!has_addr_filter(event
))
6728 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
6729 list_for_each_entry(filter
, &ifh
->list
, entry
) {
6730 if (perf_addr_filter_match(filter
, file
, off
,
6731 vma
->vm_end
- vma
->vm_start
)) {
6732 event
->addr_filters_offs
[count
] = vma
->vm_start
;
6740 event
->addr_filters_gen
++;
6741 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
6744 perf_event_stop(event
, 1);
6748 * Adjust all task's events' filters to the new vma
6750 static void perf_addr_filters_adjust(struct vm_area_struct
*vma
)
6752 struct perf_event_context
*ctx
;
6756 * Data tracing isn't supported yet and as such there is no need
6757 * to keep track of anything that isn't related to executable code:
6759 if (!(vma
->vm_flags
& VM_EXEC
))
6763 for_each_task_context_nr(ctxn
) {
6764 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
6768 perf_iterate_ctx(ctx
, __perf_addr_filters_adjust
, vma
, true);
6773 void perf_event_mmap(struct vm_area_struct
*vma
)
6775 struct perf_mmap_event mmap_event
;
6777 if (!atomic_read(&nr_mmap_events
))
6780 mmap_event
= (struct perf_mmap_event
){
6786 .type
= PERF_RECORD_MMAP
,
6787 .misc
= PERF_RECORD_MISC_USER
,
6792 .start
= vma
->vm_start
,
6793 .len
= vma
->vm_end
- vma
->vm_start
,
6794 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
6796 /* .maj (attr_mmap2 only) */
6797 /* .min (attr_mmap2 only) */
6798 /* .ino (attr_mmap2 only) */
6799 /* .ino_generation (attr_mmap2 only) */
6800 /* .prot (attr_mmap2 only) */
6801 /* .flags (attr_mmap2 only) */
6804 perf_addr_filters_adjust(vma
);
6805 perf_event_mmap_event(&mmap_event
);
6808 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
6809 unsigned long size
, u64 flags
)
6811 struct perf_output_handle handle
;
6812 struct perf_sample_data sample
;
6813 struct perf_aux_event
{
6814 struct perf_event_header header
;
6820 .type
= PERF_RECORD_AUX
,
6822 .size
= sizeof(rec
),
6830 perf_event_header__init_id(&rec
.header
, &sample
, event
);
6831 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
6836 perf_output_put(&handle
, rec
);
6837 perf_event__output_id_sample(event
, &handle
, &sample
);
6839 perf_output_end(&handle
);
6843 * Lost/dropped samples logging
6845 void perf_log_lost_samples(struct perf_event
*event
, u64 lost
)
6847 struct perf_output_handle handle
;
6848 struct perf_sample_data sample
;
6852 struct perf_event_header header
;
6854 } lost_samples_event
= {
6856 .type
= PERF_RECORD_LOST_SAMPLES
,
6858 .size
= sizeof(lost_samples_event
),
6863 perf_event_header__init_id(&lost_samples_event
.header
, &sample
, event
);
6865 ret
= perf_output_begin(&handle
, event
,
6866 lost_samples_event
.header
.size
);
6870 perf_output_put(&handle
, lost_samples_event
);
6871 perf_event__output_id_sample(event
, &handle
, &sample
);
6872 perf_output_end(&handle
);
6876 * context_switch tracking
6879 struct perf_switch_event
{
6880 struct task_struct
*task
;
6881 struct task_struct
*next_prev
;
6884 struct perf_event_header header
;
6890 static int perf_event_switch_match(struct perf_event
*event
)
6892 return event
->attr
.context_switch
;
6895 static void perf_event_switch_output(struct perf_event
*event
, void *data
)
6897 struct perf_switch_event
*se
= data
;
6898 struct perf_output_handle handle
;
6899 struct perf_sample_data sample
;
6902 if (!perf_event_switch_match(event
))
6905 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6906 if (event
->ctx
->task
) {
6907 se
->event_id
.header
.type
= PERF_RECORD_SWITCH
;
6908 se
->event_id
.header
.size
= sizeof(se
->event_id
.header
);
6910 se
->event_id
.header
.type
= PERF_RECORD_SWITCH_CPU_WIDE
;
6911 se
->event_id
.header
.size
= sizeof(se
->event_id
);
6912 se
->event_id
.next_prev_pid
=
6913 perf_event_pid(event
, se
->next_prev
);
6914 se
->event_id
.next_prev_tid
=
6915 perf_event_tid(event
, se
->next_prev
);
6918 perf_event_header__init_id(&se
->event_id
.header
, &sample
, event
);
6920 ret
= perf_output_begin(&handle
, event
, se
->event_id
.header
.size
);
6924 if (event
->ctx
->task
)
6925 perf_output_put(&handle
, se
->event_id
.header
);
6927 perf_output_put(&handle
, se
->event_id
);
6929 perf_event__output_id_sample(event
, &handle
, &sample
);
6931 perf_output_end(&handle
);
6934 static void perf_event_switch(struct task_struct
*task
,
6935 struct task_struct
*next_prev
, bool sched_in
)
6937 struct perf_switch_event switch_event
;
6939 /* N.B. caller checks nr_switch_events != 0 */
6941 switch_event
= (struct perf_switch_event
){
6943 .next_prev
= next_prev
,
6947 .misc
= sched_in
? 0 : PERF_RECORD_MISC_SWITCH_OUT
,
6950 /* .next_prev_pid */
6951 /* .next_prev_tid */
6955 perf_iterate_sb(perf_event_switch_output
,
6961 * IRQ throttle logging
6964 static void perf_log_throttle(struct perf_event
*event
, int enable
)
6966 struct perf_output_handle handle
;
6967 struct perf_sample_data sample
;
6971 struct perf_event_header header
;
6975 } throttle_event
= {
6977 .type
= PERF_RECORD_THROTTLE
,
6979 .size
= sizeof(throttle_event
),
6981 .time
= perf_event_clock(event
),
6982 .id
= primary_event_id(event
),
6983 .stream_id
= event
->id
,
6987 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
6989 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
6991 ret
= perf_output_begin(&handle
, event
,
6992 throttle_event
.header
.size
);
6996 perf_output_put(&handle
, throttle_event
);
6997 perf_event__output_id_sample(event
, &handle
, &sample
);
6998 perf_output_end(&handle
);
7001 static void perf_log_itrace_start(struct perf_event
*event
)
7003 struct perf_output_handle handle
;
7004 struct perf_sample_data sample
;
7005 struct perf_aux_event
{
7006 struct perf_event_header header
;
7013 event
= event
->parent
;
7015 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
7016 event
->hw
.itrace_started
)
7019 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
7020 rec
.header
.misc
= 0;
7021 rec
.header
.size
= sizeof(rec
);
7022 rec
.pid
= perf_event_pid(event
, current
);
7023 rec
.tid
= perf_event_tid(event
, current
);
7025 perf_event_header__init_id(&rec
.header
, &sample
, event
);
7026 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
7031 perf_output_put(&handle
, rec
);
7032 perf_event__output_id_sample(event
, &handle
, &sample
);
7034 perf_output_end(&handle
);
7038 * Generic event overflow handling, sampling.
7041 static int __perf_event_overflow(struct perf_event
*event
,
7042 int throttle
, struct perf_sample_data
*data
,
7043 struct pt_regs
*regs
)
7045 int events
= atomic_read(&event
->event_limit
);
7046 struct hw_perf_event
*hwc
= &event
->hw
;
7051 * Non-sampling counters might still use the PMI to fold short
7052 * hardware counters, ignore those.
7054 if (unlikely(!is_sampling_event(event
)))
7057 seq
= __this_cpu_read(perf_throttled_seq
);
7058 if (seq
!= hwc
->interrupts_seq
) {
7059 hwc
->interrupts_seq
= seq
;
7060 hwc
->interrupts
= 1;
7063 if (unlikely(throttle
7064 && hwc
->interrupts
>= max_samples_per_tick
)) {
7065 __this_cpu_inc(perf_throttled_count
);
7066 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
7067 hwc
->interrupts
= MAX_INTERRUPTS
;
7068 perf_log_throttle(event
, 0);
7073 if (event
->attr
.freq
) {
7074 u64 now
= perf_clock();
7075 s64 delta
= now
- hwc
->freq_time_stamp
;
7077 hwc
->freq_time_stamp
= now
;
7079 if (delta
> 0 && delta
< 2*TICK_NSEC
)
7080 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
7084 * XXX event_limit might not quite work as expected on inherited
7088 event
->pending_kill
= POLL_IN
;
7089 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
7091 event
->pending_kill
= POLL_HUP
;
7093 perf_event_disable_inatomic(event
);
7096 READ_ONCE(event
->overflow_handler
)(event
, data
, regs
);
7098 if (*perf_event_fasync(event
) && event
->pending_kill
) {
7099 event
->pending_wakeup
= 1;
7100 irq_work_queue(&event
->pending
);
7106 int perf_event_overflow(struct perf_event
*event
,
7107 struct perf_sample_data
*data
,
7108 struct pt_regs
*regs
)
7110 return __perf_event_overflow(event
, 1, data
, regs
);
7114 * Generic software event infrastructure
7117 struct swevent_htable
{
7118 struct swevent_hlist
*swevent_hlist
;
7119 struct mutex hlist_mutex
;
7122 /* Recursion avoidance in each contexts */
7123 int recursion
[PERF_NR_CONTEXTS
];
7126 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
7129 * We directly increment event->count and keep a second value in
7130 * event->hw.period_left to count intervals. This period event
7131 * is kept in the range [-sample_period, 0] so that we can use the
7135 u64
perf_swevent_set_period(struct perf_event
*event
)
7137 struct hw_perf_event
*hwc
= &event
->hw
;
7138 u64 period
= hwc
->last_period
;
7142 hwc
->last_period
= hwc
->sample_period
;
7145 old
= val
= local64_read(&hwc
->period_left
);
7149 nr
= div64_u64(period
+ val
, period
);
7150 offset
= nr
* period
;
7152 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
7158 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
7159 struct perf_sample_data
*data
,
7160 struct pt_regs
*regs
)
7162 struct hw_perf_event
*hwc
= &event
->hw
;
7166 overflow
= perf_swevent_set_period(event
);
7168 if (hwc
->interrupts
== MAX_INTERRUPTS
)
7171 for (; overflow
; overflow
--) {
7172 if (__perf_event_overflow(event
, throttle
,
7175 * We inhibit the overflow from happening when
7176 * hwc->interrupts == MAX_INTERRUPTS.
7184 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
7185 struct perf_sample_data
*data
,
7186 struct pt_regs
*regs
)
7188 struct hw_perf_event
*hwc
= &event
->hw
;
7190 local64_add(nr
, &event
->count
);
7195 if (!is_sampling_event(event
))
7198 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
7200 return perf_swevent_overflow(event
, 1, data
, regs
);
7202 data
->period
= event
->hw
.last_period
;
7204 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
7205 return perf_swevent_overflow(event
, 1, data
, regs
);
7207 if (local64_add_negative(nr
, &hwc
->period_left
))
7210 perf_swevent_overflow(event
, 0, data
, regs
);
7213 static int perf_exclude_event(struct perf_event
*event
,
7214 struct pt_regs
*regs
)
7216 if (event
->hw
.state
& PERF_HES_STOPPED
)
7220 if (event
->attr
.exclude_user
&& user_mode(regs
))
7223 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
7230 static int perf_swevent_match(struct perf_event
*event
,
7231 enum perf_type_id type
,
7233 struct perf_sample_data
*data
,
7234 struct pt_regs
*regs
)
7236 if (event
->attr
.type
!= type
)
7239 if (event
->attr
.config
!= event_id
)
7242 if (perf_exclude_event(event
, regs
))
7248 static inline u64
swevent_hash(u64 type
, u32 event_id
)
7250 u64 val
= event_id
| (type
<< 32);
7252 return hash_64(val
, SWEVENT_HLIST_BITS
);
7255 static inline struct hlist_head
*
7256 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
7258 u64 hash
= swevent_hash(type
, event_id
);
7260 return &hlist
->heads
[hash
];
7263 /* For the read side: events when they trigger */
7264 static inline struct hlist_head
*
7265 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
7267 struct swevent_hlist
*hlist
;
7269 hlist
= rcu_dereference(swhash
->swevent_hlist
);
7273 return __find_swevent_head(hlist
, type
, event_id
);
7276 /* For the event head insertion and removal in the hlist */
7277 static inline struct hlist_head
*
7278 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
7280 struct swevent_hlist
*hlist
;
7281 u32 event_id
= event
->attr
.config
;
7282 u64 type
= event
->attr
.type
;
7285 * Event scheduling is always serialized against hlist allocation
7286 * and release. Which makes the protected version suitable here.
7287 * The context lock guarantees that.
7289 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
7290 lockdep_is_held(&event
->ctx
->lock
));
7294 return __find_swevent_head(hlist
, type
, event_id
);
7297 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
7299 struct perf_sample_data
*data
,
7300 struct pt_regs
*regs
)
7302 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7303 struct perf_event
*event
;
7304 struct hlist_head
*head
;
7307 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
7311 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
7312 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
7313 perf_swevent_event(event
, nr
, data
, regs
);
7319 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
7321 int perf_swevent_get_recursion_context(void)
7323 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7325 return get_recursion_context(swhash
->recursion
);
7327 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
7329 void perf_swevent_put_recursion_context(int rctx
)
7331 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7333 put_recursion_context(swhash
->recursion
, rctx
);
7336 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
7338 struct perf_sample_data data
;
7340 if (WARN_ON_ONCE(!regs
))
7343 perf_sample_data_init(&data
, addr
, 0);
7344 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
7347 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
7351 preempt_disable_notrace();
7352 rctx
= perf_swevent_get_recursion_context();
7353 if (unlikely(rctx
< 0))
7356 ___perf_sw_event(event_id
, nr
, regs
, addr
);
7358 perf_swevent_put_recursion_context(rctx
);
7360 preempt_enable_notrace();
7363 static void perf_swevent_read(struct perf_event
*event
)
7367 static int perf_swevent_add(struct perf_event
*event
, int flags
)
7369 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7370 struct hw_perf_event
*hwc
= &event
->hw
;
7371 struct hlist_head
*head
;
7373 if (is_sampling_event(event
)) {
7374 hwc
->last_period
= hwc
->sample_period
;
7375 perf_swevent_set_period(event
);
7378 hwc
->state
= !(flags
& PERF_EF_START
);
7380 head
= find_swevent_head(swhash
, event
);
7381 if (WARN_ON_ONCE(!head
))
7384 hlist_add_head_rcu(&event
->hlist_entry
, head
);
7385 perf_event_update_userpage(event
);
7390 static void perf_swevent_del(struct perf_event
*event
, int flags
)
7392 hlist_del_rcu(&event
->hlist_entry
);
7395 static void perf_swevent_start(struct perf_event
*event
, int flags
)
7397 event
->hw
.state
= 0;
7400 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
7402 event
->hw
.state
= PERF_HES_STOPPED
;
7405 /* Deref the hlist from the update side */
7406 static inline struct swevent_hlist
*
7407 swevent_hlist_deref(struct swevent_htable
*swhash
)
7409 return rcu_dereference_protected(swhash
->swevent_hlist
,
7410 lockdep_is_held(&swhash
->hlist_mutex
));
7413 static void swevent_hlist_release(struct swevent_htable
*swhash
)
7415 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
7420 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
7421 kfree_rcu(hlist
, rcu_head
);
7424 static void swevent_hlist_put_cpu(int cpu
)
7426 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7428 mutex_lock(&swhash
->hlist_mutex
);
7430 if (!--swhash
->hlist_refcount
)
7431 swevent_hlist_release(swhash
);
7433 mutex_unlock(&swhash
->hlist_mutex
);
7436 static void swevent_hlist_put(void)
7440 for_each_possible_cpu(cpu
)
7441 swevent_hlist_put_cpu(cpu
);
7444 static int swevent_hlist_get_cpu(int cpu
)
7446 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7449 mutex_lock(&swhash
->hlist_mutex
);
7450 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
7451 struct swevent_hlist
*hlist
;
7453 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
7458 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
7460 swhash
->hlist_refcount
++;
7462 mutex_unlock(&swhash
->hlist_mutex
);
7467 static int swevent_hlist_get(void)
7469 int err
, cpu
, failed_cpu
;
7472 for_each_possible_cpu(cpu
) {
7473 err
= swevent_hlist_get_cpu(cpu
);
7483 for_each_possible_cpu(cpu
) {
7484 if (cpu
== failed_cpu
)
7486 swevent_hlist_put_cpu(cpu
);
7493 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
7495 static void sw_perf_event_destroy(struct perf_event
*event
)
7497 u64 event_id
= event
->attr
.config
;
7499 WARN_ON(event
->parent
);
7501 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
7502 swevent_hlist_put();
7505 static int perf_swevent_init(struct perf_event
*event
)
7507 u64 event_id
= event
->attr
.config
;
7509 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
7513 * no branch sampling for software events
7515 if (has_branch_stack(event
))
7519 case PERF_COUNT_SW_CPU_CLOCK
:
7520 case PERF_COUNT_SW_TASK_CLOCK
:
7527 if (event_id
>= PERF_COUNT_SW_MAX
)
7530 if (!event
->parent
) {
7533 err
= swevent_hlist_get();
7537 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
7538 event
->destroy
= sw_perf_event_destroy
;
7544 static struct pmu perf_swevent
= {
7545 .task_ctx_nr
= perf_sw_context
,
7547 .capabilities
= PERF_PMU_CAP_NO_NMI
,
7549 .event_init
= perf_swevent_init
,
7550 .add
= perf_swevent_add
,
7551 .del
= perf_swevent_del
,
7552 .start
= perf_swevent_start
,
7553 .stop
= perf_swevent_stop
,
7554 .read
= perf_swevent_read
,
7557 #ifdef CONFIG_EVENT_TRACING
7559 static int perf_tp_filter_match(struct perf_event
*event
,
7560 struct perf_sample_data
*data
)
7562 void *record
= data
->raw
->frag
.data
;
7564 /* only top level events have filters set */
7566 event
= event
->parent
;
7568 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
7573 static int perf_tp_event_match(struct perf_event
*event
,
7574 struct perf_sample_data
*data
,
7575 struct pt_regs
*regs
)
7577 if (event
->hw
.state
& PERF_HES_STOPPED
)
7580 * All tracepoints are from kernel-space.
7582 if (event
->attr
.exclude_kernel
)
7585 if (!perf_tp_filter_match(event
, data
))
7591 void perf_trace_run_bpf_submit(void *raw_data
, int size
, int rctx
,
7592 struct trace_event_call
*call
, u64 count
,
7593 struct pt_regs
*regs
, struct hlist_head
*head
,
7594 struct task_struct
*task
)
7596 struct bpf_prog
*prog
= call
->prog
;
7599 *(struct pt_regs
**)raw_data
= regs
;
7600 if (!trace_call_bpf(prog
, raw_data
) || hlist_empty(head
)) {
7601 perf_swevent_put_recursion_context(rctx
);
7605 perf_tp_event(call
->event
.type
, count
, raw_data
, size
, regs
, head
,
7608 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit
);
7610 void perf_tp_event(u16 event_type
, u64 count
, void *record
, int entry_size
,
7611 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
7612 struct task_struct
*task
)
7614 struct perf_sample_data data
;
7615 struct perf_event
*event
;
7617 struct perf_raw_record raw
= {
7624 perf_sample_data_init(&data
, 0, 0);
7627 perf_trace_buf_update(record
, event_type
);
7629 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
7630 if (perf_tp_event_match(event
, &data
, regs
))
7631 perf_swevent_event(event
, count
, &data
, regs
);
7635 * If we got specified a target task, also iterate its context and
7636 * deliver this event there too.
7638 if (task
&& task
!= current
) {
7639 struct perf_event_context
*ctx
;
7640 struct trace_entry
*entry
= record
;
7643 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
7647 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
7648 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7650 if (event
->attr
.config
!= entry
->type
)
7652 if (perf_tp_event_match(event
, &data
, regs
))
7653 perf_swevent_event(event
, count
, &data
, regs
);
7659 perf_swevent_put_recursion_context(rctx
);
7661 EXPORT_SYMBOL_GPL(perf_tp_event
);
7663 static void tp_perf_event_destroy(struct perf_event
*event
)
7665 perf_trace_destroy(event
);
7668 static int perf_tp_event_init(struct perf_event
*event
)
7672 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7676 * no branch sampling for tracepoint events
7678 if (has_branch_stack(event
))
7681 err
= perf_trace_init(event
);
7685 event
->destroy
= tp_perf_event_destroy
;
7690 static struct pmu perf_tracepoint
= {
7691 .task_ctx_nr
= perf_sw_context
,
7693 .event_init
= perf_tp_event_init
,
7694 .add
= perf_trace_add
,
7695 .del
= perf_trace_del
,
7696 .start
= perf_swevent_start
,
7697 .stop
= perf_swevent_stop
,
7698 .read
= perf_swevent_read
,
7701 static inline void perf_tp_register(void)
7703 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
7706 static void perf_event_free_filter(struct perf_event
*event
)
7708 ftrace_profile_free_filter(event
);
7711 #ifdef CONFIG_BPF_SYSCALL
7712 static void bpf_overflow_handler(struct perf_event
*event
,
7713 struct perf_sample_data
*data
,
7714 struct pt_regs
*regs
)
7716 struct bpf_perf_event_data_kern ctx
= {
7723 if (unlikely(__this_cpu_inc_return(bpf_prog_active
) != 1))
7726 ret
= BPF_PROG_RUN(event
->prog
, &ctx
);
7729 __this_cpu_dec(bpf_prog_active
);
7734 event
->orig_overflow_handler(event
, data
, regs
);
7737 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
7739 struct bpf_prog
*prog
;
7741 if (event
->overflow_handler_context
)
7742 /* hw breakpoint or kernel counter */
7748 prog
= bpf_prog_get_type(prog_fd
, BPF_PROG_TYPE_PERF_EVENT
);
7750 return PTR_ERR(prog
);
7753 event
->orig_overflow_handler
= READ_ONCE(event
->overflow_handler
);
7754 WRITE_ONCE(event
->overflow_handler
, bpf_overflow_handler
);
7758 static void perf_event_free_bpf_handler(struct perf_event
*event
)
7760 struct bpf_prog
*prog
= event
->prog
;
7765 WRITE_ONCE(event
->overflow_handler
, event
->orig_overflow_handler
);
7770 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
7774 static void perf_event_free_bpf_handler(struct perf_event
*event
)
7779 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
7781 bool is_kprobe
, is_tracepoint
;
7782 struct bpf_prog
*prog
;
7784 if (event
->attr
.type
== PERF_TYPE_HARDWARE
||
7785 event
->attr
.type
== PERF_TYPE_SOFTWARE
)
7786 return perf_event_set_bpf_handler(event
, prog_fd
);
7788 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7791 if (event
->tp_event
->prog
)
7794 is_kprobe
= event
->tp_event
->flags
& TRACE_EVENT_FL_UKPROBE
;
7795 is_tracepoint
= event
->tp_event
->flags
& TRACE_EVENT_FL_TRACEPOINT
;
7796 if (!is_kprobe
&& !is_tracepoint
)
7797 /* bpf programs can only be attached to u/kprobe or tracepoint */
7800 prog
= bpf_prog_get(prog_fd
);
7802 return PTR_ERR(prog
);
7804 if ((is_kprobe
&& prog
->type
!= BPF_PROG_TYPE_KPROBE
) ||
7805 (is_tracepoint
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
)) {
7806 /* valid fd, but invalid bpf program type */
7811 if (is_tracepoint
) {
7812 int off
= trace_event_get_offsets(event
->tp_event
);
7814 if (prog
->aux
->max_ctx_offset
> off
) {
7819 event
->tp_event
->prog
= prog
;
7824 static void perf_event_free_bpf_prog(struct perf_event
*event
)
7826 struct bpf_prog
*prog
;
7828 perf_event_free_bpf_handler(event
);
7830 if (!event
->tp_event
)
7833 prog
= event
->tp_event
->prog
;
7835 event
->tp_event
->prog
= NULL
;
7842 static inline void perf_tp_register(void)
7846 static void perf_event_free_filter(struct perf_event
*event
)
7850 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
7855 static void perf_event_free_bpf_prog(struct perf_event
*event
)
7858 #endif /* CONFIG_EVENT_TRACING */
7860 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7861 void perf_bp_event(struct perf_event
*bp
, void *data
)
7863 struct perf_sample_data sample
;
7864 struct pt_regs
*regs
= data
;
7866 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
7868 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
7869 perf_swevent_event(bp
, 1, &sample
, regs
);
7874 * Allocate a new address filter
7876 static struct perf_addr_filter
*
7877 perf_addr_filter_new(struct perf_event
*event
, struct list_head
*filters
)
7879 int node
= cpu_to_node(event
->cpu
== -1 ? 0 : event
->cpu
);
7880 struct perf_addr_filter
*filter
;
7882 filter
= kzalloc_node(sizeof(*filter
), GFP_KERNEL
, node
);
7886 INIT_LIST_HEAD(&filter
->entry
);
7887 list_add_tail(&filter
->entry
, filters
);
7892 static void free_filters_list(struct list_head
*filters
)
7894 struct perf_addr_filter
*filter
, *iter
;
7896 list_for_each_entry_safe(filter
, iter
, filters
, entry
) {
7898 iput(filter
->inode
);
7899 list_del(&filter
->entry
);
7905 * Free existing address filters and optionally install new ones
7907 static void perf_addr_filters_splice(struct perf_event
*event
,
7908 struct list_head
*head
)
7910 unsigned long flags
;
7913 if (!has_addr_filter(event
))
7916 /* don't bother with children, they don't have their own filters */
7920 raw_spin_lock_irqsave(&event
->addr_filters
.lock
, flags
);
7922 list_splice_init(&event
->addr_filters
.list
, &list
);
7924 list_splice(head
, &event
->addr_filters
.list
);
7926 raw_spin_unlock_irqrestore(&event
->addr_filters
.lock
, flags
);
7928 free_filters_list(&list
);
7932 * Scan through mm's vmas and see if one of them matches the
7933 * @filter; if so, adjust filter's address range.
7934 * Called with mm::mmap_sem down for reading.
7936 static unsigned long perf_addr_filter_apply(struct perf_addr_filter
*filter
,
7937 struct mm_struct
*mm
)
7939 struct vm_area_struct
*vma
;
7941 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
7942 struct file
*file
= vma
->vm_file
;
7943 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
7944 unsigned long vma_size
= vma
->vm_end
- vma
->vm_start
;
7949 if (!perf_addr_filter_match(filter
, file
, off
, vma_size
))
7952 return vma
->vm_start
;
7959 * Update event's address range filters based on the
7960 * task's existing mappings, if any.
7962 static void perf_event_addr_filters_apply(struct perf_event
*event
)
7964 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
7965 struct task_struct
*task
= READ_ONCE(event
->ctx
->task
);
7966 struct perf_addr_filter
*filter
;
7967 struct mm_struct
*mm
= NULL
;
7968 unsigned int count
= 0;
7969 unsigned long flags
;
7972 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7973 * will stop on the parent's child_mutex that our caller is also holding
7975 if (task
== TASK_TOMBSTONE
)
7978 mm
= get_task_mm(event
->ctx
->task
);
7982 down_read(&mm
->mmap_sem
);
7984 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
7985 list_for_each_entry(filter
, &ifh
->list
, entry
) {
7986 event
->addr_filters_offs
[count
] = 0;
7989 * Adjust base offset if the filter is associated to a binary
7990 * that needs to be mapped:
7993 event
->addr_filters_offs
[count
] =
7994 perf_addr_filter_apply(filter
, mm
);
7999 event
->addr_filters_gen
++;
8000 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
8002 up_read(&mm
->mmap_sem
);
8007 perf_event_stop(event
, 1);
8011 * Address range filtering: limiting the data to certain
8012 * instruction address ranges. Filters are ioctl()ed to us from
8013 * userspace as ascii strings.
8015 * Filter string format:
8018 * where ACTION is one of the
8019 * * "filter": limit the trace to this region
8020 * * "start": start tracing from this address
8021 * * "stop": stop tracing at this address/region;
8023 * * for kernel addresses: <start address>[/<size>]
8024 * * for object files: <start address>[/<size>]@</path/to/object/file>
8026 * if <size> is not specified, the range is treated as a single address.
8040 IF_STATE_ACTION
= 0,
8045 static const match_table_t if_tokens
= {
8046 { IF_ACT_FILTER
, "filter" },
8047 { IF_ACT_START
, "start" },
8048 { IF_ACT_STOP
, "stop" },
8049 { IF_SRC_FILE
, "%u/%u@%s" },
8050 { IF_SRC_KERNEL
, "%u/%u" },
8051 { IF_SRC_FILEADDR
, "%u@%s" },
8052 { IF_SRC_KERNELADDR
, "%u" },
8053 { IF_ACT_NONE
, NULL
},
8057 * Address filter string parser
8060 perf_event_parse_addr_filter(struct perf_event
*event
, char *fstr
,
8061 struct list_head
*filters
)
8063 struct perf_addr_filter
*filter
= NULL
;
8064 char *start
, *orig
, *filename
= NULL
;
8066 substring_t args
[MAX_OPT_ARGS
];
8067 int state
= IF_STATE_ACTION
, token
;
8068 unsigned int kernel
= 0;
8071 orig
= fstr
= kstrdup(fstr
, GFP_KERNEL
);
8075 while ((start
= strsep(&fstr
, " ,\n")) != NULL
) {
8081 /* filter definition begins */
8082 if (state
== IF_STATE_ACTION
) {
8083 filter
= perf_addr_filter_new(event
, filters
);
8088 token
= match_token(start
, if_tokens
, args
);
8095 if (state
!= IF_STATE_ACTION
)
8098 state
= IF_STATE_SOURCE
;
8101 case IF_SRC_KERNELADDR
:
8105 case IF_SRC_FILEADDR
:
8107 if (state
!= IF_STATE_SOURCE
)
8110 if (token
== IF_SRC_FILE
|| token
== IF_SRC_KERNEL
)
8114 ret
= kstrtoul(args
[0].from
, 0, &filter
->offset
);
8118 if (filter
->range
) {
8120 ret
= kstrtoul(args
[1].from
, 0, &filter
->size
);
8125 if (token
== IF_SRC_FILE
|| token
== IF_SRC_FILEADDR
) {
8126 int fpos
= filter
->range
? 2 : 1;
8128 filename
= match_strdup(&args
[fpos
]);
8135 state
= IF_STATE_END
;
8143 * Filter definition is fully parsed, validate and install it.
8144 * Make sure that it doesn't contradict itself or the event's
8147 if (state
== IF_STATE_END
) {
8148 if (kernel
&& event
->attr
.exclude_kernel
)
8155 /* look up the path and grab its inode */
8156 ret
= kern_path(filename
, LOOKUP_FOLLOW
, &path
);
8158 goto fail_free_name
;
8160 filter
->inode
= igrab(d_inode(path
.dentry
));
8166 if (!filter
->inode
||
8167 !S_ISREG(filter
->inode
->i_mode
))
8168 /* free_filters_list() will iput() */
8172 /* ready to consume more filters */
8173 state
= IF_STATE_ACTION
;
8178 if (state
!= IF_STATE_ACTION
)
8188 free_filters_list(filters
);
8195 perf_event_set_addr_filter(struct perf_event
*event
, char *filter_str
)
8201 * Since this is called in perf_ioctl() path, we're already holding
8204 lockdep_assert_held(&event
->ctx
->mutex
);
8206 if (WARN_ON_ONCE(event
->parent
))
8210 * For now, we only support filtering in per-task events; doing so
8211 * for CPU-wide events requires additional context switching trickery,
8212 * since same object code will be mapped at different virtual
8213 * addresses in different processes.
8215 if (!event
->ctx
->task
)
8218 ret
= perf_event_parse_addr_filter(event
, filter_str
, &filters
);
8222 ret
= event
->pmu
->addr_filters_validate(&filters
);
8224 free_filters_list(&filters
);
8228 /* remove existing filters, if any */
8229 perf_addr_filters_splice(event
, &filters
);
8231 /* install new filters */
8232 perf_event_for_each_child(event
, perf_event_addr_filters_apply
);
8237 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
8242 if ((event
->attr
.type
!= PERF_TYPE_TRACEPOINT
||
8243 !IS_ENABLED(CONFIG_EVENT_TRACING
)) &&
8244 !has_addr_filter(event
))
8247 filter_str
= strndup_user(arg
, PAGE_SIZE
);
8248 if (IS_ERR(filter_str
))
8249 return PTR_ERR(filter_str
);
8251 if (IS_ENABLED(CONFIG_EVENT_TRACING
) &&
8252 event
->attr
.type
== PERF_TYPE_TRACEPOINT
)
8253 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
,
8255 else if (has_addr_filter(event
))
8256 ret
= perf_event_set_addr_filter(event
, filter_str
);
8263 * hrtimer based swevent callback
8266 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
8268 enum hrtimer_restart ret
= HRTIMER_RESTART
;
8269 struct perf_sample_data data
;
8270 struct pt_regs
*regs
;
8271 struct perf_event
*event
;
8274 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
8276 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
8277 return HRTIMER_NORESTART
;
8279 event
->pmu
->read(event
);
8281 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
8282 regs
= get_irq_regs();
8284 if (regs
&& !perf_exclude_event(event
, regs
)) {
8285 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
8286 if (__perf_event_overflow(event
, 1, &data
, regs
))
8287 ret
= HRTIMER_NORESTART
;
8290 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
8291 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
8296 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
8298 struct hw_perf_event
*hwc
= &event
->hw
;
8301 if (!is_sampling_event(event
))
8304 period
= local64_read(&hwc
->period_left
);
8309 local64_set(&hwc
->period_left
, 0);
8311 period
= max_t(u64
, 10000, hwc
->sample_period
);
8313 hrtimer_start(&hwc
->hrtimer
, ns_to_ktime(period
),
8314 HRTIMER_MODE_REL_PINNED
);
8317 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
8319 struct hw_perf_event
*hwc
= &event
->hw
;
8321 if (is_sampling_event(event
)) {
8322 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
8323 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
8325 hrtimer_cancel(&hwc
->hrtimer
);
8329 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
8331 struct hw_perf_event
*hwc
= &event
->hw
;
8333 if (!is_sampling_event(event
))
8336 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
8337 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
8340 * Since hrtimers have a fixed rate, we can do a static freq->period
8341 * mapping and avoid the whole period adjust feedback stuff.
8343 if (event
->attr
.freq
) {
8344 long freq
= event
->attr
.sample_freq
;
8346 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
8347 hwc
->sample_period
= event
->attr
.sample_period
;
8348 local64_set(&hwc
->period_left
, hwc
->sample_period
);
8349 hwc
->last_period
= hwc
->sample_period
;
8350 event
->attr
.freq
= 0;
8355 * Software event: cpu wall time clock
8358 static void cpu_clock_event_update(struct perf_event
*event
)
8363 now
= local_clock();
8364 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
8365 local64_add(now
- prev
, &event
->count
);
8368 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
8370 local64_set(&event
->hw
.prev_count
, local_clock());
8371 perf_swevent_start_hrtimer(event
);
8374 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
8376 perf_swevent_cancel_hrtimer(event
);
8377 cpu_clock_event_update(event
);
8380 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
8382 if (flags
& PERF_EF_START
)
8383 cpu_clock_event_start(event
, flags
);
8384 perf_event_update_userpage(event
);
8389 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
8391 cpu_clock_event_stop(event
, flags
);
8394 static void cpu_clock_event_read(struct perf_event
*event
)
8396 cpu_clock_event_update(event
);
8399 static int cpu_clock_event_init(struct perf_event
*event
)
8401 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8404 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
8408 * no branch sampling for software events
8410 if (has_branch_stack(event
))
8413 perf_swevent_init_hrtimer(event
);
8418 static struct pmu perf_cpu_clock
= {
8419 .task_ctx_nr
= perf_sw_context
,
8421 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8423 .event_init
= cpu_clock_event_init
,
8424 .add
= cpu_clock_event_add
,
8425 .del
= cpu_clock_event_del
,
8426 .start
= cpu_clock_event_start
,
8427 .stop
= cpu_clock_event_stop
,
8428 .read
= cpu_clock_event_read
,
8432 * Software event: task time clock
8435 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
8440 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
8442 local64_add(delta
, &event
->count
);
8445 static void task_clock_event_start(struct perf_event
*event
, int flags
)
8447 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
8448 perf_swevent_start_hrtimer(event
);
8451 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
8453 perf_swevent_cancel_hrtimer(event
);
8454 task_clock_event_update(event
, event
->ctx
->time
);
8457 static int task_clock_event_add(struct perf_event
*event
, int flags
)
8459 if (flags
& PERF_EF_START
)
8460 task_clock_event_start(event
, flags
);
8461 perf_event_update_userpage(event
);
8466 static void task_clock_event_del(struct perf_event
*event
, int flags
)
8468 task_clock_event_stop(event
, PERF_EF_UPDATE
);
8471 static void task_clock_event_read(struct perf_event
*event
)
8473 u64 now
= perf_clock();
8474 u64 delta
= now
- event
->ctx
->timestamp
;
8475 u64 time
= event
->ctx
->time
+ delta
;
8477 task_clock_event_update(event
, time
);
8480 static int task_clock_event_init(struct perf_event
*event
)
8482 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8485 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
8489 * no branch sampling for software events
8491 if (has_branch_stack(event
))
8494 perf_swevent_init_hrtimer(event
);
8499 static struct pmu perf_task_clock
= {
8500 .task_ctx_nr
= perf_sw_context
,
8502 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8504 .event_init
= task_clock_event_init
,
8505 .add
= task_clock_event_add
,
8506 .del
= task_clock_event_del
,
8507 .start
= task_clock_event_start
,
8508 .stop
= task_clock_event_stop
,
8509 .read
= task_clock_event_read
,
8512 static void perf_pmu_nop_void(struct pmu
*pmu
)
8516 static void perf_pmu_nop_txn(struct pmu
*pmu
, unsigned int flags
)
8520 static int perf_pmu_nop_int(struct pmu
*pmu
)
8525 static DEFINE_PER_CPU(unsigned int, nop_txn_flags
);
8527 static void perf_pmu_start_txn(struct pmu
*pmu
, unsigned int flags
)
8529 __this_cpu_write(nop_txn_flags
, flags
);
8531 if (flags
& ~PERF_PMU_TXN_ADD
)
8534 perf_pmu_disable(pmu
);
8537 static int perf_pmu_commit_txn(struct pmu
*pmu
)
8539 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
8541 __this_cpu_write(nop_txn_flags
, 0);
8543 if (flags
& ~PERF_PMU_TXN_ADD
)
8546 perf_pmu_enable(pmu
);
8550 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
8552 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
8554 __this_cpu_write(nop_txn_flags
, 0);
8556 if (flags
& ~PERF_PMU_TXN_ADD
)
8559 perf_pmu_enable(pmu
);
8562 static int perf_event_idx_default(struct perf_event
*event
)
8568 * Ensures all contexts with the same task_ctx_nr have the same
8569 * pmu_cpu_context too.
8571 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
8578 list_for_each_entry(pmu
, &pmus
, entry
) {
8579 if (pmu
->task_ctx_nr
== ctxn
)
8580 return pmu
->pmu_cpu_context
;
8586 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
8590 for_each_possible_cpu(cpu
) {
8591 struct perf_cpu_context
*cpuctx
;
8593 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8595 if (cpuctx
->unique_pmu
== old_pmu
)
8596 cpuctx
->unique_pmu
= pmu
;
8600 static void free_pmu_context(struct pmu
*pmu
)
8604 mutex_lock(&pmus_lock
);
8606 * Like a real lame refcount.
8608 list_for_each_entry(i
, &pmus
, entry
) {
8609 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
8610 update_pmu_context(i
, pmu
);
8615 free_percpu(pmu
->pmu_cpu_context
);
8617 mutex_unlock(&pmus_lock
);
8621 * Let userspace know that this PMU supports address range filtering:
8623 static ssize_t
nr_addr_filters_show(struct device
*dev
,
8624 struct device_attribute
*attr
,
8627 struct pmu
*pmu
= dev_get_drvdata(dev
);
8629 return snprintf(page
, PAGE_SIZE
- 1, "%d\n", pmu
->nr_addr_filters
);
8631 DEVICE_ATTR_RO(nr_addr_filters
);
8633 static struct idr pmu_idr
;
8636 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
8638 struct pmu
*pmu
= dev_get_drvdata(dev
);
8640 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
8642 static DEVICE_ATTR_RO(type
);
8645 perf_event_mux_interval_ms_show(struct device
*dev
,
8646 struct device_attribute
*attr
,
8649 struct pmu
*pmu
= dev_get_drvdata(dev
);
8651 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
8654 static DEFINE_MUTEX(mux_interval_mutex
);
8657 perf_event_mux_interval_ms_store(struct device
*dev
,
8658 struct device_attribute
*attr
,
8659 const char *buf
, size_t count
)
8661 struct pmu
*pmu
= dev_get_drvdata(dev
);
8662 int timer
, cpu
, ret
;
8664 ret
= kstrtoint(buf
, 0, &timer
);
8671 /* same value, noting to do */
8672 if (timer
== pmu
->hrtimer_interval_ms
)
8675 mutex_lock(&mux_interval_mutex
);
8676 pmu
->hrtimer_interval_ms
= timer
;
8678 /* update all cpuctx for this PMU */
8680 for_each_online_cpu(cpu
) {
8681 struct perf_cpu_context
*cpuctx
;
8682 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8683 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
8685 cpu_function_call(cpu
,
8686 (remote_function_f
)perf_mux_hrtimer_restart
, cpuctx
);
8689 mutex_unlock(&mux_interval_mutex
);
8693 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
8695 static struct attribute
*pmu_dev_attrs
[] = {
8696 &dev_attr_type
.attr
,
8697 &dev_attr_perf_event_mux_interval_ms
.attr
,
8700 ATTRIBUTE_GROUPS(pmu_dev
);
8702 static int pmu_bus_running
;
8703 static struct bus_type pmu_bus
= {
8704 .name
= "event_source",
8705 .dev_groups
= pmu_dev_groups
,
8708 static void pmu_dev_release(struct device
*dev
)
8713 static int pmu_dev_alloc(struct pmu
*pmu
)
8717 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
8721 pmu
->dev
->groups
= pmu
->attr_groups
;
8722 device_initialize(pmu
->dev
);
8723 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
8727 dev_set_drvdata(pmu
->dev
, pmu
);
8728 pmu
->dev
->bus
= &pmu_bus
;
8729 pmu
->dev
->release
= pmu_dev_release
;
8730 ret
= device_add(pmu
->dev
);
8734 /* For PMUs with address filters, throw in an extra attribute: */
8735 if (pmu
->nr_addr_filters
)
8736 ret
= device_create_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
8745 device_del(pmu
->dev
);
8748 put_device(pmu
->dev
);
8752 static struct lock_class_key cpuctx_mutex
;
8753 static struct lock_class_key cpuctx_lock
;
8755 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
8759 mutex_lock(&pmus_lock
);
8761 pmu
->pmu_disable_count
= alloc_percpu(int);
8762 if (!pmu
->pmu_disable_count
)
8771 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
8779 if (pmu_bus_running
) {
8780 ret
= pmu_dev_alloc(pmu
);
8786 if (pmu
->task_ctx_nr
== perf_hw_context
) {
8787 static int hw_context_taken
= 0;
8790 * Other than systems with heterogeneous CPUs, it never makes
8791 * sense for two PMUs to share perf_hw_context. PMUs which are
8792 * uncore must use perf_invalid_context.
8794 if (WARN_ON_ONCE(hw_context_taken
&&
8795 !(pmu
->capabilities
& PERF_PMU_CAP_HETEROGENEOUS_CPUS
)))
8796 pmu
->task_ctx_nr
= perf_invalid_context
;
8798 hw_context_taken
= 1;
8801 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
8802 if (pmu
->pmu_cpu_context
)
8803 goto got_cpu_context
;
8806 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
8807 if (!pmu
->pmu_cpu_context
)
8810 for_each_possible_cpu(cpu
) {
8811 struct perf_cpu_context
*cpuctx
;
8813 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8814 __perf_event_init_context(&cpuctx
->ctx
);
8815 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
8816 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
8817 cpuctx
->ctx
.pmu
= pmu
;
8819 __perf_mux_hrtimer_init(cpuctx
, cpu
);
8821 cpuctx
->unique_pmu
= pmu
;
8825 if (!pmu
->start_txn
) {
8826 if (pmu
->pmu_enable
) {
8828 * If we have pmu_enable/pmu_disable calls, install
8829 * transaction stubs that use that to try and batch
8830 * hardware accesses.
8832 pmu
->start_txn
= perf_pmu_start_txn
;
8833 pmu
->commit_txn
= perf_pmu_commit_txn
;
8834 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
8836 pmu
->start_txn
= perf_pmu_nop_txn
;
8837 pmu
->commit_txn
= perf_pmu_nop_int
;
8838 pmu
->cancel_txn
= perf_pmu_nop_void
;
8842 if (!pmu
->pmu_enable
) {
8843 pmu
->pmu_enable
= perf_pmu_nop_void
;
8844 pmu
->pmu_disable
= perf_pmu_nop_void
;
8847 if (!pmu
->event_idx
)
8848 pmu
->event_idx
= perf_event_idx_default
;
8850 list_add_rcu(&pmu
->entry
, &pmus
);
8851 atomic_set(&pmu
->exclusive_cnt
, 0);
8854 mutex_unlock(&pmus_lock
);
8859 device_del(pmu
->dev
);
8860 put_device(pmu
->dev
);
8863 if (pmu
->type
>= PERF_TYPE_MAX
)
8864 idr_remove(&pmu_idr
, pmu
->type
);
8867 free_percpu(pmu
->pmu_disable_count
);
8870 EXPORT_SYMBOL_GPL(perf_pmu_register
);
8872 void perf_pmu_unregister(struct pmu
*pmu
)
8876 mutex_lock(&pmus_lock
);
8877 remove_device
= pmu_bus_running
;
8878 list_del_rcu(&pmu
->entry
);
8879 mutex_unlock(&pmus_lock
);
8882 * We dereference the pmu list under both SRCU and regular RCU, so
8883 * synchronize against both of those.
8885 synchronize_srcu(&pmus_srcu
);
8888 free_percpu(pmu
->pmu_disable_count
);
8889 if (pmu
->type
>= PERF_TYPE_MAX
)
8890 idr_remove(&pmu_idr
, pmu
->type
);
8891 if (remove_device
) {
8892 if (pmu
->nr_addr_filters
)
8893 device_remove_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
8894 device_del(pmu
->dev
);
8895 put_device(pmu
->dev
);
8897 free_pmu_context(pmu
);
8899 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
8901 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
8903 struct perf_event_context
*ctx
= NULL
;
8906 if (!try_module_get(pmu
->module
))
8909 if (event
->group_leader
!= event
) {
8911 * This ctx->mutex can nest when we're called through
8912 * inheritance. See the perf_event_ctx_lock_nested() comment.
8914 ctx
= perf_event_ctx_lock_nested(event
->group_leader
,
8915 SINGLE_DEPTH_NESTING
);
8920 ret
= pmu
->event_init(event
);
8923 perf_event_ctx_unlock(event
->group_leader
, ctx
);
8926 module_put(pmu
->module
);
8931 static struct pmu
*perf_init_event(struct perf_event
*event
)
8933 struct pmu
*pmu
= NULL
;
8937 idx
= srcu_read_lock(&pmus_srcu
);
8940 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
8943 ret
= perf_try_init_event(pmu
, event
);
8949 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
8950 ret
= perf_try_init_event(pmu
, event
);
8954 if (ret
!= -ENOENT
) {
8959 pmu
= ERR_PTR(-ENOENT
);
8961 srcu_read_unlock(&pmus_srcu
, idx
);
8966 static void attach_sb_event(struct perf_event
*event
)
8968 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
8970 raw_spin_lock(&pel
->lock
);
8971 list_add_rcu(&event
->sb_list
, &pel
->list
);
8972 raw_spin_unlock(&pel
->lock
);
8976 * We keep a list of all !task (and therefore per-cpu) events
8977 * that need to receive side-band records.
8979 * This avoids having to scan all the various PMU per-cpu contexts
8982 static void account_pmu_sb_event(struct perf_event
*event
)
8984 if (is_sb_event(event
))
8985 attach_sb_event(event
);
8988 static void account_event_cpu(struct perf_event
*event
, int cpu
)
8993 if (is_cgroup_event(event
))
8994 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
8997 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8998 static void account_freq_event_nohz(void)
9000 #ifdef CONFIG_NO_HZ_FULL
9001 /* Lock so we don't race with concurrent unaccount */
9002 spin_lock(&nr_freq_lock
);
9003 if (atomic_inc_return(&nr_freq_events
) == 1)
9004 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS
);
9005 spin_unlock(&nr_freq_lock
);
9009 static void account_freq_event(void)
9011 if (tick_nohz_full_enabled())
9012 account_freq_event_nohz();
9014 atomic_inc(&nr_freq_events
);
9018 static void account_event(struct perf_event
*event
)
9025 if (event
->attach_state
& PERF_ATTACH_TASK
)
9027 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
9028 atomic_inc(&nr_mmap_events
);
9029 if (event
->attr
.comm
)
9030 atomic_inc(&nr_comm_events
);
9031 if (event
->attr
.task
)
9032 atomic_inc(&nr_task_events
);
9033 if (event
->attr
.freq
)
9034 account_freq_event();
9035 if (event
->attr
.context_switch
) {
9036 atomic_inc(&nr_switch_events
);
9039 if (has_branch_stack(event
))
9041 if (is_cgroup_event(event
))
9045 if (atomic_inc_not_zero(&perf_sched_count
))
9048 mutex_lock(&perf_sched_mutex
);
9049 if (!atomic_read(&perf_sched_count
)) {
9050 static_branch_enable(&perf_sched_events
);
9052 * Guarantee that all CPUs observe they key change and
9053 * call the perf scheduling hooks before proceeding to
9054 * install events that need them.
9056 synchronize_sched();
9059 * Now that we have waited for the sync_sched(), allow further
9060 * increments to by-pass the mutex.
9062 atomic_inc(&perf_sched_count
);
9063 mutex_unlock(&perf_sched_mutex
);
9067 account_event_cpu(event
, event
->cpu
);
9069 account_pmu_sb_event(event
);
9073 * Allocate and initialize a event structure
9075 static struct perf_event
*
9076 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
9077 struct task_struct
*task
,
9078 struct perf_event
*group_leader
,
9079 struct perf_event
*parent_event
,
9080 perf_overflow_handler_t overflow_handler
,
9081 void *context
, int cgroup_fd
)
9084 struct perf_event
*event
;
9085 struct hw_perf_event
*hwc
;
9088 if ((unsigned)cpu
>= nr_cpu_ids
) {
9089 if (!task
|| cpu
!= -1)
9090 return ERR_PTR(-EINVAL
);
9093 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
9095 return ERR_PTR(-ENOMEM
);
9098 * Single events are their own group leaders, with an
9099 * empty sibling list:
9102 group_leader
= event
;
9104 mutex_init(&event
->child_mutex
);
9105 INIT_LIST_HEAD(&event
->child_list
);
9107 INIT_LIST_HEAD(&event
->group_entry
);
9108 INIT_LIST_HEAD(&event
->event_entry
);
9109 INIT_LIST_HEAD(&event
->sibling_list
);
9110 INIT_LIST_HEAD(&event
->rb_entry
);
9111 INIT_LIST_HEAD(&event
->active_entry
);
9112 INIT_LIST_HEAD(&event
->addr_filters
.list
);
9113 INIT_HLIST_NODE(&event
->hlist_entry
);
9116 init_waitqueue_head(&event
->waitq
);
9117 init_irq_work(&event
->pending
, perf_pending_event
);
9119 mutex_init(&event
->mmap_mutex
);
9120 raw_spin_lock_init(&event
->addr_filters
.lock
);
9122 atomic_long_set(&event
->refcount
, 1);
9124 event
->attr
= *attr
;
9125 event
->group_leader
= group_leader
;
9129 event
->parent
= parent_event
;
9131 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
9132 event
->id
= atomic64_inc_return(&perf_event_id
);
9134 event
->state
= PERF_EVENT_STATE_INACTIVE
;
9137 event
->attach_state
= PERF_ATTACH_TASK
;
9139 * XXX pmu::event_init needs to know what task to account to
9140 * and we cannot use the ctx information because we need the
9141 * pmu before we get a ctx.
9143 event
->hw
.target
= task
;
9146 event
->clock
= &local_clock
;
9148 event
->clock
= parent_event
->clock
;
9150 if (!overflow_handler
&& parent_event
) {
9151 overflow_handler
= parent_event
->overflow_handler
;
9152 context
= parent_event
->overflow_handler_context
;
9153 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9154 if (overflow_handler
== bpf_overflow_handler
) {
9155 struct bpf_prog
*prog
= bpf_prog_inc(parent_event
->prog
);
9158 err
= PTR_ERR(prog
);
9162 event
->orig_overflow_handler
=
9163 parent_event
->orig_overflow_handler
;
9168 if (overflow_handler
) {
9169 event
->overflow_handler
= overflow_handler
;
9170 event
->overflow_handler_context
= context
;
9171 } else if (is_write_backward(event
)){
9172 event
->overflow_handler
= perf_event_output_backward
;
9173 event
->overflow_handler_context
= NULL
;
9175 event
->overflow_handler
= perf_event_output_forward
;
9176 event
->overflow_handler_context
= NULL
;
9179 perf_event__state_init(event
);
9184 hwc
->sample_period
= attr
->sample_period
;
9185 if (attr
->freq
&& attr
->sample_freq
)
9186 hwc
->sample_period
= 1;
9187 hwc
->last_period
= hwc
->sample_period
;
9189 local64_set(&hwc
->period_left
, hwc
->sample_period
);
9192 * we currently do not support PERF_FORMAT_GROUP on inherited events
9194 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
9197 if (!has_branch_stack(event
))
9198 event
->attr
.branch_sample_type
= 0;
9200 if (cgroup_fd
!= -1) {
9201 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
9206 pmu
= perf_init_event(event
);
9209 else if (IS_ERR(pmu
)) {
9214 err
= exclusive_event_init(event
);
9218 if (has_addr_filter(event
)) {
9219 event
->addr_filters_offs
= kcalloc(pmu
->nr_addr_filters
,
9220 sizeof(unsigned long),
9222 if (!event
->addr_filters_offs
)
9225 /* force hw sync on the address filters */
9226 event
->addr_filters_gen
= 1;
9229 if (!event
->parent
) {
9230 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
9231 err
= get_callchain_buffers(attr
->sample_max_stack
);
9233 goto err_addr_filters
;
9237 /* symmetric to unaccount_event() in _free_event() */
9238 account_event(event
);
9243 kfree(event
->addr_filters_offs
);
9246 exclusive_event_destroy(event
);
9250 event
->destroy(event
);
9251 module_put(pmu
->module
);
9253 if (is_cgroup_event(event
))
9254 perf_detach_cgroup(event
);
9256 put_pid_ns(event
->ns
);
9259 return ERR_PTR(err
);
9262 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
9263 struct perf_event_attr
*attr
)
9268 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
9272 * zero the full structure, so that a short copy will be nice.
9274 memset(attr
, 0, sizeof(*attr
));
9276 ret
= get_user(size
, &uattr
->size
);
9280 if (size
> PAGE_SIZE
) /* silly large */
9283 if (!size
) /* abi compat */
9284 size
= PERF_ATTR_SIZE_VER0
;
9286 if (size
< PERF_ATTR_SIZE_VER0
)
9290 * If we're handed a bigger struct than we know of,
9291 * ensure all the unknown bits are 0 - i.e. new
9292 * user-space does not rely on any kernel feature
9293 * extensions we dont know about yet.
9295 if (size
> sizeof(*attr
)) {
9296 unsigned char __user
*addr
;
9297 unsigned char __user
*end
;
9300 addr
= (void __user
*)uattr
+ sizeof(*attr
);
9301 end
= (void __user
*)uattr
+ size
;
9303 for (; addr
< end
; addr
++) {
9304 ret
= get_user(val
, addr
);
9310 size
= sizeof(*attr
);
9313 ret
= copy_from_user(attr
, uattr
, size
);
9317 if (attr
->__reserved_1
)
9320 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
9323 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
9326 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
9327 u64 mask
= attr
->branch_sample_type
;
9329 /* only using defined bits */
9330 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
9333 /* at least one branch bit must be set */
9334 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
9337 /* propagate priv level, when not set for branch */
9338 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
9340 /* exclude_kernel checked on syscall entry */
9341 if (!attr
->exclude_kernel
)
9342 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
9344 if (!attr
->exclude_user
)
9345 mask
|= PERF_SAMPLE_BRANCH_USER
;
9347 if (!attr
->exclude_hv
)
9348 mask
|= PERF_SAMPLE_BRANCH_HV
;
9350 * adjust user setting (for HW filter setup)
9352 attr
->branch_sample_type
= mask
;
9354 /* privileged levels capture (kernel, hv): check permissions */
9355 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
9356 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
9360 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
9361 ret
= perf_reg_validate(attr
->sample_regs_user
);
9366 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
9367 if (!arch_perf_have_user_stack_dump())
9371 * We have __u32 type for the size, but so far
9372 * we can only use __u16 as maximum due to the
9373 * __u16 sample size limit.
9375 if (attr
->sample_stack_user
>= USHRT_MAX
)
9377 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
9381 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
9382 ret
= perf_reg_validate(attr
->sample_regs_intr
);
9387 put_user(sizeof(*attr
), &uattr
->size
);
9393 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
9395 struct ring_buffer
*rb
= NULL
;
9401 /* don't allow circular references */
9402 if (event
== output_event
)
9406 * Don't allow cross-cpu buffers
9408 if (output_event
->cpu
!= event
->cpu
)
9412 * If its not a per-cpu rb, it must be the same task.
9414 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
9418 * Mixing clocks in the same buffer is trouble you don't need.
9420 if (output_event
->clock
!= event
->clock
)
9424 * Either writing ring buffer from beginning or from end.
9425 * Mixing is not allowed.
9427 if (is_write_backward(output_event
) != is_write_backward(event
))
9431 * If both events generate aux data, they must be on the same PMU
9433 if (has_aux(event
) && has_aux(output_event
) &&
9434 event
->pmu
!= output_event
->pmu
)
9438 mutex_lock(&event
->mmap_mutex
);
9439 /* Can't redirect output if we've got an active mmap() */
9440 if (atomic_read(&event
->mmap_count
))
9444 /* get the rb we want to redirect to */
9445 rb
= ring_buffer_get(output_event
);
9450 ring_buffer_attach(event
, rb
);
9454 mutex_unlock(&event
->mmap_mutex
);
9460 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
9466 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
9469 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
9471 bool nmi_safe
= false;
9474 case CLOCK_MONOTONIC
:
9475 event
->clock
= &ktime_get_mono_fast_ns
;
9479 case CLOCK_MONOTONIC_RAW
:
9480 event
->clock
= &ktime_get_raw_fast_ns
;
9484 case CLOCK_REALTIME
:
9485 event
->clock
= &ktime_get_real_ns
;
9488 case CLOCK_BOOTTIME
:
9489 event
->clock
= &ktime_get_boot_ns
;
9493 event
->clock
= &ktime_get_tai_ns
;
9500 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
9507 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9509 * @attr_uptr: event_id type attributes for monitoring/sampling
9512 * @group_fd: group leader event fd
9514 SYSCALL_DEFINE5(perf_event_open
,
9515 struct perf_event_attr __user
*, attr_uptr
,
9516 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
9518 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
9519 struct perf_event
*event
, *sibling
;
9520 struct perf_event_attr attr
;
9521 struct perf_event_context
*ctx
, *uninitialized_var(gctx
);
9522 struct file
*event_file
= NULL
;
9523 struct fd group
= {NULL
, 0};
9524 struct task_struct
*task
= NULL
;
9529 int f_flags
= O_RDWR
;
9532 /* for future expandability... */
9533 if (flags
& ~PERF_FLAG_ALL
)
9536 err
= perf_copy_attr(attr_uptr
, &attr
);
9540 if (!attr
.exclude_kernel
) {
9541 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
9546 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
9549 if (attr
.sample_period
& (1ULL << 63))
9553 if (!attr
.sample_max_stack
)
9554 attr
.sample_max_stack
= sysctl_perf_event_max_stack
;
9557 * In cgroup mode, the pid argument is used to pass the fd
9558 * opened to the cgroup directory in cgroupfs. The cpu argument
9559 * designates the cpu on which to monitor threads from that
9562 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
9565 if (flags
& PERF_FLAG_FD_CLOEXEC
)
9566 f_flags
|= O_CLOEXEC
;
9568 event_fd
= get_unused_fd_flags(f_flags
);
9572 if (group_fd
!= -1) {
9573 err
= perf_fget_light(group_fd
, &group
);
9576 group_leader
= group
.file
->private_data
;
9577 if (flags
& PERF_FLAG_FD_OUTPUT
)
9578 output_event
= group_leader
;
9579 if (flags
& PERF_FLAG_FD_NO_GROUP
)
9580 group_leader
= NULL
;
9583 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
9584 task
= find_lively_task_by_vpid(pid
);
9586 err
= PTR_ERR(task
);
9591 if (task
&& group_leader
&&
9592 group_leader
->attr
.inherit
!= attr
.inherit
) {
9600 err
= mutex_lock_interruptible(&task
->signal
->cred_guard_mutex
);
9605 * Reuse ptrace permission checks for now.
9607 * We must hold cred_guard_mutex across this and any potential
9608 * perf_install_in_context() call for this new event to
9609 * serialize against exec() altering our credentials (and the
9610 * perf_event_exit_task() that could imply).
9613 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
))
9617 if (flags
& PERF_FLAG_PID_CGROUP
)
9620 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
9621 NULL
, NULL
, cgroup_fd
);
9622 if (IS_ERR(event
)) {
9623 err
= PTR_ERR(event
);
9627 if (is_sampling_event(event
)) {
9628 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
9635 * Special case software events and allow them to be part of
9636 * any hardware group.
9640 if (attr
.use_clockid
) {
9641 err
= perf_event_set_clock(event
, attr
.clockid
);
9646 if (pmu
->task_ctx_nr
== perf_sw_context
)
9647 event
->event_caps
|= PERF_EV_CAP_SOFTWARE
;
9650 (is_software_event(event
) != is_software_event(group_leader
))) {
9651 if (is_software_event(event
)) {
9653 * If event and group_leader are not both a software
9654 * event, and event is, then group leader is not.
9656 * Allow the addition of software events to !software
9657 * groups, this is safe because software events never
9660 pmu
= group_leader
->pmu
;
9661 } else if (is_software_event(group_leader
) &&
9662 (group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
9664 * In case the group is a pure software group, and we
9665 * try to add a hardware event, move the whole group to
9666 * the hardware context.
9673 * Get the target context (task or percpu):
9675 ctx
= find_get_context(pmu
, task
, event
);
9681 if ((pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
) && group_leader
) {
9687 * Look up the group leader (we will attach this event to it):
9693 * Do not allow a recursive hierarchy (this new sibling
9694 * becoming part of another group-sibling):
9696 if (group_leader
->group_leader
!= group_leader
)
9699 /* All events in a group should have the same clock */
9700 if (group_leader
->clock
!= event
->clock
)
9704 * Do not allow to attach to a group in a different
9705 * task or CPU context:
9709 * Make sure we're both on the same task, or both
9712 if (group_leader
->ctx
->task
!= ctx
->task
)
9716 * Make sure we're both events for the same CPU;
9717 * grouping events for different CPUs is broken; since
9718 * you can never concurrently schedule them anyhow.
9720 if (group_leader
->cpu
!= event
->cpu
)
9723 if (group_leader
->ctx
!= ctx
)
9728 * Only a group leader can be exclusive or pinned
9730 if (attr
.exclusive
|| attr
.pinned
)
9735 err
= perf_event_set_output(event
, output_event
);
9740 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
9742 if (IS_ERR(event_file
)) {
9743 err
= PTR_ERR(event_file
);
9749 gctx
= group_leader
->ctx
;
9750 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
9751 if (gctx
->task
== TASK_TOMBSTONE
) {
9756 mutex_lock(&ctx
->mutex
);
9759 if (ctx
->task
== TASK_TOMBSTONE
) {
9764 if (!perf_event_validate_size(event
)) {
9770 * Must be under the same ctx::mutex as perf_install_in_context(),
9771 * because we need to serialize with concurrent event creation.
9773 if (!exclusive_event_installable(event
, ctx
)) {
9774 /* exclusive and group stuff are assumed mutually exclusive */
9775 WARN_ON_ONCE(move_group
);
9781 WARN_ON_ONCE(ctx
->parent_ctx
);
9784 * This is the point on no return; we cannot fail hereafter. This is
9785 * where we start modifying current state.
9790 * See perf_event_ctx_lock() for comments on the details
9791 * of swizzling perf_event::ctx.
9793 perf_remove_from_context(group_leader
, 0);
9795 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
9797 perf_remove_from_context(sibling
, 0);
9802 * Wait for everybody to stop referencing the events through
9803 * the old lists, before installing it on new lists.
9808 * Install the group siblings before the group leader.
9810 * Because a group leader will try and install the entire group
9811 * (through the sibling list, which is still in-tact), we can
9812 * end up with siblings installed in the wrong context.
9814 * By installing siblings first we NO-OP because they're not
9815 * reachable through the group lists.
9817 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
9819 perf_event__state_init(sibling
);
9820 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
9825 * Removing from the context ends up with disabled
9826 * event. What we want here is event in the initial
9827 * startup state, ready to be add into new context.
9829 perf_event__state_init(group_leader
);
9830 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
9834 * Now that all events are installed in @ctx, nothing
9835 * references @gctx anymore, so drop the last reference we have
9842 * Precalculate sample_data sizes; do while holding ctx::mutex such
9843 * that we're serialized against further additions and before
9844 * perf_install_in_context() which is the point the event is active and
9845 * can use these values.
9847 perf_event__header_size(event
);
9848 perf_event__id_header_size(event
);
9850 event
->owner
= current
;
9852 perf_install_in_context(ctx
, event
, event
->cpu
);
9853 perf_unpin_context(ctx
);
9856 mutex_unlock(&gctx
->mutex
);
9857 mutex_unlock(&ctx
->mutex
);
9860 mutex_unlock(&task
->signal
->cred_guard_mutex
);
9861 put_task_struct(task
);
9866 mutex_lock(¤t
->perf_event_mutex
);
9867 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
9868 mutex_unlock(¤t
->perf_event_mutex
);
9871 * Drop the reference on the group_event after placing the
9872 * new event on the sibling_list. This ensures destruction
9873 * of the group leader will find the pointer to itself in
9874 * perf_group_detach().
9877 fd_install(event_fd
, event_file
);
9882 mutex_unlock(&gctx
->mutex
);
9883 mutex_unlock(&ctx
->mutex
);
9887 perf_unpin_context(ctx
);
9891 * If event_file is set, the fput() above will have called ->release()
9892 * and that will take care of freeing the event.
9898 mutex_unlock(&task
->signal
->cred_guard_mutex
);
9903 put_task_struct(task
);
9907 put_unused_fd(event_fd
);
9912 * perf_event_create_kernel_counter
9914 * @attr: attributes of the counter to create
9915 * @cpu: cpu in which the counter is bound
9916 * @task: task to profile (NULL for percpu)
9919 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
9920 struct task_struct
*task
,
9921 perf_overflow_handler_t overflow_handler
,
9924 struct perf_event_context
*ctx
;
9925 struct perf_event
*event
;
9929 * Get the target context (task or percpu):
9932 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
9933 overflow_handler
, context
, -1);
9934 if (IS_ERR(event
)) {
9935 err
= PTR_ERR(event
);
9939 /* Mark owner so we could distinguish it from user events. */
9940 event
->owner
= TASK_TOMBSTONE
;
9942 ctx
= find_get_context(event
->pmu
, task
, event
);
9948 WARN_ON_ONCE(ctx
->parent_ctx
);
9949 mutex_lock(&ctx
->mutex
);
9950 if (ctx
->task
== TASK_TOMBSTONE
) {
9955 if (!exclusive_event_installable(event
, ctx
)) {
9960 perf_install_in_context(ctx
, event
, cpu
);
9961 perf_unpin_context(ctx
);
9962 mutex_unlock(&ctx
->mutex
);
9967 mutex_unlock(&ctx
->mutex
);
9968 perf_unpin_context(ctx
);
9973 return ERR_PTR(err
);
9975 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
9977 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
9979 struct perf_event_context
*src_ctx
;
9980 struct perf_event_context
*dst_ctx
;
9981 struct perf_event
*event
, *tmp
;
9984 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
9985 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
9988 * See perf_event_ctx_lock() for comments on the details
9989 * of swizzling perf_event::ctx.
9991 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
9992 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
9994 perf_remove_from_context(event
, 0);
9995 unaccount_event_cpu(event
, src_cpu
);
9997 list_add(&event
->migrate_entry
, &events
);
10001 * Wait for the events to quiesce before re-instating them.
10006 * Re-instate events in 2 passes.
10008 * Skip over group leaders and only install siblings on this first
10009 * pass, siblings will not get enabled without a leader, however a
10010 * leader will enable its siblings, even if those are still on the old
10013 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
10014 if (event
->group_leader
== event
)
10017 list_del(&event
->migrate_entry
);
10018 if (event
->state
>= PERF_EVENT_STATE_OFF
)
10019 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10020 account_event_cpu(event
, dst_cpu
);
10021 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
10026 * Once all the siblings are setup properly, install the group leaders
10029 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
10030 list_del(&event
->migrate_entry
);
10031 if (event
->state
>= PERF_EVENT_STATE_OFF
)
10032 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10033 account_event_cpu(event
, dst_cpu
);
10034 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
10037 mutex_unlock(&dst_ctx
->mutex
);
10038 mutex_unlock(&src_ctx
->mutex
);
10040 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
10042 static void sync_child_event(struct perf_event
*child_event
,
10043 struct task_struct
*child
)
10045 struct perf_event
*parent_event
= child_event
->parent
;
10048 if (child_event
->attr
.inherit_stat
)
10049 perf_event_read_event(child_event
, child
);
10051 child_val
= perf_event_count(child_event
);
10054 * Add back the child's count to the parent's count:
10056 atomic64_add(child_val
, &parent_event
->child_count
);
10057 atomic64_add(child_event
->total_time_enabled
,
10058 &parent_event
->child_total_time_enabled
);
10059 atomic64_add(child_event
->total_time_running
,
10060 &parent_event
->child_total_time_running
);
10064 perf_event_exit_event(struct perf_event
*child_event
,
10065 struct perf_event_context
*child_ctx
,
10066 struct task_struct
*child
)
10068 struct perf_event
*parent_event
= child_event
->parent
;
10071 * Do not destroy the 'original' grouping; because of the context
10072 * switch optimization the original events could've ended up in a
10073 * random child task.
10075 * If we were to destroy the original group, all group related
10076 * operations would cease to function properly after this random
10079 * Do destroy all inherited groups, we don't care about those
10080 * and being thorough is better.
10082 raw_spin_lock_irq(&child_ctx
->lock
);
10083 WARN_ON_ONCE(child_ctx
->is_active
);
10086 perf_group_detach(child_event
);
10087 list_del_event(child_event
, child_ctx
);
10088 child_event
->state
= PERF_EVENT_STATE_EXIT
; /* is_event_hup() */
10089 raw_spin_unlock_irq(&child_ctx
->lock
);
10092 * Parent events are governed by their filedesc, retain them.
10094 if (!parent_event
) {
10095 perf_event_wakeup(child_event
);
10099 * Child events can be cleaned up.
10102 sync_child_event(child_event
, child
);
10105 * Remove this event from the parent's list
10107 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
10108 mutex_lock(&parent_event
->child_mutex
);
10109 list_del_init(&child_event
->child_list
);
10110 mutex_unlock(&parent_event
->child_mutex
);
10113 * Kick perf_poll() for is_event_hup().
10115 perf_event_wakeup(parent_event
);
10116 free_event(child_event
);
10117 put_event(parent_event
);
10120 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
10122 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
10123 struct perf_event
*child_event
, *next
;
10125 WARN_ON_ONCE(child
!= current
);
10127 child_ctx
= perf_pin_task_context(child
, ctxn
);
10132 * In order to reduce the amount of tricky in ctx tear-down, we hold
10133 * ctx::mutex over the entire thing. This serializes against almost
10134 * everything that wants to access the ctx.
10136 * The exception is sys_perf_event_open() /
10137 * perf_event_create_kernel_count() which does find_get_context()
10138 * without ctx::mutex (it cannot because of the move_group double mutex
10139 * lock thing). See the comments in perf_install_in_context().
10141 mutex_lock(&child_ctx
->mutex
);
10144 * In a single ctx::lock section, de-schedule the events and detach the
10145 * context from the task such that we cannot ever get it scheduled back
10148 raw_spin_lock_irq(&child_ctx
->lock
);
10149 task_ctx_sched_out(__get_cpu_context(child_ctx
), child_ctx
);
10152 * Now that the context is inactive, destroy the task <-> ctx relation
10153 * and mark the context dead.
10155 RCU_INIT_POINTER(child
->perf_event_ctxp
[ctxn
], NULL
);
10156 put_ctx(child_ctx
); /* cannot be last */
10157 WRITE_ONCE(child_ctx
->task
, TASK_TOMBSTONE
);
10158 put_task_struct(current
); /* cannot be last */
10160 clone_ctx
= unclone_ctx(child_ctx
);
10161 raw_spin_unlock_irq(&child_ctx
->lock
);
10164 put_ctx(clone_ctx
);
10167 * Report the task dead after unscheduling the events so that we
10168 * won't get any samples after PERF_RECORD_EXIT. We can however still
10169 * get a few PERF_RECORD_READ events.
10171 perf_event_task(child
, child_ctx
, 0);
10173 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
10174 perf_event_exit_event(child_event
, child_ctx
, child
);
10176 mutex_unlock(&child_ctx
->mutex
);
10178 put_ctx(child_ctx
);
10182 * When a child task exits, feed back event values to parent events.
10184 * Can be called with cred_guard_mutex held when called from
10185 * install_exec_creds().
10187 void perf_event_exit_task(struct task_struct
*child
)
10189 struct perf_event
*event
, *tmp
;
10192 mutex_lock(&child
->perf_event_mutex
);
10193 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
10195 list_del_init(&event
->owner_entry
);
10198 * Ensure the list deletion is visible before we clear
10199 * the owner, closes a race against perf_release() where
10200 * we need to serialize on the owner->perf_event_mutex.
10202 smp_store_release(&event
->owner
, NULL
);
10204 mutex_unlock(&child
->perf_event_mutex
);
10206 for_each_task_context_nr(ctxn
)
10207 perf_event_exit_task_context(child
, ctxn
);
10210 * The perf_event_exit_task_context calls perf_event_task
10211 * with child's task_ctx, which generates EXIT events for
10212 * child contexts and sets child->perf_event_ctxp[] to NULL.
10213 * At this point we need to send EXIT events to cpu contexts.
10215 perf_event_task(child
, NULL
, 0);
10218 static void perf_free_event(struct perf_event
*event
,
10219 struct perf_event_context
*ctx
)
10221 struct perf_event
*parent
= event
->parent
;
10223 if (WARN_ON_ONCE(!parent
))
10226 mutex_lock(&parent
->child_mutex
);
10227 list_del_init(&event
->child_list
);
10228 mutex_unlock(&parent
->child_mutex
);
10232 raw_spin_lock_irq(&ctx
->lock
);
10233 perf_group_detach(event
);
10234 list_del_event(event
, ctx
);
10235 raw_spin_unlock_irq(&ctx
->lock
);
10240 * Free an unexposed, unused context as created by inheritance by
10241 * perf_event_init_task below, used by fork() in case of fail.
10243 * Not all locks are strictly required, but take them anyway to be nice and
10244 * help out with the lockdep assertions.
10246 void perf_event_free_task(struct task_struct
*task
)
10248 struct perf_event_context
*ctx
;
10249 struct perf_event
*event
, *tmp
;
10252 for_each_task_context_nr(ctxn
) {
10253 ctx
= task
->perf_event_ctxp
[ctxn
];
10257 mutex_lock(&ctx
->mutex
);
10259 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
10261 perf_free_event(event
, ctx
);
10263 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
10265 perf_free_event(event
, ctx
);
10267 if (!list_empty(&ctx
->pinned_groups
) ||
10268 !list_empty(&ctx
->flexible_groups
))
10271 mutex_unlock(&ctx
->mutex
);
10277 void perf_event_delayed_put(struct task_struct
*task
)
10281 for_each_task_context_nr(ctxn
)
10282 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
10285 struct file
*perf_event_get(unsigned int fd
)
10289 file
= fget_raw(fd
);
10291 return ERR_PTR(-EBADF
);
10293 if (file
->f_op
!= &perf_fops
) {
10295 return ERR_PTR(-EBADF
);
10301 const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
10304 return ERR_PTR(-EINVAL
);
10306 return &event
->attr
;
10310 * inherit a event from parent task to child task:
10312 static struct perf_event
*
10313 inherit_event(struct perf_event
*parent_event
,
10314 struct task_struct
*parent
,
10315 struct perf_event_context
*parent_ctx
,
10316 struct task_struct
*child
,
10317 struct perf_event
*group_leader
,
10318 struct perf_event_context
*child_ctx
)
10320 enum perf_event_active_state parent_state
= parent_event
->state
;
10321 struct perf_event
*child_event
;
10322 unsigned long flags
;
10325 * Instead of creating recursive hierarchies of events,
10326 * we link inherited events back to the original parent,
10327 * which has a filp for sure, which we use as the reference
10330 if (parent_event
->parent
)
10331 parent_event
= parent_event
->parent
;
10333 child_event
= perf_event_alloc(&parent_event
->attr
,
10336 group_leader
, parent_event
,
10338 if (IS_ERR(child_event
))
10339 return child_event
;
10342 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10343 * must be under the same lock in order to serialize against
10344 * perf_event_release_kernel(), such that either we must observe
10345 * is_orphaned_event() or they will observe us on the child_list.
10347 mutex_lock(&parent_event
->child_mutex
);
10348 if (is_orphaned_event(parent_event
) ||
10349 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
10350 mutex_unlock(&parent_event
->child_mutex
);
10351 free_event(child_event
);
10355 get_ctx(child_ctx
);
10358 * Make the child state follow the state of the parent event,
10359 * not its attr.disabled bit. We hold the parent's mutex,
10360 * so we won't race with perf_event_{en, dis}able_family.
10362 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
10363 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
10365 child_event
->state
= PERF_EVENT_STATE_OFF
;
10367 if (parent_event
->attr
.freq
) {
10368 u64 sample_period
= parent_event
->hw
.sample_period
;
10369 struct hw_perf_event
*hwc
= &child_event
->hw
;
10371 hwc
->sample_period
= sample_period
;
10372 hwc
->last_period
= sample_period
;
10374 local64_set(&hwc
->period_left
, sample_period
);
10377 child_event
->ctx
= child_ctx
;
10378 child_event
->overflow_handler
= parent_event
->overflow_handler
;
10379 child_event
->overflow_handler_context
10380 = parent_event
->overflow_handler_context
;
10383 * Precalculate sample_data sizes
10385 perf_event__header_size(child_event
);
10386 perf_event__id_header_size(child_event
);
10389 * Link it up in the child's context:
10391 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
10392 add_event_to_ctx(child_event
, child_ctx
);
10393 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
10396 * Link this into the parent event's child list
10398 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
10399 mutex_unlock(&parent_event
->child_mutex
);
10401 return child_event
;
10404 static int inherit_group(struct perf_event
*parent_event
,
10405 struct task_struct
*parent
,
10406 struct perf_event_context
*parent_ctx
,
10407 struct task_struct
*child
,
10408 struct perf_event_context
*child_ctx
)
10410 struct perf_event
*leader
;
10411 struct perf_event
*sub
;
10412 struct perf_event
*child_ctr
;
10414 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
10415 child
, NULL
, child_ctx
);
10416 if (IS_ERR(leader
))
10417 return PTR_ERR(leader
);
10418 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
10419 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
10420 child
, leader
, child_ctx
);
10421 if (IS_ERR(child_ctr
))
10422 return PTR_ERR(child_ctr
);
10428 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
10429 struct perf_event_context
*parent_ctx
,
10430 struct task_struct
*child
, int ctxn
,
10431 int *inherited_all
)
10434 struct perf_event_context
*child_ctx
;
10436 if (!event
->attr
.inherit
) {
10437 *inherited_all
= 0;
10441 child_ctx
= child
->perf_event_ctxp
[ctxn
];
10444 * This is executed from the parent task context, so
10445 * inherit events that have been marked for cloning.
10446 * First allocate and initialize a context for the
10450 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
10454 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
10457 ret
= inherit_group(event
, parent
, parent_ctx
,
10461 *inherited_all
= 0;
10467 * Initialize the perf_event context in task_struct
10469 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
10471 struct perf_event_context
*child_ctx
, *parent_ctx
;
10472 struct perf_event_context
*cloned_ctx
;
10473 struct perf_event
*event
;
10474 struct task_struct
*parent
= current
;
10475 int inherited_all
= 1;
10476 unsigned long flags
;
10479 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
10483 * If the parent's context is a clone, pin it so it won't get
10484 * swapped under us.
10486 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
10491 * No need to check if parent_ctx != NULL here; since we saw
10492 * it non-NULL earlier, the only reason for it to become NULL
10493 * is if we exit, and since we're currently in the middle of
10494 * a fork we can't be exiting at the same time.
10498 * Lock the parent list. No need to lock the child - not PID
10499 * hashed yet and not running, so nobody can access it.
10501 mutex_lock(&parent_ctx
->mutex
);
10504 * We dont have to disable NMIs - we are only looking at
10505 * the list, not manipulating it:
10507 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
10508 ret
= inherit_task_group(event
, parent
, parent_ctx
,
10509 child
, ctxn
, &inherited_all
);
10515 * We can't hold ctx->lock when iterating the ->flexible_group list due
10516 * to allocations, but we need to prevent rotation because
10517 * rotate_ctx() will change the list from interrupt context.
10519 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
10520 parent_ctx
->rotate_disable
= 1;
10521 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
10523 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
10524 ret
= inherit_task_group(event
, parent
, parent_ctx
,
10525 child
, ctxn
, &inherited_all
);
10530 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
10531 parent_ctx
->rotate_disable
= 0;
10533 child_ctx
= child
->perf_event_ctxp
[ctxn
];
10535 if (child_ctx
&& inherited_all
) {
10537 * Mark the child context as a clone of the parent
10538 * context, or of whatever the parent is a clone of.
10540 * Note that if the parent is a clone, the holding of
10541 * parent_ctx->lock avoids it from being uncloned.
10543 cloned_ctx
= parent_ctx
->parent_ctx
;
10545 child_ctx
->parent_ctx
= cloned_ctx
;
10546 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
10548 child_ctx
->parent_ctx
= parent_ctx
;
10549 child_ctx
->parent_gen
= parent_ctx
->generation
;
10551 get_ctx(child_ctx
->parent_ctx
);
10554 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
10555 mutex_unlock(&parent_ctx
->mutex
);
10557 perf_unpin_context(parent_ctx
);
10558 put_ctx(parent_ctx
);
10564 * Initialize the perf_event context in task_struct
10566 int perf_event_init_task(struct task_struct
*child
)
10570 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
10571 mutex_init(&child
->perf_event_mutex
);
10572 INIT_LIST_HEAD(&child
->perf_event_list
);
10574 for_each_task_context_nr(ctxn
) {
10575 ret
= perf_event_init_context(child
, ctxn
);
10577 perf_event_free_task(child
);
10585 static void __init
perf_event_init_all_cpus(void)
10587 struct swevent_htable
*swhash
;
10590 for_each_possible_cpu(cpu
) {
10591 swhash
= &per_cpu(swevent_htable
, cpu
);
10592 mutex_init(&swhash
->hlist_mutex
);
10593 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
10595 INIT_LIST_HEAD(&per_cpu(pmu_sb_events
.list
, cpu
));
10596 raw_spin_lock_init(&per_cpu(pmu_sb_events
.lock
, cpu
));
10598 INIT_LIST_HEAD(&per_cpu(sched_cb_list
, cpu
));
10602 int perf_event_init_cpu(unsigned int cpu
)
10604 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
10606 mutex_lock(&swhash
->hlist_mutex
);
10607 if (swhash
->hlist_refcount
> 0 && !swevent_hlist_deref(swhash
)) {
10608 struct swevent_hlist
*hlist
;
10610 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
10612 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
10614 mutex_unlock(&swhash
->hlist_mutex
);
10618 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10619 static void __perf_event_exit_context(void *__info
)
10621 struct perf_event_context
*ctx
= __info
;
10622 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
10623 struct perf_event
*event
;
10625 raw_spin_lock(&ctx
->lock
);
10626 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
10627 __perf_remove_from_context(event
, cpuctx
, ctx
, (void *)DETACH_GROUP
);
10628 raw_spin_unlock(&ctx
->lock
);
10631 static void perf_event_exit_cpu_context(int cpu
)
10633 struct perf_event_context
*ctx
;
10637 idx
= srcu_read_lock(&pmus_srcu
);
10638 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
10639 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
10641 mutex_lock(&ctx
->mutex
);
10642 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
10643 mutex_unlock(&ctx
->mutex
);
10645 srcu_read_unlock(&pmus_srcu
, idx
);
10649 static void perf_event_exit_cpu_context(int cpu
) { }
10653 int perf_event_exit_cpu(unsigned int cpu
)
10655 perf_event_exit_cpu_context(cpu
);
10660 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
10664 for_each_online_cpu(cpu
)
10665 perf_event_exit_cpu(cpu
);
10671 * Run the perf reboot notifier at the very last possible moment so that
10672 * the generic watchdog code runs as long as possible.
10674 static struct notifier_block perf_reboot_notifier
= {
10675 .notifier_call
= perf_reboot
,
10676 .priority
= INT_MIN
,
10679 void __init
perf_event_init(void)
10683 idr_init(&pmu_idr
);
10685 perf_event_init_all_cpus();
10686 init_srcu_struct(&pmus_srcu
);
10687 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
10688 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
10689 perf_pmu_register(&perf_task_clock
, NULL
, -1);
10690 perf_tp_register();
10691 perf_event_init_cpu(smp_processor_id());
10692 register_reboot_notifier(&perf_reboot_notifier
);
10694 ret
= init_hw_breakpoint();
10695 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
10698 * Build time assertion that we keep the data_head at the intended
10699 * location. IOW, validation we got the __reserved[] size right.
10701 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
10705 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
10708 struct perf_pmu_events_attr
*pmu_attr
=
10709 container_of(attr
, struct perf_pmu_events_attr
, attr
);
10711 if (pmu_attr
->event_str
)
10712 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
10716 EXPORT_SYMBOL_GPL(perf_event_sysfs_show
);
10718 static int __init
perf_event_sysfs_init(void)
10723 mutex_lock(&pmus_lock
);
10725 ret
= bus_register(&pmu_bus
);
10729 list_for_each_entry(pmu
, &pmus
, entry
) {
10730 if (!pmu
->name
|| pmu
->type
< 0)
10733 ret
= pmu_dev_alloc(pmu
);
10734 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
10736 pmu_bus_running
= 1;
10740 mutex_unlock(&pmus_lock
);
10744 device_initcall(perf_event_sysfs_init
);
10746 #ifdef CONFIG_CGROUP_PERF
10747 static struct cgroup_subsys_state
*
10748 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
10750 struct perf_cgroup
*jc
;
10752 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
10754 return ERR_PTR(-ENOMEM
);
10756 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
10759 return ERR_PTR(-ENOMEM
);
10765 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
10767 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
10769 free_percpu(jc
->info
);
10773 static int __perf_cgroup_move(void *info
)
10775 struct task_struct
*task
= info
;
10777 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
10782 static void perf_cgroup_attach(struct cgroup_taskset
*tset
)
10784 struct task_struct
*task
;
10785 struct cgroup_subsys_state
*css
;
10787 cgroup_taskset_for_each(task
, css
, tset
)
10788 task_function_call(task
, __perf_cgroup_move
, task
);
10791 struct cgroup_subsys perf_event_cgrp_subsys
= {
10792 .css_alloc
= perf_cgroup_css_alloc
,
10793 .css_free
= perf_cgroup_css_free
,
10794 .attach
= perf_cgroup_attach
,
10796 #endif /* CONFIG_CGROUP_PERF */