sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / kernel / locking / mutex.c
blob9b349619f431443479fdbe42fe162715d1e4e3fc
1 /*
2 * kernel/locking/mutex.c
4 * Mutexes: blocking mutual exclusion locks
6 * Started by Ingo Molnar:
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
18 * Also see Documentation/locking/mutex-design.txt.
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include <linux/osq_lock.h>
30 #ifdef CONFIG_DEBUG_MUTEXES
31 # include "mutex-debug.h"
32 #else
33 # include "mutex.h"
34 #endif
36 void
37 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
39 atomic_long_set(&lock->owner, 0);
40 spin_lock_init(&lock->wait_lock);
41 INIT_LIST_HEAD(&lock->wait_list);
42 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
43 osq_lock_init(&lock->osq);
44 #endif
46 debug_mutex_init(lock, name, key);
48 EXPORT_SYMBOL(__mutex_init);
51 * @owner: contains: 'struct task_struct *' to the current lock owner,
52 * NULL means not owned. Since task_struct pointers are aligned at
53 * ARCH_MIN_TASKALIGN (which is at least sizeof(void *)), we have low
54 * bits to store extra state.
56 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
57 * Bit1 indicates unlock needs to hand the lock to the top-waiter
59 #define MUTEX_FLAG_WAITERS 0x01
60 #define MUTEX_FLAG_HANDOFF 0x02
62 #define MUTEX_FLAGS 0x03
64 static inline struct task_struct *__owner_task(unsigned long owner)
66 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
69 static inline unsigned long __owner_flags(unsigned long owner)
71 return owner & MUTEX_FLAGS;
75 * Actual trylock that will work on any unlocked state.
77 * When setting the owner field, we must preserve the low flag bits.
79 * Be careful with @handoff, only set that in a wait-loop (where you set
80 * HANDOFF) to avoid recursive lock attempts.
82 static inline bool __mutex_trylock(struct mutex *lock, const bool handoff)
84 unsigned long owner, curr = (unsigned long)current;
86 owner = atomic_long_read(&lock->owner);
87 for (;;) { /* must loop, can race against a flag */
88 unsigned long old, flags = __owner_flags(owner);
90 if (__owner_task(owner)) {
91 if (handoff && unlikely(__owner_task(owner) == current)) {
93 * Provide ACQUIRE semantics for the lock-handoff.
95 * We cannot easily use load-acquire here, since
96 * the actual load is a failed cmpxchg, which
97 * doesn't imply any barriers.
99 * Also, this is a fairly unlikely scenario, and
100 * this contains the cost.
102 smp_mb(); /* ACQUIRE */
103 return true;
106 return false;
110 * We set the HANDOFF bit, we must make sure it doesn't live
111 * past the point where we acquire it. This would be possible
112 * if we (accidentally) set the bit on an unlocked mutex.
114 if (handoff)
115 flags &= ~MUTEX_FLAG_HANDOFF;
117 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
118 if (old == owner)
119 return true;
121 owner = old;
125 #ifndef CONFIG_DEBUG_LOCK_ALLOC
127 * Lockdep annotations are contained to the slow paths for simplicity.
128 * There is nothing that would stop spreading the lockdep annotations outwards
129 * except more code.
133 * Optimistic trylock that only works in the uncontended case. Make sure to
134 * follow with a __mutex_trylock() before failing.
136 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
138 unsigned long curr = (unsigned long)current;
140 if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
141 return true;
143 return false;
146 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
148 unsigned long curr = (unsigned long)current;
150 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
151 return true;
153 return false;
155 #endif
157 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
159 atomic_long_or(flag, &lock->owner);
162 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
164 atomic_long_andnot(flag, &lock->owner);
167 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
169 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
173 * Give up ownership to a specific task, when @task = NULL, this is equivalent
174 * to a regular unlock. Clears HANDOFF, preserves WAITERS. Provides RELEASE
175 * semantics like a regular unlock, the __mutex_trylock() provides matching
176 * ACQUIRE semantics for the handoff.
178 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
180 unsigned long owner = atomic_long_read(&lock->owner);
182 for (;;) {
183 unsigned long old, new;
185 #ifdef CONFIG_DEBUG_MUTEXES
186 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
187 #endif
189 new = (owner & MUTEX_FLAG_WAITERS);
190 new |= (unsigned long)task;
192 old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
193 if (old == owner)
194 break;
196 owner = old;
200 #ifndef CONFIG_DEBUG_LOCK_ALLOC
202 * We split the mutex lock/unlock logic into separate fastpath and
203 * slowpath functions, to reduce the register pressure on the fastpath.
204 * We also put the fastpath first in the kernel image, to make sure the
205 * branch is predicted by the CPU as default-untaken.
207 static void __sched __mutex_lock_slowpath(struct mutex *lock);
210 * mutex_lock - acquire the mutex
211 * @lock: the mutex to be acquired
213 * Lock the mutex exclusively for this task. If the mutex is not
214 * available right now, it will sleep until it can get it.
216 * The mutex must later on be released by the same task that
217 * acquired it. Recursive locking is not allowed. The task
218 * may not exit without first unlocking the mutex. Also, kernel
219 * memory where the mutex resides must not be freed with
220 * the mutex still locked. The mutex must first be initialized
221 * (or statically defined) before it can be locked. memset()-ing
222 * the mutex to 0 is not allowed.
224 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
225 * checks that will enforce the restrictions and will also do
226 * deadlock debugging. )
228 * This function is similar to (but not equivalent to) down().
230 void __sched mutex_lock(struct mutex *lock)
232 might_sleep();
234 if (!__mutex_trylock_fast(lock))
235 __mutex_lock_slowpath(lock);
237 EXPORT_SYMBOL(mutex_lock);
238 #endif
240 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
241 struct ww_acquire_ctx *ww_ctx)
243 #ifdef CONFIG_DEBUG_MUTEXES
245 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
246 * but released with a normal mutex_unlock in this call.
248 * This should never happen, always use ww_mutex_unlock.
250 DEBUG_LOCKS_WARN_ON(ww->ctx);
253 * Not quite done after calling ww_acquire_done() ?
255 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
257 if (ww_ctx->contending_lock) {
259 * After -EDEADLK you tried to
260 * acquire a different ww_mutex? Bad!
262 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
265 * You called ww_mutex_lock after receiving -EDEADLK,
266 * but 'forgot' to unlock everything else first?
268 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
269 ww_ctx->contending_lock = NULL;
273 * Naughty, using a different class will lead to undefined behavior!
275 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
276 #endif
277 ww_ctx->acquired++;
281 * After acquiring lock with fastpath or when we lost out in contested
282 * slowpath, set ctx and wake up any waiters so they can recheck.
284 static __always_inline void
285 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
286 struct ww_acquire_ctx *ctx)
288 unsigned long flags;
289 struct mutex_waiter *cur;
291 ww_mutex_lock_acquired(lock, ctx);
293 lock->ctx = ctx;
296 * The lock->ctx update should be visible on all cores before
297 * the atomic read is done, otherwise contended waiters might be
298 * missed. The contended waiters will either see ww_ctx == NULL
299 * and keep spinning, or it will acquire wait_lock, add itself
300 * to waiter list and sleep.
302 smp_mb(); /* ^^^ */
305 * Check if lock is contended, if not there is nobody to wake up
307 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
308 return;
311 * Uh oh, we raced in fastpath, wake up everyone in this case,
312 * so they can see the new lock->ctx.
314 spin_lock_mutex(&lock->base.wait_lock, flags);
315 list_for_each_entry(cur, &lock->base.wait_list, list) {
316 debug_mutex_wake_waiter(&lock->base, cur);
317 wake_up_process(cur->task);
319 spin_unlock_mutex(&lock->base.wait_lock, flags);
323 * After acquiring lock in the slowpath set ctx and wake up any
324 * waiters so they can recheck.
326 * Callers must hold the mutex wait_lock.
328 static __always_inline void
329 ww_mutex_set_context_slowpath(struct ww_mutex *lock,
330 struct ww_acquire_ctx *ctx)
332 struct mutex_waiter *cur;
334 ww_mutex_lock_acquired(lock, ctx);
335 lock->ctx = ctx;
338 * Give any possible sleeping processes the chance to wake up,
339 * so they can recheck if they have to back off.
341 list_for_each_entry(cur, &lock->base.wait_list, list) {
342 debug_mutex_wake_waiter(&lock->base, cur);
343 wake_up_process(cur->task);
347 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
349 * Look out! "owner" is an entirely speculative pointer
350 * access and not reliable.
352 static noinline
353 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
355 bool ret = true;
357 rcu_read_lock();
358 while (__mutex_owner(lock) == owner) {
360 * Ensure we emit the owner->on_cpu, dereference _after_
361 * checking lock->owner still matches owner. If that fails,
362 * owner might point to freed memory. If it still matches,
363 * the rcu_read_lock() ensures the memory stays valid.
365 barrier();
368 * Use vcpu_is_preempted to detect lock holder preemption issue.
370 if (!owner->on_cpu || need_resched() ||
371 vcpu_is_preempted(task_cpu(owner))) {
372 ret = false;
373 break;
376 cpu_relax();
378 rcu_read_unlock();
380 return ret;
384 * Initial check for entering the mutex spinning loop
386 static inline int mutex_can_spin_on_owner(struct mutex *lock)
388 struct task_struct *owner;
389 int retval = 1;
391 if (need_resched())
392 return 0;
394 rcu_read_lock();
395 owner = __mutex_owner(lock);
398 * As lock holder preemption issue, we both skip spinning if task is not
399 * on cpu or its cpu is preempted
401 if (owner)
402 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
403 rcu_read_unlock();
406 * If lock->owner is not set, the mutex has been released. Return true
407 * such that we'll trylock in the spin path, which is a faster option
408 * than the blocking slow path.
410 return retval;
414 * Optimistic spinning.
416 * We try to spin for acquisition when we find that the lock owner
417 * is currently running on a (different) CPU and while we don't
418 * need to reschedule. The rationale is that if the lock owner is
419 * running, it is likely to release the lock soon.
421 * The mutex spinners are queued up using MCS lock so that only one
422 * spinner can compete for the mutex. However, if mutex spinning isn't
423 * going to happen, there is no point in going through the lock/unlock
424 * overhead.
426 * Returns true when the lock was taken, otherwise false, indicating
427 * that we need to jump to the slowpath and sleep.
429 * The waiter flag is set to true if the spinner is a waiter in the wait
430 * queue. The waiter-spinner will spin on the lock directly and concurrently
431 * with the spinner at the head of the OSQ, if present, until the owner is
432 * changed to itself.
434 static bool mutex_optimistic_spin(struct mutex *lock,
435 struct ww_acquire_ctx *ww_ctx,
436 const bool use_ww_ctx, const bool waiter)
438 struct task_struct *task = current;
440 if (!waiter) {
442 * The purpose of the mutex_can_spin_on_owner() function is
443 * to eliminate the overhead of osq_lock() and osq_unlock()
444 * in case spinning isn't possible. As a waiter-spinner
445 * is not going to take OSQ lock anyway, there is no need
446 * to call mutex_can_spin_on_owner().
448 if (!mutex_can_spin_on_owner(lock))
449 goto fail;
452 * In order to avoid a stampede of mutex spinners trying to
453 * acquire the mutex all at once, the spinners need to take a
454 * MCS (queued) lock first before spinning on the owner field.
456 if (!osq_lock(&lock->osq))
457 goto fail;
460 for (;;) {
461 struct task_struct *owner;
463 if (use_ww_ctx && ww_ctx->acquired > 0) {
464 struct ww_mutex *ww;
466 ww = container_of(lock, struct ww_mutex, base);
468 * If ww->ctx is set the contents are undefined, only
469 * by acquiring wait_lock there is a guarantee that
470 * they are not invalid when reading.
472 * As such, when deadlock detection needs to be
473 * performed the optimistic spinning cannot be done.
475 if (READ_ONCE(ww->ctx))
476 goto fail_unlock;
480 * If there's an owner, wait for it to either
481 * release the lock or go to sleep.
483 owner = __mutex_owner(lock);
484 if (owner) {
485 if (waiter && owner == task) {
486 smp_mb(); /* ACQUIRE */
487 break;
490 if (!mutex_spin_on_owner(lock, owner))
491 goto fail_unlock;
494 /* Try to acquire the mutex if it is unlocked. */
495 if (__mutex_trylock(lock, waiter))
496 break;
499 * The cpu_relax() call is a compiler barrier which forces
500 * everything in this loop to be re-loaded. We don't need
501 * memory barriers as we'll eventually observe the right
502 * values at the cost of a few extra spins.
504 cpu_relax();
507 if (!waiter)
508 osq_unlock(&lock->osq);
510 return true;
513 fail_unlock:
514 if (!waiter)
515 osq_unlock(&lock->osq);
517 fail:
519 * If we fell out of the spin path because of need_resched(),
520 * reschedule now, before we try-lock the mutex. This avoids getting
521 * scheduled out right after we obtained the mutex.
523 if (need_resched()) {
525 * We _should_ have TASK_RUNNING here, but just in case
526 * we do not, make it so, otherwise we might get stuck.
528 __set_current_state(TASK_RUNNING);
529 schedule_preempt_disabled();
532 return false;
534 #else
535 static bool mutex_optimistic_spin(struct mutex *lock,
536 struct ww_acquire_ctx *ww_ctx,
537 const bool use_ww_ctx, const bool waiter)
539 return false;
541 #endif
543 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
546 * mutex_unlock - release the mutex
547 * @lock: the mutex to be released
549 * Unlock a mutex that has been locked by this task previously.
551 * This function must not be used in interrupt context. Unlocking
552 * of a not locked mutex is not allowed.
554 * This function is similar to (but not equivalent to) up().
556 void __sched mutex_unlock(struct mutex *lock)
558 #ifndef CONFIG_DEBUG_LOCK_ALLOC
559 if (__mutex_unlock_fast(lock))
560 return;
561 #endif
562 __mutex_unlock_slowpath(lock, _RET_IP_);
564 EXPORT_SYMBOL(mutex_unlock);
567 * ww_mutex_unlock - release the w/w mutex
568 * @lock: the mutex to be released
570 * Unlock a mutex that has been locked by this task previously with any of the
571 * ww_mutex_lock* functions (with or without an acquire context). It is
572 * forbidden to release the locks after releasing the acquire context.
574 * This function must not be used in interrupt context. Unlocking
575 * of a unlocked mutex is not allowed.
577 void __sched ww_mutex_unlock(struct ww_mutex *lock)
580 * The unlocking fastpath is the 0->1 transition from 'locked'
581 * into 'unlocked' state:
583 if (lock->ctx) {
584 #ifdef CONFIG_DEBUG_MUTEXES
585 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
586 #endif
587 if (lock->ctx->acquired > 0)
588 lock->ctx->acquired--;
589 lock->ctx = NULL;
592 mutex_unlock(&lock->base);
594 EXPORT_SYMBOL(ww_mutex_unlock);
596 static inline int __sched
597 __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
599 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
600 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
602 if (!hold_ctx)
603 return 0;
605 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
606 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
607 #ifdef CONFIG_DEBUG_MUTEXES
608 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
609 ctx->contending_lock = ww;
610 #endif
611 return -EDEADLK;
614 return 0;
618 * Lock a mutex (possibly interruptible), slowpath:
620 static __always_inline int __sched
621 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
622 struct lockdep_map *nest_lock, unsigned long ip,
623 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
625 struct task_struct *task = current;
626 struct mutex_waiter waiter;
627 unsigned long flags;
628 bool first = false;
629 struct ww_mutex *ww;
630 int ret;
632 if (use_ww_ctx) {
633 ww = container_of(lock, struct ww_mutex, base);
634 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
635 return -EALREADY;
638 preempt_disable();
639 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
641 if (__mutex_trylock(lock, false) ||
642 mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, false)) {
643 /* got the lock, yay! */
644 lock_acquired(&lock->dep_map, ip);
645 if (use_ww_ctx)
646 ww_mutex_set_context_fastpath(ww, ww_ctx);
647 preempt_enable();
648 return 0;
651 spin_lock_mutex(&lock->wait_lock, flags);
653 * After waiting to acquire the wait_lock, try again.
655 if (__mutex_trylock(lock, false))
656 goto skip_wait;
658 debug_mutex_lock_common(lock, &waiter);
659 debug_mutex_add_waiter(lock, &waiter, task);
661 /* add waiting tasks to the end of the waitqueue (FIFO): */
662 list_add_tail(&waiter.list, &lock->wait_list);
663 waiter.task = task;
665 if (__mutex_waiter_is_first(lock, &waiter))
666 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
668 lock_contended(&lock->dep_map, ip);
670 set_task_state(task, state);
671 for (;;) {
673 * Once we hold wait_lock, we're serialized against
674 * mutex_unlock() handing the lock off to us, do a trylock
675 * before testing the error conditions to make sure we pick up
676 * the handoff.
678 if (__mutex_trylock(lock, first))
679 goto acquired;
682 * Check for signals and wound conditions while holding
683 * wait_lock. This ensures the lock cancellation is ordered
684 * against mutex_unlock() and wake-ups do not go missing.
686 if (unlikely(signal_pending_state(state, task))) {
687 ret = -EINTR;
688 goto err;
691 if (use_ww_ctx && ww_ctx->acquired > 0) {
692 ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
693 if (ret)
694 goto err;
697 spin_unlock_mutex(&lock->wait_lock, flags);
698 schedule_preempt_disabled();
700 if (!first && __mutex_waiter_is_first(lock, &waiter)) {
701 first = true;
702 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
705 set_task_state(task, state);
707 * Here we order against unlock; we must either see it change
708 * state back to RUNNING and fall through the next schedule(),
709 * or we must see its unlock and acquire.
711 if ((first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, true)) ||
712 __mutex_trylock(lock, first))
713 break;
715 spin_lock_mutex(&lock->wait_lock, flags);
717 spin_lock_mutex(&lock->wait_lock, flags);
718 acquired:
719 __set_task_state(task, TASK_RUNNING);
721 mutex_remove_waiter(lock, &waiter, task);
722 if (likely(list_empty(&lock->wait_list)))
723 __mutex_clear_flag(lock, MUTEX_FLAGS);
725 debug_mutex_free_waiter(&waiter);
727 skip_wait:
728 /* got the lock - cleanup and rejoice! */
729 lock_acquired(&lock->dep_map, ip);
731 if (use_ww_ctx)
732 ww_mutex_set_context_slowpath(ww, ww_ctx);
734 spin_unlock_mutex(&lock->wait_lock, flags);
735 preempt_enable();
736 return 0;
738 err:
739 __set_task_state(task, TASK_RUNNING);
740 mutex_remove_waiter(lock, &waiter, task);
741 spin_unlock_mutex(&lock->wait_lock, flags);
742 debug_mutex_free_waiter(&waiter);
743 mutex_release(&lock->dep_map, 1, ip);
744 preempt_enable();
745 return ret;
748 #ifdef CONFIG_DEBUG_LOCK_ALLOC
749 void __sched
750 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
752 might_sleep();
753 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
754 subclass, NULL, _RET_IP_, NULL, 0);
757 EXPORT_SYMBOL_GPL(mutex_lock_nested);
759 void __sched
760 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
762 might_sleep();
763 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
764 0, nest, _RET_IP_, NULL, 0);
766 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
768 int __sched
769 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
771 might_sleep();
772 return __mutex_lock_common(lock, TASK_KILLABLE,
773 subclass, NULL, _RET_IP_, NULL, 0);
775 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
777 int __sched
778 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
780 might_sleep();
781 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
782 subclass, NULL, _RET_IP_, NULL, 0);
784 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
786 static inline int
787 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
789 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
790 unsigned tmp;
792 if (ctx->deadlock_inject_countdown-- == 0) {
793 tmp = ctx->deadlock_inject_interval;
794 if (tmp > UINT_MAX/4)
795 tmp = UINT_MAX;
796 else
797 tmp = tmp*2 + tmp + tmp/2;
799 ctx->deadlock_inject_interval = tmp;
800 ctx->deadlock_inject_countdown = tmp;
801 ctx->contending_lock = lock;
803 ww_mutex_unlock(lock);
805 return -EDEADLK;
807 #endif
809 return 0;
812 int __sched
813 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
815 int ret;
817 might_sleep();
818 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
819 0, &ctx->dep_map, _RET_IP_, ctx, 1);
820 if (!ret && ctx->acquired > 1)
821 return ww_mutex_deadlock_injection(lock, ctx);
823 return ret;
825 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
827 int __sched
828 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
830 int ret;
832 might_sleep();
833 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
834 0, &ctx->dep_map, _RET_IP_, ctx, 1);
836 if (!ret && ctx->acquired > 1)
837 return ww_mutex_deadlock_injection(lock, ctx);
839 return ret;
841 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
843 #endif
846 * Release the lock, slowpath:
848 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
850 struct task_struct *next = NULL;
851 unsigned long owner, flags;
852 DEFINE_WAKE_Q(wake_q);
854 mutex_release(&lock->dep_map, 1, ip);
857 * Release the lock before (potentially) taking the spinlock such that
858 * other contenders can get on with things ASAP.
860 * Except when HANDOFF, in that case we must not clear the owner field,
861 * but instead set it to the top waiter.
863 owner = atomic_long_read(&lock->owner);
864 for (;;) {
865 unsigned long old;
867 #ifdef CONFIG_DEBUG_MUTEXES
868 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
869 #endif
871 if (owner & MUTEX_FLAG_HANDOFF)
872 break;
874 old = atomic_long_cmpxchg_release(&lock->owner, owner,
875 __owner_flags(owner));
876 if (old == owner) {
877 if (owner & MUTEX_FLAG_WAITERS)
878 break;
880 return;
883 owner = old;
886 spin_lock_mutex(&lock->wait_lock, flags);
887 debug_mutex_unlock(lock);
888 if (!list_empty(&lock->wait_list)) {
889 /* get the first entry from the wait-list: */
890 struct mutex_waiter *waiter =
891 list_first_entry(&lock->wait_list,
892 struct mutex_waiter, list);
894 next = waiter->task;
896 debug_mutex_wake_waiter(lock, waiter);
897 wake_q_add(&wake_q, next);
900 if (owner & MUTEX_FLAG_HANDOFF)
901 __mutex_handoff(lock, next);
903 spin_unlock_mutex(&lock->wait_lock, flags);
905 wake_up_q(&wake_q);
908 #ifndef CONFIG_DEBUG_LOCK_ALLOC
910 * Here come the less common (and hence less performance-critical) APIs:
911 * mutex_lock_interruptible() and mutex_trylock().
913 static noinline int __sched
914 __mutex_lock_killable_slowpath(struct mutex *lock);
916 static noinline int __sched
917 __mutex_lock_interruptible_slowpath(struct mutex *lock);
920 * mutex_lock_interruptible - acquire the mutex, interruptible
921 * @lock: the mutex to be acquired
923 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
924 * been acquired or sleep until the mutex becomes available. If a
925 * signal arrives while waiting for the lock then this function
926 * returns -EINTR.
928 * This function is similar to (but not equivalent to) down_interruptible().
930 int __sched mutex_lock_interruptible(struct mutex *lock)
932 might_sleep();
934 if (__mutex_trylock_fast(lock))
935 return 0;
937 return __mutex_lock_interruptible_slowpath(lock);
940 EXPORT_SYMBOL(mutex_lock_interruptible);
942 int __sched mutex_lock_killable(struct mutex *lock)
944 might_sleep();
946 if (__mutex_trylock_fast(lock))
947 return 0;
949 return __mutex_lock_killable_slowpath(lock);
951 EXPORT_SYMBOL(mutex_lock_killable);
953 static noinline void __sched
954 __mutex_lock_slowpath(struct mutex *lock)
956 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
957 NULL, _RET_IP_, NULL, 0);
960 static noinline int __sched
961 __mutex_lock_killable_slowpath(struct mutex *lock)
963 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
964 NULL, _RET_IP_, NULL, 0);
967 static noinline int __sched
968 __mutex_lock_interruptible_slowpath(struct mutex *lock)
970 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
971 NULL, _RET_IP_, NULL, 0);
974 static noinline int __sched
975 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
977 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
978 NULL, _RET_IP_, ctx, 1);
981 static noinline int __sched
982 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
983 struct ww_acquire_ctx *ctx)
985 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
986 NULL, _RET_IP_, ctx, 1);
989 #endif
992 * mutex_trylock - try to acquire the mutex, without waiting
993 * @lock: the mutex to be acquired
995 * Try to acquire the mutex atomically. Returns 1 if the mutex
996 * has been acquired successfully, and 0 on contention.
998 * NOTE: this function follows the spin_trylock() convention, so
999 * it is negated from the down_trylock() return values! Be careful
1000 * about this when converting semaphore users to mutexes.
1002 * This function must not be used in interrupt context. The
1003 * mutex must be released by the same task that acquired it.
1005 int __sched mutex_trylock(struct mutex *lock)
1007 bool locked = __mutex_trylock(lock, false);
1009 if (locked)
1010 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1012 return locked;
1014 EXPORT_SYMBOL(mutex_trylock);
1016 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1017 int __sched
1018 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1020 might_sleep();
1022 if (__mutex_trylock_fast(&lock->base)) {
1023 ww_mutex_set_context_fastpath(lock, ctx);
1024 return 0;
1027 return __ww_mutex_lock_slowpath(lock, ctx);
1029 EXPORT_SYMBOL(__ww_mutex_lock);
1031 int __sched
1032 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1034 might_sleep();
1036 if (__mutex_trylock_fast(&lock->base)) {
1037 ww_mutex_set_context_fastpath(lock, ctx);
1038 return 0;
1041 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1043 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
1045 #endif
1048 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1049 * @cnt: the atomic which we are to dec
1050 * @lock: the mutex to return holding if we dec to 0
1052 * return true and hold lock if we dec to 0, return false otherwise
1054 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1056 /* dec if we can't possibly hit 0 */
1057 if (atomic_add_unless(cnt, -1, 1))
1058 return 0;
1059 /* we might hit 0, so take the lock */
1060 mutex_lock(lock);
1061 if (!atomic_dec_and_test(cnt)) {
1062 /* when we actually did the dec, we didn't hit 0 */
1063 mutex_unlock(lock);
1064 return 0;
1066 /* we hit 0, and we hold the lock */
1067 return 1;
1069 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);