2 * kernel/locking/mutex.c
4 * Mutexes: blocking mutual exclusion locks
6 * Started by Ingo Molnar:
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
18 * Also see Documentation/locking/mutex-design.txt.
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include <linux/osq_lock.h>
30 #ifdef CONFIG_DEBUG_MUTEXES
31 # include "mutex-debug.h"
37 __mutex_init(struct mutex
*lock
, const char *name
, struct lock_class_key
*key
)
39 atomic_long_set(&lock
->owner
, 0);
40 spin_lock_init(&lock
->wait_lock
);
41 INIT_LIST_HEAD(&lock
->wait_list
);
42 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
43 osq_lock_init(&lock
->osq
);
46 debug_mutex_init(lock
, name
, key
);
48 EXPORT_SYMBOL(__mutex_init
);
51 * @owner: contains: 'struct task_struct *' to the current lock owner,
52 * NULL means not owned. Since task_struct pointers are aligned at
53 * ARCH_MIN_TASKALIGN (which is at least sizeof(void *)), we have low
54 * bits to store extra state.
56 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
57 * Bit1 indicates unlock needs to hand the lock to the top-waiter
59 #define MUTEX_FLAG_WAITERS 0x01
60 #define MUTEX_FLAG_HANDOFF 0x02
62 #define MUTEX_FLAGS 0x03
64 static inline struct task_struct
*__owner_task(unsigned long owner
)
66 return (struct task_struct
*)(owner
& ~MUTEX_FLAGS
);
69 static inline unsigned long __owner_flags(unsigned long owner
)
71 return owner
& MUTEX_FLAGS
;
75 * Actual trylock that will work on any unlocked state.
77 * When setting the owner field, we must preserve the low flag bits.
79 * Be careful with @handoff, only set that in a wait-loop (where you set
80 * HANDOFF) to avoid recursive lock attempts.
82 static inline bool __mutex_trylock(struct mutex
*lock
, const bool handoff
)
84 unsigned long owner
, curr
= (unsigned long)current
;
86 owner
= atomic_long_read(&lock
->owner
);
87 for (;;) { /* must loop, can race against a flag */
88 unsigned long old
, flags
= __owner_flags(owner
);
90 if (__owner_task(owner
)) {
91 if (handoff
&& unlikely(__owner_task(owner
) == current
)) {
93 * Provide ACQUIRE semantics for the lock-handoff.
95 * We cannot easily use load-acquire here, since
96 * the actual load is a failed cmpxchg, which
97 * doesn't imply any barriers.
99 * Also, this is a fairly unlikely scenario, and
100 * this contains the cost.
102 smp_mb(); /* ACQUIRE */
110 * We set the HANDOFF bit, we must make sure it doesn't live
111 * past the point where we acquire it. This would be possible
112 * if we (accidentally) set the bit on an unlocked mutex.
115 flags
&= ~MUTEX_FLAG_HANDOFF
;
117 old
= atomic_long_cmpxchg_acquire(&lock
->owner
, owner
, curr
| flags
);
125 #ifndef CONFIG_DEBUG_LOCK_ALLOC
127 * Lockdep annotations are contained to the slow paths for simplicity.
128 * There is nothing that would stop spreading the lockdep annotations outwards
133 * Optimistic trylock that only works in the uncontended case. Make sure to
134 * follow with a __mutex_trylock() before failing.
136 static __always_inline
bool __mutex_trylock_fast(struct mutex
*lock
)
138 unsigned long curr
= (unsigned long)current
;
140 if (!atomic_long_cmpxchg_acquire(&lock
->owner
, 0UL, curr
))
146 static __always_inline
bool __mutex_unlock_fast(struct mutex
*lock
)
148 unsigned long curr
= (unsigned long)current
;
150 if (atomic_long_cmpxchg_release(&lock
->owner
, curr
, 0UL) == curr
)
157 static inline void __mutex_set_flag(struct mutex
*lock
, unsigned long flag
)
159 atomic_long_or(flag
, &lock
->owner
);
162 static inline void __mutex_clear_flag(struct mutex
*lock
, unsigned long flag
)
164 atomic_long_andnot(flag
, &lock
->owner
);
167 static inline bool __mutex_waiter_is_first(struct mutex
*lock
, struct mutex_waiter
*waiter
)
169 return list_first_entry(&lock
->wait_list
, struct mutex_waiter
, list
) == waiter
;
173 * Give up ownership to a specific task, when @task = NULL, this is equivalent
174 * to a regular unlock. Clears HANDOFF, preserves WAITERS. Provides RELEASE
175 * semantics like a regular unlock, the __mutex_trylock() provides matching
176 * ACQUIRE semantics for the handoff.
178 static void __mutex_handoff(struct mutex
*lock
, struct task_struct
*task
)
180 unsigned long owner
= atomic_long_read(&lock
->owner
);
183 unsigned long old
, new;
185 #ifdef CONFIG_DEBUG_MUTEXES
186 DEBUG_LOCKS_WARN_ON(__owner_task(owner
) != current
);
189 new = (owner
& MUTEX_FLAG_WAITERS
);
190 new |= (unsigned long)task
;
192 old
= atomic_long_cmpxchg_release(&lock
->owner
, owner
, new);
200 #ifndef CONFIG_DEBUG_LOCK_ALLOC
202 * We split the mutex lock/unlock logic into separate fastpath and
203 * slowpath functions, to reduce the register pressure on the fastpath.
204 * We also put the fastpath first in the kernel image, to make sure the
205 * branch is predicted by the CPU as default-untaken.
207 static void __sched
__mutex_lock_slowpath(struct mutex
*lock
);
210 * mutex_lock - acquire the mutex
211 * @lock: the mutex to be acquired
213 * Lock the mutex exclusively for this task. If the mutex is not
214 * available right now, it will sleep until it can get it.
216 * The mutex must later on be released by the same task that
217 * acquired it. Recursive locking is not allowed. The task
218 * may not exit without first unlocking the mutex. Also, kernel
219 * memory where the mutex resides must not be freed with
220 * the mutex still locked. The mutex must first be initialized
221 * (or statically defined) before it can be locked. memset()-ing
222 * the mutex to 0 is not allowed.
224 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
225 * checks that will enforce the restrictions and will also do
226 * deadlock debugging. )
228 * This function is similar to (but not equivalent to) down().
230 void __sched
mutex_lock(struct mutex
*lock
)
234 if (!__mutex_trylock_fast(lock
))
235 __mutex_lock_slowpath(lock
);
237 EXPORT_SYMBOL(mutex_lock
);
240 static __always_inline
void ww_mutex_lock_acquired(struct ww_mutex
*ww
,
241 struct ww_acquire_ctx
*ww_ctx
)
243 #ifdef CONFIG_DEBUG_MUTEXES
245 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
246 * but released with a normal mutex_unlock in this call.
248 * This should never happen, always use ww_mutex_unlock.
250 DEBUG_LOCKS_WARN_ON(ww
->ctx
);
253 * Not quite done after calling ww_acquire_done() ?
255 DEBUG_LOCKS_WARN_ON(ww_ctx
->done_acquire
);
257 if (ww_ctx
->contending_lock
) {
259 * After -EDEADLK you tried to
260 * acquire a different ww_mutex? Bad!
262 DEBUG_LOCKS_WARN_ON(ww_ctx
->contending_lock
!= ww
);
265 * You called ww_mutex_lock after receiving -EDEADLK,
266 * but 'forgot' to unlock everything else first?
268 DEBUG_LOCKS_WARN_ON(ww_ctx
->acquired
> 0);
269 ww_ctx
->contending_lock
= NULL
;
273 * Naughty, using a different class will lead to undefined behavior!
275 DEBUG_LOCKS_WARN_ON(ww_ctx
->ww_class
!= ww
->ww_class
);
281 * After acquiring lock with fastpath or when we lost out in contested
282 * slowpath, set ctx and wake up any waiters so they can recheck.
284 static __always_inline
void
285 ww_mutex_set_context_fastpath(struct ww_mutex
*lock
,
286 struct ww_acquire_ctx
*ctx
)
289 struct mutex_waiter
*cur
;
291 ww_mutex_lock_acquired(lock
, ctx
);
296 * The lock->ctx update should be visible on all cores before
297 * the atomic read is done, otherwise contended waiters might be
298 * missed. The contended waiters will either see ww_ctx == NULL
299 * and keep spinning, or it will acquire wait_lock, add itself
300 * to waiter list and sleep.
305 * Check if lock is contended, if not there is nobody to wake up
307 if (likely(!(atomic_long_read(&lock
->base
.owner
) & MUTEX_FLAG_WAITERS
)))
311 * Uh oh, we raced in fastpath, wake up everyone in this case,
312 * so they can see the new lock->ctx.
314 spin_lock_mutex(&lock
->base
.wait_lock
, flags
);
315 list_for_each_entry(cur
, &lock
->base
.wait_list
, list
) {
316 debug_mutex_wake_waiter(&lock
->base
, cur
);
317 wake_up_process(cur
->task
);
319 spin_unlock_mutex(&lock
->base
.wait_lock
, flags
);
323 * After acquiring lock in the slowpath set ctx and wake up any
324 * waiters so they can recheck.
326 * Callers must hold the mutex wait_lock.
328 static __always_inline
void
329 ww_mutex_set_context_slowpath(struct ww_mutex
*lock
,
330 struct ww_acquire_ctx
*ctx
)
332 struct mutex_waiter
*cur
;
334 ww_mutex_lock_acquired(lock
, ctx
);
338 * Give any possible sleeping processes the chance to wake up,
339 * so they can recheck if they have to back off.
341 list_for_each_entry(cur
, &lock
->base
.wait_list
, list
) {
342 debug_mutex_wake_waiter(&lock
->base
, cur
);
343 wake_up_process(cur
->task
);
347 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
349 * Look out! "owner" is an entirely speculative pointer
350 * access and not reliable.
353 bool mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
)
358 while (__mutex_owner(lock
) == owner
) {
360 * Ensure we emit the owner->on_cpu, dereference _after_
361 * checking lock->owner still matches owner. If that fails,
362 * owner might point to freed memory. If it still matches,
363 * the rcu_read_lock() ensures the memory stays valid.
368 * Use vcpu_is_preempted to detect lock holder preemption issue.
370 if (!owner
->on_cpu
|| need_resched() ||
371 vcpu_is_preempted(task_cpu(owner
))) {
384 * Initial check for entering the mutex spinning loop
386 static inline int mutex_can_spin_on_owner(struct mutex
*lock
)
388 struct task_struct
*owner
;
395 owner
= __mutex_owner(lock
);
398 * As lock holder preemption issue, we both skip spinning if task is not
399 * on cpu or its cpu is preempted
402 retval
= owner
->on_cpu
&& !vcpu_is_preempted(task_cpu(owner
));
406 * If lock->owner is not set, the mutex has been released. Return true
407 * such that we'll trylock in the spin path, which is a faster option
408 * than the blocking slow path.
414 * Optimistic spinning.
416 * We try to spin for acquisition when we find that the lock owner
417 * is currently running on a (different) CPU and while we don't
418 * need to reschedule. The rationale is that if the lock owner is
419 * running, it is likely to release the lock soon.
421 * The mutex spinners are queued up using MCS lock so that only one
422 * spinner can compete for the mutex. However, if mutex spinning isn't
423 * going to happen, there is no point in going through the lock/unlock
426 * Returns true when the lock was taken, otherwise false, indicating
427 * that we need to jump to the slowpath and sleep.
429 * The waiter flag is set to true if the spinner is a waiter in the wait
430 * queue. The waiter-spinner will spin on the lock directly and concurrently
431 * with the spinner at the head of the OSQ, if present, until the owner is
434 static bool mutex_optimistic_spin(struct mutex
*lock
,
435 struct ww_acquire_ctx
*ww_ctx
,
436 const bool use_ww_ctx
, const bool waiter
)
438 struct task_struct
*task
= current
;
442 * The purpose of the mutex_can_spin_on_owner() function is
443 * to eliminate the overhead of osq_lock() and osq_unlock()
444 * in case spinning isn't possible. As a waiter-spinner
445 * is not going to take OSQ lock anyway, there is no need
446 * to call mutex_can_spin_on_owner().
448 if (!mutex_can_spin_on_owner(lock
))
452 * In order to avoid a stampede of mutex spinners trying to
453 * acquire the mutex all at once, the spinners need to take a
454 * MCS (queued) lock first before spinning on the owner field.
456 if (!osq_lock(&lock
->osq
))
461 struct task_struct
*owner
;
463 if (use_ww_ctx
&& ww_ctx
->acquired
> 0) {
466 ww
= container_of(lock
, struct ww_mutex
, base
);
468 * If ww->ctx is set the contents are undefined, only
469 * by acquiring wait_lock there is a guarantee that
470 * they are not invalid when reading.
472 * As such, when deadlock detection needs to be
473 * performed the optimistic spinning cannot be done.
475 if (READ_ONCE(ww
->ctx
))
480 * If there's an owner, wait for it to either
481 * release the lock or go to sleep.
483 owner
= __mutex_owner(lock
);
485 if (waiter
&& owner
== task
) {
486 smp_mb(); /* ACQUIRE */
490 if (!mutex_spin_on_owner(lock
, owner
))
494 /* Try to acquire the mutex if it is unlocked. */
495 if (__mutex_trylock(lock
, waiter
))
499 * The cpu_relax() call is a compiler barrier which forces
500 * everything in this loop to be re-loaded. We don't need
501 * memory barriers as we'll eventually observe the right
502 * values at the cost of a few extra spins.
508 osq_unlock(&lock
->osq
);
515 osq_unlock(&lock
->osq
);
519 * If we fell out of the spin path because of need_resched(),
520 * reschedule now, before we try-lock the mutex. This avoids getting
521 * scheduled out right after we obtained the mutex.
523 if (need_resched()) {
525 * We _should_ have TASK_RUNNING here, but just in case
526 * we do not, make it so, otherwise we might get stuck.
528 __set_current_state(TASK_RUNNING
);
529 schedule_preempt_disabled();
535 static bool mutex_optimistic_spin(struct mutex
*lock
,
536 struct ww_acquire_ctx
*ww_ctx
,
537 const bool use_ww_ctx
, const bool waiter
)
543 static noinline
void __sched
__mutex_unlock_slowpath(struct mutex
*lock
, unsigned long ip
);
546 * mutex_unlock - release the mutex
547 * @lock: the mutex to be released
549 * Unlock a mutex that has been locked by this task previously.
551 * This function must not be used in interrupt context. Unlocking
552 * of a not locked mutex is not allowed.
554 * This function is similar to (but not equivalent to) up().
556 void __sched
mutex_unlock(struct mutex
*lock
)
558 #ifndef CONFIG_DEBUG_LOCK_ALLOC
559 if (__mutex_unlock_fast(lock
))
562 __mutex_unlock_slowpath(lock
, _RET_IP_
);
564 EXPORT_SYMBOL(mutex_unlock
);
567 * ww_mutex_unlock - release the w/w mutex
568 * @lock: the mutex to be released
570 * Unlock a mutex that has been locked by this task previously with any of the
571 * ww_mutex_lock* functions (with or without an acquire context). It is
572 * forbidden to release the locks after releasing the acquire context.
574 * This function must not be used in interrupt context. Unlocking
575 * of a unlocked mutex is not allowed.
577 void __sched
ww_mutex_unlock(struct ww_mutex
*lock
)
580 * The unlocking fastpath is the 0->1 transition from 'locked'
581 * into 'unlocked' state:
584 #ifdef CONFIG_DEBUG_MUTEXES
585 DEBUG_LOCKS_WARN_ON(!lock
->ctx
->acquired
);
587 if (lock
->ctx
->acquired
> 0)
588 lock
->ctx
->acquired
--;
592 mutex_unlock(&lock
->base
);
594 EXPORT_SYMBOL(ww_mutex_unlock
);
596 static inline int __sched
597 __ww_mutex_lock_check_stamp(struct mutex
*lock
, struct ww_acquire_ctx
*ctx
)
599 struct ww_mutex
*ww
= container_of(lock
, struct ww_mutex
, base
);
600 struct ww_acquire_ctx
*hold_ctx
= READ_ONCE(ww
->ctx
);
605 if (ctx
->stamp
- hold_ctx
->stamp
<= LONG_MAX
&&
606 (ctx
->stamp
!= hold_ctx
->stamp
|| ctx
> hold_ctx
)) {
607 #ifdef CONFIG_DEBUG_MUTEXES
608 DEBUG_LOCKS_WARN_ON(ctx
->contending_lock
);
609 ctx
->contending_lock
= ww
;
618 * Lock a mutex (possibly interruptible), slowpath:
620 static __always_inline
int __sched
621 __mutex_lock_common(struct mutex
*lock
, long state
, unsigned int subclass
,
622 struct lockdep_map
*nest_lock
, unsigned long ip
,
623 struct ww_acquire_ctx
*ww_ctx
, const bool use_ww_ctx
)
625 struct task_struct
*task
= current
;
626 struct mutex_waiter waiter
;
633 ww
= container_of(lock
, struct ww_mutex
, base
);
634 if (unlikely(ww_ctx
== READ_ONCE(ww
->ctx
)))
639 mutex_acquire_nest(&lock
->dep_map
, subclass
, 0, nest_lock
, ip
);
641 if (__mutex_trylock(lock
, false) ||
642 mutex_optimistic_spin(lock
, ww_ctx
, use_ww_ctx
, false)) {
643 /* got the lock, yay! */
644 lock_acquired(&lock
->dep_map
, ip
);
646 ww_mutex_set_context_fastpath(ww
, ww_ctx
);
651 spin_lock_mutex(&lock
->wait_lock
, flags
);
653 * After waiting to acquire the wait_lock, try again.
655 if (__mutex_trylock(lock
, false))
658 debug_mutex_lock_common(lock
, &waiter
);
659 debug_mutex_add_waiter(lock
, &waiter
, task
);
661 /* add waiting tasks to the end of the waitqueue (FIFO): */
662 list_add_tail(&waiter
.list
, &lock
->wait_list
);
665 if (__mutex_waiter_is_first(lock
, &waiter
))
666 __mutex_set_flag(lock
, MUTEX_FLAG_WAITERS
);
668 lock_contended(&lock
->dep_map
, ip
);
670 set_task_state(task
, state
);
673 * Once we hold wait_lock, we're serialized against
674 * mutex_unlock() handing the lock off to us, do a trylock
675 * before testing the error conditions to make sure we pick up
678 if (__mutex_trylock(lock
, first
))
682 * Check for signals and wound conditions while holding
683 * wait_lock. This ensures the lock cancellation is ordered
684 * against mutex_unlock() and wake-ups do not go missing.
686 if (unlikely(signal_pending_state(state
, task
))) {
691 if (use_ww_ctx
&& ww_ctx
->acquired
> 0) {
692 ret
= __ww_mutex_lock_check_stamp(lock
, ww_ctx
);
697 spin_unlock_mutex(&lock
->wait_lock
, flags
);
698 schedule_preempt_disabled();
700 if (!first
&& __mutex_waiter_is_first(lock
, &waiter
)) {
702 __mutex_set_flag(lock
, MUTEX_FLAG_HANDOFF
);
705 set_task_state(task
, state
);
707 * Here we order against unlock; we must either see it change
708 * state back to RUNNING and fall through the next schedule(),
709 * or we must see its unlock and acquire.
711 if ((first
&& mutex_optimistic_spin(lock
, ww_ctx
, use_ww_ctx
, true)) ||
712 __mutex_trylock(lock
, first
))
715 spin_lock_mutex(&lock
->wait_lock
, flags
);
717 spin_lock_mutex(&lock
->wait_lock
, flags
);
719 __set_task_state(task
, TASK_RUNNING
);
721 mutex_remove_waiter(lock
, &waiter
, task
);
722 if (likely(list_empty(&lock
->wait_list
)))
723 __mutex_clear_flag(lock
, MUTEX_FLAGS
);
725 debug_mutex_free_waiter(&waiter
);
728 /* got the lock - cleanup and rejoice! */
729 lock_acquired(&lock
->dep_map
, ip
);
732 ww_mutex_set_context_slowpath(ww
, ww_ctx
);
734 spin_unlock_mutex(&lock
->wait_lock
, flags
);
739 __set_task_state(task
, TASK_RUNNING
);
740 mutex_remove_waiter(lock
, &waiter
, task
);
741 spin_unlock_mutex(&lock
->wait_lock
, flags
);
742 debug_mutex_free_waiter(&waiter
);
743 mutex_release(&lock
->dep_map
, 1, ip
);
748 #ifdef CONFIG_DEBUG_LOCK_ALLOC
750 mutex_lock_nested(struct mutex
*lock
, unsigned int subclass
)
753 __mutex_lock_common(lock
, TASK_UNINTERRUPTIBLE
,
754 subclass
, NULL
, _RET_IP_
, NULL
, 0);
757 EXPORT_SYMBOL_GPL(mutex_lock_nested
);
760 _mutex_lock_nest_lock(struct mutex
*lock
, struct lockdep_map
*nest
)
763 __mutex_lock_common(lock
, TASK_UNINTERRUPTIBLE
,
764 0, nest
, _RET_IP_
, NULL
, 0);
766 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock
);
769 mutex_lock_killable_nested(struct mutex
*lock
, unsigned int subclass
)
772 return __mutex_lock_common(lock
, TASK_KILLABLE
,
773 subclass
, NULL
, _RET_IP_
, NULL
, 0);
775 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested
);
778 mutex_lock_interruptible_nested(struct mutex
*lock
, unsigned int subclass
)
781 return __mutex_lock_common(lock
, TASK_INTERRUPTIBLE
,
782 subclass
, NULL
, _RET_IP_
, NULL
, 0);
784 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested
);
787 ww_mutex_deadlock_injection(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
789 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
792 if (ctx
->deadlock_inject_countdown
-- == 0) {
793 tmp
= ctx
->deadlock_inject_interval
;
794 if (tmp
> UINT_MAX
/4)
797 tmp
= tmp
*2 + tmp
+ tmp
/2;
799 ctx
->deadlock_inject_interval
= tmp
;
800 ctx
->deadlock_inject_countdown
= tmp
;
801 ctx
->contending_lock
= lock
;
803 ww_mutex_unlock(lock
);
813 __ww_mutex_lock(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
818 ret
= __mutex_lock_common(&lock
->base
, TASK_UNINTERRUPTIBLE
,
819 0, &ctx
->dep_map
, _RET_IP_
, ctx
, 1);
820 if (!ret
&& ctx
->acquired
> 1)
821 return ww_mutex_deadlock_injection(lock
, ctx
);
825 EXPORT_SYMBOL_GPL(__ww_mutex_lock
);
828 __ww_mutex_lock_interruptible(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
833 ret
= __mutex_lock_common(&lock
->base
, TASK_INTERRUPTIBLE
,
834 0, &ctx
->dep_map
, _RET_IP_
, ctx
, 1);
836 if (!ret
&& ctx
->acquired
> 1)
837 return ww_mutex_deadlock_injection(lock
, ctx
);
841 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible
);
846 * Release the lock, slowpath:
848 static noinline
void __sched
__mutex_unlock_slowpath(struct mutex
*lock
, unsigned long ip
)
850 struct task_struct
*next
= NULL
;
851 unsigned long owner
, flags
;
852 DEFINE_WAKE_Q(wake_q
);
854 mutex_release(&lock
->dep_map
, 1, ip
);
857 * Release the lock before (potentially) taking the spinlock such that
858 * other contenders can get on with things ASAP.
860 * Except when HANDOFF, in that case we must not clear the owner field,
861 * but instead set it to the top waiter.
863 owner
= atomic_long_read(&lock
->owner
);
867 #ifdef CONFIG_DEBUG_MUTEXES
868 DEBUG_LOCKS_WARN_ON(__owner_task(owner
) != current
);
871 if (owner
& MUTEX_FLAG_HANDOFF
)
874 old
= atomic_long_cmpxchg_release(&lock
->owner
, owner
,
875 __owner_flags(owner
));
877 if (owner
& MUTEX_FLAG_WAITERS
)
886 spin_lock_mutex(&lock
->wait_lock
, flags
);
887 debug_mutex_unlock(lock
);
888 if (!list_empty(&lock
->wait_list
)) {
889 /* get the first entry from the wait-list: */
890 struct mutex_waiter
*waiter
=
891 list_first_entry(&lock
->wait_list
,
892 struct mutex_waiter
, list
);
896 debug_mutex_wake_waiter(lock
, waiter
);
897 wake_q_add(&wake_q
, next
);
900 if (owner
& MUTEX_FLAG_HANDOFF
)
901 __mutex_handoff(lock
, next
);
903 spin_unlock_mutex(&lock
->wait_lock
, flags
);
908 #ifndef CONFIG_DEBUG_LOCK_ALLOC
910 * Here come the less common (and hence less performance-critical) APIs:
911 * mutex_lock_interruptible() and mutex_trylock().
913 static noinline
int __sched
914 __mutex_lock_killable_slowpath(struct mutex
*lock
);
916 static noinline
int __sched
917 __mutex_lock_interruptible_slowpath(struct mutex
*lock
);
920 * mutex_lock_interruptible - acquire the mutex, interruptible
921 * @lock: the mutex to be acquired
923 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
924 * been acquired or sleep until the mutex becomes available. If a
925 * signal arrives while waiting for the lock then this function
928 * This function is similar to (but not equivalent to) down_interruptible().
930 int __sched
mutex_lock_interruptible(struct mutex
*lock
)
934 if (__mutex_trylock_fast(lock
))
937 return __mutex_lock_interruptible_slowpath(lock
);
940 EXPORT_SYMBOL(mutex_lock_interruptible
);
942 int __sched
mutex_lock_killable(struct mutex
*lock
)
946 if (__mutex_trylock_fast(lock
))
949 return __mutex_lock_killable_slowpath(lock
);
951 EXPORT_SYMBOL(mutex_lock_killable
);
953 static noinline
void __sched
954 __mutex_lock_slowpath(struct mutex
*lock
)
956 __mutex_lock_common(lock
, TASK_UNINTERRUPTIBLE
, 0,
957 NULL
, _RET_IP_
, NULL
, 0);
960 static noinline
int __sched
961 __mutex_lock_killable_slowpath(struct mutex
*lock
)
963 return __mutex_lock_common(lock
, TASK_KILLABLE
, 0,
964 NULL
, _RET_IP_
, NULL
, 0);
967 static noinline
int __sched
968 __mutex_lock_interruptible_slowpath(struct mutex
*lock
)
970 return __mutex_lock_common(lock
, TASK_INTERRUPTIBLE
, 0,
971 NULL
, _RET_IP_
, NULL
, 0);
974 static noinline
int __sched
975 __ww_mutex_lock_slowpath(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
977 return __mutex_lock_common(&lock
->base
, TASK_UNINTERRUPTIBLE
, 0,
978 NULL
, _RET_IP_
, ctx
, 1);
981 static noinline
int __sched
982 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex
*lock
,
983 struct ww_acquire_ctx
*ctx
)
985 return __mutex_lock_common(&lock
->base
, TASK_INTERRUPTIBLE
, 0,
986 NULL
, _RET_IP_
, ctx
, 1);
992 * mutex_trylock - try to acquire the mutex, without waiting
993 * @lock: the mutex to be acquired
995 * Try to acquire the mutex atomically. Returns 1 if the mutex
996 * has been acquired successfully, and 0 on contention.
998 * NOTE: this function follows the spin_trylock() convention, so
999 * it is negated from the down_trylock() return values! Be careful
1000 * about this when converting semaphore users to mutexes.
1002 * This function must not be used in interrupt context. The
1003 * mutex must be released by the same task that acquired it.
1005 int __sched
mutex_trylock(struct mutex
*lock
)
1007 bool locked
= __mutex_trylock(lock
, false);
1010 mutex_acquire(&lock
->dep_map
, 0, 1, _RET_IP_
);
1014 EXPORT_SYMBOL(mutex_trylock
);
1016 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1018 __ww_mutex_lock(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
1022 if (__mutex_trylock_fast(&lock
->base
)) {
1023 ww_mutex_set_context_fastpath(lock
, ctx
);
1027 return __ww_mutex_lock_slowpath(lock
, ctx
);
1029 EXPORT_SYMBOL(__ww_mutex_lock
);
1032 __ww_mutex_lock_interruptible(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
1036 if (__mutex_trylock_fast(&lock
->base
)) {
1037 ww_mutex_set_context_fastpath(lock
, ctx
);
1041 return __ww_mutex_lock_interruptible_slowpath(lock
, ctx
);
1043 EXPORT_SYMBOL(__ww_mutex_lock_interruptible
);
1048 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1049 * @cnt: the atomic which we are to dec
1050 * @lock: the mutex to return holding if we dec to 0
1052 * return true and hold lock if we dec to 0, return false otherwise
1054 int atomic_dec_and_mutex_lock(atomic_t
*cnt
, struct mutex
*lock
)
1056 /* dec if we can't possibly hit 0 */
1057 if (atomic_add_unless(cnt
, -1, 1))
1059 /* we might hit 0, so take the lock */
1061 if (!atomic_dec_and_test(cnt
)) {
1062 /* when we actually did the dec, we didn't hit 0 */
1066 /* we hit 0, and we hold the lock */
1069 EXPORT_SYMBOL(atomic_dec_and_mutex_lock
);