2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56 #include <linux/trace_events.h>
57 #include <linux/suspend.h>
62 #ifdef MODULE_PARAM_PREFIX
63 #undef MODULE_PARAM_PREFIX
65 #define MODULE_PARAM_PREFIX "rcutree."
67 /* Data structures. */
70 * In order to export the rcu_state name to the tracing tools, it
71 * needs to be added in the __tracepoint_string section.
72 * This requires defining a separate variable tp_<sname>_varname
73 * that points to the string being used, and this will allow
74 * the tracing userspace tools to be able to decipher the string
75 * address to the matching string.
78 # define DEFINE_RCU_TPS(sname) \
79 static char sname##_varname[] = #sname; \
80 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
81 # define RCU_STATE_NAME(sname) sname##_varname
83 # define DEFINE_RCU_TPS(sname)
84 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
88 DEFINE_RCU_TPS(sname) \
89 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
90 struct rcu_state sname##_state = { \
91 .level = { &sname##_state.node[0] }, \
92 .rda = &sname##_data, \
94 .gp_state = RCU_GP_IDLE, \
95 .gpnum = 0UL - 300UL, \
96 .completed = 0UL - 300UL, \
97 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
98 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
99 .orphan_donetail = &sname##_state.orphan_donelist, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 RCU_STATE_INITIALIZER(rcu_sched
, 's', call_rcu_sched
);
108 RCU_STATE_INITIALIZER(rcu_bh
, 'b', call_rcu_bh
);
110 static struct rcu_state
*const rcu_state_p
;
111 LIST_HEAD(rcu_struct_flavors
);
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree
;
115 module_param(dump_tree
, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact
;
118 module_param(rcu_fanout_exact
, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
121 module_param(rcu_fanout_leaf
, int, 0444);
122 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
123 /* Number of rcu_nodes at specified level. */
124 static int num_rcu_lvl
[] = NUM_RCU_LVL_INIT
;
125 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly
;
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
133 * optimize synchronize_rcu() to a simple barrier(). When this variable
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
138 int rcu_scheduler_active __read_mostly
;
139 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
153 static int rcu_scheduler_fully_active __read_mostly
;
155 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
);
156 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
);
157 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
158 static void invoke_rcu_core(void);
159 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
160 static void rcu_report_exp_rdp(struct rcu_state
*rsp
,
161 struct rcu_data
*rdp
, bool wake
);
162 static void sync_sched_exp_online_cleanup(int cpu
);
164 /* rcuc/rcub kthread realtime priority */
165 #ifdef CONFIG_RCU_KTHREAD_PRIO
166 static int kthread_prio
= CONFIG_RCU_KTHREAD_PRIO
;
167 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
168 static int kthread_prio
= IS_ENABLED(CONFIG_RCU_BOOST
) ? 1 : 0;
169 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
170 module_param(kthread_prio
, int, 0644);
172 /* Delay in jiffies for grace-period initialization delays, debug only. */
174 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
175 static int gp_preinit_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY
;
176 module_param(gp_preinit_delay
, int, 0644);
177 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
178 static const int gp_preinit_delay
;
179 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
181 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
182 static int gp_init_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY
;
183 module_param(gp_init_delay
, int, 0644);
184 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
185 static const int gp_init_delay
;
186 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
188 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
189 static int gp_cleanup_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY
;
190 module_param(gp_cleanup_delay
, int, 0644);
191 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
192 static const int gp_cleanup_delay
;
193 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
196 * Number of grace periods between delays, normalized by the duration of
197 * the delay. The longer the the delay, the more the grace periods between
198 * each delay. The reason for this normalization is that it means that,
199 * for non-zero delays, the overall slowdown of grace periods is constant
200 * regardless of the duration of the delay. This arrangement balances
201 * the need for long delays to increase some race probabilities with the
202 * need for fast grace periods to increase other race probabilities.
204 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
207 * Track the rcutorture test sequence number and the update version
208 * number within a given test. The rcutorture_testseq is incremented
209 * on every rcutorture module load and unload, so has an odd value
210 * when a test is running. The rcutorture_vernum is set to zero
211 * when rcutorture starts and is incremented on each rcutorture update.
212 * These variables enable correlating rcutorture output with the
213 * RCU tracing information.
215 unsigned long rcutorture_testseq
;
216 unsigned long rcutorture_vernum
;
219 * Compute the mask of online CPUs for the specified rcu_node structure.
220 * This will not be stable unless the rcu_node structure's ->lock is
221 * held, but the bit corresponding to the current CPU will be stable
224 unsigned long rcu_rnp_online_cpus(struct rcu_node
*rnp
)
226 return READ_ONCE(rnp
->qsmaskinitnext
);
230 * Return true if an RCU grace period is in progress. The READ_ONCE()s
231 * permit this function to be invoked without holding the root rcu_node
232 * structure's ->lock, but of course results can be subject to change.
234 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
236 return READ_ONCE(rsp
->completed
) != READ_ONCE(rsp
->gpnum
);
240 * Note a quiescent state. Because we do not need to know
241 * how many quiescent states passed, just if there was at least
242 * one since the start of the grace period, this just sets a flag.
243 * The caller must have disabled preemption.
245 void rcu_sched_qs(void)
247 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.s
))
249 trace_rcu_grace_period(TPS("rcu_sched"),
250 __this_cpu_read(rcu_sched_data
.gpnum
),
252 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.norm
, false);
253 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))
255 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.exp
, false);
256 rcu_report_exp_rdp(&rcu_sched_state
,
257 this_cpu_ptr(&rcu_sched_data
), true);
262 if (__this_cpu_read(rcu_bh_data
.cpu_no_qs
.s
)) {
263 trace_rcu_grace_period(TPS("rcu_bh"),
264 __this_cpu_read(rcu_bh_data
.gpnum
),
266 __this_cpu_write(rcu_bh_data
.cpu_no_qs
.b
.norm
, false);
270 static DEFINE_PER_CPU(int, rcu_sched_qs_mask
);
272 static DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
273 .dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
,
274 .dynticks
= ATOMIC_INIT(1),
275 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
276 .dynticks_idle_nesting
= DYNTICK_TASK_NEST_VALUE
,
277 .dynticks_idle
= ATOMIC_INIT(1),
278 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
281 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr
);
282 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr
);
285 * Let the RCU core know that this CPU has gone through the scheduler,
286 * which is a quiescent state. This is called when the need for a
287 * quiescent state is urgent, so we burn an atomic operation and full
288 * memory barriers to let the RCU core know about it, regardless of what
289 * this CPU might (or might not) do in the near future.
291 * We inform the RCU core by emulating a zero-duration dyntick-idle
292 * period, which we in turn do by incrementing the ->dynticks counter
295 * The caller must have disabled interrupts.
297 static void rcu_momentary_dyntick_idle(void)
299 struct rcu_data
*rdp
;
300 struct rcu_dynticks
*rdtp
;
302 struct rcu_state
*rsp
;
305 * Yes, we can lose flag-setting operations. This is OK, because
306 * the flag will be set again after some delay.
308 resched_mask
= raw_cpu_read(rcu_sched_qs_mask
);
309 raw_cpu_write(rcu_sched_qs_mask
, 0);
311 /* Find the flavor that needs a quiescent state. */
312 for_each_rcu_flavor(rsp
) {
313 rdp
= raw_cpu_ptr(rsp
->rda
);
314 if (!(resched_mask
& rsp
->flavor_mask
))
316 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
317 if (READ_ONCE(rdp
->mynode
->completed
) !=
318 READ_ONCE(rdp
->cond_resched_completed
))
322 * Pretend to be momentarily idle for the quiescent state.
323 * This allows the grace-period kthread to record the
324 * quiescent state, with no need for this CPU to do anything
327 rdtp
= this_cpu_ptr(&rcu_dynticks
);
328 smp_mb__before_atomic(); /* Earlier stuff before QS. */
329 atomic_add(2, &rdtp
->dynticks
); /* QS. */
330 smp_mb__after_atomic(); /* Later stuff after QS. */
336 * Note a context switch. This is a quiescent state for RCU-sched,
337 * and requires special handling for preemptible RCU.
338 * The caller must have disabled interrupts.
340 void rcu_note_context_switch(void)
342 barrier(); /* Avoid RCU read-side critical sections leaking down. */
343 trace_rcu_utilization(TPS("Start context switch"));
345 rcu_preempt_note_context_switch();
346 if (unlikely(raw_cpu_read(rcu_sched_qs_mask
)))
347 rcu_momentary_dyntick_idle();
348 trace_rcu_utilization(TPS("End context switch"));
349 barrier(); /* Avoid RCU read-side critical sections leaking up. */
351 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
354 * Register a quiescent state for all RCU flavors. If there is an
355 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
356 * dyntick-idle quiescent state visible to other CPUs (but only for those
357 * RCU flavors in desperate need of a quiescent state, which will normally
358 * be none of them). Either way, do a lightweight quiescent state for
361 * The barrier() calls are redundant in the common case when this is
362 * called externally, but just in case this is called from within this
366 void rcu_all_qs(void)
370 barrier(); /* Avoid RCU read-side critical sections leaking down. */
371 if (unlikely(raw_cpu_read(rcu_sched_qs_mask
))) {
372 local_irq_save(flags
);
373 rcu_momentary_dyntick_idle();
374 local_irq_restore(flags
);
376 if (unlikely(raw_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))) {
378 * Yes, we just checked a per-CPU variable with preemption
379 * enabled, so we might be migrated to some other CPU at
380 * this point. That is OK because in that case, the
381 * migration will supply the needed quiescent state.
382 * We might end up needlessly disabling preemption and
383 * invoking rcu_sched_qs() on the destination CPU, but
384 * the probability and cost are both quite low, so this
385 * should not be a problem in practice.
391 this_cpu_inc(rcu_qs_ctr
);
392 barrier(); /* Avoid RCU read-side critical sections leaking up. */
394 EXPORT_SYMBOL_GPL(rcu_all_qs
);
396 static long blimit
= 10; /* Maximum callbacks per rcu_do_batch. */
397 static long qhimark
= 10000; /* If this many pending, ignore blimit. */
398 static long qlowmark
= 100; /* Once only this many pending, use blimit. */
400 module_param(blimit
, long, 0444);
401 module_param(qhimark
, long, 0444);
402 module_param(qlowmark
, long, 0444);
404 static ulong jiffies_till_first_fqs
= ULONG_MAX
;
405 static ulong jiffies_till_next_fqs
= ULONG_MAX
;
406 static bool rcu_kick_kthreads
;
408 module_param(jiffies_till_first_fqs
, ulong
, 0644);
409 module_param(jiffies_till_next_fqs
, ulong
, 0644);
410 module_param(rcu_kick_kthreads
, bool, 0644);
413 * How long the grace period must be before we start recruiting
414 * quiescent-state help from rcu_note_context_switch().
416 static ulong jiffies_till_sched_qs
= HZ
/ 20;
417 module_param(jiffies_till_sched_qs
, ulong
, 0644);
419 static bool rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
420 struct rcu_data
*rdp
);
421 static void force_qs_rnp(struct rcu_state
*rsp
,
422 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
423 unsigned long *maxj
),
424 bool *isidle
, unsigned long *maxj
);
425 static void force_quiescent_state(struct rcu_state
*rsp
);
426 static int rcu_pending(void);
429 * Return the number of RCU batches started thus far for debug & stats.
431 unsigned long rcu_batches_started(void)
433 return rcu_state_p
->gpnum
;
435 EXPORT_SYMBOL_GPL(rcu_batches_started
);
438 * Return the number of RCU-sched batches started thus far for debug & stats.
440 unsigned long rcu_batches_started_sched(void)
442 return rcu_sched_state
.gpnum
;
444 EXPORT_SYMBOL_GPL(rcu_batches_started_sched
);
447 * Return the number of RCU BH batches started thus far for debug & stats.
449 unsigned long rcu_batches_started_bh(void)
451 return rcu_bh_state
.gpnum
;
453 EXPORT_SYMBOL_GPL(rcu_batches_started_bh
);
456 * Return the number of RCU batches completed thus far for debug & stats.
458 unsigned long rcu_batches_completed(void)
460 return rcu_state_p
->completed
;
462 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
465 * Return the number of RCU-sched batches completed thus far for debug & stats.
467 unsigned long rcu_batches_completed_sched(void)
469 return rcu_sched_state
.completed
;
471 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
474 * Return the number of RCU BH batches completed thus far for debug & stats.
476 unsigned long rcu_batches_completed_bh(void)
478 return rcu_bh_state
.completed
;
480 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
483 * Return the number of RCU expedited batches completed thus far for
484 * debug & stats. Odd numbers mean that a batch is in progress, even
485 * numbers mean idle. The value returned will thus be roughly double
486 * the cumulative batches since boot.
488 unsigned long rcu_exp_batches_completed(void)
490 return rcu_state_p
->expedited_sequence
;
492 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed
);
495 * Return the number of RCU-sched expedited batches completed thus far
496 * for debug & stats. Similar to rcu_exp_batches_completed().
498 unsigned long rcu_exp_batches_completed_sched(void)
500 return rcu_sched_state
.expedited_sequence
;
502 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched
);
505 * Force a quiescent state.
507 void rcu_force_quiescent_state(void)
509 force_quiescent_state(rcu_state_p
);
511 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
514 * Force a quiescent state for RCU BH.
516 void rcu_bh_force_quiescent_state(void)
518 force_quiescent_state(&rcu_bh_state
);
520 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
523 * Force a quiescent state for RCU-sched.
525 void rcu_sched_force_quiescent_state(void)
527 force_quiescent_state(&rcu_sched_state
);
529 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
532 * Show the state of the grace-period kthreads.
534 void show_rcu_gp_kthreads(void)
536 struct rcu_state
*rsp
;
538 for_each_rcu_flavor(rsp
) {
539 pr_info("%s: wait state: %d ->state: %#lx\n",
540 rsp
->name
, rsp
->gp_state
, rsp
->gp_kthread
->state
);
541 /* sched_show_task(rsp->gp_kthread); */
544 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads
);
547 * Record the number of times rcutorture tests have been initiated and
548 * terminated. This information allows the debugfs tracing stats to be
549 * correlated to the rcutorture messages, even when the rcutorture module
550 * is being repeatedly loaded and unloaded. In other words, we cannot
551 * store this state in rcutorture itself.
553 void rcutorture_record_test_transition(void)
555 rcutorture_testseq
++;
556 rcutorture_vernum
= 0;
558 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
561 * Send along grace-period-related data for rcutorture diagnostics.
563 void rcutorture_get_gp_data(enum rcutorture_type test_type
, int *flags
,
564 unsigned long *gpnum
, unsigned long *completed
)
566 struct rcu_state
*rsp
= NULL
;
575 case RCU_SCHED_FLAVOR
:
576 rsp
= &rcu_sched_state
;
582 *flags
= READ_ONCE(rsp
->gp_flags
);
583 *gpnum
= READ_ONCE(rsp
->gpnum
);
584 *completed
= READ_ONCE(rsp
->completed
);
591 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data
);
594 * Record the number of writer passes through the current rcutorture test.
595 * This is also used to correlate debugfs tracing stats with the rcutorture
598 void rcutorture_record_progress(unsigned long vernum
)
602 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
605 * Does the CPU have callbacks ready to be invoked?
608 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
610 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
] &&
611 rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
;
615 * Return the root node of the specified rcu_state structure.
617 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
619 return &rsp
->node
[0];
623 * Is there any need for future grace periods?
624 * Interrupts must be disabled. If the caller does not hold the root
625 * rnp_node structure's ->lock, the results are advisory only.
627 static int rcu_future_needs_gp(struct rcu_state
*rsp
)
629 struct rcu_node
*rnp
= rcu_get_root(rsp
);
630 int idx
= (READ_ONCE(rnp
->completed
) + 1) & 0x1;
631 int *fp
= &rnp
->need_future_gp
[idx
];
633 return READ_ONCE(*fp
);
637 * Does the current CPU require a not-yet-started grace period?
638 * The caller must have disabled interrupts to prevent races with
639 * normal callback registry.
642 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
646 if (rcu_gp_in_progress(rsp
))
647 return false; /* No, a grace period is already in progress. */
648 if (rcu_future_needs_gp(rsp
))
649 return true; /* Yes, a no-CBs CPU needs one. */
650 if (!rdp
->nxttail
[RCU_NEXT_TAIL
])
651 return false; /* No, this is a no-CBs (or offline) CPU. */
652 if (*rdp
->nxttail
[RCU_NEXT_READY_TAIL
])
653 return true; /* Yes, CPU has newly registered callbacks. */
654 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
655 if (rdp
->nxttail
[i
- 1] != rdp
->nxttail
[i
] &&
656 ULONG_CMP_LT(READ_ONCE(rsp
->completed
),
657 rdp
->nxtcompleted
[i
]))
658 return true; /* Yes, CBs for future grace period. */
659 return false; /* No grace period needed. */
663 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
665 * If the new value of the ->dynticks_nesting counter now is zero,
666 * we really have entered idle, and must do the appropriate accounting.
667 * The caller must have disabled interrupts.
669 static void rcu_eqs_enter_common(long long oldval
, bool user
)
671 struct rcu_state
*rsp
;
672 struct rcu_data
*rdp
;
673 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
675 trace_rcu_dyntick(TPS("Start"), oldval
, rdtp
->dynticks_nesting
);
676 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
677 !user
&& !is_idle_task(current
)) {
678 struct task_struct
*idle __maybe_unused
=
679 idle_task(smp_processor_id());
681 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval
, 0);
682 rcu_ftrace_dump(DUMP_ORIG
);
683 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
684 current
->pid
, current
->comm
,
685 idle
->pid
, idle
->comm
); /* must be idle task! */
687 for_each_rcu_flavor(rsp
) {
688 rdp
= this_cpu_ptr(rsp
->rda
);
689 do_nocb_deferred_wakeup(rdp
);
691 rcu_prepare_for_idle();
692 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
693 smp_mb__before_atomic(); /* See above. */
694 atomic_inc(&rdtp
->dynticks
);
695 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
696 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
697 atomic_read(&rdtp
->dynticks
) & 0x1);
698 rcu_dynticks_task_enter();
701 * It is illegal to enter an extended quiescent state while
702 * in an RCU read-side critical section.
704 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map
),
705 "Illegal idle entry in RCU read-side critical section.");
706 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
),
707 "Illegal idle entry in RCU-bh read-side critical section.");
708 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map
),
709 "Illegal idle entry in RCU-sched read-side critical section.");
713 * Enter an RCU extended quiescent state, which can be either the
714 * idle loop or adaptive-tickless usermode execution.
716 static void rcu_eqs_enter(bool user
)
719 struct rcu_dynticks
*rdtp
;
721 rdtp
= this_cpu_ptr(&rcu_dynticks
);
722 oldval
= rdtp
->dynticks_nesting
;
723 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
724 (oldval
& DYNTICK_TASK_NEST_MASK
) == 0);
725 if ((oldval
& DYNTICK_TASK_NEST_MASK
) == DYNTICK_TASK_NEST_VALUE
) {
726 rdtp
->dynticks_nesting
= 0;
727 rcu_eqs_enter_common(oldval
, user
);
729 rdtp
->dynticks_nesting
-= DYNTICK_TASK_NEST_VALUE
;
734 * rcu_idle_enter - inform RCU that current CPU is entering idle
736 * Enter idle mode, in other words, -leave- the mode in which RCU
737 * read-side critical sections can occur. (Though RCU read-side
738 * critical sections can occur in irq handlers in idle, a possibility
739 * handled by irq_enter() and irq_exit().)
741 * We crowbar the ->dynticks_nesting field to zero to allow for
742 * the possibility of usermode upcalls having messed up our count
743 * of interrupt nesting level during the prior busy period.
745 void rcu_idle_enter(void)
749 local_irq_save(flags
);
750 rcu_eqs_enter(false);
751 rcu_sysidle_enter(0);
752 local_irq_restore(flags
);
754 EXPORT_SYMBOL_GPL(rcu_idle_enter
);
756 #ifdef CONFIG_NO_HZ_FULL
758 * rcu_user_enter - inform RCU that we are resuming userspace.
760 * Enter RCU idle mode right before resuming userspace. No use of RCU
761 * is permitted between this call and rcu_user_exit(). This way the
762 * CPU doesn't need to maintain the tick for RCU maintenance purposes
763 * when the CPU runs in userspace.
765 void rcu_user_enter(void)
769 #endif /* CONFIG_NO_HZ_FULL */
772 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
774 * Exit from an interrupt handler, which might possibly result in entering
775 * idle mode, in other words, leaving the mode in which read-side critical
776 * sections can occur. The caller must have disabled interrupts.
778 * This code assumes that the idle loop never does anything that might
779 * result in unbalanced calls to irq_enter() and irq_exit(). If your
780 * architecture violates this assumption, RCU will give you what you
781 * deserve, good and hard. But very infrequently and irreproducibly.
783 * Use things like work queues to work around this limitation.
785 * You have been warned.
787 void rcu_irq_exit(void)
790 struct rcu_dynticks
*rdtp
;
792 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
793 rdtp
= this_cpu_ptr(&rcu_dynticks
);
794 oldval
= rdtp
->dynticks_nesting
;
795 rdtp
->dynticks_nesting
--;
796 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
797 rdtp
->dynticks_nesting
< 0);
798 if (rdtp
->dynticks_nesting
)
799 trace_rcu_dyntick(TPS("--="), oldval
, rdtp
->dynticks_nesting
);
801 rcu_eqs_enter_common(oldval
, true);
802 rcu_sysidle_enter(1);
806 * Wrapper for rcu_irq_exit() where interrupts are enabled.
808 void rcu_irq_exit_irqson(void)
812 local_irq_save(flags
);
814 local_irq_restore(flags
);
818 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
820 * If the new value of the ->dynticks_nesting counter was previously zero,
821 * we really have exited idle, and must do the appropriate accounting.
822 * The caller must have disabled interrupts.
824 static void rcu_eqs_exit_common(long long oldval
, int user
)
826 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
828 rcu_dynticks_task_exit();
829 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
830 atomic_inc(&rdtp
->dynticks
);
831 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
832 smp_mb__after_atomic(); /* See above. */
833 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
834 !(atomic_read(&rdtp
->dynticks
) & 0x1));
835 rcu_cleanup_after_idle();
836 trace_rcu_dyntick(TPS("End"), oldval
, rdtp
->dynticks_nesting
);
837 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
838 !user
&& !is_idle_task(current
)) {
839 struct task_struct
*idle __maybe_unused
=
840 idle_task(smp_processor_id());
842 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
843 oldval
, rdtp
->dynticks_nesting
);
844 rcu_ftrace_dump(DUMP_ORIG
);
845 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
846 current
->pid
, current
->comm
,
847 idle
->pid
, idle
->comm
); /* must be idle task! */
852 * Exit an RCU extended quiescent state, which can be either the
853 * idle loop or adaptive-tickless usermode execution.
855 static void rcu_eqs_exit(bool user
)
857 struct rcu_dynticks
*rdtp
;
860 rdtp
= this_cpu_ptr(&rcu_dynticks
);
861 oldval
= rdtp
->dynticks_nesting
;
862 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && oldval
< 0);
863 if (oldval
& DYNTICK_TASK_NEST_MASK
) {
864 rdtp
->dynticks_nesting
+= DYNTICK_TASK_NEST_VALUE
;
866 rdtp
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
867 rcu_eqs_exit_common(oldval
, user
);
872 * rcu_idle_exit - inform RCU that current CPU is leaving idle
874 * Exit idle mode, in other words, -enter- the mode in which RCU
875 * read-side critical sections can occur.
877 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
878 * allow for the possibility of usermode upcalls messing up our count
879 * of interrupt nesting level during the busy period that is just
882 void rcu_idle_exit(void)
886 local_irq_save(flags
);
889 local_irq_restore(flags
);
891 EXPORT_SYMBOL_GPL(rcu_idle_exit
);
893 #ifdef CONFIG_NO_HZ_FULL
895 * rcu_user_exit - inform RCU that we are exiting userspace.
897 * Exit RCU idle mode while entering the kernel because it can
898 * run a RCU read side critical section anytime.
900 void rcu_user_exit(void)
904 #endif /* CONFIG_NO_HZ_FULL */
907 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
909 * Enter an interrupt handler, which might possibly result in exiting
910 * idle mode, in other words, entering the mode in which read-side critical
911 * sections can occur. The caller must have disabled interrupts.
913 * Note that the Linux kernel is fully capable of entering an interrupt
914 * handler that it never exits, for example when doing upcalls to
915 * user mode! This code assumes that the idle loop never does upcalls to
916 * user mode. If your architecture does do upcalls from the idle loop (or
917 * does anything else that results in unbalanced calls to the irq_enter()
918 * and irq_exit() functions), RCU will give you what you deserve, good
919 * and hard. But very infrequently and irreproducibly.
921 * Use things like work queues to work around this limitation.
923 * You have been warned.
925 void rcu_irq_enter(void)
927 struct rcu_dynticks
*rdtp
;
930 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
931 rdtp
= this_cpu_ptr(&rcu_dynticks
);
932 oldval
= rdtp
->dynticks_nesting
;
933 rdtp
->dynticks_nesting
++;
934 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
935 rdtp
->dynticks_nesting
== 0);
937 trace_rcu_dyntick(TPS("++="), oldval
, rdtp
->dynticks_nesting
);
939 rcu_eqs_exit_common(oldval
, true);
944 * Wrapper for rcu_irq_enter() where interrupts are enabled.
946 void rcu_irq_enter_irqson(void)
950 local_irq_save(flags
);
952 local_irq_restore(flags
);
956 * rcu_nmi_enter - inform RCU of entry to NMI context
958 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
959 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
960 * that the CPU is active. This implementation permits nested NMIs, as
961 * long as the nesting level does not overflow an int. (You will probably
962 * run out of stack space first.)
964 void rcu_nmi_enter(void)
966 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
969 /* Complain about underflow. */
970 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
< 0);
973 * If idle from RCU viewpoint, atomically increment ->dynticks
974 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
975 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
976 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
977 * to be in the outermost NMI handler that interrupted an RCU-idle
978 * period (observation due to Andy Lutomirski).
980 if (!(atomic_read(&rdtp
->dynticks
) & 0x1)) {
981 smp_mb__before_atomic(); /* Force delay from prior write. */
982 atomic_inc(&rdtp
->dynticks
);
983 /* atomic_inc() before later RCU read-side crit sects */
984 smp_mb__after_atomic(); /* See above. */
985 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
988 rdtp
->dynticks_nmi_nesting
+= incby
;
993 * rcu_nmi_exit - inform RCU of exit from NMI context
995 * If we are returning from the outermost NMI handler that interrupted an
996 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
997 * to let the RCU grace-period handling know that the CPU is back to
1000 void rcu_nmi_exit(void)
1002 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1005 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1006 * (We are exiting an NMI handler, so RCU better be paying attention
1009 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
<= 0);
1010 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
1013 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1014 * leave it in non-RCU-idle state.
1016 if (rdtp
->dynticks_nmi_nesting
!= 1) {
1017 rdtp
->dynticks_nmi_nesting
-= 2;
1021 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1022 rdtp
->dynticks_nmi_nesting
= 0;
1023 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1024 smp_mb__before_atomic(); /* See above. */
1025 atomic_inc(&rdtp
->dynticks
);
1026 smp_mb__after_atomic(); /* Force delay to next write. */
1027 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
1031 * __rcu_is_watching - are RCU read-side critical sections safe?
1033 * Return true if RCU is watching the running CPU, which means that
1034 * this CPU can safely enter RCU read-side critical sections. Unlike
1035 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1036 * least disabled preemption.
1038 bool notrace
__rcu_is_watching(void)
1040 return atomic_read(this_cpu_ptr(&rcu_dynticks
.dynticks
)) & 0x1;
1044 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1046 * If the current CPU is in its idle loop and is neither in an interrupt
1047 * or NMI handler, return true.
1049 bool notrace
rcu_is_watching(void)
1053 preempt_disable_notrace();
1054 ret
= __rcu_is_watching();
1055 preempt_enable_notrace();
1058 EXPORT_SYMBOL_GPL(rcu_is_watching
);
1060 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1063 * Is the current CPU online? Disable preemption to avoid false positives
1064 * that could otherwise happen due to the current CPU number being sampled,
1065 * this task being preempted, its old CPU being taken offline, resuming
1066 * on some other CPU, then determining that its old CPU is now offline.
1067 * It is OK to use RCU on an offline processor during initial boot, hence
1068 * the check for rcu_scheduler_fully_active. Note also that it is OK
1069 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1070 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1071 * offline to continue to use RCU for one jiffy after marking itself
1072 * offline in the cpu_online_mask. This leniency is necessary given the
1073 * non-atomic nature of the online and offline processing, for example,
1074 * the fact that a CPU enters the scheduler after completing the teardown
1077 * This is also why RCU internally marks CPUs online during in the
1078 * preparation phase and offline after the CPU has been taken down.
1080 * Disable checking if in an NMI handler because we cannot safely report
1081 * errors from NMI handlers anyway.
1083 bool rcu_lockdep_current_cpu_online(void)
1085 struct rcu_data
*rdp
;
1086 struct rcu_node
*rnp
;
1092 rdp
= this_cpu_ptr(&rcu_sched_data
);
1094 ret
= (rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) ||
1095 !rcu_scheduler_fully_active
;
1099 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
1101 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1104 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1106 * If the current CPU is idle or running at a first-level (not nested)
1107 * interrupt from idle, return true. The caller must have at least
1108 * disabled preemption.
1110 static int rcu_is_cpu_rrupt_from_idle(void)
1112 return __this_cpu_read(rcu_dynticks
.dynticks_nesting
) <= 1;
1116 * Snapshot the specified CPU's dynticks counter so that we can later
1117 * credit them with an implicit quiescent state. Return 1 if this CPU
1118 * is in dynticks idle mode, which is an extended quiescent state.
1120 static int dyntick_save_progress_counter(struct rcu_data
*rdp
,
1121 bool *isidle
, unsigned long *maxj
)
1123 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
1124 rcu_sysidle_check_cpu(rdp
, isidle
, maxj
);
1125 if ((rdp
->dynticks_snap
& 0x1) == 0) {
1126 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1127 if (ULONG_CMP_LT(READ_ONCE(rdp
->gpnum
) + ULONG_MAX
/ 4,
1128 rdp
->mynode
->gpnum
))
1129 WRITE_ONCE(rdp
->gpwrap
, true);
1136 * Return true if the specified CPU has passed through a quiescent
1137 * state by virtue of being in or having passed through an dynticks
1138 * idle state since the last call to dyntick_save_progress_counter()
1139 * for this same CPU, or by virtue of having been offline.
1141 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
,
1142 bool *isidle
, unsigned long *maxj
)
1148 curr
= (unsigned int)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
1149 snap
= (unsigned int)rdp
->dynticks_snap
;
1152 * If the CPU passed through or entered a dynticks idle phase with
1153 * no active irq/NMI handlers, then we can safely pretend that the CPU
1154 * already acknowledged the request to pass through a quiescent
1155 * state. Either way, that CPU cannot possibly be in an RCU
1156 * read-side critical section that started before the beginning
1157 * of the current RCU grace period.
1159 if ((curr
& 0x1) == 0 || UINT_CMP_GE(curr
, snap
+ 2)) {
1160 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1161 rdp
->dynticks_fqs
++;
1166 * Check for the CPU being offline, but only if the grace period
1167 * is old enough. We don't need to worry about the CPU changing
1168 * state: If we see it offline even once, it has been through a
1171 * The reason for insisting that the grace period be at least
1172 * one jiffy old is that CPUs that are not quite online and that
1173 * have just gone offline can still execute RCU read-side critical
1176 if (ULONG_CMP_GE(rdp
->rsp
->gp_start
+ 2, jiffies
))
1177 return 0; /* Grace period is not old enough. */
1179 if (cpu_is_offline(rdp
->cpu
)) {
1180 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("ofl"));
1186 * A CPU running for an extended time within the kernel can
1187 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1188 * even context-switching back and forth between a pair of
1189 * in-kernel CPU-bound tasks cannot advance grace periods.
1190 * So if the grace period is old enough, make the CPU pay attention.
1191 * Note that the unsynchronized assignments to the per-CPU
1192 * rcu_sched_qs_mask variable are safe. Yes, setting of
1193 * bits can be lost, but they will be set again on the next
1194 * force-quiescent-state pass. So lost bit sets do not result
1195 * in incorrect behavior, merely in a grace period lasting
1196 * a few jiffies longer than it might otherwise. Because
1197 * there are at most four threads involved, and because the
1198 * updates are only once every few jiffies, the probability of
1199 * lossage (and thus of slight grace-period extension) is
1202 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1203 * is set too high, we override with half of the RCU CPU stall
1206 rcrmp
= &per_cpu(rcu_sched_qs_mask
, rdp
->cpu
);
1207 if (ULONG_CMP_GE(jiffies
,
1208 rdp
->rsp
->gp_start
+ jiffies_till_sched_qs
) ||
1209 ULONG_CMP_GE(jiffies
, rdp
->rsp
->jiffies_resched
)) {
1210 if (!(READ_ONCE(*rcrmp
) & rdp
->rsp
->flavor_mask
)) {
1211 WRITE_ONCE(rdp
->cond_resched_completed
,
1212 READ_ONCE(rdp
->mynode
->completed
));
1213 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1215 READ_ONCE(*rcrmp
) + rdp
->rsp
->flavor_mask
);
1217 rdp
->rsp
->jiffies_resched
+= 5; /* Re-enable beating. */
1220 /* And if it has been a really long time, kick the CPU as well. */
1221 if (ULONG_CMP_GE(jiffies
,
1222 rdp
->rsp
->gp_start
+ 2 * jiffies_till_sched_qs
) ||
1223 ULONG_CMP_GE(jiffies
, rdp
->rsp
->gp_start
+ jiffies_till_sched_qs
))
1224 resched_cpu(rdp
->cpu
); /* Force CPU into scheduler. */
1229 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
1231 unsigned long j
= jiffies
;
1235 smp_wmb(); /* Record start time before stall time. */
1236 j1
= rcu_jiffies_till_stall_check();
1237 WRITE_ONCE(rsp
->jiffies_stall
, j
+ j1
);
1238 rsp
->jiffies_resched
= j
+ j1
/ 2;
1239 rsp
->n_force_qs_gpstart
= READ_ONCE(rsp
->n_force_qs
);
1243 * Convert a ->gp_state value to a character string.
1245 static const char *gp_state_getname(short gs
)
1247 if (gs
< 0 || gs
>= ARRAY_SIZE(gp_state_names
))
1249 return gp_state_names
[gs
];
1253 * Complain about starvation of grace-period kthread.
1255 static void rcu_check_gp_kthread_starvation(struct rcu_state
*rsp
)
1261 gpa
= READ_ONCE(rsp
->gp_activity
);
1262 if (j
- gpa
> 2 * HZ
) {
1263 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1265 rsp
->gpnum
, rsp
->completed
,
1267 gp_state_getname(rsp
->gp_state
), rsp
->gp_state
,
1268 rsp
->gp_kthread
? rsp
->gp_kthread
->state
: ~0);
1269 if (rsp
->gp_kthread
) {
1270 sched_show_task(rsp
->gp_kthread
);
1271 wake_up_process(rsp
->gp_kthread
);
1277 * Dump stacks of all tasks running on stalled CPUs.
1279 static void rcu_dump_cpu_stacks(struct rcu_state
*rsp
)
1282 unsigned long flags
;
1283 struct rcu_node
*rnp
;
1285 rcu_for_each_leaf_node(rsp
, rnp
) {
1286 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1287 if (rnp
->qsmask
!= 0) {
1288 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1289 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
))
1292 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1297 * If too much time has passed in the current grace period, and if
1298 * so configured, go kick the relevant kthreads.
1300 static void rcu_stall_kick_kthreads(struct rcu_state
*rsp
)
1304 if (!rcu_kick_kthreads
)
1306 j
= READ_ONCE(rsp
->jiffies_kick_kthreads
);
1307 if (time_after(jiffies
, j
) && rsp
->gp_kthread
&&
1308 (rcu_gp_in_progress(rsp
) || READ_ONCE(rsp
->gp_flags
))) {
1309 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp
->name
);
1310 rcu_ftrace_dump(DUMP_ALL
);
1311 wake_up_process(rsp
->gp_kthread
);
1312 WRITE_ONCE(rsp
->jiffies_kick_kthreads
, j
+ HZ
);
1316 static inline void panic_on_rcu_stall(void)
1318 if (sysctl_panic_on_rcu_stall
)
1319 panic("RCU Stall\n");
1322 static void print_other_cpu_stall(struct rcu_state
*rsp
, unsigned long gpnum
)
1326 unsigned long flags
;
1330 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1333 /* Kick and suppress, if so configured. */
1334 rcu_stall_kick_kthreads(rsp
);
1335 if (rcu_cpu_stall_suppress
)
1338 /* Only let one CPU complain about others per time interval. */
1340 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1341 delta
= jiffies
- READ_ONCE(rsp
->jiffies_stall
);
1342 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
1343 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1346 WRITE_ONCE(rsp
->jiffies_stall
,
1347 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1348 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1351 * OK, time to rat on our buddy...
1352 * See Documentation/RCU/stallwarn.txt for info on how to debug
1353 * RCU CPU stall warnings.
1355 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1357 print_cpu_stall_info_begin();
1358 rcu_for_each_leaf_node(rsp
, rnp
) {
1359 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1360 ndetected
+= rcu_print_task_stall(rnp
);
1361 if (rnp
->qsmask
!= 0) {
1362 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1363 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
)) {
1364 print_cpu_stall_info(rsp
, cpu
);
1368 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1371 print_cpu_stall_info_end();
1372 for_each_possible_cpu(cpu
)
1373 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
1374 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1375 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
),
1376 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1378 rcu_dump_cpu_stacks(rsp
);
1380 if (READ_ONCE(rsp
->gpnum
) != gpnum
||
1381 READ_ONCE(rsp
->completed
) == gpnum
) {
1382 pr_err("INFO: Stall ended before state dump start\n");
1385 gpa
= READ_ONCE(rsp
->gp_activity
);
1386 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1387 rsp
->name
, j
- gpa
, j
, gpa
,
1388 jiffies_till_next_fqs
,
1389 rcu_get_root(rsp
)->qsmask
);
1390 /* In this case, the current CPU might be at fault. */
1391 sched_show_task(current
);
1395 /* Complain about tasks blocking the grace period. */
1396 rcu_print_detail_task_stall(rsp
);
1398 rcu_check_gp_kthread_starvation(rsp
);
1400 panic_on_rcu_stall();
1402 force_quiescent_state(rsp
); /* Kick them all. */
1405 static void print_cpu_stall(struct rcu_state
*rsp
)
1408 unsigned long flags
;
1409 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1412 /* Kick and suppress, if so configured. */
1413 rcu_stall_kick_kthreads(rsp
);
1414 if (rcu_cpu_stall_suppress
)
1418 * OK, time to rat on ourselves...
1419 * See Documentation/RCU/stallwarn.txt for info on how to debug
1420 * RCU CPU stall warnings.
1422 pr_err("INFO: %s self-detected stall on CPU", rsp
->name
);
1423 print_cpu_stall_info_begin();
1424 print_cpu_stall_info(rsp
, smp_processor_id());
1425 print_cpu_stall_info_end();
1426 for_each_possible_cpu(cpu
)
1427 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
1428 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1429 jiffies
- rsp
->gp_start
,
1430 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1432 rcu_check_gp_kthread_starvation(rsp
);
1434 rcu_dump_cpu_stacks(rsp
);
1436 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1437 if (ULONG_CMP_GE(jiffies
, READ_ONCE(rsp
->jiffies_stall
)))
1438 WRITE_ONCE(rsp
->jiffies_stall
,
1439 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1440 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1442 panic_on_rcu_stall();
1445 * Attempt to revive the RCU machinery by forcing a context switch.
1447 * A context switch would normally allow the RCU state machine to make
1448 * progress and it could be we're stuck in kernel space without context
1449 * switches for an entirely unreasonable amount of time.
1451 resched_cpu(smp_processor_id());
1454 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1456 unsigned long completed
;
1457 unsigned long gpnum
;
1461 struct rcu_node
*rnp
;
1463 if ((rcu_cpu_stall_suppress
&& !rcu_kick_kthreads
) ||
1464 !rcu_gp_in_progress(rsp
))
1466 rcu_stall_kick_kthreads(rsp
);
1470 * Lots of memory barriers to reject false positives.
1472 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1473 * then rsp->gp_start, and finally rsp->completed. These values
1474 * are updated in the opposite order with memory barriers (or
1475 * equivalent) during grace-period initialization and cleanup.
1476 * Now, a false positive can occur if we get an new value of
1477 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1478 * the memory barriers, the only way that this can happen is if one
1479 * grace period ends and another starts between these two fetches.
1480 * Detect this by comparing rsp->completed with the previous fetch
1483 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1484 * and rsp->gp_start suffice to forestall false positives.
1486 gpnum
= READ_ONCE(rsp
->gpnum
);
1487 smp_rmb(); /* Pick up ->gpnum first... */
1488 js
= READ_ONCE(rsp
->jiffies_stall
);
1489 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1490 gps
= READ_ONCE(rsp
->gp_start
);
1491 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1492 completed
= READ_ONCE(rsp
->completed
);
1493 if (ULONG_CMP_GE(completed
, gpnum
) ||
1494 ULONG_CMP_LT(j
, js
) ||
1495 ULONG_CMP_GE(gps
, js
))
1496 return; /* No stall or GP completed since entering function. */
1498 if (rcu_gp_in_progress(rsp
) &&
1499 (READ_ONCE(rnp
->qsmask
) & rdp
->grpmask
)) {
1501 /* We haven't checked in, so go dump stack. */
1502 print_cpu_stall(rsp
);
1504 } else if (rcu_gp_in_progress(rsp
) &&
1505 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
1507 /* They had a few time units to dump stack, so complain. */
1508 print_other_cpu_stall(rsp
, gpnum
);
1513 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1515 * Set the stall-warning timeout way off into the future, thus preventing
1516 * any RCU CPU stall-warning messages from appearing in the current set of
1517 * RCU grace periods.
1519 * The caller must disable hard irqs.
1521 void rcu_cpu_stall_reset(void)
1523 struct rcu_state
*rsp
;
1525 for_each_rcu_flavor(rsp
)
1526 WRITE_ONCE(rsp
->jiffies_stall
, jiffies
+ ULONG_MAX
/ 2);
1530 * Initialize the specified rcu_data structure's default callback list
1531 * to empty. The default callback list is the one that is not used by
1532 * no-callbacks CPUs.
1534 static void init_default_callback_list(struct rcu_data
*rdp
)
1538 rdp
->nxtlist
= NULL
;
1539 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1540 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1544 * Initialize the specified rcu_data structure's callback list to empty.
1546 static void init_callback_list(struct rcu_data
*rdp
)
1548 if (init_nocb_callback_list(rdp
))
1550 init_default_callback_list(rdp
);
1554 * Determine the value that ->completed will have at the end of the
1555 * next subsequent grace period. This is used to tag callbacks so that
1556 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1557 * been dyntick-idle for an extended period with callbacks under the
1558 * influence of RCU_FAST_NO_HZ.
1560 * The caller must hold rnp->lock with interrupts disabled.
1562 static unsigned long rcu_cbs_completed(struct rcu_state
*rsp
,
1563 struct rcu_node
*rnp
)
1566 * If RCU is idle, we just wait for the next grace period.
1567 * But we can only be sure that RCU is idle if we are looking
1568 * at the root rcu_node structure -- otherwise, a new grace
1569 * period might have started, but just not yet gotten around
1570 * to initializing the current non-root rcu_node structure.
1572 if (rcu_get_root(rsp
) == rnp
&& rnp
->gpnum
== rnp
->completed
)
1573 return rnp
->completed
+ 1;
1576 * Otherwise, wait for a possible partial grace period and
1577 * then the subsequent full grace period.
1579 return rnp
->completed
+ 2;
1583 * Trace-event helper function for rcu_start_future_gp() and
1584 * rcu_nocb_wait_gp().
1586 static void trace_rcu_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1587 unsigned long c
, const char *s
)
1589 trace_rcu_future_grace_period(rdp
->rsp
->name
, rnp
->gpnum
,
1590 rnp
->completed
, c
, rnp
->level
,
1591 rnp
->grplo
, rnp
->grphi
, s
);
1595 * Start some future grace period, as needed to handle newly arrived
1596 * callbacks. The required future grace periods are recorded in each
1597 * rcu_node structure's ->need_future_gp field. Returns true if there
1598 * is reason to awaken the grace-period kthread.
1600 * The caller must hold the specified rcu_node structure's ->lock.
1602 static bool __maybe_unused
1603 rcu_start_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1604 unsigned long *c_out
)
1609 struct rcu_node
*rnp_root
= rcu_get_root(rdp
->rsp
);
1612 * Pick up grace-period number for new callbacks. If this
1613 * grace period is already marked as needed, return to the caller.
1615 c
= rcu_cbs_completed(rdp
->rsp
, rnp
);
1616 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startleaf"));
1617 if (rnp
->need_future_gp
[c
& 0x1]) {
1618 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartleaf"));
1623 * If either this rcu_node structure or the root rcu_node structure
1624 * believe that a grace period is in progress, then we must wait
1625 * for the one following, which is in "c". Because our request
1626 * will be noticed at the end of the current grace period, we don't
1627 * need to explicitly start one. We only do the lockless check
1628 * of rnp_root's fields if the current rcu_node structure thinks
1629 * there is no grace period in flight, and because we hold rnp->lock,
1630 * the only possible change is when rnp_root's two fields are
1631 * equal, in which case rnp_root->gpnum might be concurrently
1632 * incremented. But that is OK, as it will just result in our
1633 * doing some extra useless work.
1635 if (rnp
->gpnum
!= rnp
->completed
||
1636 READ_ONCE(rnp_root
->gpnum
) != READ_ONCE(rnp_root
->completed
)) {
1637 rnp
->need_future_gp
[c
& 0x1]++;
1638 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleaf"));
1643 * There might be no grace period in progress. If we don't already
1644 * hold it, acquire the root rcu_node structure's lock in order to
1645 * start one (if needed).
1647 if (rnp
!= rnp_root
)
1648 raw_spin_lock_rcu_node(rnp_root
);
1651 * Get a new grace-period number. If there really is no grace
1652 * period in progress, it will be smaller than the one we obtained
1653 * earlier. Adjust callbacks as needed. Note that even no-CBs
1654 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1656 c
= rcu_cbs_completed(rdp
->rsp
, rnp_root
);
1657 for (i
= RCU_DONE_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
1658 if (ULONG_CMP_LT(c
, rdp
->nxtcompleted
[i
]))
1659 rdp
->nxtcompleted
[i
] = c
;
1662 * If the needed for the required grace period is already
1663 * recorded, trace and leave.
1665 if (rnp_root
->need_future_gp
[c
& 0x1]) {
1666 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartedroot"));
1670 /* Record the need for the future grace period. */
1671 rnp_root
->need_future_gp
[c
& 0x1]++;
1673 /* If a grace period is not already in progress, start one. */
1674 if (rnp_root
->gpnum
!= rnp_root
->completed
) {
1675 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleafroot"));
1677 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedroot"));
1678 ret
= rcu_start_gp_advanced(rdp
->rsp
, rnp_root
, rdp
);
1681 if (rnp
!= rnp_root
)
1682 raw_spin_unlock_rcu_node(rnp_root
);
1690 * Clean up any old requests for the just-ended grace period. Also return
1691 * whether any additional grace periods have been requested. Also invoke
1692 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1693 * waiting for this grace period to complete.
1695 static int rcu_future_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
1697 int c
= rnp
->completed
;
1699 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1701 rnp
->need_future_gp
[c
& 0x1] = 0;
1702 needmore
= rnp
->need_future_gp
[(c
+ 1) & 0x1];
1703 trace_rcu_future_gp(rnp
, rdp
, c
,
1704 needmore
? TPS("CleanupMore") : TPS("Cleanup"));
1709 * Awaken the grace-period kthread for the specified flavor of RCU.
1710 * Don't do a self-awaken, and don't bother awakening when there is
1711 * nothing for the grace-period kthread to do (as in several CPUs
1712 * raced to awaken, and we lost), and finally don't try to awaken
1713 * a kthread that has not yet been created.
1715 static void rcu_gp_kthread_wake(struct rcu_state
*rsp
)
1717 if (current
== rsp
->gp_kthread
||
1718 !READ_ONCE(rsp
->gp_flags
) ||
1721 swake_up(&rsp
->gp_wq
);
1725 * If there is room, assign a ->completed number to any callbacks on
1726 * this CPU that have not already been assigned. Also accelerate any
1727 * callbacks that were previously assigned a ->completed number that has
1728 * since proven to be too conservative, which can happen if callbacks get
1729 * assigned a ->completed number while RCU is idle, but with reference to
1730 * a non-root rcu_node structure. This function is idempotent, so it does
1731 * not hurt to call it repeatedly. Returns an flag saying that we should
1732 * awaken the RCU grace-period kthread.
1734 * The caller must hold rnp->lock with interrupts disabled.
1736 static bool rcu_accelerate_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1737 struct rcu_data
*rdp
)
1743 /* If the CPU has no callbacks, nothing to do. */
1744 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1748 * Starting from the sublist containing the callbacks most
1749 * recently assigned a ->completed number and working down, find the
1750 * first sublist that is not assignable to an upcoming grace period.
1751 * Such a sublist has something in it (first two tests) and has
1752 * a ->completed number assigned that will complete sooner than
1753 * the ->completed number for newly arrived callbacks (last test).
1755 * The key point is that any later sublist can be assigned the
1756 * same ->completed number as the newly arrived callbacks, which
1757 * means that the callbacks in any of these later sublist can be
1758 * grouped into a single sublist, whether or not they have already
1759 * been assigned a ->completed number.
1761 c
= rcu_cbs_completed(rsp
, rnp
);
1762 for (i
= RCU_NEXT_TAIL
- 1; i
> RCU_DONE_TAIL
; i
--)
1763 if (rdp
->nxttail
[i
] != rdp
->nxttail
[i
- 1] &&
1764 !ULONG_CMP_GE(rdp
->nxtcompleted
[i
], c
))
1768 * If there are no sublist for unassigned callbacks, leave.
1769 * At the same time, advance "i" one sublist, so that "i" will
1770 * index into the sublist where all the remaining callbacks should
1773 if (++i
>= RCU_NEXT_TAIL
)
1777 * Assign all subsequent callbacks' ->completed number to the next
1778 * full grace period and group them all in the sublist initially
1781 for (; i
<= RCU_NEXT_TAIL
; i
++) {
1782 rdp
->nxttail
[i
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1783 rdp
->nxtcompleted
[i
] = c
;
1785 /* Record any needed additional grace periods. */
1786 ret
= rcu_start_future_gp(rnp
, rdp
, NULL
);
1788 /* Trace depending on how much we were able to accelerate. */
1789 if (!*rdp
->nxttail
[RCU_WAIT_TAIL
])
1790 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccWaitCB"));
1792 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccReadyCB"));
1797 * Move any callbacks whose grace period has completed to the
1798 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1799 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1800 * sublist. This function is idempotent, so it does not hurt to
1801 * invoke it repeatedly. As long as it is not invoked -too- often...
1802 * Returns true if the RCU grace-period kthread needs to be awakened.
1804 * The caller must hold rnp->lock with interrupts disabled.
1806 static bool rcu_advance_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1807 struct rcu_data
*rdp
)
1811 /* If the CPU has no callbacks, nothing to do. */
1812 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1816 * Find all callbacks whose ->completed numbers indicate that they
1817 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1819 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++) {
1820 if (ULONG_CMP_LT(rnp
->completed
, rdp
->nxtcompleted
[i
]))
1822 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[i
];
1824 /* Clean up any sublist tail pointers that were misordered above. */
1825 for (j
= RCU_WAIT_TAIL
; j
< i
; j
++)
1826 rdp
->nxttail
[j
] = rdp
->nxttail
[RCU_DONE_TAIL
];
1828 /* Copy down callbacks to fill in empty sublists. */
1829 for (j
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++, j
++) {
1830 if (rdp
->nxttail
[j
] == rdp
->nxttail
[RCU_NEXT_TAIL
])
1832 rdp
->nxttail
[j
] = rdp
->nxttail
[i
];
1833 rdp
->nxtcompleted
[j
] = rdp
->nxtcompleted
[i
];
1836 /* Classify any remaining callbacks. */
1837 return rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1841 * Update CPU-local rcu_data state to record the beginnings and ends of
1842 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1843 * structure corresponding to the current CPU, and must have irqs disabled.
1844 * Returns true if the grace-period kthread needs to be awakened.
1846 static bool __note_gp_changes(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1847 struct rcu_data
*rdp
)
1852 /* Handle the ends of any preceding grace periods first. */
1853 if (rdp
->completed
== rnp
->completed
&&
1854 !unlikely(READ_ONCE(rdp
->gpwrap
))) {
1856 /* No grace period end, so just accelerate recent callbacks. */
1857 ret
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1861 /* Advance callbacks. */
1862 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
);
1864 /* Remember that we saw this grace-period completion. */
1865 rdp
->completed
= rnp
->completed
;
1866 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuend"));
1869 if (rdp
->gpnum
!= rnp
->gpnum
|| unlikely(READ_ONCE(rdp
->gpwrap
))) {
1871 * If the current grace period is waiting for this CPU,
1872 * set up to detect a quiescent state, otherwise don't
1873 * go looking for one.
1875 rdp
->gpnum
= rnp
->gpnum
;
1876 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpustart"));
1877 need_gp
= !!(rnp
->qsmask
& rdp
->grpmask
);
1878 rdp
->cpu_no_qs
.b
.norm
= need_gp
;
1879 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_qs_ctr
);
1880 rdp
->core_needs_qs
= need_gp
;
1881 zero_cpu_stall_ticks(rdp
);
1882 WRITE_ONCE(rdp
->gpwrap
, false);
1887 static void note_gp_changes(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1889 unsigned long flags
;
1891 struct rcu_node
*rnp
;
1893 local_irq_save(flags
);
1895 if ((rdp
->gpnum
== READ_ONCE(rnp
->gpnum
) &&
1896 rdp
->completed
== READ_ONCE(rnp
->completed
) &&
1897 !unlikely(READ_ONCE(rdp
->gpwrap
))) || /* w/out lock. */
1898 !raw_spin_trylock_rcu_node(rnp
)) { /* irqs already off, so later. */
1899 local_irq_restore(flags
);
1902 needwake
= __note_gp_changes(rsp
, rnp
, rdp
);
1903 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1905 rcu_gp_kthread_wake(rsp
);
1908 static void rcu_gp_slow(struct rcu_state
*rsp
, int delay
)
1911 !(rsp
->gpnum
% (rcu_num_nodes
* PER_RCU_NODE_PERIOD
* delay
)))
1912 schedule_timeout_uninterruptible(delay
);
1916 * Initialize a new grace period. Return false if no grace period required.
1918 static bool rcu_gp_init(struct rcu_state
*rsp
)
1920 unsigned long oldmask
;
1921 struct rcu_data
*rdp
;
1922 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1924 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1925 raw_spin_lock_irq_rcu_node(rnp
);
1926 if (!READ_ONCE(rsp
->gp_flags
)) {
1927 /* Spurious wakeup, tell caller to go back to sleep. */
1928 raw_spin_unlock_irq_rcu_node(rnp
);
1931 WRITE_ONCE(rsp
->gp_flags
, 0); /* Clear all flags: New grace period. */
1933 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp
))) {
1935 * Grace period already in progress, don't start another.
1936 * Not supposed to be able to happen.
1938 raw_spin_unlock_irq_rcu_node(rnp
);
1942 /* Advance to a new grace period and initialize state. */
1943 record_gp_stall_check_time(rsp
);
1944 /* Record GP times before starting GP, hence smp_store_release(). */
1945 smp_store_release(&rsp
->gpnum
, rsp
->gpnum
+ 1);
1946 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, TPS("start"));
1947 raw_spin_unlock_irq_rcu_node(rnp
);
1950 * Apply per-leaf buffered online and offline operations to the
1951 * rcu_node tree. Note that this new grace period need not wait
1952 * for subsequent online CPUs, and that quiescent-state forcing
1953 * will handle subsequent offline CPUs.
1955 rcu_for_each_leaf_node(rsp
, rnp
) {
1956 rcu_gp_slow(rsp
, gp_preinit_delay
);
1957 raw_spin_lock_irq_rcu_node(rnp
);
1958 if (rnp
->qsmaskinit
== rnp
->qsmaskinitnext
&&
1959 !rnp
->wait_blkd_tasks
) {
1960 /* Nothing to do on this leaf rcu_node structure. */
1961 raw_spin_unlock_irq_rcu_node(rnp
);
1965 /* Record old state, apply changes to ->qsmaskinit field. */
1966 oldmask
= rnp
->qsmaskinit
;
1967 rnp
->qsmaskinit
= rnp
->qsmaskinitnext
;
1969 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1970 if (!oldmask
!= !rnp
->qsmaskinit
) {
1971 if (!oldmask
) /* First online CPU for this rcu_node. */
1972 rcu_init_new_rnp(rnp
);
1973 else if (rcu_preempt_has_tasks(rnp
)) /* blocked tasks */
1974 rnp
->wait_blkd_tasks
= true;
1975 else /* Last offline CPU and can propagate. */
1976 rcu_cleanup_dead_rnp(rnp
);
1980 * If all waited-on tasks from prior grace period are
1981 * done, and if all this rcu_node structure's CPUs are
1982 * still offline, propagate up the rcu_node tree and
1983 * clear ->wait_blkd_tasks. Otherwise, if one of this
1984 * rcu_node structure's CPUs has since come back online,
1985 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1986 * checks for this, so just call it unconditionally).
1988 if (rnp
->wait_blkd_tasks
&&
1989 (!rcu_preempt_has_tasks(rnp
) ||
1991 rnp
->wait_blkd_tasks
= false;
1992 rcu_cleanup_dead_rnp(rnp
);
1995 raw_spin_unlock_irq_rcu_node(rnp
);
1999 * Set the quiescent-state-needed bits in all the rcu_node
2000 * structures for all currently online CPUs in breadth-first order,
2001 * starting from the root rcu_node structure, relying on the layout
2002 * of the tree within the rsp->node[] array. Note that other CPUs
2003 * will access only the leaves of the hierarchy, thus seeing that no
2004 * grace period is in progress, at least until the corresponding
2005 * leaf node has been initialized.
2007 * The grace period cannot complete until the initialization
2008 * process finishes, because this kthread handles both.
2010 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2011 rcu_gp_slow(rsp
, gp_init_delay
);
2012 raw_spin_lock_irq_rcu_node(rnp
);
2013 rdp
= this_cpu_ptr(rsp
->rda
);
2014 rcu_preempt_check_blocked_tasks(rnp
);
2015 rnp
->qsmask
= rnp
->qsmaskinit
;
2016 WRITE_ONCE(rnp
->gpnum
, rsp
->gpnum
);
2017 if (WARN_ON_ONCE(rnp
->completed
!= rsp
->completed
))
2018 WRITE_ONCE(rnp
->completed
, rsp
->completed
);
2019 if (rnp
== rdp
->mynode
)
2020 (void)__note_gp_changes(rsp
, rnp
, rdp
);
2021 rcu_preempt_boost_start_gp(rnp
);
2022 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
2023 rnp
->level
, rnp
->grplo
,
2024 rnp
->grphi
, rnp
->qsmask
);
2025 raw_spin_unlock_irq_rcu_node(rnp
);
2026 cond_resched_rcu_qs();
2027 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2034 * Helper function for wait_event_interruptible_timeout() wakeup
2035 * at force-quiescent-state time.
2037 static bool rcu_gp_fqs_check_wake(struct rcu_state
*rsp
, int *gfp
)
2039 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2041 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2042 *gfp
= READ_ONCE(rsp
->gp_flags
);
2043 if (*gfp
& RCU_GP_FLAG_FQS
)
2046 /* The current grace period has completed. */
2047 if (!READ_ONCE(rnp
->qsmask
) && !rcu_preempt_blocked_readers_cgp(rnp
))
2054 * Do one round of quiescent-state forcing.
2056 static void rcu_gp_fqs(struct rcu_state
*rsp
, bool first_time
)
2058 bool isidle
= false;
2060 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2062 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2065 /* Collect dyntick-idle snapshots. */
2066 if (is_sysidle_rcu_state(rsp
)) {
2068 maxj
= jiffies
- ULONG_MAX
/ 4;
2070 force_qs_rnp(rsp
, dyntick_save_progress_counter
,
2072 rcu_sysidle_report_gp(rsp
, isidle
, maxj
);
2074 /* Handle dyntick-idle and offline CPUs. */
2076 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
, &isidle
, &maxj
);
2078 /* Clear flag to prevent immediate re-entry. */
2079 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2080 raw_spin_lock_irq_rcu_node(rnp
);
2081 WRITE_ONCE(rsp
->gp_flags
,
2082 READ_ONCE(rsp
->gp_flags
) & ~RCU_GP_FLAG_FQS
);
2083 raw_spin_unlock_irq_rcu_node(rnp
);
2088 * Clean up after the old grace period.
2090 static void rcu_gp_cleanup(struct rcu_state
*rsp
)
2092 unsigned long gp_duration
;
2093 bool needgp
= false;
2095 struct rcu_data
*rdp
;
2096 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2097 struct swait_queue_head
*sq
;
2099 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2100 raw_spin_lock_irq_rcu_node(rnp
);
2101 gp_duration
= jiffies
- rsp
->gp_start
;
2102 if (gp_duration
> rsp
->gp_max
)
2103 rsp
->gp_max
= gp_duration
;
2106 * We know the grace period is complete, but to everyone else
2107 * it appears to still be ongoing. But it is also the case
2108 * that to everyone else it looks like there is nothing that
2109 * they can do to advance the grace period. It is therefore
2110 * safe for us to drop the lock in order to mark the grace
2111 * period as completed in all of the rcu_node structures.
2113 raw_spin_unlock_irq_rcu_node(rnp
);
2116 * Propagate new ->completed value to rcu_node structures so
2117 * that other CPUs don't have to wait until the start of the next
2118 * grace period to process their callbacks. This also avoids
2119 * some nasty RCU grace-period initialization races by forcing
2120 * the end of the current grace period to be completely recorded in
2121 * all of the rcu_node structures before the beginning of the next
2122 * grace period is recorded in any of the rcu_node structures.
2124 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2125 raw_spin_lock_irq_rcu_node(rnp
);
2126 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
2127 WARN_ON_ONCE(rnp
->qsmask
);
2128 WRITE_ONCE(rnp
->completed
, rsp
->gpnum
);
2129 rdp
= this_cpu_ptr(rsp
->rda
);
2130 if (rnp
== rdp
->mynode
)
2131 needgp
= __note_gp_changes(rsp
, rnp
, rdp
) || needgp
;
2132 /* smp_mb() provided by prior unlock-lock pair. */
2133 nocb
+= rcu_future_gp_cleanup(rsp
, rnp
);
2134 sq
= rcu_nocb_gp_get(rnp
);
2135 raw_spin_unlock_irq_rcu_node(rnp
);
2136 rcu_nocb_gp_cleanup(sq
);
2137 cond_resched_rcu_qs();
2138 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2139 rcu_gp_slow(rsp
, gp_cleanup_delay
);
2141 rnp
= rcu_get_root(rsp
);
2142 raw_spin_lock_irq_rcu_node(rnp
); /* Order GP before ->completed update. */
2143 rcu_nocb_gp_set(rnp
, nocb
);
2145 /* Declare grace period done. */
2146 WRITE_ONCE(rsp
->completed
, rsp
->gpnum
);
2147 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, TPS("end"));
2148 rsp
->gp_state
= RCU_GP_IDLE
;
2149 rdp
= this_cpu_ptr(rsp
->rda
);
2150 /* Advance CBs to reduce false positives below. */
2151 needgp
= rcu_advance_cbs(rsp
, rnp
, rdp
) || needgp
;
2152 if (needgp
|| cpu_needs_another_gp(rsp
, rdp
)) {
2153 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2154 trace_rcu_grace_period(rsp
->name
,
2155 READ_ONCE(rsp
->gpnum
),
2158 raw_spin_unlock_irq_rcu_node(rnp
);
2162 * Body of kthread that handles grace periods.
2164 static int __noreturn
rcu_gp_kthread(void *arg
)
2170 struct rcu_state
*rsp
= arg
;
2171 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2173 rcu_bind_gp_kthread();
2176 /* Handle grace-period start. */
2178 trace_rcu_grace_period(rsp
->name
,
2179 READ_ONCE(rsp
->gpnum
),
2181 rsp
->gp_state
= RCU_GP_WAIT_GPS
;
2182 swait_event_interruptible(rsp
->gp_wq
,
2183 READ_ONCE(rsp
->gp_flags
) &
2185 rsp
->gp_state
= RCU_GP_DONE_GPS
;
2186 /* Locking provides needed memory barrier. */
2187 if (rcu_gp_init(rsp
))
2189 cond_resched_rcu_qs();
2190 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2191 WARN_ON(signal_pending(current
));
2192 trace_rcu_grace_period(rsp
->name
,
2193 READ_ONCE(rsp
->gpnum
),
2197 /* Handle quiescent-state forcing. */
2198 first_gp_fqs
= true;
2199 j
= jiffies_till_first_fqs
;
2202 jiffies_till_first_fqs
= HZ
;
2207 rsp
->jiffies_force_qs
= jiffies
+ j
;
2208 WRITE_ONCE(rsp
->jiffies_kick_kthreads
,
2211 trace_rcu_grace_period(rsp
->name
,
2212 READ_ONCE(rsp
->gpnum
),
2214 rsp
->gp_state
= RCU_GP_WAIT_FQS
;
2215 ret
= swait_event_interruptible_timeout(rsp
->gp_wq
,
2216 rcu_gp_fqs_check_wake(rsp
, &gf
), j
);
2217 rsp
->gp_state
= RCU_GP_DOING_FQS
;
2218 /* Locking provides needed memory barriers. */
2219 /* If grace period done, leave loop. */
2220 if (!READ_ONCE(rnp
->qsmask
) &&
2221 !rcu_preempt_blocked_readers_cgp(rnp
))
2223 /* If time for quiescent-state forcing, do it. */
2224 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_force_qs
) ||
2225 (gf
& RCU_GP_FLAG_FQS
)) {
2226 trace_rcu_grace_period(rsp
->name
,
2227 READ_ONCE(rsp
->gpnum
),
2229 rcu_gp_fqs(rsp
, first_gp_fqs
);
2230 first_gp_fqs
= false;
2231 trace_rcu_grace_period(rsp
->name
,
2232 READ_ONCE(rsp
->gpnum
),
2234 cond_resched_rcu_qs();
2235 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2236 ret
= 0; /* Force full wait till next FQS. */
2237 j
= jiffies_till_next_fqs
;
2240 jiffies_till_next_fqs
= HZ
;
2243 jiffies_till_next_fqs
= 1;
2246 /* Deal with stray signal. */
2247 cond_resched_rcu_qs();
2248 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2249 WARN_ON(signal_pending(current
));
2250 trace_rcu_grace_period(rsp
->name
,
2251 READ_ONCE(rsp
->gpnum
),
2253 ret
= 1; /* Keep old FQS timing. */
2255 if (time_after(jiffies
, rsp
->jiffies_force_qs
))
2258 j
= rsp
->jiffies_force_qs
- j
;
2262 /* Handle grace-period end. */
2263 rsp
->gp_state
= RCU_GP_CLEANUP
;
2264 rcu_gp_cleanup(rsp
);
2265 rsp
->gp_state
= RCU_GP_CLEANED
;
2270 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2271 * in preparation for detecting the next grace period. The caller must hold
2272 * the root node's ->lock and hard irqs must be disabled.
2274 * Note that it is legal for a dying CPU (which is marked as offline) to
2275 * invoke this function. This can happen when the dying CPU reports its
2278 * Returns true if the grace-period kthread must be awakened.
2281 rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
2282 struct rcu_data
*rdp
)
2284 if (!rsp
->gp_kthread
|| !cpu_needs_another_gp(rsp
, rdp
)) {
2286 * Either we have not yet spawned the grace-period
2287 * task, this CPU does not need another grace period,
2288 * or a grace period is already in progress.
2289 * Either way, don't start a new grace period.
2293 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2294 trace_rcu_grace_period(rsp
->name
, READ_ONCE(rsp
->gpnum
),
2298 * We can't do wakeups while holding the rnp->lock, as that
2299 * could cause possible deadlocks with the rq->lock. Defer
2300 * the wakeup to our caller.
2306 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2307 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2308 * is invoked indirectly from rcu_advance_cbs(), which would result in
2309 * endless recursion -- or would do so if it wasn't for the self-deadlock
2310 * that is encountered beforehand.
2312 * Returns true if the grace-period kthread needs to be awakened.
2314 static bool rcu_start_gp(struct rcu_state
*rsp
)
2316 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
2317 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2321 * If there is no grace period in progress right now, any
2322 * callbacks we have up to this point will be satisfied by the
2323 * next grace period. Also, advancing the callbacks reduces the
2324 * probability of false positives from cpu_needs_another_gp()
2325 * resulting in pointless grace periods. So, advance callbacks
2326 * then start the grace period!
2328 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
) || ret
;
2329 ret
= rcu_start_gp_advanced(rsp
, rnp
, rdp
) || ret
;
2334 * Report a full set of quiescent states to the specified rcu_state data
2335 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2336 * kthread if another grace period is required. Whether we wake
2337 * the grace-period kthread or it awakens itself for the next round
2338 * of quiescent-state forcing, that kthread will clean up after the
2339 * just-completed grace period. Note that the caller must hold rnp->lock,
2340 * which is released before return.
2342 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
2343 __releases(rcu_get_root(rsp
)->lock
)
2345 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
2346 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2347 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
2348 rcu_gp_kthread_wake(rsp
);
2352 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2353 * Allows quiescent states for a group of CPUs to be reported at one go
2354 * to the specified rcu_node structure, though all the CPUs in the group
2355 * must be represented by the same rcu_node structure (which need not be a
2356 * leaf rcu_node structure, though it often will be). The gps parameter
2357 * is the grace-period snapshot, which means that the quiescent states
2358 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2359 * must be held upon entry, and it is released before return.
2362 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
2363 struct rcu_node
*rnp
, unsigned long gps
, unsigned long flags
)
2364 __releases(rnp
->lock
)
2366 unsigned long oldmask
= 0;
2367 struct rcu_node
*rnp_c
;
2369 /* Walk up the rcu_node hierarchy. */
2371 if (!(rnp
->qsmask
& mask
) || rnp
->gpnum
!= gps
) {
2374 * Our bit has already been cleared, or the
2375 * relevant grace period is already over, so done.
2377 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2380 WARN_ON_ONCE(oldmask
); /* Any child must be all zeroed! */
2381 rnp
->qsmask
&= ~mask
;
2382 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
2383 mask
, rnp
->qsmask
, rnp
->level
,
2384 rnp
->grplo
, rnp
->grphi
,
2386 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2388 /* Other bits still set at this level, so done. */
2389 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2392 mask
= rnp
->grpmask
;
2393 if (rnp
->parent
== NULL
) {
2395 /* No more levels. Exit loop holding root lock. */
2399 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2402 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2403 oldmask
= rnp_c
->qsmask
;
2407 * Get here if we are the last CPU to pass through a quiescent
2408 * state for this grace period. Invoke rcu_report_qs_rsp()
2409 * to clean up and start the next grace period if one is needed.
2411 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
2415 * Record a quiescent state for all tasks that were previously queued
2416 * on the specified rcu_node structure and that were blocking the current
2417 * RCU grace period. The caller must hold the specified rnp->lock with
2418 * irqs disabled, and this lock is released upon return, but irqs remain
2421 static void rcu_report_unblock_qs_rnp(struct rcu_state
*rsp
,
2422 struct rcu_node
*rnp
, unsigned long flags
)
2423 __releases(rnp
->lock
)
2427 struct rcu_node
*rnp_p
;
2429 if (rcu_state_p
== &rcu_sched_state
|| rsp
!= rcu_state_p
||
2430 rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2431 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2432 return; /* Still need more quiescent states! */
2435 rnp_p
= rnp
->parent
;
2436 if (rnp_p
== NULL
) {
2438 * Only one rcu_node structure in the tree, so don't
2439 * try to report up to its nonexistent parent!
2441 rcu_report_qs_rsp(rsp
, flags
);
2445 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2447 mask
= rnp
->grpmask
;
2448 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2449 raw_spin_lock_rcu_node(rnp_p
); /* irqs already disabled. */
2450 rcu_report_qs_rnp(mask
, rsp
, rnp_p
, gps
, flags
);
2454 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2455 * structure. This must be called from the specified CPU.
2458 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2460 unsigned long flags
;
2463 struct rcu_node
*rnp
;
2466 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2467 if ((rdp
->cpu_no_qs
.b
.norm
&&
2468 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
)) ||
2469 rdp
->gpnum
!= rnp
->gpnum
|| rnp
->completed
== rnp
->gpnum
||
2473 * The grace period in which this quiescent state was
2474 * recorded has ended, so don't report it upwards.
2475 * We will instead need a new quiescent state that lies
2476 * within the current grace period.
2478 rdp
->cpu_no_qs
.b
.norm
= true; /* need qs for new gp. */
2479 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_qs_ctr
);
2480 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2483 mask
= rdp
->grpmask
;
2484 if ((rnp
->qsmask
& mask
) == 0) {
2485 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2487 rdp
->core_needs_qs
= false;
2490 * This GP can't end until cpu checks in, so all of our
2491 * callbacks can be processed during the next GP.
2493 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
2495 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2496 /* ^^^ Released rnp->lock */
2498 rcu_gp_kthread_wake(rsp
);
2503 * Check to see if there is a new grace period of which this CPU
2504 * is not yet aware, and if so, set up local rcu_data state for it.
2505 * Otherwise, see if this CPU has just passed through its first
2506 * quiescent state for this grace period, and record that fact if so.
2509 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2511 /* Check for grace-period ends and beginnings. */
2512 note_gp_changes(rsp
, rdp
);
2515 * Does this CPU still need to do its part for current grace period?
2516 * If no, return and let the other CPUs do their part as well.
2518 if (!rdp
->core_needs_qs
)
2522 * Was there a quiescent state since the beginning of the grace
2523 * period? If no, then exit and wait for the next call.
2525 if (rdp
->cpu_no_qs
.b
.norm
&&
2526 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
))
2530 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2533 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
);
2537 * Send the specified CPU's RCU callbacks to the orphanage. The
2538 * specified CPU must be offline, and the caller must hold the
2542 rcu_send_cbs_to_orphanage(int cpu
, struct rcu_state
*rsp
,
2543 struct rcu_node
*rnp
, struct rcu_data
*rdp
)
2545 /* No-CBs CPUs do not have orphanable callbacks. */
2546 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) || rcu_is_nocb_cpu(rdp
->cpu
))
2550 * Orphan the callbacks. First adjust the counts. This is safe
2551 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2552 * cannot be running now. Thus no memory barrier is required.
2554 if (rdp
->nxtlist
!= NULL
) {
2555 rsp
->qlen_lazy
+= rdp
->qlen_lazy
;
2556 rsp
->qlen
+= rdp
->qlen
;
2557 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
2559 WRITE_ONCE(rdp
->qlen
, 0);
2563 * Next, move those callbacks still needing a grace period to
2564 * the orphanage, where some other CPU will pick them up.
2565 * Some of the callbacks might have gone partway through a grace
2566 * period, but that is too bad. They get to start over because we
2567 * cannot assume that grace periods are synchronized across CPUs.
2568 * We don't bother updating the ->nxttail[] array yet, instead
2569 * we just reset the whole thing later on.
2571 if (*rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
) {
2572 *rsp
->orphan_nxttail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2573 rsp
->orphan_nxttail
= rdp
->nxttail
[RCU_NEXT_TAIL
];
2574 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2578 * Then move the ready-to-invoke callbacks to the orphanage,
2579 * where some other CPU will pick them up. These will not be
2580 * required to pass though another grace period: They are done.
2582 if (rdp
->nxtlist
!= NULL
) {
2583 *rsp
->orphan_donetail
= rdp
->nxtlist
;
2584 rsp
->orphan_donetail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2588 * Finally, initialize the rcu_data structure's list to empty and
2589 * disallow further callbacks on this CPU.
2591 init_callback_list(rdp
);
2592 rdp
->nxttail
[RCU_NEXT_TAIL
] = NULL
;
2596 * Adopt the RCU callbacks from the specified rcu_state structure's
2597 * orphanage. The caller must hold the ->orphan_lock.
2599 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
, unsigned long flags
)
2602 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2604 /* No-CBs CPUs are handled specially. */
2605 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2606 rcu_nocb_adopt_orphan_cbs(rsp
, rdp
, flags
))
2609 /* Do the accounting first. */
2610 rdp
->qlen_lazy
+= rsp
->qlen_lazy
;
2611 rdp
->qlen
+= rsp
->qlen
;
2612 rdp
->n_cbs_adopted
+= rsp
->qlen
;
2613 if (rsp
->qlen_lazy
!= rsp
->qlen
)
2614 rcu_idle_count_callbacks_posted();
2619 * We do not need a memory barrier here because the only way we
2620 * can get here if there is an rcu_barrier() in flight is if
2621 * we are the task doing the rcu_barrier().
2624 /* First adopt the ready-to-invoke callbacks. */
2625 if (rsp
->orphan_donelist
!= NULL
) {
2626 *rsp
->orphan_donetail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2627 *rdp
->nxttail
[RCU_DONE_TAIL
] = rsp
->orphan_donelist
;
2628 for (i
= RCU_NEXT_SIZE
- 1; i
>= RCU_DONE_TAIL
; i
--)
2629 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2630 rdp
->nxttail
[i
] = rsp
->orphan_donetail
;
2631 rsp
->orphan_donelist
= NULL
;
2632 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
2635 /* And then adopt the callbacks that still need a grace period. */
2636 if (rsp
->orphan_nxtlist
!= NULL
) {
2637 *rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxtlist
;
2638 rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxttail
;
2639 rsp
->orphan_nxtlist
= NULL
;
2640 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
2645 * Trace the fact that this CPU is going offline.
2647 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
2649 RCU_TRACE(unsigned long mask
);
2650 RCU_TRACE(struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
));
2651 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
);
2653 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2656 RCU_TRACE(mask
= rdp
->grpmask
);
2657 trace_rcu_grace_period(rsp
->name
,
2658 rnp
->gpnum
+ 1 - !!(rnp
->qsmask
& mask
),
2663 * All CPUs for the specified rcu_node structure have gone offline,
2664 * and all tasks that were preempted within an RCU read-side critical
2665 * section while running on one of those CPUs have since exited their RCU
2666 * read-side critical section. Some other CPU is reporting this fact with
2667 * the specified rcu_node structure's ->lock held and interrupts disabled.
2668 * This function therefore goes up the tree of rcu_node structures,
2669 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2670 * the leaf rcu_node structure's ->qsmaskinit field has already been
2673 * This function does check that the specified rcu_node structure has
2674 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2675 * prematurely. That said, invoking it after the fact will cost you
2676 * a needless lock acquisition. So once it has done its work, don't
2679 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
)
2682 struct rcu_node
*rnp
= rnp_leaf
;
2684 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2685 rnp
->qsmaskinit
|| rcu_preempt_has_tasks(rnp
))
2688 mask
= rnp
->grpmask
;
2692 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2693 rnp
->qsmaskinit
&= ~mask
;
2694 rnp
->qsmask
&= ~mask
;
2695 if (rnp
->qsmaskinit
) {
2696 raw_spin_unlock_rcu_node(rnp
);
2697 /* irqs remain disabled. */
2700 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2705 * The CPU has been completely removed, and some other CPU is reporting
2706 * this fact from process context. Do the remainder of the cleanup,
2707 * including orphaning the outgoing CPU's RCU callbacks, and also
2708 * adopting them. There can only be one CPU hotplug operation at a time,
2709 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2711 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
2713 unsigned long flags
;
2714 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2715 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2717 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2720 /* Adjust any no-longer-needed kthreads. */
2721 rcu_boost_kthread_setaffinity(rnp
, -1);
2723 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2724 raw_spin_lock_irqsave(&rsp
->orphan_lock
, flags
);
2725 rcu_send_cbs_to_orphanage(cpu
, rsp
, rnp
, rdp
);
2726 rcu_adopt_orphan_cbs(rsp
, flags
);
2727 raw_spin_unlock_irqrestore(&rsp
->orphan_lock
, flags
);
2729 WARN_ONCE(rdp
->qlen
!= 0 || rdp
->nxtlist
!= NULL
,
2730 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2731 cpu
, rdp
->qlen
, rdp
->nxtlist
);
2735 * Invoke any RCU callbacks that have made it to the end of their grace
2736 * period. Thottle as specified by rdp->blimit.
2738 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2740 unsigned long flags
;
2741 struct rcu_head
*next
, *list
, **tail
;
2742 long bl
, count
, count_lazy
;
2745 /* If no callbacks are ready, just return. */
2746 if (!cpu_has_callbacks_ready_to_invoke(rdp
)) {
2747 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, 0);
2748 trace_rcu_batch_end(rsp
->name
, 0, !!READ_ONCE(rdp
->nxtlist
),
2749 need_resched(), is_idle_task(current
),
2750 rcu_is_callbacks_kthread());
2755 * Extract the list of ready callbacks, disabling to prevent
2756 * races with call_rcu() from interrupt handlers.
2758 local_irq_save(flags
);
2759 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2761 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, bl
);
2762 list
= rdp
->nxtlist
;
2763 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2764 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2765 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2766 for (i
= RCU_NEXT_SIZE
- 1; i
>= 0; i
--)
2767 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2768 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
2769 local_irq_restore(flags
);
2771 /* Invoke callbacks. */
2772 count
= count_lazy
= 0;
2776 debug_rcu_head_unqueue(list
);
2777 if (__rcu_reclaim(rsp
->name
, list
))
2780 /* Stop only if limit reached and CPU has something to do. */
2781 if (++count
>= bl
&&
2783 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2787 local_irq_save(flags
);
2788 trace_rcu_batch_end(rsp
->name
, count
, !!list
, need_resched(),
2789 is_idle_task(current
),
2790 rcu_is_callbacks_kthread());
2792 /* Update count, and requeue any remaining callbacks. */
2794 *tail
= rdp
->nxtlist
;
2795 rdp
->nxtlist
= list
;
2796 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
2797 if (&rdp
->nxtlist
== rdp
->nxttail
[i
])
2798 rdp
->nxttail
[i
] = tail
;
2802 smp_mb(); /* List handling before counting for rcu_barrier(). */
2803 rdp
->qlen_lazy
-= count_lazy
;
2804 WRITE_ONCE(rdp
->qlen
, rdp
->qlen
- count
);
2805 rdp
->n_cbs_invoked
+= count
;
2807 /* Reinstate batch limit if we have worked down the excess. */
2808 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
2809 rdp
->blimit
= blimit
;
2811 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2812 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2813 rdp
->qlen_last_fqs_check
= 0;
2814 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2815 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
2816 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
2817 WARN_ON_ONCE((rdp
->nxtlist
== NULL
) != (rdp
->qlen
== 0));
2819 local_irq_restore(flags
);
2821 /* Re-invoke RCU core processing if there are callbacks remaining. */
2822 if (cpu_has_callbacks_ready_to_invoke(rdp
))
2827 * Check to see if this CPU is in a non-context-switch quiescent state
2828 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2829 * Also schedule RCU core processing.
2831 * This function must be called from hardirq context. It is normally
2832 * invoked from the scheduling-clock interrupt.
2834 void rcu_check_callbacks(int user
)
2836 trace_rcu_utilization(TPS("Start scheduler-tick"));
2837 increment_cpu_stall_ticks();
2838 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
2841 * Get here if this CPU took its interrupt from user
2842 * mode or from the idle loop, and if this is not a
2843 * nested interrupt. In this case, the CPU is in
2844 * a quiescent state, so note it.
2846 * No memory barrier is required here because both
2847 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2848 * variables that other CPUs neither access nor modify,
2849 * at least not while the corresponding CPU is online.
2855 } else if (!in_softirq()) {
2858 * Get here if this CPU did not take its interrupt from
2859 * softirq, in other words, if it is not interrupting
2860 * a rcu_bh read-side critical section. This is an _bh
2861 * critical section, so note it.
2866 rcu_preempt_check_callbacks();
2870 rcu_note_voluntary_context_switch(current
);
2871 trace_rcu_utilization(TPS("End scheduler-tick"));
2875 * Scan the leaf rcu_node structures, processing dyntick state for any that
2876 * have not yet encountered a quiescent state, using the function specified.
2877 * Also initiate boosting for any threads blocked on the root rcu_node.
2879 * The caller must have suppressed start of new grace periods.
2881 static void force_qs_rnp(struct rcu_state
*rsp
,
2882 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
2883 unsigned long *maxj
),
2884 bool *isidle
, unsigned long *maxj
)
2887 unsigned long flags
;
2889 struct rcu_node
*rnp
;
2891 rcu_for_each_leaf_node(rsp
, rnp
) {
2892 cond_resched_rcu_qs();
2894 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2895 if (rnp
->qsmask
== 0) {
2896 if (rcu_state_p
== &rcu_sched_state
||
2897 rsp
!= rcu_state_p
||
2898 rcu_preempt_blocked_readers_cgp(rnp
)) {
2900 * No point in scanning bits because they
2901 * are all zero. But we might need to
2902 * priority-boost blocked readers.
2904 rcu_initiate_boost(rnp
, flags
);
2905 /* rcu_initiate_boost() releases rnp->lock */
2909 (rnp
->parent
->qsmask
& rnp
->grpmask
)) {
2911 * Race between grace-period
2912 * initialization and task exiting RCU
2913 * read-side critical section: Report.
2915 rcu_report_unblock_qs_rnp(rsp
, rnp
, flags
);
2916 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2920 for_each_leaf_node_possible_cpu(rnp
, cpu
) {
2921 unsigned long bit
= leaf_node_cpu_bit(rnp
, cpu
);
2922 if ((rnp
->qsmask
& bit
) != 0) {
2923 if (f(per_cpu_ptr(rsp
->rda
, cpu
), isidle
, maxj
))
2928 /* Idle/offline CPUs, report (releases rnp->lock. */
2929 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2931 /* Nothing to do here, so just drop the lock. */
2932 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2938 * Force quiescent states on reluctant CPUs, and also detect which
2939 * CPUs are in dyntick-idle mode.
2941 static void force_quiescent_state(struct rcu_state
*rsp
)
2943 unsigned long flags
;
2945 struct rcu_node
*rnp
;
2946 struct rcu_node
*rnp_old
= NULL
;
2948 /* Funnel through hierarchy to reduce memory contention. */
2949 rnp
= __this_cpu_read(rsp
->rda
->mynode
);
2950 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2951 ret
= (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) ||
2952 !raw_spin_trylock(&rnp
->fqslock
);
2953 if (rnp_old
!= NULL
)
2954 raw_spin_unlock(&rnp_old
->fqslock
);
2956 rsp
->n_force_qs_lh
++;
2961 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2963 /* Reached the root of the rcu_node tree, acquire lock. */
2964 raw_spin_lock_irqsave_rcu_node(rnp_old
, flags
);
2965 raw_spin_unlock(&rnp_old
->fqslock
);
2966 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2967 rsp
->n_force_qs_lh
++;
2968 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2969 return; /* Someone beat us to it. */
2971 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2972 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2973 rcu_gp_kthread_wake(rsp
);
2977 * This does the RCU core processing work for the specified rcu_state
2978 * and rcu_data structures. This may be called only from the CPU to
2979 * whom the rdp belongs.
2982 __rcu_process_callbacks(struct rcu_state
*rsp
)
2984 unsigned long flags
;
2986 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2988 WARN_ON_ONCE(rdp
->beenonline
== 0);
2990 /* Update RCU state based on any recent quiescent states. */
2991 rcu_check_quiescent_state(rsp
, rdp
);
2993 /* Does this CPU require a not-yet-started grace period? */
2994 local_irq_save(flags
);
2995 if (cpu_needs_another_gp(rsp
, rdp
)) {
2996 raw_spin_lock_rcu_node(rcu_get_root(rsp
)); /* irqs disabled. */
2997 needwake
= rcu_start_gp(rsp
);
2998 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
3000 rcu_gp_kthread_wake(rsp
);
3002 local_irq_restore(flags
);
3005 /* If there are callbacks ready, invoke them. */
3006 if (cpu_has_callbacks_ready_to_invoke(rdp
))
3007 invoke_rcu_callbacks(rsp
, rdp
);
3009 /* Do any needed deferred wakeups of rcuo kthreads. */
3010 do_nocb_deferred_wakeup(rdp
);
3014 * Do RCU core processing for the current CPU.
3016 static __latent_entropy
void rcu_process_callbacks(struct softirq_action
*unused
)
3018 struct rcu_state
*rsp
;
3020 if (cpu_is_offline(smp_processor_id()))
3022 trace_rcu_utilization(TPS("Start RCU core"));
3023 for_each_rcu_flavor(rsp
)
3024 __rcu_process_callbacks(rsp
);
3025 trace_rcu_utilization(TPS("End RCU core"));
3029 * Schedule RCU callback invocation. If the specified type of RCU
3030 * does not support RCU priority boosting, just do a direct call,
3031 * otherwise wake up the per-CPU kernel kthread. Note that because we
3032 * are running on the current CPU with softirqs disabled, the
3033 * rcu_cpu_kthread_task cannot disappear out from under us.
3035 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3037 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active
)))
3039 if (likely(!rsp
->boost
)) {
3040 rcu_do_batch(rsp
, rdp
);
3043 invoke_rcu_callbacks_kthread();
3046 static void invoke_rcu_core(void)
3048 if (cpu_online(smp_processor_id()))
3049 raise_softirq(RCU_SOFTIRQ
);
3053 * Handle any core-RCU processing required by a call_rcu() invocation.
3055 static void __call_rcu_core(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
3056 struct rcu_head
*head
, unsigned long flags
)
3061 * If called from an extended quiescent state, invoke the RCU
3062 * core in order to force a re-evaluation of RCU's idleness.
3064 if (!rcu_is_watching())
3067 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3068 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
3072 * Force the grace period if too many callbacks or too long waiting.
3073 * Enforce hysteresis, and don't invoke force_quiescent_state()
3074 * if some other CPU has recently done so. Also, don't bother
3075 * invoking force_quiescent_state() if the newly enqueued callback
3076 * is the only one waiting for a grace period to complete.
3078 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
3080 /* Are we ignoring a completed grace period? */
3081 note_gp_changes(rsp
, rdp
);
3083 /* Start a new grace period if one not already started. */
3084 if (!rcu_gp_in_progress(rsp
)) {
3085 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
3087 raw_spin_lock_rcu_node(rnp_root
);
3088 needwake
= rcu_start_gp(rsp
);
3089 raw_spin_unlock_rcu_node(rnp_root
);
3091 rcu_gp_kthread_wake(rsp
);
3093 /* Give the grace period a kick. */
3094 rdp
->blimit
= LONG_MAX
;
3095 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
3096 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
3097 force_quiescent_state(rsp
);
3098 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3099 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
3105 * RCU callback function to leak a callback.
3107 static void rcu_leak_callback(struct rcu_head
*rhp
)
3112 * Helper function for call_rcu() and friends. The cpu argument will
3113 * normally be -1, indicating "currently running CPU". It may specify
3114 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3115 * is expected to specify a CPU.
3118 __call_rcu(struct rcu_head
*head
, rcu_callback_t func
,
3119 struct rcu_state
*rsp
, int cpu
, bool lazy
)
3121 unsigned long flags
;
3122 struct rcu_data
*rdp
;
3124 /* Misaligned rcu_head! */
3125 WARN_ON_ONCE((unsigned long)head
& (sizeof(void *) - 1));
3127 if (debug_rcu_head_queue(head
)) {
3128 /* Probable double call_rcu(), so leak the callback. */
3129 WRITE_ONCE(head
->func
, rcu_leak_callback
);
3130 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3135 local_irq_save(flags
);
3136 rdp
= this_cpu_ptr(rsp
->rda
);
3138 /* Add the callback to our list. */
3139 if (unlikely(rdp
->nxttail
[RCU_NEXT_TAIL
] == NULL
) || cpu
!= -1) {
3143 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3144 if (likely(rdp
->mynode
)) {
3145 /* Post-boot, so this should be for a no-CBs CPU. */
3146 offline
= !__call_rcu_nocb(rdp
, head
, lazy
, flags
);
3147 WARN_ON_ONCE(offline
);
3148 /* Offline CPU, _call_rcu() illegal, leak callback. */
3149 local_irq_restore(flags
);
3153 * Very early boot, before rcu_init(). Initialize if needed
3154 * and then drop through to queue the callback.
3157 WARN_ON_ONCE(!rcu_is_watching());
3158 if (!likely(rdp
->nxtlist
))
3159 init_default_callback_list(rdp
);
3161 WRITE_ONCE(rdp
->qlen
, rdp
->qlen
+ 1);
3165 rcu_idle_count_callbacks_posted();
3166 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3167 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
3168 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
3170 if (__is_kfree_rcu_offset((unsigned long)func
))
3171 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
3172 rdp
->qlen_lazy
, rdp
->qlen
);
3174 trace_rcu_callback(rsp
->name
, head
, rdp
->qlen_lazy
, rdp
->qlen
);
3176 /* Go handle any RCU core processing required. */
3177 __call_rcu_core(rsp
, rdp
, head
, flags
);
3178 local_irq_restore(flags
);
3182 * Queue an RCU-sched callback for invocation after a grace period.
3184 void call_rcu_sched(struct rcu_head
*head
, rcu_callback_t func
)
3186 __call_rcu(head
, func
, &rcu_sched_state
, -1, 0);
3188 EXPORT_SYMBOL_GPL(call_rcu_sched
);
3191 * Queue an RCU callback for invocation after a quicker grace period.
3193 void call_rcu_bh(struct rcu_head
*head
, rcu_callback_t func
)
3195 __call_rcu(head
, func
, &rcu_bh_state
, -1, 0);
3197 EXPORT_SYMBOL_GPL(call_rcu_bh
);
3200 * Queue an RCU callback for lazy invocation after a grace period.
3201 * This will likely be later named something like "call_rcu_lazy()",
3202 * but this change will require some way of tagging the lazy RCU
3203 * callbacks in the list of pending callbacks. Until then, this
3204 * function may only be called from __kfree_rcu().
3206 void kfree_call_rcu(struct rcu_head
*head
,
3207 rcu_callback_t func
)
3209 __call_rcu(head
, func
, rcu_state_p
, -1, 1);
3211 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
3214 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3215 * any blocking grace-period wait automatically implies a grace period
3216 * if there is only one CPU online at any point time during execution
3217 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3218 * occasionally incorrectly indicate that there are multiple CPUs online
3219 * when there was in fact only one the whole time, as this just adds
3220 * some overhead: RCU still operates correctly.
3222 static inline int rcu_blocking_is_gp(void)
3226 might_sleep(); /* Check for RCU read-side critical section. */
3228 ret
= num_online_cpus() <= 1;
3234 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3236 * Control will return to the caller some time after a full rcu-sched
3237 * grace period has elapsed, in other words after all currently executing
3238 * rcu-sched read-side critical sections have completed. These read-side
3239 * critical sections are delimited by rcu_read_lock_sched() and
3240 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3241 * local_irq_disable(), and so on may be used in place of
3242 * rcu_read_lock_sched().
3244 * This means that all preempt_disable code sequences, including NMI and
3245 * non-threaded hardware-interrupt handlers, in progress on entry will
3246 * have completed before this primitive returns. However, this does not
3247 * guarantee that softirq handlers will have completed, since in some
3248 * kernels, these handlers can run in process context, and can block.
3250 * Note that this guarantee implies further memory-ordering guarantees.
3251 * On systems with more than one CPU, when synchronize_sched() returns,
3252 * each CPU is guaranteed to have executed a full memory barrier since the
3253 * end of its last RCU-sched read-side critical section whose beginning
3254 * preceded the call to synchronize_sched(). In addition, each CPU having
3255 * an RCU read-side critical section that extends beyond the return from
3256 * synchronize_sched() is guaranteed to have executed a full memory barrier
3257 * after the beginning of synchronize_sched() and before the beginning of
3258 * that RCU read-side critical section. Note that these guarantees include
3259 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3260 * that are executing in the kernel.
3262 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3263 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3264 * to have executed a full memory barrier during the execution of
3265 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3266 * again only if the system has more than one CPU).
3268 * This primitive provides the guarantees made by the (now removed)
3269 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3270 * guarantees that rcu_read_lock() sections will have completed.
3271 * In "classic RCU", these two guarantees happen to be one and
3272 * the same, but can differ in realtime RCU implementations.
3274 void synchronize_sched(void)
3276 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3277 lock_is_held(&rcu_lock_map
) ||
3278 lock_is_held(&rcu_sched_lock_map
),
3279 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3280 if (rcu_blocking_is_gp())
3282 if (rcu_gp_is_expedited())
3283 synchronize_sched_expedited();
3285 wait_rcu_gp(call_rcu_sched
);
3287 EXPORT_SYMBOL_GPL(synchronize_sched
);
3290 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3292 * Control will return to the caller some time after a full rcu_bh grace
3293 * period has elapsed, in other words after all currently executing rcu_bh
3294 * read-side critical sections have completed. RCU read-side critical
3295 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3296 * and may be nested.
3298 * See the description of synchronize_sched() for more detailed information
3299 * on memory ordering guarantees.
3301 void synchronize_rcu_bh(void)
3303 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3304 lock_is_held(&rcu_lock_map
) ||
3305 lock_is_held(&rcu_sched_lock_map
),
3306 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3307 if (rcu_blocking_is_gp())
3309 if (rcu_gp_is_expedited())
3310 synchronize_rcu_bh_expedited();
3312 wait_rcu_gp(call_rcu_bh
);
3314 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
3317 * get_state_synchronize_rcu - Snapshot current RCU state
3319 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3320 * to determine whether or not a full grace period has elapsed in the
3323 unsigned long get_state_synchronize_rcu(void)
3326 * Any prior manipulation of RCU-protected data must happen
3327 * before the load from ->gpnum.
3332 * Make sure this load happens before the purportedly
3333 * time-consuming work between get_state_synchronize_rcu()
3334 * and cond_synchronize_rcu().
3336 return smp_load_acquire(&rcu_state_p
->gpnum
);
3338 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu
);
3341 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3343 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3345 * If a full RCU grace period has elapsed since the earlier call to
3346 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3347 * synchronize_rcu() to wait for a full grace period.
3349 * Yes, this function does not take counter wrap into account. But
3350 * counter wrap is harmless. If the counter wraps, we have waited for
3351 * more than 2 billion grace periods (and way more on a 64-bit system!),
3352 * so waiting for one additional grace period should be just fine.
3354 void cond_synchronize_rcu(unsigned long oldstate
)
3356 unsigned long newstate
;
3359 * Ensure that this load happens before any RCU-destructive
3360 * actions the caller might carry out after we return.
3362 newstate
= smp_load_acquire(&rcu_state_p
->completed
);
3363 if (ULONG_CMP_GE(oldstate
, newstate
))
3366 EXPORT_SYMBOL_GPL(cond_synchronize_rcu
);
3369 * get_state_synchronize_sched - Snapshot current RCU-sched state
3371 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3372 * to determine whether or not a full grace period has elapsed in the
3375 unsigned long get_state_synchronize_sched(void)
3378 * Any prior manipulation of RCU-protected data must happen
3379 * before the load from ->gpnum.
3384 * Make sure this load happens before the purportedly
3385 * time-consuming work between get_state_synchronize_sched()
3386 * and cond_synchronize_sched().
3388 return smp_load_acquire(&rcu_sched_state
.gpnum
);
3390 EXPORT_SYMBOL_GPL(get_state_synchronize_sched
);
3393 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3395 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3397 * If a full RCU-sched grace period has elapsed since the earlier call to
3398 * get_state_synchronize_sched(), just return. Otherwise, invoke
3399 * synchronize_sched() to wait for a full grace period.
3401 * Yes, this function does not take counter wrap into account. But
3402 * counter wrap is harmless. If the counter wraps, we have waited for
3403 * more than 2 billion grace periods (and way more on a 64-bit system!),
3404 * so waiting for one additional grace period should be just fine.
3406 void cond_synchronize_sched(unsigned long oldstate
)
3408 unsigned long newstate
;
3411 * Ensure that this load happens before any RCU-destructive
3412 * actions the caller might carry out after we return.
3414 newstate
= smp_load_acquire(&rcu_sched_state
.completed
);
3415 if (ULONG_CMP_GE(oldstate
, newstate
))
3416 synchronize_sched();
3418 EXPORT_SYMBOL_GPL(cond_synchronize_sched
);
3420 /* Adjust sequence number for start of update-side operation. */
3421 static void rcu_seq_start(unsigned long *sp
)
3423 WRITE_ONCE(*sp
, *sp
+ 1);
3424 smp_mb(); /* Ensure update-side operation after counter increment. */
3425 WARN_ON_ONCE(!(*sp
& 0x1));
3428 /* Adjust sequence number for end of update-side operation. */
3429 static void rcu_seq_end(unsigned long *sp
)
3431 smp_mb(); /* Ensure update-side operation before counter increment. */
3432 WRITE_ONCE(*sp
, *sp
+ 1);
3433 WARN_ON_ONCE(*sp
& 0x1);
3436 /* Take a snapshot of the update side's sequence number. */
3437 static unsigned long rcu_seq_snap(unsigned long *sp
)
3441 s
= (READ_ONCE(*sp
) + 3) & ~0x1;
3442 smp_mb(); /* Above access must not bleed into critical section. */
3447 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3448 * full update-side operation has occurred.
3450 static bool rcu_seq_done(unsigned long *sp
, unsigned long s
)
3452 return ULONG_CMP_GE(READ_ONCE(*sp
), s
);
3456 * Check to see if there is any immediate RCU-related work to be done
3457 * by the current CPU, for the specified type of RCU, returning 1 if so.
3458 * The checks are in order of increasing expense: checks that can be
3459 * carried out against CPU-local state are performed first. However,
3460 * we must check for CPU stalls first, else we might not get a chance.
3462 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3464 struct rcu_node
*rnp
= rdp
->mynode
;
3466 rdp
->n_rcu_pending
++;
3468 /* Check for CPU stalls, if enabled. */
3469 check_cpu_stall(rsp
, rdp
);
3471 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3472 if (rcu_nohz_full_cpu(rsp
))
3475 /* Is the RCU core waiting for a quiescent state from this CPU? */
3476 if (rcu_scheduler_fully_active
&&
3477 rdp
->core_needs_qs
&& rdp
->cpu_no_qs
.b
.norm
&&
3478 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
)) {
3479 rdp
->n_rp_core_needs_qs
++;
3480 } else if (rdp
->core_needs_qs
&&
3481 (!rdp
->cpu_no_qs
.b
.norm
||
3482 rdp
->rcu_qs_ctr_snap
!= __this_cpu_read(rcu_qs_ctr
))) {
3483 rdp
->n_rp_report_qs
++;
3487 /* Does this CPU have callbacks ready to invoke? */
3488 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
3489 rdp
->n_rp_cb_ready
++;
3493 /* Has RCU gone idle with this CPU needing another grace period? */
3494 if (cpu_needs_another_gp(rsp
, rdp
)) {
3495 rdp
->n_rp_cpu_needs_gp
++;
3499 /* Has another RCU grace period completed? */
3500 if (READ_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
3501 rdp
->n_rp_gp_completed
++;
3505 /* Has a new RCU grace period started? */
3506 if (READ_ONCE(rnp
->gpnum
) != rdp
->gpnum
||
3507 unlikely(READ_ONCE(rdp
->gpwrap
))) { /* outside lock */
3508 rdp
->n_rp_gp_started
++;
3512 /* Does this CPU need a deferred NOCB wakeup? */
3513 if (rcu_nocb_need_deferred_wakeup(rdp
)) {
3514 rdp
->n_rp_nocb_defer_wakeup
++;
3519 rdp
->n_rp_need_nothing
++;
3524 * Check to see if there is any immediate RCU-related work to be done
3525 * by the current CPU, returning 1 if so. This function is part of the
3526 * RCU implementation; it is -not- an exported member of the RCU API.
3528 static int rcu_pending(void)
3530 struct rcu_state
*rsp
;
3532 for_each_rcu_flavor(rsp
)
3533 if (__rcu_pending(rsp
, this_cpu_ptr(rsp
->rda
)))
3539 * Return true if the specified CPU has any callback. If all_lazy is
3540 * non-NULL, store an indication of whether all callbacks are lazy.
3541 * (If there are no callbacks, all of them are deemed to be lazy.)
3543 static bool __maybe_unused
rcu_cpu_has_callbacks(bool *all_lazy
)
3547 struct rcu_data
*rdp
;
3548 struct rcu_state
*rsp
;
3550 for_each_rcu_flavor(rsp
) {
3551 rdp
= this_cpu_ptr(rsp
->rda
);
3555 if (rdp
->qlen
!= rdp
->qlen_lazy
|| !all_lazy
) {
3566 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3567 * the compiler is expected to optimize this away.
3569 static void _rcu_barrier_trace(struct rcu_state
*rsp
, const char *s
,
3570 int cpu
, unsigned long done
)
3572 trace_rcu_barrier(rsp
->name
, s
, cpu
,
3573 atomic_read(&rsp
->barrier_cpu_count
), done
);
3577 * RCU callback function for _rcu_barrier(). If we are last, wake
3578 * up the task executing _rcu_barrier().
3580 static void rcu_barrier_callback(struct rcu_head
*rhp
)
3582 struct rcu_data
*rdp
= container_of(rhp
, struct rcu_data
, barrier_head
);
3583 struct rcu_state
*rsp
= rdp
->rsp
;
3585 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
)) {
3586 _rcu_barrier_trace(rsp
, "LastCB", -1, rsp
->barrier_sequence
);
3587 complete(&rsp
->barrier_completion
);
3589 _rcu_barrier_trace(rsp
, "CB", -1, rsp
->barrier_sequence
);
3594 * Called with preemption disabled, and from cross-cpu IRQ context.
3596 static void rcu_barrier_func(void *type
)
3598 struct rcu_state
*rsp
= type
;
3599 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
3601 _rcu_barrier_trace(rsp
, "IRQ", -1, rsp
->barrier_sequence
);
3602 atomic_inc(&rsp
->barrier_cpu_count
);
3603 rsp
->call(&rdp
->barrier_head
, rcu_barrier_callback
);
3607 * Orchestrate the specified type of RCU barrier, waiting for all
3608 * RCU callbacks of the specified type to complete.
3610 static void _rcu_barrier(struct rcu_state
*rsp
)
3613 struct rcu_data
*rdp
;
3614 unsigned long s
= rcu_seq_snap(&rsp
->barrier_sequence
);
3616 _rcu_barrier_trace(rsp
, "Begin", -1, s
);
3618 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3619 mutex_lock(&rsp
->barrier_mutex
);
3621 /* Did someone else do our work for us? */
3622 if (rcu_seq_done(&rsp
->barrier_sequence
, s
)) {
3623 _rcu_barrier_trace(rsp
, "EarlyExit", -1, rsp
->barrier_sequence
);
3624 smp_mb(); /* caller's subsequent code after above check. */
3625 mutex_unlock(&rsp
->barrier_mutex
);
3629 /* Mark the start of the barrier operation. */
3630 rcu_seq_start(&rsp
->barrier_sequence
);
3631 _rcu_barrier_trace(rsp
, "Inc1", -1, rsp
->barrier_sequence
);
3634 * Initialize the count to one rather than to zero in order to
3635 * avoid a too-soon return to zero in case of a short grace period
3636 * (or preemption of this task). Exclude CPU-hotplug operations
3637 * to ensure that no offline CPU has callbacks queued.
3639 init_completion(&rsp
->barrier_completion
);
3640 atomic_set(&rsp
->barrier_cpu_count
, 1);
3644 * Force each CPU with callbacks to register a new callback.
3645 * When that callback is invoked, we will know that all of the
3646 * corresponding CPU's preceding callbacks have been invoked.
3648 for_each_possible_cpu(cpu
) {
3649 if (!cpu_online(cpu
) && !rcu_is_nocb_cpu(cpu
))
3651 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3652 if (rcu_is_nocb_cpu(cpu
)) {
3653 if (!rcu_nocb_cpu_needs_barrier(rsp
, cpu
)) {
3654 _rcu_barrier_trace(rsp
, "OfflineNoCB", cpu
,
3655 rsp
->barrier_sequence
);
3657 _rcu_barrier_trace(rsp
, "OnlineNoCB", cpu
,
3658 rsp
->barrier_sequence
);
3659 smp_mb__before_atomic();
3660 atomic_inc(&rsp
->barrier_cpu_count
);
3661 __call_rcu(&rdp
->barrier_head
,
3662 rcu_barrier_callback
, rsp
, cpu
, 0);
3664 } else if (READ_ONCE(rdp
->qlen
)) {
3665 _rcu_barrier_trace(rsp
, "OnlineQ", cpu
,
3666 rsp
->barrier_sequence
);
3667 smp_call_function_single(cpu
, rcu_barrier_func
, rsp
, 1);
3669 _rcu_barrier_trace(rsp
, "OnlineNQ", cpu
,
3670 rsp
->barrier_sequence
);
3676 * Now that we have an rcu_barrier_callback() callback on each
3677 * CPU, and thus each counted, remove the initial count.
3679 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
))
3680 complete(&rsp
->barrier_completion
);
3682 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3683 wait_for_completion(&rsp
->barrier_completion
);
3685 /* Mark the end of the barrier operation. */
3686 _rcu_barrier_trace(rsp
, "Inc2", -1, rsp
->barrier_sequence
);
3687 rcu_seq_end(&rsp
->barrier_sequence
);
3689 /* Other rcu_barrier() invocations can now safely proceed. */
3690 mutex_unlock(&rsp
->barrier_mutex
);
3694 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3696 void rcu_barrier_bh(void)
3698 _rcu_barrier(&rcu_bh_state
);
3700 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
3703 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3705 void rcu_barrier_sched(void)
3707 _rcu_barrier(&rcu_sched_state
);
3709 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
3712 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3713 * first CPU in a given leaf rcu_node structure coming online. The caller
3714 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3717 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
)
3720 struct rcu_node
*rnp
= rnp_leaf
;
3723 mask
= rnp
->grpmask
;
3727 raw_spin_lock_rcu_node(rnp
); /* Interrupts already disabled. */
3728 rnp
->qsmaskinit
|= mask
;
3729 raw_spin_unlock_rcu_node(rnp
); /* Interrupts remain disabled. */
3734 * Do boot-time initialization of a CPU's per-CPU RCU data.
3737 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
3739 unsigned long flags
;
3740 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3741 struct rcu_node
*rnp
= rcu_get_root(rsp
);
3743 /* Set up local state, ensuring consistent view of global state. */
3744 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3745 rdp
->grpmask
= leaf_node_cpu_bit(rdp
->mynode
, cpu
);
3746 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
3747 WARN_ON_ONCE(rdp
->dynticks
->dynticks_nesting
!= DYNTICK_TASK_EXIT_IDLE
);
3748 WARN_ON_ONCE(atomic_read(&rdp
->dynticks
->dynticks
) != 1);
3751 rcu_boot_init_nocb_percpu_data(rdp
);
3752 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3756 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3757 * offline event can be happening at a given time. Note also that we
3758 * can accept some slop in the rsp->completed access due to the fact
3759 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3762 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
3764 unsigned long flags
;
3766 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3767 struct rcu_node
*rnp
= rcu_get_root(rsp
);
3769 /* Set up local state, ensuring consistent view of global state. */
3770 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3771 rdp
->qlen_last_fqs_check
= 0;
3772 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3773 rdp
->blimit
= blimit
;
3775 init_callback_list(rdp
); /* Re-enable callbacks on this CPU. */
3776 rdp
->dynticks
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
3777 rcu_sysidle_init_percpu_data(rdp
->dynticks
);
3778 atomic_set(&rdp
->dynticks
->dynticks
,
3779 (atomic_read(&rdp
->dynticks
->dynticks
) & ~0x1) + 1);
3780 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
3783 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3784 * propagation up the rcu_node tree will happen at the beginning
3785 * of the next grace period.
3788 mask
= rdp
->grpmask
;
3789 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
3790 if (!rdp
->beenonline
)
3791 WRITE_ONCE(rsp
->ncpus
, READ_ONCE(rsp
->ncpus
) + 1);
3792 rdp
->beenonline
= true; /* We have now been online. */
3793 rdp
->gpnum
= rnp
->completed
; /* Make CPU later note any new GP. */
3794 rdp
->completed
= rnp
->completed
;
3795 rdp
->cpu_no_qs
.b
.norm
= true;
3796 rdp
->rcu_qs_ctr_snap
= per_cpu(rcu_qs_ctr
, cpu
);
3797 rdp
->core_needs_qs
= false;
3798 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuonl"));
3799 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3802 int rcutree_prepare_cpu(unsigned int cpu
)
3804 struct rcu_state
*rsp
;
3806 for_each_rcu_flavor(rsp
)
3807 rcu_init_percpu_data(cpu
, rsp
);
3809 rcu_prepare_kthreads(cpu
);
3810 rcu_spawn_all_nocb_kthreads(cpu
);
3815 static void rcutree_affinity_setting(unsigned int cpu
, int outgoing
)
3817 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
3819 rcu_boost_kthread_setaffinity(rdp
->mynode
, outgoing
);
3822 int rcutree_online_cpu(unsigned int cpu
)
3824 sync_sched_exp_online_cleanup(cpu
);
3825 rcutree_affinity_setting(cpu
, -1);
3829 int rcutree_offline_cpu(unsigned int cpu
)
3831 rcutree_affinity_setting(cpu
, cpu
);
3836 int rcutree_dying_cpu(unsigned int cpu
)
3838 struct rcu_state
*rsp
;
3840 for_each_rcu_flavor(rsp
)
3841 rcu_cleanup_dying_cpu(rsp
);
3845 int rcutree_dead_cpu(unsigned int cpu
)
3847 struct rcu_state
*rsp
;
3849 for_each_rcu_flavor(rsp
) {
3850 rcu_cleanup_dead_cpu(cpu
, rsp
);
3851 do_nocb_deferred_wakeup(per_cpu_ptr(rsp
->rda
, cpu
));
3857 * Mark the specified CPU as being online so that subsequent grace periods
3858 * (both expedited and normal) will wait on it. Note that this means that
3859 * incoming CPUs are not allowed to use RCU read-side critical sections
3860 * until this function is called. Failing to observe this restriction
3861 * will result in lockdep splats.
3863 void rcu_cpu_starting(unsigned int cpu
)
3865 unsigned long flags
;
3867 struct rcu_data
*rdp
;
3868 struct rcu_node
*rnp
;
3869 struct rcu_state
*rsp
;
3871 for_each_rcu_flavor(rsp
) {
3872 rdp
= this_cpu_ptr(rsp
->rda
);
3874 mask
= rdp
->grpmask
;
3875 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3876 rnp
->qsmaskinitnext
|= mask
;
3877 rnp
->expmaskinitnext
|= mask
;
3878 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3882 #ifdef CONFIG_HOTPLUG_CPU
3884 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3885 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3887 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3888 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3891 static void rcu_cleanup_dying_idle_cpu(int cpu
, struct rcu_state
*rsp
)
3893 unsigned long flags
;
3895 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3896 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
3898 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3899 mask
= rdp
->grpmask
;
3900 raw_spin_lock_irqsave_rcu_node(rnp
, flags
); /* Enforce GP memory-order guarantee. */
3901 rnp
->qsmaskinitnext
&= ~mask
;
3902 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3905 void rcu_report_dead(unsigned int cpu
)
3907 struct rcu_state
*rsp
;
3909 /* QS for any half-done expedited RCU-sched GP. */
3911 rcu_report_exp_rdp(&rcu_sched_state
,
3912 this_cpu_ptr(rcu_sched_state
.rda
), true);
3914 for_each_rcu_flavor(rsp
)
3915 rcu_cleanup_dying_idle_cpu(cpu
, rsp
);
3919 static int rcu_pm_notify(struct notifier_block
*self
,
3920 unsigned long action
, void *hcpu
)
3923 case PM_HIBERNATION_PREPARE
:
3924 case PM_SUSPEND_PREPARE
:
3925 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3928 case PM_POST_HIBERNATION
:
3929 case PM_POST_SUSPEND
:
3930 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3931 rcu_unexpedite_gp();
3940 * Spawn the kthreads that handle each RCU flavor's grace periods.
3942 static int __init
rcu_spawn_gp_kthread(void)
3944 unsigned long flags
;
3945 int kthread_prio_in
= kthread_prio
;
3946 struct rcu_node
*rnp
;
3947 struct rcu_state
*rsp
;
3948 struct sched_param sp
;
3949 struct task_struct
*t
;
3951 /* Force priority into range. */
3952 if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 1)
3954 else if (kthread_prio
< 0)
3956 else if (kthread_prio
> 99)
3958 if (kthread_prio
!= kthread_prio_in
)
3959 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3960 kthread_prio
, kthread_prio_in
);
3962 rcu_scheduler_fully_active
= 1;
3963 for_each_rcu_flavor(rsp
) {
3964 t
= kthread_create(rcu_gp_kthread
, rsp
, "%s", rsp
->name
);
3966 rnp
= rcu_get_root(rsp
);
3967 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3968 rsp
->gp_kthread
= t
;
3970 sp
.sched_priority
= kthread_prio
;
3971 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
3973 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3976 rcu_spawn_nocb_kthreads();
3977 rcu_spawn_boost_kthreads();
3980 early_initcall(rcu_spawn_gp_kthread
);
3983 * This function is invoked towards the end of the scheduler's initialization
3984 * process. Before this is called, the idle task might contain
3985 * RCU read-side critical sections (during which time, this idle
3986 * task is booting the system). After this function is called, the
3987 * idle tasks are prohibited from containing RCU read-side critical
3988 * sections. This function also enables RCU lockdep checking.
3990 void rcu_scheduler_starting(void)
3992 WARN_ON(num_online_cpus() != 1);
3993 WARN_ON(nr_context_switches() > 0);
3994 rcu_scheduler_active
= 1;
3998 * Compute the per-level fanout, either using the exact fanout specified
3999 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4001 static void __init
rcu_init_levelspread(int *levelspread
, const int *levelcnt
)
4005 if (rcu_fanout_exact
) {
4006 levelspread
[rcu_num_lvls
- 1] = rcu_fanout_leaf
;
4007 for (i
= rcu_num_lvls
- 2; i
>= 0; i
--)
4008 levelspread
[i
] = RCU_FANOUT
;
4014 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4016 levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
4023 * Helper function for rcu_init() that initializes one rcu_state structure.
4025 static void __init
rcu_init_one(struct rcu_state
*rsp
)
4027 static const char * const buf
[] = RCU_NODE_NAME_INIT
;
4028 static const char * const fqs
[] = RCU_FQS_NAME_INIT
;
4029 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
4030 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
4031 static u8 fl_mask
= 0x1;
4033 int levelcnt
[RCU_NUM_LVLS
]; /* # nodes in each level. */
4034 int levelspread
[RCU_NUM_LVLS
]; /* kids/node in each level. */
4038 struct rcu_node
*rnp
;
4040 BUILD_BUG_ON(RCU_NUM_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
4042 /* Silence gcc 4.8 false positive about array index out of range. */
4043 if (rcu_num_lvls
<= 0 || rcu_num_lvls
> RCU_NUM_LVLS
)
4044 panic("rcu_init_one: rcu_num_lvls out of range");
4046 /* Initialize the level-tracking arrays. */
4048 for (i
= 0; i
< rcu_num_lvls
; i
++)
4049 levelcnt
[i
] = num_rcu_lvl
[i
];
4050 for (i
= 1; i
< rcu_num_lvls
; i
++)
4051 rsp
->level
[i
] = rsp
->level
[i
- 1] + levelcnt
[i
- 1];
4052 rcu_init_levelspread(levelspread
, levelcnt
);
4053 rsp
->flavor_mask
= fl_mask
;
4056 /* Initialize the elements themselves, starting from the leaves. */
4058 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4059 cpustride
*= levelspread
[i
];
4060 rnp
= rsp
->level
[i
];
4061 for (j
= 0; j
< levelcnt
[i
]; j
++, rnp
++) {
4062 raw_spin_lock_init(&ACCESS_PRIVATE(rnp
, lock
));
4063 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp
, lock
),
4064 &rcu_node_class
[i
], buf
[i
]);
4065 raw_spin_lock_init(&rnp
->fqslock
);
4066 lockdep_set_class_and_name(&rnp
->fqslock
,
4067 &rcu_fqs_class
[i
], fqs
[i
]);
4068 rnp
->gpnum
= rsp
->gpnum
;
4069 rnp
->completed
= rsp
->completed
;
4071 rnp
->qsmaskinit
= 0;
4072 rnp
->grplo
= j
* cpustride
;
4073 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
4074 if (rnp
->grphi
>= nr_cpu_ids
)
4075 rnp
->grphi
= nr_cpu_ids
- 1;
4081 rnp
->grpnum
= j
% levelspread
[i
- 1];
4082 rnp
->grpmask
= 1UL << rnp
->grpnum
;
4083 rnp
->parent
= rsp
->level
[i
- 1] +
4084 j
/ levelspread
[i
- 1];
4087 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
4088 rcu_init_one_nocb(rnp
);
4089 init_waitqueue_head(&rnp
->exp_wq
[0]);
4090 init_waitqueue_head(&rnp
->exp_wq
[1]);
4091 init_waitqueue_head(&rnp
->exp_wq
[2]);
4092 init_waitqueue_head(&rnp
->exp_wq
[3]);
4093 spin_lock_init(&rnp
->exp_lock
);
4097 init_swait_queue_head(&rsp
->gp_wq
);
4098 init_swait_queue_head(&rsp
->expedited_wq
);
4099 rnp
= rsp
->level
[rcu_num_lvls
- 1];
4100 for_each_possible_cpu(i
) {
4101 while (i
> rnp
->grphi
)
4103 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
4104 rcu_boot_init_percpu_data(i
, rsp
);
4106 list_add(&rsp
->flavors
, &rcu_struct_flavors
);
4110 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4111 * replace the definitions in tree.h because those are needed to size
4112 * the ->node array in the rcu_state structure.
4114 static void __init
rcu_init_geometry(void)
4118 int rcu_capacity
[RCU_NUM_LVLS
];
4121 * Initialize any unspecified boot parameters.
4122 * The default values of jiffies_till_first_fqs and
4123 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4124 * value, which is a function of HZ, then adding one for each
4125 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4127 d
= RCU_JIFFIES_TILL_FORCE_QS
+ nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
4128 if (jiffies_till_first_fqs
== ULONG_MAX
)
4129 jiffies_till_first_fqs
= d
;
4130 if (jiffies_till_next_fqs
== ULONG_MAX
)
4131 jiffies_till_next_fqs
= d
;
4133 /* If the compile-time values are accurate, just leave. */
4134 if (rcu_fanout_leaf
== RCU_FANOUT_LEAF
&&
4135 nr_cpu_ids
== NR_CPUS
)
4137 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4138 rcu_fanout_leaf
, nr_cpu_ids
);
4141 * The boot-time rcu_fanout_leaf parameter must be at least two
4142 * and cannot exceed the number of bits in the rcu_node masks.
4143 * Complain and fall back to the compile-time values if this
4144 * limit is exceeded.
4146 if (rcu_fanout_leaf
< 2 ||
4147 rcu_fanout_leaf
> sizeof(unsigned long) * 8) {
4148 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4154 * Compute number of nodes that can be handled an rcu_node tree
4155 * with the given number of levels.
4157 rcu_capacity
[0] = rcu_fanout_leaf
;
4158 for (i
= 1; i
< RCU_NUM_LVLS
; i
++)
4159 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * RCU_FANOUT
;
4162 * The tree must be able to accommodate the configured number of CPUs.
4163 * If this limit is exceeded, fall back to the compile-time values.
4165 if (nr_cpu_ids
> rcu_capacity
[RCU_NUM_LVLS
- 1]) {
4166 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4171 /* Calculate the number of levels in the tree. */
4172 for (i
= 0; nr_cpu_ids
> rcu_capacity
[i
]; i
++) {
4174 rcu_num_lvls
= i
+ 1;
4176 /* Calculate the number of rcu_nodes at each level of the tree. */
4177 for (i
= 0; i
< rcu_num_lvls
; i
++) {
4178 int cap
= rcu_capacity
[(rcu_num_lvls
- 1) - i
];
4179 num_rcu_lvl
[i
] = DIV_ROUND_UP(nr_cpu_ids
, cap
);
4182 /* Calculate the total number of rcu_node structures. */
4184 for (i
= 0; i
< rcu_num_lvls
; i
++)
4185 rcu_num_nodes
+= num_rcu_lvl
[i
];
4189 * Dump out the structure of the rcu_node combining tree associated
4190 * with the rcu_state structure referenced by rsp.
4192 static void __init
rcu_dump_rcu_node_tree(struct rcu_state
*rsp
)
4195 struct rcu_node
*rnp
;
4197 pr_info("rcu_node tree layout dump\n");
4199 rcu_for_each_node_breadth_first(rsp
, rnp
) {
4200 if (rnp
->level
!= level
) {
4205 pr_cont("%d:%d ^%d ", rnp
->grplo
, rnp
->grphi
, rnp
->grpnum
);
4210 void __init
rcu_init(void)
4214 rcu_early_boot_tests();
4216 rcu_bootup_announce();
4217 rcu_init_geometry();
4218 rcu_init_one(&rcu_bh_state
);
4219 rcu_init_one(&rcu_sched_state
);
4221 rcu_dump_rcu_node_tree(&rcu_sched_state
);
4222 __rcu_init_preempt();
4223 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
4226 * We don't need protection against CPU-hotplug here because
4227 * this is called early in boot, before either interrupts
4228 * or the scheduler are operational.
4230 pm_notifier(rcu_pm_notify
, 0);
4231 for_each_online_cpu(cpu
) {
4232 rcutree_prepare_cpu(cpu
);
4233 rcu_cpu_starting(cpu
);
4237 #include "tree_exp.h"
4238 #include "tree_plugin.h"