2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
33 #ifdef CONFIG_RCU_BOOST
35 #include "../locking/rtmutex_common.h"
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
41 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
46 #else /* #ifdef CONFIG_RCU_BOOST */
49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50 * all uses are in dead code. Provide a definition to keep the compiler
51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52 * This probably needs to be excluded from -rt builds.
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask
; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask
; /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll
; /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
65 * Check the RCU kernel configuration parameters and print informative
66 * messages about anything out of the ordinary.
68 static void __init
rcu_bootup_announce_oddness(void)
70 if (IS_ENABLED(CONFIG_RCU_TRACE
))
71 pr_info("\tRCU debugfs-based tracing is enabled.\n");
72 if ((IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 64) ||
73 (!IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 32))
74 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
77 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
78 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ
))
79 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
80 if (IS_ENABLED(CONFIG_PROVE_RCU
))
81 pr_info("\tRCU lockdep checking is enabled.\n");
82 if (RCU_NUM_LVLS
>= 4)
83 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
84 if (RCU_FANOUT_LEAF
!= 16)
85 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
87 if (rcu_fanout_leaf
!= RCU_FANOUT_LEAF
)
88 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf
);
89 if (nr_cpu_ids
!= NR_CPUS
)
90 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS
, nr_cpu_ids
);
91 if (IS_ENABLED(CONFIG_RCU_BOOST
))
92 pr_info("\tRCU kthread priority: %d.\n", kthread_prio
);
95 #ifdef CONFIG_PREEMPT_RCU
97 RCU_STATE_INITIALIZER(rcu_preempt
, 'p', call_rcu
);
98 static struct rcu_state
*const rcu_state_p
= &rcu_preempt_state
;
99 static struct rcu_data __percpu
*const rcu_data_p
= &rcu_preempt_data
;
101 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
105 * Tell them what RCU they are running.
107 static void __init
rcu_bootup_announce(void)
109 pr_info("Preemptible hierarchical RCU implementation.\n");
110 rcu_bootup_announce_oddness();
113 /* Flags for rcu_preempt_ctxt_queue() decision table. */
114 #define RCU_GP_TASKS 0x8
115 #define RCU_EXP_TASKS 0x4
116 #define RCU_GP_BLKD 0x2
117 #define RCU_EXP_BLKD 0x1
120 * Queues a task preempted within an RCU-preempt read-side critical
121 * section into the appropriate location within the ->blkd_tasks list,
122 * depending on the states of any ongoing normal and expedited grace
123 * periods. The ->gp_tasks pointer indicates which element the normal
124 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
125 * indicates which element the expedited grace period is waiting on (again,
126 * NULL if none). If a grace period is waiting on a given element in the
127 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
128 * adding a task to the tail of the list blocks any grace period that is
129 * already waiting on one of the elements. In contrast, adding a task
130 * to the head of the list won't block any grace period that is already
131 * waiting on one of the elements.
133 * This queuing is imprecise, and can sometimes make an ongoing grace
134 * period wait for a task that is not strictly speaking blocking it.
135 * Given the choice, we needlessly block a normal grace period rather than
136 * blocking an expedited grace period.
138 * Note that an endless sequence of expedited grace periods still cannot
139 * indefinitely postpone a normal grace period. Eventually, all of the
140 * fixed number of preempted tasks blocking the normal grace period that are
141 * not also blocking the expedited grace period will resume and complete
142 * their RCU read-side critical sections. At that point, the ->gp_tasks
143 * pointer will equal the ->exp_tasks pointer, at which point the end of
144 * the corresponding expedited grace period will also be the end of the
145 * normal grace period.
147 static void rcu_preempt_ctxt_queue(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
148 __releases(rnp
->lock
) /* But leaves rrupts disabled. */
150 int blkd_state
= (rnp
->gp_tasks
? RCU_GP_TASKS
: 0) +
151 (rnp
->exp_tasks
? RCU_EXP_TASKS
: 0) +
152 (rnp
->qsmask
& rdp
->grpmask
? RCU_GP_BLKD
: 0) +
153 (rnp
->expmask
& rdp
->grpmask
? RCU_EXP_BLKD
: 0);
154 struct task_struct
*t
= current
;
157 * Decide where to queue the newly blocked task. In theory,
158 * this could be an if-statement. In practice, when I tried
159 * that, it was quite messy.
161 switch (blkd_state
) {
164 case RCU_EXP_TASKS
+ RCU_GP_BLKD
:
166 case RCU_GP_TASKS
+ RCU_EXP_TASKS
:
169 * Blocking neither GP, or first task blocking the normal
170 * GP but not blocking the already-waiting expedited GP.
171 * Queue at the head of the list to avoid unnecessarily
172 * blocking the already-waiting GPs.
174 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
179 case RCU_GP_BLKD
+ RCU_EXP_BLKD
:
180 case RCU_GP_TASKS
+ RCU_EXP_BLKD
:
181 case RCU_GP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
182 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
185 * First task arriving that blocks either GP, or first task
186 * arriving that blocks the expedited GP (with the normal
187 * GP already waiting), or a task arriving that blocks
188 * both GPs with both GPs already waiting. Queue at the
189 * tail of the list to avoid any GP waiting on any of the
190 * already queued tasks that are not blocking it.
192 list_add_tail(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
195 case RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
196 case RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
197 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
200 * Second or subsequent task blocking the expedited GP.
201 * The task either does not block the normal GP, or is the
202 * first task blocking the normal GP. Queue just after
203 * the first task blocking the expedited GP.
205 list_add(&t
->rcu_node_entry
, rnp
->exp_tasks
);
208 case RCU_GP_TASKS
+ RCU_GP_BLKD
:
209 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
:
212 * Second or subsequent task blocking the normal GP.
213 * The task does not block the expedited GP. Queue just
214 * after the first task blocking the normal GP.
216 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
);
221 /* Yet another exercise in excessive paranoia. */
227 * We have now queued the task. If it was the first one to
228 * block either grace period, update the ->gp_tasks and/or
229 * ->exp_tasks pointers, respectively, to reference the newly
232 if (!rnp
->gp_tasks
&& (blkd_state
& RCU_GP_BLKD
))
233 rnp
->gp_tasks
= &t
->rcu_node_entry
;
234 if (!rnp
->exp_tasks
&& (blkd_state
& RCU_EXP_BLKD
))
235 rnp
->exp_tasks
= &t
->rcu_node_entry
;
236 raw_spin_unlock_rcu_node(rnp
); /* interrupts remain disabled. */
239 * Report the quiescent state for the expedited GP. This expedited
240 * GP should not be able to end until we report, so there should be
241 * no need to check for a subsequent expedited GP. (Though we are
242 * still in a quiescent state in any case.)
244 if (blkd_state
& RCU_EXP_BLKD
&&
245 t
->rcu_read_unlock_special
.b
.exp_need_qs
) {
246 t
->rcu_read_unlock_special
.b
.exp_need_qs
= false;
247 rcu_report_exp_rdp(rdp
->rsp
, rdp
, true);
249 WARN_ON_ONCE(t
->rcu_read_unlock_special
.b
.exp_need_qs
);
254 * Record a preemptible-RCU quiescent state for the specified CPU. Note
255 * that this just means that the task currently running on the CPU is
256 * not in a quiescent state. There might be any number of tasks blocked
257 * while in an RCU read-side critical section.
259 * As with the other rcu_*_qs() functions, callers to this function
260 * must disable preemption.
262 static void rcu_preempt_qs(void)
264 if (__this_cpu_read(rcu_data_p
->cpu_no_qs
.s
)) {
265 trace_rcu_grace_period(TPS("rcu_preempt"),
266 __this_cpu_read(rcu_data_p
->gpnum
),
268 __this_cpu_write(rcu_data_p
->cpu_no_qs
.b
.norm
, false);
269 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
270 current
->rcu_read_unlock_special
.b
.need_qs
= false;
275 * We have entered the scheduler, and the current task might soon be
276 * context-switched away from. If this task is in an RCU read-side
277 * critical section, we will no longer be able to rely on the CPU to
278 * record that fact, so we enqueue the task on the blkd_tasks list.
279 * The task will dequeue itself when it exits the outermost enclosing
280 * RCU read-side critical section. Therefore, the current grace period
281 * cannot be permitted to complete until the blkd_tasks list entries
282 * predating the current grace period drain, in other words, until
283 * rnp->gp_tasks becomes NULL.
285 * Caller must disable interrupts.
287 static void rcu_preempt_note_context_switch(void)
289 struct task_struct
*t
= current
;
290 struct rcu_data
*rdp
;
291 struct rcu_node
*rnp
;
293 if (t
->rcu_read_lock_nesting
> 0 &&
294 !t
->rcu_read_unlock_special
.b
.blocked
) {
296 /* Possibly blocking in an RCU read-side critical section. */
297 rdp
= this_cpu_ptr(rcu_state_p
->rda
);
299 raw_spin_lock_rcu_node(rnp
);
300 t
->rcu_read_unlock_special
.b
.blocked
= true;
301 t
->rcu_blocked_node
= rnp
;
304 * Verify the CPU's sanity, trace the preemption, and
305 * then queue the task as required based on the states
306 * of any ongoing and expedited grace periods.
308 WARN_ON_ONCE((rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) == 0);
309 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
310 trace_rcu_preempt_task(rdp
->rsp
->name
,
312 (rnp
->qsmask
& rdp
->grpmask
)
315 rcu_preempt_ctxt_queue(rnp
, rdp
);
316 } else if (t
->rcu_read_lock_nesting
< 0 &&
317 t
->rcu_read_unlock_special
.s
) {
320 * Complete exit from RCU read-side critical section on
321 * behalf of preempted instance of __rcu_read_unlock().
323 rcu_read_unlock_special(t
);
327 * Either we were not in an RCU read-side critical section to
328 * begin with, or we have now recorded that critical section
329 * globally. Either way, we can now note a quiescent state
330 * for this CPU. Again, if we were in an RCU read-side critical
331 * section, and if that critical section was blocking the current
332 * grace period, then the fact that the task has been enqueued
333 * means that we continue to block the current grace period.
339 * Check for preempted RCU readers blocking the current grace period
340 * for the specified rcu_node structure. If the caller needs a reliable
341 * answer, it must hold the rcu_node's ->lock.
343 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
345 return rnp
->gp_tasks
!= NULL
;
349 * Advance a ->blkd_tasks-list pointer to the next entry, instead
350 * returning NULL if at the end of the list.
352 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
353 struct rcu_node
*rnp
)
355 struct list_head
*np
;
357 np
= t
->rcu_node_entry
.next
;
358 if (np
== &rnp
->blkd_tasks
)
364 * Return true if the specified rcu_node structure has tasks that were
365 * preempted within an RCU read-side critical section.
367 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
369 return !list_empty(&rnp
->blkd_tasks
);
373 * Handle special cases during rcu_read_unlock(), such as needing to
374 * notify RCU core processing or task having blocked during the RCU
375 * read-side critical section.
377 void rcu_read_unlock_special(struct task_struct
*t
)
383 struct list_head
*np
;
384 bool drop_boost_mutex
= false;
385 struct rcu_data
*rdp
;
386 struct rcu_node
*rnp
;
387 union rcu_special special
;
389 /* NMI handlers cannot block and cannot safely manipulate state. */
393 local_irq_save(flags
);
396 * If RCU core is waiting for this CPU to exit its critical section,
397 * report the fact that it has exited. Because irqs are disabled,
398 * t->rcu_read_unlock_special cannot change.
400 special
= t
->rcu_read_unlock_special
;
401 if (special
.b
.need_qs
) {
403 t
->rcu_read_unlock_special
.b
.need_qs
= false;
404 if (!t
->rcu_read_unlock_special
.s
) {
405 local_irq_restore(flags
);
411 * Respond to a request for an expedited grace period, but only if
412 * we were not preempted, meaning that we were running on the same
413 * CPU throughout. If we were preempted, the exp_need_qs flag
414 * would have been cleared at the time of the first preemption,
415 * and the quiescent state would be reported when we were dequeued.
417 if (special
.b
.exp_need_qs
) {
418 WARN_ON_ONCE(special
.b
.blocked
);
419 t
->rcu_read_unlock_special
.b
.exp_need_qs
= false;
420 rdp
= this_cpu_ptr(rcu_state_p
->rda
);
421 rcu_report_exp_rdp(rcu_state_p
, rdp
, true);
422 if (!t
->rcu_read_unlock_special
.s
) {
423 local_irq_restore(flags
);
428 /* Hardware IRQ handlers cannot block, complain if they get here. */
429 if (in_irq() || in_serving_softirq()) {
430 lockdep_rcu_suspicious(__FILE__
, __LINE__
,
431 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
432 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
433 t
->rcu_read_unlock_special
.s
,
434 t
->rcu_read_unlock_special
.b
.blocked
,
435 t
->rcu_read_unlock_special
.b
.exp_need_qs
,
436 t
->rcu_read_unlock_special
.b
.need_qs
);
437 local_irq_restore(flags
);
441 /* Clean up if blocked during RCU read-side critical section. */
442 if (special
.b
.blocked
) {
443 t
->rcu_read_unlock_special
.b
.blocked
= false;
446 * Remove this task from the list it blocked on. The task
447 * now remains queued on the rcu_node corresponding to the
448 * CPU it first blocked on, so there is no longer any need
449 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
451 rnp
= t
->rcu_blocked_node
;
452 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
453 WARN_ON_ONCE(rnp
!= t
->rcu_blocked_node
);
454 empty_norm
= !rcu_preempt_blocked_readers_cgp(rnp
);
455 empty_exp
= sync_rcu_preempt_exp_done(rnp
);
456 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
457 np
= rcu_next_node_entry(t
, rnp
);
458 list_del_init(&t
->rcu_node_entry
);
459 t
->rcu_blocked_node
= NULL
;
460 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
462 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
464 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
466 if (IS_ENABLED(CONFIG_RCU_BOOST
)) {
467 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
468 rnp
->boost_tasks
= np
;
469 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
470 drop_boost_mutex
= rt_mutex_owner(&rnp
->boost_mtx
) == t
;
474 * If this was the last task on the current list, and if
475 * we aren't waiting on any CPUs, report the quiescent state.
476 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
477 * so we must take a snapshot of the expedited state.
479 empty_exp_now
= sync_rcu_preempt_exp_done(rnp
);
480 if (!empty_norm
&& !rcu_preempt_blocked_readers_cgp(rnp
)) {
481 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
488 rcu_report_unblock_qs_rnp(rcu_state_p
, rnp
, flags
);
490 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
493 /* Unboost if we were boosted. */
494 if (IS_ENABLED(CONFIG_RCU_BOOST
) && drop_boost_mutex
)
495 rt_mutex_unlock(&rnp
->boost_mtx
);
498 * If this was the last task on the expedited lists,
499 * then we need to report up the rcu_node hierarchy.
501 if (!empty_exp
&& empty_exp_now
)
502 rcu_report_exp_rnp(rcu_state_p
, rnp
, true);
504 local_irq_restore(flags
);
509 * Dump detailed information for all tasks blocking the current RCU
510 * grace period on the specified rcu_node structure.
512 static void rcu_print_detail_task_stall_rnp(struct rcu_node
*rnp
)
515 struct task_struct
*t
;
517 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
518 if (!rcu_preempt_blocked_readers_cgp(rnp
)) {
519 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
522 t
= list_entry(rnp
->gp_tasks
->prev
,
523 struct task_struct
, rcu_node_entry
);
524 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
)
526 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
530 * Dump detailed information for all tasks blocking the current RCU
533 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
535 struct rcu_node
*rnp
= rcu_get_root(rsp
);
537 rcu_print_detail_task_stall_rnp(rnp
);
538 rcu_for_each_leaf_node(rsp
, rnp
)
539 rcu_print_detail_task_stall_rnp(rnp
);
542 static void rcu_print_task_stall_begin(struct rcu_node
*rnp
)
544 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
545 rnp
->level
, rnp
->grplo
, rnp
->grphi
);
548 static void rcu_print_task_stall_end(void)
554 * Scan the current list of tasks blocked within RCU read-side critical
555 * sections, printing out the tid of each.
557 static int rcu_print_task_stall(struct rcu_node
*rnp
)
559 struct task_struct
*t
;
562 if (!rcu_preempt_blocked_readers_cgp(rnp
))
564 rcu_print_task_stall_begin(rnp
);
565 t
= list_entry(rnp
->gp_tasks
->prev
,
566 struct task_struct
, rcu_node_entry
);
567 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
568 pr_cont(" P%d", t
->pid
);
571 rcu_print_task_stall_end();
576 * Scan the current list of tasks blocked within RCU read-side critical
577 * sections, printing out the tid of each that is blocking the current
578 * expedited grace period.
580 static int rcu_print_task_exp_stall(struct rcu_node
*rnp
)
582 struct task_struct
*t
;
587 t
= list_entry(rnp
->exp_tasks
->prev
,
588 struct task_struct
, rcu_node_entry
);
589 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
590 pr_cont(" P%d", t
->pid
);
597 * Check that the list of blocked tasks for the newly completed grace
598 * period is in fact empty. It is a serious bug to complete a grace
599 * period that still has RCU readers blocked! This function must be
600 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
601 * must be held by the caller.
603 * Also, if there are blocked tasks on the list, they automatically
604 * block the newly created grace period, so set up ->gp_tasks accordingly.
606 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
608 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
609 if (rcu_preempt_has_tasks(rnp
))
610 rnp
->gp_tasks
= rnp
->blkd_tasks
.next
;
611 WARN_ON_ONCE(rnp
->qsmask
);
615 * Check for a quiescent state from the current CPU. When a task blocks,
616 * the task is recorded in the corresponding CPU's rcu_node structure,
617 * which is checked elsewhere.
619 * Caller must disable hard irqs.
621 static void rcu_preempt_check_callbacks(void)
623 struct task_struct
*t
= current
;
625 if (t
->rcu_read_lock_nesting
== 0) {
629 if (t
->rcu_read_lock_nesting
> 0 &&
630 __this_cpu_read(rcu_data_p
->core_needs_qs
) &&
631 __this_cpu_read(rcu_data_p
->cpu_no_qs
.b
.norm
))
632 t
->rcu_read_unlock_special
.b
.need_qs
= true;
635 #ifdef CONFIG_RCU_BOOST
637 static void rcu_preempt_do_callbacks(void)
639 rcu_do_batch(rcu_state_p
, this_cpu_ptr(rcu_data_p
));
642 #endif /* #ifdef CONFIG_RCU_BOOST */
645 * Queue a preemptible-RCU callback for invocation after a grace period.
647 void call_rcu(struct rcu_head
*head
, rcu_callback_t func
)
649 __call_rcu(head
, func
, rcu_state_p
, -1, 0);
651 EXPORT_SYMBOL_GPL(call_rcu
);
654 * synchronize_rcu - wait until a grace period has elapsed.
656 * Control will return to the caller some time after a full grace
657 * period has elapsed, in other words after all currently executing RCU
658 * read-side critical sections have completed. Note, however, that
659 * upon return from synchronize_rcu(), the caller might well be executing
660 * concurrently with new RCU read-side critical sections that began while
661 * synchronize_rcu() was waiting. RCU read-side critical sections are
662 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
664 * See the description of synchronize_sched() for more detailed information
665 * on memory ordering guarantees.
667 void synchronize_rcu(void)
669 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
670 lock_is_held(&rcu_lock_map
) ||
671 lock_is_held(&rcu_sched_lock_map
),
672 "Illegal synchronize_rcu() in RCU read-side critical section");
673 if (!rcu_scheduler_active
)
675 if (rcu_gp_is_expedited())
676 synchronize_rcu_expedited();
678 wait_rcu_gp(call_rcu
);
680 EXPORT_SYMBOL_GPL(synchronize_rcu
);
683 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
685 * Note that this primitive does not necessarily wait for an RCU grace period
686 * to complete. For example, if there are no RCU callbacks queued anywhere
687 * in the system, then rcu_barrier() is within its rights to return
688 * immediately, without waiting for anything, much less an RCU grace period.
690 void rcu_barrier(void)
692 _rcu_barrier(rcu_state_p
);
694 EXPORT_SYMBOL_GPL(rcu_barrier
);
697 * Initialize preemptible RCU's state structures.
699 static void __init
__rcu_init_preempt(void)
701 rcu_init_one(rcu_state_p
);
705 * Check for a task exiting while in a preemptible-RCU read-side
706 * critical section, clean up if so. No need to issue warnings,
707 * as debug_check_no_locks_held() already does this if lockdep
712 struct task_struct
*t
= current
;
714 if (likely(list_empty(¤t
->rcu_node_entry
)))
716 t
->rcu_read_lock_nesting
= 1;
718 t
->rcu_read_unlock_special
.b
.blocked
= true;
722 #else /* #ifdef CONFIG_PREEMPT_RCU */
724 static struct rcu_state
*const rcu_state_p
= &rcu_sched_state
;
727 * Tell them what RCU they are running.
729 static void __init
rcu_bootup_announce(void)
731 pr_info("Hierarchical RCU implementation.\n");
732 rcu_bootup_announce_oddness();
736 * Because preemptible RCU does not exist, we never have to check for
737 * CPUs being in quiescent states.
739 static void rcu_preempt_note_context_switch(void)
744 * Because preemptible RCU does not exist, there are never any preempted
747 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
753 * Because there is no preemptible RCU, there can be no readers blocked.
755 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
761 * Because preemptible RCU does not exist, we never have to check for
762 * tasks blocked within RCU read-side critical sections.
764 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
769 * Because preemptible RCU does not exist, we never have to check for
770 * tasks blocked within RCU read-side critical sections.
772 static int rcu_print_task_stall(struct rcu_node
*rnp
)
778 * Because preemptible RCU does not exist, we never have to check for
779 * tasks blocked within RCU read-side critical sections that are
780 * blocking the current expedited grace period.
782 static int rcu_print_task_exp_stall(struct rcu_node
*rnp
)
788 * Because there is no preemptible RCU, there can be no readers blocked,
789 * so there is no need to check for blocked tasks. So check only for
790 * bogus qsmask values.
792 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
794 WARN_ON_ONCE(rnp
->qsmask
);
798 * Because preemptible RCU does not exist, it never has any callbacks
801 static void rcu_preempt_check_callbacks(void)
806 * Because preemptible RCU does not exist, rcu_barrier() is just
807 * another name for rcu_barrier_sched().
809 void rcu_barrier(void)
813 EXPORT_SYMBOL_GPL(rcu_barrier
);
816 * Because preemptible RCU does not exist, it need not be initialized.
818 static void __init
__rcu_init_preempt(void)
823 * Because preemptible RCU does not exist, tasks cannot possibly exit
824 * while in preemptible RCU read-side critical sections.
830 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
832 #ifdef CONFIG_RCU_BOOST
834 #include "../locking/rtmutex_common.h"
836 #ifdef CONFIG_RCU_TRACE
838 static void rcu_initiate_boost_trace(struct rcu_node
*rnp
)
840 if (!rcu_preempt_has_tasks(rnp
))
841 rnp
->n_balk_blkd_tasks
++;
842 else if (rnp
->exp_tasks
== NULL
&& rnp
->gp_tasks
== NULL
)
843 rnp
->n_balk_exp_gp_tasks
++;
844 else if (rnp
->gp_tasks
!= NULL
&& rnp
->boost_tasks
!= NULL
)
845 rnp
->n_balk_boost_tasks
++;
846 else if (rnp
->gp_tasks
!= NULL
&& rnp
->qsmask
!= 0)
847 rnp
->n_balk_notblocked
++;
848 else if (rnp
->gp_tasks
!= NULL
&&
849 ULONG_CMP_LT(jiffies
, rnp
->boost_time
))
850 rnp
->n_balk_notyet
++;
855 #else /* #ifdef CONFIG_RCU_TRACE */
857 static void rcu_initiate_boost_trace(struct rcu_node
*rnp
)
861 #endif /* #else #ifdef CONFIG_RCU_TRACE */
863 static void rcu_wake_cond(struct task_struct
*t
, int status
)
866 * If the thread is yielding, only wake it when this
867 * is invoked from idle
869 if (status
!= RCU_KTHREAD_YIELDING
|| is_idle_task(current
))
874 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
875 * or ->boost_tasks, advancing the pointer to the next task in the
878 * Note that irqs must be enabled: boosting the task can block.
879 * Returns 1 if there are more tasks needing to be boosted.
881 static int rcu_boost(struct rcu_node
*rnp
)
884 struct task_struct
*t
;
885 struct list_head
*tb
;
887 if (READ_ONCE(rnp
->exp_tasks
) == NULL
&&
888 READ_ONCE(rnp
->boost_tasks
) == NULL
)
889 return 0; /* Nothing left to boost. */
891 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
894 * Recheck under the lock: all tasks in need of boosting
895 * might exit their RCU read-side critical sections on their own.
897 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
898 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
903 * Preferentially boost tasks blocking expedited grace periods.
904 * This cannot starve the normal grace periods because a second
905 * expedited grace period must boost all blocked tasks, including
906 * those blocking the pre-existing normal grace period.
908 if (rnp
->exp_tasks
!= NULL
) {
912 tb
= rnp
->boost_tasks
;
913 rnp
->n_normal_boosts
++;
915 rnp
->n_tasks_boosted
++;
918 * We boost task t by manufacturing an rt_mutex that appears to
919 * be held by task t. We leave a pointer to that rt_mutex where
920 * task t can find it, and task t will release the mutex when it
921 * exits its outermost RCU read-side critical section. Then
922 * simply acquiring this artificial rt_mutex will boost task
923 * t's priority. (Thanks to tglx for suggesting this approach!)
925 * Note that task t must acquire rnp->lock to remove itself from
926 * the ->blkd_tasks list, which it will do from exit() if from
927 * nowhere else. We therefore are guaranteed that task t will
928 * stay around at least until we drop rnp->lock. Note that
929 * rnp->lock also resolves races between our priority boosting
930 * and task t's exiting its outermost RCU read-side critical
933 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
934 rt_mutex_init_proxy_locked(&rnp
->boost_mtx
, t
);
935 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
936 /* Lock only for side effect: boosts task t's priority. */
937 rt_mutex_lock(&rnp
->boost_mtx
);
938 rt_mutex_unlock(&rnp
->boost_mtx
); /* Then keep lockdep happy. */
940 return READ_ONCE(rnp
->exp_tasks
) != NULL
||
941 READ_ONCE(rnp
->boost_tasks
) != NULL
;
945 * Priority-boosting kthread, one per leaf rcu_node.
947 static int rcu_boost_kthread(void *arg
)
949 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
953 trace_rcu_utilization(TPS("Start boost kthread@init"));
955 rnp
->boost_kthread_status
= RCU_KTHREAD_WAITING
;
956 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
957 rcu_wait(rnp
->boost_tasks
|| rnp
->exp_tasks
);
958 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
959 rnp
->boost_kthread_status
= RCU_KTHREAD_RUNNING
;
960 more2boost
= rcu_boost(rnp
);
966 rnp
->boost_kthread_status
= RCU_KTHREAD_YIELDING
;
967 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
968 schedule_timeout_interruptible(2);
969 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
974 trace_rcu_utilization(TPS("End boost kthread@notreached"));
979 * Check to see if it is time to start boosting RCU readers that are
980 * blocking the current grace period, and, if so, tell the per-rcu_node
981 * kthread to start boosting them. If there is an expedited grace
982 * period in progress, it is always time to boost.
984 * The caller must hold rnp->lock, which this function releases.
985 * The ->boost_kthread_task is immortal, so we don't need to worry
986 * about it going away.
988 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
989 __releases(rnp
->lock
)
991 struct task_struct
*t
;
993 if (!rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->exp_tasks
== NULL
) {
994 rnp
->n_balk_exp_gp_tasks
++;
995 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
998 if (rnp
->exp_tasks
!= NULL
||
999 (rnp
->gp_tasks
!= NULL
&&
1000 rnp
->boost_tasks
== NULL
&&
1002 ULONG_CMP_GE(jiffies
, rnp
->boost_time
))) {
1003 if (rnp
->exp_tasks
== NULL
)
1004 rnp
->boost_tasks
= rnp
->gp_tasks
;
1005 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1006 t
= rnp
->boost_kthread_task
;
1008 rcu_wake_cond(t
, rnp
->boost_kthread_status
);
1010 rcu_initiate_boost_trace(rnp
);
1011 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1016 * Wake up the per-CPU kthread to invoke RCU callbacks.
1018 static void invoke_rcu_callbacks_kthread(void)
1020 unsigned long flags
;
1022 local_irq_save(flags
);
1023 __this_cpu_write(rcu_cpu_has_work
, 1);
1024 if (__this_cpu_read(rcu_cpu_kthread_task
) != NULL
&&
1025 current
!= __this_cpu_read(rcu_cpu_kthread_task
)) {
1026 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task
),
1027 __this_cpu_read(rcu_cpu_kthread_status
));
1029 local_irq_restore(flags
);
1033 * Is the current CPU running the RCU-callbacks kthread?
1034 * Caller must have preemption disabled.
1036 static bool rcu_is_callbacks_kthread(void)
1038 return __this_cpu_read(rcu_cpu_kthread_task
) == current
;
1041 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1044 * Do priority-boost accounting for the start of a new grace period.
1046 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1048 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1052 * Create an RCU-boost kthread for the specified node if one does not
1053 * already exist. We only create this kthread for preemptible RCU.
1054 * Returns zero if all is well, a negated errno otherwise.
1056 static int rcu_spawn_one_boost_kthread(struct rcu_state
*rsp
,
1057 struct rcu_node
*rnp
)
1059 int rnp_index
= rnp
- &rsp
->node
[0];
1060 unsigned long flags
;
1061 struct sched_param sp
;
1062 struct task_struct
*t
;
1064 if (rcu_state_p
!= rsp
)
1067 if (!rcu_scheduler_fully_active
|| rcu_rnp_online_cpus(rnp
) == 0)
1071 if (rnp
->boost_kthread_task
!= NULL
)
1073 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1074 "rcub/%d", rnp_index
);
1077 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1078 rnp
->boost_kthread_task
= t
;
1079 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1080 sp
.sched_priority
= kthread_prio
;
1081 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1082 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1086 static void rcu_kthread_do_work(void)
1088 rcu_do_batch(&rcu_sched_state
, this_cpu_ptr(&rcu_sched_data
));
1089 rcu_do_batch(&rcu_bh_state
, this_cpu_ptr(&rcu_bh_data
));
1090 rcu_preempt_do_callbacks();
1093 static void rcu_cpu_kthread_setup(unsigned int cpu
)
1095 struct sched_param sp
;
1097 sp
.sched_priority
= kthread_prio
;
1098 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
1101 static void rcu_cpu_kthread_park(unsigned int cpu
)
1103 per_cpu(rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
1106 static int rcu_cpu_kthread_should_run(unsigned int cpu
)
1108 return __this_cpu_read(rcu_cpu_has_work
);
1112 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1113 * RCU softirq used in flavors and configurations of RCU that do not
1114 * support RCU priority boosting.
1116 static void rcu_cpu_kthread(unsigned int cpu
)
1118 unsigned int *statusp
= this_cpu_ptr(&rcu_cpu_kthread_status
);
1119 char work
, *workp
= this_cpu_ptr(&rcu_cpu_has_work
);
1122 for (spincnt
= 0; spincnt
< 10; spincnt
++) {
1123 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1125 *statusp
= RCU_KTHREAD_RUNNING
;
1126 this_cpu_inc(rcu_cpu_kthread_loops
);
1127 local_irq_disable();
1132 rcu_kthread_do_work();
1135 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1136 *statusp
= RCU_KTHREAD_WAITING
;
1140 *statusp
= RCU_KTHREAD_YIELDING
;
1141 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1142 schedule_timeout_interruptible(2);
1143 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1144 *statusp
= RCU_KTHREAD_WAITING
;
1148 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1149 * served by the rcu_node in question. The CPU hotplug lock is still
1150 * held, so the value of rnp->qsmaskinit will be stable.
1152 * We don't include outgoingcpu in the affinity set, use -1 if there is
1153 * no outgoing CPU. If there are no CPUs left in the affinity set,
1154 * this function allows the kthread to execute on any CPU.
1156 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1158 struct task_struct
*t
= rnp
->boost_kthread_task
;
1159 unsigned long mask
= rcu_rnp_online_cpus(rnp
);
1165 if (!zalloc_cpumask_var(&cm
, GFP_KERNEL
))
1167 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1168 if ((mask
& leaf_node_cpu_bit(rnp
, cpu
)) &&
1170 cpumask_set_cpu(cpu
, cm
);
1171 if (cpumask_weight(cm
) == 0)
1173 set_cpus_allowed_ptr(t
, cm
);
1174 free_cpumask_var(cm
);
1177 static struct smp_hotplug_thread rcu_cpu_thread_spec
= {
1178 .store
= &rcu_cpu_kthread_task
,
1179 .thread_should_run
= rcu_cpu_kthread_should_run
,
1180 .thread_fn
= rcu_cpu_kthread
,
1181 .thread_comm
= "rcuc/%u",
1182 .setup
= rcu_cpu_kthread_setup
,
1183 .park
= rcu_cpu_kthread_park
,
1187 * Spawn boost kthreads -- called as soon as the scheduler is running.
1189 static void __init
rcu_spawn_boost_kthreads(void)
1191 struct rcu_node
*rnp
;
1194 for_each_possible_cpu(cpu
)
1195 per_cpu(rcu_cpu_has_work
, cpu
) = 0;
1196 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec
));
1197 rcu_for_each_leaf_node(rcu_state_p
, rnp
)
1198 (void)rcu_spawn_one_boost_kthread(rcu_state_p
, rnp
);
1201 static void rcu_prepare_kthreads(int cpu
)
1203 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
1204 struct rcu_node
*rnp
= rdp
->mynode
;
1206 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1207 if (rcu_scheduler_fully_active
)
1208 (void)rcu_spawn_one_boost_kthread(rcu_state_p
, rnp
);
1211 #else /* #ifdef CONFIG_RCU_BOOST */
1213 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1214 __releases(rnp
->lock
)
1216 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1219 static void invoke_rcu_callbacks_kthread(void)
1224 static bool rcu_is_callbacks_kthread(void)
1229 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1233 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1237 static void __init
rcu_spawn_boost_kthreads(void)
1241 static void rcu_prepare_kthreads(int cpu
)
1245 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1247 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1250 * Check to see if any future RCU-related work will need to be done
1251 * by the current CPU, even if none need be done immediately, returning
1252 * 1 if so. This function is part of the RCU implementation; it is -not-
1253 * an exported member of the RCU API.
1255 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1256 * any flavor of RCU.
1258 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1260 *nextevt
= KTIME_MAX
;
1261 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL
)
1262 ? 0 : rcu_cpu_has_callbacks(NULL
);
1266 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1269 static void rcu_cleanup_after_idle(void)
1274 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1277 static void rcu_prepare_for_idle(void)
1282 * Don't bother keeping a running count of the number of RCU callbacks
1283 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1285 static void rcu_idle_count_callbacks_posted(void)
1289 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1292 * This code is invoked when a CPU goes idle, at which point we want
1293 * to have the CPU do everything required for RCU so that it can enter
1294 * the energy-efficient dyntick-idle mode. This is handled by a
1295 * state machine implemented by rcu_prepare_for_idle() below.
1297 * The following three proprocessor symbols control this state machine:
1299 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1300 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1301 * is sized to be roughly one RCU grace period. Those energy-efficiency
1302 * benchmarkers who might otherwise be tempted to set this to a large
1303 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1304 * system. And if you are -that- concerned about energy efficiency,
1305 * just power the system down and be done with it!
1306 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1307 * permitted to sleep in dyntick-idle mode with only lazy RCU
1308 * callbacks pending. Setting this too high can OOM your system.
1310 * The values below work well in practice. If future workloads require
1311 * adjustment, they can be converted into kernel config parameters, though
1312 * making the state machine smarter might be a better option.
1314 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1315 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1317 static int rcu_idle_gp_delay
= RCU_IDLE_GP_DELAY
;
1318 module_param(rcu_idle_gp_delay
, int, 0644);
1319 static int rcu_idle_lazy_gp_delay
= RCU_IDLE_LAZY_GP_DELAY
;
1320 module_param(rcu_idle_lazy_gp_delay
, int, 0644);
1323 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1324 * only if it has been awhile since the last time we did so. Afterwards,
1325 * if there are any callbacks ready for immediate invocation, return true.
1327 static bool __maybe_unused
rcu_try_advance_all_cbs(void)
1329 bool cbs_ready
= false;
1330 struct rcu_data
*rdp
;
1331 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1332 struct rcu_node
*rnp
;
1333 struct rcu_state
*rsp
;
1335 /* Exit early if we advanced recently. */
1336 if (jiffies
== rdtp
->last_advance_all
)
1338 rdtp
->last_advance_all
= jiffies
;
1340 for_each_rcu_flavor(rsp
) {
1341 rdp
= this_cpu_ptr(rsp
->rda
);
1345 * Don't bother checking unless a grace period has
1346 * completed since we last checked and there are
1347 * callbacks not yet ready to invoke.
1349 if ((rdp
->completed
!= rnp
->completed
||
1350 unlikely(READ_ONCE(rdp
->gpwrap
))) &&
1351 rdp
->nxttail
[RCU_DONE_TAIL
] != rdp
->nxttail
[RCU_NEXT_TAIL
])
1352 note_gp_changes(rsp
, rdp
);
1354 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1361 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1362 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1363 * caller to set the timeout based on whether or not there are non-lazy
1366 * The caller must have disabled interrupts.
1368 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1370 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1373 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL
)) {
1374 *nextevt
= KTIME_MAX
;
1378 /* Snapshot to detect later posting of non-lazy callback. */
1379 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1381 /* If no callbacks, RCU doesn't need the CPU. */
1382 if (!rcu_cpu_has_callbacks(&rdtp
->all_lazy
)) {
1383 *nextevt
= KTIME_MAX
;
1387 /* Attempt to advance callbacks. */
1388 if (rcu_try_advance_all_cbs()) {
1389 /* Some ready to invoke, so initiate later invocation. */
1393 rdtp
->last_accelerate
= jiffies
;
1395 /* Request timer delay depending on laziness, and round. */
1396 if (!rdtp
->all_lazy
) {
1397 dj
= round_up(rcu_idle_gp_delay
+ jiffies
,
1398 rcu_idle_gp_delay
) - jiffies
;
1400 dj
= round_jiffies(rcu_idle_lazy_gp_delay
+ jiffies
) - jiffies
;
1402 *nextevt
= basemono
+ dj
* TICK_NSEC
;
1407 * Prepare a CPU for idle from an RCU perspective. The first major task
1408 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1409 * The second major task is to check to see if a non-lazy callback has
1410 * arrived at a CPU that previously had only lazy callbacks. The third
1411 * major task is to accelerate (that is, assign grace-period numbers to)
1412 * any recently arrived callbacks.
1414 * The caller must have disabled interrupts.
1416 static void rcu_prepare_for_idle(void)
1419 struct rcu_data
*rdp
;
1420 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1421 struct rcu_node
*rnp
;
1422 struct rcu_state
*rsp
;
1425 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL
) ||
1426 rcu_is_nocb_cpu(smp_processor_id()))
1429 /* Handle nohz enablement switches conservatively. */
1430 tne
= READ_ONCE(tick_nohz_active
);
1431 if (tne
!= rdtp
->tick_nohz_enabled_snap
) {
1432 if (rcu_cpu_has_callbacks(NULL
))
1433 invoke_rcu_core(); /* force nohz to see update. */
1434 rdtp
->tick_nohz_enabled_snap
= tne
;
1441 * If a non-lazy callback arrived at a CPU having only lazy
1442 * callbacks, invoke RCU core for the side-effect of recalculating
1443 * idle duration on re-entry to idle.
1445 if (rdtp
->all_lazy
&&
1446 rdtp
->nonlazy_posted
!= rdtp
->nonlazy_posted_snap
) {
1447 rdtp
->all_lazy
= false;
1448 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1454 * If we have not yet accelerated this jiffy, accelerate all
1455 * callbacks on this CPU.
1457 if (rdtp
->last_accelerate
== jiffies
)
1459 rdtp
->last_accelerate
= jiffies
;
1460 for_each_rcu_flavor(rsp
) {
1461 rdp
= this_cpu_ptr(rsp
->rda
);
1462 if (!*rdp
->nxttail
[RCU_DONE_TAIL
])
1465 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
1466 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1467 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
1469 rcu_gp_kthread_wake(rsp
);
1474 * Clean up for exit from idle. Attempt to advance callbacks based on
1475 * any grace periods that elapsed while the CPU was idle, and if any
1476 * callbacks are now ready to invoke, initiate invocation.
1478 static void rcu_cleanup_after_idle(void)
1480 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL
) ||
1481 rcu_is_nocb_cpu(smp_processor_id()))
1483 if (rcu_try_advance_all_cbs())
1488 * Keep a running count of the number of non-lazy callbacks posted
1489 * on this CPU. This running counter (which is never decremented) allows
1490 * rcu_prepare_for_idle() to detect when something out of the idle loop
1491 * posts a callback, even if an equal number of callbacks are invoked.
1492 * Of course, callbacks should only be posted from within a trace event
1493 * designed to be called from idle or from within RCU_NONIDLE().
1495 static void rcu_idle_count_callbacks_posted(void)
1497 __this_cpu_add(rcu_dynticks
.nonlazy_posted
, 1);
1501 * Data for flushing lazy RCU callbacks at OOM time.
1503 static atomic_t oom_callback_count
;
1504 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq
);
1507 * RCU OOM callback -- decrement the outstanding count and deliver the
1508 * wake-up if we are the last one.
1510 static void rcu_oom_callback(struct rcu_head
*rhp
)
1512 if (atomic_dec_and_test(&oom_callback_count
))
1513 wake_up(&oom_callback_wq
);
1517 * Post an rcu_oom_notify callback on the current CPU if it has at
1518 * least one lazy callback. This will unnecessarily post callbacks
1519 * to CPUs that already have a non-lazy callback at the end of their
1520 * callback list, but this is an infrequent operation, so accept some
1521 * extra overhead to keep things simple.
1523 static void rcu_oom_notify_cpu(void *unused
)
1525 struct rcu_state
*rsp
;
1526 struct rcu_data
*rdp
;
1528 for_each_rcu_flavor(rsp
) {
1529 rdp
= raw_cpu_ptr(rsp
->rda
);
1530 if (rdp
->qlen_lazy
!= 0) {
1531 atomic_inc(&oom_callback_count
);
1532 rsp
->call(&rdp
->oom_head
, rcu_oom_callback
);
1538 * If low on memory, ensure that each CPU has a non-lazy callback.
1539 * This will wake up CPUs that have only lazy callbacks, in turn
1540 * ensuring that they free up the corresponding memory in a timely manner.
1541 * Because an uncertain amount of memory will be freed in some uncertain
1542 * timeframe, we do not claim to have freed anything.
1544 static int rcu_oom_notify(struct notifier_block
*self
,
1545 unsigned long notused
, void *nfreed
)
1549 /* Wait for callbacks from earlier instance to complete. */
1550 wait_event(oom_callback_wq
, atomic_read(&oom_callback_count
) == 0);
1551 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1554 * Prevent premature wakeup: ensure that all increments happen
1555 * before there is a chance of the counter reaching zero.
1557 atomic_set(&oom_callback_count
, 1);
1559 for_each_online_cpu(cpu
) {
1560 smp_call_function_single(cpu
, rcu_oom_notify_cpu
, NULL
, 1);
1561 cond_resched_rcu_qs();
1564 /* Unconditionally decrement: no need to wake ourselves up. */
1565 atomic_dec(&oom_callback_count
);
1570 static struct notifier_block rcu_oom_nb
= {
1571 .notifier_call
= rcu_oom_notify
1574 static int __init
rcu_register_oom_notifier(void)
1576 register_oom_notifier(&rcu_oom_nb
);
1579 early_initcall(rcu_register_oom_notifier
);
1581 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1583 #ifdef CONFIG_RCU_FAST_NO_HZ
1585 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1587 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1588 unsigned long nlpd
= rdtp
->nonlazy_posted
- rdtp
->nonlazy_posted_snap
;
1590 sprintf(cp
, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1591 rdtp
->last_accelerate
& 0xffff, jiffies
& 0xffff,
1593 rdtp
->all_lazy
? 'L' : '.',
1594 rdtp
->tick_nohz_enabled_snap
? '.' : 'D');
1597 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1599 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1604 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1606 /* Initiate the stall-info list. */
1607 static void print_cpu_stall_info_begin(void)
1613 * Print out diagnostic information for the specified stalled CPU.
1615 * If the specified CPU is aware of the current RCU grace period
1616 * (flavor specified by rsp), then print the number of scheduling
1617 * clock interrupts the CPU has taken during the time that it has
1618 * been aware. Otherwise, print the number of RCU grace periods
1619 * that this CPU is ignorant of, for example, "1" if the CPU was
1620 * aware of the previous grace period.
1622 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1624 static void print_cpu_stall_info(struct rcu_state
*rsp
, int cpu
)
1626 char fast_no_hz
[72];
1627 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1628 struct rcu_dynticks
*rdtp
= rdp
->dynticks
;
1630 unsigned long ticks_value
;
1632 if (rsp
->gpnum
== rdp
->gpnum
) {
1633 ticks_title
= "ticks this GP";
1634 ticks_value
= rdp
->ticks_this_gp
;
1636 ticks_title
= "GPs behind";
1637 ticks_value
= rsp
->gpnum
- rdp
->gpnum
;
1639 print_cpu_stall_fast_no_hz(fast_no_hz
, cpu
);
1640 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1642 "O."[!!cpu_online(cpu
)],
1643 "o."[!!(rdp
->grpmask
& rdp
->mynode
->qsmaskinit
)],
1644 "N."[!!(rdp
->grpmask
& rdp
->mynode
->qsmaskinitnext
)],
1645 ticks_value
, ticks_title
,
1646 atomic_read(&rdtp
->dynticks
) & 0xfff,
1647 rdtp
->dynticks_nesting
, rdtp
->dynticks_nmi_nesting
,
1648 rdp
->softirq_snap
, kstat_softirqs_cpu(RCU_SOFTIRQ
, cpu
),
1649 READ_ONCE(rsp
->n_force_qs
) - rsp
->n_force_qs_gpstart
,
1653 /* Terminate the stall-info list. */
1654 static void print_cpu_stall_info_end(void)
1659 /* Zero ->ticks_this_gp for all flavors of RCU. */
1660 static void zero_cpu_stall_ticks(struct rcu_data
*rdp
)
1662 rdp
->ticks_this_gp
= 0;
1663 rdp
->softirq_snap
= kstat_softirqs_cpu(RCU_SOFTIRQ
, smp_processor_id());
1666 /* Increment ->ticks_this_gp for all flavors of RCU. */
1667 static void increment_cpu_stall_ticks(void)
1669 struct rcu_state
*rsp
;
1671 for_each_rcu_flavor(rsp
)
1672 raw_cpu_inc(rsp
->rda
->ticks_this_gp
);
1675 #ifdef CONFIG_RCU_NOCB_CPU
1678 * Offload callback processing from the boot-time-specified set of CPUs
1679 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1680 * kthread created that pulls the callbacks from the corresponding CPU,
1681 * waits for a grace period to elapse, and invokes the callbacks.
1682 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1683 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1684 * has been specified, in which case each kthread actively polls its
1685 * CPU. (Which isn't so great for energy efficiency, but which does
1686 * reduce RCU's overhead on that CPU.)
1688 * This is intended to be used in conjunction with Frederic Weisbecker's
1689 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1690 * running CPU-bound user-mode computations.
1692 * Offloading of callback processing could also in theory be used as
1693 * an energy-efficiency measure because CPUs with no RCU callbacks
1694 * queued are more aggressive about entering dyntick-idle mode.
1698 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1699 static int __init
rcu_nocb_setup(char *str
)
1701 alloc_bootmem_cpumask_var(&rcu_nocb_mask
);
1702 have_rcu_nocb_mask
= true;
1703 cpulist_parse(str
, rcu_nocb_mask
);
1706 __setup("rcu_nocbs=", rcu_nocb_setup
);
1708 static int __init
parse_rcu_nocb_poll(char *arg
)
1713 early_param("rcu_nocb_poll", parse_rcu_nocb_poll
);
1716 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1719 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
1725 * Set the root rcu_node structure's ->need_future_gp field
1726 * based on the sum of those of all rcu_node structures. This does
1727 * double-count the root rcu_node structure's requests, but this
1728 * is necessary to handle the possibility of a rcu_nocb_kthread()
1729 * having awakened during the time that the rcu_node structures
1730 * were being updated for the end of the previous grace period.
1732 static void rcu_nocb_gp_set(struct rcu_node
*rnp
, int nrq
)
1734 rnp
->need_future_gp
[(rnp
->completed
+ 1) & 0x1] += nrq
;
1737 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
1739 return &rnp
->nocb_gp_wq
[rnp
->completed
& 0x1];
1742 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
1744 init_swait_queue_head(&rnp
->nocb_gp_wq
[0]);
1745 init_swait_queue_head(&rnp
->nocb_gp_wq
[1]);
1748 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1749 /* Is the specified CPU a no-CBs CPU? */
1750 bool rcu_is_nocb_cpu(int cpu
)
1752 if (have_rcu_nocb_mask
)
1753 return cpumask_test_cpu(cpu
, rcu_nocb_mask
);
1756 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1759 * Kick the leader kthread for this NOCB group.
1761 static void wake_nocb_leader(struct rcu_data
*rdp
, bool force
)
1763 struct rcu_data
*rdp_leader
= rdp
->nocb_leader
;
1765 if (!READ_ONCE(rdp_leader
->nocb_kthread
))
1767 if (READ_ONCE(rdp_leader
->nocb_leader_sleep
) || force
) {
1768 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1769 WRITE_ONCE(rdp_leader
->nocb_leader_sleep
, false);
1770 swake_up(&rdp_leader
->nocb_wq
);
1775 * Does the specified CPU need an RCU callback for the specified flavor
1778 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state
*rsp
, int cpu
)
1780 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1782 #ifdef CONFIG_PROVE_RCU
1783 struct rcu_head
*rhp
;
1784 #endif /* #ifdef CONFIG_PROVE_RCU */
1787 * Check count of all no-CBs callbacks awaiting invocation.
1788 * There needs to be a barrier before this function is called,
1789 * but associated with a prior determination that no more
1790 * callbacks would be posted. In the worst case, the first
1791 * barrier in _rcu_barrier() suffices (but the caller cannot
1792 * necessarily rely on this, not a substitute for the caller
1793 * getting the concurrency design right!). There must also be
1794 * a barrier between the following load an posting of a callback
1795 * (if a callback is in fact needed). This is associated with an
1796 * atomic_inc() in the caller.
1798 ret
= atomic_long_read(&rdp
->nocb_q_count
);
1800 #ifdef CONFIG_PROVE_RCU
1801 rhp
= READ_ONCE(rdp
->nocb_head
);
1803 rhp
= READ_ONCE(rdp
->nocb_gp_head
);
1805 rhp
= READ_ONCE(rdp
->nocb_follower_head
);
1807 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1808 if (!READ_ONCE(rdp
->nocb_kthread
) && rhp
&&
1809 rcu_scheduler_fully_active
) {
1810 /* RCU callback enqueued before CPU first came online??? */
1811 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1815 #endif /* #ifdef CONFIG_PROVE_RCU */
1821 * Enqueue the specified string of rcu_head structures onto the specified
1822 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1823 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1824 * counts are supplied by rhcount and rhcount_lazy.
1826 * If warranted, also wake up the kthread servicing this CPUs queues.
1828 static void __call_rcu_nocb_enqueue(struct rcu_data
*rdp
,
1829 struct rcu_head
*rhp
,
1830 struct rcu_head
**rhtp
,
1831 int rhcount
, int rhcount_lazy
,
1832 unsigned long flags
)
1835 struct rcu_head
**old_rhpp
;
1836 struct task_struct
*t
;
1838 /* Enqueue the callback on the nocb list and update counts. */
1839 atomic_long_add(rhcount
, &rdp
->nocb_q_count
);
1840 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1841 old_rhpp
= xchg(&rdp
->nocb_tail
, rhtp
);
1842 WRITE_ONCE(*old_rhpp
, rhp
);
1843 atomic_long_add(rhcount_lazy
, &rdp
->nocb_q_count_lazy
);
1844 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1846 /* If we are not being polled and there is a kthread, awaken it ... */
1847 t
= READ_ONCE(rdp
->nocb_kthread
);
1848 if (rcu_nocb_poll
|| !t
) {
1849 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1850 TPS("WakeNotPoll"));
1853 len
= atomic_long_read(&rdp
->nocb_q_count
);
1854 if (old_rhpp
== &rdp
->nocb_head
) {
1855 if (!irqs_disabled_flags(flags
)) {
1856 /* ... if queue was empty ... */
1857 wake_nocb_leader(rdp
, false);
1858 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1861 rdp
->nocb_defer_wakeup
= RCU_NOGP_WAKE
;
1862 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1863 TPS("WakeEmptyIsDeferred"));
1865 rdp
->qlen_last_fqs_check
= 0;
1866 } else if (len
> rdp
->qlen_last_fqs_check
+ qhimark
) {
1867 /* ... or if many callbacks queued. */
1868 if (!irqs_disabled_flags(flags
)) {
1869 wake_nocb_leader(rdp
, true);
1870 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1873 rdp
->nocb_defer_wakeup
= RCU_NOGP_WAKE_FORCE
;
1874 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1875 TPS("WakeOvfIsDeferred"));
1877 rdp
->qlen_last_fqs_check
= LONG_MAX
/ 2;
1879 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("WakeNot"));
1885 * This is a helper for __call_rcu(), which invokes this when the normal
1886 * callback queue is inoperable. If this is not a no-CBs CPU, this
1887 * function returns failure back to __call_rcu(), which can complain
1890 * Otherwise, this function queues the callback where the corresponding
1891 * "rcuo" kthread can find it.
1893 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
1894 bool lazy
, unsigned long flags
)
1897 if (!rcu_is_nocb_cpu(rdp
->cpu
))
1899 __call_rcu_nocb_enqueue(rdp
, rhp
, &rhp
->next
, 1, lazy
, flags
);
1900 if (__is_kfree_rcu_offset((unsigned long)rhp
->func
))
1901 trace_rcu_kfree_callback(rdp
->rsp
->name
, rhp
,
1902 (unsigned long)rhp
->func
,
1903 -atomic_long_read(&rdp
->nocb_q_count_lazy
),
1904 -atomic_long_read(&rdp
->nocb_q_count
));
1906 trace_rcu_callback(rdp
->rsp
->name
, rhp
,
1907 -atomic_long_read(&rdp
->nocb_q_count_lazy
),
1908 -atomic_long_read(&rdp
->nocb_q_count
));
1911 * If called from an extended quiescent state with interrupts
1912 * disabled, invoke the RCU core in order to allow the idle-entry
1913 * deferred-wakeup check to function.
1915 if (irqs_disabled_flags(flags
) &&
1916 !rcu_is_watching() &&
1917 cpu_online(smp_processor_id()))
1924 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1927 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_state
*rsp
,
1928 struct rcu_data
*rdp
,
1929 unsigned long flags
)
1931 long ql
= rsp
->qlen
;
1932 long qll
= rsp
->qlen_lazy
;
1934 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1935 if (!rcu_is_nocb_cpu(smp_processor_id()))
1940 /* First, enqueue the donelist, if any. This preserves CB ordering. */
1941 if (rsp
->orphan_donelist
!= NULL
) {
1942 __call_rcu_nocb_enqueue(rdp
, rsp
->orphan_donelist
,
1943 rsp
->orphan_donetail
, ql
, qll
, flags
);
1945 rsp
->orphan_donelist
= NULL
;
1946 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
1948 if (rsp
->orphan_nxtlist
!= NULL
) {
1949 __call_rcu_nocb_enqueue(rdp
, rsp
->orphan_nxtlist
,
1950 rsp
->orphan_nxttail
, ql
, qll
, flags
);
1952 rsp
->orphan_nxtlist
= NULL
;
1953 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
1959 * If necessary, kick off a new grace period, and either way wait
1960 * for a subsequent grace period to complete.
1962 static void rcu_nocb_wait_gp(struct rcu_data
*rdp
)
1966 unsigned long flags
;
1968 struct rcu_node
*rnp
= rdp
->mynode
;
1970 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1971 needwake
= rcu_start_future_gp(rnp
, rdp
, &c
);
1972 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1974 rcu_gp_kthread_wake(rdp
->rsp
);
1977 * Wait for the grace period. Do so interruptibly to avoid messing
1978 * up the load average.
1980 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("StartWait"));
1982 swait_event_interruptible(
1983 rnp
->nocb_gp_wq
[c
& 0x1],
1984 (d
= ULONG_CMP_GE(READ_ONCE(rnp
->completed
), c
)));
1987 WARN_ON(signal_pending(current
));
1988 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("ResumeWait"));
1990 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("EndWait"));
1991 smp_mb(); /* Ensure that CB invocation happens after GP end. */
1995 * Leaders come here to wait for additional callbacks to show up.
1996 * This function does not return until callbacks appear.
1998 static void nocb_leader_wait(struct rcu_data
*my_rdp
)
2000 bool firsttime
= true;
2002 struct rcu_data
*rdp
;
2003 struct rcu_head
**tail
;
2007 /* Wait for callbacks to appear. */
2008 if (!rcu_nocb_poll
) {
2009 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
, "Sleep");
2010 swait_event_interruptible(my_rdp
->nocb_wq
,
2011 !READ_ONCE(my_rdp
->nocb_leader_sleep
));
2012 /* Memory barrier handled by smp_mb() calls below and repoll. */
2013 } else if (firsttime
) {
2014 firsttime
= false; /* Don't drown trace log with "Poll"! */
2015 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
, "Poll");
2019 * Each pass through the following loop checks a follower for CBs.
2020 * We are our own first follower. Any CBs found are moved to
2021 * nocb_gp_head, where they await a grace period.
2024 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
) {
2025 rdp
->nocb_gp_head
= READ_ONCE(rdp
->nocb_head
);
2026 if (!rdp
->nocb_gp_head
)
2027 continue; /* No CBs here, try next follower. */
2029 /* Move callbacks to wait-for-GP list, which is empty. */
2030 WRITE_ONCE(rdp
->nocb_head
, NULL
);
2031 rdp
->nocb_gp_tail
= xchg(&rdp
->nocb_tail
, &rdp
->nocb_head
);
2036 * If there were no callbacks, sleep a bit, rescan after a
2037 * memory barrier, and go retry.
2039 if (unlikely(!gotcbs
)) {
2041 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
,
2043 WARN_ON(signal_pending(current
));
2044 schedule_timeout_interruptible(1);
2046 /* Rescan in case we were a victim of memory ordering. */
2047 my_rdp
->nocb_leader_sleep
= true;
2048 smp_mb(); /* Ensure _sleep true before scan. */
2049 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
)
2050 if (READ_ONCE(rdp
->nocb_head
)) {
2051 /* Found CB, so short-circuit next wait. */
2052 my_rdp
->nocb_leader_sleep
= false;
2058 /* Wait for one grace period. */
2059 rcu_nocb_wait_gp(my_rdp
);
2062 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2063 * We set it now, but recheck for new callbacks while
2064 * traversing our follower list.
2066 my_rdp
->nocb_leader_sleep
= true;
2067 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2069 /* Each pass through the following loop wakes a follower, if needed. */
2070 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
) {
2071 if (READ_ONCE(rdp
->nocb_head
))
2072 my_rdp
->nocb_leader_sleep
= false;/* No need to sleep.*/
2073 if (!rdp
->nocb_gp_head
)
2074 continue; /* No CBs, so no need to wake follower. */
2076 /* Append callbacks to follower's "done" list. */
2077 tail
= xchg(&rdp
->nocb_follower_tail
, rdp
->nocb_gp_tail
);
2078 *tail
= rdp
->nocb_gp_head
;
2079 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2080 if (rdp
!= my_rdp
&& tail
== &rdp
->nocb_follower_head
) {
2082 * List was empty, wake up the follower.
2083 * Memory barriers supplied by atomic_long_add().
2085 swake_up(&rdp
->nocb_wq
);
2089 /* If we (the leader) don't have CBs, go wait some more. */
2090 if (!my_rdp
->nocb_follower_head
)
2095 * Followers come here to wait for additional callbacks to show up.
2096 * This function does not return until callbacks appear.
2098 static void nocb_follower_wait(struct rcu_data
*rdp
)
2100 bool firsttime
= true;
2103 if (!rcu_nocb_poll
) {
2104 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2106 swait_event_interruptible(rdp
->nocb_wq
,
2107 READ_ONCE(rdp
->nocb_follower_head
));
2108 } else if (firsttime
) {
2109 /* Don't drown trace log with "Poll"! */
2111 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, "Poll");
2113 if (smp_load_acquire(&rdp
->nocb_follower_head
)) {
2114 /* ^^^ Ensure CB invocation follows _head test. */
2118 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2120 WARN_ON(signal_pending(current
));
2121 schedule_timeout_interruptible(1);
2126 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2127 * callbacks queued by the corresponding no-CBs CPU, however, there is
2128 * an optional leader-follower relationship so that the grace-period
2129 * kthreads don't have to do quite so many wakeups.
2131 static int rcu_nocb_kthread(void *arg
)
2134 struct rcu_head
*list
;
2135 struct rcu_head
*next
;
2136 struct rcu_head
**tail
;
2137 struct rcu_data
*rdp
= arg
;
2139 /* Each pass through this loop invokes one batch of callbacks */
2141 /* Wait for callbacks. */
2142 if (rdp
->nocb_leader
== rdp
)
2143 nocb_leader_wait(rdp
);
2145 nocb_follower_wait(rdp
);
2147 /* Pull the ready-to-invoke callbacks onto local list. */
2148 list
= READ_ONCE(rdp
->nocb_follower_head
);
2150 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, "WokeNonEmpty");
2151 WRITE_ONCE(rdp
->nocb_follower_head
, NULL
);
2152 tail
= xchg(&rdp
->nocb_follower_tail
, &rdp
->nocb_follower_head
);
2154 /* Each pass through the following loop invokes a callback. */
2155 trace_rcu_batch_start(rdp
->rsp
->name
,
2156 atomic_long_read(&rdp
->nocb_q_count_lazy
),
2157 atomic_long_read(&rdp
->nocb_q_count
), -1);
2161 /* Wait for enqueuing to complete, if needed. */
2162 while (next
== NULL
&& &list
->next
!= tail
) {
2163 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2165 schedule_timeout_interruptible(1);
2166 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2170 debug_rcu_head_unqueue(list
);
2172 if (__rcu_reclaim(rdp
->rsp
->name
, list
))
2176 cond_resched_rcu_qs();
2179 trace_rcu_batch_end(rdp
->rsp
->name
, c
, !!list
, 0, 0, 1);
2180 smp_mb__before_atomic(); /* _add after CB invocation. */
2181 atomic_long_add(-c
, &rdp
->nocb_q_count
);
2182 atomic_long_add(-cl
, &rdp
->nocb_q_count_lazy
);
2183 rdp
->n_nocbs_invoked
+= c
;
2188 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2189 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2191 return READ_ONCE(rdp
->nocb_defer_wakeup
);
2194 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2195 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2199 if (!rcu_nocb_need_deferred_wakeup(rdp
))
2201 ndw
= READ_ONCE(rdp
->nocb_defer_wakeup
);
2202 WRITE_ONCE(rdp
->nocb_defer_wakeup
, RCU_NOGP_WAKE_NOT
);
2203 wake_nocb_leader(rdp
, ndw
== RCU_NOGP_WAKE_FORCE
);
2204 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("DeferredWake"));
2207 void __init
rcu_init_nohz(void)
2210 bool need_rcu_nocb_mask
= true;
2211 struct rcu_state
*rsp
;
2213 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2214 need_rcu_nocb_mask
= false;
2215 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2217 #if defined(CONFIG_NO_HZ_FULL)
2218 if (tick_nohz_full_running
&& cpumask_weight(tick_nohz_full_mask
))
2219 need_rcu_nocb_mask
= true;
2220 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2222 if (!have_rcu_nocb_mask
&& need_rcu_nocb_mask
) {
2223 if (!zalloc_cpumask_var(&rcu_nocb_mask
, GFP_KERNEL
)) {
2224 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2227 have_rcu_nocb_mask
= true;
2229 if (!have_rcu_nocb_mask
)
2232 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2233 pr_info("\tOffload RCU callbacks from CPU 0\n");
2234 cpumask_set_cpu(0, rcu_nocb_mask
);
2235 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2236 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2237 pr_info("\tOffload RCU callbacks from all CPUs\n");
2238 cpumask_copy(rcu_nocb_mask
, cpu_possible_mask
);
2239 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2240 #if defined(CONFIG_NO_HZ_FULL)
2241 if (tick_nohz_full_running
)
2242 cpumask_or(rcu_nocb_mask
, rcu_nocb_mask
, tick_nohz_full_mask
);
2243 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2245 if (!cpumask_subset(rcu_nocb_mask
, cpu_possible_mask
)) {
2246 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2247 cpumask_and(rcu_nocb_mask
, cpu_possible_mask
,
2250 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2251 cpumask_pr_args(rcu_nocb_mask
));
2253 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2255 for_each_rcu_flavor(rsp
) {
2256 for_each_cpu(cpu
, rcu_nocb_mask
)
2257 init_nocb_callback_list(per_cpu_ptr(rsp
->rda
, cpu
));
2258 rcu_organize_nocb_kthreads(rsp
);
2262 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2263 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2265 rdp
->nocb_tail
= &rdp
->nocb_head
;
2266 init_swait_queue_head(&rdp
->nocb_wq
);
2267 rdp
->nocb_follower_tail
= &rdp
->nocb_follower_head
;
2271 * If the specified CPU is a no-CBs CPU that does not already have its
2272 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2273 * brought online out of order, this can require re-organizing the
2274 * leader-follower relationships.
2276 static void rcu_spawn_one_nocb_kthread(struct rcu_state
*rsp
, int cpu
)
2278 struct rcu_data
*rdp
;
2279 struct rcu_data
*rdp_last
;
2280 struct rcu_data
*rdp_old_leader
;
2281 struct rcu_data
*rdp_spawn
= per_cpu_ptr(rsp
->rda
, cpu
);
2282 struct task_struct
*t
;
2285 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2286 * then nothing to do.
2288 if (!rcu_is_nocb_cpu(cpu
) || rdp_spawn
->nocb_kthread
)
2291 /* If we didn't spawn the leader first, reorganize! */
2292 rdp_old_leader
= rdp_spawn
->nocb_leader
;
2293 if (rdp_old_leader
!= rdp_spawn
&& !rdp_old_leader
->nocb_kthread
) {
2295 rdp
= rdp_old_leader
;
2297 rdp
->nocb_leader
= rdp_spawn
;
2298 if (rdp_last
&& rdp
!= rdp_spawn
)
2299 rdp_last
->nocb_next_follower
= rdp
;
2300 if (rdp
== rdp_spawn
) {
2301 rdp
= rdp
->nocb_next_follower
;
2304 rdp
= rdp
->nocb_next_follower
;
2305 rdp_last
->nocb_next_follower
= NULL
;
2308 rdp_spawn
->nocb_next_follower
= rdp_old_leader
;
2311 /* Spawn the kthread for this CPU and RCU flavor. */
2312 t
= kthread_run(rcu_nocb_kthread
, rdp_spawn
,
2313 "rcuo%c/%d", rsp
->abbr
, cpu
);
2315 WRITE_ONCE(rdp_spawn
->nocb_kthread
, t
);
2319 * If the specified CPU is a no-CBs CPU that does not already have its
2320 * rcuo kthreads, spawn them.
2322 static void rcu_spawn_all_nocb_kthreads(int cpu
)
2324 struct rcu_state
*rsp
;
2326 if (rcu_scheduler_fully_active
)
2327 for_each_rcu_flavor(rsp
)
2328 rcu_spawn_one_nocb_kthread(rsp
, cpu
);
2332 * Once the scheduler is running, spawn rcuo kthreads for all online
2333 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2334 * non-boot CPUs come online -- if this changes, we will need to add
2335 * some mutual exclusion.
2337 static void __init
rcu_spawn_nocb_kthreads(void)
2341 for_each_online_cpu(cpu
)
2342 rcu_spawn_all_nocb_kthreads(cpu
);
2345 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2346 static int rcu_nocb_leader_stride
= -1;
2347 module_param(rcu_nocb_leader_stride
, int, 0444);
2350 * Initialize leader-follower relationships for all no-CBs CPU.
2352 static void __init
rcu_organize_nocb_kthreads(struct rcu_state
*rsp
)
2355 int ls
= rcu_nocb_leader_stride
;
2356 int nl
= 0; /* Next leader. */
2357 struct rcu_data
*rdp
;
2358 struct rcu_data
*rdp_leader
= NULL
; /* Suppress misguided gcc warn. */
2359 struct rcu_data
*rdp_prev
= NULL
;
2361 if (!have_rcu_nocb_mask
)
2364 ls
= int_sqrt(nr_cpu_ids
);
2365 rcu_nocb_leader_stride
= ls
;
2369 * Each pass through this loop sets up one rcu_data structure and
2370 * spawns one rcu_nocb_kthread().
2372 for_each_cpu(cpu
, rcu_nocb_mask
) {
2373 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2374 if (rdp
->cpu
>= nl
) {
2375 /* New leader, set up for followers & next leader. */
2376 nl
= DIV_ROUND_UP(rdp
->cpu
+ 1, ls
) * ls
;
2377 rdp
->nocb_leader
= rdp
;
2380 /* Another follower, link to previous leader. */
2381 rdp
->nocb_leader
= rdp_leader
;
2382 rdp_prev
->nocb_next_follower
= rdp
;
2388 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2389 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2391 if (!rcu_is_nocb_cpu(rdp
->cpu
))
2394 /* If there are early-boot callbacks, move them to nocb lists. */
2396 rdp
->nocb_head
= rdp
->nxtlist
;
2397 rdp
->nocb_tail
= rdp
->nxttail
[RCU_NEXT_TAIL
];
2398 atomic_long_set(&rdp
->nocb_q_count
, rdp
->qlen
);
2399 atomic_long_set(&rdp
->nocb_q_count_lazy
, rdp
->qlen_lazy
);
2400 rdp
->nxtlist
= NULL
;
2404 rdp
->nxttail
[RCU_NEXT_TAIL
] = NULL
;
2408 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2410 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state
*rsp
, int cpu
)
2412 WARN_ON_ONCE(1); /* Should be dead code. */
2416 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
2420 static void rcu_nocb_gp_set(struct rcu_node
*rnp
, int nrq
)
2424 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
2429 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
2433 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2434 bool lazy
, unsigned long flags
)
2439 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_state
*rsp
,
2440 struct rcu_data
*rdp
,
2441 unsigned long flags
)
2446 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2450 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2455 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2459 static void rcu_spawn_all_nocb_kthreads(int cpu
)
2463 static void __init
rcu_spawn_nocb_kthreads(void)
2467 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2472 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2475 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2476 * arbitrarily long period of time with the scheduling-clock tick turned
2477 * off. RCU will be paying attention to this CPU because it is in the
2478 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2479 * machine because the scheduling-clock tick has been disabled. Therefore,
2480 * if an adaptive-ticks CPU is failing to respond to the current grace
2481 * period and has not be idle from an RCU perspective, kick it.
2483 static void __maybe_unused
rcu_kick_nohz_cpu(int cpu
)
2485 #ifdef CONFIG_NO_HZ_FULL
2486 if (tick_nohz_full_cpu(cpu
))
2487 smp_send_reschedule(cpu
);
2488 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2492 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2494 static int full_sysidle_state
; /* Current system-idle state. */
2495 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2496 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2497 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2498 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2499 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2502 * Invoked to note exit from irq or task transition to idle. Note that
2503 * usermode execution does -not- count as idle here! After all, we want
2504 * to detect full-system idle states, not RCU quiescent states and grace
2505 * periods. The caller must have disabled interrupts.
2507 static void rcu_sysidle_enter(int irq
)
2510 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
2512 /* If there are no nohz_full= CPUs, no need to track this. */
2513 if (!tick_nohz_full_enabled())
2516 /* Adjust nesting, check for fully idle. */
2518 rdtp
->dynticks_idle_nesting
--;
2519 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
< 0);
2520 if (rdtp
->dynticks_idle_nesting
!= 0)
2521 return; /* Still not fully idle. */
2523 if ((rdtp
->dynticks_idle_nesting
& DYNTICK_TASK_NEST_MASK
) ==
2524 DYNTICK_TASK_NEST_VALUE
) {
2525 rdtp
->dynticks_idle_nesting
= 0;
2527 rdtp
->dynticks_idle_nesting
-= DYNTICK_TASK_NEST_VALUE
;
2528 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
< 0);
2529 return; /* Still not fully idle. */
2533 /* Record start of fully idle period. */
2535 WRITE_ONCE(rdtp
->dynticks_idle_jiffies
, j
);
2536 smp_mb__before_atomic();
2537 atomic_inc(&rdtp
->dynticks_idle
);
2538 smp_mb__after_atomic();
2539 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks_idle
) & 0x1);
2543 * Unconditionally force exit from full system-idle state. This is
2544 * invoked when a normal CPU exits idle, but must be called separately
2545 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2546 * is that the timekeeping CPU is permitted to take scheduling-clock
2547 * interrupts while the system is in system-idle state, and of course
2548 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2549 * interrupt from any other type of interrupt.
2551 void rcu_sysidle_force_exit(void)
2553 int oldstate
= READ_ONCE(full_sysidle_state
);
2557 * Each pass through the following loop attempts to exit full
2558 * system-idle state. If contention proves to be a problem,
2559 * a trylock-based contention tree could be used here.
2561 while (oldstate
> RCU_SYSIDLE_SHORT
) {
2562 newoldstate
= cmpxchg(&full_sysidle_state
,
2563 oldstate
, RCU_SYSIDLE_NOT
);
2564 if (oldstate
== newoldstate
&&
2565 oldstate
== RCU_SYSIDLE_FULL_NOTED
) {
2566 rcu_kick_nohz_cpu(tick_do_timer_cpu
);
2567 return; /* We cleared it, done! */
2569 oldstate
= newoldstate
;
2571 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2575 * Invoked to note entry to irq or task transition from idle. Note that
2576 * usermode execution does -not- count as idle here! The caller must
2577 * have disabled interrupts.
2579 static void rcu_sysidle_exit(int irq
)
2581 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
2583 /* If there are no nohz_full= CPUs, no need to track this. */
2584 if (!tick_nohz_full_enabled())
2587 /* Adjust nesting, check for already non-idle. */
2589 rdtp
->dynticks_idle_nesting
++;
2590 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
<= 0);
2591 if (rdtp
->dynticks_idle_nesting
!= 1)
2592 return; /* Already non-idle. */
2595 * Allow for irq misnesting. Yes, it really is possible
2596 * to enter an irq handler then never leave it, and maybe
2597 * also vice versa. Handle both possibilities.
2599 if (rdtp
->dynticks_idle_nesting
& DYNTICK_TASK_NEST_MASK
) {
2600 rdtp
->dynticks_idle_nesting
+= DYNTICK_TASK_NEST_VALUE
;
2601 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
<= 0);
2602 return; /* Already non-idle. */
2604 rdtp
->dynticks_idle_nesting
= DYNTICK_TASK_EXIT_IDLE
;
2608 /* Record end of idle period. */
2609 smp_mb__before_atomic();
2610 atomic_inc(&rdtp
->dynticks_idle
);
2611 smp_mb__after_atomic();
2612 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks_idle
) & 0x1));
2615 * If we are the timekeeping CPU, we are permitted to be non-idle
2616 * during a system-idle state. This must be the case, because
2617 * the timekeeping CPU has to take scheduling-clock interrupts
2618 * during the time that the system is transitioning to full
2619 * system-idle state. This means that the timekeeping CPU must
2620 * invoke rcu_sysidle_force_exit() directly if it does anything
2621 * more than take a scheduling-clock interrupt.
2623 if (smp_processor_id() == tick_do_timer_cpu
)
2626 /* Update system-idle state: We are clearly no longer fully idle! */
2627 rcu_sysidle_force_exit();
2631 * Check to see if the current CPU is idle. Note that usermode execution
2632 * does not count as idle. The caller must have disabled interrupts,
2633 * and must be running on tick_do_timer_cpu.
2635 static void rcu_sysidle_check_cpu(struct rcu_data
*rdp
, bool *isidle
,
2636 unsigned long *maxj
)
2640 struct rcu_dynticks
*rdtp
= rdp
->dynticks
;
2642 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2643 if (!tick_nohz_full_enabled())
2647 * If some other CPU has already reported non-idle, if this is
2648 * not the flavor of RCU that tracks sysidle state, or if this
2649 * is an offline or the timekeeping CPU, nothing to do.
2651 if (!*isidle
|| rdp
->rsp
!= rcu_state_p
||
2652 cpu_is_offline(rdp
->cpu
) || rdp
->cpu
== tick_do_timer_cpu
)
2654 /* Verify affinity of current kthread. */
2655 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu
);
2657 /* Pick up current idle and NMI-nesting counter and check. */
2658 cur
= atomic_read(&rdtp
->dynticks_idle
);
2660 *isidle
= false; /* We are not idle! */
2663 smp_mb(); /* Read counters before timestamps. */
2665 /* Pick up timestamps. */
2666 j
= READ_ONCE(rdtp
->dynticks_idle_jiffies
);
2667 /* If this CPU entered idle more recently, update maxj timestamp. */
2668 if (ULONG_CMP_LT(*maxj
, j
))
2673 * Is this the flavor of RCU that is handling full-system idle?
2675 static bool is_sysidle_rcu_state(struct rcu_state
*rsp
)
2677 return rsp
== rcu_state_p
;
2681 * Return a delay in jiffies based on the number of CPUs, rcu_node
2682 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2683 * systems more time to transition to full-idle state in order to
2684 * avoid the cache thrashing that otherwise occur on the state variable.
2685 * Really small systems (less than a couple of tens of CPUs) should
2686 * instead use a single global atomically incremented counter, and later
2687 * versions of this will automatically reconfigure themselves accordingly.
2689 static unsigned long rcu_sysidle_delay(void)
2691 if (nr_cpu_ids
<= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
)
2693 return DIV_ROUND_UP(nr_cpu_ids
* HZ
, rcu_fanout_leaf
* 1000);
2697 * Advance the full-system-idle state. This is invoked when all of
2698 * the non-timekeeping CPUs are idle.
2700 static void rcu_sysidle(unsigned long j
)
2702 /* Check the current state. */
2703 switch (READ_ONCE(full_sysidle_state
)) {
2704 case RCU_SYSIDLE_NOT
:
2706 /* First time all are idle, so note a short idle period. */
2707 WRITE_ONCE(full_sysidle_state
, RCU_SYSIDLE_SHORT
);
2710 case RCU_SYSIDLE_SHORT
:
2713 * Idle for a bit, time to advance to next state?
2714 * cmpxchg failure means race with non-idle, let them win.
2716 if (ULONG_CMP_GE(jiffies
, j
+ rcu_sysidle_delay()))
2717 (void)cmpxchg(&full_sysidle_state
,
2718 RCU_SYSIDLE_SHORT
, RCU_SYSIDLE_LONG
);
2721 case RCU_SYSIDLE_LONG
:
2724 * Do an additional check pass before advancing to full.
2725 * cmpxchg failure means race with non-idle, let them win.
2727 if (ULONG_CMP_GE(jiffies
, j
+ rcu_sysidle_delay()))
2728 (void)cmpxchg(&full_sysidle_state
,
2729 RCU_SYSIDLE_LONG
, RCU_SYSIDLE_FULL
);
2738 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2739 * back to the beginning.
2741 static void rcu_sysidle_cancel(void)
2744 if (full_sysidle_state
> RCU_SYSIDLE_SHORT
)
2745 WRITE_ONCE(full_sysidle_state
, RCU_SYSIDLE_NOT
);
2749 * Update the sysidle state based on the results of a force-quiescent-state
2750 * scan of the CPUs' dyntick-idle state.
2752 static void rcu_sysidle_report(struct rcu_state
*rsp
, int isidle
,
2753 unsigned long maxj
, bool gpkt
)
2755 if (rsp
!= rcu_state_p
)
2756 return; /* Wrong flavor, ignore. */
2757 if (gpkt
&& nr_cpu_ids
<= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
)
2758 return; /* Running state machine from timekeeping CPU. */
2760 rcu_sysidle(maxj
); /* More idle! */
2762 rcu_sysidle_cancel(); /* Idle is over. */
2766 * Wrapper for rcu_sysidle_report() when called from the grace-period
2767 * kthread's context.
2769 static void rcu_sysidle_report_gp(struct rcu_state
*rsp
, int isidle
,
2772 /* If there are no nohz_full= CPUs, no need to track this. */
2773 if (!tick_nohz_full_enabled())
2776 rcu_sysidle_report(rsp
, isidle
, maxj
, true);
2779 /* Callback and function for forcing an RCU grace period. */
2780 struct rcu_sysidle_head
{
2785 static void rcu_sysidle_cb(struct rcu_head
*rhp
)
2787 struct rcu_sysidle_head
*rshp
;
2790 * The following memory barrier is needed to replace the
2791 * memory barriers that would normally be in the memory
2794 smp_mb(); /* grace period precedes setting inuse. */
2796 rshp
= container_of(rhp
, struct rcu_sysidle_head
, rh
);
2797 WRITE_ONCE(rshp
->inuse
, 0);
2801 * Check to see if the system is fully idle, other than the timekeeping CPU.
2802 * The caller must have disabled interrupts. This is not intended to be
2803 * called unless tick_nohz_full_enabled().
2805 bool rcu_sys_is_idle(void)
2807 static struct rcu_sysidle_head rsh
;
2808 int rss
= READ_ONCE(full_sysidle_state
);
2810 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu
))
2813 /* Handle small-system case by doing a full scan of CPUs. */
2814 if (nr_cpu_ids
<= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
) {
2815 int oldrss
= rss
- 1;
2818 * One pass to advance to each state up to _FULL.
2819 * Give up if any pass fails to advance the state.
2821 while (rss
< RCU_SYSIDLE_FULL
&& oldrss
< rss
) {
2824 unsigned long maxj
= jiffies
- ULONG_MAX
/ 4;
2825 struct rcu_data
*rdp
;
2827 /* Scan all the CPUs looking for nonidle CPUs. */
2828 for_each_possible_cpu(cpu
) {
2829 rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
2830 rcu_sysidle_check_cpu(rdp
, &isidle
, &maxj
);
2834 rcu_sysidle_report(rcu_state_p
, isidle
, maxj
, false);
2836 rss
= READ_ONCE(full_sysidle_state
);
2840 /* If this is the first observation of an idle period, record it. */
2841 if (rss
== RCU_SYSIDLE_FULL
) {
2842 rss
= cmpxchg(&full_sysidle_state
,
2843 RCU_SYSIDLE_FULL
, RCU_SYSIDLE_FULL_NOTED
);
2844 return rss
== RCU_SYSIDLE_FULL
;
2847 smp_mb(); /* ensure rss load happens before later caller actions. */
2849 /* If already fully idle, tell the caller (in case of races). */
2850 if (rss
== RCU_SYSIDLE_FULL_NOTED
)
2854 * If we aren't there yet, and a grace period is not in flight,
2855 * initiate a grace period. Either way, tell the caller that
2856 * we are not there yet. We use an xchg() rather than an assignment
2857 * to make up for the memory barriers that would otherwise be
2858 * provided by the memory allocator.
2860 if (nr_cpu_ids
> CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
&&
2861 !rcu_gp_in_progress(rcu_state_p
) &&
2862 !rsh
.inuse
&& xchg(&rsh
.inuse
, 1) == 0)
2863 call_rcu(&rsh
.rh
, rcu_sysidle_cb
);
2868 * Initialize dynticks sysidle state for CPUs coming online.
2870 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks
*rdtp
)
2872 rdtp
->dynticks_idle_nesting
= DYNTICK_TASK_NEST_VALUE
;
2875 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2877 static void rcu_sysidle_enter(int irq
)
2881 static void rcu_sysidle_exit(int irq
)
2885 static void rcu_sysidle_check_cpu(struct rcu_data
*rdp
, bool *isidle
,
2886 unsigned long *maxj
)
2890 static bool is_sysidle_rcu_state(struct rcu_state
*rsp
)
2895 static void rcu_sysidle_report_gp(struct rcu_state
*rsp
, int isidle
,
2900 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks
*rdtp
)
2904 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2907 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2908 * grace-period kthread will do force_quiescent_state() processing?
2909 * The idea is to avoid waking up RCU core processing on such a
2910 * CPU unless the grace period has extended for too long.
2912 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2913 * CONFIG_RCU_NOCB_CPU CPUs.
2915 static bool rcu_nohz_full_cpu(struct rcu_state
*rsp
)
2917 #ifdef CONFIG_NO_HZ_FULL
2918 if (tick_nohz_full_cpu(smp_processor_id()) &&
2919 (!rcu_gp_in_progress(rsp
) ||
2920 ULONG_CMP_LT(jiffies
, READ_ONCE(rsp
->gp_start
) + HZ
)))
2922 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2927 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2930 static void rcu_bind_gp_kthread(void)
2932 int __maybe_unused cpu
;
2934 if (!tick_nohz_full_enabled())
2936 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2937 cpu
= tick_do_timer_cpu
;
2938 if (cpu
>= 0 && cpu
< nr_cpu_ids
)
2939 set_cpus_allowed_ptr(current
, cpumask_of(cpu
));
2940 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2941 housekeeping_affine(current
);
2942 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2945 /* Record the current task on dyntick-idle entry. */
2946 static void rcu_dynticks_task_enter(void)
2948 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2949 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, smp_processor_id());
2950 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2953 /* Record no current task on dyntick-idle exit. */
2954 static void rcu_dynticks_task_exit(void)
2956 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2957 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, -1);
2958 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */