2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2001
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/moduleparam.h>
50 #include <linux/kthread.h>
51 #include <linux/tick.h>
53 #define CREATE_TRACE_POINTS
57 #ifdef MODULE_PARAM_PREFIX
58 #undef MODULE_PARAM_PREFIX
60 #define MODULE_PARAM_PREFIX "rcupdate."
62 #ifndef CONFIG_TINY_RCU
63 module_param(rcu_expedited
, int, 0);
64 module_param(rcu_normal
, int, 0);
65 static int rcu_normal_after_boot
;
66 module_param(rcu_normal_after_boot
, int, 0);
67 #endif /* #ifndef CONFIG_TINY_RCU */
69 #ifdef CONFIG_DEBUG_LOCK_ALLOC
71 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
73 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
74 * RCU-sched read-side critical section. In absence of
75 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
76 * critical section unless it can prove otherwise. Note that disabling
77 * of preemption (including disabling irqs) counts as an RCU-sched
78 * read-side critical section. This is useful for debug checks in functions
79 * that required that they be called within an RCU-sched read-side
82 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
83 * and while lockdep is disabled.
85 * Note that if the CPU is in the idle loop from an RCU point of
86 * view (ie: that we are in the section between rcu_idle_enter() and
87 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
88 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
89 * that are in such a section, considering these as in extended quiescent
90 * state, so such a CPU is effectively never in an RCU read-side critical
91 * section regardless of what RCU primitives it invokes. This state of
92 * affairs is required --- we need to keep an RCU-free window in idle
93 * where the CPU may possibly enter into low power mode. This way we can
94 * notice an extended quiescent state to other CPUs that started a grace
95 * period. Otherwise we would delay any grace period as long as we run in
98 * Similarly, we avoid claiming an SRCU read lock held if the current
101 int rcu_read_lock_sched_held(void)
103 int lockdep_opinion
= 0;
105 if (!debug_lockdep_rcu_enabled())
107 if (!rcu_is_watching())
109 if (!rcu_lockdep_current_cpu_online())
112 lockdep_opinion
= lock_is_held(&rcu_sched_lock_map
);
113 return lockdep_opinion
|| !preemptible();
115 EXPORT_SYMBOL(rcu_read_lock_sched_held
);
118 #ifndef CONFIG_TINY_RCU
121 * Should expedited grace-period primitives always fall back to their
122 * non-expedited counterparts? Intended for use within RCU. Note
123 * that if the user specifies both rcu_expedited and rcu_normal, then
126 bool rcu_gp_is_normal(void)
128 return READ_ONCE(rcu_normal
);
130 EXPORT_SYMBOL_GPL(rcu_gp_is_normal
);
132 static atomic_t rcu_expedited_nesting
=
133 ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT
) ? 1 : 0);
136 * Should normal grace-period primitives be expedited? Intended for
137 * use within RCU. Note that this function takes the rcu_expedited
138 * sysfs/boot variable into account as well as the rcu_expedite_gp()
139 * nesting. So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
140 * returns false is a -really- bad idea.
142 bool rcu_gp_is_expedited(void)
144 return rcu_expedited
|| atomic_read(&rcu_expedited_nesting
);
146 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited
);
149 * rcu_expedite_gp - Expedite future RCU grace periods
151 * After a call to this function, future calls to synchronize_rcu() and
152 * friends act as the corresponding synchronize_rcu_expedited() function
153 * had instead been called.
155 void rcu_expedite_gp(void)
157 atomic_inc(&rcu_expedited_nesting
);
159 EXPORT_SYMBOL_GPL(rcu_expedite_gp
);
162 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
164 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
165 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
166 * and if the rcu_expedited sysfs/boot parameter is not set, then all
167 * subsequent calls to synchronize_rcu() and friends will return to
168 * their normal non-expedited behavior.
170 void rcu_unexpedite_gp(void)
172 atomic_dec(&rcu_expedited_nesting
);
174 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp
);
177 * Inform RCU of the end of the in-kernel boot sequence.
179 void rcu_end_inkernel_boot(void)
181 if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT
))
183 if (rcu_normal_after_boot
)
184 WRITE_ONCE(rcu_normal
, 1);
187 #endif /* #ifndef CONFIG_TINY_RCU */
189 #ifdef CONFIG_PREEMPT_RCU
192 * Preemptible RCU implementation for rcu_read_lock().
193 * Just increment ->rcu_read_lock_nesting, shared state will be updated
196 void __rcu_read_lock(void)
198 current
->rcu_read_lock_nesting
++;
199 barrier(); /* critical section after entry code. */
201 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
204 * Preemptible RCU implementation for rcu_read_unlock().
205 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
206 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
207 * invoke rcu_read_unlock_special() to clean up after a context switch
208 * in an RCU read-side critical section and other special cases.
210 void __rcu_read_unlock(void)
212 struct task_struct
*t
= current
;
214 if (t
->rcu_read_lock_nesting
!= 1) {
215 --t
->rcu_read_lock_nesting
;
217 barrier(); /* critical section before exit code. */
218 t
->rcu_read_lock_nesting
= INT_MIN
;
219 barrier(); /* assign before ->rcu_read_unlock_special load */
220 if (unlikely(READ_ONCE(t
->rcu_read_unlock_special
.s
)))
221 rcu_read_unlock_special(t
);
222 barrier(); /* ->rcu_read_unlock_special load before assign */
223 t
->rcu_read_lock_nesting
= 0;
225 #ifdef CONFIG_PROVE_LOCKING
227 int rrln
= READ_ONCE(t
->rcu_read_lock_nesting
);
229 WARN_ON_ONCE(rrln
< 0 && rrln
> INT_MIN
/ 2);
231 #endif /* #ifdef CONFIG_PROVE_LOCKING */
233 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
235 #endif /* #ifdef CONFIG_PREEMPT_RCU */
237 #ifdef CONFIG_DEBUG_LOCK_ALLOC
238 static struct lock_class_key rcu_lock_key
;
239 struct lockdep_map rcu_lock_map
=
240 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key
);
241 EXPORT_SYMBOL_GPL(rcu_lock_map
);
243 static struct lock_class_key rcu_bh_lock_key
;
244 struct lockdep_map rcu_bh_lock_map
=
245 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key
);
246 EXPORT_SYMBOL_GPL(rcu_bh_lock_map
);
248 static struct lock_class_key rcu_sched_lock_key
;
249 struct lockdep_map rcu_sched_lock_map
=
250 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key
);
251 EXPORT_SYMBOL_GPL(rcu_sched_lock_map
);
253 static struct lock_class_key rcu_callback_key
;
254 struct lockdep_map rcu_callback_map
=
255 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key
);
256 EXPORT_SYMBOL_GPL(rcu_callback_map
);
258 int notrace
debug_lockdep_rcu_enabled(void)
260 return rcu_scheduler_active
&& debug_locks
&&
261 current
->lockdep_recursion
== 0;
263 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled
);
266 * rcu_read_lock_held() - might we be in RCU read-side critical section?
268 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
269 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
270 * this assumes we are in an RCU read-side critical section unless it can
271 * prove otherwise. This is useful for debug checks in functions that
272 * require that they be called within an RCU read-side critical section.
274 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
275 * and while lockdep is disabled.
277 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
278 * occur in the same context, for example, it is illegal to invoke
279 * rcu_read_unlock() in process context if the matching rcu_read_lock()
280 * was invoked from within an irq handler.
282 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
283 * offline from an RCU perspective, so check for those as well.
285 int rcu_read_lock_held(void)
287 if (!debug_lockdep_rcu_enabled())
289 if (!rcu_is_watching())
291 if (!rcu_lockdep_current_cpu_online())
293 return lock_is_held(&rcu_lock_map
);
295 EXPORT_SYMBOL_GPL(rcu_read_lock_held
);
298 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
300 * Check for bottom half being disabled, which covers both the
301 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
302 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
303 * will show the situation. This is useful for debug checks in functions
304 * that require that they be called within an RCU read-side critical
307 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
309 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
310 * offline from an RCU perspective, so check for those as well.
312 int rcu_read_lock_bh_held(void)
314 if (!debug_lockdep_rcu_enabled())
316 if (!rcu_is_watching())
318 if (!rcu_lockdep_current_cpu_online())
320 return in_softirq() || irqs_disabled();
322 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held
);
324 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
327 * wakeme_after_rcu() - Callback function to awaken a task after grace period
328 * @head: Pointer to rcu_head member within rcu_synchronize structure
330 * Awaken the corresponding task now that a grace period has elapsed.
332 void wakeme_after_rcu(struct rcu_head
*head
)
334 struct rcu_synchronize
*rcu
;
336 rcu
= container_of(head
, struct rcu_synchronize
, head
);
337 complete(&rcu
->completion
);
339 EXPORT_SYMBOL_GPL(wakeme_after_rcu
);
341 void __wait_rcu_gp(bool checktiny
, int n
, call_rcu_func_t
*crcu_array
,
342 struct rcu_synchronize
*rs_array
)
346 /* Initialize and register callbacks for each flavor specified. */
347 for (i
= 0; i
< n
; i
++) {
349 (crcu_array
[i
] == call_rcu
||
350 crcu_array
[i
] == call_rcu_bh
)) {
354 init_rcu_head_on_stack(&rs_array
[i
].head
);
355 init_completion(&rs_array
[i
].completion
);
356 (crcu_array
[i
])(&rs_array
[i
].head
, wakeme_after_rcu
);
359 /* Wait for all callbacks to be invoked. */
360 for (i
= 0; i
< n
; i
++) {
362 (crcu_array
[i
] == call_rcu
||
363 crcu_array
[i
] == call_rcu_bh
))
365 wait_for_completion(&rs_array
[i
].completion
);
366 destroy_rcu_head_on_stack(&rs_array
[i
].head
);
369 EXPORT_SYMBOL_GPL(__wait_rcu_gp
);
371 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
372 void init_rcu_head(struct rcu_head
*head
)
374 debug_object_init(head
, &rcuhead_debug_descr
);
377 void destroy_rcu_head(struct rcu_head
*head
)
379 debug_object_free(head
, &rcuhead_debug_descr
);
382 static bool rcuhead_is_static_object(void *addr
)
388 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
389 * @head: pointer to rcu_head structure to be initialized
391 * This function informs debugobjects of a new rcu_head structure that
392 * has been allocated as an auto variable on the stack. This function
393 * is not required for rcu_head structures that are statically defined or
394 * that are dynamically allocated on the heap. This function has no
395 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
397 void init_rcu_head_on_stack(struct rcu_head
*head
)
399 debug_object_init_on_stack(head
, &rcuhead_debug_descr
);
401 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack
);
404 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
405 * @head: pointer to rcu_head structure to be initialized
407 * This function informs debugobjects that an on-stack rcu_head structure
408 * is about to go out of scope. As with init_rcu_head_on_stack(), this
409 * function is not required for rcu_head structures that are statically
410 * defined or that are dynamically allocated on the heap. Also as with
411 * init_rcu_head_on_stack(), this function has no effect for
412 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
414 void destroy_rcu_head_on_stack(struct rcu_head
*head
)
416 debug_object_free(head
, &rcuhead_debug_descr
);
418 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack
);
420 struct debug_obj_descr rcuhead_debug_descr
= {
422 .is_static_object
= rcuhead_is_static_object
,
424 EXPORT_SYMBOL_GPL(rcuhead_debug_descr
);
425 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
427 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
428 void do_trace_rcu_torture_read(const char *rcutorturename
, struct rcu_head
*rhp
,
430 unsigned long c_old
, unsigned long c
)
432 trace_rcu_torture_read(rcutorturename
, rhp
, secs
, c_old
, c
);
434 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read
);
436 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
440 #ifdef CONFIG_RCU_STALL_COMMON
442 #ifdef CONFIG_PROVE_RCU
443 #define RCU_STALL_DELAY_DELTA (5 * HZ)
445 #define RCU_STALL_DELAY_DELTA 0
448 int rcu_cpu_stall_suppress __read_mostly
; /* 1 = suppress stall warnings. */
449 static int rcu_cpu_stall_timeout __read_mostly
= CONFIG_RCU_CPU_STALL_TIMEOUT
;
451 module_param(rcu_cpu_stall_suppress
, int, 0644);
452 module_param(rcu_cpu_stall_timeout
, int, 0644);
454 int rcu_jiffies_till_stall_check(void)
456 int till_stall_check
= READ_ONCE(rcu_cpu_stall_timeout
);
459 * Limit check must be consistent with the Kconfig limits
460 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
462 if (till_stall_check
< 3) {
463 WRITE_ONCE(rcu_cpu_stall_timeout
, 3);
464 till_stall_check
= 3;
465 } else if (till_stall_check
> 300) {
466 WRITE_ONCE(rcu_cpu_stall_timeout
, 300);
467 till_stall_check
= 300;
469 return till_stall_check
* HZ
+ RCU_STALL_DELAY_DELTA
;
472 void rcu_sysrq_start(void)
474 if (!rcu_cpu_stall_suppress
)
475 rcu_cpu_stall_suppress
= 2;
478 void rcu_sysrq_end(void)
480 if (rcu_cpu_stall_suppress
== 2)
481 rcu_cpu_stall_suppress
= 0;
484 static int rcu_panic(struct notifier_block
*this, unsigned long ev
, void *ptr
)
486 rcu_cpu_stall_suppress
= 1;
490 static struct notifier_block rcu_panic_block
= {
491 .notifier_call
= rcu_panic
,
494 static int __init
check_cpu_stall_init(void)
496 atomic_notifier_chain_register(&panic_notifier_list
, &rcu_panic_block
);
499 early_initcall(check_cpu_stall_init
);
501 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
503 #ifdef CONFIG_TASKS_RCU
506 * Simple variant of RCU whose quiescent states are voluntary context switch,
507 * user-space execution, and idle. As such, grace periods can take one good
508 * long time. There are no read-side primitives similar to rcu_read_lock()
509 * and rcu_read_unlock() because this implementation is intended to get
510 * the system into a safe state for some of the manipulations involved in
511 * tracing and the like. Finally, this implementation does not support
512 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
513 * per-CPU callback lists will be needed.
516 /* Global list of callbacks and associated lock. */
517 static struct rcu_head
*rcu_tasks_cbs_head
;
518 static struct rcu_head
**rcu_tasks_cbs_tail
= &rcu_tasks_cbs_head
;
519 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq
);
520 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock
);
522 /* Track exiting tasks in order to allow them to be waited for. */
523 DEFINE_SRCU(tasks_rcu_exit_srcu
);
525 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
526 static int rcu_task_stall_timeout __read_mostly
= HZ
* 60 * 10;
527 module_param(rcu_task_stall_timeout
, int, 0644);
529 static void rcu_spawn_tasks_kthread(void);
530 static struct task_struct
*rcu_tasks_kthread_ptr
;
533 * Post an RCU-tasks callback. First call must be from process context
534 * after the scheduler if fully operational.
536 void call_rcu_tasks(struct rcu_head
*rhp
, rcu_callback_t func
)
540 bool havetask
= READ_ONCE(rcu_tasks_kthread_ptr
);
544 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock
, flags
);
545 needwake
= !rcu_tasks_cbs_head
;
546 *rcu_tasks_cbs_tail
= rhp
;
547 rcu_tasks_cbs_tail
= &rhp
->next
;
548 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock
, flags
);
549 /* We can't create the thread unless interrupts are enabled. */
550 if ((needwake
&& havetask
) ||
551 (!havetask
&& !irqs_disabled_flags(flags
))) {
552 rcu_spawn_tasks_kthread();
553 wake_up(&rcu_tasks_cbs_wq
);
556 EXPORT_SYMBOL_GPL(call_rcu_tasks
);
559 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
561 * Control will return to the caller some time after a full rcu-tasks
562 * grace period has elapsed, in other words after all currently
563 * executing rcu-tasks read-side critical sections have elapsed. These
564 * read-side critical sections are delimited by calls to schedule(),
565 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
566 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
568 * This is a very specialized primitive, intended only for a few uses in
569 * tracing and other situations requiring manipulation of function
570 * preambles and profiling hooks. The synchronize_rcu_tasks() function
571 * is not (yet) intended for heavy use from multiple CPUs.
573 * Note that this guarantee implies further memory-ordering guarantees.
574 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
575 * each CPU is guaranteed to have executed a full memory barrier since the
576 * end of its last RCU-tasks read-side critical section whose beginning
577 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
578 * having an RCU-tasks read-side critical section that extends beyond
579 * the return from synchronize_rcu_tasks() is guaranteed to have executed
580 * a full memory barrier after the beginning of synchronize_rcu_tasks()
581 * and before the beginning of that RCU-tasks read-side critical section.
582 * Note that these guarantees include CPUs that are offline, idle, or
583 * executing in user mode, as well as CPUs that are executing in the kernel.
585 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
586 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
587 * to have executed a full memory barrier during the execution of
588 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
589 * (but again only if the system has more than one CPU).
591 void synchronize_rcu_tasks(void)
593 /* Complain if the scheduler has not started. */
594 RCU_LOCKDEP_WARN(!rcu_scheduler_active
,
595 "synchronize_rcu_tasks called too soon");
597 /* Wait for the grace period. */
598 wait_rcu_gp(call_rcu_tasks
);
600 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks
);
603 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
605 * Although the current implementation is guaranteed to wait, it is not
606 * obligated to, for example, if there are no pending callbacks.
608 void rcu_barrier_tasks(void)
610 /* There is only one callback queue, so this is easy. ;-) */
611 synchronize_rcu_tasks();
613 EXPORT_SYMBOL_GPL(rcu_barrier_tasks
);
615 /* See if tasks are still holding out, complain if so. */
616 static void check_holdout_task(struct task_struct
*t
,
617 bool needreport
, bool *firstreport
)
621 if (!READ_ONCE(t
->rcu_tasks_holdout
) ||
622 t
->rcu_tasks_nvcsw
!= READ_ONCE(t
->nvcsw
) ||
623 !READ_ONCE(t
->on_rq
) ||
624 (IS_ENABLED(CONFIG_NO_HZ_FULL
) &&
625 !is_idle_task(t
) && t
->rcu_tasks_idle_cpu
>= 0)) {
626 WRITE_ONCE(t
->rcu_tasks_holdout
, false);
627 list_del_init(&t
->rcu_tasks_holdout_list
);
634 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
635 *firstreport
= false;
638 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
639 t
, ".I"[is_idle_task(t
)],
640 "N."[cpu
< 0 || !tick_nohz_full_cpu(cpu
)],
641 t
->rcu_tasks_nvcsw
, t
->nvcsw
, t
->rcu_tasks_holdout
,
642 t
->rcu_tasks_idle_cpu
, cpu
);
646 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
647 static int __noreturn
rcu_tasks_kthread(void *arg
)
650 struct task_struct
*g
, *t
;
651 unsigned long lastreport
;
652 struct rcu_head
*list
;
653 struct rcu_head
*next
;
654 LIST_HEAD(rcu_tasks_holdouts
);
656 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
657 housekeeping_affine(current
);
660 * Each pass through the following loop makes one check for
661 * newly arrived callbacks, and, if there are some, waits for
662 * one RCU-tasks grace period and then invokes the callbacks.
663 * This loop is terminated by the system going down. ;-)
667 /* Pick up any new callbacks. */
668 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock
, flags
);
669 list
= rcu_tasks_cbs_head
;
670 rcu_tasks_cbs_head
= NULL
;
671 rcu_tasks_cbs_tail
= &rcu_tasks_cbs_head
;
672 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock
, flags
);
674 /* If there were none, wait a bit and start over. */
676 wait_event_interruptible(rcu_tasks_cbs_wq
,
678 if (!rcu_tasks_cbs_head
) {
679 WARN_ON(signal_pending(current
));
680 schedule_timeout_interruptible(HZ
/10);
686 * Wait for all pre-existing t->on_rq and t->nvcsw
687 * transitions to complete. Invoking synchronize_sched()
688 * suffices because all these transitions occur with
689 * interrupts disabled. Without this synchronize_sched(),
690 * a read-side critical section that started before the
691 * grace period might be incorrectly seen as having started
692 * after the grace period.
694 * This synchronize_sched() also dispenses with the
695 * need for a memory barrier on the first store to
696 * ->rcu_tasks_holdout, as it forces the store to happen
697 * after the beginning of the grace period.
702 * There were callbacks, so we need to wait for an
703 * RCU-tasks grace period. Start off by scanning
704 * the task list for tasks that are not already
705 * voluntarily blocked. Mark these tasks and make
706 * a list of them in rcu_tasks_holdouts.
709 for_each_process_thread(g
, t
) {
710 if (t
!= current
&& READ_ONCE(t
->on_rq
) &&
713 t
->rcu_tasks_nvcsw
= READ_ONCE(t
->nvcsw
);
714 WRITE_ONCE(t
->rcu_tasks_holdout
, true);
715 list_add(&t
->rcu_tasks_holdout_list
,
716 &rcu_tasks_holdouts
);
722 * Wait for tasks that are in the process of exiting.
723 * This does only part of the job, ensuring that all
724 * tasks that were previously exiting reach the point
725 * where they have disabled preemption, allowing the
726 * later synchronize_sched() to finish the job.
728 synchronize_srcu(&tasks_rcu_exit_srcu
);
731 * Each pass through the following loop scans the list
732 * of holdout tasks, removing any that are no longer
733 * holdouts. When the list is empty, we are done.
735 lastreport
= jiffies
;
736 while (!list_empty(&rcu_tasks_holdouts
)) {
740 struct task_struct
*t1
;
742 schedule_timeout_interruptible(HZ
);
743 rtst
= READ_ONCE(rcu_task_stall_timeout
);
744 needreport
= rtst
> 0 &&
745 time_after(jiffies
, lastreport
+ rtst
);
747 lastreport
= jiffies
;
749 WARN_ON(signal_pending(current
));
750 list_for_each_entry_safe(t
, t1
, &rcu_tasks_holdouts
,
751 rcu_tasks_holdout_list
) {
752 check_holdout_task(t
, needreport
, &firstreport
);
758 * Because ->on_rq and ->nvcsw are not guaranteed
759 * to have a full memory barriers prior to them in the
760 * schedule() path, memory reordering on other CPUs could
761 * cause their RCU-tasks read-side critical sections to
762 * extend past the end of the grace period. However,
763 * because these ->nvcsw updates are carried out with
764 * interrupts disabled, we can use synchronize_sched()
765 * to force the needed ordering on all such CPUs.
767 * This synchronize_sched() also confines all
768 * ->rcu_tasks_holdout accesses to be within the grace
769 * period, avoiding the need for memory barriers for
770 * ->rcu_tasks_holdout accesses.
772 * In addition, this synchronize_sched() waits for exiting
773 * tasks to complete their final preempt_disable() region
774 * of execution, cleaning up after the synchronize_srcu()
779 /* Invoke the callbacks. */
788 schedule_timeout_uninterruptible(HZ
/10);
792 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
793 static void rcu_spawn_tasks_kthread(void)
795 static DEFINE_MUTEX(rcu_tasks_kthread_mutex
);
796 struct task_struct
*t
;
798 if (READ_ONCE(rcu_tasks_kthread_ptr
)) {
799 smp_mb(); /* Ensure caller sees full kthread. */
802 mutex_lock(&rcu_tasks_kthread_mutex
);
803 if (rcu_tasks_kthread_ptr
) {
804 mutex_unlock(&rcu_tasks_kthread_mutex
);
807 t
= kthread_run(rcu_tasks_kthread
, NULL
, "rcu_tasks_kthread");
809 smp_mb(); /* Ensure others see full kthread. */
810 WRITE_ONCE(rcu_tasks_kthread_ptr
, t
);
811 mutex_unlock(&rcu_tasks_kthread_mutex
);
814 #endif /* #ifdef CONFIG_TASKS_RCU */
816 #ifdef CONFIG_PROVE_RCU
819 * Early boot self test parameters, one for each flavor
821 static bool rcu_self_test
;
822 static bool rcu_self_test_bh
;
823 static bool rcu_self_test_sched
;
825 module_param(rcu_self_test
, bool, 0444);
826 module_param(rcu_self_test_bh
, bool, 0444);
827 module_param(rcu_self_test_sched
, bool, 0444);
829 static int rcu_self_test_counter
;
831 static void test_callback(struct rcu_head
*r
)
833 rcu_self_test_counter
++;
834 pr_info("RCU test callback executed %d\n", rcu_self_test_counter
);
837 static void early_boot_test_call_rcu(void)
839 static struct rcu_head head
;
841 call_rcu(&head
, test_callback
);
844 static void early_boot_test_call_rcu_bh(void)
846 static struct rcu_head head
;
848 call_rcu_bh(&head
, test_callback
);
851 static void early_boot_test_call_rcu_sched(void)
853 static struct rcu_head head
;
855 call_rcu_sched(&head
, test_callback
);
858 void rcu_early_boot_tests(void)
860 pr_info("Running RCU self tests\n");
863 early_boot_test_call_rcu();
864 if (rcu_self_test_bh
)
865 early_boot_test_call_rcu_bh();
866 if (rcu_self_test_sched
)
867 early_boot_test_call_rcu_sched();
870 static int rcu_verify_early_boot_tests(void)
873 int early_boot_test_counter
= 0;
876 early_boot_test_counter
++;
879 if (rcu_self_test_bh
) {
880 early_boot_test_counter
++;
883 if (rcu_self_test_sched
) {
884 early_boot_test_counter
++;
888 if (rcu_self_test_counter
!= early_boot_test_counter
) {
895 late_initcall(rcu_verify_early_boot_tests
);
897 void rcu_early_boot_tests(void) {}
898 #endif /* CONFIG_PROVE_RCU */