sh_eth: fix EESIPR values for SH77{34|63}
[linux/fpc-iii.git] / kernel / sched / clock.c
blobe85a725e5c3496687cccffa196372011f75ef2ad
1 /*
2 * sched_clock for unstable cpu clocks
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
9 * Based on code by:
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
14 * What:
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22 * # go backwards !! #
23 * ####################################################################
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
28 * cpu_clock(i) -- can be used from any context, including NMI.
29 * local_clock() -- is cpu_clock() on the current cpu.
31 * sched_clock_cpu(i)
33 * How:
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
40 * Otherwise it tries to create a semi stable clock from a mixture of other
41 * clocks, including:
43 * - GTOD (clock monotomic)
44 * - sched_clock()
45 * - explicit idle events
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
49 * expected window.
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
55 #include <linux/spinlock.h>
56 #include <linux/hardirq.h>
57 #include <linux/export.h>
58 #include <linux/percpu.h>
59 #include <linux/ktime.h>
60 #include <linux/sched.h>
61 #include <linux/static_key.h>
62 #include <linux/workqueue.h>
63 #include <linux/compiler.h>
64 #include <linux/tick.h>
67 * Scheduler clock - returns current time in nanosec units.
68 * This is default implementation.
69 * Architectures and sub-architectures can override this.
71 unsigned long long __weak sched_clock(void)
73 return (unsigned long long)(jiffies - INITIAL_JIFFIES)
74 * (NSEC_PER_SEC / HZ);
76 EXPORT_SYMBOL_GPL(sched_clock);
78 __read_mostly int sched_clock_running;
80 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
81 static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
82 static int __sched_clock_stable_early;
84 int sched_clock_stable(void)
86 return static_key_false(&__sched_clock_stable);
89 static void __set_sched_clock_stable(void)
91 if (!sched_clock_stable())
92 static_key_slow_inc(&__sched_clock_stable);
94 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
97 void set_sched_clock_stable(void)
99 __sched_clock_stable_early = 1;
101 smp_mb(); /* matches sched_clock_init() */
103 if (!sched_clock_running)
104 return;
106 __set_sched_clock_stable();
109 static void __clear_sched_clock_stable(struct work_struct *work)
111 /* XXX worry about clock continuity */
112 if (sched_clock_stable())
113 static_key_slow_dec(&__sched_clock_stable);
115 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
118 static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
120 void clear_sched_clock_stable(void)
122 __sched_clock_stable_early = 0;
124 smp_mb(); /* matches sched_clock_init() */
126 if (!sched_clock_running)
127 return;
129 schedule_work(&sched_clock_work);
132 struct sched_clock_data {
133 u64 tick_raw;
134 u64 tick_gtod;
135 u64 clock;
138 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
140 static inline struct sched_clock_data *this_scd(void)
142 return this_cpu_ptr(&sched_clock_data);
145 static inline struct sched_clock_data *cpu_sdc(int cpu)
147 return &per_cpu(sched_clock_data, cpu);
150 void sched_clock_init(void)
152 u64 ktime_now = ktime_to_ns(ktime_get());
153 int cpu;
155 for_each_possible_cpu(cpu) {
156 struct sched_clock_data *scd = cpu_sdc(cpu);
158 scd->tick_raw = 0;
159 scd->tick_gtod = ktime_now;
160 scd->clock = ktime_now;
163 sched_clock_running = 1;
166 * Ensure that it is impossible to not do a static_key update.
168 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
169 * and do the update, or we must see their __sched_clock_stable_early
170 * and do the update, or both.
172 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
174 if (__sched_clock_stable_early)
175 __set_sched_clock_stable();
176 else
177 __clear_sched_clock_stable(NULL);
181 * min, max except they take wrapping into account
184 static inline u64 wrap_min(u64 x, u64 y)
186 return (s64)(x - y) < 0 ? x : y;
189 static inline u64 wrap_max(u64 x, u64 y)
191 return (s64)(x - y) > 0 ? x : y;
195 * update the percpu scd from the raw @now value
197 * - filter out backward motion
198 * - use the GTOD tick value to create a window to filter crazy TSC values
200 static u64 sched_clock_local(struct sched_clock_data *scd)
202 u64 now, clock, old_clock, min_clock, max_clock;
203 s64 delta;
205 again:
206 now = sched_clock();
207 delta = now - scd->tick_raw;
208 if (unlikely(delta < 0))
209 delta = 0;
211 old_clock = scd->clock;
214 * scd->clock = clamp(scd->tick_gtod + delta,
215 * max(scd->tick_gtod, scd->clock),
216 * scd->tick_gtod + TICK_NSEC);
219 clock = scd->tick_gtod + delta;
220 min_clock = wrap_max(scd->tick_gtod, old_clock);
221 max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
223 clock = wrap_max(clock, min_clock);
224 clock = wrap_min(clock, max_clock);
226 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
227 goto again;
229 return clock;
232 static u64 sched_clock_remote(struct sched_clock_data *scd)
234 struct sched_clock_data *my_scd = this_scd();
235 u64 this_clock, remote_clock;
236 u64 *ptr, old_val, val;
238 #if BITS_PER_LONG != 64
239 again:
241 * Careful here: The local and the remote clock values need to
242 * be read out atomic as we need to compare the values and
243 * then update either the local or the remote side. So the
244 * cmpxchg64 below only protects one readout.
246 * We must reread via sched_clock_local() in the retry case on
247 * 32bit as an NMI could use sched_clock_local() via the
248 * tracer and hit between the readout of
249 * the low32bit and the high 32bit portion.
251 this_clock = sched_clock_local(my_scd);
253 * We must enforce atomic readout on 32bit, otherwise the
254 * update on the remote cpu can hit inbetween the readout of
255 * the low32bit and the high 32bit portion.
257 remote_clock = cmpxchg64(&scd->clock, 0, 0);
258 #else
260 * On 64bit the read of [my]scd->clock is atomic versus the
261 * update, so we can avoid the above 32bit dance.
263 sched_clock_local(my_scd);
264 again:
265 this_clock = my_scd->clock;
266 remote_clock = scd->clock;
267 #endif
270 * Use the opportunity that we have both locks
271 * taken to couple the two clocks: we take the
272 * larger time as the latest time for both
273 * runqueues. (this creates monotonic movement)
275 if (likely((s64)(remote_clock - this_clock) < 0)) {
276 ptr = &scd->clock;
277 old_val = remote_clock;
278 val = this_clock;
279 } else {
281 * Should be rare, but possible:
283 ptr = &my_scd->clock;
284 old_val = this_clock;
285 val = remote_clock;
288 if (cmpxchg64(ptr, old_val, val) != old_val)
289 goto again;
291 return val;
295 * Similar to cpu_clock(), but requires local IRQs to be disabled.
297 * See cpu_clock().
299 u64 sched_clock_cpu(int cpu)
301 struct sched_clock_data *scd;
302 u64 clock;
304 if (sched_clock_stable())
305 return sched_clock();
307 if (unlikely(!sched_clock_running))
308 return 0ull;
310 preempt_disable_notrace();
311 scd = cpu_sdc(cpu);
313 if (cpu != smp_processor_id())
314 clock = sched_clock_remote(scd);
315 else
316 clock = sched_clock_local(scd);
317 preempt_enable_notrace();
319 return clock;
321 EXPORT_SYMBOL_GPL(sched_clock_cpu);
323 void sched_clock_tick(void)
325 struct sched_clock_data *scd;
326 u64 now, now_gtod;
328 if (sched_clock_stable())
329 return;
331 if (unlikely(!sched_clock_running))
332 return;
334 WARN_ON_ONCE(!irqs_disabled());
336 scd = this_scd();
337 now_gtod = ktime_to_ns(ktime_get());
338 now = sched_clock();
340 scd->tick_raw = now;
341 scd->tick_gtod = now_gtod;
342 sched_clock_local(scd);
346 * We are going deep-idle (irqs are disabled):
348 void sched_clock_idle_sleep_event(void)
350 sched_clock_cpu(smp_processor_id());
352 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
355 * We just idled delta nanoseconds (called with irqs disabled):
357 void sched_clock_idle_wakeup_event(u64 delta_ns)
359 if (timekeeping_suspended)
360 return;
362 sched_clock_tick();
363 touch_softlockup_watchdog_sched();
365 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
367 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
369 void sched_clock_init(void)
371 sched_clock_running = 1;
374 u64 sched_clock_cpu(int cpu)
376 if (unlikely(!sched_clock_running))
377 return 0;
379 return sched_clock();
381 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
384 * Running clock - returns the time that has elapsed while a guest has been
385 * running.
386 * On a guest this value should be local_clock minus the time the guest was
387 * suspended by the hypervisor (for any reason).
388 * On bare metal this function should return the same as local_clock.
389 * Architectures and sub-architectures can override this.
391 u64 __weak running_clock(void)
393 return local_clock();