2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
34 #include <trace/events/sched.h>
39 * Targeted preemption latency for CPU-bound tasks:
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
49 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
51 unsigned int sysctl_sched_latency
= 6000000ULL;
52 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
55 * The initial- and re-scaling of tunables is configurable
59 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
60 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
61 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
63 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
65 enum sched_tunable_scaling sysctl_sched_tunable_scaling
= SCHED_TUNABLESCALING_LOG
;
68 * Minimal preemption granularity for CPU-bound tasks:
70 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
72 unsigned int sysctl_sched_min_granularity
= 750000ULL;
73 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
76 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
78 static unsigned int sched_nr_latency
= 8;
81 * After fork, child runs first. If set to 0 (default) then
82 * parent will (try to) run first.
84 unsigned int sysctl_sched_child_runs_first __read_mostly
;
87 * SCHED_OTHER wake-up granularity.
89 * This option delays the preemption effects of decoupled workloads
90 * and reduces their over-scheduling. Synchronous workloads will still
91 * have immediate wakeup/sleep latencies.
93 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
95 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
96 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
98 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
102 * For asym packing, by default the lower numbered cpu has higher priority.
104 int __weak
arch_asym_cpu_priority(int cpu
)
110 #ifdef CONFIG_CFS_BANDWIDTH
112 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
113 * each time a cfs_rq requests quota.
115 * Note: in the case that the slice exceeds the runtime remaining (either due
116 * to consumption or the quota being specified to be smaller than the slice)
117 * we will always only issue the remaining available time.
119 * (default: 5 msec, units: microseconds)
121 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
125 * The margin used when comparing utilization with CPU capacity:
126 * util * margin < capacity * 1024
130 unsigned int capacity_margin
= 1280;
132 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
138 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
144 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
157 * This idea comes from the SD scheduler of Con Kolivas:
159 static unsigned int get_update_sysctl_factor(void)
161 unsigned int cpus
= min_t(unsigned int, num_online_cpus(), 8);
164 switch (sysctl_sched_tunable_scaling
) {
165 case SCHED_TUNABLESCALING_NONE
:
168 case SCHED_TUNABLESCALING_LINEAR
:
171 case SCHED_TUNABLESCALING_LOG
:
173 factor
= 1 + ilog2(cpus
);
180 static void update_sysctl(void)
182 unsigned int factor
= get_update_sysctl_factor();
184 #define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity
);
187 SET_SYSCTL(sched_latency
);
188 SET_SYSCTL(sched_wakeup_granularity
);
192 void sched_init_granularity(void)
197 #define WMULT_CONST (~0U)
198 #define WMULT_SHIFT 32
200 static void __update_inv_weight(struct load_weight
*lw
)
204 if (likely(lw
->inv_weight
))
207 w
= scale_load_down(lw
->weight
);
209 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
211 else if (unlikely(!w
))
212 lw
->inv_weight
= WMULT_CONST
;
214 lw
->inv_weight
= WMULT_CONST
/ w
;
218 * delta_exec * weight / lw.weight
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
229 static u64
__calc_delta(u64 delta_exec
, unsigned long weight
, struct load_weight
*lw
)
231 u64 fact
= scale_load_down(weight
);
232 int shift
= WMULT_SHIFT
;
234 __update_inv_weight(lw
);
236 if (unlikely(fact
>> 32)) {
243 /* hint to use a 32x32->64 mul */
244 fact
= (u64
)(u32
)fact
* lw
->inv_weight
;
251 return mul_u64_u32_shr(delta_exec
, fact
, shift
);
255 const struct sched_class fair_sched_class
;
257 /**************************************************************
258 * CFS operations on generic schedulable entities:
261 #ifdef CONFIG_FAIR_GROUP_SCHED
263 /* cpu runqueue to which this cfs_rq is attached */
264 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
269 /* An entity is a task if it doesn't "own" a runqueue */
270 #define entity_is_task(se) (!se->my_q)
272 static inline struct task_struct
*task_of(struct sched_entity
*se
)
274 SCHED_WARN_ON(!entity_is_task(se
));
275 return container_of(se
, struct task_struct
, se
);
278 /* Walk up scheduling entities hierarchy */
279 #define for_each_sched_entity(se) \
280 for (; se; se = se->parent)
282 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
287 /* runqueue on which this entity is (to be) queued */
288 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
293 /* runqueue "owned" by this group */
294 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
299 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
301 if (!cfs_rq
->on_list
) {
302 struct rq
*rq
= rq_of(cfs_rq
);
303 int cpu
= cpu_of(rq
);
305 * Ensure we either appear before our parent (if already
306 * enqueued) or force our parent to appear after us when it is
307 * enqueued. The fact that we always enqueue bottom-up
308 * reduces this to two cases and a special case for the root
309 * cfs_rq. Furthermore, it also means that we will always reset
310 * tmp_alone_branch either when the branch is connected
311 * to a tree or when we reach the beg of the tree
313 if (cfs_rq
->tg
->parent
&&
314 cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->on_list
) {
316 * If parent is already on the list, we add the child
317 * just before. Thanks to circular linked property of
318 * the list, this means to put the child at the tail
319 * of the list that starts by parent.
321 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
322 &(cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->leaf_cfs_rq_list
));
324 * The branch is now connected to its tree so we can
325 * reset tmp_alone_branch to the beginning of the
328 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
329 } else if (!cfs_rq
->tg
->parent
) {
331 * cfs rq without parent should be put
332 * at the tail of the list.
334 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
335 &rq
->leaf_cfs_rq_list
);
337 * We have reach the beg of a tree so we can reset
338 * tmp_alone_branch to the beginning of the list.
340 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
343 * The parent has not already been added so we want to
344 * make sure that it will be put after us.
345 * tmp_alone_branch points to the beg of the branch
346 * where we will add parent.
348 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
349 rq
->tmp_alone_branch
);
351 * update tmp_alone_branch to points to the new beg
354 rq
->tmp_alone_branch
= &cfs_rq
->leaf_cfs_rq_list
;
361 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
363 if (cfs_rq
->on_list
) {
364 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
369 /* Iterate thr' all leaf cfs_rq's on a runqueue */
370 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
371 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
373 /* Do the two (enqueued) entities belong to the same group ? */
374 static inline struct cfs_rq
*
375 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
377 if (se
->cfs_rq
== pse
->cfs_rq
)
383 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
389 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
391 int se_depth
, pse_depth
;
394 * preemption test can be made between sibling entities who are in the
395 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
396 * both tasks until we find their ancestors who are siblings of common
400 /* First walk up until both entities are at same depth */
401 se_depth
= (*se
)->depth
;
402 pse_depth
= (*pse
)->depth
;
404 while (se_depth
> pse_depth
) {
406 *se
= parent_entity(*se
);
409 while (pse_depth
> se_depth
) {
411 *pse
= parent_entity(*pse
);
414 while (!is_same_group(*se
, *pse
)) {
415 *se
= parent_entity(*se
);
416 *pse
= parent_entity(*pse
);
420 #else /* !CONFIG_FAIR_GROUP_SCHED */
422 static inline struct task_struct
*task_of(struct sched_entity
*se
)
424 return container_of(se
, struct task_struct
, se
);
427 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
429 return container_of(cfs_rq
, struct rq
, cfs
);
432 #define entity_is_task(se) 1
434 #define for_each_sched_entity(se) \
435 for (; se; se = NULL)
437 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
439 return &task_rq(p
)->cfs
;
442 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
444 struct task_struct
*p
= task_of(se
);
445 struct rq
*rq
= task_rq(p
);
450 /* runqueue "owned" by this group */
451 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
456 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
460 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
464 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
465 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
467 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
473 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
477 #endif /* CONFIG_FAIR_GROUP_SCHED */
479 static __always_inline
480 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
);
482 /**************************************************************
483 * Scheduling class tree data structure manipulation methods:
486 static inline u64
max_vruntime(u64 max_vruntime
, u64 vruntime
)
488 s64 delta
= (s64
)(vruntime
- max_vruntime
);
490 max_vruntime
= vruntime
;
495 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
497 s64 delta
= (s64
)(vruntime
- min_vruntime
);
499 min_vruntime
= vruntime
;
504 static inline int entity_before(struct sched_entity
*a
,
505 struct sched_entity
*b
)
507 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
510 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
512 struct sched_entity
*curr
= cfs_rq
->curr
;
514 u64 vruntime
= cfs_rq
->min_vruntime
;
518 vruntime
= curr
->vruntime
;
523 if (cfs_rq
->rb_leftmost
) {
524 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
529 vruntime
= se
->vruntime
;
531 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
534 /* ensure we never gain time by being placed backwards. */
535 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
538 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
543 * Enqueue an entity into the rb-tree:
545 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
547 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
548 struct rb_node
*parent
= NULL
;
549 struct sched_entity
*entry
;
553 * Find the right place in the rbtree:
557 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
559 * We dont care about collisions. Nodes with
560 * the same key stay together.
562 if (entity_before(se
, entry
)) {
563 link
= &parent
->rb_left
;
565 link
= &parent
->rb_right
;
571 * Maintain a cache of leftmost tree entries (it is frequently
575 cfs_rq
->rb_leftmost
= &se
->run_node
;
577 rb_link_node(&se
->run_node
, parent
, link
);
578 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
581 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
583 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
584 struct rb_node
*next_node
;
586 next_node
= rb_next(&se
->run_node
);
587 cfs_rq
->rb_leftmost
= next_node
;
590 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
593 struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
595 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
600 return rb_entry(left
, struct sched_entity
, run_node
);
603 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
605 struct rb_node
*next
= rb_next(&se
->run_node
);
610 return rb_entry(next
, struct sched_entity
, run_node
);
613 #ifdef CONFIG_SCHED_DEBUG
614 struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
616 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
621 return rb_entry(last
, struct sched_entity
, run_node
);
624 /**************************************************************
625 * Scheduling class statistics methods:
628 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
629 void __user
*buffer
, size_t *lenp
,
632 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
633 unsigned int factor
= get_update_sysctl_factor();
638 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
639 sysctl_sched_min_granularity
);
641 #define WRT_SYSCTL(name) \
642 (normalized_sysctl_##name = sysctl_##name / (factor))
643 WRT_SYSCTL(sched_min_granularity
);
644 WRT_SYSCTL(sched_latency
);
645 WRT_SYSCTL(sched_wakeup_granularity
);
655 static inline u64
calc_delta_fair(u64 delta
, struct sched_entity
*se
)
657 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
658 delta
= __calc_delta(delta
, NICE_0_LOAD
, &se
->load
);
664 * The idea is to set a period in which each task runs once.
666 * When there are too many tasks (sched_nr_latency) we have to stretch
667 * this period because otherwise the slices get too small.
669 * p = (nr <= nl) ? l : l*nr/nl
671 static u64
__sched_period(unsigned long nr_running
)
673 if (unlikely(nr_running
> sched_nr_latency
))
674 return nr_running
* sysctl_sched_min_granularity
;
676 return sysctl_sched_latency
;
680 * We calculate the wall-time slice from the period by taking a part
681 * proportional to the weight.
685 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
687 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
689 for_each_sched_entity(se
) {
690 struct load_weight
*load
;
691 struct load_weight lw
;
693 cfs_rq
= cfs_rq_of(se
);
694 load
= &cfs_rq
->load
;
696 if (unlikely(!se
->on_rq
)) {
699 update_load_add(&lw
, se
->load
.weight
);
702 slice
= __calc_delta(slice
, se
->load
.weight
, load
);
708 * We calculate the vruntime slice of a to-be-inserted task.
712 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
714 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
718 static int select_idle_sibling(struct task_struct
*p
, int prev_cpu
, int cpu
);
719 static unsigned long task_h_load(struct task_struct
*p
);
722 * We choose a half-life close to 1 scheduling period.
723 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
724 * dependent on this value.
726 #define LOAD_AVG_PERIOD 32
727 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
728 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
730 /* Give new sched_entity start runnable values to heavy its load in infant time */
731 void init_entity_runnable_average(struct sched_entity
*se
)
733 struct sched_avg
*sa
= &se
->avg
;
735 sa
->last_update_time
= 0;
737 * sched_avg's period_contrib should be strictly less then 1024, so
738 * we give it 1023 to make sure it is almost a period (1024us), and
739 * will definitely be update (after enqueue).
741 sa
->period_contrib
= 1023;
743 * Tasks are intialized with full load to be seen as heavy tasks until
744 * they get a chance to stabilize to their real load level.
745 * Group entities are intialized with zero load to reflect the fact that
746 * nothing has been attached to the task group yet.
748 if (entity_is_task(se
))
749 sa
->load_avg
= scale_load_down(se
->load
.weight
);
750 sa
->load_sum
= sa
->load_avg
* LOAD_AVG_MAX
;
752 * At this point, util_avg won't be used in select_task_rq_fair anyway
756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
759 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
);
760 static void attach_entity_cfs_rq(struct sched_entity
*se
);
763 * With new tasks being created, their initial util_avgs are extrapolated
764 * based on the cfs_rq's current util_avg:
766 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
768 * However, in many cases, the above util_avg does not give a desired
769 * value. Moreover, the sum of the util_avgs may be divergent, such
770 * as when the series is a harmonic series.
772 * To solve this problem, we also cap the util_avg of successive tasks to
773 * only 1/2 of the left utilization budget:
775 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
777 * where n denotes the nth task.
779 * For example, a simplest series from the beginning would be like:
781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785 * if util_avg > util_avg_cap.
787 void post_init_entity_util_avg(struct sched_entity
*se
)
789 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
790 struct sched_avg
*sa
= &se
->avg
;
791 long cap
= (long)(SCHED_CAPACITY_SCALE
- cfs_rq
->avg
.util_avg
) / 2;
794 if (cfs_rq
->avg
.util_avg
!= 0) {
795 sa
->util_avg
= cfs_rq
->avg
.util_avg
* se
->load
.weight
;
796 sa
->util_avg
/= (cfs_rq
->avg
.load_avg
+ 1);
798 if (sa
->util_avg
> cap
)
803 sa
->util_sum
= sa
->util_avg
* LOAD_AVG_MAX
;
806 if (entity_is_task(se
)) {
807 struct task_struct
*p
= task_of(se
);
808 if (p
->sched_class
!= &fair_sched_class
) {
810 * For !fair tasks do:
812 update_cfs_rq_load_avg(now, cfs_rq, false);
813 attach_entity_load_avg(cfs_rq, se);
814 switched_from_fair(rq, p);
816 * such that the next switched_to_fair() has the
819 se
->avg
.last_update_time
= cfs_rq_clock_task(cfs_rq
);
824 attach_entity_cfs_rq(se
);
827 #else /* !CONFIG_SMP */
828 void init_entity_runnable_average(struct sched_entity
*se
)
831 void post_init_entity_util_avg(struct sched_entity
*se
)
834 static void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
837 #endif /* CONFIG_SMP */
840 * Update the current task's runtime statistics.
842 static void update_curr(struct cfs_rq
*cfs_rq
)
844 struct sched_entity
*curr
= cfs_rq
->curr
;
845 u64 now
= rq_clock_task(rq_of(cfs_rq
));
851 delta_exec
= now
- curr
->exec_start
;
852 if (unlikely((s64
)delta_exec
<= 0))
855 curr
->exec_start
= now
;
857 schedstat_set(curr
->statistics
.exec_max
,
858 max(delta_exec
, curr
->statistics
.exec_max
));
860 curr
->sum_exec_runtime
+= delta_exec
;
861 schedstat_add(cfs_rq
->exec_clock
, delta_exec
);
863 curr
->vruntime
+= calc_delta_fair(delta_exec
, curr
);
864 update_min_vruntime(cfs_rq
);
866 if (entity_is_task(curr
)) {
867 struct task_struct
*curtask
= task_of(curr
);
869 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
870 cpuacct_charge(curtask
, delta_exec
);
871 account_group_exec_runtime(curtask
, delta_exec
);
874 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
877 static void update_curr_fair(struct rq
*rq
)
879 update_curr(cfs_rq_of(&rq
->curr
->se
));
883 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
885 u64 wait_start
, prev_wait_start
;
887 if (!schedstat_enabled())
890 wait_start
= rq_clock(rq_of(cfs_rq
));
891 prev_wait_start
= schedstat_val(se
->statistics
.wait_start
);
893 if (entity_is_task(se
) && task_on_rq_migrating(task_of(se
)) &&
894 likely(wait_start
> prev_wait_start
))
895 wait_start
-= prev_wait_start
;
897 schedstat_set(se
->statistics
.wait_start
, wait_start
);
901 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
903 struct task_struct
*p
;
906 if (!schedstat_enabled())
909 delta
= rq_clock(rq_of(cfs_rq
)) - schedstat_val(se
->statistics
.wait_start
);
911 if (entity_is_task(se
)) {
913 if (task_on_rq_migrating(p
)) {
915 * Preserve migrating task's wait time so wait_start
916 * time stamp can be adjusted to accumulate wait time
917 * prior to migration.
919 schedstat_set(se
->statistics
.wait_start
, delta
);
922 trace_sched_stat_wait(p
, delta
);
925 schedstat_set(se
->statistics
.wait_max
,
926 max(schedstat_val(se
->statistics
.wait_max
), delta
));
927 schedstat_inc(se
->statistics
.wait_count
);
928 schedstat_add(se
->statistics
.wait_sum
, delta
);
929 schedstat_set(se
->statistics
.wait_start
, 0);
933 update_stats_enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
935 struct task_struct
*tsk
= NULL
;
936 u64 sleep_start
, block_start
;
938 if (!schedstat_enabled())
941 sleep_start
= schedstat_val(se
->statistics
.sleep_start
);
942 block_start
= schedstat_val(se
->statistics
.block_start
);
944 if (entity_is_task(se
))
948 u64 delta
= rq_clock(rq_of(cfs_rq
)) - sleep_start
;
953 if (unlikely(delta
> schedstat_val(se
->statistics
.sleep_max
)))
954 schedstat_set(se
->statistics
.sleep_max
, delta
);
956 schedstat_set(se
->statistics
.sleep_start
, 0);
957 schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
960 account_scheduler_latency(tsk
, delta
>> 10, 1);
961 trace_sched_stat_sleep(tsk
, delta
);
965 u64 delta
= rq_clock(rq_of(cfs_rq
)) - block_start
;
970 if (unlikely(delta
> schedstat_val(se
->statistics
.block_max
)))
971 schedstat_set(se
->statistics
.block_max
, delta
);
973 schedstat_set(se
->statistics
.block_start
, 0);
974 schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
977 if (tsk
->in_iowait
) {
978 schedstat_add(se
->statistics
.iowait_sum
, delta
);
979 schedstat_inc(se
->statistics
.iowait_count
);
980 trace_sched_stat_iowait(tsk
, delta
);
983 trace_sched_stat_blocked(tsk
, delta
);
986 * Blocking time is in units of nanosecs, so shift by
987 * 20 to get a milliseconds-range estimation of the
988 * amount of time that the task spent sleeping:
990 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
991 profile_hits(SLEEP_PROFILING
,
992 (void *)get_wchan(tsk
),
995 account_scheduler_latency(tsk
, delta
>> 10, 0);
1001 * Task is being enqueued - update stats:
1004 update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1006 if (!schedstat_enabled())
1010 * Are we enqueueing a waiting task? (for current tasks
1011 * a dequeue/enqueue event is a NOP)
1013 if (se
!= cfs_rq
->curr
)
1014 update_stats_wait_start(cfs_rq
, se
);
1016 if (flags
& ENQUEUE_WAKEUP
)
1017 update_stats_enqueue_sleeper(cfs_rq
, se
);
1021 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1024 if (!schedstat_enabled())
1028 * Mark the end of the wait period if dequeueing a
1031 if (se
!= cfs_rq
->curr
)
1032 update_stats_wait_end(cfs_rq
, se
);
1034 if ((flags
& DEQUEUE_SLEEP
) && entity_is_task(se
)) {
1035 struct task_struct
*tsk
= task_of(se
);
1037 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1038 schedstat_set(se
->statistics
.sleep_start
,
1039 rq_clock(rq_of(cfs_rq
)));
1040 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1041 schedstat_set(se
->statistics
.block_start
,
1042 rq_clock(rq_of(cfs_rq
)));
1047 * We are picking a new current task - update its stats:
1050 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1053 * We are starting a new run period:
1055 se
->exec_start
= rq_clock_task(rq_of(cfs_rq
));
1058 /**************************************************
1059 * Scheduling class queueing methods:
1062 #ifdef CONFIG_NUMA_BALANCING
1064 * Approximate time to scan a full NUMA task in ms. The task scan period is
1065 * calculated based on the tasks virtual memory size and
1066 * numa_balancing_scan_size.
1068 unsigned int sysctl_numa_balancing_scan_period_min
= 1000;
1069 unsigned int sysctl_numa_balancing_scan_period_max
= 60000;
1071 /* Portion of address space to scan in MB */
1072 unsigned int sysctl_numa_balancing_scan_size
= 256;
1074 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1075 unsigned int sysctl_numa_balancing_scan_delay
= 1000;
1077 static unsigned int task_nr_scan_windows(struct task_struct
*p
)
1079 unsigned long rss
= 0;
1080 unsigned long nr_scan_pages
;
1083 * Calculations based on RSS as non-present and empty pages are skipped
1084 * by the PTE scanner and NUMA hinting faults should be trapped based
1087 nr_scan_pages
= sysctl_numa_balancing_scan_size
<< (20 - PAGE_SHIFT
);
1088 rss
= get_mm_rss(p
->mm
);
1090 rss
= nr_scan_pages
;
1092 rss
= round_up(rss
, nr_scan_pages
);
1093 return rss
/ nr_scan_pages
;
1096 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1097 #define MAX_SCAN_WINDOW 2560
1099 static unsigned int task_scan_min(struct task_struct
*p
)
1101 unsigned int scan_size
= READ_ONCE(sysctl_numa_balancing_scan_size
);
1102 unsigned int scan
, floor
;
1103 unsigned int windows
= 1;
1105 if (scan_size
< MAX_SCAN_WINDOW
)
1106 windows
= MAX_SCAN_WINDOW
/ scan_size
;
1107 floor
= 1000 / windows
;
1109 scan
= sysctl_numa_balancing_scan_period_min
/ task_nr_scan_windows(p
);
1110 return max_t(unsigned int, floor
, scan
);
1113 static unsigned int task_scan_max(struct task_struct
*p
)
1115 unsigned int smin
= task_scan_min(p
);
1118 /* Watch for min being lower than max due to floor calculations */
1119 smax
= sysctl_numa_balancing_scan_period_max
/ task_nr_scan_windows(p
);
1120 return max(smin
, smax
);
1123 static void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
1125 rq
->nr_numa_running
+= (p
->numa_preferred_nid
!= -1);
1126 rq
->nr_preferred_running
+= (p
->numa_preferred_nid
== task_node(p
));
1129 static void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
1131 rq
->nr_numa_running
-= (p
->numa_preferred_nid
!= -1);
1132 rq
->nr_preferred_running
-= (p
->numa_preferred_nid
== task_node(p
));
1138 spinlock_t lock
; /* nr_tasks, tasks */
1143 struct rcu_head rcu
;
1144 unsigned long total_faults
;
1145 unsigned long max_faults_cpu
;
1147 * Faults_cpu is used to decide whether memory should move
1148 * towards the CPU. As a consequence, these stats are weighted
1149 * more by CPU use than by memory faults.
1151 unsigned long *faults_cpu
;
1152 unsigned long faults
[0];
1155 /* Shared or private faults. */
1156 #define NR_NUMA_HINT_FAULT_TYPES 2
1158 /* Memory and CPU locality */
1159 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1161 /* Averaged statistics, and temporary buffers. */
1162 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1164 pid_t
task_numa_group_id(struct task_struct
*p
)
1166 return p
->numa_group
? p
->numa_group
->gid
: 0;
1170 * The averaged statistics, shared & private, memory & cpu,
1171 * occupy the first half of the array. The second half of the
1172 * array is for current counters, which are averaged into the
1173 * first set by task_numa_placement.
1175 static inline int task_faults_idx(enum numa_faults_stats s
, int nid
, int priv
)
1177 return NR_NUMA_HINT_FAULT_TYPES
* (s
* nr_node_ids
+ nid
) + priv
;
1180 static inline unsigned long task_faults(struct task_struct
*p
, int nid
)
1182 if (!p
->numa_faults
)
1185 return p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1186 p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1189 static inline unsigned long group_faults(struct task_struct
*p
, int nid
)
1194 return p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1195 p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1198 static inline unsigned long group_faults_cpu(struct numa_group
*group
, int nid
)
1200 return group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1201 group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1205 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1206 * considered part of a numa group's pseudo-interleaving set. Migrations
1207 * between these nodes are slowed down, to allow things to settle down.
1209 #define ACTIVE_NODE_FRACTION 3
1211 static bool numa_is_active_node(int nid
, struct numa_group
*ng
)
1213 return group_faults_cpu(ng
, nid
) * ACTIVE_NODE_FRACTION
> ng
->max_faults_cpu
;
1216 /* Handle placement on systems where not all nodes are directly connected. */
1217 static unsigned long score_nearby_nodes(struct task_struct
*p
, int nid
,
1218 int maxdist
, bool task
)
1220 unsigned long score
= 0;
1224 * All nodes are directly connected, and the same distance
1225 * from each other. No need for fancy placement algorithms.
1227 if (sched_numa_topology_type
== NUMA_DIRECT
)
1231 * This code is called for each node, introducing N^2 complexity,
1232 * which should be ok given the number of nodes rarely exceeds 8.
1234 for_each_online_node(node
) {
1235 unsigned long faults
;
1236 int dist
= node_distance(nid
, node
);
1239 * The furthest away nodes in the system are not interesting
1240 * for placement; nid was already counted.
1242 if (dist
== sched_max_numa_distance
|| node
== nid
)
1246 * On systems with a backplane NUMA topology, compare groups
1247 * of nodes, and move tasks towards the group with the most
1248 * memory accesses. When comparing two nodes at distance
1249 * "hoplimit", only nodes closer by than "hoplimit" are part
1250 * of each group. Skip other nodes.
1252 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1256 /* Add up the faults from nearby nodes. */
1258 faults
= task_faults(p
, node
);
1260 faults
= group_faults(p
, node
);
1263 * On systems with a glueless mesh NUMA topology, there are
1264 * no fixed "groups of nodes". Instead, nodes that are not
1265 * directly connected bounce traffic through intermediate
1266 * nodes; a numa_group can occupy any set of nodes.
1267 * The further away a node is, the less the faults count.
1268 * This seems to result in good task placement.
1270 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
1271 faults
*= (sched_max_numa_distance
- dist
);
1272 faults
/= (sched_max_numa_distance
- LOCAL_DISTANCE
);
1282 * These return the fraction of accesses done by a particular task, or
1283 * task group, on a particular numa node. The group weight is given a
1284 * larger multiplier, in order to group tasks together that are almost
1285 * evenly spread out between numa nodes.
1287 static inline unsigned long task_weight(struct task_struct
*p
, int nid
,
1290 unsigned long faults
, total_faults
;
1292 if (!p
->numa_faults
)
1295 total_faults
= p
->total_numa_faults
;
1300 faults
= task_faults(p
, nid
);
1301 faults
+= score_nearby_nodes(p
, nid
, dist
, true);
1303 return 1000 * faults
/ total_faults
;
1306 static inline unsigned long group_weight(struct task_struct
*p
, int nid
,
1309 unsigned long faults
, total_faults
;
1314 total_faults
= p
->numa_group
->total_faults
;
1319 faults
= group_faults(p
, nid
);
1320 faults
+= score_nearby_nodes(p
, nid
, dist
, false);
1322 return 1000 * faults
/ total_faults
;
1325 bool should_numa_migrate_memory(struct task_struct
*p
, struct page
* page
,
1326 int src_nid
, int dst_cpu
)
1328 struct numa_group
*ng
= p
->numa_group
;
1329 int dst_nid
= cpu_to_node(dst_cpu
);
1330 int last_cpupid
, this_cpupid
;
1332 this_cpupid
= cpu_pid_to_cpupid(dst_cpu
, current
->pid
);
1335 * Multi-stage node selection is used in conjunction with a periodic
1336 * migration fault to build a temporal task<->page relation. By using
1337 * a two-stage filter we remove short/unlikely relations.
1339 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1340 * a task's usage of a particular page (n_p) per total usage of this
1341 * page (n_t) (in a given time-span) to a probability.
1343 * Our periodic faults will sample this probability and getting the
1344 * same result twice in a row, given these samples are fully
1345 * independent, is then given by P(n)^2, provided our sample period
1346 * is sufficiently short compared to the usage pattern.
1348 * This quadric squishes small probabilities, making it less likely we
1349 * act on an unlikely task<->page relation.
1351 last_cpupid
= page_cpupid_xchg_last(page
, this_cpupid
);
1352 if (!cpupid_pid_unset(last_cpupid
) &&
1353 cpupid_to_nid(last_cpupid
) != dst_nid
)
1356 /* Always allow migrate on private faults */
1357 if (cpupid_match_pid(p
, last_cpupid
))
1360 /* A shared fault, but p->numa_group has not been set up yet. */
1365 * Destination node is much more heavily used than the source
1366 * node? Allow migration.
1368 if (group_faults_cpu(ng
, dst_nid
) > group_faults_cpu(ng
, src_nid
) *
1369 ACTIVE_NODE_FRACTION
)
1373 * Distribute memory according to CPU & memory use on each node,
1374 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1376 * faults_cpu(dst) 3 faults_cpu(src)
1377 * --------------- * - > ---------------
1378 * faults_mem(dst) 4 faults_mem(src)
1380 return group_faults_cpu(ng
, dst_nid
) * group_faults(p
, src_nid
) * 3 >
1381 group_faults_cpu(ng
, src_nid
) * group_faults(p
, dst_nid
) * 4;
1384 static unsigned long weighted_cpuload(const int cpu
);
1385 static unsigned long source_load(int cpu
, int type
);
1386 static unsigned long target_load(int cpu
, int type
);
1387 static unsigned long capacity_of(int cpu
);
1388 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
);
1390 /* Cached statistics for all CPUs within a node */
1392 unsigned long nr_running
;
1395 /* Total compute capacity of CPUs on a node */
1396 unsigned long compute_capacity
;
1398 /* Approximate capacity in terms of runnable tasks on a node */
1399 unsigned long task_capacity
;
1400 int has_free_capacity
;
1404 * XXX borrowed from update_sg_lb_stats
1406 static void update_numa_stats(struct numa_stats
*ns
, int nid
)
1408 int smt
, cpu
, cpus
= 0;
1409 unsigned long capacity
;
1411 memset(ns
, 0, sizeof(*ns
));
1412 for_each_cpu(cpu
, cpumask_of_node(nid
)) {
1413 struct rq
*rq
= cpu_rq(cpu
);
1415 ns
->nr_running
+= rq
->nr_running
;
1416 ns
->load
+= weighted_cpuload(cpu
);
1417 ns
->compute_capacity
+= capacity_of(cpu
);
1423 * If we raced with hotplug and there are no CPUs left in our mask
1424 * the @ns structure is NULL'ed and task_numa_compare() will
1425 * not find this node attractive.
1427 * We'll either bail at !has_free_capacity, or we'll detect a huge
1428 * imbalance and bail there.
1433 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1434 smt
= DIV_ROUND_UP(SCHED_CAPACITY_SCALE
* cpus
, ns
->compute_capacity
);
1435 capacity
= cpus
/ smt
; /* cores */
1437 ns
->task_capacity
= min_t(unsigned, capacity
,
1438 DIV_ROUND_CLOSEST(ns
->compute_capacity
, SCHED_CAPACITY_SCALE
));
1439 ns
->has_free_capacity
= (ns
->nr_running
< ns
->task_capacity
);
1442 struct task_numa_env
{
1443 struct task_struct
*p
;
1445 int src_cpu
, src_nid
;
1446 int dst_cpu
, dst_nid
;
1448 struct numa_stats src_stats
, dst_stats
;
1453 struct task_struct
*best_task
;
1458 static void task_numa_assign(struct task_numa_env
*env
,
1459 struct task_struct
*p
, long imp
)
1462 put_task_struct(env
->best_task
);
1467 env
->best_imp
= imp
;
1468 env
->best_cpu
= env
->dst_cpu
;
1471 static bool load_too_imbalanced(long src_load
, long dst_load
,
1472 struct task_numa_env
*env
)
1475 long orig_src_load
, orig_dst_load
;
1476 long src_capacity
, dst_capacity
;
1479 * The load is corrected for the CPU capacity available on each node.
1482 * ------------ vs ---------
1483 * src_capacity dst_capacity
1485 src_capacity
= env
->src_stats
.compute_capacity
;
1486 dst_capacity
= env
->dst_stats
.compute_capacity
;
1488 /* We care about the slope of the imbalance, not the direction. */
1489 if (dst_load
< src_load
)
1490 swap(dst_load
, src_load
);
1492 /* Is the difference below the threshold? */
1493 imb
= dst_load
* src_capacity
* 100 -
1494 src_load
* dst_capacity
* env
->imbalance_pct
;
1499 * The imbalance is above the allowed threshold.
1500 * Compare it with the old imbalance.
1502 orig_src_load
= env
->src_stats
.load
;
1503 orig_dst_load
= env
->dst_stats
.load
;
1505 if (orig_dst_load
< orig_src_load
)
1506 swap(orig_dst_load
, orig_src_load
);
1508 old_imb
= orig_dst_load
* src_capacity
* 100 -
1509 orig_src_load
* dst_capacity
* env
->imbalance_pct
;
1511 /* Would this change make things worse? */
1512 return (imb
> old_imb
);
1516 * This checks if the overall compute and NUMA accesses of the system would
1517 * be improved if the source tasks was migrated to the target dst_cpu taking
1518 * into account that it might be best if task running on the dst_cpu should
1519 * be exchanged with the source task
1521 static void task_numa_compare(struct task_numa_env
*env
,
1522 long taskimp
, long groupimp
)
1524 struct rq
*src_rq
= cpu_rq(env
->src_cpu
);
1525 struct rq
*dst_rq
= cpu_rq(env
->dst_cpu
);
1526 struct task_struct
*cur
;
1527 long src_load
, dst_load
;
1529 long imp
= env
->p
->numa_group
? groupimp
: taskimp
;
1531 int dist
= env
->dist
;
1534 cur
= task_rcu_dereference(&dst_rq
->curr
);
1535 if (cur
&& ((cur
->flags
& PF_EXITING
) || is_idle_task(cur
)))
1539 * Because we have preemption enabled we can get migrated around and
1540 * end try selecting ourselves (current == env->p) as a swap candidate.
1546 * "imp" is the fault differential for the source task between the
1547 * source and destination node. Calculate the total differential for
1548 * the source task and potential destination task. The more negative
1549 * the value is, the more rmeote accesses that would be expected to
1550 * be incurred if the tasks were swapped.
1553 /* Skip this swap candidate if cannot move to the source cpu */
1554 if (!cpumask_test_cpu(env
->src_cpu
, tsk_cpus_allowed(cur
)))
1558 * If dst and source tasks are in the same NUMA group, or not
1559 * in any group then look only at task weights.
1561 if (cur
->numa_group
== env
->p
->numa_group
) {
1562 imp
= taskimp
+ task_weight(cur
, env
->src_nid
, dist
) -
1563 task_weight(cur
, env
->dst_nid
, dist
);
1565 * Add some hysteresis to prevent swapping the
1566 * tasks within a group over tiny differences.
1568 if (cur
->numa_group
)
1572 * Compare the group weights. If a task is all by
1573 * itself (not part of a group), use the task weight
1576 if (cur
->numa_group
)
1577 imp
+= group_weight(cur
, env
->src_nid
, dist
) -
1578 group_weight(cur
, env
->dst_nid
, dist
);
1580 imp
+= task_weight(cur
, env
->src_nid
, dist
) -
1581 task_weight(cur
, env
->dst_nid
, dist
);
1585 if (imp
<= env
->best_imp
&& moveimp
<= env
->best_imp
)
1589 /* Is there capacity at our destination? */
1590 if (env
->src_stats
.nr_running
<= env
->src_stats
.task_capacity
&&
1591 !env
->dst_stats
.has_free_capacity
)
1597 /* Balance doesn't matter much if we're running a task per cpu */
1598 if (imp
> env
->best_imp
&& src_rq
->nr_running
== 1 &&
1599 dst_rq
->nr_running
== 1)
1603 * In the overloaded case, try and keep the load balanced.
1606 load
= task_h_load(env
->p
);
1607 dst_load
= env
->dst_stats
.load
+ load
;
1608 src_load
= env
->src_stats
.load
- load
;
1610 if (moveimp
> imp
&& moveimp
> env
->best_imp
) {
1612 * If the improvement from just moving env->p direction is
1613 * better than swapping tasks around, check if a move is
1614 * possible. Store a slightly smaller score than moveimp,
1615 * so an actually idle CPU will win.
1617 if (!load_too_imbalanced(src_load
, dst_load
, env
)) {
1624 if (imp
<= env
->best_imp
)
1628 load
= task_h_load(cur
);
1633 if (load_too_imbalanced(src_load
, dst_load
, env
))
1637 * One idle CPU per node is evaluated for a task numa move.
1638 * Call select_idle_sibling to maybe find a better one.
1642 * select_idle_siblings() uses an per-cpu cpumask that
1643 * can be used from IRQ context.
1645 local_irq_disable();
1646 env
->dst_cpu
= select_idle_sibling(env
->p
, env
->src_cpu
,
1652 task_numa_assign(env
, cur
, imp
);
1657 static void task_numa_find_cpu(struct task_numa_env
*env
,
1658 long taskimp
, long groupimp
)
1662 for_each_cpu(cpu
, cpumask_of_node(env
->dst_nid
)) {
1663 /* Skip this CPU if the source task cannot migrate */
1664 if (!cpumask_test_cpu(cpu
, tsk_cpus_allowed(env
->p
)))
1668 task_numa_compare(env
, taskimp
, groupimp
);
1672 /* Only move tasks to a NUMA node less busy than the current node. */
1673 static bool numa_has_capacity(struct task_numa_env
*env
)
1675 struct numa_stats
*src
= &env
->src_stats
;
1676 struct numa_stats
*dst
= &env
->dst_stats
;
1678 if (src
->has_free_capacity
&& !dst
->has_free_capacity
)
1682 * Only consider a task move if the source has a higher load
1683 * than the destination, corrected for CPU capacity on each node.
1685 * src->load dst->load
1686 * --------------------- vs ---------------------
1687 * src->compute_capacity dst->compute_capacity
1689 if (src
->load
* dst
->compute_capacity
* env
->imbalance_pct
>
1691 dst
->load
* src
->compute_capacity
* 100)
1697 static int task_numa_migrate(struct task_struct
*p
)
1699 struct task_numa_env env
= {
1702 .src_cpu
= task_cpu(p
),
1703 .src_nid
= task_node(p
),
1705 .imbalance_pct
= 112,
1711 struct sched_domain
*sd
;
1712 unsigned long taskweight
, groupweight
;
1714 long taskimp
, groupimp
;
1717 * Pick the lowest SD_NUMA domain, as that would have the smallest
1718 * imbalance and would be the first to start moving tasks about.
1720 * And we want to avoid any moving of tasks about, as that would create
1721 * random movement of tasks -- counter the numa conditions we're trying
1725 sd
= rcu_dereference(per_cpu(sd_numa
, env
.src_cpu
));
1727 env
.imbalance_pct
= 100 + (sd
->imbalance_pct
- 100) / 2;
1731 * Cpusets can break the scheduler domain tree into smaller
1732 * balance domains, some of which do not cross NUMA boundaries.
1733 * Tasks that are "trapped" in such domains cannot be migrated
1734 * elsewhere, so there is no point in (re)trying.
1736 if (unlikely(!sd
)) {
1737 p
->numa_preferred_nid
= task_node(p
);
1741 env
.dst_nid
= p
->numa_preferred_nid
;
1742 dist
= env
.dist
= node_distance(env
.src_nid
, env
.dst_nid
);
1743 taskweight
= task_weight(p
, env
.src_nid
, dist
);
1744 groupweight
= group_weight(p
, env
.src_nid
, dist
);
1745 update_numa_stats(&env
.src_stats
, env
.src_nid
);
1746 taskimp
= task_weight(p
, env
.dst_nid
, dist
) - taskweight
;
1747 groupimp
= group_weight(p
, env
.dst_nid
, dist
) - groupweight
;
1748 update_numa_stats(&env
.dst_stats
, env
.dst_nid
);
1750 /* Try to find a spot on the preferred nid. */
1751 if (numa_has_capacity(&env
))
1752 task_numa_find_cpu(&env
, taskimp
, groupimp
);
1755 * Look at other nodes in these cases:
1756 * - there is no space available on the preferred_nid
1757 * - the task is part of a numa_group that is interleaved across
1758 * multiple NUMA nodes; in order to better consolidate the group,
1759 * we need to check other locations.
1761 if (env
.best_cpu
== -1 || (p
->numa_group
&& p
->numa_group
->active_nodes
> 1)) {
1762 for_each_online_node(nid
) {
1763 if (nid
== env
.src_nid
|| nid
== p
->numa_preferred_nid
)
1766 dist
= node_distance(env
.src_nid
, env
.dst_nid
);
1767 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1769 taskweight
= task_weight(p
, env
.src_nid
, dist
);
1770 groupweight
= group_weight(p
, env
.src_nid
, dist
);
1773 /* Only consider nodes where both task and groups benefit */
1774 taskimp
= task_weight(p
, nid
, dist
) - taskweight
;
1775 groupimp
= group_weight(p
, nid
, dist
) - groupweight
;
1776 if (taskimp
< 0 && groupimp
< 0)
1781 update_numa_stats(&env
.dst_stats
, env
.dst_nid
);
1782 if (numa_has_capacity(&env
))
1783 task_numa_find_cpu(&env
, taskimp
, groupimp
);
1788 * If the task is part of a workload that spans multiple NUMA nodes,
1789 * and is migrating into one of the workload's active nodes, remember
1790 * this node as the task's preferred numa node, so the workload can
1792 * A task that migrated to a second choice node will be better off
1793 * trying for a better one later. Do not set the preferred node here.
1795 if (p
->numa_group
) {
1796 struct numa_group
*ng
= p
->numa_group
;
1798 if (env
.best_cpu
== -1)
1803 if (ng
->active_nodes
> 1 && numa_is_active_node(env
.dst_nid
, ng
))
1804 sched_setnuma(p
, env
.dst_nid
);
1807 /* No better CPU than the current one was found. */
1808 if (env
.best_cpu
== -1)
1812 * Reset the scan period if the task is being rescheduled on an
1813 * alternative node to recheck if the tasks is now properly placed.
1815 p
->numa_scan_period
= task_scan_min(p
);
1817 if (env
.best_task
== NULL
) {
1818 ret
= migrate_task_to(p
, env
.best_cpu
);
1820 trace_sched_stick_numa(p
, env
.src_cpu
, env
.best_cpu
);
1824 ret
= migrate_swap(p
, env
.best_task
);
1826 trace_sched_stick_numa(p
, env
.src_cpu
, task_cpu(env
.best_task
));
1827 put_task_struct(env
.best_task
);
1831 /* Attempt to migrate a task to a CPU on the preferred node. */
1832 static void numa_migrate_preferred(struct task_struct
*p
)
1834 unsigned long interval
= HZ
;
1836 /* This task has no NUMA fault statistics yet */
1837 if (unlikely(p
->numa_preferred_nid
== -1 || !p
->numa_faults
))
1840 /* Periodically retry migrating the task to the preferred node */
1841 interval
= min(interval
, msecs_to_jiffies(p
->numa_scan_period
) / 16);
1842 p
->numa_migrate_retry
= jiffies
+ interval
;
1844 /* Success if task is already running on preferred CPU */
1845 if (task_node(p
) == p
->numa_preferred_nid
)
1848 /* Otherwise, try migrate to a CPU on the preferred node */
1849 task_numa_migrate(p
);
1853 * Find out how many nodes on the workload is actively running on. Do this by
1854 * tracking the nodes from which NUMA hinting faults are triggered. This can
1855 * be different from the set of nodes where the workload's memory is currently
1858 static void numa_group_count_active_nodes(struct numa_group
*numa_group
)
1860 unsigned long faults
, max_faults
= 0;
1861 int nid
, active_nodes
= 0;
1863 for_each_online_node(nid
) {
1864 faults
= group_faults_cpu(numa_group
, nid
);
1865 if (faults
> max_faults
)
1866 max_faults
= faults
;
1869 for_each_online_node(nid
) {
1870 faults
= group_faults_cpu(numa_group
, nid
);
1871 if (faults
* ACTIVE_NODE_FRACTION
> max_faults
)
1875 numa_group
->max_faults_cpu
= max_faults
;
1876 numa_group
->active_nodes
= active_nodes
;
1880 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1881 * increments. The more local the fault statistics are, the higher the scan
1882 * period will be for the next scan window. If local/(local+remote) ratio is
1883 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1884 * the scan period will decrease. Aim for 70% local accesses.
1886 #define NUMA_PERIOD_SLOTS 10
1887 #define NUMA_PERIOD_THRESHOLD 7
1890 * Increase the scan period (slow down scanning) if the majority of
1891 * our memory is already on our local node, or if the majority of
1892 * the page accesses are shared with other processes.
1893 * Otherwise, decrease the scan period.
1895 static void update_task_scan_period(struct task_struct
*p
,
1896 unsigned long shared
, unsigned long private)
1898 unsigned int period_slot
;
1902 unsigned long remote
= p
->numa_faults_locality
[0];
1903 unsigned long local
= p
->numa_faults_locality
[1];
1906 * If there were no record hinting faults then either the task is
1907 * completely idle or all activity is areas that are not of interest
1908 * to automatic numa balancing. Related to that, if there were failed
1909 * migration then it implies we are migrating too quickly or the local
1910 * node is overloaded. In either case, scan slower
1912 if (local
+ shared
== 0 || p
->numa_faults_locality
[2]) {
1913 p
->numa_scan_period
= min(p
->numa_scan_period_max
,
1914 p
->numa_scan_period
<< 1);
1916 p
->mm
->numa_next_scan
= jiffies
+
1917 msecs_to_jiffies(p
->numa_scan_period
);
1923 * Prepare to scale scan period relative to the current period.
1924 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1925 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1926 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1928 period_slot
= DIV_ROUND_UP(p
->numa_scan_period
, NUMA_PERIOD_SLOTS
);
1929 ratio
= (local
* NUMA_PERIOD_SLOTS
) / (local
+ remote
);
1930 if (ratio
>= NUMA_PERIOD_THRESHOLD
) {
1931 int slot
= ratio
- NUMA_PERIOD_THRESHOLD
;
1934 diff
= slot
* period_slot
;
1936 diff
= -(NUMA_PERIOD_THRESHOLD
- ratio
) * period_slot
;
1939 * Scale scan rate increases based on sharing. There is an
1940 * inverse relationship between the degree of sharing and
1941 * the adjustment made to the scanning period. Broadly
1942 * speaking the intent is that there is little point
1943 * scanning faster if shared accesses dominate as it may
1944 * simply bounce migrations uselessly
1946 ratio
= DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS
, (private + shared
+ 1));
1947 diff
= (diff
* ratio
) / NUMA_PERIOD_SLOTS
;
1950 p
->numa_scan_period
= clamp(p
->numa_scan_period
+ diff
,
1951 task_scan_min(p
), task_scan_max(p
));
1952 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
1956 * Get the fraction of time the task has been running since the last
1957 * NUMA placement cycle. The scheduler keeps similar statistics, but
1958 * decays those on a 32ms period, which is orders of magnitude off
1959 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1960 * stats only if the task is so new there are no NUMA statistics yet.
1962 static u64
numa_get_avg_runtime(struct task_struct
*p
, u64
*period
)
1964 u64 runtime
, delta
, now
;
1965 /* Use the start of this time slice to avoid calculations. */
1966 now
= p
->se
.exec_start
;
1967 runtime
= p
->se
.sum_exec_runtime
;
1969 if (p
->last_task_numa_placement
) {
1970 delta
= runtime
- p
->last_sum_exec_runtime
;
1971 *period
= now
- p
->last_task_numa_placement
;
1973 delta
= p
->se
.avg
.load_sum
/ p
->se
.load
.weight
;
1974 *period
= LOAD_AVG_MAX
;
1977 p
->last_sum_exec_runtime
= runtime
;
1978 p
->last_task_numa_placement
= now
;
1984 * Determine the preferred nid for a task in a numa_group. This needs to
1985 * be done in a way that produces consistent results with group_weight,
1986 * otherwise workloads might not converge.
1988 static int preferred_group_nid(struct task_struct
*p
, int nid
)
1993 /* Direct connections between all NUMA nodes. */
1994 if (sched_numa_topology_type
== NUMA_DIRECT
)
1998 * On a system with glueless mesh NUMA topology, group_weight
1999 * scores nodes according to the number of NUMA hinting faults on
2000 * both the node itself, and on nearby nodes.
2002 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
2003 unsigned long score
, max_score
= 0;
2004 int node
, max_node
= nid
;
2006 dist
= sched_max_numa_distance
;
2008 for_each_online_node(node
) {
2009 score
= group_weight(p
, node
, dist
);
2010 if (score
> max_score
) {
2019 * Finding the preferred nid in a system with NUMA backplane
2020 * interconnect topology is more involved. The goal is to locate
2021 * tasks from numa_groups near each other in the system, and
2022 * untangle workloads from different sides of the system. This requires
2023 * searching down the hierarchy of node groups, recursively searching
2024 * inside the highest scoring group of nodes. The nodemask tricks
2025 * keep the complexity of the search down.
2027 nodes
= node_online_map
;
2028 for (dist
= sched_max_numa_distance
; dist
> LOCAL_DISTANCE
; dist
--) {
2029 unsigned long max_faults
= 0;
2030 nodemask_t max_group
= NODE_MASK_NONE
;
2033 /* Are there nodes at this distance from each other? */
2034 if (!find_numa_distance(dist
))
2037 for_each_node_mask(a
, nodes
) {
2038 unsigned long faults
= 0;
2039 nodemask_t this_group
;
2040 nodes_clear(this_group
);
2042 /* Sum group's NUMA faults; includes a==b case. */
2043 for_each_node_mask(b
, nodes
) {
2044 if (node_distance(a
, b
) < dist
) {
2045 faults
+= group_faults(p
, b
);
2046 node_set(b
, this_group
);
2047 node_clear(b
, nodes
);
2051 /* Remember the top group. */
2052 if (faults
> max_faults
) {
2053 max_faults
= faults
;
2054 max_group
= this_group
;
2056 * subtle: at the smallest distance there is
2057 * just one node left in each "group", the
2058 * winner is the preferred nid.
2063 /* Next round, evaluate the nodes within max_group. */
2071 static void task_numa_placement(struct task_struct
*p
)
2073 int seq
, nid
, max_nid
= -1, max_group_nid
= -1;
2074 unsigned long max_faults
= 0, max_group_faults
= 0;
2075 unsigned long fault_types
[2] = { 0, 0 };
2076 unsigned long total_faults
;
2077 u64 runtime
, period
;
2078 spinlock_t
*group_lock
= NULL
;
2081 * The p->mm->numa_scan_seq field gets updated without
2082 * exclusive access. Use READ_ONCE() here to ensure
2083 * that the field is read in a single access:
2085 seq
= READ_ONCE(p
->mm
->numa_scan_seq
);
2086 if (p
->numa_scan_seq
== seq
)
2088 p
->numa_scan_seq
= seq
;
2089 p
->numa_scan_period_max
= task_scan_max(p
);
2091 total_faults
= p
->numa_faults_locality
[0] +
2092 p
->numa_faults_locality
[1];
2093 runtime
= numa_get_avg_runtime(p
, &period
);
2095 /* If the task is part of a group prevent parallel updates to group stats */
2096 if (p
->numa_group
) {
2097 group_lock
= &p
->numa_group
->lock
;
2098 spin_lock_irq(group_lock
);
2101 /* Find the node with the highest number of faults */
2102 for_each_online_node(nid
) {
2103 /* Keep track of the offsets in numa_faults array */
2104 int mem_idx
, membuf_idx
, cpu_idx
, cpubuf_idx
;
2105 unsigned long faults
= 0, group_faults
= 0;
2108 for (priv
= 0; priv
< NR_NUMA_HINT_FAULT_TYPES
; priv
++) {
2109 long diff
, f_diff
, f_weight
;
2111 mem_idx
= task_faults_idx(NUMA_MEM
, nid
, priv
);
2112 membuf_idx
= task_faults_idx(NUMA_MEMBUF
, nid
, priv
);
2113 cpu_idx
= task_faults_idx(NUMA_CPU
, nid
, priv
);
2114 cpubuf_idx
= task_faults_idx(NUMA_CPUBUF
, nid
, priv
);
2116 /* Decay existing window, copy faults since last scan */
2117 diff
= p
->numa_faults
[membuf_idx
] - p
->numa_faults
[mem_idx
] / 2;
2118 fault_types
[priv
] += p
->numa_faults
[membuf_idx
];
2119 p
->numa_faults
[membuf_idx
] = 0;
2122 * Normalize the faults_from, so all tasks in a group
2123 * count according to CPU use, instead of by the raw
2124 * number of faults. Tasks with little runtime have
2125 * little over-all impact on throughput, and thus their
2126 * faults are less important.
2128 f_weight
= div64_u64(runtime
<< 16, period
+ 1);
2129 f_weight
= (f_weight
* p
->numa_faults
[cpubuf_idx
]) /
2131 f_diff
= f_weight
- p
->numa_faults
[cpu_idx
] / 2;
2132 p
->numa_faults
[cpubuf_idx
] = 0;
2134 p
->numa_faults
[mem_idx
] += diff
;
2135 p
->numa_faults
[cpu_idx
] += f_diff
;
2136 faults
+= p
->numa_faults
[mem_idx
];
2137 p
->total_numa_faults
+= diff
;
2138 if (p
->numa_group
) {
2140 * safe because we can only change our own group
2142 * mem_idx represents the offset for a given
2143 * nid and priv in a specific region because it
2144 * is at the beginning of the numa_faults array.
2146 p
->numa_group
->faults
[mem_idx
] += diff
;
2147 p
->numa_group
->faults_cpu
[mem_idx
] += f_diff
;
2148 p
->numa_group
->total_faults
+= diff
;
2149 group_faults
+= p
->numa_group
->faults
[mem_idx
];
2153 if (faults
> max_faults
) {
2154 max_faults
= faults
;
2158 if (group_faults
> max_group_faults
) {
2159 max_group_faults
= group_faults
;
2160 max_group_nid
= nid
;
2164 update_task_scan_period(p
, fault_types
[0], fault_types
[1]);
2166 if (p
->numa_group
) {
2167 numa_group_count_active_nodes(p
->numa_group
);
2168 spin_unlock_irq(group_lock
);
2169 max_nid
= preferred_group_nid(p
, max_group_nid
);
2173 /* Set the new preferred node */
2174 if (max_nid
!= p
->numa_preferred_nid
)
2175 sched_setnuma(p
, max_nid
);
2177 if (task_node(p
) != p
->numa_preferred_nid
)
2178 numa_migrate_preferred(p
);
2182 static inline int get_numa_group(struct numa_group
*grp
)
2184 return atomic_inc_not_zero(&grp
->refcount
);
2187 static inline void put_numa_group(struct numa_group
*grp
)
2189 if (atomic_dec_and_test(&grp
->refcount
))
2190 kfree_rcu(grp
, rcu
);
2193 static void task_numa_group(struct task_struct
*p
, int cpupid
, int flags
,
2196 struct numa_group
*grp
, *my_grp
;
2197 struct task_struct
*tsk
;
2199 int cpu
= cpupid_to_cpu(cpupid
);
2202 if (unlikely(!p
->numa_group
)) {
2203 unsigned int size
= sizeof(struct numa_group
) +
2204 4*nr_node_ids
*sizeof(unsigned long);
2206 grp
= kzalloc(size
, GFP_KERNEL
| __GFP_NOWARN
);
2210 atomic_set(&grp
->refcount
, 1);
2211 grp
->active_nodes
= 1;
2212 grp
->max_faults_cpu
= 0;
2213 spin_lock_init(&grp
->lock
);
2215 /* Second half of the array tracks nids where faults happen */
2216 grp
->faults_cpu
= grp
->faults
+ NR_NUMA_HINT_FAULT_TYPES
*
2219 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2220 grp
->faults
[i
] = p
->numa_faults
[i
];
2222 grp
->total_faults
= p
->total_numa_faults
;
2225 rcu_assign_pointer(p
->numa_group
, grp
);
2229 tsk
= READ_ONCE(cpu_rq(cpu
)->curr
);
2231 if (!cpupid_match_pid(tsk
, cpupid
))
2234 grp
= rcu_dereference(tsk
->numa_group
);
2238 my_grp
= p
->numa_group
;
2243 * Only join the other group if its bigger; if we're the bigger group,
2244 * the other task will join us.
2246 if (my_grp
->nr_tasks
> grp
->nr_tasks
)
2250 * Tie-break on the grp address.
2252 if (my_grp
->nr_tasks
== grp
->nr_tasks
&& my_grp
> grp
)
2255 /* Always join threads in the same process. */
2256 if (tsk
->mm
== current
->mm
)
2259 /* Simple filter to avoid false positives due to PID collisions */
2260 if (flags
& TNF_SHARED
)
2263 /* Update priv based on whether false sharing was detected */
2266 if (join
&& !get_numa_group(grp
))
2274 BUG_ON(irqs_disabled());
2275 double_lock_irq(&my_grp
->lock
, &grp
->lock
);
2277 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++) {
2278 my_grp
->faults
[i
] -= p
->numa_faults
[i
];
2279 grp
->faults
[i
] += p
->numa_faults
[i
];
2281 my_grp
->total_faults
-= p
->total_numa_faults
;
2282 grp
->total_faults
+= p
->total_numa_faults
;
2287 spin_unlock(&my_grp
->lock
);
2288 spin_unlock_irq(&grp
->lock
);
2290 rcu_assign_pointer(p
->numa_group
, grp
);
2292 put_numa_group(my_grp
);
2300 void task_numa_free(struct task_struct
*p
)
2302 struct numa_group
*grp
= p
->numa_group
;
2303 void *numa_faults
= p
->numa_faults
;
2304 unsigned long flags
;
2308 spin_lock_irqsave(&grp
->lock
, flags
);
2309 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2310 grp
->faults
[i
] -= p
->numa_faults
[i
];
2311 grp
->total_faults
-= p
->total_numa_faults
;
2314 spin_unlock_irqrestore(&grp
->lock
, flags
);
2315 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2316 put_numa_group(grp
);
2319 p
->numa_faults
= NULL
;
2324 * Got a PROT_NONE fault for a page on @node.
2326 void task_numa_fault(int last_cpupid
, int mem_node
, int pages
, int flags
)
2328 struct task_struct
*p
= current
;
2329 bool migrated
= flags
& TNF_MIGRATED
;
2330 int cpu_node
= task_node(current
);
2331 int local
= !!(flags
& TNF_FAULT_LOCAL
);
2332 struct numa_group
*ng
;
2335 if (!static_branch_likely(&sched_numa_balancing
))
2338 /* for example, ksmd faulting in a user's mm */
2342 /* Allocate buffer to track faults on a per-node basis */
2343 if (unlikely(!p
->numa_faults
)) {
2344 int size
= sizeof(*p
->numa_faults
) *
2345 NR_NUMA_HINT_FAULT_BUCKETS
* nr_node_ids
;
2347 p
->numa_faults
= kzalloc(size
, GFP_KERNEL
|__GFP_NOWARN
);
2348 if (!p
->numa_faults
)
2351 p
->total_numa_faults
= 0;
2352 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2356 * First accesses are treated as private, otherwise consider accesses
2357 * to be private if the accessing pid has not changed
2359 if (unlikely(last_cpupid
== (-1 & LAST_CPUPID_MASK
))) {
2362 priv
= cpupid_match_pid(p
, last_cpupid
);
2363 if (!priv
&& !(flags
& TNF_NO_GROUP
))
2364 task_numa_group(p
, last_cpupid
, flags
, &priv
);
2368 * If a workload spans multiple NUMA nodes, a shared fault that
2369 * occurs wholly within the set of nodes that the workload is
2370 * actively using should be counted as local. This allows the
2371 * scan rate to slow down when a workload has settled down.
2374 if (!priv
&& !local
&& ng
&& ng
->active_nodes
> 1 &&
2375 numa_is_active_node(cpu_node
, ng
) &&
2376 numa_is_active_node(mem_node
, ng
))
2379 task_numa_placement(p
);
2382 * Retry task to preferred node migration periodically, in case it
2383 * case it previously failed, or the scheduler moved us.
2385 if (time_after(jiffies
, p
->numa_migrate_retry
))
2386 numa_migrate_preferred(p
);
2389 p
->numa_pages_migrated
+= pages
;
2390 if (flags
& TNF_MIGRATE_FAIL
)
2391 p
->numa_faults_locality
[2] += pages
;
2393 p
->numa_faults
[task_faults_idx(NUMA_MEMBUF
, mem_node
, priv
)] += pages
;
2394 p
->numa_faults
[task_faults_idx(NUMA_CPUBUF
, cpu_node
, priv
)] += pages
;
2395 p
->numa_faults_locality
[local
] += pages
;
2398 static void reset_ptenuma_scan(struct task_struct
*p
)
2401 * We only did a read acquisition of the mmap sem, so
2402 * p->mm->numa_scan_seq is written to without exclusive access
2403 * and the update is not guaranteed to be atomic. That's not
2404 * much of an issue though, since this is just used for
2405 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2406 * expensive, to avoid any form of compiler optimizations:
2408 WRITE_ONCE(p
->mm
->numa_scan_seq
, READ_ONCE(p
->mm
->numa_scan_seq
) + 1);
2409 p
->mm
->numa_scan_offset
= 0;
2413 * The expensive part of numa migration is done from task_work context.
2414 * Triggered from task_tick_numa().
2416 void task_numa_work(struct callback_head
*work
)
2418 unsigned long migrate
, next_scan
, now
= jiffies
;
2419 struct task_struct
*p
= current
;
2420 struct mm_struct
*mm
= p
->mm
;
2421 u64 runtime
= p
->se
.sum_exec_runtime
;
2422 struct vm_area_struct
*vma
;
2423 unsigned long start
, end
;
2424 unsigned long nr_pte_updates
= 0;
2425 long pages
, virtpages
;
2427 SCHED_WARN_ON(p
!= container_of(work
, struct task_struct
, numa_work
));
2429 work
->next
= work
; /* protect against double add */
2431 * Who cares about NUMA placement when they're dying.
2433 * NOTE: make sure not to dereference p->mm before this check,
2434 * exit_task_work() happens _after_ exit_mm() so we could be called
2435 * without p->mm even though we still had it when we enqueued this
2438 if (p
->flags
& PF_EXITING
)
2441 if (!mm
->numa_next_scan
) {
2442 mm
->numa_next_scan
= now
+
2443 msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2447 * Enforce maximal scan/migration frequency..
2449 migrate
= mm
->numa_next_scan
;
2450 if (time_before(now
, migrate
))
2453 if (p
->numa_scan_period
== 0) {
2454 p
->numa_scan_period_max
= task_scan_max(p
);
2455 p
->numa_scan_period
= task_scan_min(p
);
2458 next_scan
= now
+ msecs_to_jiffies(p
->numa_scan_period
);
2459 if (cmpxchg(&mm
->numa_next_scan
, migrate
, next_scan
) != migrate
)
2463 * Delay this task enough that another task of this mm will likely win
2464 * the next time around.
2466 p
->node_stamp
+= 2 * TICK_NSEC
;
2468 start
= mm
->numa_scan_offset
;
2469 pages
= sysctl_numa_balancing_scan_size
;
2470 pages
<<= 20 - PAGE_SHIFT
; /* MB in pages */
2471 virtpages
= pages
* 8; /* Scan up to this much virtual space */
2476 down_read(&mm
->mmap_sem
);
2477 vma
= find_vma(mm
, start
);
2479 reset_ptenuma_scan(p
);
2483 for (; vma
; vma
= vma
->vm_next
) {
2484 if (!vma_migratable(vma
) || !vma_policy_mof(vma
) ||
2485 is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_MIXEDMAP
)) {
2490 * Shared library pages mapped by multiple processes are not
2491 * migrated as it is expected they are cache replicated. Avoid
2492 * hinting faults in read-only file-backed mappings or the vdso
2493 * as migrating the pages will be of marginal benefit.
2496 (vma
->vm_file
&& (vma
->vm_flags
& (VM_READ
|VM_WRITE
)) == (VM_READ
)))
2500 * Skip inaccessible VMAs to avoid any confusion between
2501 * PROT_NONE and NUMA hinting ptes
2503 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
2507 start
= max(start
, vma
->vm_start
);
2508 end
= ALIGN(start
+ (pages
<< PAGE_SHIFT
), HPAGE_SIZE
);
2509 end
= min(end
, vma
->vm_end
);
2510 nr_pte_updates
= change_prot_numa(vma
, start
, end
);
2513 * Try to scan sysctl_numa_balancing_size worth of
2514 * hpages that have at least one present PTE that
2515 * is not already pte-numa. If the VMA contains
2516 * areas that are unused or already full of prot_numa
2517 * PTEs, scan up to virtpages, to skip through those
2521 pages
-= (end
- start
) >> PAGE_SHIFT
;
2522 virtpages
-= (end
- start
) >> PAGE_SHIFT
;
2525 if (pages
<= 0 || virtpages
<= 0)
2529 } while (end
!= vma
->vm_end
);
2534 * It is possible to reach the end of the VMA list but the last few
2535 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2536 * would find the !migratable VMA on the next scan but not reset the
2537 * scanner to the start so check it now.
2540 mm
->numa_scan_offset
= start
;
2542 reset_ptenuma_scan(p
);
2543 up_read(&mm
->mmap_sem
);
2546 * Make sure tasks use at least 32x as much time to run other code
2547 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2548 * Usually update_task_scan_period slows down scanning enough; on an
2549 * overloaded system we need to limit overhead on a per task basis.
2551 if (unlikely(p
->se
.sum_exec_runtime
!= runtime
)) {
2552 u64 diff
= p
->se
.sum_exec_runtime
- runtime
;
2553 p
->node_stamp
+= 32 * diff
;
2558 * Drive the periodic memory faults..
2560 void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2562 struct callback_head
*work
= &curr
->numa_work
;
2566 * We don't care about NUMA placement if we don't have memory.
2568 if (!curr
->mm
|| (curr
->flags
& PF_EXITING
) || work
->next
!= work
)
2572 * Using runtime rather than walltime has the dual advantage that
2573 * we (mostly) drive the selection from busy threads and that the
2574 * task needs to have done some actual work before we bother with
2577 now
= curr
->se
.sum_exec_runtime
;
2578 period
= (u64
)curr
->numa_scan_period
* NSEC_PER_MSEC
;
2580 if (now
> curr
->node_stamp
+ period
) {
2581 if (!curr
->node_stamp
)
2582 curr
->numa_scan_period
= task_scan_min(curr
);
2583 curr
->node_stamp
+= period
;
2585 if (!time_before(jiffies
, curr
->mm
->numa_next_scan
)) {
2586 init_task_work(work
, task_numa_work
); /* TODO: move this into sched_fork() */
2587 task_work_add(curr
, work
, true);
2592 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2596 static inline void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
2600 static inline void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
2603 #endif /* CONFIG_NUMA_BALANCING */
2606 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2608 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
2609 if (!parent_entity(se
))
2610 update_load_add(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
2612 if (entity_is_task(se
)) {
2613 struct rq
*rq
= rq_of(cfs_rq
);
2615 account_numa_enqueue(rq
, task_of(se
));
2616 list_add(&se
->group_node
, &rq
->cfs_tasks
);
2619 cfs_rq
->nr_running
++;
2623 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2625 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
2626 if (!parent_entity(se
))
2627 update_load_sub(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
2629 if (entity_is_task(se
)) {
2630 account_numa_dequeue(rq_of(cfs_rq
), task_of(se
));
2631 list_del_init(&se
->group_node
);
2634 cfs_rq
->nr_running
--;
2637 #ifdef CONFIG_FAIR_GROUP_SCHED
2639 static long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
2641 long tg_weight
, load
, shares
;
2644 * This really should be: cfs_rq->avg.load_avg, but instead we use
2645 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2646 * the shares for small weight interactive tasks.
2648 load
= scale_load_down(cfs_rq
->load
.weight
);
2650 tg_weight
= atomic_long_read(&tg
->load_avg
);
2652 /* Ensure tg_weight >= load */
2653 tg_weight
-= cfs_rq
->tg_load_avg_contrib
;
2656 shares
= (tg
->shares
* load
);
2658 shares
/= tg_weight
;
2660 if (shares
< MIN_SHARES
)
2661 shares
= MIN_SHARES
;
2662 if (shares
> tg
->shares
)
2663 shares
= tg
->shares
;
2667 # else /* CONFIG_SMP */
2668 static inline long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
2672 # endif /* CONFIG_SMP */
2674 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
2675 unsigned long weight
)
2678 /* commit outstanding execution time */
2679 if (cfs_rq
->curr
== se
)
2680 update_curr(cfs_rq
);
2681 account_entity_dequeue(cfs_rq
, se
);
2684 update_load_set(&se
->load
, weight
);
2687 account_entity_enqueue(cfs_rq
, se
);
2690 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
2692 static void update_cfs_shares(struct cfs_rq
*cfs_rq
)
2694 struct task_group
*tg
;
2695 struct sched_entity
*se
;
2699 se
= tg
->se
[cpu_of(rq_of(cfs_rq
))];
2700 if (!se
|| throttled_hierarchy(cfs_rq
))
2703 if (likely(se
->load
.weight
== tg
->shares
))
2706 shares
= calc_cfs_shares(cfs_rq
, tg
);
2708 reweight_entity(cfs_rq_of(se
), se
, shares
);
2710 #else /* CONFIG_FAIR_GROUP_SCHED */
2711 static inline void update_cfs_shares(struct cfs_rq
*cfs_rq
)
2714 #endif /* CONFIG_FAIR_GROUP_SCHED */
2717 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2718 static const u32 runnable_avg_yN_inv
[] = {
2719 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2720 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2721 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2722 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2723 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2724 0x85aac367, 0x82cd8698,
2728 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2729 * over-estimates when re-combining.
2731 static const u32 runnable_avg_yN_sum
[] = {
2732 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2733 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2734 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2738 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2739 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2742 static const u32 __accumulated_sum_N32
[] = {
2743 0, 23371, 35056, 40899, 43820, 45281,
2744 46011, 46376, 46559, 46650, 46696, 46719,
2749 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2751 static __always_inline u64
decay_load(u64 val
, u64 n
)
2753 unsigned int local_n
;
2757 else if (unlikely(n
> LOAD_AVG_PERIOD
* 63))
2760 /* after bounds checking we can collapse to 32-bit */
2764 * As y^PERIOD = 1/2, we can combine
2765 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2766 * With a look-up table which covers y^n (n<PERIOD)
2768 * To achieve constant time decay_load.
2770 if (unlikely(local_n
>= LOAD_AVG_PERIOD
)) {
2771 val
>>= local_n
/ LOAD_AVG_PERIOD
;
2772 local_n
%= LOAD_AVG_PERIOD
;
2775 val
= mul_u64_u32_shr(val
, runnable_avg_yN_inv
[local_n
], 32);
2780 * For updates fully spanning n periods, the contribution to runnable
2781 * average will be: \Sum 1024*y^n
2783 * We can compute this reasonably efficiently by combining:
2784 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2786 static u32
__compute_runnable_contrib(u64 n
)
2790 if (likely(n
<= LOAD_AVG_PERIOD
))
2791 return runnable_avg_yN_sum
[n
];
2792 else if (unlikely(n
>= LOAD_AVG_MAX_N
))
2793 return LOAD_AVG_MAX
;
2795 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2796 contrib
= __accumulated_sum_N32
[n
/LOAD_AVG_PERIOD
];
2797 n
%= LOAD_AVG_PERIOD
;
2798 contrib
= decay_load(contrib
, n
);
2799 return contrib
+ runnable_avg_yN_sum
[n
];
2802 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2805 * We can represent the historical contribution to runnable average as the
2806 * coefficients of a geometric series. To do this we sub-divide our runnable
2807 * history into segments of approximately 1ms (1024us); label the segment that
2808 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2810 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2812 * (now) (~1ms ago) (~2ms ago)
2814 * Let u_i denote the fraction of p_i that the entity was runnable.
2816 * We then designate the fractions u_i as our co-efficients, yielding the
2817 * following representation of historical load:
2818 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2820 * We choose y based on the with of a reasonably scheduling period, fixing:
2823 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2824 * approximately half as much as the contribution to load within the last ms
2827 * When a period "rolls over" and we have new u_0`, multiplying the previous
2828 * sum again by y is sufficient to update:
2829 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2830 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2832 static __always_inline
int
2833 __update_load_avg(u64 now
, int cpu
, struct sched_avg
*sa
,
2834 unsigned long weight
, int running
, struct cfs_rq
*cfs_rq
)
2836 u64 delta
, scaled_delta
, periods
;
2838 unsigned int delta_w
, scaled_delta_w
, decayed
= 0;
2839 unsigned long scale_freq
, scale_cpu
;
2841 delta
= now
- sa
->last_update_time
;
2843 * This should only happen when time goes backwards, which it
2844 * unfortunately does during sched clock init when we swap over to TSC.
2846 if ((s64
)delta
< 0) {
2847 sa
->last_update_time
= now
;
2852 * Use 1024ns as the unit of measurement since it's a reasonable
2853 * approximation of 1us and fast to compute.
2858 sa
->last_update_time
= now
;
2860 scale_freq
= arch_scale_freq_capacity(NULL
, cpu
);
2861 scale_cpu
= arch_scale_cpu_capacity(NULL
, cpu
);
2863 /* delta_w is the amount already accumulated against our next period */
2864 delta_w
= sa
->period_contrib
;
2865 if (delta
+ delta_w
>= 1024) {
2868 /* how much left for next period will start over, we don't know yet */
2869 sa
->period_contrib
= 0;
2872 * Now that we know we're crossing a period boundary, figure
2873 * out how much from delta we need to complete the current
2874 * period and accrue it.
2876 delta_w
= 1024 - delta_w
;
2877 scaled_delta_w
= cap_scale(delta_w
, scale_freq
);
2879 sa
->load_sum
+= weight
* scaled_delta_w
;
2881 cfs_rq
->runnable_load_sum
+=
2882 weight
* scaled_delta_w
;
2886 sa
->util_sum
+= scaled_delta_w
* scale_cpu
;
2890 /* Figure out how many additional periods this update spans */
2891 periods
= delta
/ 1024;
2894 sa
->load_sum
= decay_load(sa
->load_sum
, periods
+ 1);
2896 cfs_rq
->runnable_load_sum
=
2897 decay_load(cfs_rq
->runnable_load_sum
, periods
+ 1);
2899 sa
->util_sum
= decay_load((u64
)(sa
->util_sum
), periods
+ 1);
2901 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2902 contrib
= __compute_runnable_contrib(periods
);
2903 contrib
= cap_scale(contrib
, scale_freq
);
2905 sa
->load_sum
+= weight
* contrib
;
2907 cfs_rq
->runnable_load_sum
+= weight
* contrib
;
2910 sa
->util_sum
+= contrib
* scale_cpu
;
2913 /* Remainder of delta accrued against u_0` */
2914 scaled_delta
= cap_scale(delta
, scale_freq
);
2916 sa
->load_sum
+= weight
* scaled_delta
;
2918 cfs_rq
->runnable_load_sum
+= weight
* scaled_delta
;
2921 sa
->util_sum
+= scaled_delta
* scale_cpu
;
2923 sa
->period_contrib
+= delta
;
2926 sa
->load_avg
= div_u64(sa
->load_sum
, LOAD_AVG_MAX
);
2928 cfs_rq
->runnable_load_avg
=
2929 div_u64(cfs_rq
->runnable_load_sum
, LOAD_AVG_MAX
);
2931 sa
->util_avg
= sa
->util_sum
/ LOAD_AVG_MAX
;
2938 * Signed add and clamp on underflow.
2940 * Explicitly do a load-store to ensure the intermediate value never hits
2941 * memory. This allows lockless observations without ever seeing the negative
2944 #define add_positive(_ptr, _val) do { \
2945 typeof(_ptr) ptr = (_ptr); \
2946 typeof(_val) val = (_val); \
2947 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2951 if (val < 0 && res > var) \
2954 WRITE_ONCE(*ptr, res); \
2957 #ifdef CONFIG_FAIR_GROUP_SCHED
2959 * update_tg_load_avg - update the tg's load avg
2960 * @cfs_rq: the cfs_rq whose avg changed
2961 * @force: update regardless of how small the difference
2963 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2964 * However, because tg->load_avg is a global value there are performance
2967 * In order to avoid having to look at the other cfs_rq's, we use a
2968 * differential update where we store the last value we propagated. This in
2969 * turn allows skipping updates if the differential is 'small'.
2971 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2972 * done) and effective_load() (which is not done because it is too costly).
2974 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
2976 long delta
= cfs_rq
->avg
.load_avg
- cfs_rq
->tg_load_avg_contrib
;
2979 * No need to update load_avg for root_task_group as it is not used.
2981 if (cfs_rq
->tg
== &root_task_group
)
2984 if (force
|| abs(delta
) > cfs_rq
->tg_load_avg_contrib
/ 64) {
2985 atomic_long_add(delta
, &cfs_rq
->tg
->load_avg
);
2986 cfs_rq
->tg_load_avg_contrib
= cfs_rq
->avg
.load_avg
;
2991 * Called within set_task_rq() right before setting a task's cpu. The
2992 * caller only guarantees p->pi_lock is held; no other assumptions,
2993 * including the state of rq->lock, should be made.
2995 void set_task_rq_fair(struct sched_entity
*se
,
2996 struct cfs_rq
*prev
, struct cfs_rq
*next
)
2998 if (!sched_feat(ATTACH_AGE_LOAD
))
3002 * We are supposed to update the task to "current" time, then its up to
3003 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3004 * getting what current time is, so simply throw away the out-of-date
3005 * time. This will result in the wakee task is less decayed, but giving
3006 * the wakee more load sounds not bad.
3008 if (se
->avg
.last_update_time
&& prev
) {
3009 u64 p_last_update_time
;
3010 u64 n_last_update_time
;
3012 #ifndef CONFIG_64BIT
3013 u64 p_last_update_time_copy
;
3014 u64 n_last_update_time_copy
;
3017 p_last_update_time_copy
= prev
->load_last_update_time_copy
;
3018 n_last_update_time_copy
= next
->load_last_update_time_copy
;
3022 p_last_update_time
= prev
->avg
.last_update_time
;
3023 n_last_update_time
= next
->avg
.last_update_time
;
3025 } while (p_last_update_time
!= p_last_update_time_copy
||
3026 n_last_update_time
!= n_last_update_time_copy
);
3028 p_last_update_time
= prev
->avg
.last_update_time
;
3029 n_last_update_time
= next
->avg
.last_update_time
;
3031 __update_load_avg(p_last_update_time
, cpu_of(rq_of(prev
)),
3032 &se
->avg
, 0, 0, NULL
);
3033 se
->avg
.last_update_time
= n_last_update_time
;
3037 /* Take into account change of utilization of a child task group */
3039 update_tg_cfs_util(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3041 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3042 long delta
= gcfs_rq
->avg
.util_avg
- se
->avg
.util_avg
;
3044 /* Nothing to update */
3048 /* Set new sched_entity's utilization */
3049 se
->avg
.util_avg
= gcfs_rq
->avg
.util_avg
;
3050 se
->avg
.util_sum
= se
->avg
.util_avg
* LOAD_AVG_MAX
;
3052 /* Update parent cfs_rq utilization */
3053 add_positive(&cfs_rq
->avg
.util_avg
, delta
);
3054 cfs_rq
->avg
.util_sum
= cfs_rq
->avg
.util_avg
* LOAD_AVG_MAX
;
3057 /* Take into account change of load of a child task group */
3059 update_tg_cfs_load(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3061 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3062 long delta
, load
= gcfs_rq
->avg
.load_avg
;
3065 * If the load of group cfs_rq is null, the load of the
3066 * sched_entity will also be null so we can skip the formula
3071 /* Get tg's load and ensure tg_load > 0 */
3072 tg_load
= atomic_long_read(&gcfs_rq
->tg
->load_avg
) + 1;
3074 /* Ensure tg_load >= load and updated with current load*/
3075 tg_load
-= gcfs_rq
->tg_load_avg_contrib
;
3079 * We need to compute a correction term in the case that the
3080 * task group is consuming more CPU than a task of equal
3081 * weight. A task with a weight equals to tg->shares will have
3082 * a load less or equal to scale_load_down(tg->shares).
3083 * Similarly, the sched_entities that represent the task group
3084 * at parent level, can't have a load higher than
3085 * scale_load_down(tg->shares). And the Sum of sched_entities'
3086 * load must be <= scale_load_down(tg->shares).
3088 if (tg_load
> scale_load_down(gcfs_rq
->tg
->shares
)) {
3089 /* scale gcfs_rq's load into tg's shares*/
3090 load
*= scale_load_down(gcfs_rq
->tg
->shares
);
3095 delta
= load
- se
->avg
.load_avg
;
3097 /* Nothing to update */
3101 /* Set new sched_entity's load */
3102 se
->avg
.load_avg
= load
;
3103 se
->avg
.load_sum
= se
->avg
.load_avg
* LOAD_AVG_MAX
;
3105 /* Update parent cfs_rq load */
3106 add_positive(&cfs_rq
->avg
.load_avg
, delta
);
3107 cfs_rq
->avg
.load_sum
= cfs_rq
->avg
.load_avg
* LOAD_AVG_MAX
;
3110 * If the sched_entity is already enqueued, we also have to update the
3111 * runnable load avg.
3114 /* Update parent cfs_rq runnable_load_avg */
3115 add_positive(&cfs_rq
->runnable_load_avg
, delta
);
3116 cfs_rq
->runnable_load_sum
= cfs_rq
->runnable_load_avg
* LOAD_AVG_MAX
;
3120 static inline void set_tg_cfs_propagate(struct cfs_rq
*cfs_rq
)
3122 cfs_rq
->propagate_avg
= 1;
3125 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity
*se
)
3127 struct cfs_rq
*cfs_rq
= group_cfs_rq(se
);
3129 if (!cfs_rq
->propagate_avg
)
3132 cfs_rq
->propagate_avg
= 0;
3136 /* Update task and its cfs_rq load average */
3137 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3139 struct cfs_rq
*cfs_rq
;
3141 if (entity_is_task(se
))
3144 if (!test_and_clear_tg_cfs_propagate(se
))
3147 cfs_rq
= cfs_rq_of(se
);
3149 set_tg_cfs_propagate(cfs_rq
);
3151 update_tg_cfs_util(cfs_rq
, se
);
3152 update_tg_cfs_load(cfs_rq
, se
);
3157 #else /* CONFIG_FAIR_GROUP_SCHED */
3159 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
) {}
3161 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3166 static inline void set_tg_cfs_propagate(struct cfs_rq
*cfs_rq
) {}
3168 #endif /* CONFIG_FAIR_GROUP_SCHED */
3170 static inline void cfs_rq_util_change(struct cfs_rq
*cfs_rq
)
3172 if (&this_rq()->cfs
== cfs_rq
) {
3174 * There are a few boundary cases this might miss but it should
3175 * get called often enough that that should (hopefully) not be
3176 * a real problem -- added to that it only calls on the local
3177 * CPU, so if we enqueue remotely we'll miss an update, but
3178 * the next tick/schedule should update.
3180 * It will not get called when we go idle, because the idle
3181 * thread is a different class (!fair), nor will the utilization
3182 * number include things like RT tasks.
3184 * As is, the util number is not freq-invariant (we'd have to
3185 * implement arch_scale_freq_capacity() for that).
3189 cpufreq_update_util(rq_of(cfs_rq
), 0);
3194 * Unsigned subtract and clamp on underflow.
3196 * Explicitly do a load-store to ensure the intermediate value never hits
3197 * memory. This allows lockless observations without ever seeing the negative
3200 #define sub_positive(_ptr, _val) do { \
3201 typeof(_ptr) ptr = (_ptr); \
3202 typeof(*ptr) val = (_val); \
3203 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3207 WRITE_ONCE(*ptr, res); \
3211 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3212 * @now: current time, as per cfs_rq_clock_task()
3213 * @cfs_rq: cfs_rq to update
3214 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3216 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3217 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3218 * post_init_entity_util_avg().
3220 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3222 * Returns true if the load decayed or we removed load.
3224 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3225 * call update_tg_load_avg() when this function returns true.
3228 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
, bool update_freq
)
3230 struct sched_avg
*sa
= &cfs_rq
->avg
;
3231 int decayed
, removed_load
= 0, removed_util
= 0;
3233 if (atomic_long_read(&cfs_rq
->removed_load_avg
)) {
3234 s64 r
= atomic_long_xchg(&cfs_rq
->removed_load_avg
, 0);
3235 sub_positive(&sa
->load_avg
, r
);
3236 sub_positive(&sa
->load_sum
, r
* LOAD_AVG_MAX
);
3238 set_tg_cfs_propagate(cfs_rq
);
3241 if (atomic_long_read(&cfs_rq
->removed_util_avg
)) {
3242 long r
= atomic_long_xchg(&cfs_rq
->removed_util_avg
, 0);
3243 sub_positive(&sa
->util_avg
, r
);
3244 sub_positive(&sa
->util_sum
, r
* LOAD_AVG_MAX
);
3246 set_tg_cfs_propagate(cfs_rq
);
3249 decayed
= __update_load_avg(now
, cpu_of(rq_of(cfs_rq
)), sa
,
3250 scale_load_down(cfs_rq
->load
.weight
), cfs_rq
->curr
!= NULL
, cfs_rq
);
3252 #ifndef CONFIG_64BIT
3254 cfs_rq
->load_last_update_time_copy
= sa
->last_update_time
;
3257 if (update_freq
&& (decayed
|| removed_util
))
3258 cfs_rq_util_change(cfs_rq
);
3260 return decayed
|| removed_load
;
3264 * Optional action to be done while updating the load average
3266 #define UPDATE_TG 0x1
3267 #define SKIP_AGE_LOAD 0x2
3269 /* Update task and its cfs_rq load average */
3270 static inline void update_load_avg(struct sched_entity
*se
, int flags
)
3272 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3273 u64 now
= cfs_rq_clock_task(cfs_rq
);
3274 struct rq
*rq
= rq_of(cfs_rq
);
3275 int cpu
= cpu_of(rq
);
3279 * Track task load average for carrying it to new CPU after migrated, and
3280 * track group sched_entity load average for task_h_load calc in migration
3282 if (se
->avg
.last_update_time
&& !(flags
& SKIP_AGE_LOAD
)) {
3283 __update_load_avg(now
, cpu
, &se
->avg
,
3284 se
->on_rq
* scale_load_down(se
->load
.weight
),
3285 cfs_rq
->curr
== se
, NULL
);
3288 decayed
= update_cfs_rq_load_avg(now
, cfs_rq
, true);
3289 decayed
|= propagate_entity_load_avg(se
);
3291 if (decayed
&& (flags
& UPDATE_TG
))
3292 update_tg_load_avg(cfs_rq
, 0);
3296 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3297 * @cfs_rq: cfs_rq to attach to
3298 * @se: sched_entity to attach
3300 * Must call update_cfs_rq_load_avg() before this, since we rely on
3301 * cfs_rq->avg.last_update_time being current.
3303 static void attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3305 se
->avg
.last_update_time
= cfs_rq
->avg
.last_update_time
;
3306 cfs_rq
->avg
.load_avg
+= se
->avg
.load_avg
;
3307 cfs_rq
->avg
.load_sum
+= se
->avg
.load_sum
;
3308 cfs_rq
->avg
.util_avg
+= se
->avg
.util_avg
;
3309 cfs_rq
->avg
.util_sum
+= se
->avg
.util_sum
;
3310 set_tg_cfs_propagate(cfs_rq
);
3312 cfs_rq_util_change(cfs_rq
);
3316 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3317 * @cfs_rq: cfs_rq to detach from
3318 * @se: sched_entity to detach
3320 * Must call update_cfs_rq_load_avg() before this, since we rely on
3321 * cfs_rq->avg.last_update_time being current.
3323 static void detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3326 sub_positive(&cfs_rq
->avg
.load_avg
, se
->avg
.load_avg
);
3327 sub_positive(&cfs_rq
->avg
.load_sum
, se
->avg
.load_sum
);
3328 sub_positive(&cfs_rq
->avg
.util_avg
, se
->avg
.util_avg
);
3329 sub_positive(&cfs_rq
->avg
.util_sum
, se
->avg
.util_sum
);
3330 set_tg_cfs_propagate(cfs_rq
);
3332 cfs_rq_util_change(cfs_rq
);
3335 /* Add the load generated by se into cfs_rq's load average */
3337 enqueue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3339 struct sched_avg
*sa
= &se
->avg
;
3341 cfs_rq
->runnable_load_avg
+= sa
->load_avg
;
3342 cfs_rq
->runnable_load_sum
+= sa
->load_sum
;
3344 if (!sa
->last_update_time
) {
3345 attach_entity_load_avg(cfs_rq
, se
);
3346 update_tg_load_avg(cfs_rq
, 0);
3350 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3352 dequeue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3354 cfs_rq
->runnable_load_avg
=
3355 max_t(long, cfs_rq
->runnable_load_avg
- se
->avg
.load_avg
, 0);
3356 cfs_rq
->runnable_load_sum
=
3357 max_t(s64
, cfs_rq
->runnable_load_sum
- se
->avg
.load_sum
, 0);
3360 #ifndef CONFIG_64BIT
3361 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3363 u64 last_update_time_copy
;
3364 u64 last_update_time
;
3367 last_update_time_copy
= cfs_rq
->load_last_update_time_copy
;
3369 last_update_time
= cfs_rq
->avg
.last_update_time
;
3370 } while (last_update_time
!= last_update_time_copy
);
3372 return last_update_time
;
3375 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3377 return cfs_rq
->avg
.last_update_time
;
3382 * Synchronize entity load avg of dequeued entity without locking
3385 void sync_entity_load_avg(struct sched_entity
*se
)
3387 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3388 u64 last_update_time
;
3390 last_update_time
= cfs_rq_last_update_time(cfs_rq
);
3391 __update_load_avg(last_update_time
, cpu_of(rq_of(cfs_rq
)), &se
->avg
, 0, 0, NULL
);
3395 * Task first catches up with cfs_rq, and then subtract
3396 * itself from the cfs_rq (task must be off the queue now).
3398 void remove_entity_load_avg(struct sched_entity
*se
)
3400 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3403 * tasks cannot exit without having gone through wake_up_new_task() ->
3404 * post_init_entity_util_avg() which will have added things to the
3405 * cfs_rq, so we can remove unconditionally.
3407 * Similarly for groups, they will have passed through
3408 * post_init_entity_util_avg() before unregister_sched_fair_group()
3412 sync_entity_load_avg(se
);
3413 atomic_long_add(se
->avg
.load_avg
, &cfs_rq
->removed_load_avg
);
3414 atomic_long_add(se
->avg
.util_avg
, &cfs_rq
->removed_util_avg
);
3417 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq
*cfs_rq
)
3419 return cfs_rq
->runnable_load_avg
;
3422 static inline unsigned long cfs_rq_load_avg(struct cfs_rq
*cfs_rq
)
3424 return cfs_rq
->avg
.load_avg
;
3427 static int idle_balance(struct rq
*this_rq
);
3429 #else /* CONFIG_SMP */
3432 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
, bool update_freq
)
3437 #define UPDATE_TG 0x0
3438 #define SKIP_AGE_LOAD 0x0
3440 static inline void update_load_avg(struct sched_entity
*se
, int not_used1
)
3442 cpufreq_update_util(rq_of(cfs_rq_of(se
)), 0);
3446 enqueue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3448 dequeue_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3449 static inline void remove_entity_load_avg(struct sched_entity
*se
) {}
3452 attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3454 detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3456 static inline int idle_balance(struct rq
*rq
)
3461 #endif /* CONFIG_SMP */
3463 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3465 #ifdef CONFIG_SCHED_DEBUG
3466 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
3471 if (d
> 3*sysctl_sched_latency
)
3472 schedstat_inc(cfs_rq
->nr_spread_over
);
3477 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
3479 u64 vruntime
= cfs_rq
->min_vruntime
;
3482 * The 'current' period is already promised to the current tasks,
3483 * however the extra weight of the new task will slow them down a
3484 * little, place the new task so that it fits in the slot that
3485 * stays open at the end.
3487 if (initial
&& sched_feat(START_DEBIT
))
3488 vruntime
+= sched_vslice(cfs_rq
, se
);
3490 /* sleeps up to a single latency don't count. */
3492 unsigned long thresh
= sysctl_sched_latency
;
3495 * Halve their sleep time's effect, to allow
3496 * for a gentler effect of sleepers:
3498 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
3504 /* ensure we never gain time by being placed backwards. */
3505 se
->vruntime
= max_vruntime(se
->vruntime
, vruntime
);
3508 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
3510 static inline void check_schedstat_required(void)
3512 #ifdef CONFIG_SCHEDSTATS
3513 if (schedstat_enabled())
3516 /* Force schedstat enabled if a dependent tracepoint is active */
3517 if (trace_sched_stat_wait_enabled() ||
3518 trace_sched_stat_sleep_enabled() ||
3519 trace_sched_stat_iowait_enabled() ||
3520 trace_sched_stat_blocked_enabled() ||
3521 trace_sched_stat_runtime_enabled()) {
3522 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3523 "stat_blocked and stat_runtime require the "
3524 "kernel parameter schedstats=enabled or "
3525 "kernel.sched_schedstats=1\n");
3536 * update_min_vruntime()
3537 * vruntime -= min_vruntime
3541 * update_min_vruntime()
3542 * vruntime += min_vruntime
3544 * this way the vruntime transition between RQs is done when both
3545 * min_vruntime are up-to-date.
3549 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3550 * vruntime -= min_vruntime
3554 * update_min_vruntime()
3555 * vruntime += min_vruntime
3557 * this way we don't have the most up-to-date min_vruntime on the originating
3558 * CPU and an up-to-date min_vruntime on the destination CPU.
3562 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3564 bool renorm
= !(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_MIGRATED
);
3565 bool curr
= cfs_rq
->curr
== se
;
3568 * If we're the current task, we must renormalise before calling
3572 se
->vruntime
+= cfs_rq
->min_vruntime
;
3574 update_curr(cfs_rq
);
3577 * Otherwise, renormalise after, such that we're placed at the current
3578 * moment in time, instead of some random moment in the past. Being
3579 * placed in the past could significantly boost this task to the
3580 * fairness detriment of existing tasks.
3582 if (renorm
&& !curr
)
3583 se
->vruntime
+= cfs_rq
->min_vruntime
;
3585 update_load_avg(se
, UPDATE_TG
);
3586 enqueue_entity_load_avg(cfs_rq
, se
);
3587 account_entity_enqueue(cfs_rq
, se
);
3588 update_cfs_shares(cfs_rq
);
3590 if (flags
& ENQUEUE_WAKEUP
)
3591 place_entity(cfs_rq
, se
, 0);
3593 check_schedstat_required();
3594 update_stats_enqueue(cfs_rq
, se
, flags
);
3595 check_spread(cfs_rq
, se
);
3597 __enqueue_entity(cfs_rq
, se
);
3600 if (cfs_rq
->nr_running
== 1) {
3601 list_add_leaf_cfs_rq(cfs_rq
);
3602 check_enqueue_throttle(cfs_rq
);
3606 static void __clear_buddies_last(struct sched_entity
*se
)
3608 for_each_sched_entity(se
) {
3609 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3610 if (cfs_rq
->last
!= se
)
3613 cfs_rq
->last
= NULL
;
3617 static void __clear_buddies_next(struct sched_entity
*se
)
3619 for_each_sched_entity(se
) {
3620 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3621 if (cfs_rq
->next
!= se
)
3624 cfs_rq
->next
= NULL
;
3628 static void __clear_buddies_skip(struct sched_entity
*se
)
3630 for_each_sched_entity(se
) {
3631 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3632 if (cfs_rq
->skip
!= se
)
3635 cfs_rq
->skip
= NULL
;
3639 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3641 if (cfs_rq
->last
== se
)
3642 __clear_buddies_last(se
);
3644 if (cfs_rq
->next
== se
)
3645 __clear_buddies_next(se
);
3647 if (cfs_rq
->skip
== se
)
3648 __clear_buddies_skip(se
);
3651 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
3654 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3657 * Update run-time statistics of the 'current'.
3659 update_curr(cfs_rq
);
3660 update_load_avg(se
, UPDATE_TG
);
3661 dequeue_entity_load_avg(cfs_rq
, se
);
3663 update_stats_dequeue(cfs_rq
, se
, flags
);
3665 clear_buddies(cfs_rq
, se
);
3667 if (se
!= cfs_rq
->curr
)
3668 __dequeue_entity(cfs_rq
, se
);
3670 account_entity_dequeue(cfs_rq
, se
);
3673 * Normalize after update_curr(); which will also have moved
3674 * min_vruntime if @se is the one holding it back. But before doing
3675 * update_min_vruntime() again, which will discount @se's position and
3676 * can move min_vruntime forward still more.
3678 if (!(flags
& DEQUEUE_SLEEP
))
3679 se
->vruntime
-= cfs_rq
->min_vruntime
;
3681 /* return excess runtime on last dequeue */
3682 return_cfs_rq_runtime(cfs_rq
);
3684 update_cfs_shares(cfs_rq
);
3687 * Now advance min_vruntime if @se was the entity holding it back,
3688 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3689 * put back on, and if we advance min_vruntime, we'll be placed back
3690 * further than we started -- ie. we'll be penalized.
3692 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) == DEQUEUE_SAVE
)
3693 update_min_vruntime(cfs_rq
);
3697 * Preempt the current task with a newly woken task if needed:
3700 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
3702 unsigned long ideal_runtime
, delta_exec
;
3703 struct sched_entity
*se
;
3706 ideal_runtime
= sched_slice(cfs_rq
, curr
);
3707 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
3708 if (delta_exec
> ideal_runtime
) {
3709 resched_curr(rq_of(cfs_rq
));
3711 * The current task ran long enough, ensure it doesn't get
3712 * re-elected due to buddy favours.
3714 clear_buddies(cfs_rq
, curr
);
3719 * Ensure that a task that missed wakeup preemption by a
3720 * narrow margin doesn't have to wait for a full slice.
3721 * This also mitigates buddy induced latencies under load.
3723 if (delta_exec
< sysctl_sched_min_granularity
)
3726 se
= __pick_first_entity(cfs_rq
);
3727 delta
= curr
->vruntime
- se
->vruntime
;
3732 if (delta
> ideal_runtime
)
3733 resched_curr(rq_of(cfs_rq
));
3737 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3739 /* 'current' is not kept within the tree. */
3742 * Any task has to be enqueued before it get to execute on
3743 * a CPU. So account for the time it spent waiting on the
3746 update_stats_wait_end(cfs_rq
, se
);
3747 __dequeue_entity(cfs_rq
, se
);
3748 update_load_avg(se
, UPDATE_TG
);
3751 update_stats_curr_start(cfs_rq
, se
);
3755 * Track our maximum slice length, if the CPU's load is at
3756 * least twice that of our own weight (i.e. dont track it
3757 * when there are only lesser-weight tasks around):
3759 if (schedstat_enabled() && rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
3760 schedstat_set(se
->statistics
.slice_max
,
3761 max((u64
)schedstat_val(se
->statistics
.slice_max
),
3762 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
));
3765 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
3769 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
3772 * Pick the next process, keeping these things in mind, in this order:
3773 * 1) keep things fair between processes/task groups
3774 * 2) pick the "next" process, since someone really wants that to run
3775 * 3) pick the "last" process, for cache locality
3776 * 4) do not run the "skip" process, if something else is available
3778 static struct sched_entity
*
3779 pick_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
3781 struct sched_entity
*left
= __pick_first_entity(cfs_rq
);
3782 struct sched_entity
*se
;
3785 * If curr is set we have to see if its left of the leftmost entity
3786 * still in the tree, provided there was anything in the tree at all.
3788 if (!left
|| (curr
&& entity_before(curr
, left
)))
3791 se
= left
; /* ideally we run the leftmost entity */
3794 * Avoid running the skip buddy, if running something else can
3795 * be done without getting too unfair.
3797 if (cfs_rq
->skip
== se
) {
3798 struct sched_entity
*second
;
3801 second
= __pick_first_entity(cfs_rq
);
3803 second
= __pick_next_entity(se
);
3804 if (!second
|| (curr
&& entity_before(curr
, second
)))
3808 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
3813 * Prefer last buddy, try to return the CPU to a preempted task.
3815 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
3819 * Someone really wants this to run. If it's not unfair, run it.
3821 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
3824 clear_buddies(cfs_rq
, se
);
3829 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
3831 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
3834 * If still on the runqueue then deactivate_task()
3835 * was not called and update_curr() has to be done:
3838 update_curr(cfs_rq
);
3840 /* throttle cfs_rqs exceeding runtime */
3841 check_cfs_rq_runtime(cfs_rq
);
3843 check_spread(cfs_rq
, prev
);
3846 update_stats_wait_start(cfs_rq
, prev
);
3847 /* Put 'current' back into the tree. */
3848 __enqueue_entity(cfs_rq
, prev
);
3849 /* in !on_rq case, update occurred at dequeue */
3850 update_load_avg(prev
, 0);
3852 cfs_rq
->curr
= NULL
;
3856 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
3859 * Update run-time statistics of the 'current'.
3861 update_curr(cfs_rq
);
3864 * Ensure that runnable average is periodically updated.
3866 update_load_avg(curr
, UPDATE_TG
);
3867 update_cfs_shares(cfs_rq
);
3869 #ifdef CONFIG_SCHED_HRTICK
3871 * queued ticks are scheduled to match the slice, so don't bother
3872 * validating it and just reschedule.
3875 resched_curr(rq_of(cfs_rq
));
3879 * don't let the period tick interfere with the hrtick preemption
3881 if (!sched_feat(DOUBLE_TICK
) &&
3882 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
3886 if (cfs_rq
->nr_running
> 1)
3887 check_preempt_tick(cfs_rq
, curr
);
3891 /**************************************************
3892 * CFS bandwidth control machinery
3895 #ifdef CONFIG_CFS_BANDWIDTH
3897 #ifdef HAVE_JUMP_LABEL
3898 static struct static_key __cfs_bandwidth_used
;
3900 static inline bool cfs_bandwidth_used(void)
3902 return static_key_false(&__cfs_bandwidth_used
);
3905 void cfs_bandwidth_usage_inc(void)
3907 static_key_slow_inc(&__cfs_bandwidth_used
);
3910 void cfs_bandwidth_usage_dec(void)
3912 static_key_slow_dec(&__cfs_bandwidth_used
);
3914 #else /* HAVE_JUMP_LABEL */
3915 static bool cfs_bandwidth_used(void)
3920 void cfs_bandwidth_usage_inc(void) {}
3921 void cfs_bandwidth_usage_dec(void) {}
3922 #endif /* HAVE_JUMP_LABEL */
3925 * default period for cfs group bandwidth.
3926 * default: 0.1s, units: nanoseconds
3928 static inline u64
default_cfs_period(void)
3930 return 100000000ULL;
3933 static inline u64
sched_cfs_bandwidth_slice(void)
3935 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
3939 * Replenish runtime according to assigned quota and update expiration time.
3940 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3941 * additional synchronization around rq->lock.
3943 * requires cfs_b->lock
3945 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
3949 if (cfs_b
->quota
== RUNTIME_INF
)
3952 now
= sched_clock_cpu(smp_processor_id());
3953 cfs_b
->runtime
= cfs_b
->quota
;
3954 cfs_b
->runtime_expires
= now
+ ktime_to_ns(cfs_b
->period
);
3957 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
3959 return &tg
->cfs_bandwidth
;
3962 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3963 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
)
3965 if (unlikely(cfs_rq
->throttle_count
))
3966 return cfs_rq
->throttled_clock_task
- cfs_rq
->throttled_clock_task_time
;
3968 return rq_clock_task(rq_of(cfs_rq
)) - cfs_rq
->throttled_clock_task_time
;
3971 /* returns 0 on failure to allocate runtime */
3972 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
3974 struct task_group
*tg
= cfs_rq
->tg
;
3975 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
3976 u64 amount
= 0, min_amount
, expires
;
3978 /* note: this is a positive sum as runtime_remaining <= 0 */
3979 min_amount
= sched_cfs_bandwidth_slice() - cfs_rq
->runtime_remaining
;
3981 raw_spin_lock(&cfs_b
->lock
);
3982 if (cfs_b
->quota
== RUNTIME_INF
)
3983 amount
= min_amount
;
3985 start_cfs_bandwidth(cfs_b
);
3987 if (cfs_b
->runtime
> 0) {
3988 amount
= min(cfs_b
->runtime
, min_amount
);
3989 cfs_b
->runtime
-= amount
;
3993 expires
= cfs_b
->runtime_expires
;
3994 raw_spin_unlock(&cfs_b
->lock
);
3996 cfs_rq
->runtime_remaining
+= amount
;
3998 * we may have advanced our local expiration to account for allowed
3999 * spread between our sched_clock and the one on which runtime was
4002 if ((s64
)(expires
- cfs_rq
->runtime_expires
) > 0)
4003 cfs_rq
->runtime_expires
= expires
;
4005 return cfs_rq
->runtime_remaining
> 0;
4009 * Note: This depends on the synchronization provided by sched_clock and the
4010 * fact that rq->clock snapshots this value.
4012 static void expire_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4014 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4016 /* if the deadline is ahead of our clock, nothing to do */
4017 if (likely((s64
)(rq_clock(rq_of(cfs_rq
)) - cfs_rq
->runtime_expires
) < 0))
4020 if (cfs_rq
->runtime_remaining
< 0)
4024 * If the local deadline has passed we have to consider the
4025 * possibility that our sched_clock is 'fast' and the global deadline
4026 * has not truly expired.
4028 * Fortunately we can check determine whether this the case by checking
4029 * whether the global deadline has advanced. It is valid to compare
4030 * cfs_b->runtime_expires without any locks since we only care about
4031 * exact equality, so a partial write will still work.
4034 if (cfs_rq
->runtime_expires
!= cfs_b
->runtime_expires
) {
4035 /* extend local deadline, drift is bounded above by 2 ticks */
4036 cfs_rq
->runtime_expires
+= TICK_NSEC
;
4038 /* global deadline is ahead, expiration has passed */
4039 cfs_rq
->runtime_remaining
= 0;
4043 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4045 /* dock delta_exec before expiring quota (as it could span periods) */
4046 cfs_rq
->runtime_remaining
-= delta_exec
;
4047 expire_cfs_rq_runtime(cfs_rq
);
4049 if (likely(cfs_rq
->runtime_remaining
> 0))
4053 * if we're unable to extend our runtime we resched so that the active
4054 * hierarchy can be throttled
4056 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
4057 resched_curr(rq_of(cfs_rq
));
4060 static __always_inline
4061 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4063 if (!cfs_bandwidth_used() || !cfs_rq
->runtime_enabled
)
4066 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
4069 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
4071 return cfs_bandwidth_used() && cfs_rq
->throttled
;
4074 /* check whether cfs_rq, or any parent, is throttled */
4075 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
4077 return cfs_bandwidth_used() && cfs_rq
->throttle_count
;
4081 * Ensure that neither of the group entities corresponding to src_cpu or
4082 * dest_cpu are members of a throttled hierarchy when performing group
4083 * load-balance operations.
4085 static inline int throttled_lb_pair(struct task_group
*tg
,
4086 int src_cpu
, int dest_cpu
)
4088 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
4090 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
4091 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
4093 return throttled_hierarchy(src_cfs_rq
) ||
4094 throttled_hierarchy(dest_cfs_rq
);
4097 /* updated child weight may affect parent so we have to do this bottom up */
4098 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
4100 struct rq
*rq
= data
;
4101 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4103 cfs_rq
->throttle_count
--;
4104 if (!cfs_rq
->throttle_count
) {
4105 /* adjust cfs_rq_clock_task() */
4106 cfs_rq
->throttled_clock_task_time
+= rq_clock_task(rq
) -
4107 cfs_rq
->throttled_clock_task
;
4113 static int tg_throttle_down(struct task_group
*tg
, void *data
)
4115 struct rq
*rq
= data
;
4116 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4118 /* group is entering throttled state, stop time */
4119 if (!cfs_rq
->throttle_count
)
4120 cfs_rq
->throttled_clock_task
= rq_clock_task(rq
);
4121 cfs_rq
->throttle_count
++;
4126 static void throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
4128 struct rq
*rq
= rq_of(cfs_rq
);
4129 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4130 struct sched_entity
*se
;
4131 long task_delta
, dequeue
= 1;
4134 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
4136 /* freeze hierarchy runnable averages while throttled */
4138 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
4141 task_delta
= cfs_rq
->h_nr_running
;
4142 for_each_sched_entity(se
) {
4143 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
4144 /* throttled entity or throttle-on-deactivate */
4149 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
4150 qcfs_rq
->h_nr_running
-= task_delta
;
4152 if (qcfs_rq
->load
.weight
)
4157 sub_nr_running(rq
, task_delta
);
4159 cfs_rq
->throttled
= 1;
4160 cfs_rq
->throttled_clock
= rq_clock(rq
);
4161 raw_spin_lock(&cfs_b
->lock
);
4162 empty
= list_empty(&cfs_b
->throttled_cfs_rq
);
4165 * Add to the _head_ of the list, so that an already-started
4166 * distribute_cfs_runtime will not see us
4168 list_add_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
4171 * If we're the first throttled task, make sure the bandwidth
4175 start_cfs_bandwidth(cfs_b
);
4177 raw_spin_unlock(&cfs_b
->lock
);
4180 void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
4182 struct rq
*rq
= rq_of(cfs_rq
);
4183 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4184 struct sched_entity
*se
;
4188 se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
4190 cfs_rq
->throttled
= 0;
4192 update_rq_clock(rq
);
4194 raw_spin_lock(&cfs_b
->lock
);
4195 cfs_b
->throttled_time
+= rq_clock(rq
) - cfs_rq
->throttled_clock
;
4196 list_del_rcu(&cfs_rq
->throttled_list
);
4197 raw_spin_unlock(&cfs_b
->lock
);
4199 /* update hierarchical throttle state */
4200 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
4202 if (!cfs_rq
->load
.weight
)
4205 task_delta
= cfs_rq
->h_nr_running
;
4206 for_each_sched_entity(se
) {
4210 cfs_rq
= cfs_rq_of(se
);
4212 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
4213 cfs_rq
->h_nr_running
+= task_delta
;
4215 if (cfs_rq_throttled(cfs_rq
))
4220 add_nr_running(rq
, task_delta
);
4222 /* determine whether we need to wake up potentially idle cpu */
4223 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
4227 static u64
distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
,
4228 u64 remaining
, u64 expires
)
4230 struct cfs_rq
*cfs_rq
;
4232 u64 starting_runtime
= remaining
;
4235 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
4237 struct rq
*rq
= rq_of(cfs_rq
);
4239 raw_spin_lock(&rq
->lock
);
4240 if (!cfs_rq_throttled(cfs_rq
))
4243 runtime
= -cfs_rq
->runtime_remaining
+ 1;
4244 if (runtime
> remaining
)
4245 runtime
= remaining
;
4246 remaining
-= runtime
;
4248 cfs_rq
->runtime_remaining
+= runtime
;
4249 cfs_rq
->runtime_expires
= expires
;
4251 /* we check whether we're throttled above */
4252 if (cfs_rq
->runtime_remaining
> 0)
4253 unthrottle_cfs_rq(cfs_rq
);
4256 raw_spin_unlock(&rq
->lock
);
4263 return starting_runtime
- remaining
;
4267 * Responsible for refilling a task_group's bandwidth and unthrottling its
4268 * cfs_rqs as appropriate. If there has been no activity within the last
4269 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4270 * used to track this state.
4272 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
)
4274 u64 runtime
, runtime_expires
;
4277 /* no need to continue the timer with no bandwidth constraint */
4278 if (cfs_b
->quota
== RUNTIME_INF
)
4279 goto out_deactivate
;
4281 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4282 cfs_b
->nr_periods
+= overrun
;
4285 * idle depends on !throttled (for the case of a large deficit), and if
4286 * we're going inactive then everything else can be deferred
4288 if (cfs_b
->idle
&& !throttled
)
4289 goto out_deactivate
;
4291 __refill_cfs_bandwidth_runtime(cfs_b
);
4294 /* mark as potentially idle for the upcoming period */
4299 /* account preceding periods in which throttling occurred */
4300 cfs_b
->nr_throttled
+= overrun
;
4302 runtime_expires
= cfs_b
->runtime_expires
;
4305 * This check is repeated as we are holding onto the new bandwidth while
4306 * we unthrottle. This can potentially race with an unthrottled group
4307 * trying to acquire new bandwidth from the global pool. This can result
4308 * in us over-using our runtime if it is all used during this loop, but
4309 * only by limited amounts in that extreme case.
4311 while (throttled
&& cfs_b
->runtime
> 0) {
4312 runtime
= cfs_b
->runtime
;
4313 raw_spin_unlock(&cfs_b
->lock
);
4314 /* we can't nest cfs_b->lock while distributing bandwidth */
4315 runtime
= distribute_cfs_runtime(cfs_b
, runtime
,
4317 raw_spin_lock(&cfs_b
->lock
);
4319 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4321 cfs_b
->runtime
-= min(runtime
, cfs_b
->runtime
);
4325 * While we are ensured activity in the period following an
4326 * unthrottle, this also covers the case in which the new bandwidth is
4327 * insufficient to cover the existing bandwidth deficit. (Forcing the
4328 * timer to remain active while there are any throttled entities.)
4338 /* a cfs_rq won't donate quota below this amount */
4339 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
4340 /* minimum remaining period time to redistribute slack quota */
4341 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
4342 /* how long we wait to gather additional slack before distributing */
4343 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
4346 * Are we near the end of the current quota period?
4348 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4349 * hrtimer base being cleared by hrtimer_start. In the case of
4350 * migrate_hrtimers, base is never cleared, so we are fine.
4352 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
4354 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
4357 /* if the call-back is running a quota refresh is already occurring */
4358 if (hrtimer_callback_running(refresh_timer
))
4361 /* is a quota refresh about to occur? */
4362 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
4363 if (remaining
< min_expire
)
4369 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
4371 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
4373 /* if there's a quota refresh soon don't bother with slack */
4374 if (runtime_refresh_within(cfs_b
, min_left
))
4377 hrtimer_start(&cfs_b
->slack_timer
,
4378 ns_to_ktime(cfs_bandwidth_slack_period
),
4382 /* we know any runtime found here is valid as update_curr() precedes return */
4383 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4385 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4386 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
4388 if (slack_runtime
<= 0)
4391 raw_spin_lock(&cfs_b
->lock
);
4392 if (cfs_b
->quota
!= RUNTIME_INF
&&
4393 cfs_rq
->runtime_expires
== cfs_b
->runtime_expires
) {
4394 cfs_b
->runtime
+= slack_runtime
;
4396 /* we are under rq->lock, defer unthrottling using a timer */
4397 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
4398 !list_empty(&cfs_b
->throttled_cfs_rq
))
4399 start_cfs_slack_bandwidth(cfs_b
);
4401 raw_spin_unlock(&cfs_b
->lock
);
4403 /* even if it's not valid for return we don't want to try again */
4404 cfs_rq
->runtime_remaining
-= slack_runtime
;
4407 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4409 if (!cfs_bandwidth_used())
4412 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
4415 __return_cfs_rq_runtime(cfs_rq
);
4419 * This is done with a timer (instead of inline with bandwidth return) since
4420 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4422 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
4424 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
4427 /* confirm we're still not at a refresh boundary */
4428 raw_spin_lock(&cfs_b
->lock
);
4429 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
)) {
4430 raw_spin_unlock(&cfs_b
->lock
);
4434 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
)
4435 runtime
= cfs_b
->runtime
;
4437 expires
= cfs_b
->runtime_expires
;
4438 raw_spin_unlock(&cfs_b
->lock
);
4443 runtime
= distribute_cfs_runtime(cfs_b
, runtime
, expires
);
4445 raw_spin_lock(&cfs_b
->lock
);
4446 if (expires
== cfs_b
->runtime_expires
)
4447 cfs_b
->runtime
-= min(runtime
, cfs_b
->runtime
);
4448 raw_spin_unlock(&cfs_b
->lock
);
4452 * When a group wakes up we want to make sure that its quota is not already
4453 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4454 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4456 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
4458 if (!cfs_bandwidth_used())
4461 /* an active group must be handled by the update_curr()->put() path */
4462 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
4465 /* ensure the group is not already throttled */
4466 if (cfs_rq_throttled(cfs_rq
))
4469 /* update runtime allocation */
4470 account_cfs_rq_runtime(cfs_rq
, 0);
4471 if (cfs_rq
->runtime_remaining
<= 0)
4472 throttle_cfs_rq(cfs_rq
);
4475 static void sync_throttle(struct task_group
*tg
, int cpu
)
4477 struct cfs_rq
*pcfs_rq
, *cfs_rq
;
4479 if (!cfs_bandwidth_used())
4485 cfs_rq
= tg
->cfs_rq
[cpu
];
4486 pcfs_rq
= tg
->parent
->cfs_rq
[cpu
];
4488 cfs_rq
->throttle_count
= pcfs_rq
->throttle_count
;
4489 cfs_rq
->throttled_clock_task
= rq_clock_task(cpu_rq(cpu
));
4492 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4493 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4495 if (!cfs_bandwidth_used())
4498 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
4502 * it's possible for a throttled entity to be forced into a running
4503 * state (e.g. set_curr_task), in this case we're finished.
4505 if (cfs_rq_throttled(cfs_rq
))
4508 throttle_cfs_rq(cfs_rq
);
4512 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
4514 struct cfs_bandwidth
*cfs_b
=
4515 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
4517 do_sched_cfs_slack_timer(cfs_b
);
4519 return HRTIMER_NORESTART
;
4522 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
4524 struct cfs_bandwidth
*cfs_b
=
4525 container_of(timer
, struct cfs_bandwidth
, period_timer
);
4529 raw_spin_lock(&cfs_b
->lock
);
4531 overrun
= hrtimer_forward_now(timer
, cfs_b
->period
);
4535 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
);
4538 cfs_b
->period_active
= 0;
4539 raw_spin_unlock(&cfs_b
->lock
);
4541 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
4544 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4546 raw_spin_lock_init(&cfs_b
->lock
);
4548 cfs_b
->quota
= RUNTIME_INF
;
4549 cfs_b
->period
= ns_to_ktime(default_cfs_period());
4551 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
4552 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
4553 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
4554 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4555 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
4558 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4560 cfs_rq
->runtime_enabled
= 0;
4561 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
4564 void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4566 lockdep_assert_held(&cfs_b
->lock
);
4568 if (!cfs_b
->period_active
) {
4569 cfs_b
->period_active
= 1;
4570 hrtimer_forward_now(&cfs_b
->period_timer
, cfs_b
->period
);
4571 hrtimer_start_expires(&cfs_b
->period_timer
, HRTIMER_MODE_ABS_PINNED
);
4575 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4577 /* init_cfs_bandwidth() was not called */
4578 if (!cfs_b
->throttled_cfs_rq
.next
)
4581 hrtimer_cancel(&cfs_b
->period_timer
);
4582 hrtimer_cancel(&cfs_b
->slack_timer
);
4585 static void __maybe_unused
update_runtime_enabled(struct rq
*rq
)
4587 struct cfs_rq
*cfs_rq
;
4589 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
4590 struct cfs_bandwidth
*cfs_b
= &cfs_rq
->tg
->cfs_bandwidth
;
4592 raw_spin_lock(&cfs_b
->lock
);
4593 cfs_rq
->runtime_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
4594 raw_spin_unlock(&cfs_b
->lock
);
4598 static void __maybe_unused
unthrottle_offline_cfs_rqs(struct rq
*rq
)
4600 struct cfs_rq
*cfs_rq
;
4602 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
4603 if (!cfs_rq
->runtime_enabled
)
4607 * clock_task is not advancing so we just need to make sure
4608 * there's some valid quota amount
4610 cfs_rq
->runtime_remaining
= 1;
4612 * Offline rq is schedulable till cpu is completely disabled
4613 * in take_cpu_down(), so we prevent new cfs throttling here.
4615 cfs_rq
->runtime_enabled
= 0;
4617 if (cfs_rq_throttled(cfs_rq
))
4618 unthrottle_cfs_rq(cfs_rq
);
4622 #else /* CONFIG_CFS_BANDWIDTH */
4623 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
)
4625 return rq_clock_task(rq_of(cfs_rq
));
4628 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
) {}
4629 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) { return false; }
4630 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
4631 static inline void sync_throttle(struct task_group
*tg
, int cpu
) {}
4632 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
4634 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
4639 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
4644 static inline int throttled_lb_pair(struct task_group
*tg
,
4645 int src_cpu
, int dest_cpu
)
4650 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
4652 #ifdef CONFIG_FAIR_GROUP_SCHED
4653 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
4656 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
4660 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
4661 static inline void update_runtime_enabled(struct rq
*rq
) {}
4662 static inline void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
4664 #endif /* CONFIG_CFS_BANDWIDTH */
4666 /**************************************************
4667 * CFS operations on tasks:
4670 #ifdef CONFIG_SCHED_HRTICK
4671 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
4673 struct sched_entity
*se
= &p
->se
;
4674 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4676 SCHED_WARN_ON(task_rq(p
) != rq
);
4678 if (rq
->cfs
.h_nr_running
> 1) {
4679 u64 slice
= sched_slice(cfs_rq
, se
);
4680 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
4681 s64 delta
= slice
- ran
;
4688 hrtick_start(rq
, delta
);
4693 * called from enqueue/dequeue and updates the hrtick when the
4694 * current task is from our class and nr_running is low enough
4697 static void hrtick_update(struct rq
*rq
)
4699 struct task_struct
*curr
= rq
->curr
;
4701 if (!hrtick_enabled(rq
) || curr
->sched_class
!= &fair_sched_class
)
4704 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
4705 hrtick_start_fair(rq
, curr
);
4707 #else /* !CONFIG_SCHED_HRTICK */
4709 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
4713 static inline void hrtick_update(struct rq
*rq
)
4719 * The enqueue_task method is called before nr_running is
4720 * increased. Here we update the fair scheduling stats and
4721 * then put the task into the rbtree:
4724 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
4726 struct cfs_rq
*cfs_rq
;
4727 struct sched_entity
*se
= &p
->se
;
4730 * If in_iowait is set, the code below may not trigger any cpufreq
4731 * utilization updates, so do it here explicitly with the IOWAIT flag
4735 cpufreq_update_this_cpu(rq
, SCHED_CPUFREQ_IOWAIT
);
4737 for_each_sched_entity(se
) {
4740 cfs_rq
= cfs_rq_of(se
);
4741 enqueue_entity(cfs_rq
, se
, flags
);
4744 * end evaluation on encountering a throttled cfs_rq
4746 * note: in the case of encountering a throttled cfs_rq we will
4747 * post the final h_nr_running increment below.
4749 if (cfs_rq_throttled(cfs_rq
))
4751 cfs_rq
->h_nr_running
++;
4753 flags
= ENQUEUE_WAKEUP
;
4756 for_each_sched_entity(se
) {
4757 cfs_rq
= cfs_rq_of(se
);
4758 cfs_rq
->h_nr_running
++;
4760 if (cfs_rq_throttled(cfs_rq
))
4763 update_load_avg(se
, UPDATE_TG
);
4764 update_cfs_shares(cfs_rq
);
4768 add_nr_running(rq
, 1);
4773 static void set_next_buddy(struct sched_entity
*se
);
4776 * The dequeue_task method is called before nr_running is
4777 * decreased. We remove the task from the rbtree and
4778 * update the fair scheduling stats:
4780 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
4782 struct cfs_rq
*cfs_rq
;
4783 struct sched_entity
*se
= &p
->se
;
4784 int task_sleep
= flags
& DEQUEUE_SLEEP
;
4786 for_each_sched_entity(se
) {
4787 cfs_rq
= cfs_rq_of(se
);
4788 dequeue_entity(cfs_rq
, se
, flags
);
4791 * end evaluation on encountering a throttled cfs_rq
4793 * note: in the case of encountering a throttled cfs_rq we will
4794 * post the final h_nr_running decrement below.
4796 if (cfs_rq_throttled(cfs_rq
))
4798 cfs_rq
->h_nr_running
--;
4800 /* Don't dequeue parent if it has other entities besides us */
4801 if (cfs_rq
->load
.weight
) {
4802 /* Avoid re-evaluating load for this entity: */
4803 se
= parent_entity(se
);
4805 * Bias pick_next to pick a task from this cfs_rq, as
4806 * p is sleeping when it is within its sched_slice.
4808 if (task_sleep
&& se
&& !throttled_hierarchy(cfs_rq
))
4812 flags
|= DEQUEUE_SLEEP
;
4815 for_each_sched_entity(se
) {
4816 cfs_rq
= cfs_rq_of(se
);
4817 cfs_rq
->h_nr_running
--;
4819 if (cfs_rq_throttled(cfs_rq
))
4822 update_load_avg(se
, UPDATE_TG
);
4823 update_cfs_shares(cfs_rq
);
4827 sub_nr_running(rq
, 1);
4834 /* Working cpumask for: load_balance, load_balance_newidle. */
4835 DEFINE_PER_CPU(cpumask_var_t
, load_balance_mask
);
4836 DEFINE_PER_CPU(cpumask_var_t
, select_idle_mask
);
4838 #ifdef CONFIG_NO_HZ_COMMON
4840 * per rq 'load' arrray crap; XXX kill this.
4844 * The exact cpuload calculated at every tick would be:
4846 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4848 * If a cpu misses updates for n ticks (as it was idle) and update gets
4849 * called on the n+1-th tick when cpu may be busy, then we have:
4851 * load_n = (1 - 1/2^i)^n * load_0
4852 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4854 * decay_load_missed() below does efficient calculation of
4856 * load' = (1 - 1/2^i)^n * load
4858 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4859 * This allows us to precompute the above in said factors, thereby allowing the
4860 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4861 * fixed_power_int())
4863 * The calculation is approximated on a 128 point scale.
4865 #define DEGRADE_SHIFT 7
4867 static const u8 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
4868 static const u8 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
4869 { 0, 0, 0, 0, 0, 0, 0, 0 },
4870 { 64, 32, 8, 0, 0, 0, 0, 0 },
4871 { 96, 72, 40, 12, 1, 0, 0, 0 },
4872 { 112, 98, 75, 43, 15, 1, 0, 0 },
4873 { 120, 112, 98, 76, 45, 16, 2, 0 }
4877 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4878 * would be when CPU is idle and so we just decay the old load without
4879 * adding any new load.
4881 static unsigned long
4882 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
4886 if (!missed_updates
)
4889 if (missed_updates
>= degrade_zero_ticks
[idx
])
4893 return load
>> missed_updates
;
4895 while (missed_updates
) {
4896 if (missed_updates
% 2)
4897 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
4899 missed_updates
>>= 1;
4904 #endif /* CONFIG_NO_HZ_COMMON */
4907 * __cpu_load_update - update the rq->cpu_load[] statistics
4908 * @this_rq: The rq to update statistics for
4909 * @this_load: The current load
4910 * @pending_updates: The number of missed updates
4912 * Update rq->cpu_load[] statistics. This function is usually called every
4913 * scheduler tick (TICK_NSEC).
4915 * This function computes a decaying average:
4917 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4919 * Because of NOHZ it might not get called on every tick which gives need for
4920 * the @pending_updates argument.
4922 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4923 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4924 * = A * (A * load[i]_n-2 + B) + B
4925 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4926 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4927 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4928 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4929 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4931 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4932 * any change in load would have resulted in the tick being turned back on.
4934 * For regular NOHZ, this reduces to:
4936 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4938 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4941 static void cpu_load_update(struct rq
*this_rq
, unsigned long this_load
,
4942 unsigned long pending_updates
)
4944 unsigned long __maybe_unused tickless_load
= this_rq
->cpu_load
[0];
4947 this_rq
->nr_load_updates
++;
4949 /* Update our load: */
4950 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
4951 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
4952 unsigned long old_load
, new_load
;
4954 /* scale is effectively 1 << i now, and >> i divides by scale */
4956 old_load
= this_rq
->cpu_load
[i
];
4957 #ifdef CONFIG_NO_HZ_COMMON
4958 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
4959 if (tickless_load
) {
4960 old_load
-= decay_load_missed(tickless_load
, pending_updates
- 1, i
);
4962 * old_load can never be a negative value because a
4963 * decayed tickless_load cannot be greater than the
4964 * original tickless_load.
4966 old_load
+= tickless_load
;
4969 new_load
= this_load
;
4971 * Round up the averaging division if load is increasing. This
4972 * prevents us from getting stuck on 9 if the load is 10, for
4975 if (new_load
> old_load
)
4976 new_load
+= scale
- 1;
4978 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
4981 sched_avg_update(this_rq
);
4984 /* Used instead of source_load when we know the type == 0 */
4985 static unsigned long weighted_cpuload(const int cpu
)
4987 return cfs_rq_runnable_load_avg(&cpu_rq(cpu
)->cfs
);
4990 #ifdef CONFIG_NO_HZ_COMMON
4992 * There is no sane way to deal with nohz on smp when using jiffies because the
4993 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4994 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4996 * Therefore we need to avoid the delta approach from the regular tick when
4997 * possible since that would seriously skew the load calculation. This is why we
4998 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4999 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5000 * loop exit, nohz_idle_balance, nohz full exit...)
5002 * This means we might still be one tick off for nohz periods.
5005 static void cpu_load_update_nohz(struct rq
*this_rq
,
5006 unsigned long curr_jiffies
,
5009 unsigned long pending_updates
;
5011 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
5012 if (pending_updates
) {
5013 this_rq
->last_load_update_tick
= curr_jiffies
;
5015 * In the regular NOHZ case, we were idle, this means load 0.
5016 * In the NOHZ_FULL case, we were non-idle, we should consider
5017 * its weighted load.
5019 cpu_load_update(this_rq
, load
, pending_updates
);
5024 * Called from nohz_idle_balance() to update the load ratings before doing the
5027 static void cpu_load_update_idle(struct rq
*this_rq
)
5030 * bail if there's load or we're actually up-to-date.
5032 if (weighted_cpuload(cpu_of(this_rq
)))
5035 cpu_load_update_nohz(this_rq
, READ_ONCE(jiffies
), 0);
5039 * Record CPU load on nohz entry so we know the tickless load to account
5040 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5041 * than other cpu_load[idx] but it should be fine as cpu_load readers
5042 * shouldn't rely into synchronized cpu_load[*] updates.
5044 void cpu_load_update_nohz_start(void)
5046 struct rq
*this_rq
= this_rq();
5049 * This is all lockless but should be fine. If weighted_cpuload changes
5050 * concurrently we'll exit nohz. And cpu_load write can race with
5051 * cpu_load_update_idle() but both updater would be writing the same.
5053 this_rq
->cpu_load
[0] = weighted_cpuload(cpu_of(this_rq
));
5057 * Account the tickless load in the end of a nohz frame.
5059 void cpu_load_update_nohz_stop(void)
5061 unsigned long curr_jiffies
= READ_ONCE(jiffies
);
5062 struct rq
*this_rq
= this_rq();
5065 if (curr_jiffies
== this_rq
->last_load_update_tick
)
5068 load
= weighted_cpuload(cpu_of(this_rq
));
5069 raw_spin_lock(&this_rq
->lock
);
5070 update_rq_clock(this_rq
);
5071 cpu_load_update_nohz(this_rq
, curr_jiffies
, load
);
5072 raw_spin_unlock(&this_rq
->lock
);
5074 #else /* !CONFIG_NO_HZ_COMMON */
5075 static inline void cpu_load_update_nohz(struct rq
*this_rq
,
5076 unsigned long curr_jiffies
,
5077 unsigned long load
) { }
5078 #endif /* CONFIG_NO_HZ_COMMON */
5080 static void cpu_load_update_periodic(struct rq
*this_rq
, unsigned long load
)
5082 #ifdef CONFIG_NO_HZ_COMMON
5083 /* See the mess around cpu_load_update_nohz(). */
5084 this_rq
->last_load_update_tick
= READ_ONCE(jiffies
);
5086 cpu_load_update(this_rq
, load
, 1);
5090 * Called from scheduler_tick()
5092 void cpu_load_update_active(struct rq
*this_rq
)
5094 unsigned long load
= weighted_cpuload(cpu_of(this_rq
));
5096 if (tick_nohz_tick_stopped())
5097 cpu_load_update_nohz(this_rq
, READ_ONCE(jiffies
), load
);
5099 cpu_load_update_periodic(this_rq
, load
);
5103 * Return a low guess at the load of a migration-source cpu weighted
5104 * according to the scheduling class and "nice" value.
5106 * We want to under-estimate the load of migration sources, to
5107 * balance conservatively.
5109 static unsigned long source_load(int cpu
, int type
)
5111 struct rq
*rq
= cpu_rq(cpu
);
5112 unsigned long total
= weighted_cpuload(cpu
);
5114 if (type
== 0 || !sched_feat(LB_BIAS
))
5117 return min(rq
->cpu_load
[type
-1], total
);
5121 * Return a high guess at the load of a migration-target cpu weighted
5122 * according to the scheduling class and "nice" value.
5124 static unsigned long target_load(int cpu
, int type
)
5126 struct rq
*rq
= cpu_rq(cpu
);
5127 unsigned long total
= weighted_cpuload(cpu
);
5129 if (type
== 0 || !sched_feat(LB_BIAS
))
5132 return max(rq
->cpu_load
[type
-1], total
);
5135 static unsigned long capacity_of(int cpu
)
5137 return cpu_rq(cpu
)->cpu_capacity
;
5140 static unsigned long capacity_orig_of(int cpu
)
5142 return cpu_rq(cpu
)->cpu_capacity_orig
;
5145 static unsigned long cpu_avg_load_per_task(int cpu
)
5147 struct rq
*rq
= cpu_rq(cpu
);
5148 unsigned long nr_running
= READ_ONCE(rq
->cfs
.h_nr_running
);
5149 unsigned long load_avg
= weighted_cpuload(cpu
);
5152 return load_avg
/ nr_running
;
5157 #ifdef CONFIG_FAIR_GROUP_SCHED
5159 * effective_load() calculates the load change as seen from the root_task_group
5161 * Adding load to a group doesn't make a group heavier, but can cause movement
5162 * of group shares between cpus. Assuming the shares were perfectly aligned one
5163 * can calculate the shift in shares.
5165 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5166 * on this @cpu and results in a total addition (subtraction) of @wg to the
5167 * total group weight.
5169 * Given a runqueue weight distribution (rw_i) we can compute a shares
5170 * distribution (s_i) using:
5172 * s_i = rw_i / \Sum rw_j (1)
5174 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5175 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5176 * shares distribution (s_i):
5178 * rw_i = { 2, 4, 1, 0 }
5179 * s_i = { 2/7, 4/7, 1/7, 0 }
5181 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5182 * task used to run on and the CPU the waker is running on), we need to
5183 * compute the effect of waking a task on either CPU and, in case of a sync
5184 * wakeup, compute the effect of the current task going to sleep.
5186 * So for a change of @wl to the local @cpu with an overall group weight change
5187 * of @wl we can compute the new shares distribution (s'_i) using:
5189 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5191 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5192 * differences in waking a task to CPU 0. The additional task changes the
5193 * weight and shares distributions like:
5195 * rw'_i = { 3, 4, 1, 0 }
5196 * s'_i = { 3/8, 4/8, 1/8, 0 }
5198 * We can then compute the difference in effective weight by using:
5200 * dw_i = S * (s'_i - s_i) (3)
5202 * Where 'S' is the group weight as seen by its parent.
5204 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5205 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5206 * 4/7) times the weight of the group.
5208 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
5210 struct sched_entity
*se
= tg
->se
[cpu
];
5212 if (!tg
->parent
) /* the trivial, non-cgroup case */
5215 for_each_sched_entity(se
) {
5216 struct cfs_rq
*cfs_rq
= se
->my_q
;
5217 long W
, w
= cfs_rq_load_avg(cfs_rq
);
5222 * W = @wg + \Sum rw_j
5224 W
= wg
+ atomic_long_read(&tg
->load_avg
);
5226 /* Ensure \Sum rw_j >= rw_i */
5227 W
-= cfs_rq
->tg_load_avg_contrib
;
5236 * wl = S * s'_i; see (2)
5239 wl
= (w
* (long)scale_load_down(tg
->shares
)) / W
;
5241 wl
= scale_load_down(tg
->shares
);
5244 * Per the above, wl is the new se->load.weight value; since
5245 * those are clipped to [MIN_SHARES, ...) do so now. See
5246 * calc_cfs_shares().
5248 if (wl
< MIN_SHARES
)
5252 * wl = dw_i = S * (s'_i - s_i); see (3)
5254 wl
-= se
->avg
.load_avg
;
5257 * Recursively apply this logic to all parent groups to compute
5258 * the final effective load change on the root group. Since
5259 * only the @tg group gets extra weight, all parent groups can
5260 * only redistribute existing shares. @wl is the shift in shares
5261 * resulting from this level per the above.
5270 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
5277 static void record_wakee(struct task_struct
*p
)
5280 * Only decay a single time; tasks that have less then 1 wakeup per
5281 * jiffy will not have built up many flips.
5283 if (time_after(jiffies
, current
->wakee_flip_decay_ts
+ HZ
)) {
5284 current
->wakee_flips
>>= 1;
5285 current
->wakee_flip_decay_ts
= jiffies
;
5288 if (current
->last_wakee
!= p
) {
5289 current
->last_wakee
= p
;
5290 current
->wakee_flips
++;
5295 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5297 * A waker of many should wake a different task than the one last awakened
5298 * at a frequency roughly N times higher than one of its wakees.
5300 * In order to determine whether we should let the load spread vs consolidating
5301 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5302 * partner, and a factor of lls_size higher frequency in the other.
5304 * With both conditions met, we can be relatively sure that the relationship is
5305 * non-monogamous, with partner count exceeding socket size.
5307 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5308 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5311 static int wake_wide(struct task_struct
*p
)
5313 unsigned int master
= current
->wakee_flips
;
5314 unsigned int slave
= p
->wakee_flips
;
5315 int factor
= this_cpu_read(sd_llc_size
);
5318 swap(master
, slave
);
5319 if (slave
< factor
|| master
< slave
* factor
)
5324 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
,
5325 int prev_cpu
, int sync
)
5327 s64 this_load
, load
;
5328 s64 this_eff_load
, prev_eff_load
;
5330 struct task_group
*tg
;
5331 unsigned long weight
;
5335 this_cpu
= smp_processor_id();
5336 load
= source_load(prev_cpu
, idx
);
5337 this_load
= target_load(this_cpu
, idx
);
5340 * If sync wakeup then subtract the (maximum possible)
5341 * effect of the currently running task from the load
5342 * of the current CPU:
5345 tg
= task_group(current
);
5346 weight
= current
->se
.avg
.load_avg
;
5348 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
5349 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
5353 weight
= p
->se
.avg
.load_avg
;
5356 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5357 * due to the sync cause above having dropped this_load to 0, we'll
5358 * always have an imbalance, but there's really nothing you can do
5359 * about that, so that's good too.
5361 * Otherwise check if either cpus are near enough in load to allow this
5362 * task to be woken on this_cpu.
5364 this_eff_load
= 100;
5365 this_eff_load
*= capacity_of(prev_cpu
);
5367 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
5368 prev_eff_load
*= capacity_of(this_cpu
);
5370 if (this_load
> 0) {
5371 this_eff_load
*= this_load
+
5372 effective_load(tg
, this_cpu
, weight
, weight
);
5374 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
5377 balanced
= this_eff_load
<= prev_eff_load
;
5379 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine_attempts
);
5384 schedstat_inc(sd
->ttwu_move_affine
);
5385 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine
);
5390 static inline int task_util(struct task_struct
*p
);
5391 static int cpu_util_wake(int cpu
, struct task_struct
*p
);
5393 static unsigned long capacity_spare_wake(int cpu
, struct task_struct
*p
)
5395 return capacity_orig_of(cpu
) - cpu_util_wake(cpu
, p
);
5399 * find_idlest_group finds and returns the least busy CPU group within the
5402 static struct sched_group
*
5403 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
5404 int this_cpu
, int sd_flag
)
5406 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
5407 struct sched_group
*most_spare_sg
= NULL
;
5408 unsigned long min_runnable_load
= ULONG_MAX
, this_runnable_load
= 0;
5409 unsigned long min_avg_load
= ULONG_MAX
, this_avg_load
= 0;
5410 unsigned long most_spare
= 0, this_spare
= 0;
5411 int load_idx
= sd
->forkexec_idx
;
5412 int imbalance_scale
= 100 + (sd
->imbalance_pct
-100)/2;
5413 unsigned long imbalance
= scale_load_down(NICE_0_LOAD
) *
5414 (sd
->imbalance_pct
-100) / 100;
5416 if (sd_flag
& SD_BALANCE_WAKE
)
5417 load_idx
= sd
->wake_idx
;
5420 unsigned long load
, avg_load
, runnable_load
;
5421 unsigned long spare_cap
, max_spare_cap
;
5425 /* Skip over this group if it has no CPUs allowed */
5426 if (!cpumask_intersects(sched_group_cpus(group
),
5427 tsk_cpus_allowed(p
)))
5430 local_group
= cpumask_test_cpu(this_cpu
,
5431 sched_group_cpus(group
));
5434 * Tally up the load of all CPUs in the group and find
5435 * the group containing the CPU with most spare capacity.
5441 for_each_cpu(i
, sched_group_cpus(group
)) {
5442 /* Bias balancing toward cpus of our domain */
5444 load
= source_load(i
, load_idx
);
5446 load
= target_load(i
, load_idx
);
5448 runnable_load
+= load
;
5450 avg_load
+= cfs_rq_load_avg(&cpu_rq(i
)->cfs
);
5452 spare_cap
= capacity_spare_wake(i
, p
);
5454 if (spare_cap
> max_spare_cap
)
5455 max_spare_cap
= spare_cap
;
5458 /* Adjust by relative CPU capacity of the group */
5459 avg_load
= (avg_load
* SCHED_CAPACITY_SCALE
) /
5460 group
->sgc
->capacity
;
5461 runnable_load
= (runnable_load
* SCHED_CAPACITY_SCALE
) /
5462 group
->sgc
->capacity
;
5465 this_runnable_load
= runnable_load
;
5466 this_avg_load
= avg_load
;
5467 this_spare
= max_spare_cap
;
5469 if (min_runnable_load
> (runnable_load
+ imbalance
)) {
5471 * The runnable load is significantly smaller
5472 * so we can pick this new cpu
5474 min_runnable_load
= runnable_load
;
5475 min_avg_load
= avg_load
;
5477 } else if ((runnable_load
< (min_runnable_load
+ imbalance
)) &&
5478 (100*min_avg_load
> imbalance_scale
*avg_load
)) {
5480 * The runnable loads are close so take the
5481 * blocked load into account through avg_load.
5483 min_avg_load
= avg_load
;
5487 if (most_spare
< max_spare_cap
) {
5488 most_spare
= max_spare_cap
;
5489 most_spare_sg
= group
;
5492 } while (group
= group
->next
, group
!= sd
->groups
);
5495 * The cross-over point between using spare capacity or least load
5496 * is too conservative for high utilization tasks on partially
5497 * utilized systems if we require spare_capacity > task_util(p),
5498 * so we allow for some task stuffing by using
5499 * spare_capacity > task_util(p)/2.
5501 * Spare capacity can't be used for fork because the utilization has
5502 * not been set yet, we must first select a rq to compute the initial
5505 if (sd_flag
& SD_BALANCE_FORK
)
5508 if (this_spare
> task_util(p
) / 2 &&
5509 imbalance_scale
*this_spare
> 100*most_spare
)
5512 if (most_spare
> task_util(p
) / 2)
5513 return most_spare_sg
;
5519 if (min_runnable_load
> (this_runnable_load
+ imbalance
))
5522 if ((this_runnable_load
< (min_runnable_load
+ imbalance
)) &&
5523 (100*this_avg_load
< imbalance_scale
*min_avg_load
))
5530 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5533 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
5535 unsigned long load
, min_load
= ULONG_MAX
;
5536 unsigned int min_exit_latency
= UINT_MAX
;
5537 u64 latest_idle_timestamp
= 0;
5538 int least_loaded_cpu
= this_cpu
;
5539 int shallowest_idle_cpu
= -1;
5542 /* Check if we have any choice: */
5543 if (group
->group_weight
== 1)
5544 return cpumask_first(sched_group_cpus(group
));
5546 /* Traverse only the allowed CPUs */
5547 for_each_cpu_and(i
, sched_group_cpus(group
), tsk_cpus_allowed(p
)) {
5549 struct rq
*rq
= cpu_rq(i
);
5550 struct cpuidle_state
*idle
= idle_get_state(rq
);
5551 if (idle
&& idle
->exit_latency
< min_exit_latency
) {
5553 * We give priority to a CPU whose idle state
5554 * has the smallest exit latency irrespective
5555 * of any idle timestamp.
5557 min_exit_latency
= idle
->exit_latency
;
5558 latest_idle_timestamp
= rq
->idle_stamp
;
5559 shallowest_idle_cpu
= i
;
5560 } else if ((!idle
|| idle
->exit_latency
== min_exit_latency
) &&
5561 rq
->idle_stamp
> latest_idle_timestamp
) {
5563 * If equal or no active idle state, then
5564 * the most recently idled CPU might have
5567 latest_idle_timestamp
= rq
->idle_stamp
;
5568 shallowest_idle_cpu
= i
;
5570 } else if (shallowest_idle_cpu
== -1) {
5571 load
= weighted_cpuload(i
);
5572 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
5574 least_loaded_cpu
= i
;
5579 return shallowest_idle_cpu
!= -1 ? shallowest_idle_cpu
: least_loaded_cpu
;
5583 * Implement a for_each_cpu() variant that starts the scan at a given cpu
5584 * (@start), and wraps around.
5586 * This is used to scan for idle CPUs; such that not all CPUs looking for an
5587 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5588 * through the LLC domain.
5590 * Especially tbench is found sensitive to this.
5593 static int cpumask_next_wrap(int n
, const struct cpumask
*mask
, int start
, int *wrapped
)
5598 next
= find_next_bit(cpumask_bits(mask
), nr_cpumask_bits
, n
+1);
5602 return nr_cpumask_bits
;
5604 if (next
>= nr_cpumask_bits
) {
5614 #define for_each_cpu_wrap(cpu, mask, start, wrap) \
5615 for ((wrap) = 0, (cpu) = (start)-1; \
5616 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \
5617 (cpu) < nr_cpumask_bits; )
5619 #ifdef CONFIG_SCHED_SMT
5621 static inline void set_idle_cores(int cpu
, int val
)
5623 struct sched_domain_shared
*sds
;
5625 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5627 WRITE_ONCE(sds
->has_idle_cores
, val
);
5630 static inline bool test_idle_cores(int cpu
, bool def
)
5632 struct sched_domain_shared
*sds
;
5634 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5636 return READ_ONCE(sds
->has_idle_cores
);
5642 * Scans the local SMT mask to see if the entire core is idle, and records this
5643 * information in sd_llc_shared->has_idle_cores.
5645 * Since SMT siblings share all cache levels, inspecting this limited remote
5646 * state should be fairly cheap.
5648 void __update_idle_core(struct rq
*rq
)
5650 int core
= cpu_of(rq
);
5654 if (test_idle_cores(core
, true))
5657 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
5665 set_idle_cores(core
, 1);
5671 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5672 * there are no idle cores left in the system; tracked through
5673 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5675 static int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5677 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
5678 int core
, cpu
, wrap
;
5680 if (!static_branch_likely(&sched_smt_present
))
5683 if (!test_idle_cores(target
, false))
5686 cpumask_and(cpus
, sched_domain_span(sd
), tsk_cpus_allowed(p
));
5688 for_each_cpu_wrap(core
, cpus
, target
, wrap
) {
5691 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
5692 cpumask_clear_cpu(cpu
, cpus
);
5702 * Failed to find an idle core; stop looking for one.
5704 set_idle_cores(target
, 0);
5710 * Scan the local SMT mask for idle CPUs.
5712 static int select_idle_smt(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5716 if (!static_branch_likely(&sched_smt_present
))
5719 for_each_cpu(cpu
, cpu_smt_mask(target
)) {
5720 if (!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
5729 #else /* CONFIG_SCHED_SMT */
5731 static inline int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5736 static inline int select_idle_smt(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5741 #endif /* CONFIG_SCHED_SMT */
5744 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5745 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5746 * average idle time for this rq (as found in rq->avg_idle).
5748 static int select_idle_cpu(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5750 struct sched_domain
*this_sd
;
5751 u64 avg_cost
, avg_idle
= this_rq()->avg_idle
;
5756 this_sd
= rcu_dereference(*this_cpu_ptr(&sd_llc
));
5760 avg_cost
= this_sd
->avg_scan_cost
;
5763 * Due to large variance we need a large fuzz factor; hackbench in
5764 * particularly is sensitive here.
5766 if ((avg_idle
/ 512) < avg_cost
)
5769 time
= local_clock();
5771 for_each_cpu_wrap(cpu
, sched_domain_span(sd
), target
, wrap
) {
5772 if (!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
5778 time
= local_clock() - time
;
5779 cost
= this_sd
->avg_scan_cost
;
5780 delta
= (s64
)(time
- cost
) / 8;
5781 this_sd
->avg_scan_cost
+= delta
;
5787 * Try and locate an idle core/thread in the LLC cache domain.
5789 static int select_idle_sibling(struct task_struct
*p
, int prev
, int target
)
5791 struct sched_domain
*sd
;
5794 if (idle_cpu(target
))
5798 * If the previous cpu is cache affine and idle, don't be stupid.
5800 if (prev
!= target
&& cpus_share_cache(prev
, target
) && idle_cpu(prev
))
5803 sd
= rcu_dereference(per_cpu(sd_llc
, target
));
5807 i
= select_idle_core(p
, sd
, target
);
5808 if ((unsigned)i
< nr_cpumask_bits
)
5811 i
= select_idle_cpu(p
, sd
, target
);
5812 if ((unsigned)i
< nr_cpumask_bits
)
5815 i
= select_idle_smt(p
, sd
, target
);
5816 if ((unsigned)i
< nr_cpumask_bits
)
5823 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5824 * tasks. The unit of the return value must be the one of capacity so we can
5825 * compare the utilization with the capacity of the CPU that is available for
5826 * CFS task (ie cpu_capacity).
5828 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5829 * recent utilization of currently non-runnable tasks on a CPU. It represents
5830 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5831 * capacity_orig is the cpu_capacity available at the highest frequency
5832 * (arch_scale_freq_capacity()).
5833 * The utilization of a CPU converges towards a sum equal to or less than the
5834 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5835 * the running time on this CPU scaled by capacity_curr.
5837 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5838 * higher than capacity_orig because of unfortunate rounding in
5839 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5840 * the average stabilizes with the new running time. We need to check that the
5841 * utilization stays within the range of [0..capacity_orig] and cap it if
5842 * necessary. Without utilization capping, a group could be seen as overloaded
5843 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5844 * available capacity. We allow utilization to overshoot capacity_curr (but not
5845 * capacity_orig) as it useful for predicting the capacity required after task
5846 * migrations (scheduler-driven DVFS).
5848 static int cpu_util(int cpu
)
5850 unsigned long util
= cpu_rq(cpu
)->cfs
.avg
.util_avg
;
5851 unsigned long capacity
= capacity_orig_of(cpu
);
5853 return (util
>= capacity
) ? capacity
: util
;
5856 static inline int task_util(struct task_struct
*p
)
5858 return p
->se
.avg
.util_avg
;
5862 * cpu_util_wake: Compute cpu utilization with any contributions from
5863 * the waking task p removed.
5865 static int cpu_util_wake(int cpu
, struct task_struct
*p
)
5867 unsigned long util
, capacity
;
5869 /* Task has no contribution or is new */
5870 if (cpu
!= task_cpu(p
) || !p
->se
.avg
.last_update_time
)
5871 return cpu_util(cpu
);
5873 capacity
= capacity_orig_of(cpu
);
5874 util
= max_t(long, cpu_rq(cpu
)->cfs
.avg
.util_avg
- task_util(p
), 0);
5876 return (util
>= capacity
) ? capacity
: util
;
5880 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5881 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5883 * In that case WAKE_AFFINE doesn't make sense and we'll let
5884 * BALANCE_WAKE sort things out.
5886 static int wake_cap(struct task_struct
*p
, int cpu
, int prev_cpu
)
5888 long min_cap
, max_cap
;
5890 min_cap
= min(capacity_orig_of(prev_cpu
), capacity_orig_of(cpu
));
5891 max_cap
= cpu_rq(cpu
)->rd
->max_cpu_capacity
;
5893 /* Minimum capacity is close to max, no need to abort wake_affine */
5894 if (max_cap
- min_cap
< max_cap
>> 3)
5897 /* Bring task utilization in sync with prev_cpu */
5898 sync_entity_load_avg(&p
->se
);
5900 return min_cap
* 1024 < task_util(p
) * capacity_margin
;
5904 * select_task_rq_fair: Select target runqueue for the waking task in domains
5905 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5906 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5908 * Balances load by selecting the idlest cpu in the idlest group, or under
5909 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5911 * Returns the target cpu number.
5913 * preempt must be disabled.
5916 select_task_rq_fair(struct task_struct
*p
, int prev_cpu
, int sd_flag
, int wake_flags
)
5918 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
5919 int cpu
= smp_processor_id();
5920 int new_cpu
= prev_cpu
;
5921 int want_affine
= 0;
5922 int sync
= wake_flags
& WF_SYNC
;
5924 if (sd_flag
& SD_BALANCE_WAKE
) {
5926 want_affine
= !wake_wide(p
) && !wake_cap(p
, cpu
, prev_cpu
)
5927 && cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
));
5931 for_each_domain(cpu
, tmp
) {
5932 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
5936 * If both cpu and prev_cpu are part of this domain,
5937 * cpu is a valid SD_WAKE_AFFINE target.
5939 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
5940 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
5945 if (tmp
->flags
& sd_flag
)
5947 else if (!want_affine
)
5952 sd
= NULL
; /* Prefer wake_affine over balance flags */
5953 if (cpu
!= prev_cpu
&& wake_affine(affine_sd
, p
, prev_cpu
, sync
))
5958 if (sd_flag
& SD_BALANCE_WAKE
) /* XXX always ? */
5959 new_cpu
= select_idle_sibling(p
, prev_cpu
, new_cpu
);
5962 struct sched_group
*group
;
5965 if (!(sd
->flags
& sd_flag
)) {
5970 group
= find_idlest_group(sd
, p
, cpu
, sd_flag
);
5976 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
5977 if (new_cpu
== -1 || new_cpu
== cpu
) {
5978 /* Now try balancing at a lower domain level of cpu */
5983 /* Now try balancing at a lower domain level of new_cpu */
5985 weight
= sd
->span_weight
;
5987 for_each_domain(cpu
, tmp
) {
5988 if (weight
<= tmp
->span_weight
)
5990 if (tmp
->flags
& sd_flag
)
5993 /* while loop will break here if sd == NULL */
6001 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6002 * cfs_rq_of(p) references at time of call are still valid and identify the
6003 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6005 static void migrate_task_rq_fair(struct task_struct
*p
)
6008 * As blocked tasks retain absolute vruntime the migration needs to
6009 * deal with this by subtracting the old and adding the new
6010 * min_vruntime -- the latter is done by enqueue_entity() when placing
6011 * the task on the new runqueue.
6013 if (p
->state
== TASK_WAKING
) {
6014 struct sched_entity
*se
= &p
->se
;
6015 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
6018 #ifndef CONFIG_64BIT
6019 u64 min_vruntime_copy
;
6022 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
6024 min_vruntime
= cfs_rq
->min_vruntime
;
6025 } while (min_vruntime
!= min_vruntime_copy
);
6027 min_vruntime
= cfs_rq
->min_vruntime
;
6030 se
->vruntime
-= min_vruntime
;
6034 * We are supposed to update the task to "current" time, then its up to date
6035 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6036 * what current time is, so simply throw away the out-of-date time. This
6037 * will result in the wakee task is less decayed, but giving the wakee more
6038 * load sounds not bad.
6040 remove_entity_load_avg(&p
->se
);
6042 /* Tell new CPU we are migrated */
6043 p
->se
.avg
.last_update_time
= 0;
6045 /* We have migrated, no longer consider this task hot */
6046 p
->se
.exec_start
= 0;
6049 static void task_dead_fair(struct task_struct
*p
)
6051 remove_entity_load_avg(&p
->se
);
6053 #endif /* CONFIG_SMP */
6055 static unsigned long
6056 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
6058 unsigned long gran
= sysctl_sched_wakeup_granularity
;
6061 * Since its curr running now, convert the gran from real-time
6062 * to virtual-time in his units.
6064 * By using 'se' instead of 'curr' we penalize light tasks, so
6065 * they get preempted easier. That is, if 'se' < 'curr' then
6066 * the resulting gran will be larger, therefore penalizing the
6067 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6068 * be smaller, again penalizing the lighter task.
6070 * This is especially important for buddies when the leftmost
6071 * task is higher priority than the buddy.
6073 return calc_delta_fair(gran
, se
);
6077 * Should 'se' preempt 'curr'.
6091 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
6093 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
6098 gran
= wakeup_gran(curr
, se
);
6105 static void set_last_buddy(struct sched_entity
*se
)
6107 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
6110 for_each_sched_entity(se
)
6111 cfs_rq_of(se
)->last
= se
;
6114 static void set_next_buddy(struct sched_entity
*se
)
6116 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
6119 for_each_sched_entity(se
)
6120 cfs_rq_of(se
)->next
= se
;
6123 static void set_skip_buddy(struct sched_entity
*se
)
6125 for_each_sched_entity(se
)
6126 cfs_rq_of(se
)->skip
= se
;
6130 * Preempt the current task with a newly woken task if needed:
6132 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
6134 struct task_struct
*curr
= rq
->curr
;
6135 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
6136 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
6137 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
6138 int next_buddy_marked
= 0;
6140 if (unlikely(se
== pse
))
6144 * This is possible from callers such as attach_tasks(), in which we
6145 * unconditionally check_prempt_curr() after an enqueue (which may have
6146 * lead to a throttle). This both saves work and prevents false
6147 * next-buddy nomination below.
6149 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
6152 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
6153 set_next_buddy(pse
);
6154 next_buddy_marked
= 1;
6158 * We can come here with TIF_NEED_RESCHED already set from new task
6161 * Note: this also catches the edge-case of curr being in a throttled
6162 * group (e.g. via set_curr_task), since update_curr() (in the
6163 * enqueue of curr) will have resulted in resched being set. This
6164 * prevents us from potentially nominating it as a false LAST_BUDDY
6167 if (test_tsk_need_resched(curr
))
6170 /* Idle tasks are by definition preempted by non-idle tasks. */
6171 if (unlikely(curr
->policy
== SCHED_IDLE
) &&
6172 likely(p
->policy
!= SCHED_IDLE
))
6176 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6177 * is driven by the tick):
6179 if (unlikely(p
->policy
!= SCHED_NORMAL
) || !sched_feat(WAKEUP_PREEMPTION
))
6182 find_matching_se(&se
, &pse
);
6183 update_curr(cfs_rq_of(se
));
6185 if (wakeup_preempt_entity(se
, pse
) == 1) {
6187 * Bias pick_next to pick the sched entity that is
6188 * triggering this preemption.
6190 if (!next_buddy_marked
)
6191 set_next_buddy(pse
);
6200 * Only set the backward buddy when the current task is still
6201 * on the rq. This can happen when a wakeup gets interleaved
6202 * with schedule on the ->pre_schedule() or idle_balance()
6203 * point, either of which can * drop the rq lock.
6205 * Also, during early boot the idle thread is in the fair class,
6206 * for obvious reasons its a bad idea to schedule back to it.
6208 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
6211 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
6215 static struct task_struct
*
6216 pick_next_task_fair(struct rq
*rq
, struct task_struct
*prev
, struct pin_cookie cookie
)
6218 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
6219 struct sched_entity
*se
;
6220 struct task_struct
*p
;
6224 #ifdef CONFIG_FAIR_GROUP_SCHED
6225 if (!cfs_rq
->nr_running
)
6228 if (prev
->sched_class
!= &fair_sched_class
)
6232 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6233 * likely that a next task is from the same cgroup as the current.
6235 * Therefore attempt to avoid putting and setting the entire cgroup
6236 * hierarchy, only change the part that actually changes.
6240 struct sched_entity
*curr
= cfs_rq
->curr
;
6243 * Since we got here without doing put_prev_entity() we also
6244 * have to consider cfs_rq->curr. If it is still a runnable
6245 * entity, update_curr() will update its vruntime, otherwise
6246 * forget we've ever seen it.
6250 update_curr(cfs_rq
);
6255 * This call to check_cfs_rq_runtime() will do the
6256 * throttle and dequeue its entity in the parent(s).
6257 * Therefore the 'simple' nr_running test will indeed
6260 if (unlikely(check_cfs_rq_runtime(cfs_rq
)))
6264 se
= pick_next_entity(cfs_rq
, curr
);
6265 cfs_rq
= group_cfs_rq(se
);
6271 * Since we haven't yet done put_prev_entity and if the selected task
6272 * is a different task than we started out with, try and touch the
6273 * least amount of cfs_rqs.
6276 struct sched_entity
*pse
= &prev
->se
;
6278 while (!(cfs_rq
= is_same_group(se
, pse
))) {
6279 int se_depth
= se
->depth
;
6280 int pse_depth
= pse
->depth
;
6282 if (se_depth
<= pse_depth
) {
6283 put_prev_entity(cfs_rq_of(pse
), pse
);
6284 pse
= parent_entity(pse
);
6286 if (se_depth
>= pse_depth
) {
6287 set_next_entity(cfs_rq_of(se
), se
);
6288 se
= parent_entity(se
);
6292 put_prev_entity(cfs_rq
, pse
);
6293 set_next_entity(cfs_rq
, se
);
6296 if (hrtick_enabled(rq
))
6297 hrtick_start_fair(rq
, p
);
6304 if (!cfs_rq
->nr_running
)
6307 put_prev_task(rq
, prev
);
6310 se
= pick_next_entity(cfs_rq
, NULL
);
6311 set_next_entity(cfs_rq
, se
);
6312 cfs_rq
= group_cfs_rq(se
);
6317 if (hrtick_enabled(rq
))
6318 hrtick_start_fair(rq
, p
);
6324 * This is OK, because current is on_cpu, which avoids it being picked
6325 * for load-balance and preemption/IRQs are still disabled avoiding
6326 * further scheduler activity on it and we're being very careful to
6327 * re-start the picking loop.
6329 lockdep_unpin_lock(&rq
->lock
, cookie
);
6330 new_tasks
= idle_balance(rq
);
6331 lockdep_repin_lock(&rq
->lock
, cookie
);
6333 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6334 * possible for any higher priority task to appear. In that case we
6335 * must re-start the pick_next_entity() loop.
6347 * Account for a descheduled task:
6349 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
6351 struct sched_entity
*se
= &prev
->se
;
6352 struct cfs_rq
*cfs_rq
;
6354 for_each_sched_entity(se
) {
6355 cfs_rq
= cfs_rq_of(se
);
6356 put_prev_entity(cfs_rq
, se
);
6361 * sched_yield() is very simple
6363 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6365 static void yield_task_fair(struct rq
*rq
)
6367 struct task_struct
*curr
= rq
->curr
;
6368 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
6369 struct sched_entity
*se
= &curr
->se
;
6372 * Are we the only task in the tree?
6374 if (unlikely(rq
->nr_running
== 1))
6377 clear_buddies(cfs_rq
, se
);
6379 if (curr
->policy
!= SCHED_BATCH
) {
6380 update_rq_clock(rq
);
6382 * Update run-time statistics of the 'current'.
6384 update_curr(cfs_rq
);
6386 * Tell update_rq_clock() that we've just updated,
6387 * so we don't do microscopic update in schedule()
6388 * and double the fastpath cost.
6390 rq_clock_skip_update(rq
, true);
6396 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
6398 struct sched_entity
*se
= &p
->se
;
6400 /* throttled hierarchies are not runnable */
6401 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
6404 /* Tell the scheduler that we'd really like pse to run next. */
6407 yield_task_fair(rq
);
6413 /**************************************************
6414 * Fair scheduling class load-balancing methods.
6418 * The purpose of load-balancing is to achieve the same basic fairness the
6419 * per-cpu scheduler provides, namely provide a proportional amount of compute
6420 * time to each task. This is expressed in the following equation:
6422 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6424 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6425 * W_i,0 is defined as:
6427 * W_i,0 = \Sum_j w_i,j (2)
6429 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6430 * is derived from the nice value as per sched_prio_to_weight[].
6432 * The weight average is an exponential decay average of the instantaneous
6435 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6437 * C_i is the compute capacity of cpu i, typically it is the
6438 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6439 * can also include other factors [XXX].
6441 * To achieve this balance we define a measure of imbalance which follows
6442 * directly from (1):
6444 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6446 * We them move tasks around to minimize the imbalance. In the continuous
6447 * function space it is obvious this converges, in the discrete case we get
6448 * a few fun cases generally called infeasible weight scenarios.
6451 * - infeasible weights;
6452 * - local vs global optima in the discrete case. ]
6457 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6458 * for all i,j solution, we create a tree of cpus that follows the hardware
6459 * topology where each level pairs two lower groups (or better). This results
6460 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6461 * tree to only the first of the previous level and we decrease the frequency
6462 * of load-balance at each level inv. proportional to the number of cpus in
6468 * \Sum { --- * --- * 2^i } = O(n) (5)
6470 * `- size of each group
6471 * | | `- number of cpus doing load-balance
6473 * `- sum over all levels
6475 * Coupled with a limit on how many tasks we can migrate every balance pass,
6476 * this makes (5) the runtime complexity of the balancer.
6478 * An important property here is that each CPU is still (indirectly) connected
6479 * to every other cpu in at most O(log n) steps:
6481 * The adjacency matrix of the resulting graph is given by:
6484 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6487 * And you'll find that:
6489 * A^(log_2 n)_i,j != 0 for all i,j (7)
6491 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6492 * The task movement gives a factor of O(m), giving a convergence complexity
6495 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6500 * In order to avoid CPUs going idle while there's still work to do, new idle
6501 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6502 * tree itself instead of relying on other CPUs to bring it work.
6504 * This adds some complexity to both (5) and (8) but it reduces the total idle
6512 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6515 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6520 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6522 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6524 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6527 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6528 * rewrite all of this once again.]
6531 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
6533 enum fbq_type
{ regular
, remote
, all
};
6535 #define LBF_ALL_PINNED 0x01
6536 #define LBF_NEED_BREAK 0x02
6537 #define LBF_DST_PINNED 0x04
6538 #define LBF_SOME_PINNED 0x08
6541 struct sched_domain
*sd
;
6549 struct cpumask
*dst_grpmask
;
6551 enum cpu_idle_type idle
;
6553 /* The set of CPUs under consideration for load-balancing */
6554 struct cpumask
*cpus
;
6559 unsigned int loop_break
;
6560 unsigned int loop_max
;
6562 enum fbq_type fbq_type
;
6563 struct list_head tasks
;
6567 * Is this task likely cache-hot:
6569 static int task_hot(struct task_struct
*p
, struct lb_env
*env
)
6573 lockdep_assert_held(&env
->src_rq
->lock
);
6575 if (p
->sched_class
!= &fair_sched_class
)
6578 if (unlikely(p
->policy
== SCHED_IDLE
))
6582 * Buddy candidates are cache hot:
6584 if (sched_feat(CACHE_HOT_BUDDY
) && env
->dst_rq
->nr_running
&&
6585 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
6586 &p
->se
== cfs_rq_of(&p
->se
)->last
))
6589 if (sysctl_sched_migration_cost
== -1)
6591 if (sysctl_sched_migration_cost
== 0)
6594 delta
= rq_clock_task(env
->src_rq
) - p
->se
.exec_start
;
6596 return delta
< (s64
)sysctl_sched_migration_cost
;
6599 #ifdef CONFIG_NUMA_BALANCING
6601 * Returns 1, if task migration degrades locality
6602 * Returns 0, if task migration improves locality i.e migration preferred.
6603 * Returns -1, if task migration is not affected by locality.
6605 static int migrate_degrades_locality(struct task_struct
*p
, struct lb_env
*env
)
6607 struct numa_group
*numa_group
= rcu_dereference(p
->numa_group
);
6608 unsigned long src_faults
, dst_faults
;
6609 int src_nid
, dst_nid
;
6611 if (!static_branch_likely(&sched_numa_balancing
))
6614 if (!p
->numa_faults
|| !(env
->sd
->flags
& SD_NUMA
))
6617 src_nid
= cpu_to_node(env
->src_cpu
);
6618 dst_nid
= cpu_to_node(env
->dst_cpu
);
6620 if (src_nid
== dst_nid
)
6623 /* Migrating away from the preferred node is always bad. */
6624 if (src_nid
== p
->numa_preferred_nid
) {
6625 if (env
->src_rq
->nr_running
> env
->src_rq
->nr_preferred_running
)
6631 /* Encourage migration to the preferred node. */
6632 if (dst_nid
== p
->numa_preferred_nid
)
6636 src_faults
= group_faults(p
, src_nid
);
6637 dst_faults
= group_faults(p
, dst_nid
);
6639 src_faults
= task_faults(p
, src_nid
);
6640 dst_faults
= task_faults(p
, dst_nid
);
6643 return dst_faults
< src_faults
;
6647 static inline int migrate_degrades_locality(struct task_struct
*p
,
6655 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6658 int can_migrate_task(struct task_struct
*p
, struct lb_env
*env
)
6662 lockdep_assert_held(&env
->src_rq
->lock
);
6665 * We do not migrate tasks that are:
6666 * 1) throttled_lb_pair, or
6667 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6668 * 3) running (obviously), or
6669 * 4) are cache-hot on their current CPU.
6671 if (throttled_lb_pair(task_group(p
), env
->src_cpu
, env
->dst_cpu
))
6674 if (!cpumask_test_cpu(env
->dst_cpu
, tsk_cpus_allowed(p
))) {
6677 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_affine
);
6679 env
->flags
|= LBF_SOME_PINNED
;
6682 * Remember if this task can be migrated to any other cpu in
6683 * our sched_group. We may want to revisit it if we couldn't
6684 * meet load balance goals by pulling other tasks on src_cpu.
6686 * Also avoid computing new_dst_cpu if we have already computed
6687 * one in current iteration.
6689 if (!env
->dst_grpmask
|| (env
->flags
& LBF_DST_PINNED
))
6692 /* Prevent to re-select dst_cpu via env's cpus */
6693 for_each_cpu_and(cpu
, env
->dst_grpmask
, env
->cpus
) {
6694 if (cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
))) {
6695 env
->flags
|= LBF_DST_PINNED
;
6696 env
->new_dst_cpu
= cpu
;
6704 /* Record that we found atleast one task that could run on dst_cpu */
6705 env
->flags
&= ~LBF_ALL_PINNED
;
6707 if (task_running(env
->src_rq
, p
)) {
6708 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_running
);
6713 * Aggressive migration if:
6714 * 1) destination numa is preferred
6715 * 2) task is cache cold, or
6716 * 3) too many balance attempts have failed.
6718 tsk_cache_hot
= migrate_degrades_locality(p
, env
);
6719 if (tsk_cache_hot
== -1)
6720 tsk_cache_hot
= task_hot(p
, env
);
6722 if (tsk_cache_hot
<= 0 ||
6723 env
->sd
->nr_balance_failed
> env
->sd
->cache_nice_tries
) {
6724 if (tsk_cache_hot
== 1) {
6725 schedstat_inc(env
->sd
->lb_hot_gained
[env
->idle
]);
6726 schedstat_inc(p
->se
.statistics
.nr_forced_migrations
);
6731 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_hot
);
6736 * detach_task() -- detach the task for the migration specified in env
6738 static void detach_task(struct task_struct
*p
, struct lb_env
*env
)
6740 lockdep_assert_held(&env
->src_rq
->lock
);
6742 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
6743 deactivate_task(env
->src_rq
, p
, 0);
6744 set_task_cpu(p
, env
->dst_cpu
);
6748 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6749 * part of active balancing operations within "domain".
6751 * Returns a task if successful and NULL otherwise.
6753 static struct task_struct
*detach_one_task(struct lb_env
*env
)
6755 struct task_struct
*p
, *n
;
6757 lockdep_assert_held(&env
->src_rq
->lock
);
6759 list_for_each_entry_safe(p
, n
, &env
->src_rq
->cfs_tasks
, se
.group_node
) {
6760 if (!can_migrate_task(p
, env
))
6763 detach_task(p
, env
);
6766 * Right now, this is only the second place where
6767 * lb_gained[env->idle] is updated (other is detach_tasks)
6768 * so we can safely collect stats here rather than
6769 * inside detach_tasks().
6771 schedstat_inc(env
->sd
->lb_gained
[env
->idle
]);
6777 static const unsigned int sched_nr_migrate_break
= 32;
6780 * detach_tasks() -- tries to detach up to imbalance weighted load from
6781 * busiest_rq, as part of a balancing operation within domain "sd".
6783 * Returns number of detached tasks if successful and 0 otherwise.
6785 static int detach_tasks(struct lb_env
*env
)
6787 struct list_head
*tasks
= &env
->src_rq
->cfs_tasks
;
6788 struct task_struct
*p
;
6792 lockdep_assert_held(&env
->src_rq
->lock
);
6794 if (env
->imbalance
<= 0)
6797 while (!list_empty(tasks
)) {
6799 * We don't want to steal all, otherwise we may be treated likewise,
6800 * which could at worst lead to a livelock crash.
6802 if (env
->idle
!= CPU_NOT_IDLE
&& env
->src_rq
->nr_running
<= 1)
6805 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
6808 /* We've more or less seen every task there is, call it quits */
6809 if (env
->loop
> env
->loop_max
)
6812 /* take a breather every nr_migrate tasks */
6813 if (env
->loop
> env
->loop_break
) {
6814 env
->loop_break
+= sched_nr_migrate_break
;
6815 env
->flags
|= LBF_NEED_BREAK
;
6819 if (!can_migrate_task(p
, env
))
6822 load
= task_h_load(p
);
6824 if (sched_feat(LB_MIN
) && load
< 16 && !env
->sd
->nr_balance_failed
)
6827 if ((load
/ 2) > env
->imbalance
)
6830 detach_task(p
, env
);
6831 list_add(&p
->se
.group_node
, &env
->tasks
);
6834 env
->imbalance
-= load
;
6836 #ifdef CONFIG_PREEMPT
6838 * NEWIDLE balancing is a source of latency, so preemptible
6839 * kernels will stop after the first task is detached to minimize
6840 * the critical section.
6842 if (env
->idle
== CPU_NEWLY_IDLE
)
6847 * We only want to steal up to the prescribed amount of
6850 if (env
->imbalance
<= 0)
6855 list_move_tail(&p
->se
.group_node
, tasks
);
6859 * Right now, this is one of only two places we collect this stat
6860 * so we can safely collect detach_one_task() stats here rather
6861 * than inside detach_one_task().
6863 schedstat_add(env
->sd
->lb_gained
[env
->idle
], detached
);
6869 * attach_task() -- attach the task detached by detach_task() to its new rq.
6871 static void attach_task(struct rq
*rq
, struct task_struct
*p
)
6873 lockdep_assert_held(&rq
->lock
);
6875 BUG_ON(task_rq(p
) != rq
);
6876 activate_task(rq
, p
, 0);
6877 p
->on_rq
= TASK_ON_RQ_QUEUED
;
6878 check_preempt_curr(rq
, p
, 0);
6882 * attach_one_task() -- attaches the task returned from detach_one_task() to
6885 static void attach_one_task(struct rq
*rq
, struct task_struct
*p
)
6887 raw_spin_lock(&rq
->lock
);
6889 raw_spin_unlock(&rq
->lock
);
6893 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6896 static void attach_tasks(struct lb_env
*env
)
6898 struct list_head
*tasks
= &env
->tasks
;
6899 struct task_struct
*p
;
6901 raw_spin_lock(&env
->dst_rq
->lock
);
6903 while (!list_empty(tasks
)) {
6904 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
6905 list_del_init(&p
->se
.group_node
);
6907 attach_task(env
->dst_rq
, p
);
6910 raw_spin_unlock(&env
->dst_rq
->lock
);
6913 #ifdef CONFIG_FAIR_GROUP_SCHED
6914 static void update_blocked_averages(int cpu
)
6916 struct rq
*rq
= cpu_rq(cpu
);
6917 struct cfs_rq
*cfs_rq
;
6918 unsigned long flags
;
6920 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6921 update_rq_clock(rq
);
6924 * Iterates the task_group tree in a bottom up fashion, see
6925 * list_add_leaf_cfs_rq() for details.
6927 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
6928 /* throttled entities do not contribute to load */
6929 if (throttled_hierarchy(cfs_rq
))
6932 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq
), cfs_rq
, true))
6933 update_tg_load_avg(cfs_rq
, 0);
6935 /* Propagate pending load changes to the parent */
6936 if (cfs_rq
->tg
->se
[cpu
])
6937 update_load_avg(cfs_rq
->tg
->se
[cpu
], 0);
6939 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6943 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6944 * This needs to be done in a top-down fashion because the load of a child
6945 * group is a fraction of its parents load.
6947 static void update_cfs_rq_h_load(struct cfs_rq
*cfs_rq
)
6949 struct rq
*rq
= rq_of(cfs_rq
);
6950 struct sched_entity
*se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
6951 unsigned long now
= jiffies
;
6954 if (cfs_rq
->last_h_load_update
== now
)
6957 cfs_rq
->h_load_next
= NULL
;
6958 for_each_sched_entity(se
) {
6959 cfs_rq
= cfs_rq_of(se
);
6960 cfs_rq
->h_load_next
= se
;
6961 if (cfs_rq
->last_h_load_update
== now
)
6966 cfs_rq
->h_load
= cfs_rq_load_avg(cfs_rq
);
6967 cfs_rq
->last_h_load_update
= now
;
6970 while ((se
= cfs_rq
->h_load_next
) != NULL
) {
6971 load
= cfs_rq
->h_load
;
6972 load
= div64_ul(load
* se
->avg
.load_avg
,
6973 cfs_rq_load_avg(cfs_rq
) + 1);
6974 cfs_rq
= group_cfs_rq(se
);
6975 cfs_rq
->h_load
= load
;
6976 cfs_rq
->last_h_load_update
= now
;
6980 static unsigned long task_h_load(struct task_struct
*p
)
6982 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
6984 update_cfs_rq_h_load(cfs_rq
);
6985 return div64_ul(p
->se
.avg
.load_avg
* cfs_rq
->h_load
,
6986 cfs_rq_load_avg(cfs_rq
) + 1);
6989 static inline void update_blocked_averages(int cpu
)
6991 struct rq
*rq
= cpu_rq(cpu
);
6992 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
6993 unsigned long flags
;
6995 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6996 update_rq_clock(rq
);
6997 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq
), cfs_rq
, true);
6998 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7001 static unsigned long task_h_load(struct task_struct
*p
)
7003 return p
->se
.avg
.load_avg
;
7007 /********** Helpers for find_busiest_group ************************/
7016 * sg_lb_stats - stats of a sched_group required for load_balancing
7018 struct sg_lb_stats
{
7019 unsigned long avg_load
; /*Avg load across the CPUs of the group */
7020 unsigned long group_load
; /* Total load over the CPUs of the group */
7021 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
7022 unsigned long load_per_task
;
7023 unsigned long group_capacity
;
7024 unsigned long group_util
; /* Total utilization of the group */
7025 unsigned int sum_nr_running
; /* Nr tasks running in the group */
7026 unsigned int idle_cpus
;
7027 unsigned int group_weight
;
7028 enum group_type group_type
;
7029 int group_no_capacity
;
7030 #ifdef CONFIG_NUMA_BALANCING
7031 unsigned int nr_numa_running
;
7032 unsigned int nr_preferred_running
;
7037 * sd_lb_stats - Structure to store the statistics of a sched_domain
7038 * during load balancing.
7040 struct sd_lb_stats
{
7041 struct sched_group
*busiest
; /* Busiest group in this sd */
7042 struct sched_group
*local
; /* Local group in this sd */
7043 unsigned long total_load
; /* Total load of all groups in sd */
7044 unsigned long total_capacity
; /* Total capacity of all groups in sd */
7045 unsigned long avg_load
; /* Average load across all groups in sd */
7047 struct sg_lb_stats busiest_stat
;/* Statistics of the busiest group */
7048 struct sg_lb_stats local_stat
; /* Statistics of the local group */
7051 static inline void init_sd_lb_stats(struct sd_lb_stats
*sds
)
7054 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7055 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7056 * We must however clear busiest_stat::avg_load because
7057 * update_sd_pick_busiest() reads this before assignment.
7059 *sds
= (struct sd_lb_stats
){
7063 .total_capacity
= 0UL,
7066 .sum_nr_running
= 0,
7067 .group_type
= group_other
,
7073 * get_sd_load_idx - Obtain the load index for a given sched domain.
7074 * @sd: The sched_domain whose load_idx is to be obtained.
7075 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7077 * Return: The load index.
7079 static inline int get_sd_load_idx(struct sched_domain
*sd
,
7080 enum cpu_idle_type idle
)
7086 load_idx
= sd
->busy_idx
;
7089 case CPU_NEWLY_IDLE
:
7090 load_idx
= sd
->newidle_idx
;
7093 load_idx
= sd
->idle_idx
;
7100 static unsigned long scale_rt_capacity(int cpu
)
7102 struct rq
*rq
= cpu_rq(cpu
);
7103 u64 total
, used
, age_stamp
, avg
;
7107 * Since we're reading these variables without serialization make sure
7108 * we read them once before doing sanity checks on them.
7110 age_stamp
= READ_ONCE(rq
->age_stamp
);
7111 avg
= READ_ONCE(rq
->rt_avg
);
7112 delta
= __rq_clock_broken(rq
) - age_stamp
;
7114 if (unlikely(delta
< 0))
7117 total
= sched_avg_period() + delta
;
7119 used
= div_u64(avg
, total
);
7121 if (likely(used
< SCHED_CAPACITY_SCALE
))
7122 return SCHED_CAPACITY_SCALE
- used
;
7127 static void update_cpu_capacity(struct sched_domain
*sd
, int cpu
)
7129 unsigned long capacity
= arch_scale_cpu_capacity(sd
, cpu
);
7130 struct sched_group
*sdg
= sd
->groups
;
7132 cpu_rq(cpu
)->cpu_capacity_orig
= capacity
;
7134 capacity
*= scale_rt_capacity(cpu
);
7135 capacity
>>= SCHED_CAPACITY_SHIFT
;
7140 cpu_rq(cpu
)->cpu_capacity
= capacity
;
7141 sdg
->sgc
->capacity
= capacity
;
7142 sdg
->sgc
->min_capacity
= capacity
;
7145 void update_group_capacity(struct sched_domain
*sd
, int cpu
)
7147 struct sched_domain
*child
= sd
->child
;
7148 struct sched_group
*group
, *sdg
= sd
->groups
;
7149 unsigned long capacity
, min_capacity
;
7150 unsigned long interval
;
7152 interval
= msecs_to_jiffies(sd
->balance_interval
);
7153 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
7154 sdg
->sgc
->next_update
= jiffies
+ interval
;
7157 update_cpu_capacity(sd
, cpu
);
7162 min_capacity
= ULONG_MAX
;
7164 if (child
->flags
& SD_OVERLAP
) {
7166 * SD_OVERLAP domains cannot assume that child groups
7167 * span the current group.
7170 for_each_cpu(cpu
, sched_group_cpus(sdg
)) {
7171 struct sched_group_capacity
*sgc
;
7172 struct rq
*rq
= cpu_rq(cpu
);
7175 * build_sched_domains() -> init_sched_groups_capacity()
7176 * gets here before we've attached the domains to the
7179 * Use capacity_of(), which is set irrespective of domains
7180 * in update_cpu_capacity().
7182 * This avoids capacity from being 0 and
7183 * causing divide-by-zero issues on boot.
7185 if (unlikely(!rq
->sd
)) {
7186 capacity
+= capacity_of(cpu
);
7188 sgc
= rq
->sd
->groups
->sgc
;
7189 capacity
+= sgc
->capacity
;
7192 min_capacity
= min(capacity
, min_capacity
);
7196 * !SD_OVERLAP domains can assume that child groups
7197 * span the current group.
7200 group
= child
->groups
;
7202 struct sched_group_capacity
*sgc
= group
->sgc
;
7204 capacity
+= sgc
->capacity
;
7205 min_capacity
= min(sgc
->min_capacity
, min_capacity
);
7206 group
= group
->next
;
7207 } while (group
!= child
->groups
);
7210 sdg
->sgc
->capacity
= capacity
;
7211 sdg
->sgc
->min_capacity
= min_capacity
;
7215 * Check whether the capacity of the rq has been noticeably reduced by side
7216 * activity. The imbalance_pct is used for the threshold.
7217 * Return true is the capacity is reduced
7220 check_cpu_capacity(struct rq
*rq
, struct sched_domain
*sd
)
7222 return ((rq
->cpu_capacity
* sd
->imbalance_pct
) <
7223 (rq
->cpu_capacity_orig
* 100));
7227 * Group imbalance indicates (and tries to solve) the problem where balancing
7228 * groups is inadequate due to tsk_cpus_allowed() constraints.
7230 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7231 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7234 * { 0 1 2 3 } { 4 5 6 7 }
7237 * If we were to balance group-wise we'd place two tasks in the first group and
7238 * two tasks in the second group. Clearly this is undesired as it will overload
7239 * cpu 3 and leave one of the cpus in the second group unused.
7241 * The current solution to this issue is detecting the skew in the first group
7242 * by noticing the lower domain failed to reach balance and had difficulty
7243 * moving tasks due to affinity constraints.
7245 * When this is so detected; this group becomes a candidate for busiest; see
7246 * update_sd_pick_busiest(). And calculate_imbalance() and
7247 * find_busiest_group() avoid some of the usual balance conditions to allow it
7248 * to create an effective group imbalance.
7250 * This is a somewhat tricky proposition since the next run might not find the
7251 * group imbalance and decide the groups need to be balanced again. A most
7252 * subtle and fragile situation.
7255 static inline int sg_imbalanced(struct sched_group
*group
)
7257 return group
->sgc
->imbalance
;
7261 * group_has_capacity returns true if the group has spare capacity that could
7262 * be used by some tasks.
7263 * We consider that a group has spare capacity if the * number of task is
7264 * smaller than the number of CPUs or if the utilization is lower than the
7265 * available capacity for CFS tasks.
7266 * For the latter, we use a threshold to stabilize the state, to take into
7267 * account the variance of the tasks' load and to return true if the available
7268 * capacity in meaningful for the load balancer.
7269 * As an example, an available capacity of 1% can appear but it doesn't make
7270 * any benefit for the load balance.
7273 group_has_capacity(struct lb_env
*env
, struct sg_lb_stats
*sgs
)
7275 if (sgs
->sum_nr_running
< sgs
->group_weight
)
7278 if ((sgs
->group_capacity
* 100) >
7279 (sgs
->group_util
* env
->sd
->imbalance_pct
))
7286 * group_is_overloaded returns true if the group has more tasks than it can
7288 * group_is_overloaded is not equals to !group_has_capacity because a group
7289 * with the exact right number of tasks, has no more spare capacity but is not
7290 * overloaded so both group_has_capacity and group_is_overloaded return
7294 group_is_overloaded(struct lb_env
*env
, struct sg_lb_stats
*sgs
)
7296 if (sgs
->sum_nr_running
<= sgs
->group_weight
)
7299 if ((sgs
->group_capacity
* 100) <
7300 (sgs
->group_util
* env
->sd
->imbalance_pct
))
7307 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7308 * per-CPU capacity than sched_group ref.
7311 group_smaller_cpu_capacity(struct sched_group
*sg
, struct sched_group
*ref
)
7313 return sg
->sgc
->min_capacity
* capacity_margin
<
7314 ref
->sgc
->min_capacity
* 1024;
7318 group_type
group_classify(struct sched_group
*group
,
7319 struct sg_lb_stats
*sgs
)
7321 if (sgs
->group_no_capacity
)
7322 return group_overloaded
;
7324 if (sg_imbalanced(group
))
7325 return group_imbalanced
;
7331 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7332 * @env: The load balancing environment.
7333 * @group: sched_group whose statistics are to be updated.
7334 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7335 * @local_group: Does group contain this_cpu.
7336 * @sgs: variable to hold the statistics for this group.
7337 * @overload: Indicate more than one runnable task for any CPU.
7339 static inline void update_sg_lb_stats(struct lb_env
*env
,
7340 struct sched_group
*group
, int load_idx
,
7341 int local_group
, struct sg_lb_stats
*sgs
,
7347 memset(sgs
, 0, sizeof(*sgs
));
7349 for_each_cpu_and(i
, sched_group_cpus(group
), env
->cpus
) {
7350 struct rq
*rq
= cpu_rq(i
);
7352 /* Bias balancing toward cpus of our domain */
7354 load
= target_load(i
, load_idx
);
7356 load
= source_load(i
, load_idx
);
7358 sgs
->group_load
+= load
;
7359 sgs
->group_util
+= cpu_util(i
);
7360 sgs
->sum_nr_running
+= rq
->cfs
.h_nr_running
;
7362 nr_running
= rq
->nr_running
;
7366 #ifdef CONFIG_NUMA_BALANCING
7367 sgs
->nr_numa_running
+= rq
->nr_numa_running
;
7368 sgs
->nr_preferred_running
+= rq
->nr_preferred_running
;
7370 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
7372 * No need to call idle_cpu() if nr_running is not 0
7374 if (!nr_running
&& idle_cpu(i
))
7378 /* Adjust by relative CPU capacity of the group */
7379 sgs
->group_capacity
= group
->sgc
->capacity
;
7380 sgs
->avg_load
= (sgs
->group_load
*SCHED_CAPACITY_SCALE
) / sgs
->group_capacity
;
7382 if (sgs
->sum_nr_running
)
7383 sgs
->load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
7385 sgs
->group_weight
= group
->group_weight
;
7387 sgs
->group_no_capacity
= group_is_overloaded(env
, sgs
);
7388 sgs
->group_type
= group_classify(group
, sgs
);
7392 * update_sd_pick_busiest - return 1 on busiest group
7393 * @env: The load balancing environment.
7394 * @sds: sched_domain statistics
7395 * @sg: sched_group candidate to be checked for being the busiest
7396 * @sgs: sched_group statistics
7398 * Determine if @sg is a busier group than the previously selected
7401 * Return: %true if @sg is a busier group than the previously selected
7402 * busiest group. %false otherwise.
7404 static bool update_sd_pick_busiest(struct lb_env
*env
,
7405 struct sd_lb_stats
*sds
,
7406 struct sched_group
*sg
,
7407 struct sg_lb_stats
*sgs
)
7409 struct sg_lb_stats
*busiest
= &sds
->busiest_stat
;
7411 if (sgs
->group_type
> busiest
->group_type
)
7414 if (sgs
->group_type
< busiest
->group_type
)
7417 if (sgs
->avg_load
<= busiest
->avg_load
)
7420 if (!(env
->sd
->flags
& SD_ASYM_CPUCAPACITY
))
7424 * Candidate sg has no more than one task per CPU and
7425 * has higher per-CPU capacity. Migrating tasks to less
7426 * capable CPUs may harm throughput. Maximize throughput,
7427 * power/energy consequences are not considered.
7429 if (sgs
->sum_nr_running
<= sgs
->group_weight
&&
7430 group_smaller_cpu_capacity(sds
->local
, sg
))
7434 /* This is the busiest node in its class. */
7435 if (!(env
->sd
->flags
& SD_ASYM_PACKING
))
7438 /* No ASYM_PACKING if target cpu is already busy */
7439 if (env
->idle
== CPU_NOT_IDLE
)
7442 * ASYM_PACKING needs to move all the work to the highest
7443 * prority CPUs in the group, therefore mark all groups
7444 * of lower priority than ourself as busy.
7446 if (sgs
->sum_nr_running
&&
7447 sched_asym_prefer(env
->dst_cpu
, sg
->asym_prefer_cpu
)) {
7451 /* Prefer to move from lowest priority cpu's work */
7452 if (sched_asym_prefer(sds
->busiest
->asym_prefer_cpu
,
7453 sg
->asym_prefer_cpu
))
7460 #ifdef CONFIG_NUMA_BALANCING
7461 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
7463 if (sgs
->sum_nr_running
> sgs
->nr_numa_running
)
7465 if (sgs
->sum_nr_running
> sgs
->nr_preferred_running
)
7470 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
7472 if (rq
->nr_running
> rq
->nr_numa_running
)
7474 if (rq
->nr_running
> rq
->nr_preferred_running
)
7479 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
7484 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
7488 #endif /* CONFIG_NUMA_BALANCING */
7491 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7492 * @env: The load balancing environment.
7493 * @sds: variable to hold the statistics for this sched_domain.
7495 static inline void update_sd_lb_stats(struct lb_env
*env
, struct sd_lb_stats
*sds
)
7497 struct sched_domain
*child
= env
->sd
->child
;
7498 struct sched_group
*sg
= env
->sd
->groups
;
7499 struct sg_lb_stats tmp_sgs
;
7500 int load_idx
, prefer_sibling
= 0;
7501 bool overload
= false;
7503 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
7506 load_idx
= get_sd_load_idx(env
->sd
, env
->idle
);
7509 struct sg_lb_stats
*sgs
= &tmp_sgs
;
7512 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_cpus(sg
));
7515 sgs
= &sds
->local_stat
;
7517 if (env
->idle
!= CPU_NEWLY_IDLE
||
7518 time_after_eq(jiffies
, sg
->sgc
->next_update
))
7519 update_group_capacity(env
->sd
, env
->dst_cpu
);
7522 update_sg_lb_stats(env
, sg
, load_idx
, local_group
, sgs
,
7529 * In case the child domain prefers tasks go to siblings
7530 * first, lower the sg capacity so that we'll try
7531 * and move all the excess tasks away. We lower the capacity
7532 * of a group only if the local group has the capacity to fit
7533 * these excess tasks. The extra check prevents the case where
7534 * you always pull from the heaviest group when it is already
7535 * under-utilized (possible with a large weight task outweighs
7536 * the tasks on the system).
7538 if (prefer_sibling
&& sds
->local
&&
7539 group_has_capacity(env
, &sds
->local_stat
) &&
7540 (sgs
->sum_nr_running
> 1)) {
7541 sgs
->group_no_capacity
= 1;
7542 sgs
->group_type
= group_classify(sg
, sgs
);
7545 if (update_sd_pick_busiest(env
, sds
, sg
, sgs
)) {
7547 sds
->busiest_stat
= *sgs
;
7551 /* Now, start updating sd_lb_stats */
7552 sds
->total_load
+= sgs
->group_load
;
7553 sds
->total_capacity
+= sgs
->group_capacity
;
7556 } while (sg
!= env
->sd
->groups
);
7558 if (env
->sd
->flags
& SD_NUMA
)
7559 env
->fbq_type
= fbq_classify_group(&sds
->busiest_stat
);
7561 if (!env
->sd
->parent
) {
7562 /* update overload indicator if we are at root domain */
7563 if (env
->dst_rq
->rd
->overload
!= overload
)
7564 env
->dst_rq
->rd
->overload
= overload
;
7570 * check_asym_packing - Check to see if the group is packed into the
7573 * This is primarily intended to used at the sibling level. Some
7574 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7575 * case of POWER7, it can move to lower SMT modes only when higher
7576 * threads are idle. When in lower SMT modes, the threads will
7577 * perform better since they share less core resources. Hence when we
7578 * have idle threads, we want them to be the higher ones.
7580 * This packing function is run on idle threads. It checks to see if
7581 * the busiest CPU in this domain (core in the P7 case) has a higher
7582 * CPU number than the packing function is being run on. Here we are
7583 * assuming lower CPU number will be equivalent to lower a SMT thread
7586 * Return: 1 when packing is required and a task should be moved to
7587 * this CPU. The amount of the imbalance is returned in *imbalance.
7589 * @env: The load balancing environment.
7590 * @sds: Statistics of the sched_domain which is to be packed
7592 static int check_asym_packing(struct lb_env
*env
, struct sd_lb_stats
*sds
)
7596 if (!(env
->sd
->flags
& SD_ASYM_PACKING
))
7599 if (env
->idle
== CPU_NOT_IDLE
)
7605 busiest_cpu
= sds
->busiest
->asym_prefer_cpu
;
7606 if (sched_asym_prefer(busiest_cpu
, env
->dst_cpu
))
7609 env
->imbalance
= DIV_ROUND_CLOSEST(
7610 sds
->busiest_stat
.avg_load
* sds
->busiest_stat
.group_capacity
,
7611 SCHED_CAPACITY_SCALE
);
7617 * fix_small_imbalance - Calculate the minor imbalance that exists
7618 * amongst the groups of a sched_domain, during
7620 * @env: The load balancing environment.
7621 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7624 void fix_small_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
7626 unsigned long tmp
, capa_now
= 0, capa_move
= 0;
7627 unsigned int imbn
= 2;
7628 unsigned long scaled_busy_load_per_task
;
7629 struct sg_lb_stats
*local
, *busiest
;
7631 local
= &sds
->local_stat
;
7632 busiest
= &sds
->busiest_stat
;
7634 if (!local
->sum_nr_running
)
7635 local
->load_per_task
= cpu_avg_load_per_task(env
->dst_cpu
);
7636 else if (busiest
->load_per_task
> local
->load_per_task
)
7639 scaled_busy_load_per_task
=
7640 (busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) /
7641 busiest
->group_capacity
;
7643 if (busiest
->avg_load
+ scaled_busy_load_per_task
>=
7644 local
->avg_load
+ (scaled_busy_load_per_task
* imbn
)) {
7645 env
->imbalance
= busiest
->load_per_task
;
7650 * OK, we don't have enough imbalance to justify moving tasks,
7651 * however we may be able to increase total CPU capacity used by
7655 capa_now
+= busiest
->group_capacity
*
7656 min(busiest
->load_per_task
, busiest
->avg_load
);
7657 capa_now
+= local
->group_capacity
*
7658 min(local
->load_per_task
, local
->avg_load
);
7659 capa_now
/= SCHED_CAPACITY_SCALE
;
7661 /* Amount of load we'd subtract */
7662 if (busiest
->avg_load
> scaled_busy_load_per_task
) {
7663 capa_move
+= busiest
->group_capacity
*
7664 min(busiest
->load_per_task
,
7665 busiest
->avg_load
- scaled_busy_load_per_task
);
7668 /* Amount of load we'd add */
7669 if (busiest
->avg_load
* busiest
->group_capacity
<
7670 busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) {
7671 tmp
= (busiest
->avg_load
* busiest
->group_capacity
) /
7672 local
->group_capacity
;
7674 tmp
= (busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) /
7675 local
->group_capacity
;
7677 capa_move
+= local
->group_capacity
*
7678 min(local
->load_per_task
, local
->avg_load
+ tmp
);
7679 capa_move
/= SCHED_CAPACITY_SCALE
;
7681 /* Move if we gain throughput */
7682 if (capa_move
> capa_now
)
7683 env
->imbalance
= busiest
->load_per_task
;
7687 * calculate_imbalance - Calculate the amount of imbalance present within the
7688 * groups of a given sched_domain during load balance.
7689 * @env: load balance environment
7690 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7692 static inline void calculate_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
7694 unsigned long max_pull
, load_above_capacity
= ~0UL;
7695 struct sg_lb_stats
*local
, *busiest
;
7697 local
= &sds
->local_stat
;
7698 busiest
= &sds
->busiest_stat
;
7700 if (busiest
->group_type
== group_imbalanced
) {
7702 * In the group_imb case we cannot rely on group-wide averages
7703 * to ensure cpu-load equilibrium, look at wider averages. XXX
7705 busiest
->load_per_task
=
7706 min(busiest
->load_per_task
, sds
->avg_load
);
7710 * Avg load of busiest sg can be less and avg load of local sg can
7711 * be greater than avg load across all sgs of sd because avg load
7712 * factors in sg capacity and sgs with smaller group_type are
7713 * skipped when updating the busiest sg:
7715 if (busiest
->avg_load
<= sds
->avg_load
||
7716 local
->avg_load
>= sds
->avg_load
) {
7718 return fix_small_imbalance(env
, sds
);
7722 * If there aren't any idle cpus, avoid creating some.
7724 if (busiest
->group_type
== group_overloaded
&&
7725 local
->group_type
== group_overloaded
) {
7726 load_above_capacity
= busiest
->sum_nr_running
* SCHED_CAPACITY_SCALE
;
7727 if (load_above_capacity
> busiest
->group_capacity
) {
7728 load_above_capacity
-= busiest
->group_capacity
;
7729 load_above_capacity
*= scale_load_down(NICE_0_LOAD
);
7730 load_above_capacity
/= busiest
->group_capacity
;
7732 load_above_capacity
= ~0UL;
7736 * We're trying to get all the cpus to the average_load, so we don't
7737 * want to push ourselves above the average load, nor do we wish to
7738 * reduce the max loaded cpu below the average load. At the same time,
7739 * we also don't want to reduce the group load below the group
7740 * capacity. Thus we look for the minimum possible imbalance.
7742 max_pull
= min(busiest
->avg_load
- sds
->avg_load
, load_above_capacity
);
7744 /* How much load to actually move to equalise the imbalance */
7745 env
->imbalance
= min(
7746 max_pull
* busiest
->group_capacity
,
7747 (sds
->avg_load
- local
->avg_load
) * local
->group_capacity
7748 ) / SCHED_CAPACITY_SCALE
;
7751 * if *imbalance is less than the average load per runnable task
7752 * there is no guarantee that any tasks will be moved so we'll have
7753 * a think about bumping its value to force at least one task to be
7756 if (env
->imbalance
< busiest
->load_per_task
)
7757 return fix_small_imbalance(env
, sds
);
7760 /******* find_busiest_group() helpers end here *********************/
7763 * find_busiest_group - Returns the busiest group within the sched_domain
7764 * if there is an imbalance.
7766 * Also calculates the amount of weighted load which should be moved
7767 * to restore balance.
7769 * @env: The load balancing environment.
7771 * Return: - The busiest group if imbalance exists.
7773 static struct sched_group
*find_busiest_group(struct lb_env
*env
)
7775 struct sg_lb_stats
*local
, *busiest
;
7776 struct sd_lb_stats sds
;
7778 init_sd_lb_stats(&sds
);
7781 * Compute the various statistics relavent for load balancing at
7784 update_sd_lb_stats(env
, &sds
);
7785 local
= &sds
.local_stat
;
7786 busiest
= &sds
.busiest_stat
;
7788 /* ASYM feature bypasses nice load balance check */
7789 if (check_asym_packing(env
, &sds
))
7792 /* There is no busy sibling group to pull tasks from */
7793 if (!sds
.busiest
|| busiest
->sum_nr_running
== 0)
7796 sds
.avg_load
= (SCHED_CAPACITY_SCALE
* sds
.total_load
)
7797 / sds
.total_capacity
;
7800 * If the busiest group is imbalanced the below checks don't
7801 * work because they assume all things are equal, which typically
7802 * isn't true due to cpus_allowed constraints and the like.
7804 if (busiest
->group_type
== group_imbalanced
)
7807 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7808 if (env
->idle
== CPU_NEWLY_IDLE
&& group_has_capacity(env
, local
) &&
7809 busiest
->group_no_capacity
)
7813 * If the local group is busier than the selected busiest group
7814 * don't try and pull any tasks.
7816 if (local
->avg_load
>= busiest
->avg_load
)
7820 * Don't pull any tasks if this group is already above the domain
7823 if (local
->avg_load
>= sds
.avg_load
)
7826 if (env
->idle
== CPU_IDLE
) {
7828 * This cpu is idle. If the busiest group is not overloaded
7829 * and there is no imbalance between this and busiest group
7830 * wrt idle cpus, it is balanced. The imbalance becomes
7831 * significant if the diff is greater than 1 otherwise we
7832 * might end up to just move the imbalance on another group
7834 if ((busiest
->group_type
!= group_overloaded
) &&
7835 (local
->idle_cpus
<= (busiest
->idle_cpus
+ 1)))
7839 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7840 * imbalance_pct to be conservative.
7842 if (100 * busiest
->avg_load
<=
7843 env
->sd
->imbalance_pct
* local
->avg_load
)
7848 /* Looks like there is an imbalance. Compute it */
7849 calculate_imbalance(env
, &sds
);
7858 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7860 static struct rq
*find_busiest_queue(struct lb_env
*env
,
7861 struct sched_group
*group
)
7863 struct rq
*busiest
= NULL
, *rq
;
7864 unsigned long busiest_load
= 0, busiest_capacity
= 1;
7867 for_each_cpu_and(i
, sched_group_cpus(group
), env
->cpus
) {
7868 unsigned long capacity
, wl
;
7872 rt
= fbq_classify_rq(rq
);
7875 * We classify groups/runqueues into three groups:
7876 * - regular: there are !numa tasks
7877 * - remote: there are numa tasks that run on the 'wrong' node
7878 * - all: there is no distinction
7880 * In order to avoid migrating ideally placed numa tasks,
7881 * ignore those when there's better options.
7883 * If we ignore the actual busiest queue to migrate another
7884 * task, the next balance pass can still reduce the busiest
7885 * queue by moving tasks around inside the node.
7887 * If we cannot move enough load due to this classification
7888 * the next pass will adjust the group classification and
7889 * allow migration of more tasks.
7891 * Both cases only affect the total convergence complexity.
7893 if (rt
> env
->fbq_type
)
7896 capacity
= capacity_of(i
);
7898 wl
= weighted_cpuload(i
);
7901 * When comparing with imbalance, use weighted_cpuload()
7902 * which is not scaled with the cpu capacity.
7905 if (rq
->nr_running
== 1 && wl
> env
->imbalance
&&
7906 !check_cpu_capacity(rq
, env
->sd
))
7910 * For the load comparisons with the other cpu's, consider
7911 * the weighted_cpuload() scaled with the cpu capacity, so
7912 * that the load can be moved away from the cpu that is
7913 * potentially running at a lower capacity.
7915 * Thus we're looking for max(wl_i / capacity_i), crosswise
7916 * multiplication to rid ourselves of the division works out
7917 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7918 * our previous maximum.
7920 if (wl
* busiest_capacity
> busiest_load
* capacity
) {
7922 busiest_capacity
= capacity
;
7931 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7932 * so long as it is large enough.
7934 #define MAX_PINNED_INTERVAL 512
7936 static int need_active_balance(struct lb_env
*env
)
7938 struct sched_domain
*sd
= env
->sd
;
7940 if (env
->idle
== CPU_NEWLY_IDLE
) {
7943 * ASYM_PACKING needs to force migrate tasks from busy but
7944 * lower priority CPUs in order to pack all tasks in the
7945 * highest priority CPUs.
7947 if ((sd
->flags
& SD_ASYM_PACKING
) &&
7948 sched_asym_prefer(env
->dst_cpu
, env
->src_cpu
))
7953 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7954 * It's worth migrating the task if the src_cpu's capacity is reduced
7955 * because of other sched_class or IRQs if more capacity stays
7956 * available on dst_cpu.
7958 if ((env
->idle
!= CPU_NOT_IDLE
) &&
7959 (env
->src_rq
->cfs
.h_nr_running
== 1)) {
7960 if ((check_cpu_capacity(env
->src_rq
, sd
)) &&
7961 (capacity_of(env
->src_cpu
)*sd
->imbalance_pct
< capacity_of(env
->dst_cpu
)*100))
7965 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
7968 static int active_load_balance_cpu_stop(void *data
);
7970 static int should_we_balance(struct lb_env
*env
)
7972 struct sched_group
*sg
= env
->sd
->groups
;
7973 struct cpumask
*sg_cpus
, *sg_mask
;
7974 int cpu
, balance_cpu
= -1;
7977 * In the newly idle case, we will allow all the cpu's
7978 * to do the newly idle load balance.
7980 if (env
->idle
== CPU_NEWLY_IDLE
)
7983 sg_cpus
= sched_group_cpus(sg
);
7984 sg_mask
= sched_group_mask(sg
);
7985 /* Try to find first idle cpu */
7986 for_each_cpu_and(cpu
, sg_cpus
, env
->cpus
) {
7987 if (!cpumask_test_cpu(cpu
, sg_mask
) || !idle_cpu(cpu
))
7994 if (balance_cpu
== -1)
7995 balance_cpu
= group_balance_cpu(sg
);
7998 * First idle cpu or the first cpu(busiest) in this sched group
7999 * is eligible for doing load balancing at this and above domains.
8001 return balance_cpu
== env
->dst_cpu
;
8005 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8006 * tasks if there is an imbalance.
8008 static int load_balance(int this_cpu
, struct rq
*this_rq
,
8009 struct sched_domain
*sd
, enum cpu_idle_type idle
,
8010 int *continue_balancing
)
8012 int ld_moved
, cur_ld_moved
, active_balance
= 0;
8013 struct sched_domain
*sd_parent
= sd
->parent
;
8014 struct sched_group
*group
;
8016 unsigned long flags
;
8017 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(load_balance_mask
);
8019 struct lb_env env
= {
8021 .dst_cpu
= this_cpu
,
8023 .dst_grpmask
= sched_group_cpus(sd
->groups
),
8025 .loop_break
= sched_nr_migrate_break
,
8028 .tasks
= LIST_HEAD_INIT(env
.tasks
),
8032 * For NEWLY_IDLE load_balancing, we don't need to consider
8033 * other cpus in our group
8035 if (idle
== CPU_NEWLY_IDLE
)
8036 env
.dst_grpmask
= NULL
;
8038 cpumask_copy(cpus
, cpu_active_mask
);
8040 schedstat_inc(sd
->lb_count
[idle
]);
8043 if (!should_we_balance(&env
)) {
8044 *continue_balancing
= 0;
8048 group
= find_busiest_group(&env
);
8050 schedstat_inc(sd
->lb_nobusyg
[idle
]);
8054 busiest
= find_busiest_queue(&env
, group
);
8056 schedstat_inc(sd
->lb_nobusyq
[idle
]);
8060 BUG_ON(busiest
== env
.dst_rq
);
8062 schedstat_add(sd
->lb_imbalance
[idle
], env
.imbalance
);
8064 env
.src_cpu
= busiest
->cpu
;
8065 env
.src_rq
= busiest
;
8068 if (busiest
->nr_running
> 1) {
8070 * Attempt to move tasks. If find_busiest_group has found
8071 * an imbalance but busiest->nr_running <= 1, the group is
8072 * still unbalanced. ld_moved simply stays zero, so it is
8073 * correctly treated as an imbalance.
8075 env
.flags
|= LBF_ALL_PINNED
;
8076 env
.loop_max
= min(sysctl_sched_nr_migrate
, busiest
->nr_running
);
8079 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
8082 * cur_ld_moved - load moved in current iteration
8083 * ld_moved - cumulative load moved across iterations
8085 cur_ld_moved
= detach_tasks(&env
);
8088 * We've detached some tasks from busiest_rq. Every
8089 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8090 * unlock busiest->lock, and we are able to be sure
8091 * that nobody can manipulate the tasks in parallel.
8092 * See task_rq_lock() family for the details.
8095 raw_spin_unlock(&busiest
->lock
);
8099 ld_moved
+= cur_ld_moved
;
8102 local_irq_restore(flags
);
8104 if (env
.flags
& LBF_NEED_BREAK
) {
8105 env
.flags
&= ~LBF_NEED_BREAK
;
8110 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8111 * us and move them to an alternate dst_cpu in our sched_group
8112 * where they can run. The upper limit on how many times we
8113 * iterate on same src_cpu is dependent on number of cpus in our
8116 * This changes load balance semantics a bit on who can move
8117 * load to a given_cpu. In addition to the given_cpu itself
8118 * (or a ilb_cpu acting on its behalf where given_cpu is
8119 * nohz-idle), we now have balance_cpu in a position to move
8120 * load to given_cpu. In rare situations, this may cause
8121 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8122 * _independently_ and at _same_ time to move some load to
8123 * given_cpu) causing exceess load to be moved to given_cpu.
8124 * This however should not happen so much in practice and
8125 * moreover subsequent load balance cycles should correct the
8126 * excess load moved.
8128 if ((env
.flags
& LBF_DST_PINNED
) && env
.imbalance
> 0) {
8130 /* Prevent to re-select dst_cpu via env's cpus */
8131 cpumask_clear_cpu(env
.dst_cpu
, env
.cpus
);
8133 env
.dst_rq
= cpu_rq(env
.new_dst_cpu
);
8134 env
.dst_cpu
= env
.new_dst_cpu
;
8135 env
.flags
&= ~LBF_DST_PINNED
;
8137 env
.loop_break
= sched_nr_migrate_break
;
8140 * Go back to "more_balance" rather than "redo" since we
8141 * need to continue with same src_cpu.
8147 * We failed to reach balance because of affinity.
8150 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
8152 if ((env
.flags
& LBF_SOME_PINNED
) && env
.imbalance
> 0)
8153 *group_imbalance
= 1;
8156 /* All tasks on this runqueue were pinned by CPU affinity */
8157 if (unlikely(env
.flags
& LBF_ALL_PINNED
)) {
8158 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
8159 if (!cpumask_empty(cpus
)) {
8161 env
.loop_break
= sched_nr_migrate_break
;
8164 goto out_all_pinned
;
8169 schedstat_inc(sd
->lb_failed
[idle
]);
8171 * Increment the failure counter only on periodic balance.
8172 * We do not want newidle balance, which can be very
8173 * frequent, pollute the failure counter causing
8174 * excessive cache_hot migrations and active balances.
8176 if (idle
!= CPU_NEWLY_IDLE
)
8177 sd
->nr_balance_failed
++;
8179 if (need_active_balance(&env
)) {
8180 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
8182 /* don't kick the active_load_balance_cpu_stop,
8183 * if the curr task on busiest cpu can't be
8186 if (!cpumask_test_cpu(this_cpu
,
8187 tsk_cpus_allowed(busiest
->curr
))) {
8188 raw_spin_unlock_irqrestore(&busiest
->lock
,
8190 env
.flags
|= LBF_ALL_PINNED
;
8191 goto out_one_pinned
;
8195 * ->active_balance synchronizes accesses to
8196 * ->active_balance_work. Once set, it's cleared
8197 * only after active load balance is finished.
8199 if (!busiest
->active_balance
) {
8200 busiest
->active_balance
= 1;
8201 busiest
->push_cpu
= this_cpu
;
8204 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
8206 if (active_balance
) {
8207 stop_one_cpu_nowait(cpu_of(busiest
),
8208 active_load_balance_cpu_stop
, busiest
,
8209 &busiest
->active_balance_work
);
8212 /* We've kicked active balancing, force task migration. */
8213 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
8216 sd
->nr_balance_failed
= 0;
8218 if (likely(!active_balance
)) {
8219 /* We were unbalanced, so reset the balancing interval */
8220 sd
->balance_interval
= sd
->min_interval
;
8223 * If we've begun active balancing, start to back off. This
8224 * case may not be covered by the all_pinned logic if there
8225 * is only 1 task on the busy runqueue (because we don't call
8228 if (sd
->balance_interval
< sd
->max_interval
)
8229 sd
->balance_interval
*= 2;
8236 * We reach balance although we may have faced some affinity
8237 * constraints. Clear the imbalance flag if it was set.
8240 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
8242 if (*group_imbalance
)
8243 *group_imbalance
= 0;
8248 * We reach balance because all tasks are pinned at this level so
8249 * we can't migrate them. Let the imbalance flag set so parent level
8250 * can try to migrate them.
8252 schedstat_inc(sd
->lb_balanced
[idle
]);
8254 sd
->nr_balance_failed
= 0;
8257 /* tune up the balancing interval */
8258 if (((env
.flags
& LBF_ALL_PINNED
) &&
8259 sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
8260 (sd
->balance_interval
< sd
->max_interval
))
8261 sd
->balance_interval
*= 2;
8268 static inline unsigned long
8269 get_sd_balance_interval(struct sched_domain
*sd
, int cpu_busy
)
8271 unsigned long interval
= sd
->balance_interval
;
8274 interval
*= sd
->busy_factor
;
8276 /* scale ms to jiffies */
8277 interval
= msecs_to_jiffies(interval
);
8278 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
8284 update_next_balance(struct sched_domain
*sd
, unsigned long *next_balance
)
8286 unsigned long interval
, next
;
8288 /* used by idle balance, so cpu_busy = 0 */
8289 interval
= get_sd_balance_interval(sd
, 0);
8290 next
= sd
->last_balance
+ interval
;
8292 if (time_after(*next_balance
, next
))
8293 *next_balance
= next
;
8297 * idle_balance is called by schedule() if this_cpu is about to become
8298 * idle. Attempts to pull tasks from other CPUs.
8300 static int idle_balance(struct rq
*this_rq
)
8302 unsigned long next_balance
= jiffies
+ HZ
;
8303 int this_cpu
= this_rq
->cpu
;
8304 struct sched_domain
*sd
;
8305 int pulled_task
= 0;
8309 * We must set idle_stamp _before_ calling idle_balance(), such that we
8310 * measure the duration of idle_balance() as idle time.
8312 this_rq
->idle_stamp
= rq_clock(this_rq
);
8314 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
||
8315 !this_rq
->rd
->overload
) {
8317 sd
= rcu_dereference_check_sched_domain(this_rq
->sd
);
8319 update_next_balance(sd
, &next_balance
);
8325 raw_spin_unlock(&this_rq
->lock
);
8327 update_blocked_averages(this_cpu
);
8329 for_each_domain(this_cpu
, sd
) {
8330 int continue_balancing
= 1;
8331 u64 t0
, domain_cost
;
8333 if (!(sd
->flags
& SD_LOAD_BALANCE
))
8336 if (this_rq
->avg_idle
< curr_cost
+ sd
->max_newidle_lb_cost
) {
8337 update_next_balance(sd
, &next_balance
);
8341 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
8342 t0
= sched_clock_cpu(this_cpu
);
8344 pulled_task
= load_balance(this_cpu
, this_rq
,
8346 &continue_balancing
);
8348 domain_cost
= sched_clock_cpu(this_cpu
) - t0
;
8349 if (domain_cost
> sd
->max_newidle_lb_cost
)
8350 sd
->max_newidle_lb_cost
= domain_cost
;
8352 curr_cost
+= domain_cost
;
8355 update_next_balance(sd
, &next_balance
);
8358 * Stop searching for tasks to pull if there are
8359 * now runnable tasks on this rq.
8361 if (pulled_task
|| this_rq
->nr_running
> 0)
8366 raw_spin_lock(&this_rq
->lock
);
8368 if (curr_cost
> this_rq
->max_idle_balance_cost
)
8369 this_rq
->max_idle_balance_cost
= curr_cost
;
8372 * While browsing the domains, we released the rq lock, a task could
8373 * have been enqueued in the meantime. Since we're not going idle,
8374 * pretend we pulled a task.
8376 if (this_rq
->cfs
.h_nr_running
&& !pulled_task
)
8380 /* Move the next balance forward */
8381 if (time_after(this_rq
->next_balance
, next_balance
))
8382 this_rq
->next_balance
= next_balance
;
8384 /* Is there a task of a high priority class? */
8385 if (this_rq
->nr_running
!= this_rq
->cfs
.h_nr_running
)
8389 this_rq
->idle_stamp
= 0;
8395 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8396 * running tasks off the busiest CPU onto idle CPUs. It requires at
8397 * least 1 task to be running on each physical CPU where possible, and
8398 * avoids physical / logical imbalances.
8400 static int active_load_balance_cpu_stop(void *data
)
8402 struct rq
*busiest_rq
= data
;
8403 int busiest_cpu
= cpu_of(busiest_rq
);
8404 int target_cpu
= busiest_rq
->push_cpu
;
8405 struct rq
*target_rq
= cpu_rq(target_cpu
);
8406 struct sched_domain
*sd
;
8407 struct task_struct
*p
= NULL
;
8409 raw_spin_lock_irq(&busiest_rq
->lock
);
8411 /* make sure the requested cpu hasn't gone down in the meantime */
8412 if (unlikely(busiest_cpu
!= smp_processor_id() ||
8413 !busiest_rq
->active_balance
))
8416 /* Is there any task to move? */
8417 if (busiest_rq
->nr_running
<= 1)
8421 * This condition is "impossible", if it occurs
8422 * we need to fix it. Originally reported by
8423 * Bjorn Helgaas on a 128-cpu setup.
8425 BUG_ON(busiest_rq
== target_rq
);
8427 /* Search for an sd spanning us and the target CPU. */
8429 for_each_domain(target_cpu
, sd
) {
8430 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
8431 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
8436 struct lb_env env
= {
8438 .dst_cpu
= target_cpu
,
8439 .dst_rq
= target_rq
,
8440 .src_cpu
= busiest_rq
->cpu
,
8441 .src_rq
= busiest_rq
,
8445 schedstat_inc(sd
->alb_count
);
8447 p
= detach_one_task(&env
);
8449 schedstat_inc(sd
->alb_pushed
);
8450 /* Active balancing done, reset the failure counter. */
8451 sd
->nr_balance_failed
= 0;
8453 schedstat_inc(sd
->alb_failed
);
8458 busiest_rq
->active_balance
= 0;
8459 raw_spin_unlock(&busiest_rq
->lock
);
8462 attach_one_task(target_rq
, p
);
8469 static inline int on_null_domain(struct rq
*rq
)
8471 return unlikely(!rcu_dereference_sched(rq
->sd
));
8474 #ifdef CONFIG_NO_HZ_COMMON
8476 * idle load balancing details
8477 * - When one of the busy CPUs notice that there may be an idle rebalancing
8478 * needed, they will kick the idle load balancer, which then does idle
8479 * load balancing for all the idle CPUs.
8482 cpumask_var_t idle_cpus_mask
;
8484 unsigned long next_balance
; /* in jiffy units */
8485 } nohz ____cacheline_aligned
;
8487 static inline int find_new_ilb(void)
8489 int ilb
= cpumask_first(nohz
.idle_cpus_mask
);
8491 if (ilb
< nr_cpu_ids
&& idle_cpu(ilb
))
8498 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8499 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8500 * CPU (if there is one).
8502 static void nohz_balancer_kick(void)
8506 nohz
.next_balance
++;
8508 ilb_cpu
= find_new_ilb();
8510 if (ilb_cpu
>= nr_cpu_ids
)
8513 if (test_and_set_bit(NOHZ_BALANCE_KICK
, nohz_flags(ilb_cpu
)))
8516 * Use smp_send_reschedule() instead of resched_cpu().
8517 * This way we generate a sched IPI on the target cpu which
8518 * is idle. And the softirq performing nohz idle load balance
8519 * will be run before returning from the IPI.
8521 smp_send_reschedule(ilb_cpu
);
8525 void nohz_balance_exit_idle(unsigned int cpu
)
8527 if (unlikely(test_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
)))) {
8529 * Completely isolated CPUs don't ever set, so we must test.
8531 if (likely(cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))) {
8532 cpumask_clear_cpu(cpu
, nohz
.idle_cpus_mask
);
8533 atomic_dec(&nohz
.nr_cpus
);
8535 clear_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
));
8539 static inline void set_cpu_sd_state_busy(void)
8541 struct sched_domain
*sd
;
8542 int cpu
= smp_processor_id();
8545 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
8547 if (!sd
|| !sd
->nohz_idle
)
8551 atomic_inc(&sd
->shared
->nr_busy_cpus
);
8556 void set_cpu_sd_state_idle(void)
8558 struct sched_domain
*sd
;
8559 int cpu
= smp_processor_id();
8562 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
8564 if (!sd
|| sd
->nohz_idle
)
8568 atomic_dec(&sd
->shared
->nr_busy_cpus
);
8574 * This routine will record that the cpu is going idle with tick stopped.
8575 * This info will be used in performing idle load balancing in the future.
8577 void nohz_balance_enter_idle(int cpu
)
8580 * If this cpu is going down, then nothing needs to be done.
8582 if (!cpu_active(cpu
))
8585 if (test_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
)))
8589 * If we're a completely isolated CPU, we don't play.
8591 if (on_null_domain(cpu_rq(cpu
)))
8594 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
8595 atomic_inc(&nohz
.nr_cpus
);
8596 set_bit(NOHZ_TICK_STOPPED
, nohz_flags(cpu
));
8600 static DEFINE_SPINLOCK(balancing
);
8603 * Scale the max load_balance interval with the number of CPUs in the system.
8604 * This trades load-balance latency on larger machines for less cross talk.
8606 void update_max_interval(void)
8608 max_load_balance_interval
= HZ
*num_online_cpus()/10;
8612 * It checks each scheduling domain to see if it is due to be balanced,
8613 * and initiates a balancing operation if so.
8615 * Balancing parameters are set up in init_sched_domains.
8617 static void rebalance_domains(struct rq
*rq
, enum cpu_idle_type idle
)
8619 int continue_balancing
= 1;
8621 unsigned long interval
;
8622 struct sched_domain
*sd
;
8623 /* Earliest time when we have to do rebalance again */
8624 unsigned long next_balance
= jiffies
+ 60*HZ
;
8625 int update_next_balance
= 0;
8626 int need_serialize
, need_decay
= 0;
8629 update_blocked_averages(cpu
);
8632 for_each_domain(cpu
, sd
) {
8634 * Decay the newidle max times here because this is a regular
8635 * visit to all the domains. Decay ~1% per second.
8637 if (time_after(jiffies
, sd
->next_decay_max_lb_cost
)) {
8638 sd
->max_newidle_lb_cost
=
8639 (sd
->max_newidle_lb_cost
* 253) / 256;
8640 sd
->next_decay_max_lb_cost
= jiffies
+ HZ
;
8643 max_cost
+= sd
->max_newidle_lb_cost
;
8645 if (!(sd
->flags
& SD_LOAD_BALANCE
))
8649 * Stop the load balance at this level. There is another
8650 * CPU in our sched group which is doing load balancing more
8653 if (!continue_balancing
) {
8659 interval
= get_sd_balance_interval(sd
, idle
!= CPU_IDLE
);
8661 need_serialize
= sd
->flags
& SD_SERIALIZE
;
8662 if (need_serialize
) {
8663 if (!spin_trylock(&balancing
))
8667 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
8668 if (load_balance(cpu
, rq
, sd
, idle
, &continue_balancing
)) {
8670 * The LBF_DST_PINNED logic could have changed
8671 * env->dst_cpu, so we can't know our idle
8672 * state even if we migrated tasks. Update it.
8674 idle
= idle_cpu(cpu
) ? CPU_IDLE
: CPU_NOT_IDLE
;
8676 sd
->last_balance
= jiffies
;
8677 interval
= get_sd_balance_interval(sd
, idle
!= CPU_IDLE
);
8680 spin_unlock(&balancing
);
8682 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
8683 next_balance
= sd
->last_balance
+ interval
;
8684 update_next_balance
= 1;
8689 * Ensure the rq-wide value also decays but keep it at a
8690 * reasonable floor to avoid funnies with rq->avg_idle.
8692 rq
->max_idle_balance_cost
=
8693 max((u64
)sysctl_sched_migration_cost
, max_cost
);
8698 * next_balance will be updated only when there is a need.
8699 * When the cpu is attached to null domain for ex, it will not be
8702 if (likely(update_next_balance
)) {
8703 rq
->next_balance
= next_balance
;
8705 #ifdef CONFIG_NO_HZ_COMMON
8707 * If this CPU has been elected to perform the nohz idle
8708 * balance. Other idle CPUs have already rebalanced with
8709 * nohz_idle_balance() and nohz.next_balance has been
8710 * updated accordingly. This CPU is now running the idle load
8711 * balance for itself and we need to update the
8712 * nohz.next_balance accordingly.
8714 if ((idle
== CPU_IDLE
) && time_after(nohz
.next_balance
, rq
->next_balance
))
8715 nohz
.next_balance
= rq
->next_balance
;
8720 #ifdef CONFIG_NO_HZ_COMMON
8722 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8723 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8725 static void nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
8727 int this_cpu
= this_rq
->cpu
;
8730 /* Earliest time when we have to do rebalance again */
8731 unsigned long next_balance
= jiffies
+ 60*HZ
;
8732 int update_next_balance
= 0;
8734 if (idle
!= CPU_IDLE
||
8735 !test_bit(NOHZ_BALANCE_KICK
, nohz_flags(this_cpu
)))
8738 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
8739 if (balance_cpu
== this_cpu
|| !idle_cpu(balance_cpu
))
8743 * If this cpu gets work to do, stop the load balancing
8744 * work being done for other cpus. Next load
8745 * balancing owner will pick it up.
8750 rq
= cpu_rq(balance_cpu
);
8753 * If time for next balance is due,
8756 if (time_after_eq(jiffies
, rq
->next_balance
)) {
8757 raw_spin_lock_irq(&rq
->lock
);
8758 update_rq_clock(rq
);
8759 cpu_load_update_idle(rq
);
8760 raw_spin_unlock_irq(&rq
->lock
);
8761 rebalance_domains(rq
, CPU_IDLE
);
8764 if (time_after(next_balance
, rq
->next_balance
)) {
8765 next_balance
= rq
->next_balance
;
8766 update_next_balance
= 1;
8771 * next_balance will be updated only when there is a need.
8772 * When the CPU is attached to null domain for ex, it will not be
8775 if (likely(update_next_balance
))
8776 nohz
.next_balance
= next_balance
;
8778 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(this_cpu
));
8782 * Current heuristic for kicking the idle load balancer in the presence
8783 * of an idle cpu in the system.
8784 * - This rq has more than one task.
8785 * - This rq has at least one CFS task and the capacity of the CPU is
8786 * significantly reduced because of RT tasks or IRQs.
8787 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8788 * multiple busy cpu.
8789 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8790 * domain span are idle.
8792 static inline bool nohz_kick_needed(struct rq
*rq
)
8794 unsigned long now
= jiffies
;
8795 struct sched_domain_shared
*sds
;
8796 struct sched_domain
*sd
;
8797 int nr_busy
, i
, cpu
= rq
->cpu
;
8800 if (unlikely(rq
->idle_balance
))
8804 * We may be recently in ticked or tickless idle mode. At the first
8805 * busy tick after returning from idle, we will update the busy stats.
8807 set_cpu_sd_state_busy();
8808 nohz_balance_exit_idle(cpu
);
8811 * None are in tickless mode and hence no need for NOHZ idle load
8814 if (likely(!atomic_read(&nohz
.nr_cpus
)))
8817 if (time_before(now
, nohz
.next_balance
))
8820 if (rq
->nr_running
>= 2)
8824 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
8827 * XXX: write a coherent comment on why we do this.
8828 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8830 nr_busy
= atomic_read(&sds
->nr_busy_cpus
);
8838 sd
= rcu_dereference(rq
->sd
);
8840 if ((rq
->cfs
.h_nr_running
>= 1) &&
8841 check_cpu_capacity(rq
, sd
)) {
8847 sd
= rcu_dereference(per_cpu(sd_asym
, cpu
));
8849 for_each_cpu(i
, sched_domain_span(sd
)) {
8851 !cpumask_test_cpu(i
, nohz
.idle_cpus_mask
))
8854 if (sched_asym_prefer(i
, cpu
)) {
8865 static void nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
) { }
8869 * run_rebalance_domains is triggered when needed from the scheduler tick.
8870 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8872 static __latent_entropy
void run_rebalance_domains(struct softirq_action
*h
)
8874 struct rq
*this_rq
= this_rq();
8875 enum cpu_idle_type idle
= this_rq
->idle_balance
?
8876 CPU_IDLE
: CPU_NOT_IDLE
;
8879 * If this cpu has a pending nohz_balance_kick, then do the
8880 * balancing on behalf of the other idle cpus whose ticks are
8881 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8882 * give the idle cpus a chance to load balance. Else we may
8883 * load balance only within the local sched_domain hierarchy
8884 * and abort nohz_idle_balance altogether if we pull some load.
8886 nohz_idle_balance(this_rq
, idle
);
8887 rebalance_domains(this_rq
, idle
);
8891 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8893 void trigger_load_balance(struct rq
*rq
)
8895 /* Don't need to rebalance while attached to NULL domain */
8896 if (unlikely(on_null_domain(rq
)))
8899 if (time_after_eq(jiffies
, rq
->next_balance
))
8900 raise_softirq(SCHED_SOFTIRQ
);
8901 #ifdef CONFIG_NO_HZ_COMMON
8902 if (nohz_kick_needed(rq
))
8903 nohz_balancer_kick();
8907 static void rq_online_fair(struct rq
*rq
)
8911 update_runtime_enabled(rq
);
8914 static void rq_offline_fair(struct rq
*rq
)
8918 /* Ensure any throttled groups are reachable by pick_next_task */
8919 unthrottle_offline_cfs_rqs(rq
);
8922 #endif /* CONFIG_SMP */
8925 * scheduler tick hitting a task of our scheduling class:
8927 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
8929 struct cfs_rq
*cfs_rq
;
8930 struct sched_entity
*se
= &curr
->se
;
8932 for_each_sched_entity(se
) {
8933 cfs_rq
= cfs_rq_of(se
);
8934 entity_tick(cfs_rq
, se
, queued
);
8937 if (static_branch_unlikely(&sched_numa_balancing
))
8938 task_tick_numa(rq
, curr
);
8942 * called on fork with the child task as argument from the parent's context
8943 * - child not yet on the tasklist
8944 * - preemption disabled
8946 static void task_fork_fair(struct task_struct
*p
)
8948 struct cfs_rq
*cfs_rq
;
8949 struct sched_entity
*se
= &p
->se
, *curr
;
8950 struct rq
*rq
= this_rq();
8952 raw_spin_lock(&rq
->lock
);
8953 update_rq_clock(rq
);
8955 cfs_rq
= task_cfs_rq(current
);
8956 curr
= cfs_rq
->curr
;
8958 update_curr(cfs_rq
);
8959 se
->vruntime
= curr
->vruntime
;
8961 place_entity(cfs_rq
, se
, 1);
8963 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
8965 * Upon rescheduling, sched_class::put_prev_task() will place
8966 * 'current' within the tree based on its new key value.
8968 swap(curr
->vruntime
, se
->vruntime
);
8972 se
->vruntime
-= cfs_rq
->min_vruntime
;
8973 raw_spin_unlock(&rq
->lock
);
8977 * Priority of the task has changed. Check to see if we preempt
8981 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
8983 if (!task_on_rq_queued(p
))
8987 * Reschedule if we are currently running on this runqueue and
8988 * our priority decreased, or if we are not currently running on
8989 * this runqueue and our priority is higher than the current's
8991 if (rq
->curr
== p
) {
8992 if (p
->prio
> oldprio
)
8995 check_preempt_curr(rq
, p
, 0);
8998 static inline bool vruntime_normalized(struct task_struct
*p
)
9000 struct sched_entity
*se
= &p
->se
;
9003 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9004 * the dequeue_entity(.flags=0) will already have normalized the
9011 * When !on_rq, vruntime of the task has usually NOT been normalized.
9012 * But there are some cases where it has already been normalized:
9014 * - A forked child which is waiting for being woken up by
9015 * wake_up_new_task().
9016 * - A task which has been woken up by try_to_wake_up() and
9017 * waiting for actually being woken up by sched_ttwu_pending().
9019 if (!se
->sum_exec_runtime
|| p
->state
== TASK_WAKING
)
9025 #ifdef CONFIG_FAIR_GROUP_SCHED
9027 * Propagate the changes of the sched_entity across the tg tree to make it
9028 * visible to the root
9030 static void propagate_entity_cfs_rq(struct sched_entity
*se
)
9032 struct cfs_rq
*cfs_rq
;
9034 /* Start to propagate at parent */
9037 for_each_sched_entity(se
) {
9038 cfs_rq
= cfs_rq_of(se
);
9040 if (cfs_rq_throttled(cfs_rq
))
9043 update_load_avg(se
, UPDATE_TG
);
9047 static void propagate_entity_cfs_rq(struct sched_entity
*se
) { }
9050 static void detach_entity_cfs_rq(struct sched_entity
*se
)
9052 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9054 /* Catch up with the cfs_rq and remove our load when we leave */
9055 update_load_avg(se
, 0);
9056 detach_entity_load_avg(cfs_rq
, se
);
9057 update_tg_load_avg(cfs_rq
, false);
9058 propagate_entity_cfs_rq(se
);
9061 static void attach_entity_cfs_rq(struct sched_entity
*se
)
9063 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9065 #ifdef CONFIG_FAIR_GROUP_SCHED
9067 * Since the real-depth could have been changed (only FAIR
9068 * class maintain depth value), reset depth properly.
9070 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
9073 /* Synchronize entity with its cfs_rq */
9074 update_load_avg(se
, sched_feat(ATTACH_AGE_LOAD
) ? 0 : SKIP_AGE_LOAD
);
9075 attach_entity_load_avg(cfs_rq
, se
);
9076 update_tg_load_avg(cfs_rq
, false);
9077 propagate_entity_cfs_rq(se
);
9080 static void detach_task_cfs_rq(struct task_struct
*p
)
9082 struct sched_entity
*se
= &p
->se
;
9083 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9085 if (!vruntime_normalized(p
)) {
9087 * Fix up our vruntime so that the current sleep doesn't
9088 * cause 'unlimited' sleep bonus.
9090 place_entity(cfs_rq
, se
, 0);
9091 se
->vruntime
-= cfs_rq
->min_vruntime
;
9094 detach_entity_cfs_rq(se
);
9097 static void attach_task_cfs_rq(struct task_struct
*p
)
9099 struct sched_entity
*se
= &p
->se
;
9100 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9102 attach_entity_cfs_rq(se
);
9104 if (!vruntime_normalized(p
))
9105 se
->vruntime
+= cfs_rq
->min_vruntime
;
9108 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
9110 detach_task_cfs_rq(p
);
9113 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
9115 attach_task_cfs_rq(p
);
9117 if (task_on_rq_queued(p
)) {
9119 * We were most likely switched from sched_rt, so
9120 * kick off the schedule if running, otherwise just see
9121 * if we can still preempt the current task.
9126 check_preempt_curr(rq
, p
, 0);
9130 /* Account for a task changing its policy or group.
9132 * This routine is mostly called to set cfs_rq->curr field when a task
9133 * migrates between groups/classes.
9135 static void set_curr_task_fair(struct rq
*rq
)
9137 struct sched_entity
*se
= &rq
->curr
->se
;
9139 for_each_sched_entity(se
) {
9140 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9142 set_next_entity(cfs_rq
, se
);
9143 /* ensure bandwidth has been allocated on our new cfs_rq */
9144 account_cfs_rq_runtime(cfs_rq
, 0);
9148 void init_cfs_rq(struct cfs_rq
*cfs_rq
)
9150 cfs_rq
->tasks_timeline
= RB_ROOT
;
9151 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
9152 #ifndef CONFIG_64BIT
9153 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
9156 #ifdef CONFIG_FAIR_GROUP_SCHED
9157 cfs_rq
->propagate_avg
= 0;
9159 atomic_long_set(&cfs_rq
->removed_load_avg
, 0);
9160 atomic_long_set(&cfs_rq
->removed_util_avg
, 0);
9164 #ifdef CONFIG_FAIR_GROUP_SCHED
9165 static void task_set_group_fair(struct task_struct
*p
)
9167 struct sched_entity
*se
= &p
->se
;
9169 set_task_rq(p
, task_cpu(p
));
9170 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
9173 static void task_move_group_fair(struct task_struct
*p
)
9175 detach_task_cfs_rq(p
);
9176 set_task_rq(p
, task_cpu(p
));
9179 /* Tell se's cfs_rq has been changed -- migrated */
9180 p
->se
.avg
.last_update_time
= 0;
9182 attach_task_cfs_rq(p
);
9185 static void task_change_group_fair(struct task_struct
*p
, int type
)
9188 case TASK_SET_GROUP
:
9189 task_set_group_fair(p
);
9192 case TASK_MOVE_GROUP
:
9193 task_move_group_fair(p
);
9198 void free_fair_sched_group(struct task_group
*tg
)
9202 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
9204 for_each_possible_cpu(i
) {
9206 kfree(tg
->cfs_rq
[i
]);
9215 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9217 struct sched_entity
*se
;
9218 struct cfs_rq
*cfs_rq
;
9221 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9224 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
9228 tg
->shares
= NICE_0_LOAD
;
9230 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
9232 for_each_possible_cpu(i
) {
9233 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
9234 GFP_KERNEL
, cpu_to_node(i
));
9238 se
= kzalloc_node(sizeof(struct sched_entity
),
9239 GFP_KERNEL
, cpu_to_node(i
));
9243 init_cfs_rq(cfs_rq
);
9244 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
9245 init_entity_runnable_average(se
);
9256 void online_fair_sched_group(struct task_group
*tg
)
9258 struct sched_entity
*se
;
9262 for_each_possible_cpu(i
) {
9266 raw_spin_lock_irq(&rq
->lock
);
9267 attach_entity_cfs_rq(se
);
9268 sync_throttle(tg
, i
);
9269 raw_spin_unlock_irq(&rq
->lock
);
9273 void unregister_fair_sched_group(struct task_group
*tg
)
9275 unsigned long flags
;
9279 for_each_possible_cpu(cpu
) {
9281 remove_entity_load_avg(tg
->se
[cpu
]);
9284 * Only empty task groups can be destroyed; so we can speculatively
9285 * check on_list without danger of it being re-added.
9287 if (!tg
->cfs_rq
[cpu
]->on_list
)
9292 raw_spin_lock_irqsave(&rq
->lock
, flags
);
9293 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
9294 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
9298 void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
9299 struct sched_entity
*se
, int cpu
,
9300 struct sched_entity
*parent
)
9302 struct rq
*rq
= cpu_rq(cpu
);
9306 init_cfs_rq_runtime(cfs_rq
);
9308 tg
->cfs_rq
[cpu
] = cfs_rq
;
9311 /* se could be NULL for root_task_group */
9316 se
->cfs_rq
= &rq
->cfs
;
9319 se
->cfs_rq
= parent
->my_q
;
9320 se
->depth
= parent
->depth
+ 1;
9324 /* guarantee group entities always have weight */
9325 update_load_set(&se
->load
, NICE_0_LOAD
);
9326 se
->parent
= parent
;
9329 static DEFINE_MUTEX(shares_mutex
);
9331 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
9334 unsigned long flags
;
9337 * We can't change the weight of the root cgroup.
9342 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
9344 mutex_lock(&shares_mutex
);
9345 if (tg
->shares
== shares
)
9348 tg
->shares
= shares
;
9349 for_each_possible_cpu(i
) {
9350 struct rq
*rq
= cpu_rq(i
);
9351 struct sched_entity
*se
;
9354 /* Propagate contribution to hierarchy */
9355 raw_spin_lock_irqsave(&rq
->lock
, flags
);
9357 /* Possible calls to update_curr() need rq clock */
9358 update_rq_clock(rq
);
9359 for_each_sched_entity(se
)
9360 update_cfs_shares(group_cfs_rq(se
));
9361 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
9365 mutex_unlock(&shares_mutex
);
9368 #else /* CONFIG_FAIR_GROUP_SCHED */
9370 void free_fair_sched_group(struct task_group
*tg
) { }
9372 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9377 void online_fair_sched_group(struct task_group
*tg
) { }
9379 void unregister_fair_sched_group(struct task_group
*tg
) { }
9381 #endif /* CONFIG_FAIR_GROUP_SCHED */
9384 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
9386 struct sched_entity
*se
= &task
->se
;
9387 unsigned int rr_interval
= 0;
9390 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9393 if (rq
->cfs
.load
.weight
)
9394 rr_interval
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
9400 * All the scheduling class methods:
9402 const struct sched_class fair_sched_class
= {
9403 .next
= &idle_sched_class
,
9404 .enqueue_task
= enqueue_task_fair
,
9405 .dequeue_task
= dequeue_task_fair
,
9406 .yield_task
= yield_task_fair
,
9407 .yield_to_task
= yield_to_task_fair
,
9409 .check_preempt_curr
= check_preempt_wakeup
,
9411 .pick_next_task
= pick_next_task_fair
,
9412 .put_prev_task
= put_prev_task_fair
,
9415 .select_task_rq
= select_task_rq_fair
,
9416 .migrate_task_rq
= migrate_task_rq_fair
,
9418 .rq_online
= rq_online_fair
,
9419 .rq_offline
= rq_offline_fair
,
9421 .task_dead
= task_dead_fair
,
9422 .set_cpus_allowed
= set_cpus_allowed_common
,
9425 .set_curr_task
= set_curr_task_fair
,
9426 .task_tick
= task_tick_fair
,
9427 .task_fork
= task_fork_fair
,
9429 .prio_changed
= prio_changed_fair
,
9430 .switched_from
= switched_from_fair
,
9431 .switched_to
= switched_to_fair
,
9433 .get_rr_interval
= get_rr_interval_fair
,
9435 .update_curr
= update_curr_fair
,
9437 #ifdef CONFIG_FAIR_GROUP_SCHED
9438 .task_change_group
= task_change_group_fair
,
9442 #ifdef CONFIG_SCHED_DEBUG
9443 void print_cfs_stats(struct seq_file
*m
, int cpu
)
9445 struct cfs_rq
*cfs_rq
;
9448 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
9449 print_cfs_rq(m
, cpu
, cfs_rq
);
9453 #ifdef CONFIG_NUMA_BALANCING
9454 void show_numa_stats(struct task_struct
*p
, struct seq_file
*m
)
9457 unsigned long tsf
= 0, tpf
= 0, gsf
= 0, gpf
= 0;
9459 for_each_online_node(node
) {
9460 if (p
->numa_faults
) {
9461 tsf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
9462 tpf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
9464 if (p
->numa_group
) {
9465 gsf
= p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)],
9466 gpf
= p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
9468 print_numa_stats(m
, node
, tsf
, tpf
, gsf
, gpf
);
9471 #endif /* CONFIG_NUMA_BALANCING */
9472 #endif /* CONFIG_SCHED_DEBUG */
9474 __init
void init_sched_fair_class(void)
9477 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
9479 #ifdef CONFIG_NO_HZ_COMMON
9480 nohz
.next_balance
= jiffies
;
9481 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);