4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
45 static void free_swap_count_continuations(struct swap_info_struct
*);
46 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
48 DEFINE_SPINLOCK(swap_lock
);
49 static unsigned int nr_swapfiles
;
50 atomic_long_t nr_swap_pages
;
52 * Some modules use swappable objects and may try to swap them out under
53 * memory pressure (via the shrinker). Before doing so, they may wish to
54 * check to see if any swap space is available.
56 EXPORT_SYMBOL_GPL(nr_swap_pages
);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages
;
59 static int least_priority
;
61 static const char Bad_file
[] = "Bad swap file entry ";
62 static const char Unused_file
[] = "Unused swap file entry ";
63 static const char Bad_offset
[] = "Bad swap offset entry ";
64 static const char Unused_offset
[] = "Unused swap offset entry ";
67 * all active swap_info_structs
68 * protected with swap_lock, and ordered by priority.
70 PLIST_HEAD(swap_active_head
);
73 * all available (active, not full) swap_info_structs
74 * protected with swap_avail_lock, ordered by priority.
75 * This is used by get_swap_page() instead of swap_active_head
76 * because swap_active_head includes all swap_info_structs,
77 * but get_swap_page() doesn't need to look at full ones.
78 * This uses its own lock instead of swap_lock because when a
79 * swap_info_struct changes between not-full/full, it needs to
80 * add/remove itself to/from this list, but the swap_info_struct->lock
81 * is held and the locking order requires swap_lock to be taken
82 * before any swap_info_struct->lock.
84 static PLIST_HEAD(swap_avail_head
);
85 static DEFINE_SPINLOCK(swap_avail_lock
);
87 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
89 static DEFINE_MUTEX(swapon_mutex
);
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
95 static inline unsigned char swap_count(unsigned char ent
)
97 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
100 /* returns 1 if swap entry is freed */
102 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
104 swp_entry_t entry
= swp_entry(si
->type
, offset
);
108 page
= find_get_page(swap_address_space(entry
), swp_offset(entry
));
112 * This function is called from scan_swap_map() and it's called
113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 * We have to use trylock for avoiding deadlock. This is a special
115 * case and you should use try_to_free_swap() with explicit lock_page()
116 * in usual operations.
118 if (trylock_page(page
)) {
119 ret
= try_to_free_swap(page
);
127 * swapon tell device that all the old swap contents can be discarded,
128 * to allow the swap device to optimize its wear-levelling.
130 static int discard_swap(struct swap_info_struct
*si
)
132 struct swap_extent
*se
;
133 sector_t start_block
;
137 /* Do not discard the swap header page! */
138 se
= &si
->first_swap_extent
;
139 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
140 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
142 err
= blkdev_issue_discard(si
->bdev
, start_block
,
143 nr_blocks
, GFP_KERNEL
, 0);
149 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
150 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
151 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
153 err
= blkdev_issue_discard(si
->bdev
, start_block
,
154 nr_blocks
, GFP_KERNEL
, 0);
160 return err
; /* That will often be -EOPNOTSUPP */
164 * swap allocation tell device that a cluster of swap can now be discarded,
165 * to allow the swap device to optimize its wear-levelling.
167 static void discard_swap_cluster(struct swap_info_struct
*si
,
168 pgoff_t start_page
, pgoff_t nr_pages
)
170 struct swap_extent
*se
= si
->curr_swap_extent
;
171 int found_extent
= 0;
174 if (se
->start_page
<= start_page
&&
175 start_page
< se
->start_page
+ se
->nr_pages
) {
176 pgoff_t offset
= start_page
- se
->start_page
;
177 sector_t start_block
= se
->start_block
+ offset
;
178 sector_t nr_blocks
= se
->nr_pages
- offset
;
180 if (nr_blocks
> nr_pages
)
181 nr_blocks
= nr_pages
;
182 start_page
+= nr_blocks
;
183 nr_pages
-= nr_blocks
;
186 si
->curr_swap_extent
= se
;
188 start_block
<<= PAGE_SHIFT
- 9;
189 nr_blocks
<<= PAGE_SHIFT
- 9;
190 if (blkdev_issue_discard(si
->bdev
, start_block
,
191 nr_blocks
, GFP_NOIO
, 0))
195 se
= list_next_entry(se
, list
);
199 #define SWAPFILE_CLUSTER 256
200 #define LATENCY_LIMIT 256
202 static inline void cluster_set_flag(struct swap_cluster_info
*info
,
208 static inline unsigned int cluster_count(struct swap_cluster_info
*info
)
213 static inline void cluster_set_count(struct swap_cluster_info
*info
,
219 static inline void cluster_set_count_flag(struct swap_cluster_info
*info
,
220 unsigned int c
, unsigned int f
)
226 static inline unsigned int cluster_next(struct swap_cluster_info
*info
)
231 static inline void cluster_set_next(struct swap_cluster_info
*info
,
237 static inline void cluster_set_next_flag(struct swap_cluster_info
*info
,
238 unsigned int n
, unsigned int f
)
244 static inline bool cluster_is_free(struct swap_cluster_info
*info
)
246 return info
->flags
& CLUSTER_FLAG_FREE
;
249 static inline bool cluster_is_null(struct swap_cluster_info
*info
)
251 return info
->flags
& CLUSTER_FLAG_NEXT_NULL
;
254 static inline void cluster_set_null(struct swap_cluster_info
*info
)
256 info
->flags
= CLUSTER_FLAG_NEXT_NULL
;
260 static inline bool cluster_list_empty(struct swap_cluster_list
*list
)
262 return cluster_is_null(&list
->head
);
265 static inline unsigned int cluster_list_first(struct swap_cluster_list
*list
)
267 return cluster_next(&list
->head
);
270 static void cluster_list_init(struct swap_cluster_list
*list
)
272 cluster_set_null(&list
->head
);
273 cluster_set_null(&list
->tail
);
276 static void cluster_list_add_tail(struct swap_cluster_list
*list
,
277 struct swap_cluster_info
*ci
,
280 if (cluster_list_empty(list
)) {
281 cluster_set_next_flag(&list
->head
, idx
, 0);
282 cluster_set_next_flag(&list
->tail
, idx
, 0);
284 unsigned int tail
= cluster_next(&list
->tail
);
286 cluster_set_next(&ci
[tail
], idx
);
287 cluster_set_next_flag(&list
->tail
, idx
, 0);
291 static unsigned int cluster_list_del_first(struct swap_cluster_list
*list
,
292 struct swap_cluster_info
*ci
)
296 idx
= cluster_next(&list
->head
);
297 if (cluster_next(&list
->tail
) == idx
) {
298 cluster_set_null(&list
->head
);
299 cluster_set_null(&list
->tail
);
301 cluster_set_next_flag(&list
->head
,
302 cluster_next(&ci
[idx
]), 0);
307 /* Add a cluster to discard list and schedule it to do discard */
308 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
312 * If scan_swap_map() can't find a free cluster, it will check
313 * si->swap_map directly. To make sure the discarding cluster isn't
314 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
315 * will be cleared after discard
317 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
318 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
320 cluster_list_add_tail(&si
->discard_clusters
, si
->cluster_info
, idx
);
322 schedule_work(&si
->discard_work
);
326 * Doing discard actually. After a cluster discard is finished, the cluster
327 * will be added to free cluster list. caller should hold si->lock.
329 static void swap_do_scheduled_discard(struct swap_info_struct
*si
)
331 struct swap_cluster_info
*info
;
334 info
= si
->cluster_info
;
336 while (!cluster_list_empty(&si
->discard_clusters
)) {
337 idx
= cluster_list_del_first(&si
->discard_clusters
, info
);
338 spin_unlock(&si
->lock
);
340 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
343 spin_lock(&si
->lock
);
344 cluster_set_flag(&info
[idx
], CLUSTER_FLAG_FREE
);
345 cluster_list_add_tail(&si
->free_clusters
, info
, idx
);
346 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
347 0, SWAPFILE_CLUSTER
);
351 static void swap_discard_work(struct work_struct
*work
)
353 struct swap_info_struct
*si
;
355 si
= container_of(work
, struct swap_info_struct
, discard_work
);
357 spin_lock(&si
->lock
);
358 swap_do_scheduled_discard(si
);
359 spin_unlock(&si
->lock
);
363 * The cluster corresponding to page_nr will be used. The cluster will be
364 * removed from free cluster list and its usage counter will be increased.
366 static void inc_cluster_info_page(struct swap_info_struct
*p
,
367 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
369 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
373 if (cluster_is_free(&cluster_info
[idx
])) {
374 VM_BUG_ON(cluster_list_first(&p
->free_clusters
) != idx
);
375 cluster_list_del_first(&p
->free_clusters
, cluster_info
);
376 cluster_set_count_flag(&cluster_info
[idx
], 0, 0);
379 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) >= SWAPFILE_CLUSTER
);
380 cluster_set_count(&cluster_info
[idx
],
381 cluster_count(&cluster_info
[idx
]) + 1);
385 * The cluster corresponding to page_nr decreases one usage. If the usage
386 * counter becomes 0, which means no page in the cluster is in using, we can
387 * optionally discard the cluster and add it to free cluster list.
389 static void dec_cluster_info_page(struct swap_info_struct
*p
,
390 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
392 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
397 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) == 0);
398 cluster_set_count(&cluster_info
[idx
],
399 cluster_count(&cluster_info
[idx
]) - 1);
401 if (cluster_count(&cluster_info
[idx
]) == 0) {
403 * If the swap is discardable, prepare discard the cluster
404 * instead of free it immediately. The cluster will be freed
407 if ((p
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
408 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
409 swap_cluster_schedule_discard(p
, idx
);
413 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
414 cluster_list_add_tail(&p
->free_clusters
, cluster_info
, idx
);
419 * It's possible scan_swap_map() uses a free cluster in the middle of free
420 * cluster list. Avoiding such abuse to avoid list corruption.
423 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct
*si
,
424 unsigned long offset
)
426 struct percpu_cluster
*percpu_cluster
;
429 offset
/= SWAPFILE_CLUSTER
;
430 conflict
= !cluster_list_empty(&si
->free_clusters
) &&
431 offset
!= cluster_list_first(&si
->free_clusters
) &&
432 cluster_is_free(&si
->cluster_info
[offset
]);
437 percpu_cluster
= this_cpu_ptr(si
->percpu_cluster
);
438 cluster_set_null(&percpu_cluster
->index
);
443 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
444 * might involve allocating a new cluster for current CPU too.
446 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct
*si
,
447 unsigned long *offset
, unsigned long *scan_base
)
449 struct percpu_cluster
*cluster
;
454 cluster
= this_cpu_ptr(si
->percpu_cluster
);
455 if (cluster_is_null(&cluster
->index
)) {
456 if (!cluster_list_empty(&si
->free_clusters
)) {
457 cluster
->index
= si
->free_clusters
.head
;
458 cluster
->next
= cluster_next(&cluster
->index
) *
460 } else if (!cluster_list_empty(&si
->discard_clusters
)) {
462 * we don't have free cluster but have some clusters in
463 * discarding, do discard now and reclaim them
465 swap_do_scheduled_discard(si
);
466 *scan_base
= *offset
= si
->cluster_next
;
475 * Other CPUs can use our cluster if they can't find a free cluster,
476 * check if there is still free entry in the cluster
479 while (tmp
< si
->max
&& tmp
< (cluster_next(&cluster
->index
) + 1) *
481 if (!si
->swap_map
[tmp
]) {
488 cluster_set_null(&cluster
->index
);
491 cluster
->next
= tmp
+ 1;
496 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
499 unsigned long offset
;
500 unsigned long scan_base
;
501 unsigned long last_in_cluster
= 0;
502 int latency_ration
= LATENCY_LIMIT
;
505 * We try to cluster swap pages by allocating them sequentially
506 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
507 * way, however, we resort to first-free allocation, starting
508 * a new cluster. This prevents us from scattering swap pages
509 * all over the entire swap partition, so that we reduce
510 * overall disk seek times between swap pages. -- sct
511 * But we do now try to find an empty cluster. -Andrea
512 * And we let swap pages go all over an SSD partition. Hugh
515 si
->flags
+= SWP_SCANNING
;
516 scan_base
= offset
= si
->cluster_next
;
519 if (si
->cluster_info
) {
520 scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
);
524 if (unlikely(!si
->cluster_nr
--)) {
525 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
526 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
530 spin_unlock(&si
->lock
);
533 * If seek is expensive, start searching for new cluster from
534 * start of partition, to minimize the span of allocated swap.
535 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
536 * case, just handled by scan_swap_map_try_ssd_cluster() above.
538 scan_base
= offset
= si
->lowest_bit
;
539 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
541 /* Locate the first empty (unaligned) cluster */
542 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
543 if (si
->swap_map
[offset
])
544 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
545 else if (offset
== last_in_cluster
) {
546 spin_lock(&si
->lock
);
547 offset
-= SWAPFILE_CLUSTER
- 1;
548 si
->cluster_next
= offset
;
549 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
552 if (unlikely(--latency_ration
< 0)) {
554 latency_ration
= LATENCY_LIMIT
;
559 spin_lock(&si
->lock
);
560 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
564 if (si
->cluster_info
) {
565 while (scan_swap_map_ssd_cluster_conflict(si
, offset
))
566 scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
);
568 if (!(si
->flags
& SWP_WRITEOK
))
570 if (!si
->highest_bit
)
572 if (offset
> si
->highest_bit
)
573 scan_base
= offset
= si
->lowest_bit
;
575 /* reuse swap entry of cache-only swap if not busy. */
576 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
578 spin_unlock(&si
->lock
);
579 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
580 spin_lock(&si
->lock
);
581 /* entry was freed successfully, try to use this again */
584 goto scan
; /* check next one */
587 if (si
->swap_map
[offset
])
590 if (offset
== si
->lowest_bit
)
592 if (offset
== si
->highest_bit
)
595 if (si
->inuse_pages
== si
->pages
) {
596 si
->lowest_bit
= si
->max
;
598 spin_lock(&swap_avail_lock
);
599 plist_del(&si
->avail_list
, &swap_avail_head
);
600 spin_unlock(&swap_avail_lock
);
602 si
->swap_map
[offset
] = usage
;
603 inc_cluster_info_page(si
, si
->cluster_info
, offset
);
604 si
->cluster_next
= offset
+ 1;
605 si
->flags
-= SWP_SCANNING
;
610 spin_unlock(&si
->lock
);
611 while (++offset
<= si
->highest_bit
) {
612 if (!si
->swap_map
[offset
]) {
613 spin_lock(&si
->lock
);
616 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
617 spin_lock(&si
->lock
);
620 if (unlikely(--latency_ration
< 0)) {
622 latency_ration
= LATENCY_LIMIT
;
625 offset
= si
->lowest_bit
;
626 while (offset
< scan_base
) {
627 if (!si
->swap_map
[offset
]) {
628 spin_lock(&si
->lock
);
631 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
632 spin_lock(&si
->lock
);
635 if (unlikely(--latency_ration
< 0)) {
637 latency_ration
= LATENCY_LIMIT
;
641 spin_lock(&si
->lock
);
644 si
->flags
-= SWP_SCANNING
;
648 swp_entry_t
get_swap_page(void)
650 struct swap_info_struct
*si
, *next
;
653 if (atomic_long_read(&nr_swap_pages
) <= 0)
655 atomic_long_dec(&nr_swap_pages
);
657 spin_lock(&swap_avail_lock
);
660 plist_for_each_entry_safe(si
, next
, &swap_avail_head
, avail_list
) {
661 /* requeue si to after same-priority siblings */
662 plist_requeue(&si
->avail_list
, &swap_avail_head
);
663 spin_unlock(&swap_avail_lock
);
664 spin_lock(&si
->lock
);
665 if (!si
->highest_bit
|| !(si
->flags
& SWP_WRITEOK
)) {
666 spin_lock(&swap_avail_lock
);
667 if (plist_node_empty(&si
->avail_list
)) {
668 spin_unlock(&si
->lock
);
671 WARN(!si
->highest_bit
,
672 "swap_info %d in list but !highest_bit\n",
674 WARN(!(si
->flags
& SWP_WRITEOK
),
675 "swap_info %d in list but !SWP_WRITEOK\n",
677 plist_del(&si
->avail_list
, &swap_avail_head
);
678 spin_unlock(&si
->lock
);
682 /* This is called for allocating swap entry for cache */
683 offset
= scan_swap_map(si
, SWAP_HAS_CACHE
);
684 spin_unlock(&si
->lock
);
686 return swp_entry(si
->type
, offset
);
687 pr_debug("scan_swap_map of si %d failed to find offset\n",
689 spin_lock(&swap_avail_lock
);
692 * if we got here, it's likely that si was almost full before,
693 * and since scan_swap_map() can drop the si->lock, multiple
694 * callers probably all tried to get a page from the same si
695 * and it filled up before we could get one; or, the si filled
696 * up between us dropping swap_avail_lock and taking si->lock.
697 * Since we dropped the swap_avail_lock, the swap_avail_head
698 * list may have been modified; so if next is still in the
699 * swap_avail_head list then try it, otherwise start over.
701 if (plist_node_empty(&next
->avail_list
))
705 spin_unlock(&swap_avail_lock
);
707 atomic_long_inc(&nr_swap_pages
);
709 return (swp_entry_t
) {0};
712 /* The only caller of this function is now suspend routine */
713 swp_entry_t
get_swap_page_of_type(int type
)
715 struct swap_info_struct
*si
;
718 si
= swap_info
[type
];
719 spin_lock(&si
->lock
);
720 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
721 atomic_long_dec(&nr_swap_pages
);
722 /* This is called for allocating swap entry, not cache */
723 offset
= scan_swap_map(si
, 1);
725 spin_unlock(&si
->lock
);
726 return swp_entry(type
, offset
);
728 atomic_long_inc(&nr_swap_pages
);
730 spin_unlock(&si
->lock
);
731 return (swp_entry_t
) {0};
734 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
736 struct swap_info_struct
*p
;
737 unsigned long offset
, type
;
741 type
= swp_type(entry
);
742 if (type
>= nr_swapfiles
)
745 if (!(p
->flags
& SWP_USED
))
747 offset
= swp_offset(entry
);
748 if (offset
>= p
->max
)
750 if (!p
->swap_map
[offset
])
756 pr_err("swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
759 pr_err("swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
762 pr_err("swap_free: %s%08lx\n", Unused_file
, entry
.val
);
765 pr_err("swap_free: %s%08lx\n", Bad_file
, entry
.val
);
770 static unsigned char swap_entry_free(struct swap_info_struct
*p
,
771 swp_entry_t entry
, unsigned char usage
)
773 unsigned long offset
= swp_offset(entry
);
775 unsigned char has_cache
;
777 count
= p
->swap_map
[offset
];
778 has_cache
= count
& SWAP_HAS_CACHE
;
779 count
&= ~SWAP_HAS_CACHE
;
781 if (usage
== SWAP_HAS_CACHE
) {
782 VM_BUG_ON(!has_cache
);
784 } else if (count
== SWAP_MAP_SHMEM
) {
786 * Or we could insist on shmem.c using a special
787 * swap_shmem_free() and free_shmem_swap_and_cache()...
790 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
791 if (count
== COUNT_CONTINUED
) {
792 if (swap_count_continued(p
, offset
, count
))
793 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
795 count
= SWAP_MAP_MAX
;
800 usage
= count
| has_cache
;
801 p
->swap_map
[offset
] = usage
;
803 /* free if no reference */
805 mem_cgroup_uncharge_swap(entry
);
806 dec_cluster_info_page(p
, p
->cluster_info
, offset
);
807 if (offset
< p
->lowest_bit
)
808 p
->lowest_bit
= offset
;
809 if (offset
> p
->highest_bit
) {
810 bool was_full
= !p
->highest_bit
;
811 p
->highest_bit
= offset
;
812 if (was_full
&& (p
->flags
& SWP_WRITEOK
)) {
813 spin_lock(&swap_avail_lock
);
814 WARN_ON(!plist_node_empty(&p
->avail_list
));
815 if (plist_node_empty(&p
->avail_list
))
816 plist_add(&p
->avail_list
,
818 spin_unlock(&swap_avail_lock
);
821 atomic_long_inc(&nr_swap_pages
);
823 frontswap_invalidate_page(p
->type
, offset
);
824 if (p
->flags
& SWP_BLKDEV
) {
825 struct gendisk
*disk
= p
->bdev
->bd_disk
;
826 if (disk
->fops
->swap_slot_free_notify
)
827 disk
->fops
->swap_slot_free_notify(p
->bdev
,
836 * Caller has made sure that the swap device corresponding to entry
837 * is still around or has not been recycled.
839 void swap_free(swp_entry_t entry
)
841 struct swap_info_struct
*p
;
843 p
= swap_info_get(entry
);
845 swap_entry_free(p
, entry
, 1);
846 spin_unlock(&p
->lock
);
851 * Called after dropping swapcache to decrease refcnt to swap entries.
853 void swapcache_free(swp_entry_t entry
)
855 struct swap_info_struct
*p
;
857 p
= swap_info_get(entry
);
859 swap_entry_free(p
, entry
, SWAP_HAS_CACHE
);
860 spin_unlock(&p
->lock
);
865 * How many references to page are currently swapped out?
866 * This does not give an exact answer when swap count is continued,
867 * but does include the high COUNT_CONTINUED flag to allow for that.
869 int page_swapcount(struct page
*page
)
872 struct swap_info_struct
*p
;
875 entry
.val
= page_private(page
);
876 p
= swap_info_get(entry
);
878 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
879 spin_unlock(&p
->lock
);
885 * How many references to @entry are currently swapped out?
886 * This considers COUNT_CONTINUED so it returns exact answer.
888 int swp_swapcount(swp_entry_t entry
)
890 int count
, tmp_count
, n
;
891 struct swap_info_struct
*p
;
896 p
= swap_info_get(entry
);
900 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
901 if (!(count
& COUNT_CONTINUED
))
904 count
&= ~COUNT_CONTINUED
;
905 n
= SWAP_MAP_MAX
+ 1;
907 offset
= swp_offset(entry
);
908 page
= vmalloc_to_page(p
->swap_map
+ offset
);
909 offset
&= ~PAGE_MASK
;
910 VM_BUG_ON(page_private(page
) != SWP_CONTINUED
);
913 page
= list_next_entry(page
, lru
);
914 map
= kmap_atomic(page
);
915 tmp_count
= map
[offset
];
918 count
+= (tmp_count
& ~COUNT_CONTINUED
) * n
;
919 n
*= (SWAP_CONT_MAX
+ 1);
920 } while (tmp_count
& COUNT_CONTINUED
);
922 spin_unlock(&p
->lock
);
927 * We can write to an anon page without COW if there are no other references
928 * to it. And as a side-effect, free up its swap: because the old content
929 * on disk will never be read, and seeking back there to write new content
930 * later would only waste time away from clustering.
932 * NOTE: total_mapcount should not be relied upon by the caller if
933 * reuse_swap_page() returns false, but it may be always overwritten
934 * (see the other implementation for CONFIG_SWAP=n).
936 bool reuse_swap_page(struct page
*page
, int *total_mapcount
)
940 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
941 if (unlikely(PageKsm(page
)))
943 count
= page_trans_huge_mapcount(page
, total_mapcount
);
944 if (count
<= 1 && PageSwapCache(page
)) {
945 count
+= page_swapcount(page
);
946 if (count
== 1 && !PageWriteback(page
)) {
947 delete_from_swap_cache(page
);
955 * If swap is getting full, or if there are no more mappings of this page,
956 * then try_to_free_swap is called to free its swap space.
958 int try_to_free_swap(struct page
*page
)
960 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
962 if (!PageSwapCache(page
))
964 if (PageWriteback(page
))
966 if (page_swapcount(page
))
970 * Once hibernation has begun to create its image of memory,
971 * there's a danger that one of the calls to try_to_free_swap()
972 * - most probably a call from __try_to_reclaim_swap() while
973 * hibernation is allocating its own swap pages for the image,
974 * but conceivably even a call from memory reclaim - will free
975 * the swap from a page which has already been recorded in the
976 * image as a clean swapcache page, and then reuse its swap for
977 * another page of the image. On waking from hibernation, the
978 * original page might be freed under memory pressure, then
979 * later read back in from swap, now with the wrong data.
981 * Hibernation suspends storage while it is writing the image
982 * to disk so check that here.
984 if (pm_suspended_storage())
987 delete_from_swap_cache(page
);
993 * Free the swap entry like above, but also try to
994 * free the page cache entry if it is the last user.
996 int free_swap_and_cache(swp_entry_t entry
)
998 struct swap_info_struct
*p
;
999 struct page
*page
= NULL
;
1001 if (non_swap_entry(entry
))
1004 p
= swap_info_get(entry
);
1006 if (swap_entry_free(p
, entry
, 1) == SWAP_HAS_CACHE
) {
1007 page
= find_get_page(swap_address_space(entry
),
1009 if (page
&& !trylock_page(page
)) {
1014 spin_unlock(&p
->lock
);
1018 * Not mapped elsewhere, or swap space full? Free it!
1019 * Also recheck PageSwapCache now page is locked (above).
1021 if (PageSwapCache(page
) && !PageWriteback(page
) &&
1022 (!page_mapped(page
) || mem_cgroup_swap_full(page
))) {
1023 delete_from_swap_cache(page
);
1032 #ifdef CONFIG_HIBERNATION
1034 * Find the swap type that corresponds to given device (if any).
1036 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1037 * from 0, in which the swap header is expected to be located.
1039 * This is needed for the suspend to disk (aka swsusp).
1041 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
1043 struct block_device
*bdev
= NULL
;
1047 bdev
= bdget(device
);
1049 spin_lock(&swap_lock
);
1050 for (type
= 0; type
< nr_swapfiles
; type
++) {
1051 struct swap_info_struct
*sis
= swap_info
[type
];
1053 if (!(sis
->flags
& SWP_WRITEOK
))
1058 *bdev_p
= bdgrab(sis
->bdev
);
1060 spin_unlock(&swap_lock
);
1063 if (bdev
== sis
->bdev
) {
1064 struct swap_extent
*se
= &sis
->first_swap_extent
;
1066 if (se
->start_block
== offset
) {
1068 *bdev_p
= bdgrab(sis
->bdev
);
1070 spin_unlock(&swap_lock
);
1076 spin_unlock(&swap_lock
);
1084 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1085 * corresponding to given index in swap_info (swap type).
1087 sector_t
swapdev_block(int type
, pgoff_t offset
)
1089 struct block_device
*bdev
;
1091 if ((unsigned int)type
>= nr_swapfiles
)
1093 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
1095 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
1099 * Return either the total number of swap pages of given type, or the number
1100 * of free pages of that type (depending on @free)
1102 * This is needed for software suspend
1104 unsigned int count_swap_pages(int type
, int free
)
1108 spin_lock(&swap_lock
);
1109 if ((unsigned int)type
< nr_swapfiles
) {
1110 struct swap_info_struct
*sis
= swap_info
[type
];
1112 spin_lock(&sis
->lock
);
1113 if (sis
->flags
& SWP_WRITEOK
) {
1116 n
-= sis
->inuse_pages
;
1118 spin_unlock(&sis
->lock
);
1120 spin_unlock(&swap_lock
);
1123 #endif /* CONFIG_HIBERNATION */
1125 static inline int pte_same_as_swp(pte_t pte
, pte_t swp_pte
)
1127 return pte_same(pte_swp_clear_soft_dirty(pte
), swp_pte
);
1131 * No need to decide whether this PTE shares the swap entry with others,
1132 * just let do_wp_page work it out if a write is requested later - to
1133 * force COW, vm_page_prot omits write permission from any private vma.
1135 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1136 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
1138 struct page
*swapcache
;
1139 struct mem_cgroup
*memcg
;
1145 page
= ksm_might_need_to_copy(page
, vma
, addr
);
1146 if (unlikely(!page
))
1149 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
1155 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1156 if (unlikely(!pte_same_as_swp(*pte
, swp_entry_to_pte(entry
)))) {
1157 mem_cgroup_cancel_charge(page
, memcg
, false);
1162 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
1163 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
1165 set_pte_at(vma
->vm_mm
, addr
, pte
,
1166 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
1167 if (page
== swapcache
) {
1168 page_add_anon_rmap(page
, vma
, addr
, false);
1169 mem_cgroup_commit_charge(page
, memcg
, true, false);
1170 } else { /* ksm created a completely new copy */
1171 page_add_new_anon_rmap(page
, vma
, addr
, false);
1172 mem_cgroup_commit_charge(page
, memcg
, false, false);
1173 lru_cache_add_active_or_unevictable(page
, vma
);
1177 * Move the page to the active list so it is not
1178 * immediately swapped out again after swapon.
1180 activate_page(page
);
1182 pte_unmap_unlock(pte
, ptl
);
1184 if (page
!= swapcache
) {
1191 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1192 unsigned long addr
, unsigned long end
,
1193 swp_entry_t entry
, struct page
*page
)
1195 pte_t swp_pte
= swp_entry_to_pte(entry
);
1200 * We don't actually need pte lock while scanning for swp_pte: since
1201 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1202 * page table while we're scanning; though it could get zapped, and on
1203 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1204 * of unmatched parts which look like swp_pte, so unuse_pte must
1205 * recheck under pte lock. Scanning without pte lock lets it be
1206 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1208 pte
= pte_offset_map(pmd
, addr
);
1211 * swapoff spends a _lot_ of time in this loop!
1212 * Test inline before going to call unuse_pte.
1214 if (unlikely(pte_same_as_swp(*pte
, swp_pte
))) {
1216 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
1219 pte
= pte_offset_map(pmd
, addr
);
1221 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1227 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
1228 unsigned long addr
, unsigned long end
,
1229 swp_entry_t entry
, struct page
*page
)
1235 pmd
= pmd_offset(pud
, addr
);
1238 next
= pmd_addr_end(addr
, end
);
1239 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1241 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
1244 } while (pmd
++, addr
= next
, addr
!= end
);
1248 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
1249 unsigned long addr
, unsigned long end
,
1250 swp_entry_t entry
, struct page
*page
)
1256 pud
= pud_offset(pgd
, addr
);
1258 next
= pud_addr_end(addr
, end
);
1259 if (pud_none_or_clear_bad(pud
))
1261 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
1264 } while (pud
++, addr
= next
, addr
!= end
);
1268 static int unuse_vma(struct vm_area_struct
*vma
,
1269 swp_entry_t entry
, struct page
*page
)
1272 unsigned long addr
, end
, next
;
1275 if (page_anon_vma(page
)) {
1276 addr
= page_address_in_vma(page
, vma
);
1277 if (addr
== -EFAULT
)
1280 end
= addr
+ PAGE_SIZE
;
1282 addr
= vma
->vm_start
;
1286 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1288 next
= pgd_addr_end(addr
, end
);
1289 if (pgd_none_or_clear_bad(pgd
))
1291 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
1294 } while (pgd
++, addr
= next
, addr
!= end
);
1298 static int unuse_mm(struct mm_struct
*mm
,
1299 swp_entry_t entry
, struct page
*page
)
1301 struct vm_area_struct
*vma
;
1304 if (!down_read_trylock(&mm
->mmap_sem
)) {
1306 * Activate page so shrink_inactive_list is unlikely to unmap
1307 * its ptes while lock is dropped, so swapoff can make progress.
1309 activate_page(page
);
1311 down_read(&mm
->mmap_sem
);
1314 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1315 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1319 up_read(&mm
->mmap_sem
);
1320 return (ret
< 0)? ret
: 0;
1324 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1325 * from current position to next entry still in use.
1326 * Recycle to start on reaching the end, returning 0 when empty.
1328 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1329 unsigned int prev
, bool frontswap
)
1331 unsigned int max
= si
->max
;
1332 unsigned int i
= prev
;
1333 unsigned char count
;
1336 * No need for swap_lock here: we're just looking
1337 * for whether an entry is in use, not modifying it; false
1338 * hits are okay, and sys_swapoff() has already prevented new
1339 * allocations from this area (while holding swap_lock).
1348 * No entries in use at top of swap_map,
1349 * loop back to start and recheck there.
1355 count
= READ_ONCE(si
->swap_map
[i
]);
1356 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1357 if (!frontswap
|| frontswap_test(si
, i
))
1359 if ((i
% LATENCY_LIMIT
) == 0)
1366 * We completely avoid races by reading each swap page in advance,
1367 * and then search for the process using it. All the necessary
1368 * page table adjustments can then be made atomically.
1370 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1371 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1373 int try_to_unuse(unsigned int type
, bool frontswap
,
1374 unsigned long pages_to_unuse
)
1376 struct swap_info_struct
*si
= swap_info
[type
];
1377 struct mm_struct
*start_mm
;
1378 volatile unsigned char *swap_map
; /* swap_map is accessed without
1379 * locking. Mark it as volatile
1380 * to prevent compiler doing
1383 unsigned char swcount
;
1390 * When searching mms for an entry, a good strategy is to
1391 * start at the first mm we freed the previous entry from
1392 * (though actually we don't notice whether we or coincidence
1393 * freed the entry). Initialize this start_mm with a hold.
1395 * A simpler strategy would be to start at the last mm we
1396 * freed the previous entry from; but that would take less
1397 * advantage of mmlist ordering, which clusters forked mms
1398 * together, child after parent. If we race with dup_mmap(), we
1399 * prefer to resolve parent before child, lest we miss entries
1400 * duplicated after we scanned child: using last mm would invert
1403 start_mm
= &init_mm
;
1404 atomic_inc(&init_mm
.mm_users
);
1407 * Keep on scanning until all entries have gone. Usually,
1408 * one pass through swap_map is enough, but not necessarily:
1409 * there are races when an instance of an entry might be missed.
1411 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
1412 if (signal_pending(current
)) {
1418 * Get a page for the entry, using the existing swap
1419 * cache page if there is one. Otherwise, get a clean
1420 * page and read the swap into it.
1422 swap_map
= &si
->swap_map
[i
];
1423 entry
= swp_entry(type
, i
);
1424 page
= read_swap_cache_async(entry
,
1425 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1428 * Either swap_duplicate() failed because entry
1429 * has been freed independently, and will not be
1430 * reused since sys_swapoff() already disabled
1431 * allocation from here, or alloc_page() failed.
1433 swcount
= *swap_map
;
1435 * We don't hold lock here, so the swap entry could be
1436 * SWAP_MAP_BAD (when the cluster is discarding).
1437 * Instead of fail out, We can just skip the swap
1438 * entry because swapoff will wait for discarding
1441 if (!swcount
|| swcount
== SWAP_MAP_BAD
)
1448 * Don't hold on to start_mm if it looks like exiting.
1450 if (atomic_read(&start_mm
->mm_users
) == 1) {
1452 start_mm
= &init_mm
;
1453 atomic_inc(&init_mm
.mm_users
);
1457 * Wait for and lock page. When do_swap_page races with
1458 * try_to_unuse, do_swap_page can handle the fault much
1459 * faster than try_to_unuse can locate the entry. This
1460 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1461 * defer to do_swap_page in such a case - in some tests,
1462 * do_swap_page and try_to_unuse repeatedly compete.
1464 wait_on_page_locked(page
);
1465 wait_on_page_writeback(page
);
1467 wait_on_page_writeback(page
);
1470 * Remove all references to entry.
1472 swcount
= *swap_map
;
1473 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1474 retval
= shmem_unuse(entry
, page
);
1475 /* page has already been unlocked and released */
1480 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1481 retval
= unuse_mm(start_mm
, entry
, page
);
1483 if (swap_count(*swap_map
)) {
1484 int set_start_mm
= (*swap_map
>= swcount
);
1485 struct list_head
*p
= &start_mm
->mmlist
;
1486 struct mm_struct
*new_start_mm
= start_mm
;
1487 struct mm_struct
*prev_mm
= start_mm
;
1488 struct mm_struct
*mm
;
1490 atomic_inc(&new_start_mm
->mm_users
);
1491 atomic_inc(&prev_mm
->mm_users
);
1492 spin_lock(&mmlist_lock
);
1493 while (swap_count(*swap_map
) && !retval
&&
1494 (p
= p
->next
) != &start_mm
->mmlist
) {
1495 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1496 if (!atomic_inc_not_zero(&mm
->mm_users
))
1498 spin_unlock(&mmlist_lock
);
1504 swcount
= *swap_map
;
1505 if (!swap_count(swcount
)) /* any usage ? */
1507 else if (mm
== &init_mm
)
1510 retval
= unuse_mm(mm
, entry
, page
);
1512 if (set_start_mm
&& *swap_map
< swcount
) {
1513 mmput(new_start_mm
);
1514 atomic_inc(&mm
->mm_users
);
1518 spin_lock(&mmlist_lock
);
1520 spin_unlock(&mmlist_lock
);
1523 start_mm
= new_start_mm
;
1532 * If a reference remains (rare), we would like to leave
1533 * the page in the swap cache; but try_to_unmap could
1534 * then re-duplicate the entry once we drop page lock,
1535 * so we might loop indefinitely; also, that page could
1536 * not be swapped out to other storage meanwhile. So:
1537 * delete from cache even if there's another reference,
1538 * after ensuring that the data has been saved to disk -
1539 * since if the reference remains (rarer), it will be
1540 * read from disk into another page. Splitting into two
1541 * pages would be incorrect if swap supported "shared
1542 * private" pages, but they are handled by tmpfs files.
1544 * Given how unuse_vma() targets one particular offset
1545 * in an anon_vma, once the anon_vma has been determined,
1546 * this splitting happens to be just what is needed to
1547 * handle where KSM pages have been swapped out: re-reading
1548 * is unnecessarily slow, but we can fix that later on.
1550 if (swap_count(*swap_map
) &&
1551 PageDirty(page
) && PageSwapCache(page
)) {
1552 struct writeback_control wbc
= {
1553 .sync_mode
= WB_SYNC_NONE
,
1556 swap_writepage(page
, &wbc
);
1558 wait_on_page_writeback(page
);
1562 * It is conceivable that a racing task removed this page from
1563 * swap cache just before we acquired the page lock at the top,
1564 * or while we dropped it in unuse_mm(). The page might even
1565 * be back in swap cache on another swap area: that we must not
1566 * delete, since it may not have been written out to swap yet.
1568 if (PageSwapCache(page
) &&
1569 likely(page_private(page
) == entry
.val
))
1570 delete_from_swap_cache(page
);
1573 * So we could skip searching mms once swap count went
1574 * to 1, we did not mark any present ptes as dirty: must
1575 * mark page dirty so shrink_page_list will preserve it.
1582 * Make sure that we aren't completely killing
1583 * interactive performance.
1586 if (frontswap
&& pages_to_unuse
> 0) {
1587 if (!--pages_to_unuse
)
1597 * After a successful try_to_unuse, if no swap is now in use, we know
1598 * we can empty the mmlist. swap_lock must be held on entry and exit.
1599 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1600 * added to the mmlist just after page_duplicate - before would be racy.
1602 static void drain_mmlist(void)
1604 struct list_head
*p
, *next
;
1607 for (type
= 0; type
< nr_swapfiles
; type
++)
1608 if (swap_info
[type
]->inuse_pages
)
1610 spin_lock(&mmlist_lock
);
1611 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1613 spin_unlock(&mmlist_lock
);
1617 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1618 * corresponds to page offset for the specified swap entry.
1619 * Note that the type of this function is sector_t, but it returns page offset
1620 * into the bdev, not sector offset.
1622 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1624 struct swap_info_struct
*sis
;
1625 struct swap_extent
*start_se
;
1626 struct swap_extent
*se
;
1629 sis
= swap_info
[swp_type(entry
)];
1632 offset
= swp_offset(entry
);
1633 start_se
= sis
->curr_swap_extent
;
1637 if (se
->start_page
<= offset
&&
1638 offset
< (se
->start_page
+ se
->nr_pages
)) {
1639 return se
->start_block
+ (offset
- se
->start_page
);
1641 se
= list_next_entry(se
, list
);
1642 sis
->curr_swap_extent
= se
;
1643 BUG_ON(se
== start_se
); /* It *must* be present */
1648 * Returns the page offset into bdev for the specified page's swap entry.
1650 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1653 entry
.val
= page_private(page
);
1654 return map_swap_entry(entry
, bdev
);
1658 * Free all of a swapdev's extent information
1660 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1662 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1663 struct swap_extent
*se
;
1665 se
= list_first_entry(&sis
->first_swap_extent
.list
,
1666 struct swap_extent
, list
);
1667 list_del(&se
->list
);
1671 if (sis
->flags
& SWP_FILE
) {
1672 struct file
*swap_file
= sis
->swap_file
;
1673 struct address_space
*mapping
= swap_file
->f_mapping
;
1675 sis
->flags
&= ~SWP_FILE
;
1676 mapping
->a_ops
->swap_deactivate(swap_file
);
1681 * Add a block range (and the corresponding page range) into this swapdev's
1682 * extent list. The extent list is kept sorted in page order.
1684 * This function rather assumes that it is called in ascending page order.
1687 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1688 unsigned long nr_pages
, sector_t start_block
)
1690 struct swap_extent
*se
;
1691 struct swap_extent
*new_se
;
1692 struct list_head
*lh
;
1694 if (start_page
== 0) {
1695 se
= &sis
->first_swap_extent
;
1696 sis
->curr_swap_extent
= se
;
1698 se
->nr_pages
= nr_pages
;
1699 se
->start_block
= start_block
;
1702 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
1703 se
= list_entry(lh
, struct swap_extent
, list
);
1704 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1705 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1707 se
->nr_pages
+= nr_pages
;
1713 * No merge. Insert a new extent, preserving ordering.
1715 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1718 new_se
->start_page
= start_page
;
1719 new_se
->nr_pages
= nr_pages
;
1720 new_se
->start_block
= start_block
;
1722 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
1727 * A `swap extent' is a simple thing which maps a contiguous range of pages
1728 * onto a contiguous range of disk blocks. An ordered list of swap extents
1729 * is built at swapon time and is then used at swap_writepage/swap_readpage
1730 * time for locating where on disk a page belongs.
1732 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1733 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1734 * swap files identically.
1736 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1737 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1738 * swapfiles are handled *identically* after swapon time.
1740 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1741 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1742 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1743 * requirements, they are simply tossed out - we will never use those blocks
1746 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1747 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1748 * which will scribble on the fs.
1750 * The amount of disk space which a single swap extent represents varies.
1751 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1752 * extents in the list. To avoid much list walking, we cache the previous
1753 * search location in `curr_swap_extent', and start new searches from there.
1754 * This is extremely effective. The average number of iterations in
1755 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1757 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1759 struct file
*swap_file
= sis
->swap_file
;
1760 struct address_space
*mapping
= swap_file
->f_mapping
;
1761 struct inode
*inode
= mapping
->host
;
1764 if (S_ISBLK(inode
->i_mode
)) {
1765 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1770 if (mapping
->a_ops
->swap_activate
) {
1771 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
1773 sis
->flags
|= SWP_FILE
;
1774 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1780 return generic_swapfile_activate(sis
, swap_file
, span
);
1783 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
1784 unsigned char *swap_map
,
1785 struct swap_cluster_info
*cluster_info
)
1790 p
->prio
= --least_priority
;
1792 * the plist prio is negated because plist ordering is
1793 * low-to-high, while swap ordering is high-to-low
1795 p
->list
.prio
= -p
->prio
;
1796 p
->avail_list
.prio
= -p
->prio
;
1797 p
->swap_map
= swap_map
;
1798 p
->cluster_info
= cluster_info
;
1799 p
->flags
|= SWP_WRITEOK
;
1800 atomic_long_add(p
->pages
, &nr_swap_pages
);
1801 total_swap_pages
+= p
->pages
;
1803 assert_spin_locked(&swap_lock
);
1805 * both lists are plists, and thus priority ordered.
1806 * swap_active_head needs to be priority ordered for swapoff(),
1807 * which on removal of any swap_info_struct with an auto-assigned
1808 * (i.e. negative) priority increments the auto-assigned priority
1809 * of any lower-priority swap_info_structs.
1810 * swap_avail_head needs to be priority ordered for get_swap_page(),
1811 * which allocates swap pages from the highest available priority
1814 plist_add(&p
->list
, &swap_active_head
);
1815 spin_lock(&swap_avail_lock
);
1816 plist_add(&p
->avail_list
, &swap_avail_head
);
1817 spin_unlock(&swap_avail_lock
);
1820 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
1821 unsigned char *swap_map
,
1822 struct swap_cluster_info
*cluster_info
,
1823 unsigned long *frontswap_map
)
1825 frontswap_init(p
->type
, frontswap_map
);
1826 spin_lock(&swap_lock
);
1827 spin_lock(&p
->lock
);
1828 _enable_swap_info(p
, prio
, swap_map
, cluster_info
);
1829 spin_unlock(&p
->lock
);
1830 spin_unlock(&swap_lock
);
1833 static void reinsert_swap_info(struct swap_info_struct
*p
)
1835 spin_lock(&swap_lock
);
1836 spin_lock(&p
->lock
);
1837 _enable_swap_info(p
, p
->prio
, p
->swap_map
, p
->cluster_info
);
1838 spin_unlock(&p
->lock
);
1839 spin_unlock(&swap_lock
);
1842 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1844 struct swap_info_struct
*p
= NULL
;
1845 unsigned char *swap_map
;
1846 struct swap_cluster_info
*cluster_info
;
1847 unsigned long *frontswap_map
;
1848 struct file
*swap_file
, *victim
;
1849 struct address_space
*mapping
;
1850 struct inode
*inode
;
1851 struct filename
*pathname
;
1853 unsigned int old_block_size
;
1855 if (!capable(CAP_SYS_ADMIN
))
1858 BUG_ON(!current
->mm
);
1860 pathname
= getname(specialfile
);
1861 if (IS_ERR(pathname
))
1862 return PTR_ERR(pathname
);
1864 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1865 err
= PTR_ERR(victim
);
1869 mapping
= victim
->f_mapping
;
1870 spin_lock(&swap_lock
);
1871 plist_for_each_entry(p
, &swap_active_head
, list
) {
1872 if (p
->flags
& SWP_WRITEOK
) {
1873 if (p
->swap_file
->f_mapping
== mapping
) {
1881 spin_unlock(&swap_lock
);
1884 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
1885 vm_unacct_memory(p
->pages
);
1888 spin_unlock(&swap_lock
);
1891 spin_lock(&swap_avail_lock
);
1892 plist_del(&p
->avail_list
, &swap_avail_head
);
1893 spin_unlock(&swap_avail_lock
);
1894 spin_lock(&p
->lock
);
1896 struct swap_info_struct
*si
= p
;
1898 plist_for_each_entry_continue(si
, &swap_active_head
, list
) {
1901 si
->avail_list
.prio
--;
1905 plist_del(&p
->list
, &swap_active_head
);
1906 atomic_long_sub(p
->pages
, &nr_swap_pages
);
1907 total_swap_pages
-= p
->pages
;
1908 p
->flags
&= ~SWP_WRITEOK
;
1909 spin_unlock(&p
->lock
);
1910 spin_unlock(&swap_lock
);
1912 set_current_oom_origin();
1913 err
= try_to_unuse(p
->type
, false, 0); /* force unuse all pages */
1914 clear_current_oom_origin();
1917 /* re-insert swap space back into swap_list */
1918 reinsert_swap_info(p
);
1922 flush_work(&p
->discard_work
);
1924 destroy_swap_extents(p
);
1925 if (p
->flags
& SWP_CONTINUED
)
1926 free_swap_count_continuations(p
);
1928 mutex_lock(&swapon_mutex
);
1929 spin_lock(&swap_lock
);
1930 spin_lock(&p
->lock
);
1933 /* wait for anyone still in scan_swap_map */
1934 p
->highest_bit
= 0; /* cuts scans short */
1935 while (p
->flags
>= SWP_SCANNING
) {
1936 spin_unlock(&p
->lock
);
1937 spin_unlock(&swap_lock
);
1938 schedule_timeout_uninterruptible(1);
1939 spin_lock(&swap_lock
);
1940 spin_lock(&p
->lock
);
1943 swap_file
= p
->swap_file
;
1944 old_block_size
= p
->old_block_size
;
1945 p
->swap_file
= NULL
;
1947 swap_map
= p
->swap_map
;
1949 cluster_info
= p
->cluster_info
;
1950 p
->cluster_info
= NULL
;
1951 frontswap_map
= frontswap_map_get(p
);
1952 spin_unlock(&p
->lock
);
1953 spin_unlock(&swap_lock
);
1954 frontswap_invalidate_area(p
->type
);
1955 frontswap_map_set(p
, NULL
);
1956 mutex_unlock(&swapon_mutex
);
1957 free_percpu(p
->percpu_cluster
);
1958 p
->percpu_cluster
= NULL
;
1960 vfree(cluster_info
);
1961 vfree(frontswap_map
);
1962 /* Destroy swap account information */
1963 swap_cgroup_swapoff(p
->type
);
1965 inode
= mapping
->host
;
1966 if (S_ISBLK(inode
->i_mode
)) {
1967 struct block_device
*bdev
= I_BDEV(inode
);
1968 set_blocksize(bdev
, old_block_size
);
1969 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
1972 inode
->i_flags
&= ~S_SWAPFILE
;
1973 inode_unlock(inode
);
1975 filp_close(swap_file
, NULL
);
1978 * Clear the SWP_USED flag after all resources are freed so that swapon
1979 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1980 * not hold p->lock after we cleared its SWP_WRITEOK.
1982 spin_lock(&swap_lock
);
1984 spin_unlock(&swap_lock
);
1987 atomic_inc(&proc_poll_event
);
1988 wake_up_interruptible(&proc_poll_wait
);
1991 filp_close(victim
, NULL
);
1997 #ifdef CONFIG_PROC_FS
1998 static unsigned swaps_poll(struct file
*file
, poll_table
*wait
)
2000 struct seq_file
*seq
= file
->private_data
;
2002 poll_wait(file
, &proc_poll_wait
, wait
);
2004 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
2005 seq
->poll_event
= atomic_read(&proc_poll_event
);
2006 return POLLIN
| POLLRDNORM
| POLLERR
| POLLPRI
;
2009 return POLLIN
| POLLRDNORM
;
2013 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
2015 struct swap_info_struct
*si
;
2019 mutex_lock(&swapon_mutex
);
2022 return SEQ_START_TOKEN
;
2024 for (type
= 0; type
< nr_swapfiles
; type
++) {
2025 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2026 si
= swap_info
[type
];
2027 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2036 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
2038 struct swap_info_struct
*si
= v
;
2041 if (v
== SEQ_START_TOKEN
)
2044 type
= si
->type
+ 1;
2046 for (; type
< nr_swapfiles
; type
++) {
2047 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2048 si
= swap_info
[type
];
2049 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2058 static void swap_stop(struct seq_file
*swap
, void *v
)
2060 mutex_unlock(&swapon_mutex
);
2063 static int swap_show(struct seq_file
*swap
, void *v
)
2065 struct swap_info_struct
*si
= v
;
2069 if (si
== SEQ_START_TOKEN
) {
2070 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2074 file
= si
->swap_file
;
2075 len
= seq_file_path(swap
, file
, " \t\n\\");
2076 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
2077 len
< 40 ? 40 - len
: 1, " ",
2078 S_ISBLK(file_inode(file
)->i_mode
) ?
2079 "partition" : "file\t",
2080 si
->pages
<< (PAGE_SHIFT
- 10),
2081 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
2086 static const struct seq_operations swaps_op
= {
2087 .start
= swap_start
,
2093 static int swaps_open(struct inode
*inode
, struct file
*file
)
2095 struct seq_file
*seq
;
2098 ret
= seq_open(file
, &swaps_op
);
2102 seq
= file
->private_data
;
2103 seq
->poll_event
= atomic_read(&proc_poll_event
);
2107 static const struct file_operations proc_swaps_operations
= {
2110 .llseek
= seq_lseek
,
2111 .release
= seq_release
,
2115 static int __init
procswaps_init(void)
2117 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
2120 __initcall(procswaps_init
);
2121 #endif /* CONFIG_PROC_FS */
2123 #ifdef MAX_SWAPFILES_CHECK
2124 static int __init
max_swapfiles_check(void)
2126 MAX_SWAPFILES_CHECK();
2129 late_initcall(max_swapfiles_check
);
2132 static struct swap_info_struct
*alloc_swap_info(void)
2134 struct swap_info_struct
*p
;
2137 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
2139 return ERR_PTR(-ENOMEM
);
2141 spin_lock(&swap_lock
);
2142 for (type
= 0; type
< nr_swapfiles
; type
++) {
2143 if (!(swap_info
[type
]->flags
& SWP_USED
))
2146 if (type
>= MAX_SWAPFILES
) {
2147 spin_unlock(&swap_lock
);
2149 return ERR_PTR(-EPERM
);
2151 if (type
>= nr_swapfiles
) {
2153 swap_info
[type
] = p
;
2155 * Write swap_info[type] before nr_swapfiles, in case a
2156 * racing procfs swap_start() or swap_next() is reading them.
2157 * (We never shrink nr_swapfiles, we never free this entry.)
2163 p
= swap_info
[type
];
2165 * Do not memset this entry: a racing procfs swap_next()
2166 * would be relying on p->type to remain valid.
2169 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
2170 plist_node_init(&p
->list
, 0);
2171 plist_node_init(&p
->avail_list
, 0);
2172 p
->flags
= SWP_USED
;
2173 spin_unlock(&swap_lock
);
2174 spin_lock_init(&p
->lock
);
2179 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
2183 if (S_ISBLK(inode
->i_mode
)) {
2184 p
->bdev
= bdgrab(I_BDEV(inode
));
2185 error
= blkdev_get(p
->bdev
,
2186 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
, p
);
2191 p
->old_block_size
= block_size(p
->bdev
);
2192 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
2195 p
->flags
|= SWP_BLKDEV
;
2196 } else if (S_ISREG(inode
->i_mode
)) {
2197 p
->bdev
= inode
->i_sb
->s_bdev
;
2199 if (IS_SWAPFILE(inode
))
2207 static unsigned long read_swap_header(struct swap_info_struct
*p
,
2208 union swap_header
*swap_header
,
2209 struct inode
*inode
)
2212 unsigned long maxpages
;
2213 unsigned long swapfilepages
;
2214 unsigned long last_page
;
2216 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
2217 pr_err("Unable to find swap-space signature\n");
2221 /* swap partition endianess hack... */
2222 if (swab32(swap_header
->info
.version
) == 1) {
2223 swab32s(&swap_header
->info
.version
);
2224 swab32s(&swap_header
->info
.last_page
);
2225 swab32s(&swap_header
->info
.nr_badpages
);
2226 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2228 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
2229 swab32s(&swap_header
->info
.badpages
[i
]);
2231 /* Check the swap header's sub-version */
2232 if (swap_header
->info
.version
!= 1) {
2233 pr_warn("Unable to handle swap header version %d\n",
2234 swap_header
->info
.version
);
2239 p
->cluster_next
= 1;
2243 * Find out how many pages are allowed for a single swap
2244 * device. There are two limiting factors: 1) the number
2245 * of bits for the swap offset in the swp_entry_t type, and
2246 * 2) the number of bits in the swap pte as defined by the
2247 * different architectures. In order to find the
2248 * largest possible bit mask, a swap entry with swap type 0
2249 * and swap offset ~0UL is created, encoded to a swap pte,
2250 * decoded to a swp_entry_t again, and finally the swap
2251 * offset is extracted. This will mask all the bits from
2252 * the initial ~0UL mask that can't be encoded in either
2253 * the swp_entry_t or the architecture definition of a
2256 maxpages
= swp_offset(pte_to_swp_entry(
2257 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2258 last_page
= swap_header
->info
.last_page
;
2259 if (last_page
> maxpages
) {
2260 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2261 maxpages
<< (PAGE_SHIFT
- 10),
2262 last_page
<< (PAGE_SHIFT
- 10));
2264 if (maxpages
> last_page
) {
2265 maxpages
= last_page
+ 1;
2266 /* p->max is an unsigned int: don't overflow it */
2267 if ((unsigned int)maxpages
== 0)
2268 maxpages
= UINT_MAX
;
2270 p
->highest_bit
= maxpages
- 1;
2274 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
2275 if (swapfilepages
&& maxpages
> swapfilepages
) {
2276 pr_warn("Swap area shorter than signature indicates\n");
2279 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
2281 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2287 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
2288 union swap_header
*swap_header
,
2289 unsigned char *swap_map
,
2290 struct swap_cluster_info
*cluster_info
,
2291 unsigned long maxpages
,
2295 unsigned int nr_good_pages
;
2297 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
2298 unsigned long idx
= p
->cluster_next
/ SWAPFILE_CLUSTER
;
2300 nr_good_pages
= maxpages
- 1; /* omit header page */
2302 cluster_list_init(&p
->free_clusters
);
2303 cluster_list_init(&p
->discard_clusters
);
2305 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
2306 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
2307 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
2309 if (page_nr
< maxpages
) {
2310 swap_map
[page_nr
] = SWAP_MAP_BAD
;
2313 * Haven't marked the cluster free yet, no list
2314 * operation involved
2316 inc_cluster_info_page(p
, cluster_info
, page_nr
);
2320 /* Haven't marked the cluster free yet, no list operation involved */
2321 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
2322 inc_cluster_info_page(p
, cluster_info
, i
);
2324 if (nr_good_pages
) {
2325 swap_map
[0] = SWAP_MAP_BAD
;
2327 * Not mark the cluster free yet, no list
2328 * operation involved
2330 inc_cluster_info_page(p
, cluster_info
, 0);
2332 p
->pages
= nr_good_pages
;
2333 nr_extents
= setup_swap_extents(p
, span
);
2336 nr_good_pages
= p
->pages
;
2338 if (!nr_good_pages
) {
2339 pr_warn("Empty swap-file\n");
2346 for (i
= 0; i
< nr_clusters
; i
++) {
2347 if (!cluster_count(&cluster_info
[idx
])) {
2348 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
2349 cluster_list_add_tail(&p
->free_clusters
, cluster_info
,
2353 if (idx
== nr_clusters
)
2360 * Helper to sys_swapon determining if a given swap
2361 * backing device queue supports DISCARD operations.
2363 static bool swap_discardable(struct swap_info_struct
*si
)
2365 struct request_queue
*q
= bdev_get_queue(si
->bdev
);
2367 if (!q
|| !blk_queue_discard(q
))
2373 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
2375 struct swap_info_struct
*p
;
2376 struct filename
*name
;
2377 struct file
*swap_file
= NULL
;
2378 struct address_space
*mapping
;
2381 union swap_header
*swap_header
;
2384 unsigned long maxpages
;
2385 unsigned char *swap_map
= NULL
;
2386 struct swap_cluster_info
*cluster_info
= NULL
;
2387 unsigned long *frontswap_map
= NULL
;
2388 struct page
*page
= NULL
;
2389 struct inode
*inode
= NULL
;
2391 if (swap_flags
& ~SWAP_FLAGS_VALID
)
2394 if (!capable(CAP_SYS_ADMIN
))
2397 p
= alloc_swap_info();
2401 INIT_WORK(&p
->discard_work
, swap_discard_work
);
2403 name
= getname(specialfile
);
2405 error
= PTR_ERR(name
);
2409 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
2410 if (IS_ERR(swap_file
)) {
2411 error
= PTR_ERR(swap_file
);
2416 p
->swap_file
= swap_file
;
2417 mapping
= swap_file
->f_mapping
;
2418 inode
= mapping
->host
;
2420 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2421 error
= claim_swapfile(p
, inode
);
2422 if (unlikely(error
))
2426 * Read the swap header.
2428 if (!mapping
->a_ops
->readpage
) {
2432 page
= read_mapping_page(mapping
, 0, swap_file
);
2434 error
= PTR_ERR(page
);
2437 swap_header
= kmap(page
);
2439 maxpages
= read_swap_header(p
, swap_header
, inode
);
2440 if (unlikely(!maxpages
)) {
2445 /* OK, set up the swap map and apply the bad block list */
2446 swap_map
= vzalloc(maxpages
);
2451 if (p
->bdev
&& blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2454 p
->flags
|= SWP_SOLIDSTATE
;
2456 * select a random position to start with to help wear leveling
2459 p
->cluster_next
= 1 + (prandom_u32() % p
->highest_bit
);
2461 cluster_info
= vzalloc(DIV_ROUND_UP(maxpages
,
2462 SWAPFILE_CLUSTER
) * sizeof(*cluster_info
));
2463 if (!cluster_info
) {
2467 p
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
2468 if (!p
->percpu_cluster
) {
2472 for_each_possible_cpu(cpu
) {
2473 struct percpu_cluster
*cluster
;
2474 cluster
= per_cpu_ptr(p
->percpu_cluster
, cpu
);
2475 cluster_set_null(&cluster
->index
);
2479 error
= swap_cgroup_swapon(p
->type
, maxpages
);
2483 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
2484 cluster_info
, maxpages
, &span
);
2485 if (unlikely(nr_extents
< 0)) {
2489 /* frontswap enabled? set up bit-per-page map for frontswap */
2490 if (IS_ENABLED(CONFIG_FRONTSWAP
))
2491 frontswap_map
= vzalloc(BITS_TO_LONGS(maxpages
) * sizeof(long));
2493 if (p
->bdev
&&(swap_flags
& SWAP_FLAG_DISCARD
) && swap_discardable(p
)) {
2495 * When discard is enabled for swap with no particular
2496 * policy flagged, we set all swap discard flags here in
2497 * order to sustain backward compatibility with older
2498 * swapon(8) releases.
2500 p
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
2504 * By flagging sys_swapon, a sysadmin can tell us to
2505 * either do single-time area discards only, or to just
2506 * perform discards for released swap page-clusters.
2507 * Now it's time to adjust the p->flags accordingly.
2509 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
2510 p
->flags
&= ~SWP_PAGE_DISCARD
;
2511 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
2512 p
->flags
&= ~SWP_AREA_DISCARD
;
2514 /* issue a swapon-time discard if it's still required */
2515 if (p
->flags
& SWP_AREA_DISCARD
) {
2516 int err
= discard_swap(p
);
2518 pr_err("swapon: discard_swap(%p): %d\n",
2523 mutex_lock(&swapon_mutex
);
2525 if (swap_flags
& SWAP_FLAG_PREFER
)
2527 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2528 enable_swap_info(p
, prio
, swap_map
, cluster_info
, frontswap_map
);
2530 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2531 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
2532 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2533 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2534 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
2535 (p
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
2536 (p
->flags
& SWP_PAGE_DISCARD
) ? "c" : "",
2537 (frontswap_map
) ? "FS" : "");
2539 mutex_unlock(&swapon_mutex
);
2540 atomic_inc(&proc_poll_event
);
2541 wake_up_interruptible(&proc_poll_wait
);
2543 if (S_ISREG(inode
->i_mode
))
2544 inode
->i_flags
|= S_SWAPFILE
;
2548 free_percpu(p
->percpu_cluster
);
2549 p
->percpu_cluster
= NULL
;
2550 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
2551 set_blocksize(p
->bdev
, p
->old_block_size
);
2552 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2554 destroy_swap_extents(p
);
2555 swap_cgroup_swapoff(p
->type
);
2556 spin_lock(&swap_lock
);
2557 p
->swap_file
= NULL
;
2559 spin_unlock(&swap_lock
);
2561 vfree(cluster_info
);
2563 if (inode
&& S_ISREG(inode
->i_mode
)) {
2564 inode_unlock(inode
);
2567 filp_close(swap_file
, NULL
);
2570 if (page
&& !IS_ERR(page
)) {
2576 if (inode
&& S_ISREG(inode
->i_mode
))
2577 inode_unlock(inode
);
2581 void si_swapinfo(struct sysinfo
*val
)
2584 unsigned long nr_to_be_unused
= 0;
2586 spin_lock(&swap_lock
);
2587 for (type
= 0; type
< nr_swapfiles
; type
++) {
2588 struct swap_info_struct
*si
= swap_info
[type
];
2590 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2591 nr_to_be_unused
+= si
->inuse_pages
;
2593 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
2594 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2595 spin_unlock(&swap_lock
);
2599 * Verify that a swap entry is valid and increment its swap map count.
2601 * Returns error code in following case.
2603 * - swp_entry is invalid -> EINVAL
2604 * - swp_entry is migration entry -> EINVAL
2605 * - swap-cache reference is requested but there is already one. -> EEXIST
2606 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2607 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2609 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2611 struct swap_info_struct
*p
;
2612 unsigned long offset
, type
;
2613 unsigned char count
;
2614 unsigned char has_cache
;
2617 if (non_swap_entry(entry
))
2620 type
= swp_type(entry
);
2621 if (type
>= nr_swapfiles
)
2623 p
= swap_info
[type
];
2624 offset
= swp_offset(entry
);
2626 spin_lock(&p
->lock
);
2627 if (unlikely(offset
>= p
->max
))
2630 count
= p
->swap_map
[offset
];
2633 * swapin_readahead() doesn't check if a swap entry is valid, so the
2634 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2636 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
2641 has_cache
= count
& SWAP_HAS_CACHE
;
2642 count
&= ~SWAP_HAS_CACHE
;
2645 if (usage
== SWAP_HAS_CACHE
) {
2647 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2648 if (!has_cache
&& count
)
2649 has_cache
= SWAP_HAS_CACHE
;
2650 else if (has_cache
) /* someone else added cache */
2652 else /* no users remaining */
2655 } else if (count
|| has_cache
) {
2657 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
2659 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
2661 else if (swap_count_continued(p
, offset
, count
))
2662 count
= COUNT_CONTINUED
;
2666 err
= -ENOENT
; /* unused swap entry */
2668 p
->swap_map
[offset
] = count
| has_cache
;
2671 spin_unlock(&p
->lock
);
2676 pr_err("swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2681 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2682 * (in which case its reference count is never incremented).
2684 void swap_shmem_alloc(swp_entry_t entry
)
2686 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
2690 * Increase reference count of swap entry by 1.
2691 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2692 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2693 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2694 * might occur if a page table entry has got corrupted.
2696 int swap_duplicate(swp_entry_t entry
)
2700 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
2701 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
2706 * @entry: swap entry for which we allocate swap cache.
2708 * Called when allocating swap cache for existing swap entry,
2709 * This can return error codes. Returns 0 at success.
2710 * -EBUSY means there is a swap cache.
2711 * Note: return code is different from swap_duplicate().
2713 int swapcache_prepare(swp_entry_t entry
)
2715 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
2718 struct swap_info_struct
*page_swap_info(struct page
*page
)
2720 swp_entry_t swap
= { .val
= page_private(page
) };
2721 return swap_info
[swp_type(swap
)];
2725 * out-of-line __page_file_ methods to avoid include hell.
2727 struct address_space
*__page_file_mapping(struct page
*page
)
2729 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
2730 return page_swap_info(page
)->swap_file
->f_mapping
;
2732 EXPORT_SYMBOL_GPL(__page_file_mapping
);
2734 pgoff_t
__page_file_index(struct page
*page
)
2736 swp_entry_t swap
= { .val
= page_private(page
) };
2737 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
2738 return swp_offset(swap
);
2740 EXPORT_SYMBOL_GPL(__page_file_index
);
2743 * add_swap_count_continuation - called when a swap count is duplicated
2744 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2745 * page of the original vmalloc'ed swap_map, to hold the continuation count
2746 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2747 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2749 * These continuation pages are seldom referenced: the common paths all work
2750 * on the original swap_map, only referring to a continuation page when the
2751 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2753 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2754 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2755 * can be called after dropping locks.
2757 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
2759 struct swap_info_struct
*si
;
2762 struct page
*list_page
;
2764 unsigned char count
;
2767 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2768 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2770 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
2772 si
= swap_info_get(entry
);
2775 * An acceptable race has occurred since the failing
2776 * __swap_duplicate(): the swap entry has been freed,
2777 * perhaps even the whole swap_map cleared for swapoff.
2782 offset
= swp_offset(entry
);
2783 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
2785 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
2787 * The higher the swap count, the more likely it is that tasks
2788 * will race to add swap count continuation: we need to avoid
2789 * over-provisioning.
2795 spin_unlock(&si
->lock
);
2800 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2801 * no architecture is using highmem pages for kernel page tables: so it
2802 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2804 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2805 offset
&= ~PAGE_MASK
;
2808 * Page allocation does not initialize the page's lru field,
2809 * but it does always reset its private field.
2811 if (!page_private(head
)) {
2812 BUG_ON(count
& COUNT_CONTINUED
);
2813 INIT_LIST_HEAD(&head
->lru
);
2814 set_page_private(head
, SWP_CONTINUED
);
2815 si
->flags
|= SWP_CONTINUED
;
2818 list_for_each_entry(list_page
, &head
->lru
, lru
) {
2822 * If the previous map said no continuation, but we've found
2823 * a continuation page, free our allocation and use this one.
2825 if (!(count
& COUNT_CONTINUED
))
2828 map
= kmap_atomic(list_page
) + offset
;
2833 * If this continuation count now has some space in it,
2834 * free our allocation and use this one.
2836 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
2840 list_add_tail(&page
->lru
, &head
->lru
);
2841 page
= NULL
; /* now it's attached, don't free it */
2843 spin_unlock(&si
->lock
);
2851 * swap_count_continued - when the original swap_map count is incremented
2852 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2853 * into, carry if so, or else fail until a new continuation page is allocated;
2854 * when the original swap_map count is decremented from 0 with continuation,
2855 * borrow from the continuation and report whether it still holds more.
2856 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2858 static bool swap_count_continued(struct swap_info_struct
*si
,
2859 pgoff_t offset
, unsigned char count
)
2865 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2866 if (page_private(head
) != SWP_CONTINUED
) {
2867 BUG_ON(count
& COUNT_CONTINUED
);
2868 return false; /* need to add count continuation */
2871 offset
&= ~PAGE_MASK
;
2872 page
= list_entry(head
->lru
.next
, struct page
, lru
);
2873 map
= kmap_atomic(page
) + offset
;
2875 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
2876 goto init_map
; /* jump over SWAP_CONT_MAX checks */
2878 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
2880 * Think of how you add 1 to 999
2882 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
2884 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2885 BUG_ON(page
== head
);
2886 map
= kmap_atomic(page
) + offset
;
2888 if (*map
== SWAP_CONT_MAX
) {
2890 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2892 return false; /* add count continuation */
2893 map
= kmap_atomic(page
) + offset
;
2894 init_map
: *map
= 0; /* we didn't zero the page */
2898 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2899 while (page
!= head
) {
2900 map
= kmap_atomic(page
) + offset
;
2901 *map
= COUNT_CONTINUED
;
2903 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2905 return true; /* incremented */
2907 } else { /* decrementing */
2909 * Think of how you subtract 1 from 1000
2911 BUG_ON(count
!= COUNT_CONTINUED
);
2912 while (*map
== COUNT_CONTINUED
) {
2914 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2915 BUG_ON(page
== head
);
2916 map
= kmap_atomic(page
) + offset
;
2923 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2924 while (page
!= head
) {
2925 map
= kmap_atomic(page
) + offset
;
2926 *map
= SWAP_CONT_MAX
| count
;
2927 count
= COUNT_CONTINUED
;
2929 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2931 return count
== COUNT_CONTINUED
;
2936 * free_swap_count_continuations - swapoff free all the continuation pages
2937 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2939 static void free_swap_count_continuations(struct swap_info_struct
*si
)
2943 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
2945 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2946 if (page_private(head
)) {
2947 struct page
*page
, *next
;
2949 list_for_each_entry_safe(page
, next
, &head
->lru
, lru
) {
2950 list_del(&page
->lru
);