4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim
;
66 /* This context's GFP mask */
69 /* Allocation order */
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
82 struct mem_cgroup
*target_mem_cgroup
;
84 /* Scan (total_size >> priority) pages at once */
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx
;
90 unsigned int may_writepage
:1;
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap
:1;
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap
:1;
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash
:1;
101 unsigned int hibernation_mode
:1;
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready
:1;
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned
;
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed
;
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field) \
116 if ((_page)->lru.prev != _base) { \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field) \
130 if ((_page)->lru.prev != _base) { \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
142 * From 0 .. 100. Higher means more swappy.
144 int vm_swappiness
= 60;
146 * The total number of pages which are beyond the high watermark within all
149 unsigned long vm_total_pages
;
151 static LIST_HEAD(shrinker_list
);
152 static DECLARE_RWSEM(shrinker_rwsem
);
155 static bool global_reclaim(struct scan_control
*sc
)
157 return !sc
->target_mem_cgroup
;
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
173 static bool sane_reclaim(struct scan_control
*sc
)
175 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
186 static bool global_reclaim(struct scan_control
*sc
)
191 static bool sane_reclaim(struct scan_control
*sc
)
198 * This misses isolated pages which are not accounted for to save counters.
199 * As the data only determines if reclaim or compaction continues, it is
200 * not expected that isolated pages will be a dominating factor.
202 unsigned long zone_reclaimable_pages(struct zone
*zone
)
206 nr
= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_FILE
) +
207 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_FILE
);
208 if (get_nr_swap_pages() > 0)
209 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_ANON
) +
210 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_ANON
);
215 unsigned long pgdat_reclaimable_pages(struct pglist_data
*pgdat
)
219 nr
= node_page_state_snapshot(pgdat
, NR_ACTIVE_FILE
) +
220 node_page_state_snapshot(pgdat
, NR_INACTIVE_FILE
) +
221 node_page_state_snapshot(pgdat
, NR_ISOLATED_FILE
);
223 if (get_nr_swap_pages() > 0)
224 nr
+= node_page_state_snapshot(pgdat
, NR_ACTIVE_ANON
) +
225 node_page_state_snapshot(pgdat
, NR_INACTIVE_ANON
) +
226 node_page_state_snapshot(pgdat
, NR_ISOLATED_ANON
);
231 bool pgdat_reclaimable(struct pglist_data
*pgdat
)
233 return node_page_state_snapshot(pgdat
, NR_PAGES_SCANNED
) <
234 pgdat_reclaimable_pages(pgdat
) * 6;
237 unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
239 if (!mem_cgroup_disabled())
240 return mem_cgroup_get_lru_size(lruvec
, lru
);
242 return node_page_state(lruvec_pgdat(lruvec
), NR_LRU_BASE
+ lru
);
246 * Add a shrinker callback to be called from the vm.
248 int register_shrinker(struct shrinker
*shrinker
)
250 size_t size
= sizeof(*shrinker
->nr_deferred
);
252 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
255 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
256 if (!shrinker
->nr_deferred
)
259 down_write(&shrinker_rwsem
);
260 list_add_tail(&shrinker
->list
, &shrinker_list
);
261 up_write(&shrinker_rwsem
);
264 EXPORT_SYMBOL(register_shrinker
);
269 void unregister_shrinker(struct shrinker
*shrinker
)
271 down_write(&shrinker_rwsem
);
272 list_del(&shrinker
->list
);
273 up_write(&shrinker_rwsem
);
274 kfree(shrinker
->nr_deferred
);
276 EXPORT_SYMBOL(unregister_shrinker
);
278 #define SHRINK_BATCH 128
280 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
281 struct shrinker
*shrinker
,
282 unsigned long nr_scanned
,
283 unsigned long nr_eligible
)
285 unsigned long freed
= 0;
286 unsigned long long delta
;
291 int nid
= shrinkctl
->nid
;
292 long batch_size
= shrinker
->batch
? shrinker
->batch
294 long scanned
= 0, next_deferred
;
296 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
301 * copy the current shrinker scan count into a local variable
302 * and zero it so that other concurrent shrinker invocations
303 * don't also do this scanning work.
305 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
308 delta
= (4 * nr_scanned
) / shrinker
->seeks
;
310 do_div(delta
, nr_eligible
+ 1);
312 if (total_scan
< 0) {
313 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
314 shrinker
->scan_objects
, total_scan
);
315 total_scan
= freeable
;
318 next_deferred
= total_scan
;
321 * We need to avoid excessive windup on filesystem shrinkers
322 * due to large numbers of GFP_NOFS allocations causing the
323 * shrinkers to return -1 all the time. This results in a large
324 * nr being built up so when a shrink that can do some work
325 * comes along it empties the entire cache due to nr >>>
326 * freeable. This is bad for sustaining a working set in
329 * Hence only allow the shrinker to scan the entire cache when
330 * a large delta change is calculated directly.
332 if (delta
< freeable
/ 4)
333 total_scan
= min(total_scan
, freeable
/ 2);
336 * Avoid risking looping forever due to too large nr value:
337 * never try to free more than twice the estimate number of
340 if (total_scan
> freeable
* 2)
341 total_scan
= freeable
* 2;
343 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
344 nr_scanned
, nr_eligible
,
345 freeable
, delta
, total_scan
);
348 * Normally, we should not scan less than batch_size objects in one
349 * pass to avoid too frequent shrinker calls, but if the slab has less
350 * than batch_size objects in total and we are really tight on memory,
351 * we will try to reclaim all available objects, otherwise we can end
352 * up failing allocations although there are plenty of reclaimable
353 * objects spread over several slabs with usage less than the
356 * We detect the "tight on memory" situations by looking at the total
357 * number of objects we want to scan (total_scan). If it is greater
358 * than the total number of objects on slab (freeable), we must be
359 * scanning at high prio and therefore should try to reclaim as much as
362 while (total_scan
>= batch_size
||
363 total_scan
>= freeable
) {
365 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
367 shrinkctl
->nr_to_scan
= nr_to_scan
;
368 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
369 if (ret
== SHRINK_STOP
)
373 count_vm_events(SLABS_SCANNED
, nr_to_scan
);
374 total_scan
-= nr_to_scan
;
375 scanned
+= nr_to_scan
;
380 if (next_deferred
>= scanned
)
381 next_deferred
-= scanned
;
385 * move the unused scan count back into the shrinker in a
386 * manner that handles concurrent updates. If we exhausted the
387 * scan, there is no need to do an update.
389 if (next_deferred
> 0)
390 new_nr
= atomic_long_add_return(next_deferred
,
391 &shrinker
->nr_deferred
[nid
]);
393 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
395 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
400 * shrink_slab - shrink slab caches
401 * @gfp_mask: allocation context
402 * @nid: node whose slab caches to target
403 * @memcg: memory cgroup whose slab caches to target
404 * @nr_scanned: pressure numerator
405 * @nr_eligible: pressure denominator
407 * Call the shrink functions to age shrinkable caches.
409 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
410 * unaware shrinkers will receive a node id of 0 instead.
412 * @memcg specifies the memory cgroup to target. If it is not NULL,
413 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
414 * objects from the memory cgroup specified. Otherwise, only unaware
415 * shrinkers are called.
417 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
418 * the available objects should be scanned. Page reclaim for example
419 * passes the number of pages scanned and the number of pages on the
420 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
421 * when it encountered mapped pages. The ratio is further biased by
422 * the ->seeks setting of the shrink function, which indicates the
423 * cost to recreate an object relative to that of an LRU page.
425 * Returns the number of reclaimed slab objects.
427 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
428 struct mem_cgroup
*memcg
,
429 unsigned long nr_scanned
,
430 unsigned long nr_eligible
)
432 struct shrinker
*shrinker
;
433 unsigned long freed
= 0;
435 if (memcg
&& (!memcg_kmem_enabled() || !mem_cgroup_online(memcg
)))
439 nr_scanned
= SWAP_CLUSTER_MAX
;
441 if (!down_read_trylock(&shrinker_rwsem
)) {
443 * If we would return 0, our callers would understand that we
444 * have nothing else to shrink and give up trying. By returning
445 * 1 we keep it going and assume we'll be able to shrink next
452 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
453 struct shrink_control sc
= {
454 .gfp_mask
= gfp_mask
,
460 * If kernel memory accounting is disabled, we ignore
461 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
462 * passing NULL for memcg.
464 if (memcg_kmem_enabled() &&
465 !!memcg
!= !!(shrinker
->flags
& SHRINKER_MEMCG_AWARE
))
468 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
471 freed
+= do_shrink_slab(&sc
, shrinker
, nr_scanned
, nr_eligible
);
474 up_read(&shrinker_rwsem
);
480 void drop_slab_node(int nid
)
485 struct mem_cgroup
*memcg
= NULL
;
489 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
,
491 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
492 } while (freed
> 10);
499 for_each_online_node(nid
)
503 static inline int is_page_cache_freeable(struct page
*page
)
506 * A freeable page cache page is referenced only by the caller
507 * that isolated the page, the page cache radix tree and
508 * optional buffer heads at page->private.
510 return page_count(page
) - page_has_private(page
) == 2;
513 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
515 if (current
->flags
& PF_SWAPWRITE
)
517 if (!inode_write_congested(inode
))
519 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
525 * We detected a synchronous write error writing a page out. Probably
526 * -ENOSPC. We need to propagate that into the address_space for a subsequent
527 * fsync(), msync() or close().
529 * The tricky part is that after writepage we cannot touch the mapping: nothing
530 * prevents it from being freed up. But we have a ref on the page and once
531 * that page is locked, the mapping is pinned.
533 * We're allowed to run sleeping lock_page() here because we know the caller has
536 static void handle_write_error(struct address_space
*mapping
,
537 struct page
*page
, int error
)
540 if (page_mapping(page
) == mapping
)
541 mapping_set_error(mapping
, error
);
545 /* possible outcome of pageout() */
547 /* failed to write page out, page is locked */
549 /* move page to the active list, page is locked */
551 /* page has been sent to the disk successfully, page is unlocked */
553 /* page is clean and locked */
558 * pageout is called by shrink_page_list() for each dirty page.
559 * Calls ->writepage().
561 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
562 struct scan_control
*sc
)
565 * If the page is dirty, only perform writeback if that write
566 * will be non-blocking. To prevent this allocation from being
567 * stalled by pagecache activity. But note that there may be
568 * stalls if we need to run get_block(). We could test
569 * PagePrivate for that.
571 * If this process is currently in __generic_file_write_iter() against
572 * this page's queue, we can perform writeback even if that
575 * If the page is swapcache, write it back even if that would
576 * block, for some throttling. This happens by accident, because
577 * swap_backing_dev_info is bust: it doesn't reflect the
578 * congestion state of the swapdevs. Easy to fix, if needed.
580 if (!is_page_cache_freeable(page
))
584 * Some data journaling orphaned pages can have
585 * page->mapping == NULL while being dirty with clean buffers.
587 if (page_has_private(page
)) {
588 if (try_to_free_buffers(page
)) {
589 ClearPageDirty(page
);
590 pr_info("%s: orphaned page\n", __func__
);
596 if (mapping
->a_ops
->writepage
== NULL
)
597 return PAGE_ACTIVATE
;
598 if (!may_write_to_inode(mapping
->host
, sc
))
601 if (clear_page_dirty_for_io(page
)) {
603 struct writeback_control wbc
= {
604 .sync_mode
= WB_SYNC_NONE
,
605 .nr_to_write
= SWAP_CLUSTER_MAX
,
607 .range_end
= LLONG_MAX
,
611 SetPageReclaim(page
);
612 res
= mapping
->a_ops
->writepage(page
, &wbc
);
614 handle_write_error(mapping
, page
, res
);
615 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
616 ClearPageReclaim(page
);
617 return PAGE_ACTIVATE
;
620 if (!PageWriteback(page
)) {
621 /* synchronous write or broken a_ops? */
622 ClearPageReclaim(page
);
624 trace_mm_vmscan_writepage(page
);
625 inc_node_page_state(page
, NR_VMSCAN_WRITE
);
633 * Same as remove_mapping, but if the page is removed from the mapping, it
634 * gets returned with a refcount of 0.
636 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
641 BUG_ON(!PageLocked(page
));
642 BUG_ON(mapping
!= page_mapping(page
));
644 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
646 * The non racy check for a busy page.
648 * Must be careful with the order of the tests. When someone has
649 * a ref to the page, it may be possible that they dirty it then
650 * drop the reference. So if PageDirty is tested before page_count
651 * here, then the following race may occur:
653 * get_user_pages(&page);
654 * [user mapping goes away]
656 * !PageDirty(page) [good]
657 * SetPageDirty(page);
659 * !page_count(page) [good, discard it]
661 * [oops, our write_to data is lost]
663 * Reversing the order of the tests ensures such a situation cannot
664 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
665 * load is not satisfied before that of page->_refcount.
667 * Note that if SetPageDirty is always performed via set_page_dirty,
668 * and thus under tree_lock, then this ordering is not required.
670 if (!page_ref_freeze(page
, 2))
672 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
673 if (unlikely(PageDirty(page
))) {
674 page_ref_unfreeze(page
, 2);
678 if (PageSwapCache(page
)) {
679 swp_entry_t swap
= { .val
= page_private(page
) };
680 mem_cgroup_swapout(page
, swap
);
681 __delete_from_swap_cache(page
);
682 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
683 swapcache_free(swap
);
685 void (*freepage
)(struct page
*);
688 freepage
= mapping
->a_ops
->freepage
;
690 * Remember a shadow entry for reclaimed file cache in
691 * order to detect refaults, thus thrashing, later on.
693 * But don't store shadows in an address space that is
694 * already exiting. This is not just an optizimation,
695 * inode reclaim needs to empty out the radix tree or
696 * the nodes are lost. Don't plant shadows behind its
699 * We also don't store shadows for DAX mappings because the
700 * only page cache pages found in these are zero pages
701 * covering holes, and because we don't want to mix DAX
702 * exceptional entries and shadow exceptional entries in the
705 if (reclaimed
&& page_is_file_cache(page
) &&
706 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
707 shadow
= workingset_eviction(mapping
, page
);
708 __delete_from_page_cache(page
, shadow
);
709 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
711 if (freepage
!= NULL
)
718 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
723 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
724 * someone else has a ref on the page, abort and return 0. If it was
725 * successfully detached, return 1. Assumes the caller has a single ref on
728 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
730 if (__remove_mapping(mapping
, page
, false)) {
732 * Unfreezing the refcount with 1 rather than 2 effectively
733 * drops the pagecache ref for us without requiring another
736 page_ref_unfreeze(page
, 1);
743 * putback_lru_page - put previously isolated page onto appropriate LRU list
744 * @page: page to be put back to appropriate lru list
746 * Add previously isolated @page to appropriate LRU list.
747 * Page may still be unevictable for other reasons.
749 * lru_lock must not be held, interrupts must be enabled.
751 void putback_lru_page(struct page
*page
)
754 int was_unevictable
= PageUnevictable(page
);
756 VM_BUG_ON_PAGE(PageLRU(page
), page
);
759 ClearPageUnevictable(page
);
761 if (page_evictable(page
)) {
763 * For evictable pages, we can use the cache.
764 * In event of a race, worst case is we end up with an
765 * unevictable page on [in]active list.
766 * We know how to handle that.
768 is_unevictable
= false;
772 * Put unevictable pages directly on zone's unevictable
775 is_unevictable
= true;
776 add_page_to_unevictable_list(page
);
778 * When racing with an mlock or AS_UNEVICTABLE clearing
779 * (page is unlocked) make sure that if the other thread
780 * does not observe our setting of PG_lru and fails
781 * isolation/check_move_unevictable_pages,
782 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
783 * the page back to the evictable list.
785 * The other side is TestClearPageMlocked() or shmem_lock().
791 * page's status can change while we move it among lru. If an evictable
792 * page is on unevictable list, it never be freed. To avoid that,
793 * check after we added it to the list, again.
795 if (is_unevictable
&& page_evictable(page
)) {
796 if (!isolate_lru_page(page
)) {
800 /* This means someone else dropped this page from LRU
801 * So, it will be freed or putback to LRU again. There is
802 * nothing to do here.
806 if (was_unevictable
&& !is_unevictable
)
807 count_vm_event(UNEVICTABLE_PGRESCUED
);
808 else if (!was_unevictable
&& is_unevictable
)
809 count_vm_event(UNEVICTABLE_PGCULLED
);
811 put_page(page
); /* drop ref from isolate */
814 enum page_references
{
816 PAGEREF_RECLAIM_CLEAN
,
821 static enum page_references
page_check_references(struct page
*page
,
822 struct scan_control
*sc
)
824 int referenced_ptes
, referenced_page
;
825 unsigned long vm_flags
;
827 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
829 referenced_page
= TestClearPageReferenced(page
);
832 * Mlock lost the isolation race with us. Let try_to_unmap()
833 * move the page to the unevictable list.
835 if (vm_flags
& VM_LOCKED
)
836 return PAGEREF_RECLAIM
;
838 if (referenced_ptes
) {
839 if (PageSwapBacked(page
))
840 return PAGEREF_ACTIVATE
;
842 * All mapped pages start out with page table
843 * references from the instantiating fault, so we need
844 * to look twice if a mapped file page is used more
847 * Mark it and spare it for another trip around the
848 * inactive list. Another page table reference will
849 * lead to its activation.
851 * Note: the mark is set for activated pages as well
852 * so that recently deactivated but used pages are
855 SetPageReferenced(page
);
857 if (referenced_page
|| referenced_ptes
> 1)
858 return PAGEREF_ACTIVATE
;
861 * Activate file-backed executable pages after first usage.
863 if (vm_flags
& VM_EXEC
)
864 return PAGEREF_ACTIVATE
;
869 /* Reclaim if clean, defer dirty pages to writeback */
870 if (referenced_page
&& !PageSwapBacked(page
))
871 return PAGEREF_RECLAIM_CLEAN
;
873 return PAGEREF_RECLAIM
;
876 /* Check if a page is dirty or under writeback */
877 static void page_check_dirty_writeback(struct page
*page
,
878 bool *dirty
, bool *writeback
)
880 struct address_space
*mapping
;
883 * Anonymous pages are not handled by flushers and must be written
884 * from reclaim context. Do not stall reclaim based on them
886 if (!page_is_file_cache(page
)) {
892 /* By default assume that the page flags are accurate */
893 *dirty
= PageDirty(page
);
894 *writeback
= PageWriteback(page
);
896 /* Verify dirty/writeback state if the filesystem supports it */
897 if (!page_has_private(page
))
900 mapping
= page_mapping(page
);
901 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
902 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
906 * shrink_page_list() returns the number of reclaimed pages
908 static unsigned long shrink_page_list(struct list_head
*page_list
,
909 struct pglist_data
*pgdat
,
910 struct scan_control
*sc
,
911 enum ttu_flags ttu_flags
,
912 unsigned long *ret_nr_dirty
,
913 unsigned long *ret_nr_unqueued_dirty
,
914 unsigned long *ret_nr_congested
,
915 unsigned long *ret_nr_writeback
,
916 unsigned long *ret_nr_immediate
,
919 LIST_HEAD(ret_pages
);
920 LIST_HEAD(free_pages
);
922 unsigned long nr_unqueued_dirty
= 0;
923 unsigned long nr_dirty
= 0;
924 unsigned long nr_congested
= 0;
925 unsigned long nr_reclaimed
= 0;
926 unsigned long nr_writeback
= 0;
927 unsigned long nr_immediate
= 0;
931 while (!list_empty(page_list
)) {
932 struct address_space
*mapping
;
935 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
936 bool dirty
, writeback
;
937 bool lazyfree
= false;
938 int ret
= SWAP_SUCCESS
;
942 page
= lru_to_page(page_list
);
943 list_del(&page
->lru
);
945 if (!trylock_page(page
))
948 VM_BUG_ON_PAGE(PageActive(page
), page
);
952 if (unlikely(!page_evictable(page
)))
955 if (!sc
->may_unmap
&& page_mapped(page
))
958 /* Double the slab pressure for mapped and swapcache pages */
959 if (page_mapped(page
) || PageSwapCache(page
))
962 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
963 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
966 * The number of dirty pages determines if a zone is marked
967 * reclaim_congested which affects wait_iff_congested. kswapd
968 * will stall and start writing pages if the tail of the LRU
969 * is all dirty unqueued pages.
971 page_check_dirty_writeback(page
, &dirty
, &writeback
);
972 if (dirty
|| writeback
)
975 if (dirty
&& !writeback
)
979 * Treat this page as congested if the underlying BDI is or if
980 * pages are cycling through the LRU so quickly that the
981 * pages marked for immediate reclaim are making it to the
982 * end of the LRU a second time.
984 mapping
= page_mapping(page
);
985 if (((dirty
|| writeback
) && mapping
&&
986 inode_write_congested(mapping
->host
)) ||
987 (writeback
&& PageReclaim(page
)))
991 * If a page at the tail of the LRU is under writeback, there
992 * are three cases to consider.
994 * 1) If reclaim is encountering an excessive number of pages
995 * under writeback and this page is both under writeback and
996 * PageReclaim then it indicates that pages are being queued
997 * for IO but are being recycled through the LRU before the
998 * IO can complete. Waiting on the page itself risks an
999 * indefinite stall if it is impossible to writeback the
1000 * page due to IO error or disconnected storage so instead
1001 * note that the LRU is being scanned too quickly and the
1002 * caller can stall after page list has been processed.
1004 * 2) Global or new memcg reclaim encounters a page that is
1005 * not marked for immediate reclaim, or the caller does not
1006 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1007 * not to fs). In this case mark the page for immediate
1008 * reclaim and continue scanning.
1010 * Require may_enter_fs because we would wait on fs, which
1011 * may not have submitted IO yet. And the loop driver might
1012 * enter reclaim, and deadlock if it waits on a page for
1013 * which it is needed to do the write (loop masks off
1014 * __GFP_IO|__GFP_FS for this reason); but more thought
1015 * would probably show more reasons.
1017 * 3) Legacy memcg encounters a page that is already marked
1018 * PageReclaim. memcg does not have any dirty pages
1019 * throttling so we could easily OOM just because too many
1020 * pages are in writeback and there is nothing else to
1021 * reclaim. Wait for the writeback to complete.
1023 if (PageWriteback(page
)) {
1025 if (current_is_kswapd() &&
1026 PageReclaim(page
) &&
1027 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1032 } else if (sane_reclaim(sc
) ||
1033 !PageReclaim(page
) || !may_enter_fs
) {
1035 * This is slightly racy - end_page_writeback()
1036 * might have just cleared PageReclaim, then
1037 * setting PageReclaim here end up interpreted
1038 * as PageReadahead - but that does not matter
1039 * enough to care. What we do want is for this
1040 * page to have PageReclaim set next time memcg
1041 * reclaim reaches the tests above, so it will
1042 * then wait_on_page_writeback() to avoid OOM;
1043 * and it's also appropriate in global reclaim.
1045 SetPageReclaim(page
);
1052 wait_on_page_writeback(page
);
1053 /* then go back and try same page again */
1054 list_add_tail(&page
->lru
, page_list
);
1060 references
= page_check_references(page
, sc
);
1062 switch (references
) {
1063 case PAGEREF_ACTIVATE
:
1064 goto activate_locked
;
1067 case PAGEREF_RECLAIM
:
1068 case PAGEREF_RECLAIM_CLEAN
:
1069 ; /* try to reclaim the page below */
1073 * Anonymous process memory has backing store?
1074 * Try to allocate it some swap space here.
1076 if (PageAnon(page
) && !PageSwapCache(page
)) {
1077 if (!(sc
->gfp_mask
& __GFP_IO
))
1079 if (!add_to_swap(page
, page_list
))
1080 goto activate_locked
;
1084 /* Adding to swap updated mapping */
1085 mapping
= page_mapping(page
);
1086 } else if (unlikely(PageTransHuge(page
))) {
1087 /* Split file THP */
1088 if (split_huge_page_to_list(page
, page_list
))
1092 VM_BUG_ON_PAGE(PageTransHuge(page
), page
);
1095 * The page is mapped into the page tables of one or more
1096 * processes. Try to unmap it here.
1098 if (page_mapped(page
) && mapping
) {
1099 switch (ret
= try_to_unmap(page
, lazyfree
?
1100 (ttu_flags
| TTU_BATCH_FLUSH
| TTU_LZFREE
) :
1101 (ttu_flags
| TTU_BATCH_FLUSH
))) {
1103 goto activate_locked
;
1111 ; /* try to free the page below */
1115 if (PageDirty(page
)) {
1117 * Only kswapd can writeback filesystem pages to
1118 * avoid risk of stack overflow but only writeback
1119 * if many dirty pages have been encountered.
1121 if (page_is_file_cache(page
) &&
1122 (!current_is_kswapd() ||
1123 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1125 * Immediately reclaim when written back.
1126 * Similar in principal to deactivate_page()
1127 * except we already have the page isolated
1128 * and know it's dirty
1130 inc_node_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1131 SetPageReclaim(page
);
1136 if (references
== PAGEREF_RECLAIM_CLEAN
)
1140 if (!sc
->may_writepage
)
1144 * Page is dirty. Flush the TLB if a writable entry
1145 * potentially exists to avoid CPU writes after IO
1146 * starts and then write it out here.
1148 try_to_unmap_flush_dirty();
1149 switch (pageout(page
, mapping
, sc
)) {
1153 goto activate_locked
;
1155 if (PageWriteback(page
))
1157 if (PageDirty(page
))
1161 * A synchronous write - probably a ramdisk. Go
1162 * ahead and try to reclaim the page.
1164 if (!trylock_page(page
))
1166 if (PageDirty(page
) || PageWriteback(page
))
1168 mapping
= page_mapping(page
);
1170 ; /* try to free the page below */
1175 * If the page has buffers, try to free the buffer mappings
1176 * associated with this page. If we succeed we try to free
1179 * We do this even if the page is PageDirty().
1180 * try_to_release_page() does not perform I/O, but it is
1181 * possible for a page to have PageDirty set, but it is actually
1182 * clean (all its buffers are clean). This happens if the
1183 * buffers were written out directly, with submit_bh(). ext3
1184 * will do this, as well as the blockdev mapping.
1185 * try_to_release_page() will discover that cleanness and will
1186 * drop the buffers and mark the page clean - it can be freed.
1188 * Rarely, pages can have buffers and no ->mapping. These are
1189 * the pages which were not successfully invalidated in
1190 * truncate_complete_page(). We try to drop those buffers here
1191 * and if that worked, and the page is no longer mapped into
1192 * process address space (page_count == 1) it can be freed.
1193 * Otherwise, leave the page on the LRU so it is swappable.
1195 if (page_has_private(page
)) {
1196 if (!try_to_release_page(page
, sc
->gfp_mask
))
1197 goto activate_locked
;
1198 if (!mapping
&& page_count(page
) == 1) {
1200 if (put_page_testzero(page
))
1204 * rare race with speculative reference.
1205 * the speculative reference will free
1206 * this page shortly, so we may
1207 * increment nr_reclaimed here (and
1208 * leave it off the LRU).
1217 if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1221 * At this point, we have no other references and there is
1222 * no way to pick any more up (removed from LRU, removed
1223 * from pagecache). Can use non-atomic bitops now (and
1224 * we obviously don't have to worry about waking up a process
1225 * waiting on the page lock, because there are no references.
1227 __ClearPageLocked(page
);
1229 if (ret
== SWAP_LZFREE
)
1230 count_vm_event(PGLAZYFREED
);
1235 * Is there need to periodically free_page_list? It would
1236 * appear not as the counts should be low
1238 list_add(&page
->lru
, &free_pages
);
1242 if (PageSwapCache(page
))
1243 try_to_free_swap(page
);
1245 list_add(&page
->lru
, &ret_pages
);
1249 /* Not a candidate for swapping, so reclaim swap space. */
1250 if (PageSwapCache(page
) && mem_cgroup_swap_full(page
))
1251 try_to_free_swap(page
);
1252 VM_BUG_ON_PAGE(PageActive(page
), page
);
1253 SetPageActive(page
);
1258 list_add(&page
->lru
, &ret_pages
);
1259 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1262 mem_cgroup_uncharge_list(&free_pages
);
1263 try_to_unmap_flush();
1264 free_hot_cold_page_list(&free_pages
, true);
1266 list_splice(&ret_pages
, page_list
);
1267 count_vm_events(PGACTIVATE
, pgactivate
);
1269 *ret_nr_dirty
+= nr_dirty
;
1270 *ret_nr_congested
+= nr_congested
;
1271 *ret_nr_unqueued_dirty
+= nr_unqueued_dirty
;
1272 *ret_nr_writeback
+= nr_writeback
;
1273 *ret_nr_immediate
+= nr_immediate
;
1274 return nr_reclaimed
;
1277 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1278 struct list_head
*page_list
)
1280 struct scan_control sc
= {
1281 .gfp_mask
= GFP_KERNEL
,
1282 .priority
= DEF_PRIORITY
,
1285 unsigned long ret
, dummy1
, dummy2
, dummy3
, dummy4
, dummy5
;
1286 struct page
*page
, *next
;
1287 LIST_HEAD(clean_pages
);
1289 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1290 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1291 !__PageMovable(page
)) {
1292 ClearPageActive(page
);
1293 list_move(&page
->lru
, &clean_pages
);
1297 ret
= shrink_page_list(&clean_pages
, zone
->zone_pgdat
, &sc
,
1298 TTU_UNMAP
|TTU_IGNORE_ACCESS
,
1299 &dummy1
, &dummy2
, &dummy3
, &dummy4
, &dummy5
, true);
1300 list_splice(&clean_pages
, page_list
);
1301 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
, -ret
);
1306 * Attempt to remove the specified page from its LRU. Only take this page
1307 * if it is of the appropriate PageActive status. Pages which are being
1308 * freed elsewhere are also ignored.
1310 * page: page to consider
1311 * mode: one of the LRU isolation modes defined above
1313 * returns 0 on success, -ve errno on failure.
1315 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1319 /* Only take pages on the LRU. */
1323 /* Compaction should not handle unevictable pages but CMA can do so */
1324 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1330 * To minimise LRU disruption, the caller can indicate that it only
1331 * wants to isolate pages it will be able to operate on without
1332 * blocking - clean pages for the most part.
1334 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1335 * is used by reclaim when it is cannot write to backing storage
1337 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1338 * that it is possible to migrate without blocking
1340 if (mode
& (ISOLATE_CLEAN
|ISOLATE_ASYNC_MIGRATE
)) {
1341 /* All the caller can do on PageWriteback is block */
1342 if (PageWriteback(page
))
1345 if (PageDirty(page
)) {
1346 struct address_space
*mapping
;
1348 /* ISOLATE_CLEAN means only clean pages */
1349 if (mode
& ISOLATE_CLEAN
)
1353 * Only pages without mappings or that have a
1354 * ->migratepage callback are possible to migrate
1357 mapping
= page_mapping(page
);
1358 if (mapping
&& !mapping
->a_ops
->migratepage
)
1363 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1366 if (likely(get_page_unless_zero(page
))) {
1368 * Be careful not to clear PageLRU until after we're
1369 * sure the page is not being freed elsewhere -- the
1370 * page release code relies on it.
1381 * Update LRU sizes after isolating pages. The LRU size updates must
1382 * be complete before mem_cgroup_update_lru_size due to a santity check.
1384 static __always_inline
void update_lru_sizes(struct lruvec
*lruvec
,
1385 enum lru_list lru
, unsigned long *nr_zone_taken
,
1386 unsigned long nr_taken
)
1390 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1391 if (!nr_zone_taken
[zid
])
1394 __update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1398 mem_cgroup_update_lru_size(lruvec
, lru
, -nr_taken
);
1403 * zone_lru_lock is heavily contended. Some of the functions that
1404 * shrink the lists perform better by taking out a batch of pages
1405 * and working on them outside the LRU lock.
1407 * For pagecache intensive workloads, this function is the hottest
1408 * spot in the kernel (apart from copy_*_user functions).
1410 * Appropriate locks must be held before calling this function.
1412 * @nr_to_scan: The number of pages to look through on the list.
1413 * @lruvec: The LRU vector to pull pages from.
1414 * @dst: The temp list to put pages on to.
1415 * @nr_scanned: The number of pages that were scanned.
1416 * @sc: The scan_control struct for this reclaim session
1417 * @mode: One of the LRU isolation modes
1418 * @lru: LRU list id for isolating
1420 * returns how many pages were moved onto *@dst.
1422 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1423 struct lruvec
*lruvec
, struct list_head
*dst
,
1424 unsigned long *nr_scanned
, struct scan_control
*sc
,
1425 isolate_mode_t mode
, enum lru_list lru
)
1427 struct list_head
*src
= &lruvec
->lists
[lru
];
1428 unsigned long nr_taken
= 0;
1429 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1430 unsigned long nr_skipped
[MAX_NR_ZONES
] = { 0, };
1431 unsigned long scan
, nr_pages
;
1432 LIST_HEAD(pages_skipped
);
1434 for (scan
= 0; scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&&
1435 !list_empty(src
);) {
1438 page
= lru_to_page(src
);
1439 prefetchw_prev_lru_page(page
, src
, flags
);
1441 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1443 if (page_zonenum(page
) > sc
->reclaim_idx
) {
1444 list_move(&page
->lru
, &pages_skipped
);
1445 nr_skipped
[page_zonenum(page
)]++;
1450 * Account for scanned and skipped separetly to avoid the pgdat
1451 * being prematurely marked unreclaimable by pgdat_reclaimable.
1455 switch (__isolate_lru_page(page
, mode
)) {
1457 nr_pages
= hpage_nr_pages(page
);
1458 nr_taken
+= nr_pages
;
1459 nr_zone_taken
[page_zonenum(page
)] += nr_pages
;
1460 list_move(&page
->lru
, dst
);
1464 /* else it is being freed elsewhere */
1465 list_move(&page
->lru
, src
);
1474 * Splice any skipped pages to the start of the LRU list. Note that
1475 * this disrupts the LRU order when reclaiming for lower zones but
1476 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1477 * scanning would soon rescan the same pages to skip and put the
1478 * system at risk of premature OOM.
1480 if (!list_empty(&pages_skipped
)) {
1482 unsigned long total_skipped
= 0;
1484 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1485 if (!nr_skipped
[zid
])
1488 __count_zid_vm_events(PGSCAN_SKIP
, zid
, nr_skipped
[zid
]);
1489 total_skipped
+= nr_skipped
[zid
];
1493 * Account skipped pages as a partial scan as the pgdat may be
1494 * close to unreclaimable. If the LRU list is empty, account
1495 * skipped pages as a full scan.
1497 scan
+= list_empty(src
) ? total_skipped
: total_skipped
>> 2;
1499 list_splice(&pages_skipped
, src
);
1502 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, nr_to_scan
, scan
,
1503 nr_taken
, mode
, is_file_lru(lru
));
1504 update_lru_sizes(lruvec
, lru
, nr_zone_taken
, nr_taken
);
1509 * isolate_lru_page - tries to isolate a page from its LRU list
1510 * @page: page to isolate from its LRU list
1512 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1513 * vmstat statistic corresponding to whatever LRU list the page was on.
1515 * Returns 0 if the page was removed from an LRU list.
1516 * Returns -EBUSY if the page was not on an LRU list.
1518 * The returned page will have PageLRU() cleared. If it was found on
1519 * the active list, it will have PageActive set. If it was found on
1520 * the unevictable list, it will have the PageUnevictable bit set. That flag
1521 * may need to be cleared by the caller before letting the page go.
1523 * The vmstat statistic corresponding to the list on which the page was
1524 * found will be decremented.
1527 * (1) Must be called with an elevated refcount on the page. This is a
1528 * fundamentnal difference from isolate_lru_pages (which is called
1529 * without a stable reference).
1530 * (2) the lru_lock must not be held.
1531 * (3) interrupts must be enabled.
1533 int isolate_lru_page(struct page
*page
)
1537 VM_BUG_ON_PAGE(!page_count(page
), page
);
1538 WARN_RATELIMIT(PageTail(page
), "trying to isolate tail page");
1540 if (PageLRU(page
)) {
1541 struct zone
*zone
= page_zone(page
);
1542 struct lruvec
*lruvec
;
1544 spin_lock_irq(zone_lru_lock(zone
));
1545 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
1546 if (PageLRU(page
)) {
1547 int lru
= page_lru(page
);
1550 del_page_from_lru_list(page
, lruvec
, lru
);
1553 spin_unlock_irq(zone_lru_lock(zone
));
1559 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1560 * then get resheduled. When there are massive number of tasks doing page
1561 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1562 * the LRU list will go small and be scanned faster than necessary, leading to
1563 * unnecessary swapping, thrashing and OOM.
1565 static int too_many_isolated(struct pglist_data
*pgdat
, int file
,
1566 struct scan_control
*sc
)
1568 unsigned long inactive
, isolated
;
1570 if (current_is_kswapd())
1573 if (!sane_reclaim(sc
))
1577 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1578 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1580 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1581 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1585 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1586 * won't get blocked by normal direct-reclaimers, forming a circular
1589 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1592 return isolated
> inactive
;
1595 static noinline_for_stack
void
1596 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1598 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1599 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1600 LIST_HEAD(pages_to_free
);
1603 * Put back any unfreeable pages.
1605 while (!list_empty(page_list
)) {
1606 struct page
*page
= lru_to_page(page_list
);
1609 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1610 list_del(&page
->lru
);
1611 if (unlikely(!page_evictable(page
))) {
1612 spin_unlock_irq(&pgdat
->lru_lock
);
1613 putback_lru_page(page
);
1614 spin_lock_irq(&pgdat
->lru_lock
);
1618 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1621 lru
= page_lru(page
);
1622 add_page_to_lru_list(page
, lruvec
, lru
);
1624 if (is_active_lru(lru
)) {
1625 int file
= is_file_lru(lru
);
1626 int numpages
= hpage_nr_pages(page
);
1627 reclaim_stat
->recent_rotated
[file
] += numpages
;
1629 if (put_page_testzero(page
)) {
1630 __ClearPageLRU(page
);
1631 __ClearPageActive(page
);
1632 del_page_from_lru_list(page
, lruvec
, lru
);
1634 if (unlikely(PageCompound(page
))) {
1635 spin_unlock_irq(&pgdat
->lru_lock
);
1636 mem_cgroup_uncharge(page
);
1637 (*get_compound_page_dtor(page
))(page
);
1638 spin_lock_irq(&pgdat
->lru_lock
);
1640 list_add(&page
->lru
, &pages_to_free
);
1645 * To save our caller's stack, now use input list for pages to free.
1647 list_splice(&pages_to_free
, page_list
);
1651 * If a kernel thread (such as nfsd for loop-back mounts) services
1652 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1653 * In that case we should only throttle if the backing device it is
1654 * writing to is congested. In other cases it is safe to throttle.
1656 static int current_may_throttle(void)
1658 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1659 current
->backing_dev_info
== NULL
||
1660 bdi_write_congested(current
->backing_dev_info
);
1663 static bool inactive_reclaimable_pages(struct lruvec
*lruvec
,
1664 struct scan_control
*sc
, enum lru_list lru
)
1668 int file
= is_file_lru(lru
);
1669 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1671 if (!global_reclaim(sc
))
1674 for (zid
= sc
->reclaim_idx
; zid
>= 0; zid
--) {
1675 zone
= &pgdat
->node_zones
[zid
];
1676 if (!managed_zone(zone
))
1679 if (zone_page_state_snapshot(zone
, NR_ZONE_LRU_BASE
+
1680 LRU_FILE
* file
) >= SWAP_CLUSTER_MAX
)
1688 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1689 * of reclaimed pages
1691 static noinline_for_stack
unsigned long
1692 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1693 struct scan_control
*sc
, enum lru_list lru
)
1695 LIST_HEAD(page_list
);
1696 unsigned long nr_scanned
;
1697 unsigned long nr_reclaimed
= 0;
1698 unsigned long nr_taken
;
1699 unsigned long nr_dirty
= 0;
1700 unsigned long nr_congested
= 0;
1701 unsigned long nr_unqueued_dirty
= 0;
1702 unsigned long nr_writeback
= 0;
1703 unsigned long nr_immediate
= 0;
1704 isolate_mode_t isolate_mode
= 0;
1705 int file
= is_file_lru(lru
);
1706 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1707 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1709 if (!inactive_reclaimable_pages(lruvec
, sc
, lru
))
1712 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1713 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1715 /* We are about to die and free our memory. Return now. */
1716 if (fatal_signal_pending(current
))
1717 return SWAP_CLUSTER_MAX
;
1723 isolate_mode
|= ISOLATE_UNMAPPED
;
1724 if (!sc
->may_writepage
)
1725 isolate_mode
|= ISOLATE_CLEAN
;
1727 spin_lock_irq(&pgdat
->lru_lock
);
1729 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1730 &nr_scanned
, sc
, isolate_mode
, lru
);
1732 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1733 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1735 if (global_reclaim(sc
)) {
1736 __mod_node_page_state(pgdat
, NR_PAGES_SCANNED
, nr_scanned
);
1737 if (current_is_kswapd())
1738 __count_vm_events(PGSCAN_KSWAPD
, nr_scanned
);
1740 __count_vm_events(PGSCAN_DIRECT
, nr_scanned
);
1742 spin_unlock_irq(&pgdat
->lru_lock
);
1747 nr_reclaimed
= shrink_page_list(&page_list
, pgdat
, sc
, TTU_UNMAP
,
1748 &nr_dirty
, &nr_unqueued_dirty
, &nr_congested
,
1749 &nr_writeback
, &nr_immediate
,
1752 spin_lock_irq(&pgdat
->lru_lock
);
1754 if (global_reclaim(sc
)) {
1755 if (current_is_kswapd())
1756 __count_vm_events(PGSTEAL_KSWAPD
, nr_reclaimed
);
1758 __count_vm_events(PGSTEAL_DIRECT
, nr_reclaimed
);
1761 putback_inactive_pages(lruvec
, &page_list
);
1763 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1765 spin_unlock_irq(&pgdat
->lru_lock
);
1767 mem_cgroup_uncharge_list(&page_list
);
1768 free_hot_cold_page_list(&page_list
, true);
1771 * If reclaim is isolating dirty pages under writeback, it implies
1772 * that the long-lived page allocation rate is exceeding the page
1773 * laundering rate. Either the global limits are not being effective
1774 * at throttling processes due to the page distribution throughout
1775 * zones or there is heavy usage of a slow backing device. The
1776 * only option is to throttle from reclaim context which is not ideal
1777 * as there is no guarantee the dirtying process is throttled in the
1778 * same way balance_dirty_pages() manages.
1780 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1781 * of pages under pages flagged for immediate reclaim and stall if any
1782 * are encountered in the nr_immediate check below.
1784 if (nr_writeback
&& nr_writeback
== nr_taken
)
1785 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
1788 * Legacy memcg will stall in page writeback so avoid forcibly
1791 if (sane_reclaim(sc
)) {
1793 * Tag a zone as congested if all the dirty pages scanned were
1794 * backed by a congested BDI and wait_iff_congested will stall.
1796 if (nr_dirty
&& nr_dirty
== nr_congested
)
1797 set_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
1800 * If dirty pages are scanned that are not queued for IO, it
1801 * implies that flushers are not keeping up. In this case, flag
1802 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1805 if (nr_unqueued_dirty
== nr_taken
)
1806 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
1809 * If kswapd scans pages marked marked for immediate
1810 * reclaim and under writeback (nr_immediate), it implies
1811 * that pages are cycling through the LRU faster than
1812 * they are written so also forcibly stall.
1814 if (nr_immediate
&& current_may_throttle())
1815 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1819 * Stall direct reclaim for IO completions if underlying BDIs or zone
1820 * is congested. Allow kswapd to continue until it starts encountering
1821 * unqueued dirty pages or cycling through the LRU too quickly.
1823 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
1824 current_may_throttle())
1825 wait_iff_congested(pgdat
, BLK_RW_ASYNC
, HZ
/10);
1827 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
1828 nr_scanned
, nr_reclaimed
,
1829 sc
->priority
, file
);
1830 return nr_reclaimed
;
1834 * This moves pages from the active list to the inactive list.
1836 * We move them the other way if the page is referenced by one or more
1837 * processes, from rmap.
1839 * If the pages are mostly unmapped, the processing is fast and it is
1840 * appropriate to hold zone_lru_lock across the whole operation. But if
1841 * the pages are mapped, the processing is slow (page_referenced()) so we
1842 * should drop zone_lru_lock around each page. It's impossible to balance
1843 * this, so instead we remove the pages from the LRU while processing them.
1844 * It is safe to rely on PG_active against the non-LRU pages in here because
1845 * nobody will play with that bit on a non-LRU page.
1847 * The downside is that we have to touch page->_refcount against each page.
1848 * But we had to alter page->flags anyway.
1851 static void move_active_pages_to_lru(struct lruvec
*lruvec
,
1852 struct list_head
*list
,
1853 struct list_head
*pages_to_free
,
1856 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1857 unsigned long pgmoved
= 0;
1861 while (!list_empty(list
)) {
1862 page
= lru_to_page(list
);
1863 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1865 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1868 nr_pages
= hpage_nr_pages(page
);
1869 update_lru_size(lruvec
, lru
, page_zonenum(page
), nr_pages
);
1870 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1871 pgmoved
+= nr_pages
;
1873 if (put_page_testzero(page
)) {
1874 __ClearPageLRU(page
);
1875 __ClearPageActive(page
);
1876 del_page_from_lru_list(page
, lruvec
, lru
);
1878 if (unlikely(PageCompound(page
))) {
1879 spin_unlock_irq(&pgdat
->lru_lock
);
1880 mem_cgroup_uncharge(page
);
1881 (*get_compound_page_dtor(page
))(page
);
1882 spin_lock_irq(&pgdat
->lru_lock
);
1884 list_add(&page
->lru
, pages_to_free
);
1888 if (!is_active_lru(lru
))
1889 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1892 static void shrink_active_list(unsigned long nr_to_scan
,
1893 struct lruvec
*lruvec
,
1894 struct scan_control
*sc
,
1897 unsigned long nr_taken
;
1898 unsigned long nr_scanned
;
1899 unsigned long vm_flags
;
1900 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1901 LIST_HEAD(l_active
);
1902 LIST_HEAD(l_inactive
);
1904 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1905 unsigned long nr_rotated
= 0;
1906 isolate_mode_t isolate_mode
= 0;
1907 int file
= is_file_lru(lru
);
1908 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1913 isolate_mode
|= ISOLATE_UNMAPPED
;
1914 if (!sc
->may_writepage
)
1915 isolate_mode
|= ISOLATE_CLEAN
;
1917 spin_lock_irq(&pgdat
->lru_lock
);
1919 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
1920 &nr_scanned
, sc
, isolate_mode
, lru
);
1922 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1923 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1925 if (global_reclaim(sc
))
1926 __mod_node_page_state(pgdat
, NR_PAGES_SCANNED
, nr_scanned
);
1927 __count_vm_events(PGREFILL
, nr_scanned
);
1929 spin_unlock_irq(&pgdat
->lru_lock
);
1931 while (!list_empty(&l_hold
)) {
1933 page
= lru_to_page(&l_hold
);
1934 list_del(&page
->lru
);
1936 if (unlikely(!page_evictable(page
))) {
1937 putback_lru_page(page
);
1941 if (unlikely(buffer_heads_over_limit
)) {
1942 if (page_has_private(page
) && trylock_page(page
)) {
1943 if (page_has_private(page
))
1944 try_to_release_page(page
, 0);
1949 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
1951 nr_rotated
+= hpage_nr_pages(page
);
1953 * Identify referenced, file-backed active pages and
1954 * give them one more trip around the active list. So
1955 * that executable code get better chances to stay in
1956 * memory under moderate memory pressure. Anon pages
1957 * are not likely to be evicted by use-once streaming
1958 * IO, plus JVM can create lots of anon VM_EXEC pages,
1959 * so we ignore them here.
1961 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1962 list_add(&page
->lru
, &l_active
);
1967 ClearPageActive(page
); /* we are de-activating */
1968 list_add(&page
->lru
, &l_inactive
);
1972 * Move pages back to the lru list.
1974 spin_lock_irq(&pgdat
->lru_lock
);
1976 * Count referenced pages from currently used mappings as rotated,
1977 * even though only some of them are actually re-activated. This
1978 * helps balance scan pressure between file and anonymous pages in
1981 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1983 move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
1984 move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
1985 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1986 spin_unlock_irq(&pgdat
->lru_lock
);
1988 mem_cgroup_uncharge_list(&l_hold
);
1989 free_hot_cold_page_list(&l_hold
, true);
1993 * The inactive anon list should be small enough that the VM never has
1994 * to do too much work.
1996 * The inactive file list should be small enough to leave most memory
1997 * to the established workingset on the scan-resistant active list,
1998 * but large enough to avoid thrashing the aggregate readahead window.
2000 * Both inactive lists should also be large enough that each inactive
2001 * page has a chance to be referenced again before it is reclaimed.
2003 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2004 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2005 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2008 * memory ratio inactive
2009 * -------------------------------------
2018 static bool inactive_list_is_low(struct lruvec
*lruvec
, bool file
,
2019 struct scan_control
*sc
)
2021 unsigned long inactive_ratio
;
2022 unsigned long inactive
;
2023 unsigned long active
;
2025 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2029 * If we don't have swap space, anonymous page deactivation
2032 if (!file
&& !total_swap_pages
)
2035 inactive
= lruvec_lru_size(lruvec
, file
* LRU_FILE
);
2036 active
= lruvec_lru_size(lruvec
, file
* LRU_FILE
+ LRU_ACTIVE
);
2039 * For zone-constrained allocations, it is necessary to check if
2040 * deactivations are required for lowmem to be reclaimed. This
2041 * calculates the inactive/active pages available in eligible zones.
2043 for (zid
= sc
->reclaim_idx
+ 1; zid
< MAX_NR_ZONES
; zid
++) {
2044 struct zone
*zone
= &pgdat
->node_zones
[zid
];
2045 unsigned long inactive_zone
, active_zone
;
2047 if (!managed_zone(zone
))
2050 inactive_zone
= zone_page_state(zone
,
2051 NR_ZONE_LRU_BASE
+ (file
* LRU_FILE
));
2052 active_zone
= zone_page_state(zone
,
2053 NR_ZONE_LRU_BASE
+ (file
* LRU_FILE
) + LRU_ACTIVE
);
2055 inactive
-= min(inactive
, inactive_zone
);
2056 active
-= min(active
, active_zone
);
2059 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
2061 inactive_ratio
= int_sqrt(10 * gb
);
2065 return inactive
* inactive_ratio
< active
;
2068 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
2069 struct lruvec
*lruvec
, struct scan_control
*sc
)
2071 if (is_active_lru(lru
)) {
2072 if (inactive_list_is_low(lruvec
, is_file_lru(lru
), sc
))
2073 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
2077 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
2088 * Determine how aggressively the anon and file LRU lists should be
2089 * scanned. The relative value of each set of LRU lists is determined
2090 * by looking at the fraction of the pages scanned we did rotate back
2091 * onto the active list instead of evict.
2093 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2094 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2096 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2097 struct scan_control
*sc
, unsigned long *nr
,
2098 unsigned long *lru_pages
)
2100 int swappiness
= mem_cgroup_swappiness(memcg
);
2101 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2103 u64 denominator
= 0; /* gcc */
2104 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2105 unsigned long anon_prio
, file_prio
;
2106 enum scan_balance scan_balance
;
2107 unsigned long anon
, file
;
2108 bool force_scan
= false;
2109 unsigned long ap
, fp
;
2115 * If the zone or memcg is small, nr[l] can be 0. This
2116 * results in no scanning on this priority and a potential
2117 * priority drop. Global direct reclaim can go to the next
2118 * zone and tends to have no problems. Global kswapd is for
2119 * zone balancing and it needs to scan a minimum amount. When
2120 * reclaiming for a memcg, a priority drop can cause high
2121 * latencies, so it's better to scan a minimum amount there as
2124 if (current_is_kswapd()) {
2125 if (!pgdat_reclaimable(pgdat
))
2127 if (!mem_cgroup_online(memcg
))
2130 if (!global_reclaim(sc
))
2133 /* If we have no swap space, do not bother scanning anon pages. */
2134 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2135 scan_balance
= SCAN_FILE
;
2140 * Global reclaim will swap to prevent OOM even with no
2141 * swappiness, but memcg users want to use this knob to
2142 * disable swapping for individual groups completely when
2143 * using the memory controller's swap limit feature would be
2146 if (!global_reclaim(sc
) && !swappiness
) {
2147 scan_balance
= SCAN_FILE
;
2152 * Do not apply any pressure balancing cleverness when the
2153 * system is close to OOM, scan both anon and file equally
2154 * (unless the swappiness setting disagrees with swapping).
2156 if (!sc
->priority
&& swappiness
) {
2157 scan_balance
= SCAN_EQUAL
;
2162 * Prevent the reclaimer from falling into the cache trap: as
2163 * cache pages start out inactive, every cache fault will tip
2164 * the scan balance towards the file LRU. And as the file LRU
2165 * shrinks, so does the window for rotation from references.
2166 * This means we have a runaway feedback loop where a tiny
2167 * thrashing file LRU becomes infinitely more attractive than
2168 * anon pages. Try to detect this based on file LRU size.
2170 if (global_reclaim(sc
)) {
2171 unsigned long pgdatfile
;
2172 unsigned long pgdatfree
;
2174 unsigned long total_high_wmark
= 0;
2176 pgdatfree
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2177 pgdatfile
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2178 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2180 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2181 struct zone
*zone
= &pgdat
->node_zones
[z
];
2182 if (!managed_zone(zone
))
2185 total_high_wmark
+= high_wmark_pages(zone
);
2188 if (unlikely(pgdatfile
+ pgdatfree
<= total_high_wmark
)) {
2189 scan_balance
= SCAN_ANON
;
2195 * If there is enough inactive page cache, i.e. if the size of the
2196 * inactive list is greater than that of the active list *and* the
2197 * inactive list actually has some pages to scan on this priority, we
2198 * do not reclaim anything from the anonymous working set right now.
2199 * Without the second condition we could end up never scanning an
2200 * lruvec even if it has plenty of old anonymous pages unless the
2201 * system is under heavy pressure.
2203 if (!inactive_list_is_low(lruvec
, true, sc
) &&
2204 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
) >> sc
->priority
) {
2205 scan_balance
= SCAN_FILE
;
2209 scan_balance
= SCAN_FRACT
;
2212 * With swappiness at 100, anonymous and file have the same priority.
2213 * This scanning priority is essentially the inverse of IO cost.
2215 anon_prio
= swappiness
;
2216 file_prio
= 200 - anon_prio
;
2219 * OK, so we have swap space and a fair amount of page cache
2220 * pages. We use the recently rotated / recently scanned
2221 * ratios to determine how valuable each cache is.
2223 * Because workloads change over time (and to avoid overflow)
2224 * we keep these statistics as a floating average, which ends
2225 * up weighing recent references more than old ones.
2227 * anon in [0], file in [1]
2230 anon
= lruvec_lru_size(lruvec
, LRU_ACTIVE_ANON
) +
2231 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
);
2232 file
= lruvec_lru_size(lruvec
, LRU_ACTIVE_FILE
) +
2233 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
);
2235 spin_lock_irq(&pgdat
->lru_lock
);
2236 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2237 reclaim_stat
->recent_scanned
[0] /= 2;
2238 reclaim_stat
->recent_rotated
[0] /= 2;
2241 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2242 reclaim_stat
->recent_scanned
[1] /= 2;
2243 reclaim_stat
->recent_rotated
[1] /= 2;
2247 * The amount of pressure on anon vs file pages is inversely
2248 * proportional to the fraction of recently scanned pages on
2249 * each list that were recently referenced and in active use.
2251 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2252 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2254 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2255 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2256 spin_unlock_irq(&pgdat
->lru_lock
);
2260 denominator
= ap
+ fp
+ 1;
2262 some_scanned
= false;
2263 /* Only use force_scan on second pass. */
2264 for (pass
= 0; !some_scanned
&& pass
< 2; pass
++) {
2266 for_each_evictable_lru(lru
) {
2267 int file
= is_file_lru(lru
);
2271 size
= lruvec_lru_size(lruvec
, lru
);
2272 scan
= size
>> sc
->priority
;
2274 if (!scan
&& pass
&& force_scan
)
2275 scan
= min(size
, SWAP_CLUSTER_MAX
);
2277 switch (scan_balance
) {
2279 /* Scan lists relative to size */
2283 * Scan types proportional to swappiness and
2284 * their relative recent reclaim efficiency.
2286 scan
= div64_u64(scan
* fraction
[file
],
2291 /* Scan one type exclusively */
2292 if ((scan_balance
== SCAN_FILE
) != file
) {
2298 /* Look ma, no brain */
2306 * Skip the second pass and don't force_scan,
2307 * if we found something to scan.
2309 some_scanned
|= !!scan
;
2315 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2317 static void shrink_node_memcg(struct pglist_data
*pgdat
, struct mem_cgroup
*memcg
,
2318 struct scan_control
*sc
, unsigned long *lru_pages
)
2320 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2321 unsigned long nr
[NR_LRU_LISTS
];
2322 unsigned long targets
[NR_LRU_LISTS
];
2323 unsigned long nr_to_scan
;
2325 unsigned long nr_reclaimed
= 0;
2326 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2327 struct blk_plug plug
;
2330 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2332 /* Record the original scan target for proportional adjustments later */
2333 memcpy(targets
, nr
, sizeof(nr
));
2336 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2337 * event that can occur when there is little memory pressure e.g.
2338 * multiple streaming readers/writers. Hence, we do not abort scanning
2339 * when the requested number of pages are reclaimed when scanning at
2340 * DEF_PRIORITY on the assumption that the fact we are direct
2341 * reclaiming implies that kswapd is not keeping up and it is best to
2342 * do a batch of work at once. For memcg reclaim one check is made to
2343 * abort proportional reclaim if either the file or anon lru has already
2344 * dropped to zero at the first pass.
2346 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2347 sc
->priority
== DEF_PRIORITY
);
2349 blk_start_plug(&plug
);
2350 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2351 nr
[LRU_INACTIVE_FILE
]) {
2352 unsigned long nr_anon
, nr_file
, percentage
;
2353 unsigned long nr_scanned
;
2355 for_each_evictable_lru(lru
) {
2357 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2358 nr
[lru
] -= nr_to_scan
;
2360 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2367 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2371 * For kswapd and memcg, reclaim at least the number of pages
2372 * requested. Ensure that the anon and file LRUs are scanned
2373 * proportionally what was requested by get_scan_count(). We
2374 * stop reclaiming one LRU and reduce the amount scanning
2375 * proportional to the original scan target.
2377 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2378 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2381 * It's just vindictive to attack the larger once the smaller
2382 * has gone to zero. And given the way we stop scanning the
2383 * smaller below, this makes sure that we only make one nudge
2384 * towards proportionality once we've got nr_to_reclaim.
2386 if (!nr_file
|| !nr_anon
)
2389 if (nr_file
> nr_anon
) {
2390 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2391 targets
[LRU_ACTIVE_ANON
] + 1;
2393 percentage
= nr_anon
* 100 / scan_target
;
2395 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2396 targets
[LRU_ACTIVE_FILE
] + 1;
2398 percentage
= nr_file
* 100 / scan_target
;
2401 /* Stop scanning the smaller of the LRU */
2403 nr
[lru
+ LRU_ACTIVE
] = 0;
2406 * Recalculate the other LRU scan count based on its original
2407 * scan target and the percentage scanning already complete
2409 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2410 nr_scanned
= targets
[lru
] - nr
[lru
];
2411 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2412 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2415 nr_scanned
= targets
[lru
] - nr
[lru
];
2416 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2417 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2419 scan_adjusted
= true;
2421 blk_finish_plug(&plug
);
2422 sc
->nr_reclaimed
+= nr_reclaimed
;
2425 * Even if we did not try to evict anon pages at all, we want to
2426 * rebalance the anon lru active/inactive ratio.
2428 if (inactive_list_is_low(lruvec
, false, sc
))
2429 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2430 sc
, LRU_ACTIVE_ANON
);
2433 /* Use reclaim/compaction for costly allocs or under memory pressure */
2434 static bool in_reclaim_compaction(struct scan_control
*sc
)
2436 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2437 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2438 sc
->priority
< DEF_PRIORITY
- 2))
2445 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2446 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2447 * true if more pages should be reclaimed such that when the page allocator
2448 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2449 * It will give up earlier than that if there is difficulty reclaiming pages.
2451 static inline bool should_continue_reclaim(struct pglist_data
*pgdat
,
2452 unsigned long nr_reclaimed
,
2453 unsigned long nr_scanned
,
2454 struct scan_control
*sc
)
2456 unsigned long pages_for_compaction
;
2457 unsigned long inactive_lru_pages
;
2460 /* If not in reclaim/compaction mode, stop */
2461 if (!in_reclaim_compaction(sc
))
2464 /* Consider stopping depending on scan and reclaim activity */
2465 if (sc
->gfp_mask
& __GFP_REPEAT
) {
2467 * For __GFP_REPEAT allocations, stop reclaiming if the
2468 * full LRU list has been scanned and we are still failing
2469 * to reclaim pages. This full LRU scan is potentially
2470 * expensive but a __GFP_REPEAT caller really wants to succeed
2472 if (!nr_reclaimed
&& !nr_scanned
)
2476 * For non-__GFP_REPEAT allocations which can presumably
2477 * fail without consequence, stop if we failed to reclaim
2478 * any pages from the last SWAP_CLUSTER_MAX number of
2479 * pages that were scanned. This will return to the
2480 * caller faster at the risk reclaim/compaction and
2481 * the resulting allocation attempt fails
2488 * If we have not reclaimed enough pages for compaction and the
2489 * inactive lists are large enough, continue reclaiming
2491 pages_for_compaction
= compact_gap(sc
->order
);
2492 inactive_lru_pages
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
2493 if (get_nr_swap_pages() > 0)
2494 inactive_lru_pages
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
2495 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2496 inactive_lru_pages
> pages_for_compaction
)
2499 /* If compaction would go ahead or the allocation would succeed, stop */
2500 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
2501 struct zone
*zone
= &pgdat
->node_zones
[z
];
2502 if (!managed_zone(zone
))
2505 switch (compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
)) {
2506 case COMPACT_SUCCESS
:
2507 case COMPACT_CONTINUE
:
2510 /* check next zone */
2517 static bool shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
)
2519 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2520 unsigned long nr_reclaimed
, nr_scanned
;
2521 bool reclaimable
= false;
2524 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2525 struct mem_cgroup_reclaim_cookie reclaim
= {
2527 .priority
= sc
->priority
,
2529 unsigned long node_lru_pages
= 0;
2530 struct mem_cgroup
*memcg
;
2532 nr_reclaimed
= sc
->nr_reclaimed
;
2533 nr_scanned
= sc
->nr_scanned
;
2535 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2537 unsigned long lru_pages
;
2538 unsigned long reclaimed
;
2539 unsigned long scanned
;
2541 if (mem_cgroup_low(root
, memcg
)) {
2542 if (!sc
->may_thrash
)
2544 mem_cgroup_events(memcg
, MEMCG_LOW
, 1);
2547 reclaimed
= sc
->nr_reclaimed
;
2548 scanned
= sc
->nr_scanned
;
2550 shrink_node_memcg(pgdat
, memcg
, sc
, &lru_pages
);
2551 node_lru_pages
+= lru_pages
;
2554 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
,
2555 memcg
, sc
->nr_scanned
- scanned
,
2558 /* Record the group's reclaim efficiency */
2559 vmpressure(sc
->gfp_mask
, memcg
, false,
2560 sc
->nr_scanned
- scanned
,
2561 sc
->nr_reclaimed
- reclaimed
);
2564 * Direct reclaim and kswapd have to scan all memory
2565 * cgroups to fulfill the overall scan target for the
2568 * Limit reclaim, on the other hand, only cares about
2569 * nr_to_reclaim pages to be reclaimed and it will
2570 * retry with decreasing priority if one round over the
2571 * whole hierarchy is not sufficient.
2573 if (!global_reclaim(sc
) &&
2574 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2575 mem_cgroup_iter_break(root
, memcg
);
2578 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2581 * Shrink the slab caches in the same proportion that
2582 * the eligible LRU pages were scanned.
2584 if (global_reclaim(sc
))
2585 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
, NULL
,
2586 sc
->nr_scanned
- nr_scanned
,
2589 if (reclaim_state
) {
2590 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2591 reclaim_state
->reclaimed_slab
= 0;
2594 /* Record the subtree's reclaim efficiency */
2595 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2596 sc
->nr_scanned
- nr_scanned
,
2597 sc
->nr_reclaimed
- nr_reclaimed
);
2599 if (sc
->nr_reclaimed
- nr_reclaimed
)
2602 } while (should_continue_reclaim(pgdat
, sc
->nr_reclaimed
- nr_reclaimed
,
2603 sc
->nr_scanned
- nr_scanned
, sc
));
2609 * Returns true if compaction should go ahead for a costly-order request, or
2610 * the allocation would already succeed without compaction. Return false if we
2611 * should reclaim first.
2613 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2615 unsigned long watermark
;
2616 enum compact_result suitable
;
2618 suitable
= compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
);
2619 if (suitable
== COMPACT_SUCCESS
)
2620 /* Allocation should succeed already. Don't reclaim. */
2622 if (suitable
== COMPACT_SKIPPED
)
2623 /* Compaction cannot yet proceed. Do reclaim. */
2627 * Compaction is already possible, but it takes time to run and there
2628 * are potentially other callers using the pages just freed. So proceed
2629 * with reclaim to make a buffer of free pages available to give
2630 * compaction a reasonable chance of completing and allocating the page.
2631 * Note that we won't actually reclaim the whole buffer in one attempt
2632 * as the target watermark in should_continue_reclaim() is lower. But if
2633 * we are already above the high+gap watermark, don't reclaim at all.
2635 watermark
= high_wmark_pages(zone
) + compact_gap(sc
->order
);
2637 return zone_watermark_ok_safe(zone
, 0, watermark
, sc
->reclaim_idx
);
2641 * This is the direct reclaim path, for page-allocating processes. We only
2642 * try to reclaim pages from zones which will satisfy the caller's allocation
2645 * If a zone is deemed to be full of pinned pages then just give it a light
2646 * scan then give up on it.
2648 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2652 unsigned long nr_soft_reclaimed
;
2653 unsigned long nr_soft_scanned
;
2655 pg_data_t
*last_pgdat
= NULL
;
2658 * If the number of buffer_heads in the machine exceeds the maximum
2659 * allowed level, force direct reclaim to scan the highmem zone as
2660 * highmem pages could be pinning lowmem pages storing buffer_heads
2662 orig_mask
= sc
->gfp_mask
;
2663 if (buffer_heads_over_limit
) {
2664 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2665 sc
->reclaim_idx
= gfp_zone(sc
->gfp_mask
);
2668 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2669 sc
->reclaim_idx
, sc
->nodemask
) {
2671 * Take care memory controller reclaiming has small influence
2674 if (global_reclaim(sc
)) {
2675 if (!cpuset_zone_allowed(zone
,
2676 GFP_KERNEL
| __GFP_HARDWALL
))
2679 if (sc
->priority
!= DEF_PRIORITY
&&
2680 !pgdat_reclaimable(zone
->zone_pgdat
))
2681 continue; /* Let kswapd poll it */
2684 * If we already have plenty of memory free for
2685 * compaction in this zone, don't free any more.
2686 * Even though compaction is invoked for any
2687 * non-zero order, only frequent costly order
2688 * reclamation is disruptive enough to become a
2689 * noticeable problem, like transparent huge
2692 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2693 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2694 compaction_ready(zone
, sc
)) {
2695 sc
->compaction_ready
= true;
2700 * Shrink each node in the zonelist once. If the
2701 * zonelist is ordered by zone (not the default) then a
2702 * node may be shrunk multiple times but in that case
2703 * the user prefers lower zones being preserved.
2705 if (zone
->zone_pgdat
== last_pgdat
)
2709 * This steals pages from memory cgroups over softlimit
2710 * and returns the number of reclaimed pages and
2711 * scanned pages. This works for global memory pressure
2712 * and balancing, not for a memcg's limit.
2714 nr_soft_scanned
= 0;
2715 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
->zone_pgdat
,
2716 sc
->order
, sc
->gfp_mask
,
2718 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2719 sc
->nr_scanned
+= nr_soft_scanned
;
2720 /* need some check for avoid more shrink_zone() */
2723 /* See comment about same check for global reclaim above */
2724 if (zone
->zone_pgdat
== last_pgdat
)
2726 last_pgdat
= zone
->zone_pgdat
;
2727 shrink_node(zone
->zone_pgdat
, sc
);
2731 * Restore to original mask to avoid the impact on the caller if we
2732 * promoted it to __GFP_HIGHMEM.
2734 sc
->gfp_mask
= orig_mask
;
2738 * This is the main entry point to direct page reclaim.
2740 * If a full scan of the inactive list fails to free enough memory then we
2741 * are "out of memory" and something needs to be killed.
2743 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2744 * high - the zone may be full of dirty or under-writeback pages, which this
2745 * caller can't do much about. We kick the writeback threads and take explicit
2746 * naps in the hope that some of these pages can be written. But if the
2747 * allocating task holds filesystem locks which prevent writeout this might not
2748 * work, and the allocation attempt will fail.
2750 * returns: 0, if no pages reclaimed
2751 * else, the number of pages reclaimed
2753 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2754 struct scan_control
*sc
)
2756 int initial_priority
= sc
->priority
;
2757 unsigned long total_scanned
= 0;
2758 unsigned long writeback_threshold
;
2760 delayacct_freepages_start();
2762 if (global_reclaim(sc
))
2763 __count_zid_vm_events(ALLOCSTALL
, sc
->reclaim_idx
, 1);
2766 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2769 shrink_zones(zonelist
, sc
);
2771 total_scanned
+= sc
->nr_scanned
;
2772 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2775 if (sc
->compaction_ready
)
2779 * If we're getting trouble reclaiming, start doing
2780 * writepage even in laptop mode.
2782 if (sc
->priority
< DEF_PRIORITY
- 2)
2783 sc
->may_writepage
= 1;
2786 * Try to write back as many pages as we just scanned. This
2787 * tends to cause slow streaming writers to write data to the
2788 * disk smoothly, at the dirtying rate, which is nice. But
2789 * that's undesirable in laptop mode, where we *want* lumpy
2790 * writeout. So in laptop mode, write out the whole world.
2792 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2793 if (total_scanned
> writeback_threshold
) {
2794 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
,
2795 WB_REASON_TRY_TO_FREE_PAGES
);
2796 sc
->may_writepage
= 1;
2798 } while (--sc
->priority
>= 0);
2800 delayacct_freepages_end();
2802 if (sc
->nr_reclaimed
)
2803 return sc
->nr_reclaimed
;
2805 /* Aborted reclaim to try compaction? don't OOM, then */
2806 if (sc
->compaction_ready
)
2809 /* Untapped cgroup reserves? Don't OOM, retry. */
2810 if (!sc
->may_thrash
) {
2811 sc
->priority
= initial_priority
;
2819 static bool pfmemalloc_watermark_ok(pg_data_t
*pgdat
)
2822 unsigned long pfmemalloc_reserve
= 0;
2823 unsigned long free_pages
= 0;
2827 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
2828 zone
= &pgdat
->node_zones
[i
];
2829 if (!managed_zone(zone
) ||
2830 pgdat_reclaimable_pages(pgdat
) == 0)
2833 pfmemalloc_reserve
+= min_wmark_pages(zone
);
2834 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
2837 /* If there are no reserves (unexpected config) then do not throttle */
2838 if (!pfmemalloc_reserve
)
2841 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
2843 /* kswapd must be awake if processes are being throttled */
2844 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
2845 pgdat
->kswapd_classzone_idx
= min(pgdat
->kswapd_classzone_idx
,
2846 (enum zone_type
)ZONE_NORMAL
);
2847 wake_up_interruptible(&pgdat
->kswapd_wait
);
2854 * Throttle direct reclaimers if backing storage is backed by the network
2855 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2856 * depleted. kswapd will continue to make progress and wake the processes
2857 * when the low watermark is reached.
2859 * Returns true if a fatal signal was delivered during throttling. If this
2860 * happens, the page allocator should not consider triggering the OOM killer.
2862 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
2863 nodemask_t
*nodemask
)
2867 pg_data_t
*pgdat
= NULL
;
2870 * Kernel threads should not be throttled as they may be indirectly
2871 * responsible for cleaning pages necessary for reclaim to make forward
2872 * progress. kjournald for example may enter direct reclaim while
2873 * committing a transaction where throttling it could forcing other
2874 * processes to block on log_wait_commit().
2876 if (current
->flags
& PF_KTHREAD
)
2880 * If a fatal signal is pending, this process should not throttle.
2881 * It should return quickly so it can exit and free its memory
2883 if (fatal_signal_pending(current
))
2887 * Check if the pfmemalloc reserves are ok by finding the first node
2888 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2889 * GFP_KERNEL will be required for allocating network buffers when
2890 * swapping over the network so ZONE_HIGHMEM is unusable.
2892 * Throttling is based on the first usable node and throttled processes
2893 * wait on a queue until kswapd makes progress and wakes them. There
2894 * is an affinity then between processes waking up and where reclaim
2895 * progress has been made assuming the process wakes on the same node.
2896 * More importantly, processes running on remote nodes will not compete
2897 * for remote pfmemalloc reserves and processes on different nodes
2898 * should make reasonable progress.
2900 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2901 gfp_zone(gfp_mask
), nodemask
) {
2902 if (zone_idx(zone
) > ZONE_NORMAL
)
2905 /* Throttle based on the first usable node */
2906 pgdat
= zone
->zone_pgdat
;
2907 if (pfmemalloc_watermark_ok(pgdat
))
2912 /* If no zone was usable by the allocation flags then do not throttle */
2916 /* Account for the throttling */
2917 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
2920 * If the caller cannot enter the filesystem, it's possible that it
2921 * is due to the caller holding an FS lock or performing a journal
2922 * transaction in the case of a filesystem like ext[3|4]. In this case,
2923 * it is not safe to block on pfmemalloc_wait as kswapd could be
2924 * blocked waiting on the same lock. Instead, throttle for up to a
2925 * second before continuing.
2927 if (!(gfp_mask
& __GFP_FS
)) {
2928 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
2929 pfmemalloc_watermark_ok(pgdat
), HZ
);
2934 /* Throttle until kswapd wakes the process */
2935 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
2936 pfmemalloc_watermark_ok(pgdat
));
2939 if (fatal_signal_pending(current
))
2946 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2947 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2949 unsigned long nr_reclaimed
;
2950 struct scan_control sc
= {
2951 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2952 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
2953 .reclaim_idx
= gfp_zone(gfp_mask
),
2955 .nodemask
= nodemask
,
2956 .priority
= DEF_PRIORITY
,
2957 .may_writepage
= !laptop_mode
,
2963 * Do not enter reclaim if fatal signal was delivered while throttled.
2964 * 1 is returned so that the page allocator does not OOM kill at this
2967 if (throttle_direct_reclaim(gfp_mask
, zonelist
, nodemask
))
2970 trace_mm_vmscan_direct_reclaim_begin(order
,
2975 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2977 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2979 return nr_reclaimed
;
2984 unsigned long mem_cgroup_shrink_node(struct mem_cgroup
*memcg
,
2985 gfp_t gfp_mask
, bool noswap
,
2987 unsigned long *nr_scanned
)
2989 struct scan_control sc
= {
2990 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2991 .target_mem_cgroup
= memcg
,
2992 .may_writepage
= !laptop_mode
,
2994 .reclaim_idx
= MAX_NR_ZONES
- 1,
2995 .may_swap
= !noswap
,
2997 unsigned long lru_pages
;
2999 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3000 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
3002 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
3008 * NOTE: Although we can get the priority field, using it
3009 * here is not a good idea, since it limits the pages we can scan.
3010 * if we don't reclaim here, the shrink_node from balance_pgdat
3011 * will pick up pages from other mem cgroup's as well. We hack
3012 * the priority and make it zero.
3014 shrink_node_memcg(pgdat
, memcg
, &sc
, &lru_pages
);
3016 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
3018 *nr_scanned
= sc
.nr_scanned
;
3019 return sc
.nr_reclaimed
;
3022 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
3023 unsigned long nr_pages
,
3027 struct zonelist
*zonelist
;
3028 unsigned long nr_reclaimed
;
3030 struct scan_control sc
= {
3031 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3032 .gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3033 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
3034 .reclaim_idx
= MAX_NR_ZONES
- 1,
3035 .target_mem_cgroup
= memcg
,
3036 .priority
= DEF_PRIORITY
,
3037 .may_writepage
= !laptop_mode
,
3039 .may_swap
= may_swap
,
3043 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3044 * take care of from where we get pages. So the node where we start the
3045 * scan does not need to be the current node.
3047 nid
= mem_cgroup_select_victim_node(memcg
);
3049 zonelist
= &NODE_DATA(nid
)->node_zonelists
[ZONELIST_FALLBACK
];
3051 trace_mm_vmscan_memcg_reclaim_begin(0,
3056 current
->flags
|= PF_MEMALLOC
;
3057 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3058 current
->flags
&= ~PF_MEMALLOC
;
3060 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
3062 return nr_reclaimed
;
3066 static void age_active_anon(struct pglist_data
*pgdat
,
3067 struct scan_control
*sc
)
3069 struct mem_cgroup
*memcg
;
3071 if (!total_swap_pages
)
3074 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
3076 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3078 if (inactive_list_is_low(lruvec
, false, sc
))
3079 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
3080 sc
, LRU_ACTIVE_ANON
);
3082 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
3086 static bool zone_balanced(struct zone
*zone
, int order
, int classzone_idx
)
3088 unsigned long mark
= high_wmark_pages(zone
);
3090 if (!zone_watermark_ok_safe(zone
, order
, mark
, classzone_idx
))
3094 * If any eligible zone is balanced then the node is not considered
3095 * to be congested or dirty
3097 clear_bit(PGDAT_CONGESTED
, &zone
->zone_pgdat
->flags
);
3098 clear_bit(PGDAT_DIRTY
, &zone
->zone_pgdat
->flags
);
3104 * Prepare kswapd for sleeping. This verifies that there are no processes
3105 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3107 * Returns true if kswapd is ready to sleep
3109 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3114 * The throttled processes are normally woken up in balance_pgdat() as
3115 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3116 * race between when kswapd checks the watermarks and a process gets
3117 * throttled. There is also a potential race if processes get
3118 * throttled, kswapd wakes, a large process exits thereby balancing the
3119 * zones, which causes kswapd to exit balance_pgdat() before reaching
3120 * the wake up checks. If kswapd is going to sleep, no process should
3121 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3122 * the wake up is premature, processes will wake kswapd and get
3123 * throttled again. The difference from wake ups in balance_pgdat() is
3124 * that here we are under prepare_to_wait().
3126 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3127 wake_up_all(&pgdat
->pfmemalloc_wait
);
3129 for (i
= 0; i
<= classzone_idx
; i
++) {
3130 struct zone
*zone
= pgdat
->node_zones
+ i
;
3132 if (!managed_zone(zone
))
3135 if (!zone_balanced(zone
, order
, classzone_idx
))
3143 * kswapd shrinks a node of pages that are at or below the highest usable
3144 * zone that is currently unbalanced.
3146 * Returns true if kswapd scanned at least the requested number of pages to
3147 * reclaim or if the lack of progress was due to pages under writeback.
3148 * This is used to determine if the scanning priority needs to be raised.
3150 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
3151 struct scan_control
*sc
)
3156 /* Reclaim a number of pages proportional to the number of zones */
3157 sc
->nr_to_reclaim
= 0;
3158 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
3159 zone
= pgdat
->node_zones
+ z
;
3160 if (!managed_zone(zone
))
3163 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
3167 * Historically care was taken to put equal pressure on all zones but
3168 * now pressure is applied based on node LRU order.
3170 shrink_node(pgdat
, sc
);
3173 * Fragmentation may mean that the system cannot be rebalanced for
3174 * high-order allocations. If twice the allocation size has been
3175 * reclaimed then recheck watermarks only at order-0 to prevent
3176 * excessive reclaim. Assume that a process requested a high-order
3177 * can direct reclaim/compact.
3179 if (sc
->order
&& sc
->nr_reclaimed
>= compact_gap(sc
->order
))
3182 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3186 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3187 * that are eligible for use by the caller until at least one zone is
3190 * Returns the order kswapd finished reclaiming at.
3192 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3193 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3194 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3195 * or lower is eligible for reclaim until at least one usable zone is
3198 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3201 unsigned long nr_soft_reclaimed
;
3202 unsigned long nr_soft_scanned
;
3204 struct scan_control sc
= {
3205 .gfp_mask
= GFP_KERNEL
,
3207 .priority
= DEF_PRIORITY
,
3208 .may_writepage
= !laptop_mode
,
3212 count_vm_event(PAGEOUTRUN
);
3215 bool raise_priority
= true;
3217 sc
.nr_reclaimed
= 0;
3218 sc
.reclaim_idx
= classzone_idx
;
3221 * If the number of buffer_heads exceeds the maximum allowed
3222 * then consider reclaiming from all zones. This has a dual
3223 * purpose -- on 64-bit systems it is expected that
3224 * buffer_heads are stripped during active rotation. On 32-bit
3225 * systems, highmem pages can pin lowmem memory and shrinking
3226 * buffers can relieve lowmem pressure. Reclaim may still not
3227 * go ahead if all eligible zones for the original allocation
3228 * request are balanced to avoid excessive reclaim from kswapd.
3230 if (buffer_heads_over_limit
) {
3231 for (i
= MAX_NR_ZONES
- 1; i
>= 0; i
--) {
3232 zone
= pgdat
->node_zones
+ i
;
3233 if (!managed_zone(zone
))
3242 * Only reclaim if there are no eligible zones. Check from
3243 * high to low zone as allocations prefer higher zones.
3244 * Scanning from low to high zone would allow congestion to be
3245 * cleared during a very small window when a small low
3246 * zone was balanced even under extreme pressure when the
3247 * overall node may be congested. Note that sc.reclaim_idx
3248 * is not used as buffer_heads_over_limit may have adjusted
3251 for (i
= classzone_idx
; i
>= 0; i
--) {
3252 zone
= pgdat
->node_zones
+ i
;
3253 if (!managed_zone(zone
))
3256 if (zone_balanced(zone
, sc
.order
, classzone_idx
))
3261 * Do some background aging of the anon list, to give
3262 * pages a chance to be referenced before reclaiming. All
3263 * pages are rotated regardless of classzone as this is
3264 * about consistent aging.
3266 age_active_anon(pgdat
, &sc
);
3269 * If we're getting trouble reclaiming, start doing writepage
3270 * even in laptop mode.
3272 if (sc
.priority
< DEF_PRIORITY
- 2 || !pgdat_reclaimable(pgdat
))
3273 sc
.may_writepage
= 1;
3275 /* Call soft limit reclaim before calling shrink_node. */
3277 nr_soft_scanned
= 0;
3278 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(pgdat
, sc
.order
,
3279 sc
.gfp_mask
, &nr_soft_scanned
);
3280 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3283 * There should be no need to raise the scanning priority if
3284 * enough pages are already being scanned that that high
3285 * watermark would be met at 100% efficiency.
3287 if (kswapd_shrink_node(pgdat
, &sc
))
3288 raise_priority
= false;
3291 * If the low watermark is met there is no need for processes
3292 * to be throttled on pfmemalloc_wait as they should not be
3293 * able to safely make forward progress. Wake them
3295 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3296 pfmemalloc_watermark_ok(pgdat
))
3297 wake_up_all(&pgdat
->pfmemalloc_wait
);
3299 /* Check if kswapd should be suspending */
3300 if (try_to_freeze() || kthread_should_stop())
3304 * Raise priority if scanning rate is too low or there was no
3305 * progress in reclaiming pages
3307 if (raise_priority
|| !sc
.nr_reclaimed
)
3309 } while (sc
.priority
>= 1);
3313 * Return the order kswapd stopped reclaiming at as
3314 * prepare_kswapd_sleep() takes it into account. If another caller
3315 * entered the allocator slow path while kswapd was awake, order will
3316 * remain at the higher level.
3321 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
3322 unsigned int classzone_idx
)
3327 if (freezing(current
) || kthread_should_stop())
3330 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3332 /* Try to sleep for a short interval */
3333 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3335 * Compaction records what page blocks it recently failed to
3336 * isolate pages from and skips them in the future scanning.
3337 * When kswapd is going to sleep, it is reasonable to assume
3338 * that pages and compaction may succeed so reset the cache.
3340 reset_isolation_suitable(pgdat
);
3343 * We have freed the memory, now we should compact it to make
3344 * allocation of the requested order possible.
3346 wakeup_kcompactd(pgdat
, alloc_order
, classzone_idx
);
3348 remaining
= schedule_timeout(HZ
/10);
3351 * If woken prematurely then reset kswapd_classzone_idx and
3352 * order. The values will either be from a wakeup request or
3353 * the previous request that slept prematurely.
3356 pgdat
->kswapd_classzone_idx
= max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3357 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, reclaim_order
);
3360 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3361 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3365 * After a short sleep, check if it was a premature sleep. If not, then
3366 * go fully to sleep until explicitly woken up.
3369 prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3370 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3373 * vmstat counters are not perfectly accurate and the estimated
3374 * value for counters such as NR_FREE_PAGES can deviate from the
3375 * true value by nr_online_cpus * threshold. To avoid the zone
3376 * watermarks being breached while under pressure, we reduce the
3377 * per-cpu vmstat threshold while kswapd is awake and restore
3378 * them before going back to sleep.
3380 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3382 if (!kthread_should_stop())
3385 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3388 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3390 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3392 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3396 * The background pageout daemon, started as a kernel thread
3397 * from the init process.
3399 * This basically trickles out pages so that we have _some_
3400 * free memory available even if there is no other activity
3401 * that frees anything up. This is needed for things like routing
3402 * etc, where we otherwise might have all activity going on in
3403 * asynchronous contexts that cannot page things out.
3405 * If there are applications that are active memory-allocators
3406 * (most normal use), this basically shouldn't matter.
3408 static int kswapd(void *p
)
3410 unsigned int alloc_order
, reclaim_order
, classzone_idx
;
3411 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3412 struct task_struct
*tsk
= current
;
3414 struct reclaim_state reclaim_state
= {
3415 .reclaimed_slab
= 0,
3417 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3419 lockdep_set_current_reclaim_state(GFP_KERNEL
);
3421 if (!cpumask_empty(cpumask
))
3422 set_cpus_allowed_ptr(tsk
, cpumask
);
3423 current
->reclaim_state
= &reclaim_state
;
3426 * Tell the memory management that we're a "memory allocator",
3427 * and that if we need more memory we should get access to it
3428 * regardless (see "__alloc_pages()"). "kswapd" should
3429 * never get caught in the normal page freeing logic.
3431 * (Kswapd normally doesn't need memory anyway, but sometimes
3432 * you need a small amount of memory in order to be able to
3433 * page out something else, and this flag essentially protects
3434 * us from recursively trying to free more memory as we're
3435 * trying to free the first piece of memory in the first place).
3437 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3440 pgdat
->kswapd_order
= alloc_order
= reclaim_order
= 0;
3441 pgdat
->kswapd_classzone_idx
= classzone_idx
= 0;
3446 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
3449 /* Read the new order and classzone_idx */
3450 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3451 classzone_idx
= pgdat
->kswapd_classzone_idx
;
3452 pgdat
->kswapd_order
= 0;
3453 pgdat
->kswapd_classzone_idx
= 0;
3455 ret
= try_to_freeze();
3456 if (kthread_should_stop())
3460 * We can speed up thawing tasks if we don't call balance_pgdat
3461 * after returning from the refrigerator
3467 * Reclaim begins at the requested order but if a high-order
3468 * reclaim fails then kswapd falls back to reclaiming for
3469 * order-0. If that happens, kswapd will consider sleeping
3470 * for the order it finished reclaiming at (reclaim_order)
3471 * but kcompactd is woken to compact for the original
3472 * request (alloc_order).
3474 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, classzone_idx
,
3476 reclaim_order
= balance_pgdat(pgdat
, alloc_order
, classzone_idx
);
3477 if (reclaim_order
< alloc_order
)
3478 goto kswapd_try_sleep
;
3480 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3481 classzone_idx
= pgdat
->kswapd_classzone_idx
;
3484 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3485 current
->reclaim_state
= NULL
;
3486 lockdep_clear_current_reclaim_state();
3492 * A zone is low on free memory, so wake its kswapd task to service it.
3494 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
3499 if (!managed_zone(zone
))
3502 if (!cpuset_zone_allowed(zone
, GFP_KERNEL
| __GFP_HARDWALL
))
3504 pgdat
= zone
->zone_pgdat
;
3505 pgdat
->kswapd_classzone_idx
= max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3506 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, order
);
3507 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3510 /* Only wake kswapd if all zones are unbalanced */
3511 for (z
= 0; z
<= classzone_idx
; z
++) {
3512 zone
= pgdat
->node_zones
+ z
;
3513 if (!managed_zone(zone
))
3516 if (zone_balanced(zone
, order
, classzone_idx
))
3520 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
3521 wake_up_interruptible(&pgdat
->kswapd_wait
);
3524 #ifdef CONFIG_HIBERNATION
3526 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3529 * Rather than trying to age LRUs the aim is to preserve the overall
3530 * LRU order by reclaiming preferentially
3531 * inactive > active > active referenced > active mapped
3533 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3535 struct reclaim_state reclaim_state
;
3536 struct scan_control sc
= {
3537 .nr_to_reclaim
= nr_to_reclaim
,
3538 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3539 .reclaim_idx
= MAX_NR_ZONES
- 1,
3540 .priority
= DEF_PRIORITY
,
3544 .hibernation_mode
= 1,
3546 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3547 struct task_struct
*p
= current
;
3548 unsigned long nr_reclaimed
;
3550 p
->flags
|= PF_MEMALLOC
;
3551 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
3552 reclaim_state
.reclaimed_slab
= 0;
3553 p
->reclaim_state
= &reclaim_state
;
3555 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3557 p
->reclaim_state
= NULL
;
3558 lockdep_clear_current_reclaim_state();
3559 p
->flags
&= ~PF_MEMALLOC
;
3561 return nr_reclaimed
;
3563 #endif /* CONFIG_HIBERNATION */
3565 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3566 not required for correctness. So if the last cpu in a node goes
3567 away, we get changed to run anywhere: as the first one comes back,
3568 restore their cpu bindings. */
3569 static int kswapd_cpu_online(unsigned int cpu
)
3573 for_each_node_state(nid
, N_MEMORY
) {
3574 pg_data_t
*pgdat
= NODE_DATA(nid
);
3575 const struct cpumask
*mask
;
3577 mask
= cpumask_of_node(pgdat
->node_id
);
3579 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3580 /* One of our CPUs online: restore mask */
3581 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3587 * This kswapd start function will be called by init and node-hot-add.
3588 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3590 int kswapd_run(int nid
)
3592 pg_data_t
*pgdat
= NODE_DATA(nid
);
3598 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3599 if (IS_ERR(pgdat
->kswapd
)) {
3600 /* failure at boot is fatal */
3601 BUG_ON(system_state
== SYSTEM_BOOTING
);
3602 pr_err("Failed to start kswapd on node %d\n", nid
);
3603 ret
= PTR_ERR(pgdat
->kswapd
);
3604 pgdat
->kswapd
= NULL
;
3610 * Called by memory hotplug when all memory in a node is offlined. Caller must
3611 * hold mem_hotplug_begin/end().
3613 void kswapd_stop(int nid
)
3615 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3618 kthread_stop(kswapd
);
3619 NODE_DATA(nid
)->kswapd
= NULL
;
3623 static int __init
kswapd_init(void)
3628 for_each_node_state(nid
, N_MEMORY
)
3630 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
3631 "mm/vmscan:online", kswapd_cpu_online
,
3637 module_init(kswapd_init
)
3643 * If non-zero call node_reclaim when the number of free pages falls below
3646 int node_reclaim_mode __read_mostly
;
3648 #define RECLAIM_OFF 0
3649 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3650 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3651 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3654 * Priority for NODE_RECLAIM. This determines the fraction of pages
3655 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3658 #define NODE_RECLAIM_PRIORITY 4
3661 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3664 int sysctl_min_unmapped_ratio
= 1;
3667 * If the number of slab pages in a zone grows beyond this percentage then
3668 * slab reclaim needs to occur.
3670 int sysctl_min_slab_ratio
= 5;
3672 static inline unsigned long node_unmapped_file_pages(struct pglist_data
*pgdat
)
3674 unsigned long file_mapped
= node_page_state(pgdat
, NR_FILE_MAPPED
);
3675 unsigned long file_lru
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
3676 node_page_state(pgdat
, NR_ACTIVE_FILE
);
3679 * It's possible for there to be more file mapped pages than
3680 * accounted for by the pages on the file LRU lists because
3681 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3683 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3686 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3687 static unsigned long node_pagecache_reclaimable(struct pglist_data
*pgdat
)
3689 unsigned long nr_pagecache_reclaimable
;
3690 unsigned long delta
= 0;
3693 * If RECLAIM_UNMAP is set, then all file pages are considered
3694 * potentially reclaimable. Otherwise, we have to worry about
3695 * pages like swapcache and node_unmapped_file_pages() provides
3698 if (node_reclaim_mode
& RECLAIM_UNMAP
)
3699 nr_pagecache_reclaimable
= node_page_state(pgdat
, NR_FILE_PAGES
);
3701 nr_pagecache_reclaimable
= node_unmapped_file_pages(pgdat
);
3703 /* If we can't clean pages, remove dirty pages from consideration */
3704 if (!(node_reclaim_mode
& RECLAIM_WRITE
))
3705 delta
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
3707 /* Watch for any possible underflows due to delta */
3708 if (unlikely(delta
> nr_pagecache_reclaimable
))
3709 delta
= nr_pagecache_reclaimable
;
3711 return nr_pagecache_reclaimable
- delta
;
3715 * Try to free up some pages from this node through reclaim.
3717 static int __node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
3719 /* Minimum pages needed in order to stay on node */
3720 const unsigned long nr_pages
= 1 << order
;
3721 struct task_struct
*p
= current
;
3722 struct reclaim_state reclaim_state
;
3723 int classzone_idx
= gfp_zone(gfp_mask
);
3724 struct scan_control sc
= {
3725 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3726 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
3728 .priority
= NODE_RECLAIM_PRIORITY
,
3729 .may_writepage
= !!(node_reclaim_mode
& RECLAIM_WRITE
),
3730 .may_unmap
= !!(node_reclaim_mode
& RECLAIM_UNMAP
),
3732 .reclaim_idx
= classzone_idx
,
3737 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3738 * and we also need to be able to write out pages for RECLAIM_WRITE
3739 * and RECLAIM_UNMAP.
3741 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
3742 lockdep_set_current_reclaim_state(gfp_mask
);
3743 reclaim_state
.reclaimed_slab
= 0;
3744 p
->reclaim_state
= &reclaim_state
;
3746 if (node_pagecache_reclaimable(pgdat
) > pgdat
->min_unmapped_pages
) {
3748 * Free memory by calling shrink zone with increasing
3749 * priorities until we have enough memory freed.
3752 shrink_node(pgdat
, &sc
);
3753 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
3756 p
->reclaim_state
= NULL
;
3757 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3758 lockdep_clear_current_reclaim_state();
3759 return sc
.nr_reclaimed
>= nr_pages
;
3762 int node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
3767 * Node reclaim reclaims unmapped file backed pages and
3768 * slab pages if we are over the defined limits.
3770 * A small portion of unmapped file backed pages is needed for
3771 * file I/O otherwise pages read by file I/O will be immediately
3772 * thrown out if the node is overallocated. So we do not reclaim
3773 * if less than a specified percentage of the node is used by
3774 * unmapped file backed pages.
3776 if (node_pagecache_reclaimable(pgdat
) <= pgdat
->min_unmapped_pages
&&
3777 sum_zone_node_page_state(pgdat
->node_id
, NR_SLAB_RECLAIMABLE
) <= pgdat
->min_slab_pages
)
3778 return NODE_RECLAIM_FULL
;
3780 if (!pgdat_reclaimable(pgdat
))
3781 return NODE_RECLAIM_FULL
;
3784 * Do not scan if the allocation should not be delayed.
3786 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
3787 return NODE_RECLAIM_NOSCAN
;
3790 * Only run node reclaim on the local node or on nodes that do not
3791 * have associated processors. This will favor the local processor
3792 * over remote processors and spread off node memory allocations
3793 * as wide as possible.
3795 if (node_state(pgdat
->node_id
, N_CPU
) && pgdat
->node_id
!= numa_node_id())
3796 return NODE_RECLAIM_NOSCAN
;
3798 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
))
3799 return NODE_RECLAIM_NOSCAN
;
3801 ret
= __node_reclaim(pgdat
, gfp_mask
, order
);
3802 clear_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
);
3805 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3812 * page_evictable - test whether a page is evictable
3813 * @page: the page to test
3815 * Test whether page is evictable--i.e., should be placed on active/inactive
3816 * lists vs unevictable list.
3818 * Reasons page might not be evictable:
3819 * (1) page's mapping marked unevictable
3820 * (2) page is part of an mlocked VMA
3823 int page_evictable(struct page
*page
)
3825 return !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
3830 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3831 * @pages: array of pages to check
3832 * @nr_pages: number of pages to check
3834 * Checks pages for evictability and moves them to the appropriate lru list.
3836 * This function is only used for SysV IPC SHM_UNLOCK.
3838 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
3840 struct lruvec
*lruvec
;
3841 struct pglist_data
*pgdat
= NULL
;
3846 for (i
= 0; i
< nr_pages
; i
++) {
3847 struct page
*page
= pages
[i
];
3848 struct pglist_data
*pagepgdat
= page_pgdat(page
);
3851 if (pagepgdat
!= pgdat
) {
3853 spin_unlock_irq(&pgdat
->lru_lock
);
3855 spin_lock_irq(&pgdat
->lru_lock
);
3857 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
3859 if (!PageLRU(page
) || !PageUnevictable(page
))
3862 if (page_evictable(page
)) {
3863 enum lru_list lru
= page_lru_base_type(page
);
3865 VM_BUG_ON_PAGE(PageActive(page
), page
);
3866 ClearPageUnevictable(page
);
3867 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
3868 add_page_to_lru_list(page
, lruvec
, lru
);
3874 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
3875 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
3876 spin_unlock_irq(&pgdat
->lru_lock
);
3879 #endif /* CONFIG_SHMEM */