mm: vma_adjust: remove superfluous check for next not NULL
[linux/fpc-iii.git] / drivers / dma / nbpfaxi.c
blob09de71519d37a7b664c923b4fb745bfe18850b47
1 /*
2 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
3 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 */
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/log2.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
26 #include <dt-bindings/dma/nbpfaxi.h>
28 #include "dmaengine.h"
30 #define NBPF_REG_CHAN_OFFSET 0
31 #define NBPF_REG_CHAN_SIZE 0x40
33 /* Channel Current Transaction Byte register */
34 #define NBPF_CHAN_CUR_TR_BYTE 0x20
36 /* Channel Status register */
37 #define NBPF_CHAN_STAT 0x24
38 #define NBPF_CHAN_STAT_EN 1
39 #define NBPF_CHAN_STAT_TACT 4
40 #define NBPF_CHAN_STAT_ERR 0x10
41 #define NBPF_CHAN_STAT_END 0x20
42 #define NBPF_CHAN_STAT_TC 0x40
43 #define NBPF_CHAN_STAT_DER 0x400
45 /* Channel Control register */
46 #define NBPF_CHAN_CTRL 0x28
47 #define NBPF_CHAN_CTRL_SETEN 1
48 #define NBPF_CHAN_CTRL_CLREN 2
49 #define NBPF_CHAN_CTRL_STG 4
50 #define NBPF_CHAN_CTRL_SWRST 8
51 #define NBPF_CHAN_CTRL_CLRRQ 0x10
52 #define NBPF_CHAN_CTRL_CLREND 0x20
53 #define NBPF_CHAN_CTRL_CLRTC 0x40
54 #define NBPF_CHAN_CTRL_SETSUS 0x100
55 #define NBPF_CHAN_CTRL_CLRSUS 0x200
57 /* Channel Configuration register */
58 #define NBPF_CHAN_CFG 0x2c
59 #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */
60 #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */
61 #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
62 #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
63 #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
64 #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
65 #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
66 #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */
67 #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */
68 #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */
69 #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */
70 #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */
71 #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */
72 #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */
73 #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */
74 #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */
75 #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */
76 #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */
78 #define NBPF_CHAN_NXLA 0x38
79 #define NBPF_CHAN_CRLA 0x3c
81 /* Link Header field */
82 #define NBPF_HEADER_LV 1
83 #define NBPF_HEADER_LE 2
84 #define NBPF_HEADER_WBD 4
85 #define NBPF_HEADER_DIM 8
87 #define NBPF_CTRL 0x300
88 #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */
89 #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
91 #define NBPF_DSTAT_ER 0x314
92 #define NBPF_DSTAT_END 0x318
94 #define NBPF_DMA_BUSWIDTHS \
95 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
96 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
97 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
98 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
99 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
101 struct nbpf_config {
102 int num_channels;
103 int buffer_size;
107 * We've got 3 types of objects, used to describe DMA transfers:
108 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
109 * in it, used to communicate with the user
110 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
111 * queuing, these must be DMAable, using either the streaming DMA API or
112 * allocated from coherent memory - one per SG segment
113 * 3. one per SG segment descriptors, used to manage HW link descriptors from
114 * (2). They do not have to be DMAable. They can either be (a) allocated
115 * together with link descriptors as mixed (DMA / CPU) objects, or (b)
116 * separately. Even if allocated separately it would be best to link them
117 * to link descriptors once during channel resource allocation and always
118 * use them as a single object.
119 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
120 * treated as a single SG segment descriptor.
123 struct nbpf_link_reg {
124 u32 header;
125 u32 src_addr;
126 u32 dst_addr;
127 u32 transaction_size;
128 u32 config;
129 u32 interval;
130 u32 extension;
131 u32 next;
132 } __packed;
134 struct nbpf_device;
135 struct nbpf_channel;
136 struct nbpf_desc;
138 struct nbpf_link_desc {
139 struct nbpf_link_reg *hwdesc;
140 dma_addr_t hwdesc_dma_addr;
141 struct nbpf_desc *desc;
142 struct list_head node;
146 * struct nbpf_desc - DMA transfer descriptor
147 * @async_tx: dmaengine object
148 * @user_wait: waiting for a user ack
149 * @length: total transfer length
150 * @sg: list of hardware descriptors, represented by struct nbpf_link_desc
151 * @node: member in channel descriptor lists
153 struct nbpf_desc {
154 struct dma_async_tx_descriptor async_tx;
155 bool user_wait;
156 size_t length;
157 struct nbpf_channel *chan;
158 struct list_head sg;
159 struct list_head node;
162 /* Take a wild guess: allocate 4 segments per descriptor */
163 #define NBPF_SEGMENTS_PER_DESC 4
164 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \
165 (sizeof(struct nbpf_desc) + \
166 NBPF_SEGMENTS_PER_DESC * \
167 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
168 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
170 struct nbpf_desc_page {
171 struct list_head node;
172 struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
173 struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
174 struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
178 * struct nbpf_channel - one DMAC channel
179 * @dma_chan: standard dmaengine channel object
180 * @base: register address base
181 * @nbpf: DMAC
182 * @name: IRQ name
183 * @irq: IRQ number
184 * @slave_addr: address for slave DMA
185 * @slave_width:slave data size in bytes
186 * @slave_burst:maximum slave burst size in bytes
187 * @terminal: DMA terminal, assigned to this channel
188 * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
189 * @flags: configuration flags from DT
190 * @lock: protect descriptor lists
191 * @free_links: list of free link descriptors
192 * @free: list of free descriptors
193 * @queued: list of queued descriptors
194 * @active: list of descriptors, scheduled for processing
195 * @done: list of completed descriptors, waiting post-processing
196 * @desc_page: list of additionally allocated descriptor pages - if any
198 struct nbpf_channel {
199 struct dma_chan dma_chan;
200 struct tasklet_struct tasklet;
201 void __iomem *base;
202 struct nbpf_device *nbpf;
203 char name[16];
204 int irq;
205 dma_addr_t slave_src_addr;
206 size_t slave_src_width;
207 size_t slave_src_burst;
208 dma_addr_t slave_dst_addr;
209 size_t slave_dst_width;
210 size_t slave_dst_burst;
211 unsigned int terminal;
212 u32 dmarq_cfg;
213 unsigned long flags;
214 spinlock_t lock;
215 struct list_head free_links;
216 struct list_head free;
217 struct list_head queued;
218 struct list_head active;
219 struct list_head done;
220 struct list_head desc_page;
221 struct nbpf_desc *running;
222 bool paused;
225 struct nbpf_device {
226 struct dma_device dma_dev;
227 void __iomem *base;
228 struct clk *clk;
229 const struct nbpf_config *config;
230 unsigned int eirq;
231 struct nbpf_channel chan[];
234 enum nbpf_model {
235 NBPF1B4,
236 NBPF1B8,
237 NBPF1B16,
238 NBPF4B4,
239 NBPF4B8,
240 NBPF4B16,
241 NBPF8B4,
242 NBPF8B8,
243 NBPF8B16,
246 static struct nbpf_config nbpf_cfg[] = {
247 [NBPF1B4] = {
248 .num_channels = 1,
249 .buffer_size = 4,
251 [NBPF1B8] = {
252 .num_channels = 1,
253 .buffer_size = 8,
255 [NBPF1B16] = {
256 .num_channels = 1,
257 .buffer_size = 16,
259 [NBPF4B4] = {
260 .num_channels = 4,
261 .buffer_size = 4,
263 [NBPF4B8] = {
264 .num_channels = 4,
265 .buffer_size = 8,
267 [NBPF4B16] = {
268 .num_channels = 4,
269 .buffer_size = 16,
271 [NBPF8B4] = {
272 .num_channels = 8,
273 .buffer_size = 4,
275 [NBPF8B8] = {
276 .num_channels = 8,
277 .buffer_size = 8,
279 [NBPF8B16] = {
280 .num_channels = 8,
281 .buffer_size = 16,
285 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
288 * dmaengine drivers seem to have a lot in common and instead of sharing more
289 * code, they reimplement those common algorithms independently. In this driver
290 * we try to separate the hardware-specific part from the (largely) generic
291 * part. This improves code readability and makes it possible in the future to
292 * reuse the generic code in form of a helper library. That generic code should
293 * be suitable for various DMA controllers, using transfer descriptors in RAM
294 * and pushing one SG list at a time to the DMA controller.
297 /* Hardware-specific part */
299 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
300 unsigned int offset)
302 u32 data = ioread32(chan->base + offset);
303 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
304 __func__, chan->base, offset, data);
305 return data;
308 static inline void nbpf_chan_write(struct nbpf_channel *chan,
309 unsigned int offset, u32 data)
311 iowrite32(data, chan->base + offset);
312 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
313 __func__, chan->base, offset, data);
316 static inline u32 nbpf_read(struct nbpf_device *nbpf,
317 unsigned int offset)
319 u32 data = ioread32(nbpf->base + offset);
320 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
321 __func__, nbpf->base, offset, data);
322 return data;
325 static inline void nbpf_write(struct nbpf_device *nbpf,
326 unsigned int offset, u32 data)
328 iowrite32(data, nbpf->base + offset);
329 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
330 __func__, nbpf->base, offset, data);
333 static void nbpf_chan_halt(struct nbpf_channel *chan)
335 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
338 static bool nbpf_status_get(struct nbpf_channel *chan)
340 u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
342 return status & BIT(chan - chan->nbpf->chan);
345 static void nbpf_status_ack(struct nbpf_channel *chan)
347 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
350 static u32 nbpf_error_get(struct nbpf_device *nbpf)
352 return nbpf_read(nbpf, NBPF_DSTAT_ER);
355 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
357 return nbpf->chan + __ffs(error);
360 static void nbpf_error_clear(struct nbpf_channel *chan)
362 u32 status;
363 int i;
365 /* Stop the channel, make sure DMA has been aborted */
366 nbpf_chan_halt(chan);
368 for (i = 1000; i; i--) {
369 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
370 if (!(status & NBPF_CHAN_STAT_TACT))
371 break;
372 cpu_relax();
375 if (!i)
376 dev_err(chan->dma_chan.device->dev,
377 "%s(): abort timeout, channel status 0x%x\n", __func__, status);
379 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
382 static int nbpf_start(struct nbpf_desc *desc)
384 struct nbpf_channel *chan = desc->chan;
385 struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
387 nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
388 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
389 chan->paused = false;
391 /* Software trigger MEMCPY - only MEMCPY uses the block mode */
392 if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
393 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
395 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
396 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
398 return 0;
401 static void nbpf_chan_prepare(struct nbpf_channel *chan)
403 chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
404 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
405 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
406 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
407 chan->terminal;
410 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
412 /* Don't output DMAACK */
413 chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
414 chan->terminal = 0;
415 chan->flags = 0;
418 static void nbpf_chan_configure(struct nbpf_channel *chan)
421 * We assume, that only the link mode and DMA request line configuration
422 * have to be set in the configuration register manually. Dynamic
423 * per-transfer configuration will be loaded from transfer descriptors.
425 nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
428 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size)
430 /* Maximum supported bursts depend on the buffer size */
431 return min_t(int, __ffs(size), ilog2(nbpf->config->buffer_size * 8));
434 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
435 enum dma_slave_buswidth width, u32 burst)
437 size_t size;
439 if (!burst)
440 burst = 1;
442 switch (width) {
443 case DMA_SLAVE_BUSWIDTH_8_BYTES:
444 size = 8 * burst;
445 break;
447 case DMA_SLAVE_BUSWIDTH_4_BYTES:
448 size = 4 * burst;
449 break;
451 case DMA_SLAVE_BUSWIDTH_2_BYTES:
452 size = 2 * burst;
453 break;
455 default:
456 pr_warn("%s(): invalid bus width %u\n", __func__, width);
457 case DMA_SLAVE_BUSWIDTH_1_BYTE:
458 size = burst;
461 return nbpf_xfer_ds(nbpf, size);
465 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
466 * i.e. it isn't known in advance how many bytes will be received. Therefore
467 * the slave driver has to provide a "large enough" buffer and either read the
468 * buffer, when it is full, or detect, that some data has arrived, then wait for
469 * a timeout, if no more data arrives - receive what's already there. We want to
470 * handle such slaves in a special way to allow an optimised mode for other
471 * users, for whom the amount of data is known in advance. So far there's no way
472 * to recognise such slaves. We use a data-width check to distinguish between
473 * the SD host and the PL011 UART.
476 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
477 enum dma_transfer_direction direction,
478 dma_addr_t src, dma_addr_t dst, size_t size, bool last)
480 struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
481 struct nbpf_desc *desc = ldesc->desc;
482 struct nbpf_channel *chan = desc->chan;
483 struct device *dev = chan->dma_chan.device->dev;
484 size_t mem_xfer, slave_xfer;
485 bool can_burst;
487 hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
488 (last ? NBPF_HEADER_LE : 0);
490 hwdesc->src_addr = src;
491 hwdesc->dst_addr = dst;
492 hwdesc->transaction_size = size;
495 * set config: SAD, DAD, DDS, SDS, etc.
496 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
497 * but it is important to have transaction size a multiple of both
498 * receiver and transmitter transfer sizes. It is also possible to use
499 * different RAM and device transfer sizes, and it does work well with
500 * some devices, e.g. with V08R07S01E SD host controllers, which can use
501 * 128 byte transfers. But this doesn't work with other devices,
502 * especially when the transaction size is unknown. This is the case,
503 * e.g. with serial drivers like amba-pl011.c. For reception it sets up
504 * the transaction size of 4K and if fewer bytes are received, it
505 * pauses DMA and reads out data received via DMA as well as those left
506 * in the Rx FIFO. For this to work with the RAM side using burst
507 * transfers we enable the SBE bit and terminate the transfer in our
508 * .device_pause handler.
510 mem_xfer = nbpf_xfer_ds(chan->nbpf, size);
512 switch (direction) {
513 case DMA_DEV_TO_MEM:
514 can_burst = chan->slave_src_width >= 3;
515 slave_xfer = min(mem_xfer, can_burst ?
516 chan->slave_src_burst : chan->slave_src_width);
518 * Is the slave narrower than 64 bits, i.e. isn't using the full
519 * bus width and cannot use bursts?
521 if (mem_xfer > chan->slave_src_burst && !can_burst)
522 mem_xfer = chan->slave_src_burst;
523 /* Device-to-RAM DMA is unreliable without REQD set */
524 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
525 (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
526 NBPF_CHAN_CFG_SBE;
527 break;
529 case DMA_MEM_TO_DEV:
530 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
531 chan->slave_dst_burst : chan->slave_dst_width);
532 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
533 (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
534 break;
536 case DMA_MEM_TO_MEM:
537 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
538 (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
539 (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
540 break;
542 default:
543 return -EINVAL;
546 hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
547 NBPF_CHAN_CFG_DMS;
549 dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
550 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
551 hwdesc->config, size, &src, &dst);
553 dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
554 DMA_TO_DEVICE);
556 return 0;
559 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
561 return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
564 static void nbpf_configure(struct nbpf_device *nbpf)
566 nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
569 /* Generic part */
571 /* DMA ENGINE functions */
572 static void nbpf_issue_pending(struct dma_chan *dchan)
574 struct nbpf_channel *chan = nbpf_to_chan(dchan);
575 unsigned long flags;
577 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
579 spin_lock_irqsave(&chan->lock, flags);
580 if (list_empty(&chan->queued))
581 goto unlock;
583 list_splice_tail_init(&chan->queued, &chan->active);
585 if (!chan->running) {
586 struct nbpf_desc *desc = list_first_entry(&chan->active,
587 struct nbpf_desc, node);
588 if (!nbpf_start(desc))
589 chan->running = desc;
592 unlock:
593 spin_unlock_irqrestore(&chan->lock, flags);
596 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
597 dma_cookie_t cookie, struct dma_tx_state *state)
599 struct nbpf_channel *chan = nbpf_to_chan(dchan);
600 enum dma_status status = dma_cookie_status(dchan, cookie, state);
602 if (state) {
603 dma_cookie_t running;
604 unsigned long flags;
606 spin_lock_irqsave(&chan->lock, flags);
607 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
609 if (cookie == running) {
610 state->residue = nbpf_bytes_left(chan);
611 dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
612 state->residue);
613 } else if (status == DMA_IN_PROGRESS) {
614 struct nbpf_desc *desc;
615 bool found = false;
617 list_for_each_entry(desc, &chan->active, node)
618 if (desc->async_tx.cookie == cookie) {
619 found = true;
620 break;
623 if (!found)
624 list_for_each_entry(desc, &chan->queued, node)
625 if (desc->async_tx.cookie == cookie) {
626 found = true;
627 break;
631 state->residue = found ? desc->length : 0;
634 spin_unlock_irqrestore(&chan->lock, flags);
637 if (chan->paused)
638 status = DMA_PAUSED;
640 return status;
643 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
645 struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
646 struct nbpf_channel *chan = desc->chan;
647 unsigned long flags;
648 dma_cookie_t cookie;
650 spin_lock_irqsave(&chan->lock, flags);
651 cookie = dma_cookie_assign(tx);
652 list_add_tail(&desc->node, &chan->queued);
653 spin_unlock_irqrestore(&chan->lock, flags);
655 dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
657 return cookie;
660 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
662 struct dma_chan *dchan = &chan->dma_chan;
663 struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
664 struct nbpf_link_desc *ldesc;
665 struct nbpf_link_reg *hwdesc;
666 struct nbpf_desc *desc;
667 LIST_HEAD(head);
668 LIST_HEAD(lhead);
669 int i;
670 struct device *dev = dchan->device->dev;
672 if (!dpage)
673 return -ENOMEM;
675 dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
676 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
678 for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
679 i < ARRAY_SIZE(dpage->ldesc);
680 i++, ldesc++, hwdesc++) {
681 ldesc->hwdesc = hwdesc;
682 list_add_tail(&ldesc->node, &lhead);
683 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
684 hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
686 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
687 hwdesc, &ldesc->hwdesc_dma_addr);
690 for (i = 0, desc = dpage->desc;
691 i < ARRAY_SIZE(dpage->desc);
692 i++, desc++) {
693 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
694 desc->async_tx.tx_submit = nbpf_tx_submit;
695 desc->chan = chan;
696 INIT_LIST_HEAD(&desc->sg);
697 list_add_tail(&desc->node, &head);
701 * This function cannot be called from interrupt context, so, no need to
702 * save flags
704 spin_lock_irq(&chan->lock);
705 list_splice_tail(&lhead, &chan->free_links);
706 list_splice_tail(&head, &chan->free);
707 list_add(&dpage->node, &chan->desc_page);
708 spin_unlock_irq(&chan->lock);
710 return ARRAY_SIZE(dpage->desc);
713 static void nbpf_desc_put(struct nbpf_desc *desc)
715 struct nbpf_channel *chan = desc->chan;
716 struct nbpf_link_desc *ldesc, *tmp;
717 unsigned long flags;
719 spin_lock_irqsave(&chan->lock, flags);
720 list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
721 list_move(&ldesc->node, &chan->free_links);
723 list_add(&desc->node, &chan->free);
724 spin_unlock_irqrestore(&chan->lock, flags);
727 static void nbpf_scan_acked(struct nbpf_channel *chan)
729 struct nbpf_desc *desc, *tmp;
730 unsigned long flags;
731 LIST_HEAD(head);
733 spin_lock_irqsave(&chan->lock, flags);
734 list_for_each_entry_safe(desc, tmp, &chan->done, node)
735 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
736 list_move(&desc->node, &head);
737 desc->user_wait = false;
739 spin_unlock_irqrestore(&chan->lock, flags);
741 list_for_each_entry_safe(desc, tmp, &head, node) {
742 list_del(&desc->node);
743 nbpf_desc_put(desc);
748 * We have to allocate descriptors with the channel lock dropped. This means,
749 * before we re-acquire the lock buffers can be taken already, so we have to
750 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
751 * again.
753 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
755 struct nbpf_desc *desc = NULL;
756 struct nbpf_link_desc *ldesc, *prev = NULL;
758 nbpf_scan_acked(chan);
760 spin_lock_irq(&chan->lock);
762 do {
763 int i = 0, ret;
765 if (list_empty(&chan->free)) {
766 /* No more free descriptors */
767 spin_unlock_irq(&chan->lock);
768 ret = nbpf_desc_page_alloc(chan);
769 if (ret < 0)
770 return NULL;
771 spin_lock_irq(&chan->lock);
772 continue;
774 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
775 list_del(&desc->node);
777 do {
778 if (list_empty(&chan->free_links)) {
779 /* No more free link descriptors */
780 spin_unlock_irq(&chan->lock);
781 ret = nbpf_desc_page_alloc(chan);
782 if (ret < 0) {
783 nbpf_desc_put(desc);
784 return NULL;
786 spin_lock_irq(&chan->lock);
787 continue;
790 ldesc = list_first_entry(&chan->free_links,
791 struct nbpf_link_desc, node);
792 ldesc->desc = desc;
793 if (prev)
794 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
796 prev = ldesc;
797 list_move_tail(&ldesc->node, &desc->sg);
799 i++;
800 } while (i < len);
801 } while (!desc);
803 prev->hwdesc->next = 0;
805 spin_unlock_irq(&chan->lock);
807 return desc;
810 static void nbpf_chan_idle(struct nbpf_channel *chan)
812 struct nbpf_desc *desc, *tmp;
813 unsigned long flags;
814 LIST_HEAD(head);
816 spin_lock_irqsave(&chan->lock, flags);
818 list_splice_init(&chan->done, &head);
819 list_splice_init(&chan->active, &head);
820 list_splice_init(&chan->queued, &head);
822 chan->running = NULL;
824 spin_unlock_irqrestore(&chan->lock, flags);
826 list_for_each_entry_safe(desc, tmp, &head, node) {
827 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
828 __func__, desc, desc->async_tx.cookie);
829 list_del(&desc->node);
830 nbpf_desc_put(desc);
834 static int nbpf_pause(struct dma_chan *dchan)
836 struct nbpf_channel *chan = nbpf_to_chan(dchan);
838 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
840 chan->paused = true;
841 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
842 /* See comment in nbpf_prep_one() */
843 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
845 return 0;
848 static int nbpf_terminate_all(struct dma_chan *dchan)
850 struct nbpf_channel *chan = nbpf_to_chan(dchan);
852 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
853 dev_dbg(dchan->device->dev, "Terminating\n");
855 nbpf_chan_halt(chan);
856 nbpf_chan_idle(chan);
858 return 0;
861 static int nbpf_config(struct dma_chan *dchan,
862 struct dma_slave_config *config)
864 struct nbpf_channel *chan = nbpf_to_chan(dchan);
866 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
869 * We could check config->slave_id to match chan->terminal here,
870 * but with DT they would be coming from the same source, so
871 * such a check would be superflous
874 chan->slave_dst_addr = config->dst_addr;
875 chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
876 config->dst_addr_width, 1);
877 chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
878 config->dst_addr_width,
879 config->dst_maxburst);
880 chan->slave_src_addr = config->src_addr;
881 chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
882 config->src_addr_width, 1);
883 chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
884 config->src_addr_width,
885 config->src_maxburst);
887 return 0;
890 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
891 struct scatterlist *src_sg, struct scatterlist *dst_sg,
892 size_t len, enum dma_transfer_direction direction,
893 unsigned long flags)
895 struct nbpf_link_desc *ldesc;
896 struct scatterlist *mem_sg;
897 struct nbpf_desc *desc;
898 bool inc_src, inc_dst;
899 size_t data_len = 0;
900 int i = 0;
902 switch (direction) {
903 case DMA_DEV_TO_MEM:
904 mem_sg = dst_sg;
905 inc_src = false;
906 inc_dst = true;
907 break;
909 case DMA_MEM_TO_DEV:
910 mem_sg = src_sg;
911 inc_src = true;
912 inc_dst = false;
913 break;
915 default:
916 case DMA_MEM_TO_MEM:
917 mem_sg = src_sg;
918 inc_src = true;
919 inc_dst = true;
922 desc = nbpf_desc_get(chan, len);
923 if (!desc)
924 return NULL;
926 desc->async_tx.flags = flags;
927 desc->async_tx.cookie = -EBUSY;
928 desc->user_wait = false;
931 * This is a private descriptor list, and we own the descriptor. No need
932 * to lock.
934 list_for_each_entry(ldesc, &desc->sg, node) {
935 int ret = nbpf_prep_one(ldesc, direction,
936 sg_dma_address(src_sg),
937 sg_dma_address(dst_sg),
938 sg_dma_len(mem_sg),
939 i == len - 1);
940 if (ret < 0) {
941 nbpf_desc_put(desc);
942 return NULL;
944 data_len += sg_dma_len(mem_sg);
945 if (inc_src)
946 src_sg = sg_next(src_sg);
947 if (inc_dst)
948 dst_sg = sg_next(dst_sg);
949 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
950 i++;
953 desc->length = data_len;
955 /* The user has to return the descriptor to us ASAP via .tx_submit() */
956 return &desc->async_tx;
959 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
960 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
961 size_t len, unsigned long flags)
963 struct nbpf_channel *chan = nbpf_to_chan(dchan);
964 struct scatterlist dst_sg;
965 struct scatterlist src_sg;
967 sg_init_table(&dst_sg, 1);
968 sg_init_table(&src_sg, 1);
970 sg_dma_address(&dst_sg) = dst;
971 sg_dma_address(&src_sg) = src;
973 sg_dma_len(&dst_sg) = len;
974 sg_dma_len(&src_sg) = len;
976 dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
977 __func__, len, &src, &dst);
979 return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
980 DMA_MEM_TO_MEM, flags);
983 static struct dma_async_tx_descriptor *nbpf_prep_memcpy_sg(
984 struct dma_chan *dchan,
985 struct scatterlist *dst_sg, unsigned int dst_nents,
986 struct scatterlist *src_sg, unsigned int src_nents,
987 unsigned long flags)
989 struct nbpf_channel *chan = nbpf_to_chan(dchan);
991 if (dst_nents != src_nents)
992 return NULL;
994 return nbpf_prep_sg(chan, src_sg, dst_sg, src_nents,
995 DMA_MEM_TO_MEM, flags);
998 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
999 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1000 enum dma_transfer_direction direction, unsigned long flags, void *context)
1002 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1003 struct scatterlist slave_sg;
1005 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1007 sg_init_table(&slave_sg, 1);
1009 switch (direction) {
1010 case DMA_MEM_TO_DEV:
1011 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1012 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1013 direction, flags);
1015 case DMA_DEV_TO_MEM:
1016 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1017 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1018 direction, flags);
1020 default:
1021 return NULL;
1025 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1027 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1028 int ret;
1030 INIT_LIST_HEAD(&chan->free);
1031 INIT_LIST_HEAD(&chan->free_links);
1032 INIT_LIST_HEAD(&chan->queued);
1033 INIT_LIST_HEAD(&chan->active);
1034 INIT_LIST_HEAD(&chan->done);
1036 ret = nbpf_desc_page_alloc(chan);
1037 if (ret < 0)
1038 return ret;
1040 dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1041 chan->terminal);
1043 nbpf_chan_configure(chan);
1045 return ret;
1048 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1050 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1051 struct nbpf_desc_page *dpage, *tmp;
1053 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1055 nbpf_chan_halt(chan);
1056 nbpf_chan_idle(chan);
1057 /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1058 nbpf_chan_prepare_default(chan);
1060 list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1061 struct nbpf_link_desc *ldesc;
1062 int i;
1063 list_del(&dpage->node);
1064 for (i = 0, ldesc = dpage->ldesc;
1065 i < ARRAY_SIZE(dpage->ldesc);
1066 i++, ldesc++)
1067 dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1068 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1069 free_page((unsigned long)dpage);
1073 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1074 struct of_dma *ofdma)
1076 struct nbpf_device *nbpf = ofdma->of_dma_data;
1077 struct dma_chan *dchan;
1078 struct nbpf_channel *chan;
1080 if (dma_spec->args_count != 2)
1081 return NULL;
1083 dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1084 if (!dchan)
1085 return NULL;
1087 dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
1088 dma_spec->np->name);
1090 chan = nbpf_to_chan(dchan);
1092 chan->terminal = dma_spec->args[0];
1093 chan->flags = dma_spec->args[1];
1095 nbpf_chan_prepare(chan);
1096 nbpf_chan_configure(chan);
1098 return dchan;
1101 static void nbpf_chan_tasklet(unsigned long data)
1103 struct nbpf_channel *chan = (struct nbpf_channel *)data;
1104 struct nbpf_desc *desc, *tmp;
1105 struct dmaengine_desc_callback cb;
1107 while (!list_empty(&chan->done)) {
1108 bool found = false, must_put, recycling = false;
1110 spin_lock_irq(&chan->lock);
1112 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1113 if (!desc->user_wait) {
1114 /* Newly completed descriptor, have to process */
1115 found = true;
1116 break;
1117 } else if (async_tx_test_ack(&desc->async_tx)) {
1119 * This descriptor was waiting for a user ACK,
1120 * it can be recycled now.
1122 list_del(&desc->node);
1123 spin_unlock_irq(&chan->lock);
1124 nbpf_desc_put(desc);
1125 recycling = true;
1126 break;
1130 if (recycling)
1131 continue;
1133 if (!found) {
1134 /* This can happen if TERMINATE_ALL has been called */
1135 spin_unlock_irq(&chan->lock);
1136 break;
1139 dma_cookie_complete(&desc->async_tx);
1142 * With released lock we cannot dereference desc, maybe it's
1143 * still on the "done" list
1145 if (async_tx_test_ack(&desc->async_tx)) {
1146 list_del(&desc->node);
1147 must_put = true;
1148 } else {
1149 desc->user_wait = true;
1150 must_put = false;
1153 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1155 /* ack and callback completed descriptor */
1156 spin_unlock_irq(&chan->lock);
1158 dmaengine_desc_callback_invoke(&cb, NULL);
1160 if (must_put)
1161 nbpf_desc_put(desc);
1165 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1167 struct nbpf_channel *chan = dev;
1168 bool done = nbpf_status_get(chan);
1169 struct nbpf_desc *desc;
1170 irqreturn_t ret;
1171 bool bh = false;
1173 if (!done)
1174 return IRQ_NONE;
1176 nbpf_status_ack(chan);
1178 dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1180 spin_lock(&chan->lock);
1181 desc = chan->running;
1182 if (WARN_ON(!desc)) {
1183 ret = IRQ_NONE;
1184 goto unlock;
1185 } else {
1186 ret = IRQ_HANDLED;
1187 bh = true;
1190 list_move_tail(&desc->node, &chan->done);
1191 chan->running = NULL;
1193 if (!list_empty(&chan->active)) {
1194 desc = list_first_entry(&chan->active,
1195 struct nbpf_desc, node);
1196 if (!nbpf_start(desc))
1197 chan->running = desc;
1200 unlock:
1201 spin_unlock(&chan->lock);
1203 if (bh)
1204 tasklet_schedule(&chan->tasklet);
1206 return ret;
1209 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1211 struct nbpf_device *nbpf = dev;
1212 u32 error = nbpf_error_get(nbpf);
1214 dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1216 if (!error)
1217 return IRQ_NONE;
1219 do {
1220 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1221 /* On error: abort all queued transfers, no callback */
1222 nbpf_error_clear(chan);
1223 nbpf_chan_idle(chan);
1224 error = nbpf_error_get(nbpf);
1225 } while (error);
1227 return IRQ_HANDLED;
1230 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1232 struct dma_device *dma_dev = &nbpf->dma_dev;
1233 struct nbpf_channel *chan = nbpf->chan + n;
1234 int ret;
1236 chan->nbpf = nbpf;
1237 chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1238 INIT_LIST_HEAD(&chan->desc_page);
1239 spin_lock_init(&chan->lock);
1240 chan->dma_chan.device = dma_dev;
1241 dma_cookie_init(&chan->dma_chan);
1242 nbpf_chan_prepare_default(chan);
1244 dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1246 snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1248 tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
1249 ret = devm_request_irq(dma_dev->dev, chan->irq,
1250 nbpf_chan_irq, IRQF_SHARED,
1251 chan->name, chan);
1252 if (ret < 0)
1253 return ret;
1255 /* Add the channel to DMA device channel list */
1256 list_add_tail(&chan->dma_chan.device_node,
1257 &dma_dev->channels);
1259 return 0;
1262 static const struct of_device_id nbpf_match[] = {
1263 {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]},
1264 {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]},
1265 {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]},
1266 {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]},
1267 {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]},
1268 {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]},
1269 {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]},
1270 {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]},
1271 {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]},
1274 MODULE_DEVICE_TABLE(of, nbpf_match);
1276 static int nbpf_probe(struct platform_device *pdev)
1278 struct device *dev = &pdev->dev;
1279 const struct of_device_id *of_id = of_match_device(nbpf_match, dev);
1280 struct device_node *np = dev->of_node;
1281 struct nbpf_device *nbpf;
1282 struct dma_device *dma_dev;
1283 struct resource *iomem, *irq_res;
1284 const struct nbpf_config *cfg;
1285 int num_channels;
1286 int ret, irq, eirq, i;
1287 int irqbuf[9] /* maximum 8 channels + error IRQ */;
1288 unsigned int irqs = 0;
1290 BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1292 /* DT only */
1293 if (!np || !of_id || !of_id->data)
1294 return -ENODEV;
1296 cfg = of_id->data;
1297 num_channels = cfg->num_channels;
1299 nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels *
1300 sizeof(nbpf->chan[0]), GFP_KERNEL);
1301 if (!nbpf)
1302 return -ENOMEM;
1304 dma_dev = &nbpf->dma_dev;
1305 dma_dev->dev = dev;
1307 iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1308 nbpf->base = devm_ioremap_resource(dev, iomem);
1309 if (IS_ERR(nbpf->base))
1310 return PTR_ERR(nbpf->base);
1312 nbpf->clk = devm_clk_get(dev, NULL);
1313 if (IS_ERR(nbpf->clk))
1314 return PTR_ERR(nbpf->clk);
1316 nbpf->config = cfg;
1318 for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1319 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1320 if (!irq_res)
1321 break;
1323 for (irq = irq_res->start; irq <= irq_res->end;
1324 irq++, irqs++)
1325 irqbuf[irqs] = irq;
1329 * 3 IRQ resource schemes are supported:
1330 * 1. 1 shared IRQ for error and all channels
1331 * 2. 2 IRQs: one for error and one shared for all channels
1332 * 3. 1 IRQ for error and an own IRQ for each channel
1334 if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1335 return -ENXIO;
1337 if (irqs == 1) {
1338 eirq = irqbuf[0];
1340 for (i = 0; i <= num_channels; i++)
1341 nbpf->chan[i].irq = irqbuf[0];
1342 } else {
1343 eirq = platform_get_irq_byname(pdev, "error");
1344 if (eirq < 0)
1345 return eirq;
1347 if (irqs == num_channels + 1) {
1348 struct nbpf_channel *chan;
1350 for (i = 0, chan = nbpf->chan; i <= num_channels;
1351 i++, chan++) {
1352 /* Skip the error IRQ */
1353 if (irqbuf[i] == eirq)
1354 i++;
1355 chan->irq = irqbuf[i];
1358 if (chan != nbpf->chan + num_channels)
1359 return -EINVAL;
1360 } else {
1361 /* 2 IRQs and more than one channel */
1362 if (irqbuf[0] == eirq)
1363 irq = irqbuf[1];
1364 else
1365 irq = irqbuf[0];
1367 for (i = 0; i <= num_channels; i++)
1368 nbpf->chan[i].irq = irq;
1372 ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1373 IRQF_SHARED, "dma error", nbpf);
1374 if (ret < 0)
1375 return ret;
1376 nbpf->eirq = eirq;
1378 INIT_LIST_HEAD(&dma_dev->channels);
1380 /* Create DMA Channel */
1381 for (i = 0; i < num_channels; i++) {
1382 ret = nbpf_chan_probe(nbpf, i);
1383 if (ret < 0)
1384 return ret;
1387 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1388 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1389 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1390 dma_cap_set(DMA_SG, dma_dev->cap_mask);
1392 /* Common and MEMCPY operations */
1393 dma_dev->device_alloc_chan_resources
1394 = nbpf_alloc_chan_resources;
1395 dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1396 dma_dev->device_prep_dma_sg = nbpf_prep_memcpy_sg;
1397 dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1398 dma_dev->device_tx_status = nbpf_tx_status;
1399 dma_dev->device_issue_pending = nbpf_issue_pending;
1402 * If we drop support for unaligned MEMCPY buffer addresses and / or
1403 * lengths by setting
1404 * dma_dev->copy_align = 4;
1405 * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1406 * DMA_MEM_TO_MEM
1409 /* Compulsory for DMA_SLAVE fields */
1410 dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1411 dma_dev->device_config = nbpf_config;
1412 dma_dev->device_pause = nbpf_pause;
1413 dma_dev->device_terminate_all = nbpf_terminate_all;
1415 dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1416 dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1417 dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1419 platform_set_drvdata(pdev, nbpf);
1421 ret = clk_prepare_enable(nbpf->clk);
1422 if (ret < 0)
1423 return ret;
1425 nbpf_configure(nbpf);
1427 ret = dma_async_device_register(dma_dev);
1428 if (ret < 0)
1429 goto e_clk_off;
1431 ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1432 if (ret < 0)
1433 goto e_dma_dev_unreg;
1435 return 0;
1437 e_dma_dev_unreg:
1438 dma_async_device_unregister(dma_dev);
1439 e_clk_off:
1440 clk_disable_unprepare(nbpf->clk);
1442 return ret;
1445 static int nbpf_remove(struct platform_device *pdev)
1447 struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1448 int i;
1450 devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1452 for (i = 0; i < nbpf->config->num_channels; i++) {
1453 struct nbpf_channel *chan = nbpf->chan + i;
1455 devm_free_irq(&pdev->dev, chan->irq, chan);
1457 tasklet_kill(&chan->tasklet);
1460 of_dma_controller_free(pdev->dev.of_node);
1461 dma_async_device_unregister(&nbpf->dma_dev);
1462 clk_disable_unprepare(nbpf->clk);
1464 return 0;
1467 static const struct platform_device_id nbpf_ids[] = {
1468 {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1469 {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1470 {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1471 {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1472 {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1473 {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1474 {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1475 {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1476 {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1479 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1481 #ifdef CONFIG_PM
1482 static int nbpf_runtime_suspend(struct device *dev)
1484 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1485 clk_disable_unprepare(nbpf->clk);
1486 return 0;
1489 static int nbpf_runtime_resume(struct device *dev)
1491 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1492 return clk_prepare_enable(nbpf->clk);
1494 #endif
1496 static const struct dev_pm_ops nbpf_pm_ops = {
1497 SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1500 static struct platform_driver nbpf_driver = {
1501 .driver = {
1502 .name = "dma-nbpf",
1503 .of_match_table = nbpf_match,
1504 .pm = &nbpf_pm_ops,
1506 .id_table = nbpf_ids,
1507 .probe = nbpf_probe,
1508 .remove = nbpf_remove,
1511 module_platform_driver(nbpf_driver);
1513 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1514 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1515 MODULE_LICENSE("GPL v2");