1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
25 #include <trace/events/sched.h>
28 * Targeted preemption latency for CPU-bound tasks:
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 unsigned int sysctl_sched_latency
= 6000000ULL;
41 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
44 * The initial- and re-scaling of tunables is configurable
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling
= SCHED_TUNABLESCALING_LOG
;
57 * Minimal preemption granularity for CPU-bound tasks:
59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
61 unsigned int sysctl_sched_min_granularity
= 750000ULL;
62 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
67 static unsigned int sched_nr_latency
= 8;
70 * After fork, child runs first. If set to 0 (default) then
71 * parent will (try to) run first.
73 unsigned int sysctl_sched_child_runs_first __read_mostly
;
76 * SCHED_OTHER wake-up granularity.
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
84 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
85 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
87 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
91 * For asym packing, by default the lower numbered CPU has higher priority.
93 int __weak
arch_asym_cpu_priority(int cpu
)
99 #ifdef CONFIG_CFS_BANDWIDTH
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
108 * (default: 5 msec, units: microseconds)
110 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
114 * The margin used when comparing utilization with CPU capacity:
115 * util * margin < capacity * 1024
119 unsigned int capacity_margin
= 1280;
121 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
127 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
133 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
146 * This idea comes from the SD scheduler of Con Kolivas:
148 static unsigned int get_update_sysctl_factor(void)
150 unsigned int cpus
= min_t(unsigned int, num_online_cpus(), 8);
153 switch (sysctl_sched_tunable_scaling
) {
154 case SCHED_TUNABLESCALING_NONE
:
157 case SCHED_TUNABLESCALING_LINEAR
:
160 case SCHED_TUNABLESCALING_LOG
:
162 factor
= 1 + ilog2(cpus
);
169 static void update_sysctl(void)
171 unsigned int factor
= get_update_sysctl_factor();
173 #define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity
);
176 SET_SYSCTL(sched_latency
);
177 SET_SYSCTL(sched_wakeup_granularity
);
181 void sched_init_granularity(void)
186 #define WMULT_CONST (~0U)
187 #define WMULT_SHIFT 32
189 static void __update_inv_weight(struct load_weight
*lw
)
193 if (likely(lw
->inv_weight
))
196 w
= scale_load_down(lw
->weight
);
198 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
200 else if (unlikely(!w
))
201 lw
->inv_weight
= WMULT_CONST
;
203 lw
->inv_weight
= WMULT_CONST
/ w
;
207 * delta_exec * weight / lw.weight
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
218 static u64
__calc_delta(u64 delta_exec
, unsigned long weight
, struct load_weight
*lw
)
220 u64 fact
= scale_load_down(weight
);
221 int shift
= WMULT_SHIFT
;
223 __update_inv_weight(lw
);
225 if (unlikely(fact
>> 32)) {
232 /* hint to use a 32x32->64 mul */
233 fact
= (u64
)(u32
)fact
* lw
->inv_weight
;
240 return mul_u64_u32_shr(delta_exec
, fact
, shift
);
244 const struct sched_class fair_sched_class
;
246 /**************************************************************
247 * CFS operations on generic schedulable entities:
250 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* cpu runqueue to which this cfs_rq is attached */
253 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
258 static inline struct task_struct
*task_of(struct sched_entity
*se
)
260 SCHED_WARN_ON(!entity_is_task(se
));
261 return container_of(se
, struct task_struct
, se
);
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
268 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
285 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
287 if (!cfs_rq
->on_list
) {
288 struct rq
*rq
= rq_of(cfs_rq
);
289 int cpu
= cpu_of(rq
);
291 * Ensure we either appear before our parent (if already
292 * enqueued) or force our parent to appear after us when it is
293 * enqueued. The fact that we always enqueue bottom-up
294 * reduces this to two cases and a special case for the root
295 * cfs_rq. Furthermore, it also means that we will always reset
296 * tmp_alone_branch either when the branch is connected
297 * to a tree or when we reach the beg of the tree
299 if (cfs_rq
->tg
->parent
&&
300 cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->on_list
) {
302 * If parent is already on the list, we add the child
303 * just before. Thanks to circular linked property of
304 * the list, this means to put the child at the tail
305 * of the list that starts by parent.
307 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
308 &(cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->leaf_cfs_rq_list
));
310 * The branch is now connected to its tree so we can
311 * reset tmp_alone_branch to the beginning of the
314 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
315 } else if (!cfs_rq
->tg
->parent
) {
317 * cfs rq without parent should be put
318 * at the tail of the list.
320 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
321 &rq
->leaf_cfs_rq_list
);
323 * We have reach the beg of a tree so we can reset
324 * tmp_alone_branch to the beginning of the list.
326 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
329 * The parent has not already been added so we want to
330 * make sure that it will be put after us.
331 * tmp_alone_branch points to the beg of the branch
332 * where we will add parent.
334 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
335 rq
->tmp_alone_branch
);
337 * update tmp_alone_branch to points to the new beg
340 rq
->tmp_alone_branch
= &cfs_rq
->leaf_cfs_rq_list
;
347 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
349 if (cfs_rq
->on_list
) {
350 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
355 /* Iterate through all leaf cfs_rq's on a runqueue: */
356 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
357 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
359 /* Do the two (enqueued) entities belong to the same group ? */
360 static inline struct cfs_rq
*
361 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
363 if (se
->cfs_rq
== pse
->cfs_rq
)
369 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
375 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
377 int se_depth
, pse_depth
;
380 * preemption test can be made between sibling entities who are in the
381 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
382 * both tasks until we find their ancestors who are siblings of common
386 /* First walk up until both entities are at same depth */
387 se_depth
= (*se
)->depth
;
388 pse_depth
= (*pse
)->depth
;
390 while (se_depth
> pse_depth
) {
392 *se
= parent_entity(*se
);
395 while (pse_depth
> se_depth
) {
397 *pse
= parent_entity(*pse
);
400 while (!is_same_group(*se
, *pse
)) {
401 *se
= parent_entity(*se
);
402 *pse
= parent_entity(*pse
);
406 #else /* !CONFIG_FAIR_GROUP_SCHED */
408 static inline struct task_struct
*task_of(struct sched_entity
*se
)
410 return container_of(se
, struct task_struct
, se
);
413 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
415 return container_of(cfs_rq
, struct rq
, cfs
);
419 #define for_each_sched_entity(se) \
420 for (; se; se = NULL)
422 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
424 return &task_rq(p
)->cfs
;
427 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
429 struct task_struct
*p
= task_of(se
);
430 struct rq
*rq
= task_rq(p
);
435 /* runqueue "owned" by this group */
436 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
441 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
445 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
449 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
450 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
452 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
458 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
462 #endif /* CONFIG_FAIR_GROUP_SCHED */
464 static __always_inline
465 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
);
467 /**************************************************************
468 * Scheduling class tree data structure manipulation methods:
471 static inline u64
max_vruntime(u64 max_vruntime
, u64 vruntime
)
473 s64 delta
= (s64
)(vruntime
- max_vruntime
);
475 max_vruntime
= vruntime
;
480 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
482 s64 delta
= (s64
)(vruntime
- min_vruntime
);
484 min_vruntime
= vruntime
;
489 static inline int entity_before(struct sched_entity
*a
,
490 struct sched_entity
*b
)
492 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
495 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
497 struct sched_entity
*curr
= cfs_rq
->curr
;
498 struct rb_node
*leftmost
= rb_first_cached(&cfs_rq
->tasks_timeline
);
500 u64 vruntime
= cfs_rq
->min_vruntime
;
504 vruntime
= curr
->vruntime
;
509 if (leftmost
) { /* non-empty tree */
510 struct sched_entity
*se
;
511 se
= rb_entry(leftmost
, struct sched_entity
, run_node
);
514 vruntime
= se
->vruntime
;
516 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
519 /* ensure we never gain time by being placed backwards. */
520 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
523 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
528 * Enqueue an entity into the rb-tree:
530 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
532 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_root
.rb_node
;
533 struct rb_node
*parent
= NULL
;
534 struct sched_entity
*entry
;
535 bool leftmost
= true;
538 * Find the right place in the rbtree:
542 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
544 * We dont care about collisions. Nodes with
545 * the same key stay together.
547 if (entity_before(se
, entry
)) {
548 link
= &parent
->rb_left
;
550 link
= &parent
->rb_right
;
555 rb_link_node(&se
->run_node
, parent
, link
);
556 rb_insert_color_cached(&se
->run_node
,
557 &cfs_rq
->tasks_timeline
, leftmost
);
560 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
562 rb_erase_cached(&se
->run_node
, &cfs_rq
->tasks_timeline
);
565 struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
567 struct rb_node
*left
= rb_first_cached(&cfs_rq
->tasks_timeline
);
572 return rb_entry(left
, struct sched_entity
, run_node
);
575 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
577 struct rb_node
*next
= rb_next(&se
->run_node
);
582 return rb_entry(next
, struct sched_entity
, run_node
);
585 #ifdef CONFIG_SCHED_DEBUG
586 struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
588 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
.rb_root
);
593 return rb_entry(last
, struct sched_entity
, run_node
);
596 /**************************************************************
597 * Scheduling class statistics methods:
600 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
601 void __user
*buffer
, size_t *lenp
,
604 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
605 unsigned int factor
= get_update_sysctl_factor();
610 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
611 sysctl_sched_min_granularity
);
613 #define WRT_SYSCTL(name) \
614 (normalized_sysctl_##name = sysctl_##name / (factor))
615 WRT_SYSCTL(sched_min_granularity
);
616 WRT_SYSCTL(sched_latency
);
617 WRT_SYSCTL(sched_wakeup_granularity
);
627 static inline u64
calc_delta_fair(u64 delta
, struct sched_entity
*se
)
629 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
630 delta
= __calc_delta(delta
, NICE_0_LOAD
, &se
->load
);
636 * The idea is to set a period in which each task runs once.
638 * When there are too many tasks (sched_nr_latency) we have to stretch
639 * this period because otherwise the slices get too small.
641 * p = (nr <= nl) ? l : l*nr/nl
643 static u64
__sched_period(unsigned long nr_running
)
645 if (unlikely(nr_running
> sched_nr_latency
))
646 return nr_running
* sysctl_sched_min_granularity
;
648 return sysctl_sched_latency
;
652 * We calculate the wall-time slice from the period by taking a part
653 * proportional to the weight.
657 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
659 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
661 for_each_sched_entity(se
) {
662 struct load_weight
*load
;
663 struct load_weight lw
;
665 cfs_rq
= cfs_rq_of(se
);
666 load
= &cfs_rq
->load
;
668 if (unlikely(!se
->on_rq
)) {
671 update_load_add(&lw
, se
->load
.weight
);
674 slice
= __calc_delta(slice
, se
->load
.weight
, load
);
680 * We calculate the vruntime slice of a to-be-inserted task.
684 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
686 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
691 #include "sched-pelt.h"
693 static int select_idle_sibling(struct task_struct
*p
, int prev_cpu
, int cpu
);
694 static unsigned long task_h_load(struct task_struct
*p
);
696 /* Give new sched_entity start runnable values to heavy its load in infant time */
697 void init_entity_runnable_average(struct sched_entity
*se
)
699 struct sched_avg
*sa
= &se
->avg
;
701 memset(sa
, 0, sizeof(*sa
));
704 * Tasks are intialized with full load to be seen as heavy tasks until
705 * they get a chance to stabilize to their real load level.
706 * Group entities are intialized with zero load to reflect the fact that
707 * nothing has been attached to the task group yet.
709 if (entity_is_task(se
))
710 sa
->runnable_load_avg
= sa
->load_avg
= scale_load_down(se
->load
.weight
);
712 se
->runnable_weight
= se
->load
.weight
;
714 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
717 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
);
718 static void attach_entity_cfs_rq(struct sched_entity
*se
);
721 * With new tasks being created, their initial util_avgs are extrapolated
722 * based on the cfs_rq's current util_avg:
724 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
726 * However, in many cases, the above util_avg does not give a desired
727 * value. Moreover, the sum of the util_avgs may be divergent, such
728 * as when the series is a harmonic series.
730 * To solve this problem, we also cap the util_avg of successive tasks to
731 * only 1/2 of the left utilization budget:
733 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
735 * where n denotes the nth task and cpu_scale the CPU capacity.
737 * For example, for a CPU with 1024 of capacity, a simplest series from
738 * the beginning would be like:
740 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
741 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
743 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
744 * if util_avg > util_avg_cap.
746 void post_init_entity_util_avg(struct sched_entity
*se
)
748 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
749 struct sched_avg
*sa
= &se
->avg
;
750 long cpu_scale
= arch_scale_cpu_capacity(NULL
, cpu_of(rq_of(cfs_rq
)));
751 long cap
= (long)(cpu_scale
- cfs_rq
->avg
.util_avg
) / 2;
754 if (cfs_rq
->avg
.util_avg
!= 0) {
755 sa
->util_avg
= cfs_rq
->avg
.util_avg
* se
->load
.weight
;
756 sa
->util_avg
/= (cfs_rq
->avg
.load_avg
+ 1);
758 if (sa
->util_avg
> cap
)
765 if (entity_is_task(se
)) {
766 struct task_struct
*p
= task_of(se
);
767 if (p
->sched_class
!= &fair_sched_class
) {
769 * For !fair tasks do:
771 update_cfs_rq_load_avg(now, cfs_rq);
772 attach_entity_load_avg(cfs_rq, se, 0);
773 switched_from_fair(rq, p);
775 * such that the next switched_to_fair() has the
778 se
->avg
.last_update_time
= cfs_rq_clock_task(cfs_rq
);
783 attach_entity_cfs_rq(se
);
786 #else /* !CONFIG_SMP */
787 void init_entity_runnable_average(struct sched_entity
*se
)
790 void post_init_entity_util_avg(struct sched_entity
*se
)
793 static void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
796 #endif /* CONFIG_SMP */
799 * Update the current task's runtime statistics.
801 static void update_curr(struct cfs_rq
*cfs_rq
)
803 struct sched_entity
*curr
= cfs_rq
->curr
;
804 u64 now
= rq_clock_task(rq_of(cfs_rq
));
810 delta_exec
= now
- curr
->exec_start
;
811 if (unlikely((s64
)delta_exec
<= 0))
814 curr
->exec_start
= now
;
816 schedstat_set(curr
->statistics
.exec_max
,
817 max(delta_exec
, curr
->statistics
.exec_max
));
819 curr
->sum_exec_runtime
+= delta_exec
;
820 schedstat_add(cfs_rq
->exec_clock
, delta_exec
);
822 curr
->vruntime
+= calc_delta_fair(delta_exec
, curr
);
823 update_min_vruntime(cfs_rq
);
825 if (entity_is_task(curr
)) {
826 struct task_struct
*curtask
= task_of(curr
);
828 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
829 cgroup_account_cputime(curtask
, delta_exec
);
830 account_group_exec_runtime(curtask
, delta_exec
);
833 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
836 static void update_curr_fair(struct rq
*rq
)
838 update_curr(cfs_rq_of(&rq
->curr
->se
));
842 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
844 u64 wait_start
, prev_wait_start
;
846 if (!schedstat_enabled())
849 wait_start
= rq_clock(rq_of(cfs_rq
));
850 prev_wait_start
= schedstat_val(se
->statistics
.wait_start
);
852 if (entity_is_task(se
) && task_on_rq_migrating(task_of(se
)) &&
853 likely(wait_start
> prev_wait_start
))
854 wait_start
-= prev_wait_start
;
856 __schedstat_set(se
->statistics
.wait_start
, wait_start
);
860 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
862 struct task_struct
*p
;
865 if (!schedstat_enabled())
868 delta
= rq_clock(rq_of(cfs_rq
)) - schedstat_val(se
->statistics
.wait_start
);
870 if (entity_is_task(se
)) {
872 if (task_on_rq_migrating(p
)) {
874 * Preserve migrating task's wait time so wait_start
875 * time stamp can be adjusted to accumulate wait time
876 * prior to migration.
878 __schedstat_set(se
->statistics
.wait_start
, delta
);
881 trace_sched_stat_wait(p
, delta
);
884 __schedstat_set(se
->statistics
.wait_max
,
885 max(schedstat_val(se
->statistics
.wait_max
), delta
));
886 __schedstat_inc(se
->statistics
.wait_count
);
887 __schedstat_add(se
->statistics
.wait_sum
, delta
);
888 __schedstat_set(se
->statistics
.wait_start
, 0);
892 update_stats_enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
894 struct task_struct
*tsk
= NULL
;
895 u64 sleep_start
, block_start
;
897 if (!schedstat_enabled())
900 sleep_start
= schedstat_val(se
->statistics
.sleep_start
);
901 block_start
= schedstat_val(se
->statistics
.block_start
);
903 if (entity_is_task(se
))
907 u64 delta
= rq_clock(rq_of(cfs_rq
)) - sleep_start
;
912 if (unlikely(delta
> schedstat_val(se
->statistics
.sleep_max
)))
913 __schedstat_set(se
->statistics
.sleep_max
, delta
);
915 __schedstat_set(se
->statistics
.sleep_start
, 0);
916 __schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
919 account_scheduler_latency(tsk
, delta
>> 10, 1);
920 trace_sched_stat_sleep(tsk
, delta
);
924 u64 delta
= rq_clock(rq_of(cfs_rq
)) - block_start
;
929 if (unlikely(delta
> schedstat_val(se
->statistics
.block_max
)))
930 __schedstat_set(se
->statistics
.block_max
, delta
);
932 __schedstat_set(se
->statistics
.block_start
, 0);
933 __schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
936 if (tsk
->in_iowait
) {
937 __schedstat_add(se
->statistics
.iowait_sum
, delta
);
938 __schedstat_inc(se
->statistics
.iowait_count
);
939 trace_sched_stat_iowait(tsk
, delta
);
942 trace_sched_stat_blocked(tsk
, delta
);
945 * Blocking time is in units of nanosecs, so shift by
946 * 20 to get a milliseconds-range estimation of the
947 * amount of time that the task spent sleeping:
949 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
950 profile_hits(SLEEP_PROFILING
,
951 (void *)get_wchan(tsk
),
954 account_scheduler_latency(tsk
, delta
>> 10, 0);
960 * Task is being enqueued - update stats:
963 update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
965 if (!schedstat_enabled())
969 * Are we enqueueing a waiting task? (for current tasks
970 * a dequeue/enqueue event is a NOP)
972 if (se
!= cfs_rq
->curr
)
973 update_stats_wait_start(cfs_rq
, se
);
975 if (flags
& ENQUEUE_WAKEUP
)
976 update_stats_enqueue_sleeper(cfs_rq
, se
);
980 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
983 if (!schedstat_enabled())
987 * Mark the end of the wait period if dequeueing a
990 if (se
!= cfs_rq
->curr
)
991 update_stats_wait_end(cfs_rq
, se
);
993 if ((flags
& DEQUEUE_SLEEP
) && entity_is_task(se
)) {
994 struct task_struct
*tsk
= task_of(se
);
996 if (tsk
->state
& TASK_INTERRUPTIBLE
)
997 __schedstat_set(se
->statistics
.sleep_start
,
998 rq_clock(rq_of(cfs_rq
)));
999 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1000 __schedstat_set(se
->statistics
.block_start
,
1001 rq_clock(rq_of(cfs_rq
)));
1006 * We are picking a new current task - update its stats:
1009 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1012 * We are starting a new run period:
1014 se
->exec_start
= rq_clock_task(rq_of(cfs_rq
));
1017 /**************************************************
1018 * Scheduling class queueing methods:
1021 #ifdef CONFIG_NUMA_BALANCING
1023 * Approximate time to scan a full NUMA task in ms. The task scan period is
1024 * calculated based on the tasks virtual memory size and
1025 * numa_balancing_scan_size.
1027 unsigned int sysctl_numa_balancing_scan_period_min
= 1000;
1028 unsigned int sysctl_numa_balancing_scan_period_max
= 60000;
1030 /* Portion of address space to scan in MB */
1031 unsigned int sysctl_numa_balancing_scan_size
= 256;
1033 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1034 unsigned int sysctl_numa_balancing_scan_delay
= 1000;
1039 spinlock_t lock
; /* nr_tasks, tasks */
1044 struct rcu_head rcu
;
1045 unsigned long total_faults
;
1046 unsigned long max_faults_cpu
;
1048 * Faults_cpu is used to decide whether memory should move
1049 * towards the CPU. As a consequence, these stats are weighted
1050 * more by CPU use than by memory faults.
1052 unsigned long *faults_cpu
;
1053 unsigned long faults
[0];
1056 static inline unsigned long group_faults_priv(struct numa_group
*ng
);
1057 static inline unsigned long group_faults_shared(struct numa_group
*ng
);
1059 static unsigned int task_nr_scan_windows(struct task_struct
*p
)
1061 unsigned long rss
= 0;
1062 unsigned long nr_scan_pages
;
1065 * Calculations based on RSS as non-present and empty pages are skipped
1066 * by the PTE scanner and NUMA hinting faults should be trapped based
1069 nr_scan_pages
= sysctl_numa_balancing_scan_size
<< (20 - PAGE_SHIFT
);
1070 rss
= get_mm_rss(p
->mm
);
1072 rss
= nr_scan_pages
;
1074 rss
= round_up(rss
, nr_scan_pages
);
1075 return rss
/ nr_scan_pages
;
1078 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1079 #define MAX_SCAN_WINDOW 2560
1081 static unsigned int task_scan_min(struct task_struct
*p
)
1083 unsigned int scan_size
= READ_ONCE(sysctl_numa_balancing_scan_size
);
1084 unsigned int scan
, floor
;
1085 unsigned int windows
= 1;
1087 if (scan_size
< MAX_SCAN_WINDOW
)
1088 windows
= MAX_SCAN_WINDOW
/ scan_size
;
1089 floor
= 1000 / windows
;
1091 scan
= sysctl_numa_balancing_scan_period_min
/ task_nr_scan_windows(p
);
1092 return max_t(unsigned int, floor
, scan
);
1095 static unsigned int task_scan_start(struct task_struct
*p
)
1097 unsigned long smin
= task_scan_min(p
);
1098 unsigned long period
= smin
;
1100 /* Scale the maximum scan period with the amount of shared memory. */
1101 if (p
->numa_group
) {
1102 struct numa_group
*ng
= p
->numa_group
;
1103 unsigned long shared
= group_faults_shared(ng
);
1104 unsigned long private = group_faults_priv(ng
);
1106 period
*= atomic_read(&ng
->refcount
);
1107 period
*= shared
+ 1;
1108 period
/= private + shared
+ 1;
1111 return max(smin
, period
);
1114 static unsigned int task_scan_max(struct task_struct
*p
)
1116 unsigned long smin
= task_scan_min(p
);
1119 /* Watch for min being lower than max due to floor calculations */
1120 smax
= sysctl_numa_balancing_scan_period_max
/ task_nr_scan_windows(p
);
1122 /* Scale the maximum scan period with the amount of shared memory. */
1123 if (p
->numa_group
) {
1124 struct numa_group
*ng
= p
->numa_group
;
1125 unsigned long shared
= group_faults_shared(ng
);
1126 unsigned long private = group_faults_priv(ng
);
1127 unsigned long period
= smax
;
1129 period
*= atomic_read(&ng
->refcount
);
1130 period
*= shared
+ 1;
1131 period
/= private + shared
+ 1;
1133 smax
= max(smax
, period
);
1136 return max(smin
, smax
);
1139 void init_numa_balancing(unsigned long clone_flags
, struct task_struct
*p
)
1142 struct mm_struct
*mm
= p
->mm
;
1145 mm_users
= atomic_read(&mm
->mm_users
);
1146 if (mm_users
== 1) {
1147 mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
1148 mm
->numa_scan_seq
= 0;
1152 p
->numa_scan_seq
= mm
? mm
->numa_scan_seq
: 0;
1153 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
1154 p
->numa_work
.next
= &p
->numa_work
;
1155 p
->numa_faults
= NULL
;
1156 p
->numa_group
= NULL
;
1157 p
->last_task_numa_placement
= 0;
1158 p
->last_sum_exec_runtime
= 0;
1160 /* New address space, reset the preferred nid */
1161 if (!(clone_flags
& CLONE_VM
)) {
1162 p
->numa_preferred_nid
= -1;
1167 * New thread, keep existing numa_preferred_nid which should be copied
1168 * already by arch_dup_task_struct but stagger when scans start.
1173 delay
= min_t(unsigned int, task_scan_max(current
),
1174 current
->numa_scan_period
* mm_users
* NSEC_PER_MSEC
);
1175 delay
+= 2 * TICK_NSEC
;
1176 p
->node_stamp
= delay
;
1180 static void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
1182 rq
->nr_numa_running
+= (p
->numa_preferred_nid
!= -1);
1183 rq
->nr_preferred_running
+= (p
->numa_preferred_nid
== task_node(p
));
1186 static void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
1188 rq
->nr_numa_running
-= (p
->numa_preferred_nid
!= -1);
1189 rq
->nr_preferred_running
-= (p
->numa_preferred_nid
== task_node(p
));
1192 /* Shared or private faults. */
1193 #define NR_NUMA_HINT_FAULT_TYPES 2
1195 /* Memory and CPU locality */
1196 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1198 /* Averaged statistics, and temporary buffers. */
1199 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1201 pid_t
task_numa_group_id(struct task_struct
*p
)
1203 return p
->numa_group
? p
->numa_group
->gid
: 0;
1207 * The averaged statistics, shared & private, memory & CPU,
1208 * occupy the first half of the array. The second half of the
1209 * array is for current counters, which are averaged into the
1210 * first set by task_numa_placement.
1212 static inline int task_faults_idx(enum numa_faults_stats s
, int nid
, int priv
)
1214 return NR_NUMA_HINT_FAULT_TYPES
* (s
* nr_node_ids
+ nid
) + priv
;
1217 static inline unsigned long task_faults(struct task_struct
*p
, int nid
)
1219 if (!p
->numa_faults
)
1222 return p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1223 p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1226 static inline unsigned long group_faults(struct task_struct
*p
, int nid
)
1231 return p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1232 p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1235 static inline unsigned long group_faults_cpu(struct numa_group
*group
, int nid
)
1237 return group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1238 group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1241 static inline unsigned long group_faults_priv(struct numa_group
*ng
)
1243 unsigned long faults
= 0;
1246 for_each_online_node(node
) {
1247 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
1253 static inline unsigned long group_faults_shared(struct numa_group
*ng
)
1255 unsigned long faults
= 0;
1258 for_each_online_node(node
) {
1259 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
1266 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1267 * considered part of a numa group's pseudo-interleaving set. Migrations
1268 * between these nodes are slowed down, to allow things to settle down.
1270 #define ACTIVE_NODE_FRACTION 3
1272 static bool numa_is_active_node(int nid
, struct numa_group
*ng
)
1274 return group_faults_cpu(ng
, nid
) * ACTIVE_NODE_FRACTION
> ng
->max_faults_cpu
;
1277 /* Handle placement on systems where not all nodes are directly connected. */
1278 static unsigned long score_nearby_nodes(struct task_struct
*p
, int nid
,
1279 int maxdist
, bool task
)
1281 unsigned long score
= 0;
1285 * All nodes are directly connected, and the same distance
1286 * from each other. No need for fancy placement algorithms.
1288 if (sched_numa_topology_type
== NUMA_DIRECT
)
1292 * This code is called for each node, introducing N^2 complexity,
1293 * which should be ok given the number of nodes rarely exceeds 8.
1295 for_each_online_node(node
) {
1296 unsigned long faults
;
1297 int dist
= node_distance(nid
, node
);
1300 * The furthest away nodes in the system are not interesting
1301 * for placement; nid was already counted.
1303 if (dist
== sched_max_numa_distance
|| node
== nid
)
1307 * On systems with a backplane NUMA topology, compare groups
1308 * of nodes, and move tasks towards the group with the most
1309 * memory accesses. When comparing two nodes at distance
1310 * "hoplimit", only nodes closer by than "hoplimit" are part
1311 * of each group. Skip other nodes.
1313 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1317 /* Add up the faults from nearby nodes. */
1319 faults
= task_faults(p
, node
);
1321 faults
= group_faults(p
, node
);
1324 * On systems with a glueless mesh NUMA topology, there are
1325 * no fixed "groups of nodes". Instead, nodes that are not
1326 * directly connected bounce traffic through intermediate
1327 * nodes; a numa_group can occupy any set of nodes.
1328 * The further away a node is, the less the faults count.
1329 * This seems to result in good task placement.
1331 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
1332 faults
*= (sched_max_numa_distance
- dist
);
1333 faults
/= (sched_max_numa_distance
- LOCAL_DISTANCE
);
1343 * These return the fraction of accesses done by a particular task, or
1344 * task group, on a particular numa node. The group weight is given a
1345 * larger multiplier, in order to group tasks together that are almost
1346 * evenly spread out between numa nodes.
1348 static inline unsigned long task_weight(struct task_struct
*p
, int nid
,
1351 unsigned long faults
, total_faults
;
1353 if (!p
->numa_faults
)
1356 total_faults
= p
->total_numa_faults
;
1361 faults
= task_faults(p
, nid
);
1362 faults
+= score_nearby_nodes(p
, nid
, dist
, true);
1364 return 1000 * faults
/ total_faults
;
1367 static inline unsigned long group_weight(struct task_struct
*p
, int nid
,
1370 unsigned long faults
, total_faults
;
1375 total_faults
= p
->numa_group
->total_faults
;
1380 faults
= group_faults(p
, nid
);
1381 faults
+= score_nearby_nodes(p
, nid
, dist
, false);
1383 return 1000 * faults
/ total_faults
;
1386 bool should_numa_migrate_memory(struct task_struct
*p
, struct page
* page
,
1387 int src_nid
, int dst_cpu
)
1389 struct numa_group
*ng
= p
->numa_group
;
1390 int dst_nid
= cpu_to_node(dst_cpu
);
1391 int last_cpupid
, this_cpupid
;
1393 this_cpupid
= cpu_pid_to_cpupid(dst_cpu
, current
->pid
);
1394 last_cpupid
= page_cpupid_xchg_last(page
, this_cpupid
);
1397 * Allow first faults or private faults to migrate immediately early in
1398 * the lifetime of a task. The magic number 4 is based on waiting for
1399 * two full passes of the "multi-stage node selection" test that is
1402 if ((p
->numa_preferred_nid
== -1 || p
->numa_scan_seq
<= 4) &&
1403 (cpupid_pid_unset(last_cpupid
) || cpupid_match_pid(p
, last_cpupid
)))
1407 * Multi-stage node selection is used in conjunction with a periodic
1408 * migration fault to build a temporal task<->page relation. By using
1409 * a two-stage filter we remove short/unlikely relations.
1411 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1412 * a task's usage of a particular page (n_p) per total usage of this
1413 * page (n_t) (in a given time-span) to a probability.
1415 * Our periodic faults will sample this probability and getting the
1416 * same result twice in a row, given these samples are fully
1417 * independent, is then given by P(n)^2, provided our sample period
1418 * is sufficiently short compared to the usage pattern.
1420 * This quadric squishes small probabilities, making it less likely we
1421 * act on an unlikely task<->page relation.
1423 if (!cpupid_pid_unset(last_cpupid
) &&
1424 cpupid_to_nid(last_cpupid
) != dst_nid
)
1427 /* Always allow migrate on private faults */
1428 if (cpupid_match_pid(p
, last_cpupid
))
1431 /* A shared fault, but p->numa_group has not been set up yet. */
1436 * Destination node is much more heavily used than the source
1437 * node? Allow migration.
1439 if (group_faults_cpu(ng
, dst_nid
) > group_faults_cpu(ng
, src_nid
) *
1440 ACTIVE_NODE_FRACTION
)
1444 * Distribute memory according to CPU & memory use on each node,
1445 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1447 * faults_cpu(dst) 3 faults_cpu(src)
1448 * --------------- * - > ---------------
1449 * faults_mem(dst) 4 faults_mem(src)
1451 return group_faults_cpu(ng
, dst_nid
) * group_faults(p
, src_nid
) * 3 >
1452 group_faults_cpu(ng
, src_nid
) * group_faults(p
, dst_nid
) * 4;
1455 static unsigned long weighted_cpuload(struct rq
*rq
);
1456 static unsigned long source_load(int cpu
, int type
);
1457 static unsigned long target_load(int cpu
, int type
);
1458 static unsigned long capacity_of(int cpu
);
1460 /* Cached statistics for all CPUs within a node */
1464 /* Total compute capacity of CPUs on a node */
1465 unsigned long compute_capacity
;
1467 unsigned int nr_running
;
1471 * XXX borrowed from update_sg_lb_stats
1473 static void update_numa_stats(struct numa_stats
*ns
, int nid
)
1475 int smt
, cpu
, cpus
= 0;
1476 unsigned long capacity
;
1478 memset(ns
, 0, sizeof(*ns
));
1479 for_each_cpu(cpu
, cpumask_of_node(nid
)) {
1480 struct rq
*rq
= cpu_rq(cpu
);
1482 ns
->nr_running
+= rq
->nr_running
;
1483 ns
->load
+= weighted_cpuload(rq
);
1484 ns
->compute_capacity
+= capacity_of(cpu
);
1490 * If we raced with hotplug and there are no CPUs left in our mask
1491 * the @ns structure is NULL'ed and task_numa_compare() will
1492 * not find this node attractive.
1494 * We'll detect a huge imbalance and bail there.
1499 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1500 smt
= DIV_ROUND_UP(SCHED_CAPACITY_SCALE
* cpus
, ns
->compute_capacity
);
1501 capacity
= cpus
/ smt
; /* cores */
1503 capacity
= min_t(unsigned, capacity
,
1504 DIV_ROUND_CLOSEST(ns
->compute_capacity
, SCHED_CAPACITY_SCALE
));
1507 struct task_numa_env
{
1508 struct task_struct
*p
;
1510 int src_cpu
, src_nid
;
1511 int dst_cpu
, dst_nid
;
1513 struct numa_stats src_stats
, dst_stats
;
1518 struct task_struct
*best_task
;
1523 static void task_numa_assign(struct task_numa_env
*env
,
1524 struct task_struct
*p
, long imp
)
1526 struct rq
*rq
= cpu_rq(env
->dst_cpu
);
1528 /* Bail out if run-queue part of active NUMA balance. */
1529 if (xchg(&rq
->numa_migrate_on
, 1))
1533 * Clear previous best_cpu/rq numa-migrate flag, since task now
1534 * found a better CPU to move/swap.
1536 if (env
->best_cpu
!= -1) {
1537 rq
= cpu_rq(env
->best_cpu
);
1538 WRITE_ONCE(rq
->numa_migrate_on
, 0);
1542 put_task_struct(env
->best_task
);
1547 env
->best_imp
= imp
;
1548 env
->best_cpu
= env
->dst_cpu
;
1551 static bool load_too_imbalanced(long src_load
, long dst_load
,
1552 struct task_numa_env
*env
)
1555 long orig_src_load
, orig_dst_load
;
1556 long src_capacity
, dst_capacity
;
1559 * The load is corrected for the CPU capacity available on each node.
1562 * ------------ vs ---------
1563 * src_capacity dst_capacity
1565 src_capacity
= env
->src_stats
.compute_capacity
;
1566 dst_capacity
= env
->dst_stats
.compute_capacity
;
1568 imb
= abs(dst_load
* src_capacity
- src_load
* dst_capacity
);
1570 orig_src_load
= env
->src_stats
.load
;
1571 orig_dst_load
= env
->dst_stats
.load
;
1573 old_imb
= abs(orig_dst_load
* src_capacity
- orig_src_load
* dst_capacity
);
1575 /* Would this change make things worse? */
1576 return (imb
> old_imb
);
1580 * Maximum NUMA importance can be 1998 (2*999);
1581 * SMALLIMP @ 30 would be close to 1998/64.
1582 * Used to deter task migration.
1587 * This checks if the overall compute and NUMA accesses of the system would
1588 * be improved if the source tasks was migrated to the target dst_cpu taking
1589 * into account that it might be best if task running on the dst_cpu should
1590 * be exchanged with the source task
1592 static void task_numa_compare(struct task_numa_env
*env
,
1593 long taskimp
, long groupimp
, bool maymove
)
1595 struct rq
*dst_rq
= cpu_rq(env
->dst_cpu
);
1596 struct task_struct
*cur
;
1597 long src_load
, dst_load
;
1599 long imp
= env
->p
->numa_group
? groupimp
: taskimp
;
1601 int dist
= env
->dist
;
1603 if (READ_ONCE(dst_rq
->numa_migrate_on
))
1607 cur
= task_rcu_dereference(&dst_rq
->curr
);
1608 if (cur
&& ((cur
->flags
& PF_EXITING
) || is_idle_task(cur
)))
1612 * Because we have preemption enabled we can get migrated around and
1613 * end try selecting ourselves (current == env->p) as a swap candidate.
1619 if (maymove
&& moveimp
>= env
->best_imp
)
1626 * "imp" is the fault differential for the source task between the
1627 * source and destination node. Calculate the total differential for
1628 * the source task and potential destination task. The more negative
1629 * the value is, the more remote accesses that would be expected to
1630 * be incurred if the tasks were swapped.
1632 /* Skip this swap candidate if cannot move to the source cpu */
1633 if (!cpumask_test_cpu(env
->src_cpu
, &cur
->cpus_allowed
))
1637 * If dst and source tasks are in the same NUMA group, or not
1638 * in any group then look only at task weights.
1640 if (cur
->numa_group
== env
->p
->numa_group
) {
1641 imp
= taskimp
+ task_weight(cur
, env
->src_nid
, dist
) -
1642 task_weight(cur
, env
->dst_nid
, dist
);
1644 * Add some hysteresis to prevent swapping the
1645 * tasks within a group over tiny differences.
1647 if (cur
->numa_group
)
1651 * Compare the group weights. If a task is all by itself
1652 * (not part of a group), use the task weight instead.
1654 if (cur
->numa_group
&& env
->p
->numa_group
)
1655 imp
+= group_weight(cur
, env
->src_nid
, dist
) -
1656 group_weight(cur
, env
->dst_nid
, dist
);
1658 imp
+= task_weight(cur
, env
->src_nid
, dist
) -
1659 task_weight(cur
, env
->dst_nid
, dist
);
1662 if (maymove
&& moveimp
> imp
&& moveimp
> env
->best_imp
) {
1669 * If the NUMA importance is less than SMALLIMP,
1670 * task migration might only result in ping pong
1671 * of tasks and also hurt performance due to cache
1674 if (imp
< SMALLIMP
|| imp
<= env
->best_imp
+ SMALLIMP
/ 2)
1678 * In the overloaded case, try and keep the load balanced.
1680 load
= task_h_load(env
->p
) - task_h_load(cur
);
1684 dst_load
= env
->dst_stats
.load
+ load
;
1685 src_load
= env
->src_stats
.load
- load
;
1687 if (load_too_imbalanced(src_load
, dst_load
, env
))
1692 * One idle CPU per node is evaluated for a task numa move.
1693 * Call select_idle_sibling to maybe find a better one.
1697 * select_idle_siblings() uses an per-CPU cpumask that
1698 * can be used from IRQ context.
1700 local_irq_disable();
1701 env
->dst_cpu
= select_idle_sibling(env
->p
, env
->src_cpu
,
1706 task_numa_assign(env
, cur
, imp
);
1711 static void task_numa_find_cpu(struct task_numa_env
*env
,
1712 long taskimp
, long groupimp
)
1714 long src_load
, dst_load
, load
;
1715 bool maymove
= false;
1718 load
= task_h_load(env
->p
);
1719 dst_load
= env
->dst_stats
.load
+ load
;
1720 src_load
= env
->src_stats
.load
- load
;
1723 * If the improvement from just moving env->p direction is better
1724 * than swapping tasks around, check if a move is possible.
1726 maymove
= !load_too_imbalanced(src_load
, dst_load
, env
);
1728 for_each_cpu(cpu
, cpumask_of_node(env
->dst_nid
)) {
1729 /* Skip this CPU if the source task cannot migrate */
1730 if (!cpumask_test_cpu(cpu
, &env
->p
->cpus_allowed
))
1734 task_numa_compare(env
, taskimp
, groupimp
, maymove
);
1738 static int task_numa_migrate(struct task_struct
*p
)
1740 struct task_numa_env env
= {
1743 .src_cpu
= task_cpu(p
),
1744 .src_nid
= task_node(p
),
1746 .imbalance_pct
= 112,
1752 struct sched_domain
*sd
;
1754 unsigned long taskweight
, groupweight
;
1756 long taskimp
, groupimp
;
1759 * Pick the lowest SD_NUMA domain, as that would have the smallest
1760 * imbalance and would be the first to start moving tasks about.
1762 * And we want to avoid any moving of tasks about, as that would create
1763 * random movement of tasks -- counter the numa conditions we're trying
1767 sd
= rcu_dereference(per_cpu(sd_numa
, env
.src_cpu
));
1769 env
.imbalance_pct
= 100 + (sd
->imbalance_pct
- 100) / 2;
1773 * Cpusets can break the scheduler domain tree into smaller
1774 * balance domains, some of which do not cross NUMA boundaries.
1775 * Tasks that are "trapped" in such domains cannot be migrated
1776 * elsewhere, so there is no point in (re)trying.
1778 if (unlikely(!sd
)) {
1779 sched_setnuma(p
, task_node(p
));
1783 env
.dst_nid
= p
->numa_preferred_nid
;
1784 dist
= env
.dist
= node_distance(env
.src_nid
, env
.dst_nid
);
1785 taskweight
= task_weight(p
, env
.src_nid
, dist
);
1786 groupweight
= group_weight(p
, env
.src_nid
, dist
);
1787 update_numa_stats(&env
.src_stats
, env
.src_nid
);
1788 taskimp
= task_weight(p
, env
.dst_nid
, dist
) - taskweight
;
1789 groupimp
= group_weight(p
, env
.dst_nid
, dist
) - groupweight
;
1790 update_numa_stats(&env
.dst_stats
, env
.dst_nid
);
1792 /* Try to find a spot on the preferred nid. */
1793 task_numa_find_cpu(&env
, taskimp
, groupimp
);
1796 * Look at other nodes in these cases:
1797 * - there is no space available on the preferred_nid
1798 * - the task is part of a numa_group that is interleaved across
1799 * multiple NUMA nodes; in order to better consolidate the group,
1800 * we need to check other locations.
1802 if (env
.best_cpu
== -1 || (p
->numa_group
&& p
->numa_group
->active_nodes
> 1)) {
1803 for_each_online_node(nid
) {
1804 if (nid
== env
.src_nid
|| nid
== p
->numa_preferred_nid
)
1807 dist
= node_distance(env
.src_nid
, env
.dst_nid
);
1808 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1810 taskweight
= task_weight(p
, env
.src_nid
, dist
);
1811 groupweight
= group_weight(p
, env
.src_nid
, dist
);
1814 /* Only consider nodes where both task and groups benefit */
1815 taskimp
= task_weight(p
, nid
, dist
) - taskweight
;
1816 groupimp
= group_weight(p
, nid
, dist
) - groupweight
;
1817 if (taskimp
< 0 && groupimp
< 0)
1822 update_numa_stats(&env
.dst_stats
, env
.dst_nid
);
1823 task_numa_find_cpu(&env
, taskimp
, groupimp
);
1828 * If the task is part of a workload that spans multiple NUMA nodes,
1829 * and is migrating into one of the workload's active nodes, remember
1830 * this node as the task's preferred numa node, so the workload can
1832 * A task that migrated to a second choice node will be better off
1833 * trying for a better one later. Do not set the preferred node here.
1835 if (p
->numa_group
) {
1836 if (env
.best_cpu
== -1)
1839 nid
= cpu_to_node(env
.best_cpu
);
1841 if (nid
!= p
->numa_preferred_nid
)
1842 sched_setnuma(p
, nid
);
1845 /* No better CPU than the current one was found. */
1846 if (env
.best_cpu
== -1)
1849 best_rq
= cpu_rq(env
.best_cpu
);
1850 if (env
.best_task
== NULL
) {
1851 ret
= migrate_task_to(p
, env
.best_cpu
);
1852 WRITE_ONCE(best_rq
->numa_migrate_on
, 0);
1854 trace_sched_stick_numa(p
, env
.src_cpu
, env
.best_cpu
);
1858 ret
= migrate_swap(p
, env
.best_task
, env
.best_cpu
, env
.src_cpu
);
1859 WRITE_ONCE(best_rq
->numa_migrate_on
, 0);
1862 trace_sched_stick_numa(p
, env
.src_cpu
, task_cpu(env
.best_task
));
1863 put_task_struct(env
.best_task
);
1867 /* Attempt to migrate a task to a CPU on the preferred node. */
1868 static void numa_migrate_preferred(struct task_struct
*p
)
1870 unsigned long interval
= HZ
;
1872 /* This task has no NUMA fault statistics yet */
1873 if (unlikely(p
->numa_preferred_nid
== -1 || !p
->numa_faults
))
1876 /* Periodically retry migrating the task to the preferred node */
1877 interval
= min(interval
, msecs_to_jiffies(p
->numa_scan_period
) / 16);
1878 p
->numa_migrate_retry
= jiffies
+ interval
;
1880 /* Success if task is already running on preferred CPU */
1881 if (task_node(p
) == p
->numa_preferred_nid
)
1884 /* Otherwise, try migrate to a CPU on the preferred node */
1885 task_numa_migrate(p
);
1889 * Find out how many nodes on the workload is actively running on. Do this by
1890 * tracking the nodes from which NUMA hinting faults are triggered. This can
1891 * be different from the set of nodes where the workload's memory is currently
1894 static void numa_group_count_active_nodes(struct numa_group
*numa_group
)
1896 unsigned long faults
, max_faults
= 0;
1897 int nid
, active_nodes
= 0;
1899 for_each_online_node(nid
) {
1900 faults
= group_faults_cpu(numa_group
, nid
);
1901 if (faults
> max_faults
)
1902 max_faults
= faults
;
1905 for_each_online_node(nid
) {
1906 faults
= group_faults_cpu(numa_group
, nid
);
1907 if (faults
* ACTIVE_NODE_FRACTION
> max_faults
)
1911 numa_group
->max_faults_cpu
= max_faults
;
1912 numa_group
->active_nodes
= active_nodes
;
1916 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1917 * increments. The more local the fault statistics are, the higher the scan
1918 * period will be for the next scan window. If local/(local+remote) ratio is
1919 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1920 * the scan period will decrease. Aim for 70% local accesses.
1922 #define NUMA_PERIOD_SLOTS 10
1923 #define NUMA_PERIOD_THRESHOLD 7
1926 * Increase the scan period (slow down scanning) if the majority of
1927 * our memory is already on our local node, or if the majority of
1928 * the page accesses are shared with other processes.
1929 * Otherwise, decrease the scan period.
1931 static void update_task_scan_period(struct task_struct
*p
,
1932 unsigned long shared
, unsigned long private)
1934 unsigned int period_slot
;
1935 int lr_ratio
, ps_ratio
;
1938 unsigned long remote
= p
->numa_faults_locality
[0];
1939 unsigned long local
= p
->numa_faults_locality
[1];
1942 * If there were no record hinting faults then either the task is
1943 * completely idle or all activity is areas that are not of interest
1944 * to automatic numa balancing. Related to that, if there were failed
1945 * migration then it implies we are migrating too quickly or the local
1946 * node is overloaded. In either case, scan slower
1948 if (local
+ shared
== 0 || p
->numa_faults_locality
[2]) {
1949 p
->numa_scan_period
= min(p
->numa_scan_period_max
,
1950 p
->numa_scan_period
<< 1);
1952 p
->mm
->numa_next_scan
= jiffies
+
1953 msecs_to_jiffies(p
->numa_scan_period
);
1959 * Prepare to scale scan period relative to the current period.
1960 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1961 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1962 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1964 period_slot
= DIV_ROUND_UP(p
->numa_scan_period
, NUMA_PERIOD_SLOTS
);
1965 lr_ratio
= (local
* NUMA_PERIOD_SLOTS
) / (local
+ remote
);
1966 ps_ratio
= (private * NUMA_PERIOD_SLOTS
) / (private + shared
);
1968 if (ps_ratio
>= NUMA_PERIOD_THRESHOLD
) {
1970 * Most memory accesses are local. There is no need to
1971 * do fast NUMA scanning, since memory is already local.
1973 int slot
= ps_ratio
- NUMA_PERIOD_THRESHOLD
;
1976 diff
= slot
* period_slot
;
1977 } else if (lr_ratio
>= NUMA_PERIOD_THRESHOLD
) {
1979 * Most memory accesses are shared with other tasks.
1980 * There is no point in continuing fast NUMA scanning,
1981 * since other tasks may just move the memory elsewhere.
1983 int slot
= lr_ratio
- NUMA_PERIOD_THRESHOLD
;
1986 diff
= slot
* period_slot
;
1989 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1990 * yet they are not on the local NUMA node. Speed up
1991 * NUMA scanning to get the memory moved over.
1993 int ratio
= max(lr_ratio
, ps_ratio
);
1994 diff
= -(NUMA_PERIOD_THRESHOLD
- ratio
) * period_slot
;
1997 p
->numa_scan_period
= clamp(p
->numa_scan_period
+ diff
,
1998 task_scan_min(p
), task_scan_max(p
));
1999 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2003 * Get the fraction of time the task has been running since the last
2004 * NUMA placement cycle. The scheduler keeps similar statistics, but
2005 * decays those on a 32ms period, which is orders of magnitude off
2006 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2007 * stats only if the task is so new there are no NUMA statistics yet.
2009 static u64
numa_get_avg_runtime(struct task_struct
*p
, u64
*period
)
2011 u64 runtime
, delta
, now
;
2012 /* Use the start of this time slice to avoid calculations. */
2013 now
= p
->se
.exec_start
;
2014 runtime
= p
->se
.sum_exec_runtime
;
2016 if (p
->last_task_numa_placement
) {
2017 delta
= runtime
- p
->last_sum_exec_runtime
;
2018 *period
= now
- p
->last_task_numa_placement
;
2020 delta
= p
->se
.avg
.load_sum
;
2021 *period
= LOAD_AVG_MAX
;
2024 p
->last_sum_exec_runtime
= runtime
;
2025 p
->last_task_numa_placement
= now
;
2031 * Determine the preferred nid for a task in a numa_group. This needs to
2032 * be done in a way that produces consistent results with group_weight,
2033 * otherwise workloads might not converge.
2035 static int preferred_group_nid(struct task_struct
*p
, int nid
)
2040 /* Direct connections between all NUMA nodes. */
2041 if (sched_numa_topology_type
== NUMA_DIRECT
)
2045 * On a system with glueless mesh NUMA topology, group_weight
2046 * scores nodes according to the number of NUMA hinting faults on
2047 * both the node itself, and on nearby nodes.
2049 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
2050 unsigned long score
, max_score
= 0;
2051 int node
, max_node
= nid
;
2053 dist
= sched_max_numa_distance
;
2055 for_each_online_node(node
) {
2056 score
= group_weight(p
, node
, dist
);
2057 if (score
> max_score
) {
2066 * Finding the preferred nid in a system with NUMA backplane
2067 * interconnect topology is more involved. The goal is to locate
2068 * tasks from numa_groups near each other in the system, and
2069 * untangle workloads from different sides of the system. This requires
2070 * searching down the hierarchy of node groups, recursively searching
2071 * inside the highest scoring group of nodes. The nodemask tricks
2072 * keep the complexity of the search down.
2074 nodes
= node_online_map
;
2075 for (dist
= sched_max_numa_distance
; dist
> LOCAL_DISTANCE
; dist
--) {
2076 unsigned long max_faults
= 0;
2077 nodemask_t max_group
= NODE_MASK_NONE
;
2080 /* Are there nodes at this distance from each other? */
2081 if (!find_numa_distance(dist
))
2084 for_each_node_mask(a
, nodes
) {
2085 unsigned long faults
= 0;
2086 nodemask_t this_group
;
2087 nodes_clear(this_group
);
2089 /* Sum group's NUMA faults; includes a==b case. */
2090 for_each_node_mask(b
, nodes
) {
2091 if (node_distance(a
, b
) < dist
) {
2092 faults
+= group_faults(p
, b
);
2093 node_set(b
, this_group
);
2094 node_clear(b
, nodes
);
2098 /* Remember the top group. */
2099 if (faults
> max_faults
) {
2100 max_faults
= faults
;
2101 max_group
= this_group
;
2103 * subtle: at the smallest distance there is
2104 * just one node left in each "group", the
2105 * winner is the preferred nid.
2110 /* Next round, evaluate the nodes within max_group. */
2118 static void task_numa_placement(struct task_struct
*p
)
2120 int seq
, nid
, max_nid
= -1;
2121 unsigned long max_faults
= 0;
2122 unsigned long fault_types
[2] = { 0, 0 };
2123 unsigned long total_faults
;
2124 u64 runtime
, period
;
2125 spinlock_t
*group_lock
= NULL
;
2128 * The p->mm->numa_scan_seq field gets updated without
2129 * exclusive access. Use READ_ONCE() here to ensure
2130 * that the field is read in a single access:
2132 seq
= READ_ONCE(p
->mm
->numa_scan_seq
);
2133 if (p
->numa_scan_seq
== seq
)
2135 p
->numa_scan_seq
= seq
;
2136 p
->numa_scan_period_max
= task_scan_max(p
);
2138 total_faults
= p
->numa_faults_locality
[0] +
2139 p
->numa_faults_locality
[1];
2140 runtime
= numa_get_avg_runtime(p
, &period
);
2142 /* If the task is part of a group prevent parallel updates to group stats */
2143 if (p
->numa_group
) {
2144 group_lock
= &p
->numa_group
->lock
;
2145 spin_lock_irq(group_lock
);
2148 /* Find the node with the highest number of faults */
2149 for_each_online_node(nid
) {
2150 /* Keep track of the offsets in numa_faults array */
2151 int mem_idx
, membuf_idx
, cpu_idx
, cpubuf_idx
;
2152 unsigned long faults
= 0, group_faults
= 0;
2155 for (priv
= 0; priv
< NR_NUMA_HINT_FAULT_TYPES
; priv
++) {
2156 long diff
, f_diff
, f_weight
;
2158 mem_idx
= task_faults_idx(NUMA_MEM
, nid
, priv
);
2159 membuf_idx
= task_faults_idx(NUMA_MEMBUF
, nid
, priv
);
2160 cpu_idx
= task_faults_idx(NUMA_CPU
, nid
, priv
);
2161 cpubuf_idx
= task_faults_idx(NUMA_CPUBUF
, nid
, priv
);
2163 /* Decay existing window, copy faults since last scan */
2164 diff
= p
->numa_faults
[membuf_idx
] - p
->numa_faults
[mem_idx
] / 2;
2165 fault_types
[priv
] += p
->numa_faults
[membuf_idx
];
2166 p
->numa_faults
[membuf_idx
] = 0;
2169 * Normalize the faults_from, so all tasks in a group
2170 * count according to CPU use, instead of by the raw
2171 * number of faults. Tasks with little runtime have
2172 * little over-all impact on throughput, and thus their
2173 * faults are less important.
2175 f_weight
= div64_u64(runtime
<< 16, period
+ 1);
2176 f_weight
= (f_weight
* p
->numa_faults
[cpubuf_idx
]) /
2178 f_diff
= f_weight
- p
->numa_faults
[cpu_idx
] / 2;
2179 p
->numa_faults
[cpubuf_idx
] = 0;
2181 p
->numa_faults
[mem_idx
] += diff
;
2182 p
->numa_faults
[cpu_idx
] += f_diff
;
2183 faults
+= p
->numa_faults
[mem_idx
];
2184 p
->total_numa_faults
+= diff
;
2185 if (p
->numa_group
) {
2187 * safe because we can only change our own group
2189 * mem_idx represents the offset for a given
2190 * nid and priv in a specific region because it
2191 * is at the beginning of the numa_faults array.
2193 p
->numa_group
->faults
[mem_idx
] += diff
;
2194 p
->numa_group
->faults_cpu
[mem_idx
] += f_diff
;
2195 p
->numa_group
->total_faults
+= diff
;
2196 group_faults
+= p
->numa_group
->faults
[mem_idx
];
2200 if (!p
->numa_group
) {
2201 if (faults
> max_faults
) {
2202 max_faults
= faults
;
2205 } else if (group_faults
> max_faults
) {
2206 max_faults
= group_faults
;
2211 if (p
->numa_group
) {
2212 numa_group_count_active_nodes(p
->numa_group
);
2213 spin_unlock_irq(group_lock
);
2214 max_nid
= preferred_group_nid(p
, max_nid
);
2218 /* Set the new preferred node */
2219 if (max_nid
!= p
->numa_preferred_nid
)
2220 sched_setnuma(p
, max_nid
);
2223 update_task_scan_period(p
, fault_types
[0], fault_types
[1]);
2226 static inline int get_numa_group(struct numa_group
*grp
)
2228 return atomic_inc_not_zero(&grp
->refcount
);
2231 static inline void put_numa_group(struct numa_group
*grp
)
2233 if (atomic_dec_and_test(&grp
->refcount
))
2234 kfree_rcu(grp
, rcu
);
2237 static void task_numa_group(struct task_struct
*p
, int cpupid
, int flags
,
2240 struct numa_group
*grp
, *my_grp
;
2241 struct task_struct
*tsk
;
2243 int cpu
= cpupid_to_cpu(cpupid
);
2246 if (unlikely(!p
->numa_group
)) {
2247 unsigned int size
= sizeof(struct numa_group
) +
2248 4*nr_node_ids
*sizeof(unsigned long);
2250 grp
= kzalloc(size
, GFP_KERNEL
| __GFP_NOWARN
);
2254 atomic_set(&grp
->refcount
, 1);
2255 grp
->active_nodes
= 1;
2256 grp
->max_faults_cpu
= 0;
2257 spin_lock_init(&grp
->lock
);
2259 /* Second half of the array tracks nids where faults happen */
2260 grp
->faults_cpu
= grp
->faults
+ NR_NUMA_HINT_FAULT_TYPES
*
2263 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2264 grp
->faults
[i
] = p
->numa_faults
[i
];
2266 grp
->total_faults
= p
->total_numa_faults
;
2269 rcu_assign_pointer(p
->numa_group
, grp
);
2273 tsk
= READ_ONCE(cpu_rq(cpu
)->curr
);
2275 if (!cpupid_match_pid(tsk
, cpupid
))
2278 grp
= rcu_dereference(tsk
->numa_group
);
2282 my_grp
= p
->numa_group
;
2287 * Only join the other group if its bigger; if we're the bigger group,
2288 * the other task will join us.
2290 if (my_grp
->nr_tasks
> grp
->nr_tasks
)
2294 * Tie-break on the grp address.
2296 if (my_grp
->nr_tasks
== grp
->nr_tasks
&& my_grp
> grp
)
2299 /* Always join threads in the same process. */
2300 if (tsk
->mm
== current
->mm
)
2303 /* Simple filter to avoid false positives due to PID collisions */
2304 if (flags
& TNF_SHARED
)
2307 /* Update priv based on whether false sharing was detected */
2310 if (join
&& !get_numa_group(grp
))
2318 BUG_ON(irqs_disabled());
2319 double_lock_irq(&my_grp
->lock
, &grp
->lock
);
2321 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++) {
2322 my_grp
->faults
[i
] -= p
->numa_faults
[i
];
2323 grp
->faults
[i
] += p
->numa_faults
[i
];
2325 my_grp
->total_faults
-= p
->total_numa_faults
;
2326 grp
->total_faults
+= p
->total_numa_faults
;
2331 spin_unlock(&my_grp
->lock
);
2332 spin_unlock_irq(&grp
->lock
);
2334 rcu_assign_pointer(p
->numa_group
, grp
);
2336 put_numa_group(my_grp
);
2344 void task_numa_free(struct task_struct
*p
)
2346 struct numa_group
*grp
= p
->numa_group
;
2347 void *numa_faults
= p
->numa_faults
;
2348 unsigned long flags
;
2352 spin_lock_irqsave(&grp
->lock
, flags
);
2353 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2354 grp
->faults
[i
] -= p
->numa_faults
[i
];
2355 grp
->total_faults
-= p
->total_numa_faults
;
2358 spin_unlock_irqrestore(&grp
->lock
, flags
);
2359 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2360 put_numa_group(grp
);
2363 p
->numa_faults
= NULL
;
2368 * Got a PROT_NONE fault for a page on @node.
2370 void task_numa_fault(int last_cpupid
, int mem_node
, int pages
, int flags
)
2372 struct task_struct
*p
= current
;
2373 bool migrated
= flags
& TNF_MIGRATED
;
2374 int cpu_node
= task_node(current
);
2375 int local
= !!(flags
& TNF_FAULT_LOCAL
);
2376 struct numa_group
*ng
;
2379 if (!static_branch_likely(&sched_numa_balancing
))
2382 /* for example, ksmd faulting in a user's mm */
2386 /* Allocate buffer to track faults on a per-node basis */
2387 if (unlikely(!p
->numa_faults
)) {
2388 int size
= sizeof(*p
->numa_faults
) *
2389 NR_NUMA_HINT_FAULT_BUCKETS
* nr_node_ids
;
2391 p
->numa_faults
= kzalloc(size
, GFP_KERNEL
|__GFP_NOWARN
);
2392 if (!p
->numa_faults
)
2395 p
->total_numa_faults
= 0;
2396 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2400 * First accesses are treated as private, otherwise consider accesses
2401 * to be private if the accessing pid has not changed
2403 if (unlikely(last_cpupid
== (-1 & LAST_CPUPID_MASK
))) {
2406 priv
= cpupid_match_pid(p
, last_cpupid
);
2407 if (!priv
&& !(flags
& TNF_NO_GROUP
))
2408 task_numa_group(p
, last_cpupid
, flags
, &priv
);
2412 * If a workload spans multiple NUMA nodes, a shared fault that
2413 * occurs wholly within the set of nodes that the workload is
2414 * actively using should be counted as local. This allows the
2415 * scan rate to slow down when a workload has settled down.
2418 if (!priv
&& !local
&& ng
&& ng
->active_nodes
> 1 &&
2419 numa_is_active_node(cpu_node
, ng
) &&
2420 numa_is_active_node(mem_node
, ng
))
2424 * Retry task to preferred node migration periodically, in case it
2425 * case it previously failed, or the scheduler moved us.
2427 if (time_after(jiffies
, p
->numa_migrate_retry
)) {
2428 task_numa_placement(p
);
2429 numa_migrate_preferred(p
);
2433 p
->numa_pages_migrated
+= pages
;
2434 if (flags
& TNF_MIGRATE_FAIL
)
2435 p
->numa_faults_locality
[2] += pages
;
2437 p
->numa_faults
[task_faults_idx(NUMA_MEMBUF
, mem_node
, priv
)] += pages
;
2438 p
->numa_faults
[task_faults_idx(NUMA_CPUBUF
, cpu_node
, priv
)] += pages
;
2439 p
->numa_faults_locality
[local
] += pages
;
2442 static void reset_ptenuma_scan(struct task_struct
*p
)
2445 * We only did a read acquisition of the mmap sem, so
2446 * p->mm->numa_scan_seq is written to without exclusive access
2447 * and the update is not guaranteed to be atomic. That's not
2448 * much of an issue though, since this is just used for
2449 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2450 * expensive, to avoid any form of compiler optimizations:
2452 WRITE_ONCE(p
->mm
->numa_scan_seq
, READ_ONCE(p
->mm
->numa_scan_seq
) + 1);
2453 p
->mm
->numa_scan_offset
= 0;
2457 * The expensive part of numa migration is done from task_work context.
2458 * Triggered from task_tick_numa().
2460 void task_numa_work(struct callback_head
*work
)
2462 unsigned long migrate
, next_scan
, now
= jiffies
;
2463 struct task_struct
*p
= current
;
2464 struct mm_struct
*mm
= p
->mm
;
2465 u64 runtime
= p
->se
.sum_exec_runtime
;
2466 struct vm_area_struct
*vma
;
2467 unsigned long start
, end
;
2468 unsigned long nr_pte_updates
= 0;
2469 long pages
, virtpages
;
2471 SCHED_WARN_ON(p
!= container_of(work
, struct task_struct
, numa_work
));
2473 work
->next
= work
; /* protect against double add */
2475 * Who cares about NUMA placement when they're dying.
2477 * NOTE: make sure not to dereference p->mm before this check,
2478 * exit_task_work() happens _after_ exit_mm() so we could be called
2479 * without p->mm even though we still had it when we enqueued this
2482 if (p
->flags
& PF_EXITING
)
2485 if (!mm
->numa_next_scan
) {
2486 mm
->numa_next_scan
= now
+
2487 msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2491 * Enforce maximal scan/migration frequency..
2493 migrate
= mm
->numa_next_scan
;
2494 if (time_before(now
, migrate
))
2497 if (p
->numa_scan_period
== 0) {
2498 p
->numa_scan_period_max
= task_scan_max(p
);
2499 p
->numa_scan_period
= task_scan_start(p
);
2502 next_scan
= now
+ msecs_to_jiffies(p
->numa_scan_period
);
2503 if (cmpxchg(&mm
->numa_next_scan
, migrate
, next_scan
) != migrate
)
2507 * Delay this task enough that another task of this mm will likely win
2508 * the next time around.
2510 p
->node_stamp
+= 2 * TICK_NSEC
;
2512 start
= mm
->numa_scan_offset
;
2513 pages
= sysctl_numa_balancing_scan_size
;
2514 pages
<<= 20 - PAGE_SHIFT
; /* MB in pages */
2515 virtpages
= pages
* 8; /* Scan up to this much virtual space */
2520 if (!down_read_trylock(&mm
->mmap_sem
))
2522 vma
= find_vma(mm
, start
);
2524 reset_ptenuma_scan(p
);
2528 for (; vma
; vma
= vma
->vm_next
) {
2529 if (!vma_migratable(vma
) || !vma_policy_mof(vma
) ||
2530 is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_MIXEDMAP
)) {
2535 * Shared library pages mapped by multiple processes are not
2536 * migrated as it is expected they are cache replicated. Avoid
2537 * hinting faults in read-only file-backed mappings or the vdso
2538 * as migrating the pages will be of marginal benefit.
2541 (vma
->vm_file
&& (vma
->vm_flags
& (VM_READ
|VM_WRITE
)) == (VM_READ
)))
2545 * Skip inaccessible VMAs to avoid any confusion between
2546 * PROT_NONE and NUMA hinting ptes
2548 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
2552 start
= max(start
, vma
->vm_start
);
2553 end
= ALIGN(start
+ (pages
<< PAGE_SHIFT
), HPAGE_SIZE
);
2554 end
= min(end
, vma
->vm_end
);
2555 nr_pte_updates
= change_prot_numa(vma
, start
, end
);
2558 * Try to scan sysctl_numa_balancing_size worth of
2559 * hpages that have at least one present PTE that
2560 * is not already pte-numa. If the VMA contains
2561 * areas that are unused or already full of prot_numa
2562 * PTEs, scan up to virtpages, to skip through those
2566 pages
-= (end
- start
) >> PAGE_SHIFT
;
2567 virtpages
-= (end
- start
) >> PAGE_SHIFT
;
2570 if (pages
<= 0 || virtpages
<= 0)
2574 } while (end
!= vma
->vm_end
);
2579 * It is possible to reach the end of the VMA list but the last few
2580 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2581 * would find the !migratable VMA on the next scan but not reset the
2582 * scanner to the start so check it now.
2585 mm
->numa_scan_offset
= start
;
2587 reset_ptenuma_scan(p
);
2588 up_read(&mm
->mmap_sem
);
2591 * Make sure tasks use at least 32x as much time to run other code
2592 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2593 * Usually update_task_scan_period slows down scanning enough; on an
2594 * overloaded system we need to limit overhead on a per task basis.
2596 if (unlikely(p
->se
.sum_exec_runtime
!= runtime
)) {
2597 u64 diff
= p
->se
.sum_exec_runtime
- runtime
;
2598 p
->node_stamp
+= 32 * diff
;
2603 * Drive the periodic memory faults..
2605 void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2607 struct callback_head
*work
= &curr
->numa_work
;
2611 * We don't care about NUMA placement if we don't have memory.
2613 if (!curr
->mm
|| (curr
->flags
& PF_EXITING
) || work
->next
!= work
)
2617 * Using runtime rather than walltime has the dual advantage that
2618 * we (mostly) drive the selection from busy threads and that the
2619 * task needs to have done some actual work before we bother with
2622 now
= curr
->se
.sum_exec_runtime
;
2623 period
= (u64
)curr
->numa_scan_period
* NSEC_PER_MSEC
;
2625 if (now
> curr
->node_stamp
+ period
) {
2626 if (!curr
->node_stamp
)
2627 curr
->numa_scan_period
= task_scan_start(curr
);
2628 curr
->node_stamp
+= period
;
2630 if (!time_before(jiffies
, curr
->mm
->numa_next_scan
)) {
2631 init_task_work(work
, task_numa_work
); /* TODO: move this into sched_fork() */
2632 task_work_add(curr
, work
, true);
2637 static void update_scan_period(struct task_struct
*p
, int new_cpu
)
2639 int src_nid
= cpu_to_node(task_cpu(p
));
2640 int dst_nid
= cpu_to_node(new_cpu
);
2642 if (!static_branch_likely(&sched_numa_balancing
))
2645 if (!p
->mm
|| !p
->numa_faults
|| (p
->flags
& PF_EXITING
))
2648 if (src_nid
== dst_nid
)
2652 * Allow resets if faults have been trapped before one scan
2653 * has completed. This is most likely due to a new task that
2654 * is pulled cross-node due to wakeups or load balancing.
2656 if (p
->numa_scan_seq
) {
2658 * Avoid scan adjustments if moving to the preferred
2659 * node or if the task was not previously running on
2660 * the preferred node.
2662 if (dst_nid
== p
->numa_preferred_nid
||
2663 (p
->numa_preferred_nid
!= -1 && src_nid
!= p
->numa_preferred_nid
))
2667 p
->numa_scan_period
= task_scan_start(p
);
2671 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2675 static inline void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
2679 static inline void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
2683 static inline void update_scan_period(struct task_struct
*p
, int new_cpu
)
2687 #endif /* CONFIG_NUMA_BALANCING */
2690 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2692 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
2693 if (!parent_entity(se
))
2694 update_load_add(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
2696 if (entity_is_task(se
)) {
2697 struct rq
*rq
= rq_of(cfs_rq
);
2699 account_numa_enqueue(rq
, task_of(se
));
2700 list_add(&se
->group_node
, &rq
->cfs_tasks
);
2703 cfs_rq
->nr_running
++;
2707 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2709 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
2710 if (!parent_entity(se
))
2711 update_load_sub(&rq_of(cfs_rq
)->load
, se
->load
.weight
);
2713 if (entity_is_task(se
)) {
2714 account_numa_dequeue(rq_of(cfs_rq
), task_of(se
));
2715 list_del_init(&se
->group_node
);
2718 cfs_rq
->nr_running
--;
2722 * Signed add and clamp on underflow.
2724 * Explicitly do a load-store to ensure the intermediate value never hits
2725 * memory. This allows lockless observations without ever seeing the negative
2728 #define add_positive(_ptr, _val) do { \
2729 typeof(_ptr) ptr = (_ptr); \
2730 typeof(_val) val = (_val); \
2731 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2735 if (val < 0 && res > var) \
2738 WRITE_ONCE(*ptr, res); \
2742 * Unsigned subtract and clamp on underflow.
2744 * Explicitly do a load-store to ensure the intermediate value never hits
2745 * memory. This allows lockless observations without ever seeing the negative
2748 #define sub_positive(_ptr, _val) do { \
2749 typeof(_ptr) ptr = (_ptr); \
2750 typeof(*ptr) val = (_val); \
2751 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2755 WRITE_ONCE(*ptr, res); \
2760 enqueue_runnable_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2762 cfs_rq
->runnable_weight
+= se
->runnable_weight
;
2764 cfs_rq
->avg
.runnable_load_avg
+= se
->avg
.runnable_load_avg
;
2765 cfs_rq
->avg
.runnable_load_sum
+= se_runnable(se
) * se
->avg
.runnable_load_sum
;
2769 dequeue_runnable_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2771 cfs_rq
->runnable_weight
-= se
->runnable_weight
;
2773 sub_positive(&cfs_rq
->avg
.runnable_load_avg
, se
->avg
.runnable_load_avg
);
2774 sub_positive(&cfs_rq
->avg
.runnable_load_sum
,
2775 se_runnable(se
) * se
->avg
.runnable_load_sum
);
2779 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2781 cfs_rq
->avg
.load_avg
+= se
->avg
.load_avg
;
2782 cfs_rq
->avg
.load_sum
+= se_weight(se
) * se
->avg
.load_sum
;
2786 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2788 sub_positive(&cfs_rq
->avg
.load_avg
, se
->avg
.load_avg
);
2789 sub_positive(&cfs_rq
->avg
.load_sum
, se_weight(se
) * se
->avg
.load_sum
);
2793 enqueue_runnable_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
2795 dequeue_runnable_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
2797 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
2799 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
2802 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
2803 unsigned long weight
, unsigned long runnable
)
2806 /* commit outstanding execution time */
2807 if (cfs_rq
->curr
== se
)
2808 update_curr(cfs_rq
);
2809 account_entity_dequeue(cfs_rq
, se
);
2810 dequeue_runnable_load_avg(cfs_rq
, se
);
2812 dequeue_load_avg(cfs_rq
, se
);
2814 se
->runnable_weight
= runnable
;
2815 update_load_set(&se
->load
, weight
);
2819 u32 divider
= LOAD_AVG_MAX
- 1024 + se
->avg
.period_contrib
;
2821 se
->avg
.load_avg
= div_u64(se_weight(se
) * se
->avg
.load_sum
, divider
);
2822 se
->avg
.runnable_load_avg
=
2823 div_u64(se_runnable(se
) * se
->avg
.runnable_load_sum
, divider
);
2827 enqueue_load_avg(cfs_rq
, se
);
2829 account_entity_enqueue(cfs_rq
, se
);
2830 enqueue_runnable_load_avg(cfs_rq
, se
);
2834 void reweight_task(struct task_struct
*p
, int prio
)
2836 struct sched_entity
*se
= &p
->se
;
2837 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
2838 struct load_weight
*load
= &se
->load
;
2839 unsigned long weight
= scale_load(sched_prio_to_weight
[prio
]);
2841 reweight_entity(cfs_rq
, se
, weight
, weight
);
2842 load
->inv_weight
= sched_prio_to_wmult
[prio
];
2845 #ifdef CONFIG_FAIR_GROUP_SCHED
2848 * All this does is approximate the hierarchical proportion which includes that
2849 * global sum we all love to hate.
2851 * That is, the weight of a group entity, is the proportional share of the
2852 * group weight based on the group runqueue weights. That is:
2854 * tg->weight * grq->load.weight
2855 * ge->load.weight = ----------------------------- (1)
2856 * \Sum grq->load.weight
2858 * Now, because computing that sum is prohibitively expensive to compute (been
2859 * there, done that) we approximate it with this average stuff. The average
2860 * moves slower and therefore the approximation is cheaper and more stable.
2862 * So instead of the above, we substitute:
2864 * grq->load.weight -> grq->avg.load_avg (2)
2866 * which yields the following:
2868 * tg->weight * grq->avg.load_avg
2869 * ge->load.weight = ------------------------------ (3)
2872 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2874 * That is shares_avg, and it is right (given the approximation (2)).
2876 * The problem with it is that because the average is slow -- it was designed
2877 * to be exactly that of course -- this leads to transients in boundary
2878 * conditions. In specific, the case where the group was idle and we start the
2879 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2880 * yielding bad latency etc..
2882 * Now, in that special case (1) reduces to:
2884 * tg->weight * grq->load.weight
2885 * ge->load.weight = ----------------------------- = tg->weight (4)
2888 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2890 * So what we do is modify our approximation (3) to approach (4) in the (near)
2895 * tg->weight * grq->load.weight
2896 * --------------------------------------------------- (5)
2897 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2899 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2900 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2903 * tg->weight * grq->load.weight
2904 * ge->load.weight = ----------------------------- (6)
2909 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2910 * max(grq->load.weight, grq->avg.load_avg)
2912 * And that is shares_weight and is icky. In the (near) UP case it approaches
2913 * (4) while in the normal case it approaches (3). It consistently
2914 * overestimates the ge->load.weight and therefore:
2916 * \Sum ge->load.weight >= tg->weight
2920 static long calc_group_shares(struct cfs_rq
*cfs_rq
)
2922 long tg_weight
, tg_shares
, load
, shares
;
2923 struct task_group
*tg
= cfs_rq
->tg
;
2925 tg_shares
= READ_ONCE(tg
->shares
);
2927 load
= max(scale_load_down(cfs_rq
->load
.weight
), cfs_rq
->avg
.load_avg
);
2929 tg_weight
= atomic_long_read(&tg
->load_avg
);
2931 /* Ensure tg_weight >= load */
2932 tg_weight
-= cfs_rq
->tg_load_avg_contrib
;
2935 shares
= (tg_shares
* load
);
2937 shares
/= tg_weight
;
2940 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2941 * of a group with small tg->shares value. It is a floor value which is
2942 * assigned as a minimum load.weight to the sched_entity representing
2943 * the group on a CPU.
2945 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2946 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2947 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2948 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2951 return clamp_t(long, shares
, MIN_SHARES
, tg_shares
);
2955 * This calculates the effective runnable weight for a group entity based on
2956 * the group entity weight calculated above.
2958 * Because of the above approximation (2), our group entity weight is
2959 * an load_avg based ratio (3). This means that it includes blocked load and
2960 * does not represent the runnable weight.
2962 * Approximate the group entity's runnable weight per ratio from the group
2965 * grq->avg.runnable_load_avg
2966 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2969 * However, analogous to above, since the avg numbers are slow, this leads to
2970 * transients in the from-idle case. Instead we use:
2972 * ge->runnable_weight = ge->load.weight *
2974 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2975 * ----------------------------------------------------- (8)
2976 * max(grq->avg.load_avg, grq->load.weight)
2978 * Where these max() serve both to use the 'instant' values to fix the slow
2979 * from-idle and avoid the /0 on to-idle, similar to (6).
2981 static long calc_group_runnable(struct cfs_rq
*cfs_rq
, long shares
)
2983 long runnable
, load_avg
;
2985 load_avg
= max(cfs_rq
->avg
.load_avg
,
2986 scale_load_down(cfs_rq
->load
.weight
));
2988 runnable
= max(cfs_rq
->avg
.runnable_load_avg
,
2989 scale_load_down(cfs_rq
->runnable_weight
));
2993 runnable
/= load_avg
;
2995 return clamp_t(long, runnable
, MIN_SHARES
, shares
);
2997 #endif /* CONFIG_SMP */
2999 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
3002 * Recomputes the group entity based on the current state of its group
3005 static void update_cfs_group(struct sched_entity
*se
)
3007 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3008 long shares
, runnable
;
3013 if (throttled_hierarchy(gcfs_rq
))
3017 runnable
= shares
= READ_ONCE(gcfs_rq
->tg
->shares
);
3019 if (likely(se
->load
.weight
== shares
))
3022 shares
= calc_group_shares(gcfs_rq
);
3023 runnable
= calc_group_runnable(gcfs_rq
, shares
);
3026 reweight_entity(cfs_rq_of(se
), se
, shares
, runnable
);
3029 #else /* CONFIG_FAIR_GROUP_SCHED */
3030 static inline void update_cfs_group(struct sched_entity
*se
)
3033 #endif /* CONFIG_FAIR_GROUP_SCHED */
3035 static inline void cfs_rq_util_change(struct cfs_rq
*cfs_rq
, int flags
)
3037 struct rq
*rq
= rq_of(cfs_rq
);
3039 if (&rq
->cfs
== cfs_rq
|| (flags
& SCHED_CPUFREQ_MIGRATION
)) {
3041 * There are a few boundary cases this might miss but it should
3042 * get called often enough that that should (hopefully) not be
3045 * It will not get called when we go idle, because the idle
3046 * thread is a different class (!fair), nor will the utilization
3047 * number include things like RT tasks.
3049 * As is, the util number is not freq-invariant (we'd have to
3050 * implement arch_scale_freq_capacity() for that).
3054 cpufreq_update_util(rq
, flags
);
3059 #ifdef CONFIG_FAIR_GROUP_SCHED
3061 * update_tg_load_avg - update the tg's load avg
3062 * @cfs_rq: the cfs_rq whose avg changed
3063 * @force: update regardless of how small the difference
3065 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3066 * However, because tg->load_avg is a global value there are performance
3069 * In order to avoid having to look at the other cfs_rq's, we use a
3070 * differential update where we store the last value we propagated. This in
3071 * turn allows skipping updates if the differential is 'small'.
3073 * Updating tg's load_avg is necessary before update_cfs_share().
3075 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
3077 long delta
= cfs_rq
->avg
.load_avg
- cfs_rq
->tg_load_avg_contrib
;
3080 * No need to update load_avg for root_task_group as it is not used.
3082 if (cfs_rq
->tg
== &root_task_group
)
3085 if (force
|| abs(delta
) > cfs_rq
->tg_load_avg_contrib
/ 64) {
3086 atomic_long_add(delta
, &cfs_rq
->tg
->load_avg
);
3087 cfs_rq
->tg_load_avg_contrib
= cfs_rq
->avg
.load_avg
;
3092 * Called within set_task_rq() right before setting a task's CPU. The
3093 * caller only guarantees p->pi_lock is held; no other assumptions,
3094 * including the state of rq->lock, should be made.
3096 void set_task_rq_fair(struct sched_entity
*se
,
3097 struct cfs_rq
*prev
, struct cfs_rq
*next
)
3099 u64 p_last_update_time
;
3100 u64 n_last_update_time
;
3102 if (!sched_feat(ATTACH_AGE_LOAD
))
3106 * We are supposed to update the task to "current" time, then its up to
3107 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3108 * getting what current time is, so simply throw away the out-of-date
3109 * time. This will result in the wakee task is less decayed, but giving
3110 * the wakee more load sounds not bad.
3112 if (!(se
->avg
.last_update_time
&& prev
))
3115 #ifndef CONFIG_64BIT
3117 u64 p_last_update_time_copy
;
3118 u64 n_last_update_time_copy
;
3121 p_last_update_time_copy
= prev
->load_last_update_time_copy
;
3122 n_last_update_time_copy
= next
->load_last_update_time_copy
;
3126 p_last_update_time
= prev
->avg
.last_update_time
;
3127 n_last_update_time
= next
->avg
.last_update_time
;
3129 } while (p_last_update_time
!= p_last_update_time_copy
||
3130 n_last_update_time
!= n_last_update_time_copy
);
3133 p_last_update_time
= prev
->avg
.last_update_time
;
3134 n_last_update_time
= next
->avg
.last_update_time
;
3136 __update_load_avg_blocked_se(p_last_update_time
, cpu_of(rq_of(prev
)), se
);
3137 se
->avg
.last_update_time
= n_last_update_time
;
3142 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3143 * propagate its contribution. The key to this propagation is the invariant
3144 * that for each group:
3146 * ge->avg == grq->avg (1)
3148 * _IFF_ we look at the pure running and runnable sums. Because they
3149 * represent the very same entity, just at different points in the hierarchy.
3151 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3152 * sum over (but still wrong, because the group entity and group rq do not have
3153 * their PELT windows aligned).
3155 * However, update_tg_cfs_runnable() is more complex. So we have:
3157 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3159 * And since, like util, the runnable part should be directly transferable,
3160 * the following would _appear_ to be the straight forward approach:
3162 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3164 * And per (1) we have:
3166 * ge->avg.runnable_avg == grq->avg.runnable_avg
3170 * ge->load.weight * grq->avg.load_avg
3171 * ge->avg.load_avg = ----------------------------------- (4)
3174 * Except that is wrong!
3176 * Because while for entities historical weight is not important and we
3177 * really only care about our future and therefore can consider a pure
3178 * runnable sum, runqueues can NOT do this.
3180 * We specifically want runqueues to have a load_avg that includes
3181 * historical weights. Those represent the blocked load, the load we expect
3182 * to (shortly) return to us. This only works by keeping the weights as
3183 * integral part of the sum. We therefore cannot decompose as per (3).
3185 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3186 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3187 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3188 * runnable section of these tasks overlap (or not). If they were to perfectly
3189 * align the rq as a whole would be runnable 2/3 of the time. If however we
3190 * always have at least 1 runnable task, the rq as a whole is always runnable.
3192 * So we'll have to approximate.. :/
3194 * Given the constraint:
3196 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3198 * We can construct a rule that adds runnable to a rq by assuming minimal
3201 * On removal, we'll assume each task is equally runnable; which yields:
3203 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3205 * XXX: only do this for the part of runnable > running ?
3210 update_tg_cfs_util(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3212 long delta
= gcfs_rq
->avg
.util_avg
- se
->avg
.util_avg
;
3214 /* Nothing to update */
3219 * The relation between sum and avg is:
3221 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3223 * however, the PELT windows are not aligned between grq and gse.
3226 /* Set new sched_entity's utilization */
3227 se
->avg
.util_avg
= gcfs_rq
->avg
.util_avg
;
3228 se
->avg
.util_sum
= se
->avg
.util_avg
* LOAD_AVG_MAX
;
3230 /* Update parent cfs_rq utilization */
3231 add_positive(&cfs_rq
->avg
.util_avg
, delta
);
3232 cfs_rq
->avg
.util_sum
= cfs_rq
->avg
.util_avg
* LOAD_AVG_MAX
;
3236 update_tg_cfs_runnable(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3238 long delta_avg
, running_sum
, runnable_sum
= gcfs_rq
->prop_runnable_sum
;
3239 unsigned long runnable_load_avg
, load_avg
;
3240 u64 runnable_load_sum
, load_sum
= 0;
3246 gcfs_rq
->prop_runnable_sum
= 0;
3248 if (runnable_sum
>= 0) {
3250 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3251 * the CPU is saturated running == runnable.
3253 runnable_sum
+= se
->avg
.load_sum
;
3254 runnable_sum
= min(runnable_sum
, (long)LOAD_AVG_MAX
);
3257 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3258 * assuming all tasks are equally runnable.
3260 if (scale_load_down(gcfs_rq
->load
.weight
)) {
3261 load_sum
= div_s64(gcfs_rq
->avg
.load_sum
,
3262 scale_load_down(gcfs_rq
->load
.weight
));
3265 /* But make sure to not inflate se's runnable */
3266 runnable_sum
= min(se
->avg
.load_sum
, load_sum
);
3270 * runnable_sum can't be lower than running_sum
3271 * As running sum is scale with CPU capacity wehreas the runnable sum
3272 * is not we rescale running_sum 1st
3274 running_sum
= se
->avg
.util_sum
/
3275 arch_scale_cpu_capacity(NULL
, cpu_of(rq_of(cfs_rq
)));
3276 runnable_sum
= max(runnable_sum
, running_sum
);
3278 load_sum
= (s64
)se_weight(se
) * runnable_sum
;
3279 load_avg
= div_s64(load_sum
, LOAD_AVG_MAX
);
3281 delta_sum
= load_sum
- (s64
)se_weight(se
) * se
->avg
.load_sum
;
3282 delta_avg
= load_avg
- se
->avg
.load_avg
;
3284 se
->avg
.load_sum
= runnable_sum
;
3285 se
->avg
.load_avg
= load_avg
;
3286 add_positive(&cfs_rq
->avg
.load_avg
, delta_avg
);
3287 add_positive(&cfs_rq
->avg
.load_sum
, delta_sum
);
3289 runnable_load_sum
= (s64
)se_runnable(se
) * runnable_sum
;
3290 runnable_load_avg
= div_s64(runnable_load_sum
, LOAD_AVG_MAX
);
3291 delta_sum
= runnable_load_sum
- se_weight(se
) * se
->avg
.runnable_load_sum
;
3292 delta_avg
= runnable_load_avg
- se
->avg
.runnable_load_avg
;
3294 se
->avg
.runnable_load_sum
= runnable_sum
;
3295 se
->avg
.runnable_load_avg
= runnable_load_avg
;
3298 add_positive(&cfs_rq
->avg
.runnable_load_avg
, delta_avg
);
3299 add_positive(&cfs_rq
->avg
.runnable_load_sum
, delta_sum
);
3303 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
)
3305 cfs_rq
->propagate
= 1;
3306 cfs_rq
->prop_runnable_sum
+= runnable_sum
;
3309 /* Update task and its cfs_rq load average */
3310 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3312 struct cfs_rq
*cfs_rq
, *gcfs_rq
;
3314 if (entity_is_task(se
))
3317 gcfs_rq
= group_cfs_rq(se
);
3318 if (!gcfs_rq
->propagate
)
3321 gcfs_rq
->propagate
= 0;
3323 cfs_rq
= cfs_rq_of(se
);
3325 add_tg_cfs_propagate(cfs_rq
, gcfs_rq
->prop_runnable_sum
);
3327 update_tg_cfs_util(cfs_rq
, se
, gcfs_rq
);
3328 update_tg_cfs_runnable(cfs_rq
, se
, gcfs_rq
);
3334 * Check if we need to update the load and the utilization of a blocked
3337 static inline bool skip_blocked_update(struct sched_entity
*se
)
3339 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3342 * If sched_entity still have not zero load or utilization, we have to
3345 if (se
->avg
.load_avg
|| se
->avg
.util_avg
)
3349 * If there is a pending propagation, we have to update the load and
3350 * the utilization of the sched_entity:
3352 if (gcfs_rq
->propagate
)
3356 * Otherwise, the load and the utilization of the sched_entity is
3357 * already zero and there is no pending propagation, so it will be a
3358 * waste of time to try to decay it:
3363 #else /* CONFIG_FAIR_GROUP_SCHED */
3365 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
) {}
3367 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3372 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
) {}
3374 #endif /* CONFIG_FAIR_GROUP_SCHED */
3377 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3378 * @now: current time, as per cfs_rq_clock_task()
3379 * @cfs_rq: cfs_rq to update
3381 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3382 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3383 * post_init_entity_util_avg().
3385 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3387 * Returns true if the load decayed or we removed load.
3389 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3390 * call update_tg_load_avg() when this function returns true.
3393 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
)
3395 unsigned long removed_load
= 0, removed_util
= 0, removed_runnable_sum
= 0;
3396 struct sched_avg
*sa
= &cfs_rq
->avg
;
3399 if (cfs_rq
->removed
.nr
) {
3401 u32 divider
= LOAD_AVG_MAX
- 1024 + sa
->period_contrib
;
3403 raw_spin_lock(&cfs_rq
->removed
.lock
);
3404 swap(cfs_rq
->removed
.util_avg
, removed_util
);
3405 swap(cfs_rq
->removed
.load_avg
, removed_load
);
3406 swap(cfs_rq
->removed
.runnable_sum
, removed_runnable_sum
);
3407 cfs_rq
->removed
.nr
= 0;
3408 raw_spin_unlock(&cfs_rq
->removed
.lock
);
3411 sub_positive(&sa
->load_avg
, r
);
3412 sub_positive(&sa
->load_sum
, r
* divider
);
3415 sub_positive(&sa
->util_avg
, r
);
3416 sub_positive(&sa
->util_sum
, r
* divider
);
3418 add_tg_cfs_propagate(cfs_rq
, -(long)removed_runnable_sum
);
3423 decayed
|= __update_load_avg_cfs_rq(now
, cpu_of(rq_of(cfs_rq
)), cfs_rq
);
3425 #ifndef CONFIG_64BIT
3427 cfs_rq
->load_last_update_time_copy
= sa
->last_update_time
;
3431 cfs_rq_util_change(cfs_rq
, 0);
3437 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3438 * @cfs_rq: cfs_rq to attach to
3439 * @se: sched_entity to attach
3440 * @flags: migration hints
3442 * Must call update_cfs_rq_load_avg() before this, since we rely on
3443 * cfs_rq->avg.last_update_time being current.
3445 static void attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3447 u32 divider
= LOAD_AVG_MAX
- 1024 + cfs_rq
->avg
.period_contrib
;
3450 * When we attach the @se to the @cfs_rq, we must align the decay
3451 * window because without that, really weird and wonderful things can
3456 se
->avg
.last_update_time
= cfs_rq
->avg
.last_update_time
;
3457 se
->avg
.period_contrib
= cfs_rq
->avg
.period_contrib
;
3460 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3461 * period_contrib. This isn't strictly correct, but since we're
3462 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3465 se
->avg
.util_sum
= se
->avg
.util_avg
* divider
;
3467 se
->avg
.load_sum
= divider
;
3468 if (se_weight(se
)) {
3470 div_u64(se
->avg
.load_avg
* se
->avg
.load_sum
, se_weight(se
));
3473 se
->avg
.runnable_load_sum
= se
->avg
.load_sum
;
3475 enqueue_load_avg(cfs_rq
, se
);
3476 cfs_rq
->avg
.util_avg
+= se
->avg
.util_avg
;
3477 cfs_rq
->avg
.util_sum
+= se
->avg
.util_sum
;
3479 add_tg_cfs_propagate(cfs_rq
, se
->avg
.load_sum
);
3481 cfs_rq_util_change(cfs_rq
, flags
);
3485 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3486 * @cfs_rq: cfs_rq to detach from
3487 * @se: sched_entity to detach
3489 * Must call update_cfs_rq_load_avg() before this, since we rely on
3490 * cfs_rq->avg.last_update_time being current.
3492 static void detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3494 dequeue_load_avg(cfs_rq
, se
);
3495 sub_positive(&cfs_rq
->avg
.util_avg
, se
->avg
.util_avg
);
3496 sub_positive(&cfs_rq
->avg
.util_sum
, se
->avg
.util_sum
);
3498 add_tg_cfs_propagate(cfs_rq
, -se
->avg
.load_sum
);
3500 cfs_rq_util_change(cfs_rq
, 0);
3504 * Optional action to be done while updating the load average
3506 #define UPDATE_TG 0x1
3507 #define SKIP_AGE_LOAD 0x2
3508 #define DO_ATTACH 0x4
3510 /* Update task and its cfs_rq load average */
3511 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3513 u64 now
= cfs_rq_clock_task(cfs_rq
);
3514 struct rq
*rq
= rq_of(cfs_rq
);
3515 int cpu
= cpu_of(rq
);
3519 * Track task load average for carrying it to new CPU after migrated, and
3520 * track group sched_entity load average for task_h_load calc in migration
3522 if (se
->avg
.last_update_time
&& !(flags
& SKIP_AGE_LOAD
))
3523 __update_load_avg_se(now
, cpu
, cfs_rq
, se
);
3525 decayed
= update_cfs_rq_load_avg(now
, cfs_rq
);
3526 decayed
|= propagate_entity_load_avg(se
);
3528 if (!se
->avg
.last_update_time
&& (flags
& DO_ATTACH
)) {
3531 * DO_ATTACH means we're here from enqueue_entity().
3532 * !last_update_time means we've passed through
3533 * migrate_task_rq_fair() indicating we migrated.
3535 * IOW we're enqueueing a task on a new CPU.
3537 attach_entity_load_avg(cfs_rq
, se
, SCHED_CPUFREQ_MIGRATION
);
3538 update_tg_load_avg(cfs_rq
, 0);
3540 } else if (decayed
&& (flags
& UPDATE_TG
))
3541 update_tg_load_avg(cfs_rq
, 0);
3544 #ifndef CONFIG_64BIT
3545 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3547 u64 last_update_time_copy
;
3548 u64 last_update_time
;
3551 last_update_time_copy
= cfs_rq
->load_last_update_time_copy
;
3553 last_update_time
= cfs_rq
->avg
.last_update_time
;
3554 } while (last_update_time
!= last_update_time_copy
);
3556 return last_update_time
;
3559 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3561 return cfs_rq
->avg
.last_update_time
;
3566 * Synchronize entity load avg of dequeued entity without locking
3569 void sync_entity_load_avg(struct sched_entity
*se
)
3571 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3572 u64 last_update_time
;
3574 last_update_time
= cfs_rq_last_update_time(cfs_rq
);
3575 __update_load_avg_blocked_se(last_update_time
, cpu_of(rq_of(cfs_rq
)), se
);
3579 * Task first catches up with cfs_rq, and then subtract
3580 * itself from the cfs_rq (task must be off the queue now).
3582 void remove_entity_load_avg(struct sched_entity
*se
)
3584 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3585 unsigned long flags
;
3588 * tasks cannot exit without having gone through wake_up_new_task() ->
3589 * post_init_entity_util_avg() which will have added things to the
3590 * cfs_rq, so we can remove unconditionally.
3592 * Similarly for groups, they will have passed through
3593 * post_init_entity_util_avg() before unregister_sched_fair_group()
3597 sync_entity_load_avg(se
);
3599 raw_spin_lock_irqsave(&cfs_rq
->removed
.lock
, flags
);
3600 ++cfs_rq
->removed
.nr
;
3601 cfs_rq
->removed
.util_avg
+= se
->avg
.util_avg
;
3602 cfs_rq
->removed
.load_avg
+= se
->avg
.load_avg
;
3603 cfs_rq
->removed
.runnable_sum
+= se
->avg
.load_sum
; /* == runnable_sum */
3604 raw_spin_unlock_irqrestore(&cfs_rq
->removed
.lock
, flags
);
3607 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq
*cfs_rq
)
3609 return cfs_rq
->avg
.runnable_load_avg
;
3612 static inline unsigned long cfs_rq_load_avg(struct cfs_rq
*cfs_rq
)
3614 return cfs_rq
->avg
.load_avg
;
3617 static int idle_balance(struct rq
*this_rq
, struct rq_flags
*rf
);
3619 static inline unsigned long task_util(struct task_struct
*p
)
3621 return READ_ONCE(p
->se
.avg
.util_avg
);
3624 static inline unsigned long _task_util_est(struct task_struct
*p
)
3626 struct util_est ue
= READ_ONCE(p
->se
.avg
.util_est
);
3628 return max(ue
.ewma
, ue
.enqueued
);
3631 static inline unsigned long task_util_est(struct task_struct
*p
)
3633 return max(task_util(p
), _task_util_est(p
));
3636 static inline void util_est_enqueue(struct cfs_rq
*cfs_rq
,
3637 struct task_struct
*p
)
3639 unsigned int enqueued
;
3641 if (!sched_feat(UTIL_EST
))
3644 /* Update root cfs_rq's estimated utilization */
3645 enqueued
= cfs_rq
->avg
.util_est
.enqueued
;
3646 enqueued
+= (_task_util_est(p
) | UTIL_AVG_UNCHANGED
);
3647 WRITE_ONCE(cfs_rq
->avg
.util_est
.enqueued
, enqueued
);
3651 * Check if a (signed) value is within a specified (unsigned) margin,
3652 * based on the observation that:
3654 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3656 * NOTE: this only works when value + maring < INT_MAX.
3658 static inline bool within_margin(int value
, int margin
)
3660 return ((unsigned int)(value
+ margin
- 1) < (2 * margin
- 1));
3664 util_est_dequeue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
, bool task_sleep
)
3666 long last_ewma_diff
;
3669 if (!sched_feat(UTIL_EST
))
3672 /* Update root cfs_rq's estimated utilization */
3673 ue
.enqueued
= cfs_rq
->avg
.util_est
.enqueued
;
3674 ue
.enqueued
-= min_t(unsigned int, ue
.enqueued
,
3675 (_task_util_est(p
) | UTIL_AVG_UNCHANGED
));
3676 WRITE_ONCE(cfs_rq
->avg
.util_est
.enqueued
, ue
.enqueued
);
3679 * Skip update of task's estimated utilization when the task has not
3680 * yet completed an activation, e.g. being migrated.
3686 * If the PELT values haven't changed since enqueue time,
3687 * skip the util_est update.
3689 ue
= p
->se
.avg
.util_est
;
3690 if (ue
.enqueued
& UTIL_AVG_UNCHANGED
)
3694 * Skip update of task's estimated utilization when its EWMA is
3695 * already ~1% close to its last activation value.
3697 ue
.enqueued
= (task_util(p
) | UTIL_AVG_UNCHANGED
);
3698 last_ewma_diff
= ue
.enqueued
- ue
.ewma
;
3699 if (within_margin(last_ewma_diff
, (SCHED_CAPACITY_SCALE
/ 100)))
3703 * Update Task's estimated utilization
3705 * When *p completes an activation we can consolidate another sample
3706 * of the task size. This is done by storing the current PELT value
3707 * as ue.enqueued and by using this value to update the Exponential
3708 * Weighted Moving Average (EWMA):
3710 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3711 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3712 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3713 * = w * ( last_ewma_diff ) + ewma(t-1)
3714 * = w * (last_ewma_diff + ewma(t-1) / w)
3716 * Where 'w' is the weight of new samples, which is configured to be
3717 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3719 ue
.ewma
<<= UTIL_EST_WEIGHT_SHIFT
;
3720 ue
.ewma
+= last_ewma_diff
;
3721 ue
.ewma
>>= UTIL_EST_WEIGHT_SHIFT
;
3722 WRITE_ONCE(p
->se
.avg
.util_est
, ue
);
3725 #else /* CONFIG_SMP */
3727 #define UPDATE_TG 0x0
3728 #define SKIP_AGE_LOAD 0x0
3729 #define DO_ATTACH 0x0
3731 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int not_used1
)
3733 cfs_rq_util_change(cfs_rq
, 0);
3736 static inline void remove_entity_load_avg(struct sched_entity
*se
) {}
3739 attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
) {}
3741 detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
3743 static inline int idle_balance(struct rq
*rq
, struct rq_flags
*rf
)
3749 util_est_enqueue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
) {}
3752 util_est_dequeue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
,
3755 #endif /* CONFIG_SMP */
3757 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3759 #ifdef CONFIG_SCHED_DEBUG
3760 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
3765 if (d
> 3*sysctl_sched_latency
)
3766 schedstat_inc(cfs_rq
->nr_spread_over
);
3771 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
3773 u64 vruntime
= cfs_rq
->min_vruntime
;
3776 * The 'current' period is already promised to the current tasks,
3777 * however the extra weight of the new task will slow them down a
3778 * little, place the new task so that it fits in the slot that
3779 * stays open at the end.
3781 if (initial
&& sched_feat(START_DEBIT
))
3782 vruntime
+= sched_vslice(cfs_rq
, se
);
3784 /* sleeps up to a single latency don't count. */
3786 unsigned long thresh
= sysctl_sched_latency
;
3789 * Halve their sleep time's effect, to allow
3790 * for a gentler effect of sleepers:
3792 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
3798 /* ensure we never gain time by being placed backwards. */
3799 se
->vruntime
= max_vruntime(se
->vruntime
, vruntime
);
3802 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
3804 static inline void check_schedstat_required(void)
3806 #ifdef CONFIG_SCHEDSTATS
3807 if (schedstat_enabled())
3810 /* Force schedstat enabled if a dependent tracepoint is active */
3811 if (trace_sched_stat_wait_enabled() ||
3812 trace_sched_stat_sleep_enabled() ||
3813 trace_sched_stat_iowait_enabled() ||
3814 trace_sched_stat_blocked_enabled() ||
3815 trace_sched_stat_runtime_enabled()) {
3816 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3817 "stat_blocked and stat_runtime require the "
3818 "kernel parameter schedstats=enable or "
3819 "kernel.sched_schedstats=1\n");
3830 * update_min_vruntime()
3831 * vruntime -= min_vruntime
3835 * update_min_vruntime()
3836 * vruntime += min_vruntime
3838 * this way the vruntime transition between RQs is done when both
3839 * min_vruntime are up-to-date.
3843 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3844 * vruntime -= min_vruntime
3848 * update_min_vruntime()
3849 * vruntime += min_vruntime
3851 * this way we don't have the most up-to-date min_vruntime on the originating
3852 * CPU and an up-to-date min_vruntime on the destination CPU.
3856 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3858 bool renorm
= !(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_MIGRATED
);
3859 bool curr
= cfs_rq
->curr
== se
;
3862 * If we're the current task, we must renormalise before calling
3866 se
->vruntime
+= cfs_rq
->min_vruntime
;
3868 update_curr(cfs_rq
);
3871 * Otherwise, renormalise after, such that we're placed at the current
3872 * moment in time, instead of some random moment in the past. Being
3873 * placed in the past could significantly boost this task to the
3874 * fairness detriment of existing tasks.
3876 if (renorm
&& !curr
)
3877 se
->vruntime
+= cfs_rq
->min_vruntime
;
3880 * When enqueuing a sched_entity, we must:
3881 * - Update loads to have both entity and cfs_rq synced with now.
3882 * - Add its load to cfs_rq->runnable_avg
3883 * - For group_entity, update its weight to reflect the new share of
3885 * - Add its new weight to cfs_rq->load.weight
3887 update_load_avg(cfs_rq
, se
, UPDATE_TG
| DO_ATTACH
);
3888 update_cfs_group(se
);
3889 enqueue_runnable_load_avg(cfs_rq
, se
);
3890 account_entity_enqueue(cfs_rq
, se
);
3892 if (flags
& ENQUEUE_WAKEUP
)
3893 place_entity(cfs_rq
, se
, 0);
3895 check_schedstat_required();
3896 update_stats_enqueue(cfs_rq
, se
, flags
);
3897 check_spread(cfs_rq
, se
);
3899 __enqueue_entity(cfs_rq
, se
);
3902 if (cfs_rq
->nr_running
== 1) {
3903 list_add_leaf_cfs_rq(cfs_rq
);
3904 check_enqueue_throttle(cfs_rq
);
3908 static void __clear_buddies_last(struct sched_entity
*se
)
3910 for_each_sched_entity(se
) {
3911 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3912 if (cfs_rq
->last
!= se
)
3915 cfs_rq
->last
= NULL
;
3919 static void __clear_buddies_next(struct sched_entity
*se
)
3921 for_each_sched_entity(se
) {
3922 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3923 if (cfs_rq
->next
!= se
)
3926 cfs_rq
->next
= NULL
;
3930 static void __clear_buddies_skip(struct sched_entity
*se
)
3932 for_each_sched_entity(se
) {
3933 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3934 if (cfs_rq
->skip
!= se
)
3937 cfs_rq
->skip
= NULL
;
3941 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3943 if (cfs_rq
->last
== se
)
3944 __clear_buddies_last(se
);
3946 if (cfs_rq
->next
== se
)
3947 __clear_buddies_next(se
);
3949 if (cfs_rq
->skip
== se
)
3950 __clear_buddies_skip(se
);
3953 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
3956 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3959 * Update run-time statistics of the 'current'.
3961 update_curr(cfs_rq
);
3964 * When dequeuing a sched_entity, we must:
3965 * - Update loads to have both entity and cfs_rq synced with now.
3966 * - Substract its load from the cfs_rq->runnable_avg.
3967 * - Substract its previous weight from cfs_rq->load.weight.
3968 * - For group entity, update its weight to reflect the new share
3969 * of its group cfs_rq.
3971 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
3972 dequeue_runnable_load_avg(cfs_rq
, se
);
3974 update_stats_dequeue(cfs_rq
, se
, flags
);
3976 clear_buddies(cfs_rq
, se
);
3978 if (se
!= cfs_rq
->curr
)
3979 __dequeue_entity(cfs_rq
, se
);
3981 account_entity_dequeue(cfs_rq
, se
);
3984 * Normalize after update_curr(); which will also have moved
3985 * min_vruntime if @se is the one holding it back. But before doing
3986 * update_min_vruntime() again, which will discount @se's position and
3987 * can move min_vruntime forward still more.
3989 if (!(flags
& DEQUEUE_SLEEP
))
3990 se
->vruntime
-= cfs_rq
->min_vruntime
;
3992 /* return excess runtime on last dequeue */
3993 return_cfs_rq_runtime(cfs_rq
);
3995 update_cfs_group(se
);
3998 * Now advance min_vruntime if @se was the entity holding it back,
3999 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4000 * put back on, and if we advance min_vruntime, we'll be placed back
4001 * further than we started -- ie. we'll be penalized.
4003 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) != DEQUEUE_SAVE
)
4004 update_min_vruntime(cfs_rq
);
4008 * Preempt the current task with a newly woken task if needed:
4011 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
4013 unsigned long ideal_runtime
, delta_exec
;
4014 struct sched_entity
*se
;
4017 ideal_runtime
= sched_slice(cfs_rq
, curr
);
4018 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
4019 if (delta_exec
> ideal_runtime
) {
4020 resched_curr(rq_of(cfs_rq
));
4022 * The current task ran long enough, ensure it doesn't get
4023 * re-elected due to buddy favours.
4025 clear_buddies(cfs_rq
, curr
);
4030 * Ensure that a task that missed wakeup preemption by a
4031 * narrow margin doesn't have to wait for a full slice.
4032 * This also mitigates buddy induced latencies under load.
4034 if (delta_exec
< sysctl_sched_min_granularity
)
4037 se
= __pick_first_entity(cfs_rq
);
4038 delta
= curr
->vruntime
- se
->vruntime
;
4043 if (delta
> ideal_runtime
)
4044 resched_curr(rq_of(cfs_rq
));
4048 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4050 /* 'current' is not kept within the tree. */
4053 * Any task has to be enqueued before it get to execute on
4054 * a CPU. So account for the time it spent waiting on the
4057 update_stats_wait_end(cfs_rq
, se
);
4058 __dequeue_entity(cfs_rq
, se
);
4059 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4062 update_stats_curr_start(cfs_rq
, se
);
4066 * Track our maximum slice length, if the CPU's load is at
4067 * least twice that of our own weight (i.e. dont track it
4068 * when there are only lesser-weight tasks around):
4070 if (schedstat_enabled() && rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
4071 schedstat_set(se
->statistics
.slice_max
,
4072 max((u64
)schedstat_val(se
->statistics
.slice_max
),
4073 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
));
4076 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
4080 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
4083 * Pick the next process, keeping these things in mind, in this order:
4084 * 1) keep things fair between processes/task groups
4085 * 2) pick the "next" process, since someone really wants that to run
4086 * 3) pick the "last" process, for cache locality
4087 * 4) do not run the "skip" process, if something else is available
4089 static struct sched_entity
*
4090 pick_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
4092 struct sched_entity
*left
= __pick_first_entity(cfs_rq
);
4093 struct sched_entity
*se
;
4096 * If curr is set we have to see if its left of the leftmost entity
4097 * still in the tree, provided there was anything in the tree at all.
4099 if (!left
|| (curr
&& entity_before(curr
, left
)))
4102 se
= left
; /* ideally we run the leftmost entity */
4105 * Avoid running the skip buddy, if running something else can
4106 * be done without getting too unfair.
4108 if (cfs_rq
->skip
== se
) {
4109 struct sched_entity
*second
;
4112 second
= __pick_first_entity(cfs_rq
);
4114 second
= __pick_next_entity(se
);
4115 if (!second
|| (curr
&& entity_before(curr
, second
)))
4119 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
4124 * Prefer last buddy, try to return the CPU to a preempted task.
4126 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
4130 * Someone really wants this to run. If it's not unfair, run it.
4132 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
4135 clear_buddies(cfs_rq
, se
);
4140 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
4142 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
4145 * If still on the runqueue then deactivate_task()
4146 * was not called and update_curr() has to be done:
4149 update_curr(cfs_rq
);
4151 /* throttle cfs_rqs exceeding runtime */
4152 check_cfs_rq_runtime(cfs_rq
);
4154 check_spread(cfs_rq
, prev
);
4157 update_stats_wait_start(cfs_rq
, prev
);
4158 /* Put 'current' back into the tree. */
4159 __enqueue_entity(cfs_rq
, prev
);
4160 /* in !on_rq case, update occurred at dequeue */
4161 update_load_avg(cfs_rq
, prev
, 0);
4163 cfs_rq
->curr
= NULL
;
4167 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
4170 * Update run-time statistics of the 'current'.
4172 update_curr(cfs_rq
);
4175 * Ensure that runnable average is periodically updated.
4177 update_load_avg(cfs_rq
, curr
, UPDATE_TG
);
4178 update_cfs_group(curr
);
4180 #ifdef CONFIG_SCHED_HRTICK
4182 * queued ticks are scheduled to match the slice, so don't bother
4183 * validating it and just reschedule.
4186 resched_curr(rq_of(cfs_rq
));
4190 * don't let the period tick interfere with the hrtick preemption
4192 if (!sched_feat(DOUBLE_TICK
) &&
4193 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
4197 if (cfs_rq
->nr_running
> 1)
4198 check_preempt_tick(cfs_rq
, curr
);
4202 /**************************************************
4203 * CFS bandwidth control machinery
4206 #ifdef CONFIG_CFS_BANDWIDTH
4208 #ifdef HAVE_JUMP_LABEL
4209 static struct static_key __cfs_bandwidth_used
;
4211 static inline bool cfs_bandwidth_used(void)
4213 return static_key_false(&__cfs_bandwidth_used
);
4216 void cfs_bandwidth_usage_inc(void)
4218 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used
);
4221 void cfs_bandwidth_usage_dec(void)
4223 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used
);
4225 #else /* HAVE_JUMP_LABEL */
4226 static bool cfs_bandwidth_used(void)
4231 void cfs_bandwidth_usage_inc(void) {}
4232 void cfs_bandwidth_usage_dec(void) {}
4233 #endif /* HAVE_JUMP_LABEL */
4236 * default period for cfs group bandwidth.
4237 * default: 0.1s, units: nanoseconds
4239 static inline u64
default_cfs_period(void)
4241 return 100000000ULL;
4244 static inline u64
sched_cfs_bandwidth_slice(void)
4246 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
4250 * Replenish runtime according to assigned quota and update expiration time.
4251 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4252 * additional synchronization around rq->lock.
4254 * requires cfs_b->lock
4256 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
4260 if (cfs_b
->quota
== RUNTIME_INF
)
4263 now
= sched_clock_cpu(smp_processor_id());
4264 cfs_b
->runtime
= cfs_b
->quota
;
4265 cfs_b
->runtime_expires
= now
+ ktime_to_ns(cfs_b
->period
);
4266 cfs_b
->expires_seq
++;
4269 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
4271 return &tg
->cfs_bandwidth
;
4274 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4275 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
)
4277 if (unlikely(cfs_rq
->throttle_count
))
4278 return cfs_rq
->throttled_clock_task
- cfs_rq
->throttled_clock_task_time
;
4280 return rq_clock_task(rq_of(cfs_rq
)) - cfs_rq
->throttled_clock_task_time
;
4283 /* returns 0 on failure to allocate runtime */
4284 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4286 struct task_group
*tg
= cfs_rq
->tg
;
4287 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
4288 u64 amount
= 0, min_amount
, expires
;
4291 /* note: this is a positive sum as runtime_remaining <= 0 */
4292 min_amount
= sched_cfs_bandwidth_slice() - cfs_rq
->runtime_remaining
;
4294 raw_spin_lock(&cfs_b
->lock
);
4295 if (cfs_b
->quota
== RUNTIME_INF
)
4296 amount
= min_amount
;
4298 start_cfs_bandwidth(cfs_b
);
4300 if (cfs_b
->runtime
> 0) {
4301 amount
= min(cfs_b
->runtime
, min_amount
);
4302 cfs_b
->runtime
-= amount
;
4306 expires_seq
= cfs_b
->expires_seq
;
4307 expires
= cfs_b
->runtime_expires
;
4308 raw_spin_unlock(&cfs_b
->lock
);
4310 cfs_rq
->runtime_remaining
+= amount
;
4312 * we may have advanced our local expiration to account for allowed
4313 * spread between our sched_clock and the one on which runtime was
4316 if (cfs_rq
->expires_seq
!= expires_seq
) {
4317 cfs_rq
->expires_seq
= expires_seq
;
4318 cfs_rq
->runtime_expires
= expires
;
4321 return cfs_rq
->runtime_remaining
> 0;
4325 * Note: This depends on the synchronization provided by sched_clock and the
4326 * fact that rq->clock snapshots this value.
4328 static void expire_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4330 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4332 /* if the deadline is ahead of our clock, nothing to do */
4333 if (likely((s64
)(rq_clock(rq_of(cfs_rq
)) - cfs_rq
->runtime_expires
) < 0))
4336 if (cfs_rq
->runtime_remaining
< 0)
4340 * If the local deadline has passed we have to consider the
4341 * possibility that our sched_clock is 'fast' and the global deadline
4342 * has not truly expired.
4344 * Fortunately we can check determine whether this the case by checking
4345 * whether the global deadline(cfs_b->expires_seq) has advanced.
4347 if (cfs_rq
->expires_seq
== cfs_b
->expires_seq
) {
4348 /* extend local deadline, drift is bounded above by 2 ticks */
4349 cfs_rq
->runtime_expires
+= TICK_NSEC
;
4351 /* global deadline is ahead, expiration has passed */
4352 cfs_rq
->runtime_remaining
= 0;
4356 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4358 /* dock delta_exec before expiring quota (as it could span periods) */
4359 cfs_rq
->runtime_remaining
-= delta_exec
;
4360 expire_cfs_rq_runtime(cfs_rq
);
4362 if (likely(cfs_rq
->runtime_remaining
> 0))
4366 * if we're unable to extend our runtime we resched so that the active
4367 * hierarchy can be throttled
4369 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
4370 resched_curr(rq_of(cfs_rq
));
4373 static __always_inline
4374 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4376 if (!cfs_bandwidth_used() || !cfs_rq
->runtime_enabled
)
4379 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
4382 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
4384 return cfs_bandwidth_used() && cfs_rq
->throttled
;
4387 /* check whether cfs_rq, or any parent, is throttled */
4388 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
4390 return cfs_bandwidth_used() && cfs_rq
->throttle_count
;
4394 * Ensure that neither of the group entities corresponding to src_cpu or
4395 * dest_cpu are members of a throttled hierarchy when performing group
4396 * load-balance operations.
4398 static inline int throttled_lb_pair(struct task_group
*tg
,
4399 int src_cpu
, int dest_cpu
)
4401 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
4403 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
4404 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
4406 return throttled_hierarchy(src_cfs_rq
) ||
4407 throttled_hierarchy(dest_cfs_rq
);
4410 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
4412 struct rq
*rq
= data
;
4413 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4415 cfs_rq
->throttle_count
--;
4416 if (!cfs_rq
->throttle_count
) {
4417 /* adjust cfs_rq_clock_task() */
4418 cfs_rq
->throttled_clock_task_time
+= rq_clock_task(rq
) -
4419 cfs_rq
->throttled_clock_task
;
4425 static int tg_throttle_down(struct task_group
*tg
, void *data
)
4427 struct rq
*rq
= data
;
4428 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4430 /* group is entering throttled state, stop time */
4431 if (!cfs_rq
->throttle_count
)
4432 cfs_rq
->throttled_clock_task
= rq_clock_task(rq
);
4433 cfs_rq
->throttle_count
++;
4438 static void throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
4440 struct rq
*rq
= rq_of(cfs_rq
);
4441 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4442 struct sched_entity
*se
;
4443 long task_delta
, dequeue
= 1;
4446 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
4448 /* freeze hierarchy runnable averages while throttled */
4450 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
4453 task_delta
= cfs_rq
->h_nr_running
;
4454 for_each_sched_entity(se
) {
4455 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
4456 /* throttled entity or throttle-on-deactivate */
4461 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
4462 qcfs_rq
->h_nr_running
-= task_delta
;
4464 if (qcfs_rq
->load
.weight
)
4469 sub_nr_running(rq
, task_delta
);
4471 cfs_rq
->throttled
= 1;
4472 cfs_rq
->throttled_clock
= rq_clock(rq
);
4473 raw_spin_lock(&cfs_b
->lock
);
4474 empty
= list_empty(&cfs_b
->throttled_cfs_rq
);
4477 * Add to the _head_ of the list, so that an already-started
4478 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4479 * not running add to the tail so that later runqueues don't get starved.
4481 if (cfs_b
->distribute_running
)
4482 list_add_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
4484 list_add_tail_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
4487 * If we're the first throttled task, make sure the bandwidth
4491 start_cfs_bandwidth(cfs_b
);
4493 raw_spin_unlock(&cfs_b
->lock
);
4496 void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
4498 struct rq
*rq
= rq_of(cfs_rq
);
4499 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4500 struct sched_entity
*se
;
4504 se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
4506 cfs_rq
->throttled
= 0;
4508 update_rq_clock(rq
);
4510 raw_spin_lock(&cfs_b
->lock
);
4511 cfs_b
->throttled_time
+= rq_clock(rq
) - cfs_rq
->throttled_clock
;
4512 list_del_rcu(&cfs_rq
->throttled_list
);
4513 raw_spin_unlock(&cfs_b
->lock
);
4515 /* update hierarchical throttle state */
4516 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
4518 if (!cfs_rq
->load
.weight
)
4521 task_delta
= cfs_rq
->h_nr_running
;
4522 for_each_sched_entity(se
) {
4526 cfs_rq
= cfs_rq_of(se
);
4528 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
4529 cfs_rq
->h_nr_running
+= task_delta
;
4531 if (cfs_rq_throttled(cfs_rq
))
4536 add_nr_running(rq
, task_delta
);
4538 /* Determine whether we need to wake up potentially idle CPU: */
4539 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
4543 static u64
distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
,
4544 u64 remaining
, u64 expires
)
4546 struct cfs_rq
*cfs_rq
;
4548 u64 starting_runtime
= remaining
;
4551 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
4553 struct rq
*rq
= rq_of(cfs_rq
);
4557 if (!cfs_rq_throttled(cfs_rq
))
4560 runtime
= -cfs_rq
->runtime_remaining
+ 1;
4561 if (runtime
> remaining
)
4562 runtime
= remaining
;
4563 remaining
-= runtime
;
4565 cfs_rq
->runtime_remaining
+= runtime
;
4566 cfs_rq
->runtime_expires
= expires
;
4568 /* we check whether we're throttled above */
4569 if (cfs_rq
->runtime_remaining
> 0)
4570 unthrottle_cfs_rq(cfs_rq
);
4580 return starting_runtime
- remaining
;
4584 * Responsible for refilling a task_group's bandwidth and unthrottling its
4585 * cfs_rqs as appropriate. If there has been no activity within the last
4586 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4587 * used to track this state.
4589 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
)
4591 u64 runtime
, runtime_expires
;
4594 /* no need to continue the timer with no bandwidth constraint */
4595 if (cfs_b
->quota
== RUNTIME_INF
)
4596 goto out_deactivate
;
4598 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4599 cfs_b
->nr_periods
+= overrun
;
4602 * idle depends on !throttled (for the case of a large deficit), and if
4603 * we're going inactive then everything else can be deferred
4605 if (cfs_b
->idle
&& !throttled
)
4606 goto out_deactivate
;
4608 __refill_cfs_bandwidth_runtime(cfs_b
);
4611 /* mark as potentially idle for the upcoming period */
4616 /* account preceding periods in which throttling occurred */
4617 cfs_b
->nr_throttled
+= overrun
;
4619 runtime_expires
= cfs_b
->runtime_expires
;
4622 * This check is repeated as we are holding onto the new bandwidth while
4623 * we unthrottle. This can potentially race with an unthrottled group
4624 * trying to acquire new bandwidth from the global pool. This can result
4625 * in us over-using our runtime if it is all used during this loop, but
4626 * only by limited amounts in that extreme case.
4628 while (throttled
&& cfs_b
->runtime
> 0 && !cfs_b
->distribute_running
) {
4629 runtime
= cfs_b
->runtime
;
4630 cfs_b
->distribute_running
= 1;
4631 raw_spin_unlock(&cfs_b
->lock
);
4632 /* we can't nest cfs_b->lock while distributing bandwidth */
4633 runtime
= distribute_cfs_runtime(cfs_b
, runtime
,
4635 raw_spin_lock(&cfs_b
->lock
);
4637 cfs_b
->distribute_running
= 0;
4638 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4640 cfs_b
->runtime
-= min(runtime
, cfs_b
->runtime
);
4644 * While we are ensured activity in the period following an
4645 * unthrottle, this also covers the case in which the new bandwidth is
4646 * insufficient to cover the existing bandwidth deficit. (Forcing the
4647 * timer to remain active while there are any throttled entities.)
4657 /* a cfs_rq won't donate quota below this amount */
4658 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
4659 /* minimum remaining period time to redistribute slack quota */
4660 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
4661 /* how long we wait to gather additional slack before distributing */
4662 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
4665 * Are we near the end of the current quota period?
4667 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4668 * hrtimer base being cleared by hrtimer_start. In the case of
4669 * migrate_hrtimers, base is never cleared, so we are fine.
4671 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
4673 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
4676 /* if the call-back is running a quota refresh is already occurring */
4677 if (hrtimer_callback_running(refresh_timer
))
4680 /* is a quota refresh about to occur? */
4681 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
4682 if (remaining
< min_expire
)
4688 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
4690 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
4692 /* if there's a quota refresh soon don't bother with slack */
4693 if (runtime_refresh_within(cfs_b
, min_left
))
4696 hrtimer_start(&cfs_b
->slack_timer
,
4697 ns_to_ktime(cfs_bandwidth_slack_period
),
4701 /* we know any runtime found here is valid as update_curr() precedes return */
4702 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4704 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4705 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
4707 if (slack_runtime
<= 0)
4710 raw_spin_lock(&cfs_b
->lock
);
4711 if (cfs_b
->quota
!= RUNTIME_INF
&&
4712 cfs_rq
->runtime_expires
== cfs_b
->runtime_expires
) {
4713 cfs_b
->runtime
+= slack_runtime
;
4715 /* we are under rq->lock, defer unthrottling using a timer */
4716 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
4717 !list_empty(&cfs_b
->throttled_cfs_rq
))
4718 start_cfs_slack_bandwidth(cfs_b
);
4720 raw_spin_unlock(&cfs_b
->lock
);
4722 /* even if it's not valid for return we don't want to try again */
4723 cfs_rq
->runtime_remaining
-= slack_runtime
;
4726 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4728 if (!cfs_bandwidth_used())
4731 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
4734 __return_cfs_rq_runtime(cfs_rq
);
4738 * This is done with a timer (instead of inline with bandwidth return) since
4739 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4741 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
4743 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
4746 /* confirm we're still not at a refresh boundary */
4747 raw_spin_lock(&cfs_b
->lock
);
4748 if (cfs_b
->distribute_running
) {
4749 raw_spin_unlock(&cfs_b
->lock
);
4753 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
)) {
4754 raw_spin_unlock(&cfs_b
->lock
);
4758 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
)
4759 runtime
= cfs_b
->runtime
;
4761 expires
= cfs_b
->runtime_expires
;
4763 cfs_b
->distribute_running
= 1;
4765 raw_spin_unlock(&cfs_b
->lock
);
4770 runtime
= distribute_cfs_runtime(cfs_b
, runtime
, expires
);
4772 raw_spin_lock(&cfs_b
->lock
);
4773 if (expires
== cfs_b
->runtime_expires
)
4774 cfs_b
->runtime
-= min(runtime
, cfs_b
->runtime
);
4775 cfs_b
->distribute_running
= 0;
4776 raw_spin_unlock(&cfs_b
->lock
);
4780 * When a group wakes up we want to make sure that its quota is not already
4781 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4782 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4784 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
4786 if (!cfs_bandwidth_used())
4789 /* an active group must be handled by the update_curr()->put() path */
4790 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
4793 /* ensure the group is not already throttled */
4794 if (cfs_rq_throttled(cfs_rq
))
4797 /* update runtime allocation */
4798 account_cfs_rq_runtime(cfs_rq
, 0);
4799 if (cfs_rq
->runtime_remaining
<= 0)
4800 throttle_cfs_rq(cfs_rq
);
4803 static void sync_throttle(struct task_group
*tg
, int cpu
)
4805 struct cfs_rq
*pcfs_rq
, *cfs_rq
;
4807 if (!cfs_bandwidth_used())
4813 cfs_rq
= tg
->cfs_rq
[cpu
];
4814 pcfs_rq
= tg
->parent
->cfs_rq
[cpu
];
4816 cfs_rq
->throttle_count
= pcfs_rq
->throttle_count
;
4817 cfs_rq
->throttled_clock_task
= rq_clock_task(cpu_rq(cpu
));
4820 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4821 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4823 if (!cfs_bandwidth_used())
4826 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
4830 * it's possible for a throttled entity to be forced into a running
4831 * state (e.g. set_curr_task), in this case we're finished.
4833 if (cfs_rq_throttled(cfs_rq
))
4836 throttle_cfs_rq(cfs_rq
);
4840 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
4842 struct cfs_bandwidth
*cfs_b
=
4843 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
4845 do_sched_cfs_slack_timer(cfs_b
);
4847 return HRTIMER_NORESTART
;
4850 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
4852 struct cfs_bandwidth
*cfs_b
=
4853 container_of(timer
, struct cfs_bandwidth
, period_timer
);
4857 raw_spin_lock(&cfs_b
->lock
);
4859 overrun
= hrtimer_forward_now(timer
, cfs_b
->period
);
4863 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
);
4866 cfs_b
->period_active
= 0;
4867 raw_spin_unlock(&cfs_b
->lock
);
4869 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
4872 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4874 raw_spin_lock_init(&cfs_b
->lock
);
4876 cfs_b
->quota
= RUNTIME_INF
;
4877 cfs_b
->period
= ns_to_ktime(default_cfs_period());
4879 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
4880 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
4881 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
4882 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4883 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
4884 cfs_b
->distribute_running
= 0;
4887 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4889 cfs_rq
->runtime_enabled
= 0;
4890 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
4893 void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4897 lockdep_assert_held(&cfs_b
->lock
);
4899 if (cfs_b
->period_active
)
4902 cfs_b
->period_active
= 1;
4903 overrun
= hrtimer_forward_now(&cfs_b
->period_timer
, cfs_b
->period
);
4904 cfs_b
->runtime_expires
+= (overrun
+ 1) * ktime_to_ns(cfs_b
->period
);
4905 cfs_b
->expires_seq
++;
4906 hrtimer_start_expires(&cfs_b
->period_timer
, HRTIMER_MODE_ABS_PINNED
);
4909 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
4911 /* init_cfs_bandwidth() was not called */
4912 if (!cfs_b
->throttled_cfs_rq
.next
)
4915 hrtimer_cancel(&cfs_b
->period_timer
);
4916 hrtimer_cancel(&cfs_b
->slack_timer
);
4920 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4922 * The race is harmless, since modifying bandwidth settings of unhooked group
4923 * bits doesn't do much.
4926 /* cpu online calback */
4927 static void __maybe_unused
update_runtime_enabled(struct rq
*rq
)
4929 struct task_group
*tg
;
4931 lockdep_assert_held(&rq
->lock
);
4934 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
4935 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
4936 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4938 raw_spin_lock(&cfs_b
->lock
);
4939 cfs_rq
->runtime_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
4940 raw_spin_unlock(&cfs_b
->lock
);
4945 /* cpu offline callback */
4946 static void __maybe_unused
unthrottle_offline_cfs_rqs(struct rq
*rq
)
4948 struct task_group
*tg
;
4950 lockdep_assert_held(&rq
->lock
);
4953 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
4954 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4956 if (!cfs_rq
->runtime_enabled
)
4960 * clock_task is not advancing so we just need to make sure
4961 * there's some valid quota amount
4963 cfs_rq
->runtime_remaining
= 1;
4965 * Offline rq is schedulable till CPU is completely disabled
4966 * in take_cpu_down(), so we prevent new cfs throttling here.
4968 cfs_rq
->runtime_enabled
= 0;
4970 if (cfs_rq_throttled(cfs_rq
))
4971 unthrottle_cfs_rq(cfs_rq
);
4976 #else /* CONFIG_CFS_BANDWIDTH */
4977 static inline u64
cfs_rq_clock_task(struct cfs_rq
*cfs_rq
)
4979 return rq_clock_task(rq_of(cfs_rq
));
4982 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
) {}
4983 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) { return false; }
4984 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
4985 static inline void sync_throttle(struct task_group
*tg
, int cpu
) {}
4986 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
4988 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
4993 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
4998 static inline int throttled_lb_pair(struct task_group
*tg
,
4999 int src_cpu
, int dest_cpu
)
5004 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
5006 #ifdef CONFIG_FAIR_GROUP_SCHED
5007 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
5010 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
5014 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
5015 static inline void update_runtime_enabled(struct rq
*rq
) {}
5016 static inline void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
5018 #endif /* CONFIG_CFS_BANDWIDTH */
5020 /**************************************************
5021 * CFS operations on tasks:
5024 #ifdef CONFIG_SCHED_HRTICK
5025 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
5027 struct sched_entity
*se
= &p
->se
;
5028 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
5030 SCHED_WARN_ON(task_rq(p
) != rq
);
5032 if (rq
->cfs
.h_nr_running
> 1) {
5033 u64 slice
= sched_slice(cfs_rq
, se
);
5034 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
5035 s64 delta
= slice
- ran
;
5042 hrtick_start(rq
, delta
);
5047 * called from enqueue/dequeue and updates the hrtick when the
5048 * current task is from our class and nr_running is low enough
5051 static void hrtick_update(struct rq
*rq
)
5053 struct task_struct
*curr
= rq
->curr
;
5055 if (!hrtick_enabled(rq
) || curr
->sched_class
!= &fair_sched_class
)
5058 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
5059 hrtick_start_fair(rq
, curr
);
5061 #else /* !CONFIG_SCHED_HRTICK */
5063 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
5067 static inline void hrtick_update(struct rq
*rq
)
5073 * The enqueue_task method is called before nr_running is
5074 * increased. Here we update the fair scheduling stats and
5075 * then put the task into the rbtree:
5078 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
5080 struct cfs_rq
*cfs_rq
;
5081 struct sched_entity
*se
= &p
->se
;
5084 * The code below (indirectly) updates schedutil which looks at
5085 * the cfs_rq utilization to select a frequency.
5086 * Let's add the task's estimated utilization to the cfs_rq's
5087 * estimated utilization, before we update schedutil.
5089 util_est_enqueue(&rq
->cfs
, p
);
5092 * If in_iowait is set, the code below may not trigger any cpufreq
5093 * utilization updates, so do it here explicitly with the IOWAIT flag
5097 cpufreq_update_util(rq
, SCHED_CPUFREQ_IOWAIT
);
5099 for_each_sched_entity(se
) {
5102 cfs_rq
= cfs_rq_of(se
);
5103 enqueue_entity(cfs_rq
, se
, flags
);
5106 * end evaluation on encountering a throttled cfs_rq
5108 * note: in the case of encountering a throttled cfs_rq we will
5109 * post the final h_nr_running increment below.
5111 if (cfs_rq_throttled(cfs_rq
))
5113 cfs_rq
->h_nr_running
++;
5115 flags
= ENQUEUE_WAKEUP
;
5118 for_each_sched_entity(se
) {
5119 cfs_rq
= cfs_rq_of(se
);
5120 cfs_rq
->h_nr_running
++;
5122 if (cfs_rq_throttled(cfs_rq
))
5125 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5126 update_cfs_group(se
);
5130 add_nr_running(rq
, 1);
5135 static void set_next_buddy(struct sched_entity
*se
);
5138 * The dequeue_task method is called before nr_running is
5139 * decreased. We remove the task from the rbtree and
5140 * update the fair scheduling stats:
5142 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
5144 struct cfs_rq
*cfs_rq
;
5145 struct sched_entity
*se
= &p
->se
;
5146 int task_sleep
= flags
& DEQUEUE_SLEEP
;
5148 for_each_sched_entity(se
) {
5149 cfs_rq
= cfs_rq_of(se
);
5150 dequeue_entity(cfs_rq
, se
, flags
);
5153 * end evaluation on encountering a throttled cfs_rq
5155 * note: in the case of encountering a throttled cfs_rq we will
5156 * post the final h_nr_running decrement below.
5158 if (cfs_rq_throttled(cfs_rq
))
5160 cfs_rq
->h_nr_running
--;
5162 /* Don't dequeue parent if it has other entities besides us */
5163 if (cfs_rq
->load
.weight
) {
5164 /* Avoid re-evaluating load for this entity: */
5165 se
= parent_entity(se
);
5167 * Bias pick_next to pick a task from this cfs_rq, as
5168 * p is sleeping when it is within its sched_slice.
5170 if (task_sleep
&& se
&& !throttled_hierarchy(cfs_rq
))
5174 flags
|= DEQUEUE_SLEEP
;
5177 for_each_sched_entity(se
) {
5178 cfs_rq
= cfs_rq_of(se
);
5179 cfs_rq
->h_nr_running
--;
5181 if (cfs_rq_throttled(cfs_rq
))
5184 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5185 update_cfs_group(se
);
5189 sub_nr_running(rq
, 1);
5191 util_est_dequeue(&rq
->cfs
, p
, task_sleep
);
5197 /* Working cpumask for: load_balance, load_balance_newidle. */
5198 DEFINE_PER_CPU(cpumask_var_t
, load_balance_mask
);
5199 DEFINE_PER_CPU(cpumask_var_t
, select_idle_mask
);
5201 #ifdef CONFIG_NO_HZ_COMMON
5203 * per rq 'load' arrray crap; XXX kill this.
5207 * The exact cpuload calculated at every tick would be:
5209 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5211 * If a CPU misses updates for n ticks (as it was idle) and update gets
5212 * called on the n+1-th tick when CPU may be busy, then we have:
5214 * load_n = (1 - 1/2^i)^n * load_0
5215 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
5217 * decay_load_missed() below does efficient calculation of
5219 * load' = (1 - 1/2^i)^n * load
5221 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5222 * This allows us to precompute the above in said factors, thereby allowing the
5223 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5224 * fixed_power_int())
5226 * The calculation is approximated on a 128 point scale.
5228 #define DEGRADE_SHIFT 7
5230 static const u8 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
5231 static const u8 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
5232 { 0, 0, 0, 0, 0, 0, 0, 0 },
5233 { 64, 32, 8, 0, 0, 0, 0, 0 },
5234 { 96, 72, 40, 12, 1, 0, 0, 0 },
5235 { 112, 98, 75, 43, 15, 1, 0, 0 },
5236 { 120, 112, 98, 76, 45, 16, 2, 0 }
5240 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5241 * would be when CPU is idle and so we just decay the old load without
5242 * adding any new load.
5244 static unsigned long
5245 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
5249 if (!missed_updates
)
5252 if (missed_updates
>= degrade_zero_ticks
[idx
])
5256 return load
>> missed_updates
;
5258 while (missed_updates
) {
5259 if (missed_updates
% 2)
5260 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
5262 missed_updates
>>= 1;
5269 cpumask_var_t idle_cpus_mask
;
5271 int has_blocked
; /* Idle CPUS has blocked load */
5272 unsigned long next_balance
; /* in jiffy units */
5273 unsigned long next_blocked
; /* Next update of blocked load in jiffies */
5274 } nohz ____cacheline_aligned
;
5276 #endif /* CONFIG_NO_HZ_COMMON */
5279 * __cpu_load_update - update the rq->cpu_load[] statistics
5280 * @this_rq: The rq to update statistics for
5281 * @this_load: The current load
5282 * @pending_updates: The number of missed updates
5284 * Update rq->cpu_load[] statistics. This function is usually called every
5285 * scheduler tick (TICK_NSEC).
5287 * This function computes a decaying average:
5289 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5291 * Because of NOHZ it might not get called on every tick which gives need for
5292 * the @pending_updates argument.
5294 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5295 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5296 * = A * (A * load[i]_n-2 + B) + B
5297 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5298 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5299 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5300 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5301 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5303 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5304 * any change in load would have resulted in the tick being turned back on.
5306 * For regular NOHZ, this reduces to:
5308 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5310 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5313 static void cpu_load_update(struct rq
*this_rq
, unsigned long this_load
,
5314 unsigned long pending_updates
)
5316 unsigned long __maybe_unused tickless_load
= this_rq
->cpu_load
[0];
5319 this_rq
->nr_load_updates
++;
5321 /* Update our load: */
5322 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
5323 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
5324 unsigned long old_load
, new_load
;
5326 /* scale is effectively 1 << i now, and >> i divides by scale */
5328 old_load
= this_rq
->cpu_load
[i
];
5329 #ifdef CONFIG_NO_HZ_COMMON
5330 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
5331 if (tickless_load
) {
5332 old_load
-= decay_load_missed(tickless_load
, pending_updates
- 1, i
);
5334 * old_load can never be a negative value because a
5335 * decayed tickless_load cannot be greater than the
5336 * original tickless_load.
5338 old_load
+= tickless_load
;
5341 new_load
= this_load
;
5343 * Round up the averaging division if load is increasing. This
5344 * prevents us from getting stuck on 9 if the load is 10, for
5347 if (new_load
> old_load
)
5348 new_load
+= scale
- 1;
5350 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
5354 /* Used instead of source_load when we know the type == 0 */
5355 static unsigned long weighted_cpuload(struct rq
*rq
)
5357 return cfs_rq_runnable_load_avg(&rq
->cfs
);
5360 #ifdef CONFIG_NO_HZ_COMMON
5362 * There is no sane way to deal with nohz on smp when using jiffies because the
5363 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5364 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5366 * Therefore we need to avoid the delta approach from the regular tick when
5367 * possible since that would seriously skew the load calculation. This is why we
5368 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5369 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5370 * loop exit, nohz_idle_balance, nohz full exit...)
5372 * This means we might still be one tick off for nohz periods.
5375 static void cpu_load_update_nohz(struct rq
*this_rq
,
5376 unsigned long curr_jiffies
,
5379 unsigned long pending_updates
;
5381 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
5382 if (pending_updates
) {
5383 this_rq
->last_load_update_tick
= curr_jiffies
;
5385 * In the regular NOHZ case, we were idle, this means load 0.
5386 * In the NOHZ_FULL case, we were non-idle, we should consider
5387 * its weighted load.
5389 cpu_load_update(this_rq
, load
, pending_updates
);
5394 * Called from nohz_idle_balance() to update the load ratings before doing the
5397 static void cpu_load_update_idle(struct rq
*this_rq
)
5400 * bail if there's load or we're actually up-to-date.
5402 if (weighted_cpuload(this_rq
))
5405 cpu_load_update_nohz(this_rq
, READ_ONCE(jiffies
), 0);
5409 * Record CPU load on nohz entry so we know the tickless load to account
5410 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5411 * than other cpu_load[idx] but it should be fine as cpu_load readers
5412 * shouldn't rely into synchronized cpu_load[*] updates.
5414 void cpu_load_update_nohz_start(void)
5416 struct rq
*this_rq
= this_rq();
5419 * This is all lockless but should be fine. If weighted_cpuload changes
5420 * concurrently we'll exit nohz. And cpu_load write can race with
5421 * cpu_load_update_idle() but both updater would be writing the same.
5423 this_rq
->cpu_load
[0] = weighted_cpuload(this_rq
);
5427 * Account the tickless load in the end of a nohz frame.
5429 void cpu_load_update_nohz_stop(void)
5431 unsigned long curr_jiffies
= READ_ONCE(jiffies
);
5432 struct rq
*this_rq
= this_rq();
5436 if (curr_jiffies
== this_rq
->last_load_update_tick
)
5439 load
= weighted_cpuload(this_rq
);
5440 rq_lock(this_rq
, &rf
);
5441 update_rq_clock(this_rq
);
5442 cpu_load_update_nohz(this_rq
, curr_jiffies
, load
);
5443 rq_unlock(this_rq
, &rf
);
5445 #else /* !CONFIG_NO_HZ_COMMON */
5446 static inline void cpu_load_update_nohz(struct rq
*this_rq
,
5447 unsigned long curr_jiffies
,
5448 unsigned long load
) { }
5449 #endif /* CONFIG_NO_HZ_COMMON */
5451 static void cpu_load_update_periodic(struct rq
*this_rq
, unsigned long load
)
5453 #ifdef CONFIG_NO_HZ_COMMON
5454 /* See the mess around cpu_load_update_nohz(). */
5455 this_rq
->last_load_update_tick
= READ_ONCE(jiffies
);
5457 cpu_load_update(this_rq
, load
, 1);
5461 * Called from scheduler_tick()
5463 void cpu_load_update_active(struct rq
*this_rq
)
5465 unsigned long load
= weighted_cpuload(this_rq
);
5467 if (tick_nohz_tick_stopped())
5468 cpu_load_update_nohz(this_rq
, READ_ONCE(jiffies
), load
);
5470 cpu_load_update_periodic(this_rq
, load
);
5474 * Return a low guess at the load of a migration-source CPU weighted
5475 * according to the scheduling class and "nice" value.
5477 * We want to under-estimate the load of migration sources, to
5478 * balance conservatively.
5480 static unsigned long source_load(int cpu
, int type
)
5482 struct rq
*rq
= cpu_rq(cpu
);
5483 unsigned long total
= weighted_cpuload(rq
);
5485 if (type
== 0 || !sched_feat(LB_BIAS
))
5488 return min(rq
->cpu_load
[type
-1], total
);
5492 * Return a high guess at the load of a migration-target CPU weighted
5493 * according to the scheduling class and "nice" value.
5495 static unsigned long target_load(int cpu
, int type
)
5497 struct rq
*rq
= cpu_rq(cpu
);
5498 unsigned long total
= weighted_cpuload(rq
);
5500 if (type
== 0 || !sched_feat(LB_BIAS
))
5503 return max(rq
->cpu_load
[type
-1], total
);
5506 static unsigned long capacity_of(int cpu
)
5508 return cpu_rq(cpu
)->cpu_capacity
;
5511 static unsigned long capacity_orig_of(int cpu
)
5513 return cpu_rq(cpu
)->cpu_capacity_orig
;
5516 static unsigned long cpu_avg_load_per_task(int cpu
)
5518 struct rq
*rq
= cpu_rq(cpu
);
5519 unsigned long nr_running
= READ_ONCE(rq
->cfs
.h_nr_running
);
5520 unsigned long load_avg
= weighted_cpuload(rq
);
5523 return load_avg
/ nr_running
;
5528 static void record_wakee(struct task_struct
*p
)
5531 * Only decay a single time; tasks that have less then 1 wakeup per
5532 * jiffy will not have built up many flips.
5534 if (time_after(jiffies
, current
->wakee_flip_decay_ts
+ HZ
)) {
5535 current
->wakee_flips
>>= 1;
5536 current
->wakee_flip_decay_ts
= jiffies
;
5539 if (current
->last_wakee
!= p
) {
5540 current
->last_wakee
= p
;
5541 current
->wakee_flips
++;
5546 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5548 * A waker of many should wake a different task than the one last awakened
5549 * at a frequency roughly N times higher than one of its wakees.
5551 * In order to determine whether we should let the load spread vs consolidating
5552 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5553 * partner, and a factor of lls_size higher frequency in the other.
5555 * With both conditions met, we can be relatively sure that the relationship is
5556 * non-monogamous, with partner count exceeding socket size.
5558 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5559 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5562 static int wake_wide(struct task_struct
*p
)
5564 unsigned int master
= current
->wakee_flips
;
5565 unsigned int slave
= p
->wakee_flips
;
5566 int factor
= this_cpu_read(sd_llc_size
);
5569 swap(master
, slave
);
5570 if (slave
< factor
|| master
< slave
* factor
)
5576 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5577 * soonest. For the purpose of speed we only consider the waking and previous
5580 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5581 * cache-affine and is (or will be) idle.
5583 * wake_affine_weight() - considers the weight to reflect the average
5584 * scheduling latency of the CPUs. This seems to work
5585 * for the overloaded case.
5588 wake_affine_idle(int this_cpu
, int prev_cpu
, int sync
)
5591 * If this_cpu is idle, it implies the wakeup is from interrupt
5592 * context. Only allow the move if cache is shared. Otherwise an
5593 * interrupt intensive workload could force all tasks onto one
5594 * node depending on the IO topology or IRQ affinity settings.
5596 * If the prev_cpu is idle and cache affine then avoid a migration.
5597 * There is no guarantee that the cache hot data from an interrupt
5598 * is more important than cache hot data on the prev_cpu and from
5599 * a cpufreq perspective, it's better to have higher utilisation
5602 if (available_idle_cpu(this_cpu
) && cpus_share_cache(this_cpu
, prev_cpu
))
5603 return available_idle_cpu(prev_cpu
) ? prev_cpu
: this_cpu
;
5605 if (sync
&& cpu_rq(this_cpu
)->nr_running
== 1)
5608 return nr_cpumask_bits
;
5612 wake_affine_weight(struct sched_domain
*sd
, struct task_struct
*p
,
5613 int this_cpu
, int prev_cpu
, int sync
)
5615 s64 this_eff_load
, prev_eff_load
;
5616 unsigned long task_load
;
5618 this_eff_load
= target_load(this_cpu
, sd
->wake_idx
);
5621 unsigned long current_load
= task_h_load(current
);
5623 if (current_load
> this_eff_load
)
5626 this_eff_load
-= current_load
;
5629 task_load
= task_h_load(p
);
5631 this_eff_load
+= task_load
;
5632 if (sched_feat(WA_BIAS
))
5633 this_eff_load
*= 100;
5634 this_eff_load
*= capacity_of(prev_cpu
);
5636 prev_eff_load
= source_load(prev_cpu
, sd
->wake_idx
);
5637 prev_eff_load
-= task_load
;
5638 if (sched_feat(WA_BIAS
))
5639 prev_eff_load
*= 100 + (sd
->imbalance_pct
- 100) / 2;
5640 prev_eff_load
*= capacity_of(this_cpu
);
5643 * If sync, adjust the weight of prev_eff_load such that if
5644 * prev_eff == this_eff that select_idle_sibling() will consider
5645 * stacking the wakee on top of the waker if no other CPU is
5651 return this_eff_load
< prev_eff_load
? this_cpu
: nr_cpumask_bits
;
5654 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
,
5655 int this_cpu
, int prev_cpu
, int sync
)
5657 int target
= nr_cpumask_bits
;
5659 if (sched_feat(WA_IDLE
))
5660 target
= wake_affine_idle(this_cpu
, prev_cpu
, sync
);
5662 if (sched_feat(WA_WEIGHT
) && target
== nr_cpumask_bits
)
5663 target
= wake_affine_weight(sd
, p
, this_cpu
, prev_cpu
, sync
);
5665 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine_attempts
);
5666 if (target
== nr_cpumask_bits
)
5669 schedstat_inc(sd
->ttwu_move_affine
);
5670 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine
);
5674 static unsigned long cpu_util_without(int cpu
, struct task_struct
*p
);
5676 static unsigned long capacity_spare_without(int cpu
, struct task_struct
*p
)
5678 return max_t(long, capacity_of(cpu
) - cpu_util_without(cpu
, p
), 0);
5682 * find_idlest_group finds and returns the least busy CPU group within the
5685 * Assumes p is allowed on at least one CPU in sd.
5687 static struct sched_group
*
5688 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
5689 int this_cpu
, int sd_flag
)
5691 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
5692 struct sched_group
*most_spare_sg
= NULL
;
5693 unsigned long min_runnable_load
= ULONG_MAX
;
5694 unsigned long this_runnable_load
= ULONG_MAX
;
5695 unsigned long min_avg_load
= ULONG_MAX
, this_avg_load
= ULONG_MAX
;
5696 unsigned long most_spare
= 0, this_spare
= 0;
5697 int load_idx
= sd
->forkexec_idx
;
5698 int imbalance_scale
= 100 + (sd
->imbalance_pct
-100)/2;
5699 unsigned long imbalance
= scale_load_down(NICE_0_LOAD
) *
5700 (sd
->imbalance_pct
-100) / 100;
5702 if (sd_flag
& SD_BALANCE_WAKE
)
5703 load_idx
= sd
->wake_idx
;
5706 unsigned long load
, avg_load
, runnable_load
;
5707 unsigned long spare_cap
, max_spare_cap
;
5711 /* Skip over this group if it has no CPUs allowed */
5712 if (!cpumask_intersects(sched_group_span(group
),
5716 local_group
= cpumask_test_cpu(this_cpu
,
5717 sched_group_span(group
));
5720 * Tally up the load of all CPUs in the group and find
5721 * the group containing the CPU with most spare capacity.
5727 for_each_cpu(i
, sched_group_span(group
)) {
5728 /* Bias balancing toward CPUs of our domain */
5730 load
= source_load(i
, load_idx
);
5732 load
= target_load(i
, load_idx
);
5734 runnable_load
+= load
;
5736 avg_load
+= cfs_rq_load_avg(&cpu_rq(i
)->cfs
);
5738 spare_cap
= capacity_spare_without(i
, p
);
5740 if (spare_cap
> max_spare_cap
)
5741 max_spare_cap
= spare_cap
;
5744 /* Adjust by relative CPU capacity of the group */
5745 avg_load
= (avg_load
* SCHED_CAPACITY_SCALE
) /
5746 group
->sgc
->capacity
;
5747 runnable_load
= (runnable_load
* SCHED_CAPACITY_SCALE
) /
5748 group
->sgc
->capacity
;
5751 this_runnable_load
= runnable_load
;
5752 this_avg_load
= avg_load
;
5753 this_spare
= max_spare_cap
;
5755 if (min_runnable_load
> (runnable_load
+ imbalance
)) {
5757 * The runnable load is significantly smaller
5758 * so we can pick this new CPU:
5760 min_runnable_load
= runnable_load
;
5761 min_avg_load
= avg_load
;
5763 } else if ((runnable_load
< (min_runnable_load
+ imbalance
)) &&
5764 (100*min_avg_load
> imbalance_scale
*avg_load
)) {
5766 * The runnable loads are close so take the
5767 * blocked load into account through avg_load:
5769 min_avg_load
= avg_load
;
5773 if (most_spare
< max_spare_cap
) {
5774 most_spare
= max_spare_cap
;
5775 most_spare_sg
= group
;
5778 } while (group
= group
->next
, group
!= sd
->groups
);
5781 * The cross-over point between using spare capacity or least load
5782 * is too conservative for high utilization tasks on partially
5783 * utilized systems if we require spare_capacity > task_util(p),
5784 * so we allow for some task stuffing by using
5785 * spare_capacity > task_util(p)/2.
5787 * Spare capacity can't be used for fork because the utilization has
5788 * not been set yet, we must first select a rq to compute the initial
5791 if (sd_flag
& SD_BALANCE_FORK
)
5794 if (this_spare
> task_util(p
) / 2 &&
5795 imbalance_scale
*this_spare
> 100*most_spare
)
5798 if (most_spare
> task_util(p
) / 2)
5799 return most_spare_sg
;
5806 * When comparing groups across NUMA domains, it's possible for the
5807 * local domain to be very lightly loaded relative to the remote
5808 * domains but "imbalance" skews the comparison making remote CPUs
5809 * look much more favourable. When considering cross-domain, add
5810 * imbalance to the runnable load on the remote node and consider
5813 if ((sd
->flags
& SD_NUMA
) &&
5814 min_runnable_load
+ imbalance
>= this_runnable_load
)
5817 if (min_runnable_load
> (this_runnable_load
+ imbalance
))
5820 if ((this_runnable_load
< (min_runnable_load
+ imbalance
)) &&
5821 (100*this_avg_load
< imbalance_scale
*min_avg_load
))
5828 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5831 find_idlest_group_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
5833 unsigned long load
, min_load
= ULONG_MAX
;
5834 unsigned int min_exit_latency
= UINT_MAX
;
5835 u64 latest_idle_timestamp
= 0;
5836 int least_loaded_cpu
= this_cpu
;
5837 int shallowest_idle_cpu
= -1;
5840 /* Check if we have any choice: */
5841 if (group
->group_weight
== 1)
5842 return cpumask_first(sched_group_span(group
));
5844 /* Traverse only the allowed CPUs */
5845 for_each_cpu_and(i
, sched_group_span(group
), &p
->cpus_allowed
) {
5846 if (available_idle_cpu(i
)) {
5847 struct rq
*rq
= cpu_rq(i
);
5848 struct cpuidle_state
*idle
= idle_get_state(rq
);
5849 if (idle
&& idle
->exit_latency
< min_exit_latency
) {
5851 * We give priority to a CPU whose idle state
5852 * has the smallest exit latency irrespective
5853 * of any idle timestamp.
5855 min_exit_latency
= idle
->exit_latency
;
5856 latest_idle_timestamp
= rq
->idle_stamp
;
5857 shallowest_idle_cpu
= i
;
5858 } else if ((!idle
|| idle
->exit_latency
== min_exit_latency
) &&
5859 rq
->idle_stamp
> latest_idle_timestamp
) {
5861 * If equal or no active idle state, then
5862 * the most recently idled CPU might have
5865 latest_idle_timestamp
= rq
->idle_stamp
;
5866 shallowest_idle_cpu
= i
;
5868 } else if (shallowest_idle_cpu
== -1) {
5869 load
= weighted_cpuload(cpu_rq(i
));
5870 if (load
< min_load
) {
5872 least_loaded_cpu
= i
;
5877 return shallowest_idle_cpu
!= -1 ? shallowest_idle_cpu
: least_loaded_cpu
;
5880 static inline int find_idlest_cpu(struct sched_domain
*sd
, struct task_struct
*p
,
5881 int cpu
, int prev_cpu
, int sd_flag
)
5885 if (!cpumask_intersects(sched_domain_span(sd
), &p
->cpus_allowed
))
5889 * We need task's util for capacity_spare_without, sync it up to
5890 * prev_cpu's last_update_time.
5892 if (!(sd_flag
& SD_BALANCE_FORK
))
5893 sync_entity_load_avg(&p
->se
);
5896 struct sched_group
*group
;
5897 struct sched_domain
*tmp
;
5900 if (!(sd
->flags
& sd_flag
)) {
5905 group
= find_idlest_group(sd
, p
, cpu
, sd_flag
);
5911 new_cpu
= find_idlest_group_cpu(group
, p
, cpu
);
5912 if (new_cpu
== cpu
) {
5913 /* Now try balancing at a lower domain level of 'cpu': */
5918 /* Now try balancing at a lower domain level of 'new_cpu': */
5920 weight
= sd
->span_weight
;
5922 for_each_domain(cpu
, tmp
) {
5923 if (weight
<= tmp
->span_weight
)
5925 if (tmp
->flags
& sd_flag
)
5933 #ifdef CONFIG_SCHED_SMT
5934 DEFINE_STATIC_KEY_FALSE(sched_smt_present
);
5935 EXPORT_SYMBOL_GPL(sched_smt_present
);
5937 static inline void set_idle_cores(int cpu
, int val
)
5939 struct sched_domain_shared
*sds
;
5941 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5943 WRITE_ONCE(sds
->has_idle_cores
, val
);
5946 static inline bool test_idle_cores(int cpu
, bool def
)
5948 struct sched_domain_shared
*sds
;
5950 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5952 return READ_ONCE(sds
->has_idle_cores
);
5958 * Scans the local SMT mask to see if the entire core is idle, and records this
5959 * information in sd_llc_shared->has_idle_cores.
5961 * Since SMT siblings share all cache levels, inspecting this limited remote
5962 * state should be fairly cheap.
5964 void __update_idle_core(struct rq
*rq
)
5966 int core
= cpu_of(rq
);
5970 if (test_idle_cores(core
, true))
5973 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
5977 if (!available_idle_cpu(cpu
))
5981 set_idle_cores(core
, 1);
5987 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5988 * there are no idle cores left in the system; tracked through
5989 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5991 static int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5993 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
5996 if (!static_branch_likely(&sched_smt_present
))
5999 if (!test_idle_cores(target
, false))
6002 cpumask_and(cpus
, sched_domain_span(sd
), &p
->cpus_allowed
);
6004 for_each_cpu_wrap(core
, cpus
, target
) {
6007 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
6008 cpumask_clear_cpu(cpu
, cpus
);
6009 if (!available_idle_cpu(cpu
))
6018 * Failed to find an idle core; stop looking for one.
6020 set_idle_cores(target
, 0);
6026 * Scan the local SMT mask for idle CPUs.
6028 static int select_idle_smt(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6032 if (!static_branch_likely(&sched_smt_present
))
6035 for_each_cpu(cpu
, cpu_smt_mask(target
)) {
6036 if (!cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
6038 if (available_idle_cpu(cpu
))
6045 #else /* CONFIG_SCHED_SMT */
6047 static inline int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6052 static inline int select_idle_smt(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6057 #endif /* CONFIG_SCHED_SMT */
6060 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6061 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6062 * average idle time for this rq (as found in rq->avg_idle).
6064 static int select_idle_cpu(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6066 struct sched_domain
*this_sd
;
6067 u64 avg_cost
, avg_idle
;
6070 int cpu
, nr
= INT_MAX
;
6072 this_sd
= rcu_dereference(*this_cpu_ptr(&sd_llc
));
6077 * Due to large variance we need a large fuzz factor; hackbench in
6078 * particularly is sensitive here.
6080 avg_idle
= this_rq()->avg_idle
/ 512;
6081 avg_cost
= this_sd
->avg_scan_cost
+ 1;
6083 if (sched_feat(SIS_AVG_CPU
) && avg_idle
< avg_cost
)
6086 if (sched_feat(SIS_PROP
)) {
6087 u64 span_avg
= sd
->span_weight
* avg_idle
;
6088 if (span_avg
> 4*avg_cost
)
6089 nr
= div_u64(span_avg
, avg_cost
);
6094 time
= local_clock();
6096 for_each_cpu_wrap(cpu
, sched_domain_span(sd
), target
) {
6099 if (!cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
6101 if (available_idle_cpu(cpu
))
6105 time
= local_clock() - time
;
6106 cost
= this_sd
->avg_scan_cost
;
6107 delta
= (s64
)(time
- cost
) / 8;
6108 this_sd
->avg_scan_cost
+= delta
;
6114 * Try and locate an idle core/thread in the LLC cache domain.
6116 static int select_idle_sibling(struct task_struct
*p
, int prev
, int target
)
6118 struct sched_domain
*sd
;
6119 int i
, recent_used_cpu
;
6121 if (available_idle_cpu(target
))
6125 * If the previous CPU is cache affine and idle, don't be stupid:
6127 if (prev
!= target
&& cpus_share_cache(prev
, target
) && available_idle_cpu(prev
))
6130 /* Check a recently used CPU as a potential idle candidate: */
6131 recent_used_cpu
= p
->recent_used_cpu
;
6132 if (recent_used_cpu
!= prev
&&
6133 recent_used_cpu
!= target
&&
6134 cpus_share_cache(recent_used_cpu
, target
) &&
6135 available_idle_cpu(recent_used_cpu
) &&
6136 cpumask_test_cpu(p
->recent_used_cpu
, &p
->cpus_allowed
)) {
6138 * Replace recent_used_cpu with prev as it is a potential
6139 * candidate for the next wake:
6141 p
->recent_used_cpu
= prev
;
6142 return recent_used_cpu
;
6145 sd
= rcu_dereference(per_cpu(sd_llc
, target
));
6149 i
= select_idle_core(p
, sd
, target
);
6150 if ((unsigned)i
< nr_cpumask_bits
)
6153 i
= select_idle_cpu(p
, sd
, target
);
6154 if ((unsigned)i
< nr_cpumask_bits
)
6157 i
= select_idle_smt(p
, sd
, target
);
6158 if ((unsigned)i
< nr_cpumask_bits
)
6165 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6166 * @cpu: the CPU to get the utilization of
6168 * The unit of the return value must be the one of capacity so we can compare
6169 * the utilization with the capacity of the CPU that is available for CFS task
6170 * (ie cpu_capacity).
6172 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6173 * recent utilization of currently non-runnable tasks on a CPU. It represents
6174 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6175 * capacity_orig is the cpu_capacity available at the highest frequency
6176 * (arch_scale_freq_capacity()).
6177 * The utilization of a CPU converges towards a sum equal to or less than the
6178 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6179 * the running time on this CPU scaled by capacity_curr.
6181 * The estimated utilization of a CPU is defined to be the maximum between its
6182 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6183 * currently RUNNABLE on that CPU.
6184 * This allows to properly represent the expected utilization of a CPU which
6185 * has just got a big task running since a long sleep period. At the same time
6186 * however it preserves the benefits of the "blocked utilization" in
6187 * describing the potential for other tasks waking up on the same CPU.
6189 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6190 * higher than capacity_orig because of unfortunate rounding in
6191 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6192 * the average stabilizes with the new running time. We need to check that the
6193 * utilization stays within the range of [0..capacity_orig] and cap it if
6194 * necessary. Without utilization capping, a group could be seen as overloaded
6195 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6196 * available capacity. We allow utilization to overshoot capacity_curr (but not
6197 * capacity_orig) as it useful for predicting the capacity required after task
6198 * migrations (scheduler-driven DVFS).
6200 * Return: the (estimated) utilization for the specified CPU
6202 static inline unsigned long cpu_util(int cpu
)
6204 struct cfs_rq
*cfs_rq
;
6207 cfs_rq
= &cpu_rq(cpu
)->cfs
;
6208 util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6210 if (sched_feat(UTIL_EST
))
6211 util
= max(util
, READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
));
6213 return min_t(unsigned long, util
, capacity_orig_of(cpu
));
6217 * cpu_util_without: compute cpu utilization without any contributions from *p
6218 * @cpu: the CPU which utilization is requested
6219 * @p: the task which utilization should be discounted
6221 * The utilization of a CPU is defined by the utilization of tasks currently
6222 * enqueued on that CPU as well as tasks which are currently sleeping after an
6223 * execution on that CPU.
6225 * This method returns the utilization of the specified CPU by discounting the
6226 * utilization of the specified task, whenever the task is currently
6227 * contributing to the CPU utilization.
6229 static unsigned long cpu_util_without(int cpu
, struct task_struct
*p
)
6231 struct cfs_rq
*cfs_rq
;
6234 /* Task has no contribution or is new */
6235 if (cpu
!= task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
6236 return cpu_util(cpu
);
6238 cfs_rq
= &cpu_rq(cpu
)->cfs
;
6239 util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6241 /* Discount task's util from CPU's util */
6242 util
-= min_t(unsigned int, util
, task_util(p
));
6247 * a) if *p is the only task sleeping on this CPU, then:
6248 * cpu_util (== task_util) > util_est (== 0)
6249 * and thus we return:
6250 * cpu_util_without = (cpu_util - task_util) = 0
6252 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6254 * cpu_util >= task_util
6255 * cpu_util > util_est (== 0)
6256 * and thus we discount *p's blocked utilization to return:
6257 * cpu_util_without = (cpu_util - task_util) >= 0
6259 * c) if other tasks are RUNNABLE on that CPU and
6260 * util_est > cpu_util
6261 * then we use util_est since it returns a more restrictive
6262 * estimation of the spare capacity on that CPU, by just
6263 * considering the expected utilization of tasks already
6264 * runnable on that CPU.
6266 * Cases a) and b) are covered by the above code, while case c) is
6267 * covered by the following code when estimated utilization is
6270 if (sched_feat(UTIL_EST
)) {
6271 unsigned int estimated
=
6272 READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
);
6275 * Despite the following checks we still have a small window
6276 * for a possible race, when an execl's select_task_rq_fair()
6277 * races with LB's detach_task():
6280 * p->on_rq = TASK_ON_RQ_MIGRATING;
6281 * ---------------------------------- A
6282 * deactivate_task() \
6283 * dequeue_task() + RaceTime
6284 * util_est_dequeue() /
6285 * ---------------------------------- B
6287 * The additional check on "current == p" it's required to
6288 * properly fix the execl regression and it helps in further
6289 * reducing the chances for the above race.
6291 if (unlikely(task_on_rq_queued(p
) || current
== p
)) {
6292 estimated
-= min_t(unsigned int, estimated
,
6293 (_task_util_est(p
) | UTIL_AVG_UNCHANGED
));
6295 util
= max(util
, estimated
);
6299 * Utilization (estimated) can exceed the CPU capacity, thus let's
6300 * clamp to the maximum CPU capacity to ensure consistency with
6301 * the cpu_util call.
6303 return min_t(unsigned long, util
, capacity_orig_of(cpu
));
6307 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6308 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6310 * In that case WAKE_AFFINE doesn't make sense and we'll let
6311 * BALANCE_WAKE sort things out.
6313 static int wake_cap(struct task_struct
*p
, int cpu
, int prev_cpu
)
6315 long min_cap
, max_cap
;
6317 min_cap
= min(capacity_orig_of(prev_cpu
), capacity_orig_of(cpu
));
6318 max_cap
= cpu_rq(cpu
)->rd
->max_cpu_capacity
;
6320 /* Minimum capacity is close to max, no need to abort wake_affine */
6321 if (max_cap
- min_cap
< max_cap
>> 3)
6324 /* Bring task utilization in sync with prev_cpu */
6325 sync_entity_load_avg(&p
->se
);
6327 return min_cap
* 1024 < task_util(p
) * capacity_margin
;
6331 * select_task_rq_fair: Select target runqueue for the waking task in domains
6332 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6333 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6335 * Balances load by selecting the idlest CPU in the idlest group, or under
6336 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6338 * Returns the target CPU number.
6340 * preempt must be disabled.
6343 select_task_rq_fair(struct task_struct
*p
, int prev_cpu
, int sd_flag
, int wake_flags
)
6345 struct sched_domain
*tmp
, *sd
= NULL
;
6346 int cpu
= smp_processor_id();
6347 int new_cpu
= prev_cpu
;
6348 int want_affine
= 0;
6349 int sync
= (wake_flags
& WF_SYNC
) && !(current
->flags
& PF_EXITING
);
6351 if (sd_flag
& SD_BALANCE_WAKE
) {
6353 want_affine
= !wake_wide(p
) && !wake_cap(p
, cpu
, prev_cpu
)
6354 && cpumask_test_cpu(cpu
, &p
->cpus_allowed
);
6358 for_each_domain(cpu
, tmp
) {
6359 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
6363 * If both 'cpu' and 'prev_cpu' are part of this domain,
6364 * cpu is a valid SD_WAKE_AFFINE target.
6366 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
6367 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
6368 if (cpu
!= prev_cpu
)
6369 new_cpu
= wake_affine(tmp
, p
, cpu
, prev_cpu
, sync
);
6371 sd
= NULL
; /* Prefer wake_affine over balance flags */
6375 if (tmp
->flags
& sd_flag
)
6377 else if (!want_affine
)
6383 new_cpu
= find_idlest_cpu(sd
, p
, cpu
, prev_cpu
, sd_flag
);
6384 } else if (sd_flag
& SD_BALANCE_WAKE
) { /* XXX always ? */
6387 new_cpu
= select_idle_sibling(p
, prev_cpu
, new_cpu
);
6390 current
->recent_used_cpu
= cpu
;
6397 static void detach_entity_cfs_rq(struct sched_entity
*se
);
6400 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6401 * cfs_rq_of(p) references at time of call are still valid and identify the
6402 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6404 static void migrate_task_rq_fair(struct task_struct
*p
, int new_cpu
)
6407 * As blocked tasks retain absolute vruntime the migration needs to
6408 * deal with this by subtracting the old and adding the new
6409 * min_vruntime -- the latter is done by enqueue_entity() when placing
6410 * the task on the new runqueue.
6412 if (p
->state
== TASK_WAKING
) {
6413 struct sched_entity
*se
= &p
->se
;
6414 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
6417 #ifndef CONFIG_64BIT
6418 u64 min_vruntime_copy
;
6421 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
6423 min_vruntime
= cfs_rq
->min_vruntime
;
6424 } while (min_vruntime
!= min_vruntime_copy
);
6426 min_vruntime
= cfs_rq
->min_vruntime
;
6429 se
->vruntime
-= min_vruntime
;
6432 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
) {
6434 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6435 * rq->lock and can modify state directly.
6437 lockdep_assert_held(&task_rq(p
)->lock
);
6438 detach_entity_cfs_rq(&p
->se
);
6442 * We are supposed to update the task to "current" time, then
6443 * its up to date and ready to go to new CPU/cfs_rq. But we
6444 * have difficulty in getting what current time is, so simply
6445 * throw away the out-of-date time. This will result in the
6446 * wakee task is less decayed, but giving the wakee more load
6449 remove_entity_load_avg(&p
->se
);
6452 /* Tell new CPU we are migrated */
6453 p
->se
.avg
.last_update_time
= 0;
6455 /* We have migrated, no longer consider this task hot */
6456 p
->se
.exec_start
= 0;
6458 update_scan_period(p
, new_cpu
);
6461 static void task_dead_fair(struct task_struct
*p
)
6463 remove_entity_load_avg(&p
->se
);
6465 #endif /* CONFIG_SMP */
6467 static unsigned long wakeup_gran(struct sched_entity
*se
)
6469 unsigned long gran
= sysctl_sched_wakeup_granularity
;
6472 * Since its curr running now, convert the gran from real-time
6473 * to virtual-time in his units.
6475 * By using 'se' instead of 'curr' we penalize light tasks, so
6476 * they get preempted easier. That is, if 'se' < 'curr' then
6477 * the resulting gran will be larger, therefore penalizing the
6478 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6479 * be smaller, again penalizing the lighter task.
6481 * This is especially important for buddies when the leftmost
6482 * task is higher priority than the buddy.
6484 return calc_delta_fair(gran
, se
);
6488 * Should 'se' preempt 'curr'.
6502 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
6504 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
6509 gran
= wakeup_gran(se
);
6516 static void set_last_buddy(struct sched_entity
*se
)
6518 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
6521 for_each_sched_entity(se
) {
6522 if (SCHED_WARN_ON(!se
->on_rq
))
6524 cfs_rq_of(se
)->last
= se
;
6528 static void set_next_buddy(struct sched_entity
*se
)
6530 if (entity_is_task(se
) && unlikely(task_of(se
)->policy
== SCHED_IDLE
))
6533 for_each_sched_entity(se
) {
6534 if (SCHED_WARN_ON(!se
->on_rq
))
6536 cfs_rq_of(se
)->next
= se
;
6540 static void set_skip_buddy(struct sched_entity
*se
)
6542 for_each_sched_entity(se
)
6543 cfs_rq_of(se
)->skip
= se
;
6547 * Preempt the current task with a newly woken task if needed:
6549 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
6551 struct task_struct
*curr
= rq
->curr
;
6552 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
6553 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
6554 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
6555 int next_buddy_marked
= 0;
6557 if (unlikely(se
== pse
))
6561 * This is possible from callers such as attach_tasks(), in which we
6562 * unconditionally check_prempt_curr() after an enqueue (which may have
6563 * lead to a throttle). This both saves work and prevents false
6564 * next-buddy nomination below.
6566 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
6569 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
6570 set_next_buddy(pse
);
6571 next_buddy_marked
= 1;
6575 * We can come here with TIF_NEED_RESCHED already set from new task
6578 * Note: this also catches the edge-case of curr being in a throttled
6579 * group (e.g. via set_curr_task), since update_curr() (in the
6580 * enqueue of curr) will have resulted in resched being set. This
6581 * prevents us from potentially nominating it as a false LAST_BUDDY
6584 if (test_tsk_need_resched(curr
))
6587 /* Idle tasks are by definition preempted by non-idle tasks. */
6588 if (unlikely(curr
->policy
== SCHED_IDLE
) &&
6589 likely(p
->policy
!= SCHED_IDLE
))
6593 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6594 * is driven by the tick):
6596 if (unlikely(p
->policy
!= SCHED_NORMAL
) || !sched_feat(WAKEUP_PREEMPTION
))
6599 find_matching_se(&se
, &pse
);
6600 update_curr(cfs_rq_of(se
));
6602 if (wakeup_preempt_entity(se
, pse
) == 1) {
6604 * Bias pick_next to pick the sched entity that is
6605 * triggering this preemption.
6607 if (!next_buddy_marked
)
6608 set_next_buddy(pse
);
6617 * Only set the backward buddy when the current task is still
6618 * on the rq. This can happen when a wakeup gets interleaved
6619 * with schedule on the ->pre_schedule() or idle_balance()
6620 * point, either of which can * drop the rq lock.
6622 * Also, during early boot the idle thread is in the fair class,
6623 * for obvious reasons its a bad idea to schedule back to it.
6625 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
6628 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
6632 static struct task_struct
*
6633 pick_next_task_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
6635 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
6636 struct sched_entity
*se
;
6637 struct task_struct
*p
;
6641 if (!cfs_rq
->nr_running
)
6644 #ifdef CONFIG_FAIR_GROUP_SCHED
6645 if (prev
->sched_class
!= &fair_sched_class
)
6649 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6650 * likely that a next task is from the same cgroup as the current.
6652 * Therefore attempt to avoid putting and setting the entire cgroup
6653 * hierarchy, only change the part that actually changes.
6657 struct sched_entity
*curr
= cfs_rq
->curr
;
6660 * Since we got here without doing put_prev_entity() we also
6661 * have to consider cfs_rq->curr. If it is still a runnable
6662 * entity, update_curr() will update its vruntime, otherwise
6663 * forget we've ever seen it.
6667 update_curr(cfs_rq
);
6672 * This call to check_cfs_rq_runtime() will do the
6673 * throttle and dequeue its entity in the parent(s).
6674 * Therefore the nr_running test will indeed
6677 if (unlikely(check_cfs_rq_runtime(cfs_rq
))) {
6680 if (!cfs_rq
->nr_running
)
6687 se
= pick_next_entity(cfs_rq
, curr
);
6688 cfs_rq
= group_cfs_rq(se
);
6694 * Since we haven't yet done put_prev_entity and if the selected task
6695 * is a different task than we started out with, try and touch the
6696 * least amount of cfs_rqs.
6699 struct sched_entity
*pse
= &prev
->se
;
6701 while (!(cfs_rq
= is_same_group(se
, pse
))) {
6702 int se_depth
= se
->depth
;
6703 int pse_depth
= pse
->depth
;
6705 if (se_depth
<= pse_depth
) {
6706 put_prev_entity(cfs_rq_of(pse
), pse
);
6707 pse
= parent_entity(pse
);
6709 if (se_depth
>= pse_depth
) {
6710 set_next_entity(cfs_rq_of(se
), se
);
6711 se
= parent_entity(se
);
6715 put_prev_entity(cfs_rq
, pse
);
6716 set_next_entity(cfs_rq
, se
);
6723 put_prev_task(rq
, prev
);
6726 se
= pick_next_entity(cfs_rq
, NULL
);
6727 set_next_entity(cfs_rq
, se
);
6728 cfs_rq
= group_cfs_rq(se
);
6733 done
: __maybe_unused
;
6736 * Move the next running task to the front of
6737 * the list, so our cfs_tasks list becomes MRU
6740 list_move(&p
->se
.group_node
, &rq
->cfs_tasks
);
6743 if (hrtick_enabled(rq
))
6744 hrtick_start_fair(rq
, p
);
6749 new_tasks
= idle_balance(rq
, rf
);
6752 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6753 * possible for any higher priority task to appear. In that case we
6754 * must re-start the pick_next_entity() loop.
6766 * Account for a descheduled task:
6768 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
6770 struct sched_entity
*se
= &prev
->se
;
6771 struct cfs_rq
*cfs_rq
;
6773 for_each_sched_entity(se
) {
6774 cfs_rq
= cfs_rq_of(se
);
6775 put_prev_entity(cfs_rq
, se
);
6780 * sched_yield() is very simple
6782 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6784 static void yield_task_fair(struct rq
*rq
)
6786 struct task_struct
*curr
= rq
->curr
;
6787 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
6788 struct sched_entity
*se
= &curr
->se
;
6791 * Are we the only task in the tree?
6793 if (unlikely(rq
->nr_running
== 1))
6796 clear_buddies(cfs_rq
, se
);
6798 if (curr
->policy
!= SCHED_BATCH
) {
6799 update_rq_clock(rq
);
6801 * Update run-time statistics of the 'current'.
6803 update_curr(cfs_rq
);
6805 * Tell update_rq_clock() that we've just updated,
6806 * so we don't do microscopic update in schedule()
6807 * and double the fastpath cost.
6809 rq_clock_skip_update(rq
);
6815 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
6817 struct sched_entity
*se
= &p
->se
;
6819 /* throttled hierarchies are not runnable */
6820 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
6823 /* Tell the scheduler that we'd really like pse to run next. */
6826 yield_task_fair(rq
);
6832 /**************************************************
6833 * Fair scheduling class load-balancing methods.
6837 * The purpose of load-balancing is to achieve the same basic fairness the
6838 * per-CPU scheduler provides, namely provide a proportional amount of compute
6839 * time to each task. This is expressed in the following equation:
6841 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6843 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6844 * W_i,0 is defined as:
6846 * W_i,0 = \Sum_j w_i,j (2)
6848 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6849 * is derived from the nice value as per sched_prio_to_weight[].
6851 * The weight average is an exponential decay average of the instantaneous
6854 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6856 * C_i is the compute capacity of CPU i, typically it is the
6857 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6858 * can also include other factors [XXX].
6860 * To achieve this balance we define a measure of imbalance which follows
6861 * directly from (1):
6863 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6865 * We them move tasks around to minimize the imbalance. In the continuous
6866 * function space it is obvious this converges, in the discrete case we get
6867 * a few fun cases generally called infeasible weight scenarios.
6870 * - infeasible weights;
6871 * - local vs global optima in the discrete case. ]
6876 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6877 * for all i,j solution, we create a tree of CPUs that follows the hardware
6878 * topology where each level pairs two lower groups (or better). This results
6879 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6880 * tree to only the first of the previous level and we decrease the frequency
6881 * of load-balance at each level inv. proportional to the number of CPUs in
6887 * \Sum { --- * --- * 2^i } = O(n) (5)
6889 * `- size of each group
6890 * | | `- number of CPUs doing load-balance
6892 * `- sum over all levels
6894 * Coupled with a limit on how many tasks we can migrate every balance pass,
6895 * this makes (5) the runtime complexity of the balancer.
6897 * An important property here is that each CPU is still (indirectly) connected
6898 * to every other CPU in at most O(log n) steps:
6900 * The adjacency matrix of the resulting graph is given by:
6903 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6906 * And you'll find that:
6908 * A^(log_2 n)_i,j != 0 for all i,j (7)
6910 * Showing there's indeed a path between every CPU in at most O(log n) steps.
6911 * The task movement gives a factor of O(m), giving a convergence complexity
6914 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6919 * In order to avoid CPUs going idle while there's still work to do, new idle
6920 * balancing is more aggressive and has the newly idle CPU iterate up the domain
6921 * tree itself instead of relying on other CPUs to bring it work.
6923 * This adds some complexity to both (5) and (8) but it reduces the total idle
6931 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6934 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6939 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6941 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
6943 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6946 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6947 * rewrite all of this once again.]
6950 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
6952 enum fbq_type
{ regular
, remote
, all
};
6954 #define LBF_ALL_PINNED 0x01
6955 #define LBF_NEED_BREAK 0x02
6956 #define LBF_DST_PINNED 0x04
6957 #define LBF_SOME_PINNED 0x08
6958 #define LBF_NOHZ_STATS 0x10
6959 #define LBF_NOHZ_AGAIN 0x20
6962 struct sched_domain
*sd
;
6970 struct cpumask
*dst_grpmask
;
6972 enum cpu_idle_type idle
;
6974 /* The set of CPUs under consideration for load-balancing */
6975 struct cpumask
*cpus
;
6980 unsigned int loop_break
;
6981 unsigned int loop_max
;
6983 enum fbq_type fbq_type
;
6984 struct list_head tasks
;
6988 * Is this task likely cache-hot:
6990 static int task_hot(struct task_struct
*p
, struct lb_env
*env
)
6994 lockdep_assert_held(&env
->src_rq
->lock
);
6996 if (p
->sched_class
!= &fair_sched_class
)
6999 if (unlikely(p
->policy
== SCHED_IDLE
))
7003 * Buddy candidates are cache hot:
7005 if (sched_feat(CACHE_HOT_BUDDY
) && env
->dst_rq
->nr_running
&&
7006 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
7007 &p
->se
== cfs_rq_of(&p
->se
)->last
))
7010 if (sysctl_sched_migration_cost
== -1)
7012 if (sysctl_sched_migration_cost
== 0)
7015 delta
= rq_clock_task(env
->src_rq
) - p
->se
.exec_start
;
7017 return delta
< (s64
)sysctl_sched_migration_cost
;
7020 #ifdef CONFIG_NUMA_BALANCING
7022 * Returns 1, if task migration degrades locality
7023 * Returns 0, if task migration improves locality i.e migration preferred.
7024 * Returns -1, if task migration is not affected by locality.
7026 static int migrate_degrades_locality(struct task_struct
*p
, struct lb_env
*env
)
7028 struct numa_group
*numa_group
= rcu_dereference(p
->numa_group
);
7029 unsigned long src_weight
, dst_weight
;
7030 int src_nid
, dst_nid
, dist
;
7032 if (!static_branch_likely(&sched_numa_balancing
))
7035 if (!p
->numa_faults
|| !(env
->sd
->flags
& SD_NUMA
))
7038 src_nid
= cpu_to_node(env
->src_cpu
);
7039 dst_nid
= cpu_to_node(env
->dst_cpu
);
7041 if (src_nid
== dst_nid
)
7044 /* Migrating away from the preferred node is always bad. */
7045 if (src_nid
== p
->numa_preferred_nid
) {
7046 if (env
->src_rq
->nr_running
> env
->src_rq
->nr_preferred_running
)
7052 /* Encourage migration to the preferred node. */
7053 if (dst_nid
== p
->numa_preferred_nid
)
7056 /* Leaving a core idle is often worse than degrading locality. */
7057 if (env
->idle
== CPU_IDLE
)
7060 dist
= node_distance(src_nid
, dst_nid
);
7062 src_weight
= group_weight(p
, src_nid
, dist
);
7063 dst_weight
= group_weight(p
, dst_nid
, dist
);
7065 src_weight
= task_weight(p
, src_nid
, dist
);
7066 dst_weight
= task_weight(p
, dst_nid
, dist
);
7069 return dst_weight
< src_weight
;
7073 static inline int migrate_degrades_locality(struct task_struct
*p
,
7081 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7084 int can_migrate_task(struct task_struct
*p
, struct lb_env
*env
)
7088 lockdep_assert_held(&env
->src_rq
->lock
);
7091 * We do not migrate tasks that are:
7092 * 1) throttled_lb_pair, or
7093 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7094 * 3) running (obviously), or
7095 * 4) are cache-hot on their current CPU.
7097 if (throttled_lb_pair(task_group(p
), env
->src_cpu
, env
->dst_cpu
))
7100 if (!cpumask_test_cpu(env
->dst_cpu
, &p
->cpus_allowed
)) {
7103 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_affine
);
7105 env
->flags
|= LBF_SOME_PINNED
;
7108 * Remember if this task can be migrated to any other CPU in
7109 * our sched_group. We may want to revisit it if we couldn't
7110 * meet load balance goals by pulling other tasks on src_cpu.
7112 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7113 * already computed one in current iteration.
7115 if (env
->idle
== CPU_NEWLY_IDLE
|| (env
->flags
& LBF_DST_PINNED
))
7118 /* Prevent to re-select dst_cpu via env's CPUs: */
7119 for_each_cpu_and(cpu
, env
->dst_grpmask
, env
->cpus
) {
7120 if (cpumask_test_cpu(cpu
, &p
->cpus_allowed
)) {
7121 env
->flags
|= LBF_DST_PINNED
;
7122 env
->new_dst_cpu
= cpu
;
7130 /* Record that we found atleast one task that could run on dst_cpu */
7131 env
->flags
&= ~LBF_ALL_PINNED
;
7133 if (task_running(env
->src_rq
, p
)) {
7134 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_running
);
7139 * Aggressive migration if:
7140 * 1) destination numa is preferred
7141 * 2) task is cache cold, or
7142 * 3) too many balance attempts have failed.
7144 tsk_cache_hot
= migrate_degrades_locality(p
, env
);
7145 if (tsk_cache_hot
== -1)
7146 tsk_cache_hot
= task_hot(p
, env
);
7148 if (tsk_cache_hot
<= 0 ||
7149 env
->sd
->nr_balance_failed
> env
->sd
->cache_nice_tries
) {
7150 if (tsk_cache_hot
== 1) {
7151 schedstat_inc(env
->sd
->lb_hot_gained
[env
->idle
]);
7152 schedstat_inc(p
->se
.statistics
.nr_forced_migrations
);
7157 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_hot
);
7162 * detach_task() -- detach the task for the migration specified in env
7164 static void detach_task(struct task_struct
*p
, struct lb_env
*env
)
7166 lockdep_assert_held(&env
->src_rq
->lock
);
7168 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
7169 deactivate_task(env
->src_rq
, p
, DEQUEUE_NOCLOCK
);
7170 set_task_cpu(p
, env
->dst_cpu
);
7174 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7175 * part of active balancing operations within "domain".
7177 * Returns a task if successful and NULL otherwise.
7179 static struct task_struct
*detach_one_task(struct lb_env
*env
)
7181 struct task_struct
*p
;
7183 lockdep_assert_held(&env
->src_rq
->lock
);
7185 list_for_each_entry_reverse(p
,
7186 &env
->src_rq
->cfs_tasks
, se
.group_node
) {
7187 if (!can_migrate_task(p
, env
))
7190 detach_task(p
, env
);
7193 * Right now, this is only the second place where
7194 * lb_gained[env->idle] is updated (other is detach_tasks)
7195 * so we can safely collect stats here rather than
7196 * inside detach_tasks().
7198 schedstat_inc(env
->sd
->lb_gained
[env
->idle
]);
7204 static const unsigned int sched_nr_migrate_break
= 32;
7207 * detach_tasks() -- tries to detach up to imbalance weighted load from
7208 * busiest_rq, as part of a balancing operation within domain "sd".
7210 * Returns number of detached tasks if successful and 0 otherwise.
7212 static int detach_tasks(struct lb_env
*env
)
7214 struct list_head
*tasks
= &env
->src_rq
->cfs_tasks
;
7215 struct task_struct
*p
;
7219 lockdep_assert_held(&env
->src_rq
->lock
);
7221 if (env
->imbalance
<= 0)
7224 while (!list_empty(tasks
)) {
7226 * We don't want to steal all, otherwise we may be treated likewise,
7227 * which could at worst lead to a livelock crash.
7229 if (env
->idle
!= CPU_NOT_IDLE
&& env
->src_rq
->nr_running
<= 1)
7232 p
= list_last_entry(tasks
, struct task_struct
, se
.group_node
);
7235 /* We've more or less seen every task there is, call it quits */
7236 if (env
->loop
> env
->loop_max
)
7239 /* take a breather every nr_migrate tasks */
7240 if (env
->loop
> env
->loop_break
) {
7241 env
->loop_break
+= sched_nr_migrate_break
;
7242 env
->flags
|= LBF_NEED_BREAK
;
7246 if (!can_migrate_task(p
, env
))
7249 load
= task_h_load(p
);
7251 if (sched_feat(LB_MIN
) && load
< 16 && !env
->sd
->nr_balance_failed
)
7254 if ((load
/ 2) > env
->imbalance
)
7257 detach_task(p
, env
);
7258 list_add(&p
->se
.group_node
, &env
->tasks
);
7261 env
->imbalance
-= load
;
7263 #ifdef CONFIG_PREEMPT
7265 * NEWIDLE balancing is a source of latency, so preemptible
7266 * kernels will stop after the first task is detached to minimize
7267 * the critical section.
7269 if (env
->idle
== CPU_NEWLY_IDLE
)
7274 * We only want to steal up to the prescribed amount of
7277 if (env
->imbalance
<= 0)
7282 list_move(&p
->se
.group_node
, tasks
);
7286 * Right now, this is one of only two places we collect this stat
7287 * so we can safely collect detach_one_task() stats here rather
7288 * than inside detach_one_task().
7290 schedstat_add(env
->sd
->lb_gained
[env
->idle
], detached
);
7296 * attach_task() -- attach the task detached by detach_task() to its new rq.
7298 static void attach_task(struct rq
*rq
, struct task_struct
*p
)
7300 lockdep_assert_held(&rq
->lock
);
7302 BUG_ON(task_rq(p
) != rq
);
7303 activate_task(rq
, p
, ENQUEUE_NOCLOCK
);
7304 p
->on_rq
= TASK_ON_RQ_QUEUED
;
7305 check_preempt_curr(rq
, p
, 0);
7309 * attach_one_task() -- attaches the task returned from detach_one_task() to
7312 static void attach_one_task(struct rq
*rq
, struct task_struct
*p
)
7317 update_rq_clock(rq
);
7323 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7326 static void attach_tasks(struct lb_env
*env
)
7328 struct list_head
*tasks
= &env
->tasks
;
7329 struct task_struct
*p
;
7332 rq_lock(env
->dst_rq
, &rf
);
7333 update_rq_clock(env
->dst_rq
);
7335 while (!list_empty(tasks
)) {
7336 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
7337 list_del_init(&p
->se
.group_node
);
7339 attach_task(env
->dst_rq
, p
);
7342 rq_unlock(env
->dst_rq
, &rf
);
7345 static inline bool cfs_rq_has_blocked(struct cfs_rq
*cfs_rq
)
7347 if (cfs_rq
->avg
.load_avg
)
7350 if (cfs_rq
->avg
.util_avg
)
7356 static inline bool others_have_blocked(struct rq
*rq
)
7358 if (READ_ONCE(rq
->avg_rt
.util_avg
))
7361 if (READ_ONCE(rq
->avg_dl
.util_avg
))
7364 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7365 if (READ_ONCE(rq
->avg_irq
.util_avg
))
7372 #ifdef CONFIG_FAIR_GROUP_SCHED
7374 static void update_blocked_averages(int cpu
)
7376 struct rq
*rq
= cpu_rq(cpu
);
7377 struct cfs_rq
*cfs_rq
;
7378 const struct sched_class
*curr_class
;
7382 rq_lock_irqsave(rq
, &rf
);
7383 update_rq_clock(rq
);
7386 * Iterates the task_group tree in a bottom up fashion, see
7387 * list_add_leaf_cfs_rq() for details.
7389 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
7390 struct sched_entity
*se
;
7392 /* throttled entities do not contribute to load */
7393 if (throttled_hierarchy(cfs_rq
))
7396 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq
), cfs_rq
))
7397 update_tg_load_avg(cfs_rq
, 0);
7399 /* Propagate pending load changes to the parent, if any: */
7400 se
= cfs_rq
->tg
->se
[cpu
];
7401 if (se
&& !skip_blocked_update(se
))
7402 update_load_avg(cfs_rq_of(se
), se
, 0);
7404 /* Don't need periodic decay once load/util_avg are null */
7405 if (cfs_rq_has_blocked(cfs_rq
))
7409 curr_class
= rq
->curr
->sched_class
;
7410 update_rt_rq_load_avg(rq_clock_task(rq
), rq
, curr_class
== &rt_sched_class
);
7411 update_dl_rq_load_avg(rq_clock_task(rq
), rq
, curr_class
== &dl_sched_class
);
7412 update_irq_load_avg(rq
, 0);
7413 /* Don't need periodic decay once load/util_avg are null */
7414 if (others_have_blocked(rq
))
7417 #ifdef CONFIG_NO_HZ_COMMON
7418 rq
->last_blocked_load_update_tick
= jiffies
;
7420 rq
->has_blocked_load
= 0;
7422 rq_unlock_irqrestore(rq
, &rf
);
7426 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7427 * This needs to be done in a top-down fashion because the load of a child
7428 * group is a fraction of its parents load.
7430 static void update_cfs_rq_h_load(struct cfs_rq
*cfs_rq
)
7432 struct rq
*rq
= rq_of(cfs_rq
);
7433 struct sched_entity
*se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
7434 unsigned long now
= jiffies
;
7437 if (cfs_rq
->last_h_load_update
== now
)
7440 cfs_rq
->h_load_next
= NULL
;
7441 for_each_sched_entity(se
) {
7442 cfs_rq
= cfs_rq_of(se
);
7443 cfs_rq
->h_load_next
= se
;
7444 if (cfs_rq
->last_h_load_update
== now
)
7449 cfs_rq
->h_load
= cfs_rq_load_avg(cfs_rq
);
7450 cfs_rq
->last_h_load_update
= now
;
7453 while ((se
= cfs_rq
->h_load_next
) != NULL
) {
7454 load
= cfs_rq
->h_load
;
7455 load
= div64_ul(load
* se
->avg
.load_avg
,
7456 cfs_rq_load_avg(cfs_rq
) + 1);
7457 cfs_rq
= group_cfs_rq(se
);
7458 cfs_rq
->h_load
= load
;
7459 cfs_rq
->last_h_load_update
= now
;
7463 static unsigned long task_h_load(struct task_struct
*p
)
7465 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
7467 update_cfs_rq_h_load(cfs_rq
);
7468 return div64_ul(p
->se
.avg
.load_avg
* cfs_rq
->h_load
,
7469 cfs_rq_load_avg(cfs_rq
) + 1);
7472 static inline void update_blocked_averages(int cpu
)
7474 struct rq
*rq
= cpu_rq(cpu
);
7475 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
7476 const struct sched_class
*curr_class
;
7479 rq_lock_irqsave(rq
, &rf
);
7480 update_rq_clock(rq
);
7481 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq
), cfs_rq
);
7483 curr_class
= rq
->curr
->sched_class
;
7484 update_rt_rq_load_avg(rq_clock_task(rq
), rq
, curr_class
== &rt_sched_class
);
7485 update_dl_rq_load_avg(rq_clock_task(rq
), rq
, curr_class
== &dl_sched_class
);
7486 update_irq_load_avg(rq
, 0);
7487 #ifdef CONFIG_NO_HZ_COMMON
7488 rq
->last_blocked_load_update_tick
= jiffies
;
7489 if (!cfs_rq_has_blocked(cfs_rq
) && !others_have_blocked(rq
))
7490 rq
->has_blocked_load
= 0;
7492 rq_unlock_irqrestore(rq
, &rf
);
7495 static unsigned long task_h_load(struct task_struct
*p
)
7497 return p
->se
.avg
.load_avg
;
7501 /********** Helpers for find_busiest_group ************************/
7510 * sg_lb_stats - stats of a sched_group required for load_balancing
7512 struct sg_lb_stats
{
7513 unsigned long avg_load
; /*Avg load across the CPUs of the group */
7514 unsigned long group_load
; /* Total load over the CPUs of the group */
7515 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
7516 unsigned long load_per_task
;
7517 unsigned long group_capacity
;
7518 unsigned long group_util
; /* Total utilization of the group */
7519 unsigned int sum_nr_running
; /* Nr tasks running in the group */
7520 unsigned int idle_cpus
;
7521 unsigned int group_weight
;
7522 enum group_type group_type
;
7523 int group_no_capacity
;
7524 #ifdef CONFIG_NUMA_BALANCING
7525 unsigned int nr_numa_running
;
7526 unsigned int nr_preferred_running
;
7531 * sd_lb_stats - Structure to store the statistics of a sched_domain
7532 * during load balancing.
7534 struct sd_lb_stats
{
7535 struct sched_group
*busiest
; /* Busiest group in this sd */
7536 struct sched_group
*local
; /* Local group in this sd */
7537 unsigned long total_running
;
7538 unsigned long total_load
; /* Total load of all groups in sd */
7539 unsigned long total_capacity
; /* Total capacity of all groups in sd */
7540 unsigned long avg_load
; /* Average load across all groups in sd */
7542 struct sg_lb_stats busiest_stat
;/* Statistics of the busiest group */
7543 struct sg_lb_stats local_stat
; /* Statistics of the local group */
7546 static inline void init_sd_lb_stats(struct sd_lb_stats
*sds
)
7549 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7550 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7551 * We must however clear busiest_stat::avg_load because
7552 * update_sd_pick_busiest() reads this before assignment.
7554 *sds
= (struct sd_lb_stats
){
7557 .total_running
= 0UL,
7559 .total_capacity
= 0UL,
7562 .sum_nr_running
= 0,
7563 .group_type
= group_other
,
7569 * get_sd_load_idx - Obtain the load index for a given sched domain.
7570 * @sd: The sched_domain whose load_idx is to be obtained.
7571 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7573 * Return: The load index.
7575 static inline int get_sd_load_idx(struct sched_domain
*sd
,
7576 enum cpu_idle_type idle
)
7582 load_idx
= sd
->busy_idx
;
7585 case CPU_NEWLY_IDLE
:
7586 load_idx
= sd
->newidle_idx
;
7589 load_idx
= sd
->idle_idx
;
7596 static unsigned long scale_rt_capacity(struct sched_domain
*sd
, int cpu
)
7598 struct rq
*rq
= cpu_rq(cpu
);
7599 unsigned long max
= arch_scale_cpu_capacity(sd
, cpu
);
7600 unsigned long used
, free
;
7603 irq
= cpu_util_irq(rq
);
7605 if (unlikely(irq
>= max
))
7608 used
= READ_ONCE(rq
->avg_rt
.util_avg
);
7609 used
+= READ_ONCE(rq
->avg_dl
.util_avg
);
7611 if (unlikely(used
>= max
))
7616 return scale_irq_capacity(free
, irq
, max
);
7619 static void update_cpu_capacity(struct sched_domain
*sd
, int cpu
)
7621 unsigned long capacity
= scale_rt_capacity(sd
, cpu
);
7622 struct sched_group
*sdg
= sd
->groups
;
7624 cpu_rq(cpu
)->cpu_capacity_orig
= arch_scale_cpu_capacity(sd
, cpu
);
7629 cpu_rq(cpu
)->cpu_capacity
= capacity
;
7630 sdg
->sgc
->capacity
= capacity
;
7631 sdg
->sgc
->min_capacity
= capacity
;
7634 void update_group_capacity(struct sched_domain
*sd
, int cpu
)
7636 struct sched_domain
*child
= sd
->child
;
7637 struct sched_group
*group
, *sdg
= sd
->groups
;
7638 unsigned long capacity
, min_capacity
;
7639 unsigned long interval
;
7641 interval
= msecs_to_jiffies(sd
->balance_interval
);
7642 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
7643 sdg
->sgc
->next_update
= jiffies
+ interval
;
7646 update_cpu_capacity(sd
, cpu
);
7651 min_capacity
= ULONG_MAX
;
7653 if (child
->flags
& SD_OVERLAP
) {
7655 * SD_OVERLAP domains cannot assume that child groups
7656 * span the current group.
7659 for_each_cpu(cpu
, sched_group_span(sdg
)) {
7660 struct sched_group_capacity
*sgc
;
7661 struct rq
*rq
= cpu_rq(cpu
);
7664 * build_sched_domains() -> init_sched_groups_capacity()
7665 * gets here before we've attached the domains to the
7668 * Use capacity_of(), which is set irrespective of domains
7669 * in update_cpu_capacity().
7671 * This avoids capacity from being 0 and
7672 * causing divide-by-zero issues on boot.
7674 if (unlikely(!rq
->sd
)) {
7675 capacity
+= capacity_of(cpu
);
7677 sgc
= rq
->sd
->groups
->sgc
;
7678 capacity
+= sgc
->capacity
;
7681 min_capacity
= min(capacity
, min_capacity
);
7685 * !SD_OVERLAP domains can assume that child groups
7686 * span the current group.
7689 group
= child
->groups
;
7691 struct sched_group_capacity
*sgc
= group
->sgc
;
7693 capacity
+= sgc
->capacity
;
7694 min_capacity
= min(sgc
->min_capacity
, min_capacity
);
7695 group
= group
->next
;
7696 } while (group
!= child
->groups
);
7699 sdg
->sgc
->capacity
= capacity
;
7700 sdg
->sgc
->min_capacity
= min_capacity
;
7704 * Check whether the capacity of the rq has been noticeably reduced by side
7705 * activity. The imbalance_pct is used for the threshold.
7706 * Return true is the capacity is reduced
7709 check_cpu_capacity(struct rq
*rq
, struct sched_domain
*sd
)
7711 return ((rq
->cpu_capacity
* sd
->imbalance_pct
) <
7712 (rq
->cpu_capacity_orig
* 100));
7716 * Group imbalance indicates (and tries to solve) the problem where balancing
7717 * groups is inadequate due to ->cpus_allowed constraints.
7719 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7720 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7723 * { 0 1 2 3 } { 4 5 6 7 }
7726 * If we were to balance group-wise we'd place two tasks in the first group and
7727 * two tasks in the second group. Clearly this is undesired as it will overload
7728 * cpu 3 and leave one of the CPUs in the second group unused.
7730 * The current solution to this issue is detecting the skew in the first group
7731 * by noticing the lower domain failed to reach balance and had difficulty
7732 * moving tasks due to affinity constraints.
7734 * When this is so detected; this group becomes a candidate for busiest; see
7735 * update_sd_pick_busiest(). And calculate_imbalance() and
7736 * find_busiest_group() avoid some of the usual balance conditions to allow it
7737 * to create an effective group imbalance.
7739 * This is a somewhat tricky proposition since the next run might not find the
7740 * group imbalance and decide the groups need to be balanced again. A most
7741 * subtle and fragile situation.
7744 static inline int sg_imbalanced(struct sched_group
*group
)
7746 return group
->sgc
->imbalance
;
7750 * group_has_capacity returns true if the group has spare capacity that could
7751 * be used by some tasks.
7752 * We consider that a group has spare capacity if the * number of task is
7753 * smaller than the number of CPUs or if the utilization is lower than the
7754 * available capacity for CFS tasks.
7755 * For the latter, we use a threshold to stabilize the state, to take into
7756 * account the variance of the tasks' load and to return true if the available
7757 * capacity in meaningful for the load balancer.
7758 * As an example, an available capacity of 1% can appear but it doesn't make
7759 * any benefit for the load balance.
7762 group_has_capacity(struct lb_env
*env
, struct sg_lb_stats
*sgs
)
7764 if (sgs
->sum_nr_running
< sgs
->group_weight
)
7767 if ((sgs
->group_capacity
* 100) >
7768 (sgs
->group_util
* env
->sd
->imbalance_pct
))
7775 * group_is_overloaded returns true if the group has more tasks than it can
7777 * group_is_overloaded is not equals to !group_has_capacity because a group
7778 * with the exact right number of tasks, has no more spare capacity but is not
7779 * overloaded so both group_has_capacity and group_is_overloaded return
7783 group_is_overloaded(struct lb_env
*env
, struct sg_lb_stats
*sgs
)
7785 if (sgs
->sum_nr_running
<= sgs
->group_weight
)
7788 if ((sgs
->group_capacity
* 100) <
7789 (sgs
->group_util
* env
->sd
->imbalance_pct
))
7796 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7797 * per-CPU capacity than sched_group ref.
7800 group_smaller_cpu_capacity(struct sched_group
*sg
, struct sched_group
*ref
)
7802 return sg
->sgc
->min_capacity
* capacity_margin
<
7803 ref
->sgc
->min_capacity
* 1024;
7807 group_type
group_classify(struct sched_group
*group
,
7808 struct sg_lb_stats
*sgs
)
7810 if (sgs
->group_no_capacity
)
7811 return group_overloaded
;
7813 if (sg_imbalanced(group
))
7814 return group_imbalanced
;
7819 static bool update_nohz_stats(struct rq
*rq
, bool force
)
7821 #ifdef CONFIG_NO_HZ_COMMON
7822 unsigned int cpu
= rq
->cpu
;
7824 if (!rq
->has_blocked_load
)
7827 if (!cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))
7830 if (!force
&& !time_after(jiffies
, rq
->last_blocked_load_update_tick
))
7833 update_blocked_averages(cpu
);
7835 return rq
->has_blocked_load
;
7842 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7843 * @env: The load balancing environment.
7844 * @group: sched_group whose statistics are to be updated.
7845 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7846 * @local_group: Does group contain this_cpu.
7847 * @sgs: variable to hold the statistics for this group.
7848 * @overload: Indicate more than one runnable task for any CPU.
7850 static inline void update_sg_lb_stats(struct lb_env
*env
,
7851 struct sched_group
*group
, int load_idx
,
7852 int local_group
, struct sg_lb_stats
*sgs
,
7858 memset(sgs
, 0, sizeof(*sgs
));
7860 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
7861 struct rq
*rq
= cpu_rq(i
);
7863 if ((env
->flags
& LBF_NOHZ_STATS
) && update_nohz_stats(rq
, false))
7864 env
->flags
|= LBF_NOHZ_AGAIN
;
7866 /* Bias balancing toward CPUs of our domain: */
7868 load
= target_load(i
, load_idx
);
7870 load
= source_load(i
, load_idx
);
7872 sgs
->group_load
+= load
;
7873 sgs
->group_util
+= cpu_util(i
);
7874 sgs
->sum_nr_running
+= rq
->cfs
.h_nr_running
;
7876 nr_running
= rq
->nr_running
;
7880 #ifdef CONFIG_NUMA_BALANCING
7881 sgs
->nr_numa_running
+= rq
->nr_numa_running
;
7882 sgs
->nr_preferred_running
+= rq
->nr_preferred_running
;
7884 sgs
->sum_weighted_load
+= weighted_cpuload(rq
);
7886 * No need to call idle_cpu() if nr_running is not 0
7888 if (!nr_running
&& idle_cpu(i
))
7892 /* Adjust by relative CPU capacity of the group */
7893 sgs
->group_capacity
= group
->sgc
->capacity
;
7894 sgs
->avg_load
= (sgs
->group_load
*SCHED_CAPACITY_SCALE
) / sgs
->group_capacity
;
7896 if (sgs
->sum_nr_running
)
7897 sgs
->load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
7899 sgs
->group_weight
= group
->group_weight
;
7901 sgs
->group_no_capacity
= group_is_overloaded(env
, sgs
);
7902 sgs
->group_type
= group_classify(group
, sgs
);
7906 * update_sd_pick_busiest - return 1 on busiest group
7907 * @env: The load balancing environment.
7908 * @sds: sched_domain statistics
7909 * @sg: sched_group candidate to be checked for being the busiest
7910 * @sgs: sched_group statistics
7912 * Determine if @sg is a busier group than the previously selected
7915 * Return: %true if @sg is a busier group than the previously selected
7916 * busiest group. %false otherwise.
7918 static bool update_sd_pick_busiest(struct lb_env
*env
,
7919 struct sd_lb_stats
*sds
,
7920 struct sched_group
*sg
,
7921 struct sg_lb_stats
*sgs
)
7923 struct sg_lb_stats
*busiest
= &sds
->busiest_stat
;
7925 if (sgs
->group_type
> busiest
->group_type
)
7928 if (sgs
->group_type
< busiest
->group_type
)
7931 if (sgs
->avg_load
<= busiest
->avg_load
)
7934 if (!(env
->sd
->flags
& SD_ASYM_CPUCAPACITY
))
7938 * Candidate sg has no more than one task per CPU and
7939 * has higher per-CPU capacity. Migrating tasks to less
7940 * capable CPUs may harm throughput. Maximize throughput,
7941 * power/energy consequences are not considered.
7943 if (sgs
->sum_nr_running
<= sgs
->group_weight
&&
7944 group_smaller_cpu_capacity(sds
->local
, sg
))
7948 /* This is the busiest node in its class. */
7949 if (!(env
->sd
->flags
& SD_ASYM_PACKING
))
7952 /* No ASYM_PACKING if target CPU is already busy */
7953 if (env
->idle
== CPU_NOT_IDLE
)
7956 * ASYM_PACKING needs to move all the work to the highest
7957 * prority CPUs in the group, therefore mark all groups
7958 * of lower priority than ourself as busy.
7960 if (sgs
->sum_nr_running
&&
7961 sched_asym_prefer(env
->dst_cpu
, sg
->asym_prefer_cpu
)) {
7965 /* Prefer to move from lowest priority CPU's work */
7966 if (sched_asym_prefer(sds
->busiest
->asym_prefer_cpu
,
7967 sg
->asym_prefer_cpu
))
7974 #ifdef CONFIG_NUMA_BALANCING
7975 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
7977 if (sgs
->sum_nr_running
> sgs
->nr_numa_running
)
7979 if (sgs
->sum_nr_running
> sgs
->nr_preferred_running
)
7984 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
7986 if (rq
->nr_running
> rq
->nr_numa_running
)
7988 if (rq
->nr_running
> rq
->nr_preferred_running
)
7993 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
7998 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
8002 #endif /* CONFIG_NUMA_BALANCING */
8005 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8006 * @env: The load balancing environment.
8007 * @sds: variable to hold the statistics for this sched_domain.
8009 static inline void update_sd_lb_stats(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8011 struct sched_domain
*child
= env
->sd
->child
;
8012 struct sched_group
*sg
= env
->sd
->groups
;
8013 struct sg_lb_stats
*local
= &sds
->local_stat
;
8014 struct sg_lb_stats tmp_sgs
;
8015 int load_idx
, prefer_sibling
= 0;
8016 bool overload
= false;
8018 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
8021 #ifdef CONFIG_NO_HZ_COMMON
8022 if (env
->idle
== CPU_NEWLY_IDLE
&& READ_ONCE(nohz
.has_blocked
))
8023 env
->flags
|= LBF_NOHZ_STATS
;
8026 load_idx
= get_sd_load_idx(env
->sd
, env
->idle
);
8029 struct sg_lb_stats
*sgs
= &tmp_sgs
;
8032 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_span(sg
));
8037 if (env
->idle
!= CPU_NEWLY_IDLE
||
8038 time_after_eq(jiffies
, sg
->sgc
->next_update
))
8039 update_group_capacity(env
->sd
, env
->dst_cpu
);
8042 update_sg_lb_stats(env
, sg
, load_idx
, local_group
, sgs
,
8049 * In case the child domain prefers tasks go to siblings
8050 * first, lower the sg capacity so that we'll try
8051 * and move all the excess tasks away. We lower the capacity
8052 * of a group only if the local group has the capacity to fit
8053 * these excess tasks. The extra check prevents the case where
8054 * you always pull from the heaviest group when it is already
8055 * under-utilized (possible with a large weight task outweighs
8056 * the tasks on the system).
8058 if (prefer_sibling
&& sds
->local
&&
8059 group_has_capacity(env
, local
) &&
8060 (sgs
->sum_nr_running
> local
->sum_nr_running
+ 1)) {
8061 sgs
->group_no_capacity
= 1;
8062 sgs
->group_type
= group_classify(sg
, sgs
);
8065 if (update_sd_pick_busiest(env
, sds
, sg
, sgs
)) {
8067 sds
->busiest_stat
= *sgs
;
8071 /* Now, start updating sd_lb_stats */
8072 sds
->total_running
+= sgs
->sum_nr_running
;
8073 sds
->total_load
+= sgs
->group_load
;
8074 sds
->total_capacity
+= sgs
->group_capacity
;
8077 } while (sg
!= env
->sd
->groups
);
8079 #ifdef CONFIG_NO_HZ_COMMON
8080 if ((env
->flags
& LBF_NOHZ_AGAIN
) &&
8081 cpumask_subset(nohz
.idle_cpus_mask
, sched_domain_span(env
->sd
))) {
8083 WRITE_ONCE(nohz
.next_blocked
,
8084 jiffies
+ msecs_to_jiffies(LOAD_AVG_PERIOD
));
8088 if (env
->sd
->flags
& SD_NUMA
)
8089 env
->fbq_type
= fbq_classify_group(&sds
->busiest_stat
);
8091 if (!env
->sd
->parent
) {
8092 /* update overload indicator if we are at root domain */
8093 if (env
->dst_rq
->rd
->overload
!= overload
)
8094 env
->dst_rq
->rd
->overload
= overload
;
8099 * check_asym_packing - Check to see if the group is packed into the
8102 * This is primarily intended to used at the sibling level. Some
8103 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8104 * case of POWER7, it can move to lower SMT modes only when higher
8105 * threads are idle. When in lower SMT modes, the threads will
8106 * perform better since they share less core resources. Hence when we
8107 * have idle threads, we want them to be the higher ones.
8109 * This packing function is run on idle threads. It checks to see if
8110 * the busiest CPU in this domain (core in the P7 case) has a higher
8111 * CPU number than the packing function is being run on. Here we are
8112 * assuming lower CPU number will be equivalent to lower a SMT thread
8115 * Return: 1 when packing is required and a task should be moved to
8116 * this CPU. The amount of the imbalance is returned in env->imbalance.
8118 * @env: The load balancing environment.
8119 * @sds: Statistics of the sched_domain which is to be packed
8121 static int check_asym_packing(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8125 if (!(env
->sd
->flags
& SD_ASYM_PACKING
))
8128 if (env
->idle
== CPU_NOT_IDLE
)
8134 busiest_cpu
= sds
->busiest
->asym_prefer_cpu
;
8135 if (sched_asym_prefer(busiest_cpu
, env
->dst_cpu
))
8138 env
->imbalance
= DIV_ROUND_CLOSEST(
8139 sds
->busiest_stat
.avg_load
* sds
->busiest_stat
.group_capacity
,
8140 SCHED_CAPACITY_SCALE
);
8146 * fix_small_imbalance - Calculate the minor imbalance that exists
8147 * amongst the groups of a sched_domain, during
8149 * @env: The load balancing environment.
8150 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8153 void fix_small_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8155 unsigned long tmp
, capa_now
= 0, capa_move
= 0;
8156 unsigned int imbn
= 2;
8157 unsigned long scaled_busy_load_per_task
;
8158 struct sg_lb_stats
*local
, *busiest
;
8160 local
= &sds
->local_stat
;
8161 busiest
= &sds
->busiest_stat
;
8163 if (!local
->sum_nr_running
)
8164 local
->load_per_task
= cpu_avg_load_per_task(env
->dst_cpu
);
8165 else if (busiest
->load_per_task
> local
->load_per_task
)
8168 scaled_busy_load_per_task
=
8169 (busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) /
8170 busiest
->group_capacity
;
8172 if (busiest
->avg_load
+ scaled_busy_load_per_task
>=
8173 local
->avg_load
+ (scaled_busy_load_per_task
* imbn
)) {
8174 env
->imbalance
= busiest
->load_per_task
;
8179 * OK, we don't have enough imbalance to justify moving tasks,
8180 * however we may be able to increase total CPU capacity used by
8184 capa_now
+= busiest
->group_capacity
*
8185 min(busiest
->load_per_task
, busiest
->avg_load
);
8186 capa_now
+= local
->group_capacity
*
8187 min(local
->load_per_task
, local
->avg_load
);
8188 capa_now
/= SCHED_CAPACITY_SCALE
;
8190 /* Amount of load we'd subtract */
8191 if (busiest
->avg_load
> scaled_busy_load_per_task
) {
8192 capa_move
+= busiest
->group_capacity
*
8193 min(busiest
->load_per_task
,
8194 busiest
->avg_load
- scaled_busy_load_per_task
);
8197 /* Amount of load we'd add */
8198 if (busiest
->avg_load
* busiest
->group_capacity
<
8199 busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) {
8200 tmp
= (busiest
->avg_load
* busiest
->group_capacity
) /
8201 local
->group_capacity
;
8203 tmp
= (busiest
->load_per_task
* SCHED_CAPACITY_SCALE
) /
8204 local
->group_capacity
;
8206 capa_move
+= local
->group_capacity
*
8207 min(local
->load_per_task
, local
->avg_load
+ tmp
);
8208 capa_move
/= SCHED_CAPACITY_SCALE
;
8210 /* Move if we gain throughput */
8211 if (capa_move
> capa_now
)
8212 env
->imbalance
= busiest
->load_per_task
;
8216 * calculate_imbalance - Calculate the amount of imbalance present within the
8217 * groups of a given sched_domain during load balance.
8218 * @env: load balance environment
8219 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8221 static inline void calculate_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8223 unsigned long max_pull
, load_above_capacity
= ~0UL;
8224 struct sg_lb_stats
*local
, *busiest
;
8226 local
= &sds
->local_stat
;
8227 busiest
= &sds
->busiest_stat
;
8229 if (busiest
->group_type
== group_imbalanced
) {
8231 * In the group_imb case we cannot rely on group-wide averages
8232 * to ensure CPU-load equilibrium, look at wider averages. XXX
8234 busiest
->load_per_task
=
8235 min(busiest
->load_per_task
, sds
->avg_load
);
8239 * Avg load of busiest sg can be less and avg load of local sg can
8240 * be greater than avg load across all sgs of sd because avg load
8241 * factors in sg capacity and sgs with smaller group_type are
8242 * skipped when updating the busiest sg:
8244 if (busiest
->avg_load
<= sds
->avg_load
||
8245 local
->avg_load
>= sds
->avg_load
) {
8247 return fix_small_imbalance(env
, sds
);
8251 * If there aren't any idle CPUs, avoid creating some.
8253 if (busiest
->group_type
== group_overloaded
&&
8254 local
->group_type
== group_overloaded
) {
8255 load_above_capacity
= busiest
->sum_nr_running
* SCHED_CAPACITY_SCALE
;
8256 if (load_above_capacity
> busiest
->group_capacity
) {
8257 load_above_capacity
-= busiest
->group_capacity
;
8258 load_above_capacity
*= scale_load_down(NICE_0_LOAD
);
8259 load_above_capacity
/= busiest
->group_capacity
;
8261 load_above_capacity
= ~0UL;
8265 * We're trying to get all the CPUs to the average_load, so we don't
8266 * want to push ourselves above the average load, nor do we wish to
8267 * reduce the max loaded CPU below the average load. At the same time,
8268 * we also don't want to reduce the group load below the group
8269 * capacity. Thus we look for the minimum possible imbalance.
8271 max_pull
= min(busiest
->avg_load
- sds
->avg_load
, load_above_capacity
);
8273 /* How much load to actually move to equalise the imbalance */
8274 env
->imbalance
= min(
8275 max_pull
* busiest
->group_capacity
,
8276 (sds
->avg_load
- local
->avg_load
) * local
->group_capacity
8277 ) / SCHED_CAPACITY_SCALE
;
8280 * if *imbalance is less than the average load per runnable task
8281 * there is no guarantee that any tasks will be moved so we'll have
8282 * a think about bumping its value to force at least one task to be
8285 if (env
->imbalance
< busiest
->load_per_task
)
8286 return fix_small_imbalance(env
, sds
);
8289 /******* find_busiest_group() helpers end here *********************/
8292 * find_busiest_group - Returns the busiest group within the sched_domain
8293 * if there is an imbalance.
8295 * Also calculates the amount of weighted load which should be moved
8296 * to restore balance.
8298 * @env: The load balancing environment.
8300 * Return: - The busiest group if imbalance exists.
8302 static struct sched_group
*find_busiest_group(struct lb_env
*env
)
8304 struct sg_lb_stats
*local
, *busiest
;
8305 struct sd_lb_stats sds
;
8307 init_sd_lb_stats(&sds
);
8310 * Compute the various statistics relavent for load balancing at
8313 update_sd_lb_stats(env
, &sds
);
8314 local
= &sds
.local_stat
;
8315 busiest
= &sds
.busiest_stat
;
8317 /* ASYM feature bypasses nice load balance check */
8318 if (check_asym_packing(env
, &sds
))
8321 /* There is no busy sibling group to pull tasks from */
8322 if (!sds
.busiest
|| busiest
->sum_nr_running
== 0)
8325 /* XXX broken for overlapping NUMA groups */
8326 sds
.avg_load
= (SCHED_CAPACITY_SCALE
* sds
.total_load
)
8327 / sds
.total_capacity
;
8330 * If the busiest group is imbalanced the below checks don't
8331 * work because they assume all things are equal, which typically
8332 * isn't true due to cpus_allowed constraints and the like.
8334 if (busiest
->group_type
== group_imbalanced
)
8338 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8339 * capacities from resulting in underutilization due to avg_load.
8341 if (env
->idle
!= CPU_NOT_IDLE
&& group_has_capacity(env
, local
) &&
8342 busiest
->group_no_capacity
)
8346 * If the local group is busier than the selected busiest group
8347 * don't try and pull any tasks.
8349 if (local
->avg_load
>= busiest
->avg_load
)
8353 * Don't pull any tasks if this group is already above the domain
8356 if (local
->avg_load
>= sds
.avg_load
)
8359 if (env
->idle
== CPU_IDLE
) {
8361 * This CPU is idle. If the busiest group is not overloaded
8362 * and there is no imbalance between this and busiest group
8363 * wrt idle CPUs, it is balanced. The imbalance becomes
8364 * significant if the diff is greater than 1 otherwise we
8365 * might end up to just move the imbalance on another group
8367 if ((busiest
->group_type
!= group_overloaded
) &&
8368 (local
->idle_cpus
<= (busiest
->idle_cpus
+ 1)))
8372 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8373 * imbalance_pct to be conservative.
8375 if (100 * busiest
->avg_load
<=
8376 env
->sd
->imbalance_pct
* local
->avg_load
)
8381 /* Looks like there is an imbalance. Compute it */
8382 calculate_imbalance(env
, &sds
);
8383 return env
->imbalance
? sds
.busiest
: NULL
;
8391 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8393 static struct rq
*find_busiest_queue(struct lb_env
*env
,
8394 struct sched_group
*group
)
8396 struct rq
*busiest
= NULL
, *rq
;
8397 unsigned long busiest_load
= 0, busiest_capacity
= 1;
8400 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
8401 unsigned long capacity
, wl
;
8405 rt
= fbq_classify_rq(rq
);
8408 * We classify groups/runqueues into three groups:
8409 * - regular: there are !numa tasks
8410 * - remote: there are numa tasks that run on the 'wrong' node
8411 * - all: there is no distinction
8413 * In order to avoid migrating ideally placed numa tasks,
8414 * ignore those when there's better options.
8416 * If we ignore the actual busiest queue to migrate another
8417 * task, the next balance pass can still reduce the busiest
8418 * queue by moving tasks around inside the node.
8420 * If we cannot move enough load due to this classification
8421 * the next pass will adjust the group classification and
8422 * allow migration of more tasks.
8424 * Both cases only affect the total convergence complexity.
8426 if (rt
> env
->fbq_type
)
8429 capacity
= capacity_of(i
);
8431 wl
= weighted_cpuload(rq
);
8434 * When comparing with imbalance, use weighted_cpuload()
8435 * which is not scaled with the CPU capacity.
8438 if (rq
->nr_running
== 1 && wl
> env
->imbalance
&&
8439 !check_cpu_capacity(rq
, env
->sd
))
8443 * For the load comparisons with the other CPU's, consider
8444 * the weighted_cpuload() scaled with the CPU capacity, so
8445 * that the load can be moved away from the CPU that is
8446 * potentially running at a lower capacity.
8448 * Thus we're looking for max(wl_i / capacity_i), crosswise
8449 * multiplication to rid ourselves of the division works out
8450 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8451 * our previous maximum.
8453 if (wl
* busiest_capacity
> busiest_load
* capacity
) {
8455 busiest_capacity
= capacity
;
8464 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8465 * so long as it is large enough.
8467 #define MAX_PINNED_INTERVAL 512
8469 static int need_active_balance(struct lb_env
*env
)
8471 struct sched_domain
*sd
= env
->sd
;
8473 if (env
->idle
== CPU_NEWLY_IDLE
) {
8476 * ASYM_PACKING needs to force migrate tasks from busy but
8477 * lower priority CPUs in order to pack all tasks in the
8478 * highest priority CPUs.
8480 if ((sd
->flags
& SD_ASYM_PACKING
) &&
8481 sched_asym_prefer(env
->dst_cpu
, env
->src_cpu
))
8486 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8487 * It's worth migrating the task if the src_cpu's capacity is reduced
8488 * because of other sched_class or IRQs if more capacity stays
8489 * available on dst_cpu.
8491 if ((env
->idle
!= CPU_NOT_IDLE
) &&
8492 (env
->src_rq
->cfs
.h_nr_running
== 1)) {
8493 if ((check_cpu_capacity(env
->src_rq
, sd
)) &&
8494 (capacity_of(env
->src_cpu
)*sd
->imbalance_pct
< capacity_of(env
->dst_cpu
)*100))
8498 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
8501 static int active_load_balance_cpu_stop(void *data
);
8503 static int should_we_balance(struct lb_env
*env
)
8505 struct sched_group
*sg
= env
->sd
->groups
;
8506 int cpu
, balance_cpu
= -1;
8509 * Ensure the balancing environment is consistent; can happen
8510 * when the softirq triggers 'during' hotplug.
8512 if (!cpumask_test_cpu(env
->dst_cpu
, env
->cpus
))
8516 * In the newly idle case, we will allow all the CPUs
8517 * to do the newly idle load balance.
8519 if (env
->idle
== CPU_NEWLY_IDLE
)
8522 /* Try to find first idle CPU */
8523 for_each_cpu_and(cpu
, group_balance_mask(sg
), env
->cpus
) {
8531 if (balance_cpu
== -1)
8532 balance_cpu
= group_balance_cpu(sg
);
8535 * First idle CPU or the first CPU(busiest) in this sched group
8536 * is eligible for doing load balancing at this and above domains.
8538 return balance_cpu
== env
->dst_cpu
;
8542 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8543 * tasks if there is an imbalance.
8545 static int load_balance(int this_cpu
, struct rq
*this_rq
,
8546 struct sched_domain
*sd
, enum cpu_idle_type idle
,
8547 int *continue_balancing
)
8549 int ld_moved
, cur_ld_moved
, active_balance
= 0;
8550 struct sched_domain
*sd_parent
= sd
->parent
;
8551 struct sched_group
*group
;
8554 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(load_balance_mask
);
8556 struct lb_env env
= {
8558 .dst_cpu
= this_cpu
,
8560 .dst_grpmask
= sched_group_span(sd
->groups
),
8562 .loop_break
= sched_nr_migrate_break
,
8565 .tasks
= LIST_HEAD_INIT(env
.tasks
),
8568 cpumask_and(cpus
, sched_domain_span(sd
), cpu_active_mask
);
8570 schedstat_inc(sd
->lb_count
[idle
]);
8573 if (!should_we_balance(&env
)) {
8574 *continue_balancing
= 0;
8578 group
= find_busiest_group(&env
);
8580 schedstat_inc(sd
->lb_nobusyg
[idle
]);
8584 busiest
= find_busiest_queue(&env
, group
);
8586 schedstat_inc(sd
->lb_nobusyq
[idle
]);
8590 BUG_ON(busiest
== env
.dst_rq
);
8592 schedstat_add(sd
->lb_imbalance
[idle
], env
.imbalance
);
8594 env
.src_cpu
= busiest
->cpu
;
8595 env
.src_rq
= busiest
;
8598 if (busiest
->nr_running
> 1) {
8600 * Attempt to move tasks. If find_busiest_group has found
8601 * an imbalance but busiest->nr_running <= 1, the group is
8602 * still unbalanced. ld_moved simply stays zero, so it is
8603 * correctly treated as an imbalance.
8605 env
.flags
|= LBF_ALL_PINNED
;
8606 env
.loop_max
= min(sysctl_sched_nr_migrate
, busiest
->nr_running
);
8609 rq_lock_irqsave(busiest
, &rf
);
8610 update_rq_clock(busiest
);
8613 * cur_ld_moved - load moved in current iteration
8614 * ld_moved - cumulative load moved across iterations
8616 cur_ld_moved
= detach_tasks(&env
);
8619 * We've detached some tasks from busiest_rq. Every
8620 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8621 * unlock busiest->lock, and we are able to be sure
8622 * that nobody can manipulate the tasks in parallel.
8623 * See task_rq_lock() family for the details.
8626 rq_unlock(busiest
, &rf
);
8630 ld_moved
+= cur_ld_moved
;
8633 local_irq_restore(rf
.flags
);
8635 if (env
.flags
& LBF_NEED_BREAK
) {
8636 env
.flags
&= ~LBF_NEED_BREAK
;
8641 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8642 * us and move them to an alternate dst_cpu in our sched_group
8643 * where they can run. The upper limit on how many times we
8644 * iterate on same src_cpu is dependent on number of CPUs in our
8647 * This changes load balance semantics a bit on who can move
8648 * load to a given_cpu. In addition to the given_cpu itself
8649 * (or a ilb_cpu acting on its behalf where given_cpu is
8650 * nohz-idle), we now have balance_cpu in a position to move
8651 * load to given_cpu. In rare situations, this may cause
8652 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8653 * _independently_ and at _same_ time to move some load to
8654 * given_cpu) causing exceess load to be moved to given_cpu.
8655 * This however should not happen so much in practice and
8656 * moreover subsequent load balance cycles should correct the
8657 * excess load moved.
8659 if ((env
.flags
& LBF_DST_PINNED
) && env
.imbalance
> 0) {
8661 /* Prevent to re-select dst_cpu via env's CPUs */
8662 cpumask_clear_cpu(env
.dst_cpu
, env
.cpus
);
8664 env
.dst_rq
= cpu_rq(env
.new_dst_cpu
);
8665 env
.dst_cpu
= env
.new_dst_cpu
;
8666 env
.flags
&= ~LBF_DST_PINNED
;
8668 env
.loop_break
= sched_nr_migrate_break
;
8671 * Go back to "more_balance" rather than "redo" since we
8672 * need to continue with same src_cpu.
8678 * We failed to reach balance because of affinity.
8681 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
8683 if ((env
.flags
& LBF_SOME_PINNED
) && env
.imbalance
> 0)
8684 *group_imbalance
= 1;
8687 /* All tasks on this runqueue were pinned by CPU affinity */
8688 if (unlikely(env
.flags
& LBF_ALL_PINNED
)) {
8689 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
8691 * Attempting to continue load balancing at the current
8692 * sched_domain level only makes sense if there are
8693 * active CPUs remaining as possible busiest CPUs to
8694 * pull load from which are not contained within the
8695 * destination group that is receiving any migrated
8698 if (!cpumask_subset(cpus
, env
.dst_grpmask
)) {
8700 env
.loop_break
= sched_nr_migrate_break
;
8703 goto out_all_pinned
;
8708 schedstat_inc(sd
->lb_failed
[idle
]);
8710 * Increment the failure counter only on periodic balance.
8711 * We do not want newidle balance, which can be very
8712 * frequent, pollute the failure counter causing
8713 * excessive cache_hot migrations and active balances.
8715 if (idle
!= CPU_NEWLY_IDLE
)
8716 sd
->nr_balance_failed
++;
8718 if (need_active_balance(&env
)) {
8719 unsigned long flags
;
8721 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
8724 * Don't kick the active_load_balance_cpu_stop,
8725 * if the curr task on busiest CPU can't be
8726 * moved to this_cpu:
8728 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
8729 raw_spin_unlock_irqrestore(&busiest
->lock
,
8731 env
.flags
|= LBF_ALL_PINNED
;
8732 goto out_one_pinned
;
8736 * ->active_balance synchronizes accesses to
8737 * ->active_balance_work. Once set, it's cleared
8738 * only after active load balance is finished.
8740 if (!busiest
->active_balance
) {
8741 busiest
->active_balance
= 1;
8742 busiest
->push_cpu
= this_cpu
;
8745 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
8747 if (active_balance
) {
8748 stop_one_cpu_nowait(cpu_of(busiest
),
8749 active_load_balance_cpu_stop
, busiest
,
8750 &busiest
->active_balance_work
);
8753 /* We've kicked active balancing, force task migration. */
8754 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
8757 sd
->nr_balance_failed
= 0;
8759 if (likely(!active_balance
)) {
8760 /* We were unbalanced, so reset the balancing interval */
8761 sd
->balance_interval
= sd
->min_interval
;
8764 * If we've begun active balancing, start to back off. This
8765 * case may not be covered by the all_pinned logic if there
8766 * is only 1 task on the busy runqueue (because we don't call
8769 if (sd
->balance_interval
< sd
->max_interval
)
8770 sd
->balance_interval
*= 2;
8777 * We reach balance although we may have faced some affinity
8778 * constraints. Clear the imbalance flag if it was set.
8781 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
8783 if (*group_imbalance
)
8784 *group_imbalance
= 0;
8789 * We reach balance because all tasks are pinned at this level so
8790 * we can't migrate them. Let the imbalance flag set so parent level
8791 * can try to migrate them.
8793 schedstat_inc(sd
->lb_balanced
[idle
]);
8795 sd
->nr_balance_failed
= 0;
8798 /* tune up the balancing interval */
8799 if (((env
.flags
& LBF_ALL_PINNED
) &&
8800 sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
8801 (sd
->balance_interval
< sd
->max_interval
))
8802 sd
->balance_interval
*= 2;
8809 static inline unsigned long
8810 get_sd_balance_interval(struct sched_domain
*sd
, int cpu_busy
)
8812 unsigned long interval
= sd
->balance_interval
;
8815 interval
*= sd
->busy_factor
;
8817 /* scale ms to jiffies */
8818 interval
= msecs_to_jiffies(interval
);
8819 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
8825 update_next_balance(struct sched_domain
*sd
, unsigned long *next_balance
)
8827 unsigned long interval
, next
;
8829 /* used by idle balance, so cpu_busy = 0 */
8830 interval
= get_sd_balance_interval(sd
, 0);
8831 next
= sd
->last_balance
+ interval
;
8833 if (time_after(*next_balance
, next
))
8834 *next_balance
= next
;
8838 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8839 * running tasks off the busiest CPU onto idle CPUs. It requires at
8840 * least 1 task to be running on each physical CPU where possible, and
8841 * avoids physical / logical imbalances.
8843 static int active_load_balance_cpu_stop(void *data
)
8845 struct rq
*busiest_rq
= data
;
8846 int busiest_cpu
= cpu_of(busiest_rq
);
8847 int target_cpu
= busiest_rq
->push_cpu
;
8848 struct rq
*target_rq
= cpu_rq(target_cpu
);
8849 struct sched_domain
*sd
;
8850 struct task_struct
*p
= NULL
;
8853 rq_lock_irq(busiest_rq
, &rf
);
8855 * Between queueing the stop-work and running it is a hole in which
8856 * CPUs can become inactive. We should not move tasks from or to
8859 if (!cpu_active(busiest_cpu
) || !cpu_active(target_cpu
))
8862 /* Make sure the requested CPU hasn't gone down in the meantime: */
8863 if (unlikely(busiest_cpu
!= smp_processor_id() ||
8864 !busiest_rq
->active_balance
))
8867 /* Is there any task to move? */
8868 if (busiest_rq
->nr_running
<= 1)
8872 * This condition is "impossible", if it occurs
8873 * we need to fix it. Originally reported by
8874 * Bjorn Helgaas on a 128-CPU setup.
8876 BUG_ON(busiest_rq
== target_rq
);
8878 /* Search for an sd spanning us and the target CPU. */
8880 for_each_domain(target_cpu
, sd
) {
8881 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
8882 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
8887 struct lb_env env
= {
8889 .dst_cpu
= target_cpu
,
8890 .dst_rq
= target_rq
,
8891 .src_cpu
= busiest_rq
->cpu
,
8892 .src_rq
= busiest_rq
,
8895 * can_migrate_task() doesn't need to compute new_dst_cpu
8896 * for active balancing. Since we have CPU_IDLE, but no
8897 * @dst_grpmask we need to make that test go away with lying
8900 .flags
= LBF_DST_PINNED
,
8903 schedstat_inc(sd
->alb_count
);
8904 update_rq_clock(busiest_rq
);
8906 p
= detach_one_task(&env
);
8908 schedstat_inc(sd
->alb_pushed
);
8909 /* Active balancing done, reset the failure counter. */
8910 sd
->nr_balance_failed
= 0;
8912 schedstat_inc(sd
->alb_failed
);
8917 busiest_rq
->active_balance
= 0;
8918 rq_unlock(busiest_rq
, &rf
);
8921 attach_one_task(target_rq
, p
);
8928 static DEFINE_SPINLOCK(balancing
);
8931 * Scale the max load_balance interval with the number of CPUs in the system.
8932 * This trades load-balance latency on larger machines for less cross talk.
8934 void update_max_interval(void)
8936 max_load_balance_interval
= HZ
*num_online_cpus()/10;
8940 * It checks each scheduling domain to see if it is due to be balanced,
8941 * and initiates a balancing operation if so.
8943 * Balancing parameters are set up in init_sched_domains.
8945 static void rebalance_domains(struct rq
*rq
, enum cpu_idle_type idle
)
8947 int continue_balancing
= 1;
8949 unsigned long interval
;
8950 struct sched_domain
*sd
;
8951 /* Earliest time when we have to do rebalance again */
8952 unsigned long next_balance
= jiffies
+ 60*HZ
;
8953 int update_next_balance
= 0;
8954 int need_serialize
, need_decay
= 0;
8958 for_each_domain(cpu
, sd
) {
8960 * Decay the newidle max times here because this is a regular
8961 * visit to all the domains. Decay ~1% per second.
8963 if (time_after(jiffies
, sd
->next_decay_max_lb_cost
)) {
8964 sd
->max_newidle_lb_cost
=
8965 (sd
->max_newidle_lb_cost
* 253) / 256;
8966 sd
->next_decay_max_lb_cost
= jiffies
+ HZ
;
8969 max_cost
+= sd
->max_newidle_lb_cost
;
8971 if (!(sd
->flags
& SD_LOAD_BALANCE
))
8975 * Stop the load balance at this level. There is another
8976 * CPU in our sched group which is doing load balancing more
8979 if (!continue_balancing
) {
8985 interval
= get_sd_balance_interval(sd
, idle
!= CPU_IDLE
);
8987 need_serialize
= sd
->flags
& SD_SERIALIZE
;
8988 if (need_serialize
) {
8989 if (!spin_trylock(&balancing
))
8993 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
8994 if (load_balance(cpu
, rq
, sd
, idle
, &continue_balancing
)) {
8996 * The LBF_DST_PINNED logic could have changed
8997 * env->dst_cpu, so we can't know our idle
8998 * state even if we migrated tasks. Update it.
9000 idle
= idle_cpu(cpu
) ? CPU_IDLE
: CPU_NOT_IDLE
;
9002 sd
->last_balance
= jiffies
;
9003 interval
= get_sd_balance_interval(sd
, idle
!= CPU_IDLE
);
9006 spin_unlock(&balancing
);
9008 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
9009 next_balance
= sd
->last_balance
+ interval
;
9010 update_next_balance
= 1;
9015 * Ensure the rq-wide value also decays but keep it at a
9016 * reasonable floor to avoid funnies with rq->avg_idle.
9018 rq
->max_idle_balance_cost
=
9019 max((u64
)sysctl_sched_migration_cost
, max_cost
);
9024 * next_balance will be updated only when there is a need.
9025 * When the cpu is attached to null domain for ex, it will not be
9028 if (likely(update_next_balance
)) {
9029 rq
->next_balance
= next_balance
;
9031 #ifdef CONFIG_NO_HZ_COMMON
9033 * If this CPU has been elected to perform the nohz idle
9034 * balance. Other idle CPUs have already rebalanced with
9035 * nohz_idle_balance() and nohz.next_balance has been
9036 * updated accordingly. This CPU is now running the idle load
9037 * balance for itself and we need to update the
9038 * nohz.next_balance accordingly.
9040 if ((idle
== CPU_IDLE
) && time_after(nohz
.next_balance
, rq
->next_balance
))
9041 nohz
.next_balance
= rq
->next_balance
;
9046 static inline int on_null_domain(struct rq
*rq
)
9048 return unlikely(!rcu_dereference_sched(rq
->sd
));
9051 #ifdef CONFIG_NO_HZ_COMMON
9053 * idle load balancing details
9054 * - When one of the busy CPUs notice that there may be an idle rebalancing
9055 * needed, they will kick the idle load balancer, which then does idle
9056 * load balancing for all the idle CPUs.
9059 static inline int find_new_ilb(void)
9061 int ilb
= cpumask_first(nohz
.idle_cpus_mask
);
9063 if (ilb
< nr_cpu_ids
&& idle_cpu(ilb
))
9070 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9071 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9072 * CPU (if there is one).
9074 static void kick_ilb(unsigned int flags
)
9078 nohz
.next_balance
++;
9080 ilb_cpu
= find_new_ilb();
9082 if (ilb_cpu
>= nr_cpu_ids
)
9085 flags
= atomic_fetch_or(flags
, nohz_flags(ilb_cpu
));
9086 if (flags
& NOHZ_KICK_MASK
)
9090 * Use smp_send_reschedule() instead of resched_cpu().
9091 * This way we generate a sched IPI on the target CPU which
9092 * is idle. And the softirq performing nohz idle load balance
9093 * will be run before returning from the IPI.
9095 smp_send_reschedule(ilb_cpu
);
9099 * Current heuristic for kicking the idle load balancer in the presence
9100 * of an idle cpu in the system.
9101 * - This rq has more than one task.
9102 * - This rq has at least one CFS task and the capacity of the CPU is
9103 * significantly reduced because of RT tasks or IRQs.
9104 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9105 * multiple busy cpu.
9106 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9107 * domain span are idle.
9109 static void nohz_balancer_kick(struct rq
*rq
)
9111 unsigned long now
= jiffies
;
9112 struct sched_domain_shared
*sds
;
9113 struct sched_domain
*sd
;
9114 int nr_busy
, i
, cpu
= rq
->cpu
;
9115 unsigned int flags
= 0;
9117 if (unlikely(rq
->idle_balance
))
9121 * We may be recently in ticked or tickless idle mode. At the first
9122 * busy tick after returning from idle, we will update the busy stats.
9124 nohz_balance_exit_idle(rq
);
9127 * None are in tickless mode and hence no need for NOHZ idle load
9130 if (likely(!atomic_read(&nohz
.nr_cpus
)))
9133 if (READ_ONCE(nohz
.has_blocked
) &&
9134 time_after(now
, READ_ONCE(nohz
.next_blocked
)))
9135 flags
= NOHZ_STATS_KICK
;
9137 if (time_before(now
, nohz
.next_balance
))
9140 if (rq
->nr_running
>= 2) {
9141 flags
= NOHZ_KICK_MASK
;
9146 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
9149 * XXX: write a coherent comment on why we do this.
9150 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9152 nr_busy
= atomic_read(&sds
->nr_busy_cpus
);
9154 flags
= NOHZ_KICK_MASK
;
9160 sd
= rcu_dereference(rq
->sd
);
9162 if ((rq
->cfs
.h_nr_running
>= 1) &&
9163 check_cpu_capacity(rq
, sd
)) {
9164 flags
= NOHZ_KICK_MASK
;
9169 sd
= rcu_dereference(per_cpu(sd_asym
, cpu
));
9171 for_each_cpu(i
, sched_domain_span(sd
)) {
9173 !cpumask_test_cpu(i
, nohz
.idle_cpus_mask
))
9176 if (sched_asym_prefer(i
, cpu
)) {
9177 flags
= NOHZ_KICK_MASK
;
9189 static void set_cpu_sd_state_busy(int cpu
)
9191 struct sched_domain
*sd
;
9194 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
9196 if (!sd
|| !sd
->nohz_idle
)
9200 atomic_inc(&sd
->shared
->nr_busy_cpus
);
9205 void nohz_balance_exit_idle(struct rq
*rq
)
9207 SCHED_WARN_ON(rq
!= this_rq());
9209 if (likely(!rq
->nohz_tick_stopped
))
9212 rq
->nohz_tick_stopped
= 0;
9213 cpumask_clear_cpu(rq
->cpu
, nohz
.idle_cpus_mask
);
9214 atomic_dec(&nohz
.nr_cpus
);
9216 set_cpu_sd_state_busy(rq
->cpu
);
9219 static void set_cpu_sd_state_idle(int cpu
)
9221 struct sched_domain
*sd
;
9224 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
9226 if (!sd
|| sd
->nohz_idle
)
9230 atomic_dec(&sd
->shared
->nr_busy_cpus
);
9236 * This routine will record that the CPU is going idle with tick stopped.
9237 * This info will be used in performing idle load balancing in the future.
9239 void nohz_balance_enter_idle(int cpu
)
9241 struct rq
*rq
= cpu_rq(cpu
);
9243 SCHED_WARN_ON(cpu
!= smp_processor_id());
9245 /* If this CPU is going down, then nothing needs to be done: */
9246 if (!cpu_active(cpu
))
9249 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9250 if (!housekeeping_cpu(cpu
, HK_FLAG_SCHED
))
9254 * Can be set safely without rq->lock held
9255 * If a clear happens, it will have evaluated last additions because
9256 * rq->lock is held during the check and the clear
9258 rq
->has_blocked_load
= 1;
9261 * The tick is still stopped but load could have been added in the
9262 * meantime. We set the nohz.has_blocked flag to trig a check of the
9263 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9264 * of nohz.has_blocked can only happen after checking the new load
9266 if (rq
->nohz_tick_stopped
)
9269 /* If we're a completely isolated CPU, we don't play: */
9270 if (on_null_domain(rq
))
9273 rq
->nohz_tick_stopped
= 1;
9275 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
9276 atomic_inc(&nohz
.nr_cpus
);
9279 * Ensures that if nohz_idle_balance() fails to observe our
9280 * @idle_cpus_mask store, it must observe the @has_blocked
9283 smp_mb__after_atomic();
9285 set_cpu_sd_state_idle(cpu
);
9289 * Each time a cpu enter idle, we assume that it has blocked load and
9290 * enable the periodic update of the load of idle cpus
9292 WRITE_ONCE(nohz
.has_blocked
, 1);
9296 * Internal function that runs load balance for all idle cpus. The load balance
9297 * can be a simple update of blocked load or a complete load balance with
9298 * tasks movement depending of flags.
9299 * The function returns false if the loop has stopped before running
9300 * through all idle CPUs.
9302 static bool _nohz_idle_balance(struct rq
*this_rq
, unsigned int flags
,
9303 enum cpu_idle_type idle
)
9305 /* Earliest time when we have to do rebalance again */
9306 unsigned long now
= jiffies
;
9307 unsigned long next_balance
= now
+ 60*HZ
;
9308 bool has_blocked_load
= false;
9309 int update_next_balance
= 0;
9310 int this_cpu
= this_rq
->cpu
;
9315 SCHED_WARN_ON((flags
& NOHZ_KICK_MASK
) == NOHZ_BALANCE_KICK
);
9318 * We assume there will be no idle load after this update and clear
9319 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9320 * set the has_blocked flag and trig another update of idle load.
9321 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9322 * setting the flag, we are sure to not clear the state and not
9323 * check the load of an idle cpu.
9325 WRITE_ONCE(nohz
.has_blocked
, 0);
9328 * Ensures that if we miss the CPU, we must see the has_blocked
9329 * store from nohz_balance_enter_idle().
9333 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
9334 if (balance_cpu
== this_cpu
|| !idle_cpu(balance_cpu
))
9338 * If this CPU gets work to do, stop the load balancing
9339 * work being done for other CPUs. Next load
9340 * balancing owner will pick it up.
9342 if (need_resched()) {
9343 has_blocked_load
= true;
9347 rq
= cpu_rq(balance_cpu
);
9349 has_blocked_load
|= update_nohz_stats(rq
, true);
9352 * If time for next balance is due,
9355 if (time_after_eq(jiffies
, rq
->next_balance
)) {
9358 rq_lock_irqsave(rq
, &rf
);
9359 update_rq_clock(rq
);
9360 cpu_load_update_idle(rq
);
9361 rq_unlock_irqrestore(rq
, &rf
);
9363 if (flags
& NOHZ_BALANCE_KICK
)
9364 rebalance_domains(rq
, CPU_IDLE
);
9367 if (time_after(next_balance
, rq
->next_balance
)) {
9368 next_balance
= rq
->next_balance
;
9369 update_next_balance
= 1;
9373 /* Newly idle CPU doesn't need an update */
9374 if (idle
!= CPU_NEWLY_IDLE
) {
9375 update_blocked_averages(this_cpu
);
9376 has_blocked_load
|= this_rq
->has_blocked_load
;
9379 if (flags
& NOHZ_BALANCE_KICK
)
9380 rebalance_domains(this_rq
, CPU_IDLE
);
9382 WRITE_ONCE(nohz
.next_blocked
,
9383 now
+ msecs_to_jiffies(LOAD_AVG_PERIOD
));
9385 /* The full idle balance loop has been done */
9389 /* There is still blocked load, enable periodic update */
9390 if (has_blocked_load
)
9391 WRITE_ONCE(nohz
.has_blocked
, 1);
9394 * next_balance will be updated only when there is a need.
9395 * When the CPU is attached to null domain for ex, it will not be
9398 if (likely(update_next_balance
))
9399 nohz
.next_balance
= next_balance
;
9405 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9406 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9408 static bool nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
9410 int this_cpu
= this_rq
->cpu
;
9413 if (!(atomic_read(nohz_flags(this_cpu
)) & NOHZ_KICK_MASK
))
9416 if (idle
!= CPU_IDLE
) {
9417 atomic_andnot(NOHZ_KICK_MASK
, nohz_flags(this_cpu
));
9422 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9424 flags
= atomic_fetch_andnot(NOHZ_KICK_MASK
, nohz_flags(this_cpu
));
9425 if (!(flags
& NOHZ_KICK_MASK
))
9428 _nohz_idle_balance(this_rq
, flags
, idle
);
9433 static void nohz_newidle_balance(struct rq
*this_rq
)
9435 int this_cpu
= this_rq
->cpu
;
9438 * This CPU doesn't want to be disturbed by scheduler
9441 if (!housekeeping_cpu(this_cpu
, HK_FLAG_SCHED
))
9444 /* Will wake up very soon. No time for doing anything else*/
9445 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
9448 /* Don't need to update blocked load of idle CPUs*/
9449 if (!READ_ONCE(nohz
.has_blocked
) ||
9450 time_before(jiffies
, READ_ONCE(nohz
.next_blocked
)))
9453 raw_spin_unlock(&this_rq
->lock
);
9455 * This CPU is going to be idle and blocked load of idle CPUs
9456 * need to be updated. Run the ilb locally as it is a good
9457 * candidate for ilb instead of waking up another idle CPU.
9458 * Kick an normal ilb if we failed to do the update.
9460 if (!_nohz_idle_balance(this_rq
, NOHZ_STATS_KICK
, CPU_NEWLY_IDLE
))
9461 kick_ilb(NOHZ_STATS_KICK
);
9462 raw_spin_lock(&this_rq
->lock
);
9465 #else /* !CONFIG_NO_HZ_COMMON */
9466 static inline void nohz_balancer_kick(struct rq
*rq
) { }
9468 static inline bool nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
9473 static inline void nohz_newidle_balance(struct rq
*this_rq
) { }
9474 #endif /* CONFIG_NO_HZ_COMMON */
9477 * idle_balance is called by schedule() if this_cpu is about to become
9478 * idle. Attempts to pull tasks from other CPUs.
9480 static int idle_balance(struct rq
*this_rq
, struct rq_flags
*rf
)
9482 unsigned long next_balance
= jiffies
+ HZ
;
9483 int this_cpu
= this_rq
->cpu
;
9484 struct sched_domain
*sd
;
9485 int pulled_task
= 0;
9489 * We must set idle_stamp _before_ calling idle_balance(), such that we
9490 * measure the duration of idle_balance() as idle time.
9492 this_rq
->idle_stamp
= rq_clock(this_rq
);
9495 * Do not pull tasks towards !active CPUs...
9497 if (!cpu_active(this_cpu
))
9501 * This is OK, because current is on_cpu, which avoids it being picked
9502 * for load-balance and preemption/IRQs are still disabled avoiding
9503 * further scheduler activity on it and we're being very careful to
9504 * re-start the picking loop.
9506 rq_unpin_lock(this_rq
, rf
);
9508 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
||
9509 !this_rq
->rd
->overload
) {
9512 sd
= rcu_dereference_check_sched_domain(this_rq
->sd
);
9514 update_next_balance(sd
, &next_balance
);
9517 nohz_newidle_balance(this_rq
);
9522 raw_spin_unlock(&this_rq
->lock
);
9524 update_blocked_averages(this_cpu
);
9526 for_each_domain(this_cpu
, sd
) {
9527 int continue_balancing
= 1;
9528 u64 t0
, domain_cost
;
9530 if (!(sd
->flags
& SD_LOAD_BALANCE
))
9533 if (this_rq
->avg_idle
< curr_cost
+ sd
->max_newidle_lb_cost
) {
9534 update_next_balance(sd
, &next_balance
);
9538 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
9539 t0
= sched_clock_cpu(this_cpu
);
9541 pulled_task
= load_balance(this_cpu
, this_rq
,
9543 &continue_balancing
);
9545 domain_cost
= sched_clock_cpu(this_cpu
) - t0
;
9546 if (domain_cost
> sd
->max_newidle_lb_cost
)
9547 sd
->max_newidle_lb_cost
= domain_cost
;
9549 curr_cost
+= domain_cost
;
9552 update_next_balance(sd
, &next_balance
);
9555 * Stop searching for tasks to pull if there are
9556 * now runnable tasks on this rq.
9558 if (pulled_task
|| this_rq
->nr_running
> 0)
9563 raw_spin_lock(&this_rq
->lock
);
9565 if (curr_cost
> this_rq
->max_idle_balance_cost
)
9566 this_rq
->max_idle_balance_cost
= curr_cost
;
9570 * While browsing the domains, we released the rq lock, a task could
9571 * have been enqueued in the meantime. Since we're not going idle,
9572 * pretend we pulled a task.
9574 if (this_rq
->cfs
.h_nr_running
&& !pulled_task
)
9577 /* Move the next balance forward */
9578 if (time_after(this_rq
->next_balance
, next_balance
))
9579 this_rq
->next_balance
= next_balance
;
9581 /* Is there a task of a high priority class? */
9582 if (this_rq
->nr_running
!= this_rq
->cfs
.h_nr_running
)
9586 this_rq
->idle_stamp
= 0;
9588 rq_repin_lock(this_rq
, rf
);
9594 * run_rebalance_domains is triggered when needed from the scheduler tick.
9595 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9597 static __latent_entropy
void run_rebalance_domains(struct softirq_action
*h
)
9599 struct rq
*this_rq
= this_rq();
9600 enum cpu_idle_type idle
= this_rq
->idle_balance
?
9601 CPU_IDLE
: CPU_NOT_IDLE
;
9604 * If this CPU has a pending nohz_balance_kick, then do the
9605 * balancing on behalf of the other idle CPUs whose ticks are
9606 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9607 * give the idle CPUs a chance to load balance. Else we may
9608 * load balance only within the local sched_domain hierarchy
9609 * and abort nohz_idle_balance altogether if we pull some load.
9611 if (nohz_idle_balance(this_rq
, idle
))
9614 /* normal load balance */
9615 update_blocked_averages(this_rq
->cpu
);
9616 rebalance_domains(this_rq
, idle
);
9620 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9622 void trigger_load_balance(struct rq
*rq
)
9624 /* Don't need to rebalance while attached to NULL domain */
9625 if (unlikely(on_null_domain(rq
)))
9628 if (time_after_eq(jiffies
, rq
->next_balance
))
9629 raise_softirq(SCHED_SOFTIRQ
);
9631 nohz_balancer_kick(rq
);
9634 static void rq_online_fair(struct rq
*rq
)
9638 update_runtime_enabled(rq
);
9641 static void rq_offline_fair(struct rq
*rq
)
9645 /* Ensure any throttled groups are reachable by pick_next_task */
9646 unthrottle_offline_cfs_rqs(rq
);
9649 #endif /* CONFIG_SMP */
9652 * scheduler tick hitting a task of our scheduling class.
9654 * NOTE: This function can be called remotely by the tick offload that
9655 * goes along full dynticks. Therefore no local assumption can be made
9656 * and everything must be accessed through the @rq and @curr passed in
9659 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
9661 struct cfs_rq
*cfs_rq
;
9662 struct sched_entity
*se
= &curr
->se
;
9664 for_each_sched_entity(se
) {
9665 cfs_rq
= cfs_rq_of(se
);
9666 entity_tick(cfs_rq
, se
, queued
);
9669 if (static_branch_unlikely(&sched_numa_balancing
))
9670 task_tick_numa(rq
, curr
);
9674 * called on fork with the child task as argument from the parent's context
9675 * - child not yet on the tasklist
9676 * - preemption disabled
9678 static void task_fork_fair(struct task_struct
*p
)
9680 struct cfs_rq
*cfs_rq
;
9681 struct sched_entity
*se
= &p
->se
, *curr
;
9682 struct rq
*rq
= this_rq();
9686 update_rq_clock(rq
);
9688 cfs_rq
= task_cfs_rq(current
);
9689 curr
= cfs_rq
->curr
;
9691 update_curr(cfs_rq
);
9692 se
->vruntime
= curr
->vruntime
;
9694 place_entity(cfs_rq
, se
, 1);
9696 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
9698 * Upon rescheduling, sched_class::put_prev_task() will place
9699 * 'current' within the tree based on its new key value.
9701 swap(curr
->vruntime
, se
->vruntime
);
9705 se
->vruntime
-= cfs_rq
->min_vruntime
;
9710 * Priority of the task has changed. Check to see if we preempt
9714 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
9716 if (!task_on_rq_queued(p
))
9720 * Reschedule if we are currently running on this runqueue and
9721 * our priority decreased, or if we are not currently running on
9722 * this runqueue and our priority is higher than the current's
9724 if (rq
->curr
== p
) {
9725 if (p
->prio
> oldprio
)
9728 check_preempt_curr(rq
, p
, 0);
9731 static inline bool vruntime_normalized(struct task_struct
*p
)
9733 struct sched_entity
*se
= &p
->se
;
9736 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9737 * the dequeue_entity(.flags=0) will already have normalized the
9744 * When !on_rq, vruntime of the task has usually NOT been normalized.
9745 * But there are some cases where it has already been normalized:
9747 * - A forked child which is waiting for being woken up by
9748 * wake_up_new_task().
9749 * - A task which has been woken up by try_to_wake_up() and
9750 * waiting for actually being woken up by sched_ttwu_pending().
9752 if (!se
->sum_exec_runtime
||
9753 (p
->state
== TASK_WAKING
&& p
->sched_remote_wakeup
))
9759 #ifdef CONFIG_FAIR_GROUP_SCHED
9761 * Propagate the changes of the sched_entity across the tg tree to make it
9762 * visible to the root
9764 static void propagate_entity_cfs_rq(struct sched_entity
*se
)
9766 struct cfs_rq
*cfs_rq
;
9768 /* Start to propagate at parent */
9771 for_each_sched_entity(se
) {
9772 cfs_rq
= cfs_rq_of(se
);
9774 if (cfs_rq_throttled(cfs_rq
))
9777 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
9781 static void propagate_entity_cfs_rq(struct sched_entity
*se
) { }
9784 static void detach_entity_cfs_rq(struct sched_entity
*se
)
9786 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9788 /* Catch up with the cfs_rq and remove our load when we leave */
9789 update_load_avg(cfs_rq
, se
, 0);
9790 detach_entity_load_avg(cfs_rq
, se
);
9791 update_tg_load_avg(cfs_rq
, false);
9792 propagate_entity_cfs_rq(se
);
9795 static void attach_entity_cfs_rq(struct sched_entity
*se
)
9797 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9799 #ifdef CONFIG_FAIR_GROUP_SCHED
9801 * Since the real-depth could have been changed (only FAIR
9802 * class maintain depth value), reset depth properly.
9804 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
9807 /* Synchronize entity with its cfs_rq */
9808 update_load_avg(cfs_rq
, se
, sched_feat(ATTACH_AGE_LOAD
) ? 0 : SKIP_AGE_LOAD
);
9809 attach_entity_load_avg(cfs_rq
, se
, 0);
9810 update_tg_load_avg(cfs_rq
, false);
9811 propagate_entity_cfs_rq(se
);
9814 static void detach_task_cfs_rq(struct task_struct
*p
)
9816 struct sched_entity
*se
= &p
->se
;
9817 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9819 if (!vruntime_normalized(p
)) {
9821 * Fix up our vruntime so that the current sleep doesn't
9822 * cause 'unlimited' sleep bonus.
9824 place_entity(cfs_rq
, se
, 0);
9825 se
->vruntime
-= cfs_rq
->min_vruntime
;
9828 detach_entity_cfs_rq(se
);
9831 static void attach_task_cfs_rq(struct task_struct
*p
)
9833 struct sched_entity
*se
= &p
->se
;
9834 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9836 attach_entity_cfs_rq(se
);
9838 if (!vruntime_normalized(p
))
9839 se
->vruntime
+= cfs_rq
->min_vruntime
;
9842 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
9844 detach_task_cfs_rq(p
);
9847 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
9849 attach_task_cfs_rq(p
);
9851 if (task_on_rq_queued(p
)) {
9853 * We were most likely switched from sched_rt, so
9854 * kick off the schedule if running, otherwise just see
9855 * if we can still preempt the current task.
9860 check_preempt_curr(rq
, p
, 0);
9864 /* Account for a task changing its policy or group.
9866 * This routine is mostly called to set cfs_rq->curr field when a task
9867 * migrates between groups/classes.
9869 static void set_curr_task_fair(struct rq
*rq
)
9871 struct sched_entity
*se
= &rq
->curr
->se
;
9873 for_each_sched_entity(se
) {
9874 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
9876 set_next_entity(cfs_rq
, se
);
9877 /* ensure bandwidth has been allocated on our new cfs_rq */
9878 account_cfs_rq_runtime(cfs_rq
, 0);
9882 void init_cfs_rq(struct cfs_rq
*cfs_rq
)
9884 cfs_rq
->tasks_timeline
= RB_ROOT_CACHED
;
9885 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
9886 #ifndef CONFIG_64BIT
9887 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
9890 raw_spin_lock_init(&cfs_rq
->removed
.lock
);
9894 #ifdef CONFIG_FAIR_GROUP_SCHED
9895 static void task_set_group_fair(struct task_struct
*p
)
9897 struct sched_entity
*se
= &p
->se
;
9899 set_task_rq(p
, task_cpu(p
));
9900 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
9903 static void task_move_group_fair(struct task_struct
*p
)
9905 detach_task_cfs_rq(p
);
9906 set_task_rq(p
, task_cpu(p
));
9909 /* Tell se's cfs_rq has been changed -- migrated */
9910 p
->se
.avg
.last_update_time
= 0;
9912 attach_task_cfs_rq(p
);
9915 static void task_change_group_fair(struct task_struct
*p
, int type
)
9918 case TASK_SET_GROUP
:
9919 task_set_group_fair(p
);
9922 case TASK_MOVE_GROUP
:
9923 task_move_group_fair(p
);
9928 void free_fair_sched_group(struct task_group
*tg
)
9932 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
9934 for_each_possible_cpu(i
) {
9936 kfree(tg
->cfs_rq
[i
]);
9945 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9947 struct sched_entity
*se
;
9948 struct cfs_rq
*cfs_rq
;
9951 tg
->cfs_rq
= kcalloc(nr_cpu_ids
, sizeof(cfs_rq
), GFP_KERNEL
);
9954 tg
->se
= kcalloc(nr_cpu_ids
, sizeof(se
), GFP_KERNEL
);
9958 tg
->shares
= NICE_0_LOAD
;
9960 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
9962 for_each_possible_cpu(i
) {
9963 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
9964 GFP_KERNEL
, cpu_to_node(i
));
9968 se
= kzalloc_node(sizeof(struct sched_entity
),
9969 GFP_KERNEL
, cpu_to_node(i
));
9973 init_cfs_rq(cfs_rq
);
9974 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
9975 init_entity_runnable_average(se
);
9986 void online_fair_sched_group(struct task_group
*tg
)
9988 struct sched_entity
*se
;
9992 for_each_possible_cpu(i
) {
9996 raw_spin_lock_irq(&rq
->lock
);
9997 update_rq_clock(rq
);
9998 attach_entity_cfs_rq(se
);
9999 sync_throttle(tg
, i
);
10000 raw_spin_unlock_irq(&rq
->lock
);
10004 void unregister_fair_sched_group(struct task_group
*tg
)
10006 unsigned long flags
;
10010 for_each_possible_cpu(cpu
) {
10012 remove_entity_load_avg(tg
->se
[cpu
]);
10015 * Only empty task groups can be destroyed; so we can speculatively
10016 * check on_list without danger of it being re-added.
10018 if (!tg
->cfs_rq
[cpu
]->on_list
)
10023 raw_spin_lock_irqsave(&rq
->lock
, flags
);
10024 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
10025 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
10029 void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
10030 struct sched_entity
*se
, int cpu
,
10031 struct sched_entity
*parent
)
10033 struct rq
*rq
= cpu_rq(cpu
);
10037 init_cfs_rq_runtime(cfs_rq
);
10039 tg
->cfs_rq
[cpu
] = cfs_rq
;
10042 /* se could be NULL for root_task_group */
10047 se
->cfs_rq
= &rq
->cfs
;
10050 se
->cfs_rq
= parent
->my_q
;
10051 se
->depth
= parent
->depth
+ 1;
10055 /* guarantee group entities always have weight */
10056 update_load_set(&se
->load
, NICE_0_LOAD
);
10057 se
->parent
= parent
;
10060 static DEFINE_MUTEX(shares_mutex
);
10062 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
10067 * We can't change the weight of the root cgroup.
10072 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
10074 mutex_lock(&shares_mutex
);
10075 if (tg
->shares
== shares
)
10078 tg
->shares
= shares
;
10079 for_each_possible_cpu(i
) {
10080 struct rq
*rq
= cpu_rq(i
);
10081 struct sched_entity
*se
= tg
->se
[i
];
10082 struct rq_flags rf
;
10084 /* Propagate contribution to hierarchy */
10085 rq_lock_irqsave(rq
, &rf
);
10086 update_rq_clock(rq
);
10087 for_each_sched_entity(se
) {
10088 update_load_avg(cfs_rq_of(se
), se
, UPDATE_TG
);
10089 update_cfs_group(se
);
10091 rq_unlock_irqrestore(rq
, &rf
);
10095 mutex_unlock(&shares_mutex
);
10098 #else /* CONFIG_FAIR_GROUP_SCHED */
10100 void free_fair_sched_group(struct task_group
*tg
) { }
10102 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
10107 void online_fair_sched_group(struct task_group
*tg
) { }
10109 void unregister_fair_sched_group(struct task_group
*tg
) { }
10111 #endif /* CONFIG_FAIR_GROUP_SCHED */
10114 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
10116 struct sched_entity
*se
= &task
->se
;
10117 unsigned int rr_interval
= 0;
10120 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10123 if (rq
->cfs
.load
.weight
)
10124 rr_interval
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
10126 return rr_interval
;
10130 * All the scheduling class methods:
10132 const struct sched_class fair_sched_class
= {
10133 .next
= &idle_sched_class
,
10134 .enqueue_task
= enqueue_task_fair
,
10135 .dequeue_task
= dequeue_task_fair
,
10136 .yield_task
= yield_task_fair
,
10137 .yield_to_task
= yield_to_task_fair
,
10139 .check_preempt_curr
= check_preempt_wakeup
,
10141 .pick_next_task
= pick_next_task_fair
,
10142 .put_prev_task
= put_prev_task_fair
,
10145 .select_task_rq
= select_task_rq_fair
,
10146 .migrate_task_rq
= migrate_task_rq_fair
,
10148 .rq_online
= rq_online_fair
,
10149 .rq_offline
= rq_offline_fair
,
10151 .task_dead
= task_dead_fair
,
10152 .set_cpus_allowed
= set_cpus_allowed_common
,
10155 .set_curr_task
= set_curr_task_fair
,
10156 .task_tick
= task_tick_fair
,
10157 .task_fork
= task_fork_fair
,
10159 .prio_changed
= prio_changed_fair
,
10160 .switched_from
= switched_from_fair
,
10161 .switched_to
= switched_to_fair
,
10163 .get_rr_interval
= get_rr_interval_fair
,
10165 .update_curr
= update_curr_fair
,
10167 #ifdef CONFIG_FAIR_GROUP_SCHED
10168 .task_change_group
= task_change_group_fair
,
10172 #ifdef CONFIG_SCHED_DEBUG
10173 void print_cfs_stats(struct seq_file
*m
, int cpu
)
10175 struct cfs_rq
*cfs_rq
;
10178 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
10179 print_cfs_rq(m
, cpu
, cfs_rq
);
10183 #ifdef CONFIG_NUMA_BALANCING
10184 void show_numa_stats(struct task_struct
*p
, struct seq_file
*m
)
10187 unsigned long tsf
= 0, tpf
= 0, gsf
= 0, gpf
= 0;
10189 for_each_online_node(node
) {
10190 if (p
->numa_faults
) {
10191 tsf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
10192 tpf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
10194 if (p
->numa_group
) {
10195 gsf
= p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)],
10196 gpf
= p
->numa_group
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
10198 print_numa_stats(m
, node
, tsf
, tpf
, gsf
, gpf
);
10201 #endif /* CONFIG_NUMA_BALANCING */
10202 #endif /* CONFIG_SCHED_DEBUG */
10204 __init
void init_sched_fair_class(void)
10207 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
10209 #ifdef CONFIG_NO_HZ_COMMON
10210 nohz
.next_balance
= jiffies
;
10211 nohz
.next_blocked
= jiffies
;
10212 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);