cpu/hotplug: Fix "SMT disabled by BIOS" detection for KVM
[linux/fpc-iii.git] / kernel / sched / fair.c
blobf7c375d1e601a37b895e2c57528427f517c5c0f0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include "sched.h"
25 #include <trace/events/sched.h>
28 * Targeted preemption latency for CPU-bound tasks:
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 unsigned int sysctl_sched_latency = 6000000ULL;
41 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
44 * The initial- and re-scaling of tunables is configurable
46 * Options are:
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
57 * Minimal preemption granularity for CPU-bound tasks:
59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
61 unsigned int sysctl_sched_min_granularity = 750000ULL;
62 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
67 static unsigned int sched_nr_latency = 8;
70 * After fork, child runs first. If set to 0 (default) then
71 * parent will (try to) run first.
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
76 * SCHED_OTHER wake-up granularity.
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
89 #ifdef CONFIG_SMP
91 * For asym packing, by default the lower numbered CPU has higher priority.
93 int __weak arch_asym_cpu_priority(int cpu)
95 return -cpu;
97 #endif
99 #ifdef CONFIG_CFS_BANDWIDTH
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
108 * (default: 5 msec, units: microseconds)
110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111 #endif
114 * The margin used when comparing utilization with CPU capacity:
115 * util * margin < capacity * 1024
117 * (default: ~20%)
119 unsigned int capacity_margin = 1280;
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
123 lw->weight += inc;
124 lw->inv_weight = 0;
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
129 lw->weight -= dec;
130 lw->inv_weight = 0;
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
135 lw->weight = w;
136 lw->inv_weight = 0;
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
146 * This idea comes from the SD scheduler of Con Kolivas:
148 static unsigned int get_update_sysctl_factor(void)
150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 unsigned int factor;
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
166 return factor;
169 static void update_sysctl(void)
171 unsigned int factor = get_update_sysctl_factor();
173 #define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
181 void sched_init_granularity(void)
183 update_sysctl();
186 #define WMULT_CONST (~0U)
187 #define WMULT_SHIFT 32
189 static void __update_inv_weight(struct load_weight *lw)
191 unsigned long w;
193 if (likely(lw->inv_weight))
194 return;
196 w = scale_load_down(lw->weight);
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
223 __update_inv_weight(lw);
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
240 return mul_u64_u32_shr(delta_exec, fact, shift);
244 const struct sched_class fair_sched_class;
246 /**************************************************************
247 * CFS operations on generic schedulable entities:
250 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* cpu runqueue to which this cfs_rq is attached */
253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
255 return cfs_rq->rq;
258 static inline struct task_struct *task_of(struct sched_entity *se)
260 SCHED_WARN_ON(!entity_is_task(se));
261 return container_of(se, struct task_struct, se);
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 return p->se.cfs_rq;
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 return se->cfs_rq;
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 return grp->my_q;
285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 if (!cfs_rq->on_list) {
288 struct rq *rq = rq_of(cfs_rq);
289 int cpu = cpu_of(rq);
291 * Ensure we either appear before our parent (if already
292 * enqueued) or force our parent to appear after us when it is
293 * enqueued. The fact that we always enqueue bottom-up
294 * reduces this to two cases and a special case for the root
295 * cfs_rq. Furthermore, it also means that we will always reset
296 * tmp_alone_branch either when the branch is connected
297 * to a tree or when we reach the beg of the tree
299 if (cfs_rq->tg->parent &&
300 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
302 * If parent is already on the list, we add the child
303 * just before. Thanks to circular linked property of
304 * the list, this means to put the child at the tail
305 * of the list that starts by parent.
307 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
310 * The branch is now connected to its tree so we can
311 * reset tmp_alone_branch to the beginning of the
312 * list.
314 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 } else if (!cfs_rq->tg->parent) {
317 * cfs rq without parent should be put
318 * at the tail of the list.
320 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 &rq->leaf_cfs_rq_list);
323 * We have reach the beg of a tree so we can reset
324 * tmp_alone_branch to the beginning of the list.
326 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 } else {
329 * The parent has not already been added so we want to
330 * make sure that it will be put after us.
331 * tmp_alone_branch points to the beg of the branch
332 * where we will add parent.
334 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 rq->tmp_alone_branch);
337 * update tmp_alone_branch to points to the new beg
338 * of the branch
340 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
343 cfs_rq->on_list = 1;
347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
349 if (cfs_rq->on_list) {
350 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
351 cfs_rq->on_list = 0;
355 /* Iterate through all leaf cfs_rq's on a runqueue: */
356 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
357 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
359 /* Do the two (enqueued) entities belong to the same group ? */
360 static inline struct cfs_rq *
361 is_same_group(struct sched_entity *se, struct sched_entity *pse)
363 if (se->cfs_rq == pse->cfs_rq)
364 return se->cfs_rq;
366 return NULL;
369 static inline struct sched_entity *parent_entity(struct sched_entity *se)
371 return se->parent;
374 static void
375 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
377 int se_depth, pse_depth;
380 * preemption test can be made between sibling entities who are in the
381 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
382 * both tasks until we find their ancestors who are siblings of common
383 * parent.
386 /* First walk up until both entities are at same depth */
387 se_depth = (*se)->depth;
388 pse_depth = (*pse)->depth;
390 while (se_depth > pse_depth) {
391 se_depth--;
392 *se = parent_entity(*se);
395 while (pse_depth > se_depth) {
396 pse_depth--;
397 *pse = parent_entity(*pse);
400 while (!is_same_group(*se, *pse)) {
401 *se = parent_entity(*se);
402 *pse = parent_entity(*pse);
406 #else /* !CONFIG_FAIR_GROUP_SCHED */
408 static inline struct task_struct *task_of(struct sched_entity *se)
410 return container_of(se, struct task_struct, se);
413 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
415 return container_of(cfs_rq, struct rq, cfs);
419 #define for_each_sched_entity(se) \
420 for (; se; se = NULL)
422 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
424 return &task_rq(p)->cfs;
427 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
429 struct task_struct *p = task_of(se);
430 struct rq *rq = task_rq(p);
432 return &rq->cfs;
435 /* runqueue "owned" by this group */
436 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
438 return NULL;
441 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
445 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
449 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
450 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
452 static inline struct sched_entity *parent_entity(struct sched_entity *se)
454 return NULL;
457 static inline void
458 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
462 #endif /* CONFIG_FAIR_GROUP_SCHED */
464 static __always_inline
465 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
467 /**************************************************************
468 * Scheduling class tree data structure manipulation methods:
471 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
473 s64 delta = (s64)(vruntime - max_vruntime);
474 if (delta > 0)
475 max_vruntime = vruntime;
477 return max_vruntime;
480 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
482 s64 delta = (s64)(vruntime - min_vruntime);
483 if (delta < 0)
484 min_vruntime = vruntime;
486 return min_vruntime;
489 static inline int entity_before(struct sched_entity *a,
490 struct sched_entity *b)
492 return (s64)(a->vruntime - b->vruntime) < 0;
495 static void update_min_vruntime(struct cfs_rq *cfs_rq)
497 struct sched_entity *curr = cfs_rq->curr;
498 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
500 u64 vruntime = cfs_rq->min_vruntime;
502 if (curr) {
503 if (curr->on_rq)
504 vruntime = curr->vruntime;
505 else
506 curr = NULL;
509 if (leftmost) { /* non-empty tree */
510 struct sched_entity *se;
511 se = rb_entry(leftmost, struct sched_entity, run_node);
513 if (!curr)
514 vruntime = se->vruntime;
515 else
516 vruntime = min_vruntime(vruntime, se->vruntime);
519 /* ensure we never gain time by being placed backwards. */
520 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
521 #ifndef CONFIG_64BIT
522 smp_wmb();
523 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
524 #endif
528 * Enqueue an entity into the rb-tree:
530 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
533 struct rb_node *parent = NULL;
534 struct sched_entity *entry;
535 bool leftmost = true;
538 * Find the right place in the rbtree:
540 while (*link) {
541 parent = *link;
542 entry = rb_entry(parent, struct sched_entity, run_node);
544 * We dont care about collisions. Nodes with
545 * the same key stay together.
547 if (entity_before(se, entry)) {
548 link = &parent->rb_left;
549 } else {
550 link = &parent->rb_right;
551 leftmost = false;
555 rb_link_node(&se->run_node, parent, link);
556 rb_insert_color_cached(&se->run_node,
557 &cfs_rq->tasks_timeline, leftmost);
560 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
562 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
565 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
567 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
569 if (!left)
570 return NULL;
572 return rb_entry(left, struct sched_entity, run_node);
575 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
577 struct rb_node *next = rb_next(&se->run_node);
579 if (!next)
580 return NULL;
582 return rb_entry(next, struct sched_entity, run_node);
585 #ifdef CONFIG_SCHED_DEBUG
586 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
588 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
590 if (!last)
591 return NULL;
593 return rb_entry(last, struct sched_entity, run_node);
596 /**************************************************************
597 * Scheduling class statistics methods:
600 int sched_proc_update_handler(struct ctl_table *table, int write,
601 void __user *buffer, size_t *lenp,
602 loff_t *ppos)
604 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
605 unsigned int factor = get_update_sysctl_factor();
607 if (ret || !write)
608 return ret;
610 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
611 sysctl_sched_min_granularity);
613 #define WRT_SYSCTL(name) \
614 (normalized_sysctl_##name = sysctl_##name / (factor))
615 WRT_SYSCTL(sched_min_granularity);
616 WRT_SYSCTL(sched_latency);
617 WRT_SYSCTL(sched_wakeup_granularity);
618 #undef WRT_SYSCTL
620 return 0;
622 #endif
625 * delta /= w
627 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
629 if (unlikely(se->load.weight != NICE_0_LOAD))
630 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
632 return delta;
636 * The idea is to set a period in which each task runs once.
638 * When there are too many tasks (sched_nr_latency) we have to stretch
639 * this period because otherwise the slices get too small.
641 * p = (nr <= nl) ? l : l*nr/nl
643 static u64 __sched_period(unsigned long nr_running)
645 if (unlikely(nr_running > sched_nr_latency))
646 return nr_running * sysctl_sched_min_granularity;
647 else
648 return sysctl_sched_latency;
652 * We calculate the wall-time slice from the period by taking a part
653 * proportional to the weight.
655 * s = p*P[w/rw]
657 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
659 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
661 for_each_sched_entity(se) {
662 struct load_weight *load;
663 struct load_weight lw;
665 cfs_rq = cfs_rq_of(se);
666 load = &cfs_rq->load;
668 if (unlikely(!se->on_rq)) {
669 lw = cfs_rq->load;
671 update_load_add(&lw, se->load.weight);
672 load = &lw;
674 slice = __calc_delta(slice, se->load.weight, load);
676 return slice;
680 * We calculate the vruntime slice of a to-be-inserted task.
682 * vs = s/w
684 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 return calc_delta_fair(sched_slice(cfs_rq, se), se);
689 #ifdef CONFIG_SMP
690 #include "pelt.h"
691 #include "sched-pelt.h"
693 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
694 static unsigned long task_h_load(struct task_struct *p);
696 /* Give new sched_entity start runnable values to heavy its load in infant time */
697 void init_entity_runnable_average(struct sched_entity *se)
699 struct sched_avg *sa = &se->avg;
701 memset(sa, 0, sizeof(*sa));
704 * Tasks are intialized with full load to be seen as heavy tasks until
705 * they get a chance to stabilize to their real load level.
706 * Group entities are intialized with zero load to reflect the fact that
707 * nothing has been attached to the task group yet.
709 if (entity_is_task(se))
710 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
712 se->runnable_weight = se->load.weight;
714 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
717 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
718 static void attach_entity_cfs_rq(struct sched_entity *se);
721 * With new tasks being created, their initial util_avgs are extrapolated
722 * based on the cfs_rq's current util_avg:
724 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
726 * However, in many cases, the above util_avg does not give a desired
727 * value. Moreover, the sum of the util_avgs may be divergent, such
728 * as when the series is a harmonic series.
730 * To solve this problem, we also cap the util_avg of successive tasks to
731 * only 1/2 of the left utilization budget:
733 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
735 * where n denotes the nth task and cpu_scale the CPU capacity.
737 * For example, for a CPU with 1024 of capacity, a simplest series from
738 * the beginning would be like:
740 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
741 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
743 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
744 * if util_avg > util_avg_cap.
746 void post_init_entity_util_avg(struct sched_entity *se)
748 struct cfs_rq *cfs_rq = cfs_rq_of(se);
749 struct sched_avg *sa = &se->avg;
750 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
751 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
753 if (cap > 0) {
754 if (cfs_rq->avg.util_avg != 0) {
755 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
756 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
758 if (sa->util_avg > cap)
759 sa->util_avg = cap;
760 } else {
761 sa->util_avg = cap;
765 if (entity_is_task(se)) {
766 struct task_struct *p = task_of(se);
767 if (p->sched_class != &fair_sched_class) {
769 * For !fair tasks do:
771 update_cfs_rq_load_avg(now, cfs_rq);
772 attach_entity_load_avg(cfs_rq, se, 0);
773 switched_from_fair(rq, p);
775 * such that the next switched_to_fair() has the
776 * expected state.
778 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
779 return;
783 attach_entity_cfs_rq(se);
786 #else /* !CONFIG_SMP */
787 void init_entity_runnable_average(struct sched_entity *se)
790 void post_init_entity_util_avg(struct sched_entity *se)
793 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
796 #endif /* CONFIG_SMP */
799 * Update the current task's runtime statistics.
801 static void update_curr(struct cfs_rq *cfs_rq)
803 struct sched_entity *curr = cfs_rq->curr;
804 u64 now = rq_clock_task(rq_of(cfs_rq));
805 u64 delta_exec;
807 if (unlikely(!curr))
808 return;
810 delta_exec = now - curr->exec_start;
811 if (unlikely((s64)delta_exec <= 0))
812 return;
814 curr->exec_start = now;
816 schedstat_set(curr->statistics.exec_max,
817 max(delta_exec, curr->statistics.exec_max));
819 curr->sum_exec_runtime += delta_exec;
820 schedstat_add(cfs_rq->exec_clock, delta_exec);
822 curr->vruntime += calc_delta_fair(delta_exec, curr);
823 update_min_vruntime(cfs_rq);
825 if (entity_is_task(curr)) {
826 struct task_struct *curtask = task_of(curr);
828 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
829 cgroup_account_cputime(curtask, delta_exec);
830 account_group_exec_runtime(curtask, delta_exec);
833 account_cfs_rq_runtime(cfs_rq, delta_exec);
836 static void update_curr_fair(struct rq *rq)
838 update_curr(cfs_rq_of(&rq->curr->se));
841 static inline void
842 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
844 u64 wait_start, prev_wait_start;
846 if (!schedstat_enabled())
847 return;
849 wait_start = rq_clock(rq_of(cfs_rq));
850 prev_wait_start = schedstat_val(se->statistics.wait_start);
852 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
853 likely(wait_start > prev_wait_start))
854 wait_start -= prev_wait_start;
856 __schedstat_set(se->statistics.wait_start, wait_start);
859 static inline void
860 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
862 struct task_struct *p;
863 u64 delta;
865 if (!schedstat_enabled())
866 return;
868 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
870 if (entity_is_task(se)) {
871 p = task_of(se);
872 if (task_on_rq_migrating(p)) {
874 * Preserve migrating task's wait time so wait_start
875 * time stamp can be adjusted to accumulate wait time
876 * prior to migration.
878 __schedstat_set(se->statistics.wait_start, delta);
879 return;
881 trace_sched_stat_wait(p, delta);
884 __schedstat_set(se->statistics.wait_max,
885 max(schedstat_val(se->statistics.wait_max), delta));
886 __schedstat_inc(se->statistics.wait_count);
887 __schedstat_add(se->statistics.wait_sum, delta);
888 __schedstat_set(se->statistics.wait_start, 0);
891 static inline void
892 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 struct task_struct *tsk = NULL;
895 u64 sleep_start, block_start;
897 if (!schedstat_enabled())
898 return;
900 sleep_start = schedstat_val(se->statistics.sleep_start);
901 block_start = schedstat_val(se->statistics.block_start);
903 if (entity_is_task(se))
904 tsk = task_of(se);
906 if (sleep_start) {
907 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
909 if ((s64)delta < 0)
910 delta = 0;
912 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
913 __schedstat_set(se->statistics.sleep_max, delta);
915 __schedstat_set(se->statistics.sleep_start, 0);
916 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
918 if (tsk) {
919 account_scheduler_latency(tsk, delta >> 10, 1);
920 trace_sched_stat_sleep(tsk, delta);
923 if (block_start) {
924 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
926 if ((s64)delta < 0)
927 delta = 0;
929 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
930 __schedstat_set(se->statistics.block_max, delta);
932 __schedstat_set(se->statistics.block_start, 0);
933 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 if (tsk) {
936 if (tsk->in_iowait) {
937 __schedstat_add(se->statistics.iowait_sum, delta);
938 __schedstat_inc(se->statistics.iowait_count);
939 trace_sched_stat_iowait(tsk, delta);
942 trace_sched_stat_blocked(tsk, delta);
945 * Blocking time is in units of nanosecs, so shift by
946 * 20 to get a milliseconds-range estimation of the
947 * amount of time that the task spent sleeping:
949 if (unlikely(prof_on == SLEEP_PROFILING)) {
950 profile_hits(SLEEP_PROFILING,
951 (void *)get_wchan(tsk),
952 delta >> 20);
954 account_scheduler_latency(tsk, delta >> 10, 0);
960 * Task is being enqueued - update stats:
962 static inline void
963 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
965 if (!schedstat_enabled())
966 return;
969 * Are we enqueueing a waiting task? (for current tasks
970 * a dequeue/enqueue event is a NOP)
972 if (se != cfs_rq->curr)
973 update_stats_wait_start(cfs_rq, se);
975 if (flags & ENQUEUE_WAKEUP)
976 update_stats_enqueue_sleeper(cfs_rq, se);
979 static inline void
980 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
983 if (!schedstat_enabled())
984 return;
987 * Mark the end of the wait period if dequeueing a
988 * waiting task:
990 if (se != cfs_rq->curr)
991 update_stats_wait_end(cfs_rq, se);
993 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
994 struct task_struct *tsk = task_of(se);
996 if (tsk->state & TASK_INTERRUPTIBLE)
997 __schedstat_set(se->statistics.sleep_start,
998 rq_clock(rq_of(cfs_rq)));
999 if (tsk->state & TASK_UNINTERRUPTIBLE)
1000 __schedstat_set(se->statistics.block_start,
1001 rq_clock(rq_of(cfs_rq)));
1006 * We are picking a new current task - update its stats:
1008 static inline void
1009 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1012 * We are starting a new run period:
1014 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1017 /**************************************************
1018 * Scheduling class queueing methods:
1021 #ifdef CONFIG_NUMA_BALANCING
1023 * Approximate time to scan a full NUMA task in ms. The task scan period is
1024 * calculated based on the tasks virtual memory size and
1025 * numa_balancing_scan_size.
1027 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1028 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1030 /* Portion of address space to scan in MB */
1031 unsigned int sysctl_numa_balancing_scan_size = 256;
1033 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1034 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1036 struct numa_group {
1037 atomic_t refcount;
1039 spinlock_t lock; /* nr_tasks, tasks */
1040 int nr_tasks;
1041 pid_t gid;
1042 int active_nodes;
1044 struct rcu_head rcu;
1045 unsigned long total_faults;
1046 unsigned long max_faults_cpu;
1048 * Faults_cpu is used to decide whether memory should move
1049 * towards the CPU. As a consequence, these stats are weighted
1050 * more by CPU use than by memory faults.
1052 unsigned long *faults_cpu;
1053 unsigned long faults[0];
1056 static inline unsigned long group_faults_priv(struct numa_group *ng);
1057 static inline unsigned long group_faults_shared(struct numa_group *ng);
1059 static unsigned int task_nr_scan_windows(struct task_struct *p)
1061 unsigned long rss = 0;
1062 unsigned long nr_scan_pages;
1065 * Calculations based on RSS as non-present and empty pages are skipped
1066 * by the PTE scanner and NUMA hinting faults should be trapped based
1067 * on resident pages
1069 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1070 rss = get_mm_rss(p->mm);
1071 if (!rss)
1072 rss = nr_scan_pages;
1074 rss = round_up(rss, nr_scan_pages);
1075 return rss / nr_scan_pages;
1078 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1079 #define MAX_SCAN_WINDOW 2560
1081 static unsigned int task_scan_min(struct task_struct *p)
1083 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1084 unsigned int scan, floor;
1085 unsigned int windows = 1;
1087 if (scan_size < MAX_SCAN_WINDOW)
1088 windows = MAX_SCAN_WINDOW / scan_size;
1089 floor = 1000 / windows;
1091 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1092 return max_t(unsigned int, floor, scan);
1095 static unsigned int task_scan_start(struct task_struct *p)
1097 unsigned long smin = task_scan_min(p);
1098 unsigned long period = smin;
1100 /* Scale the maximum scan period with the amount of shared memory. */
1101 if (p->numa_group) {
1102 struct numa_group *ng = p->numa_group;
1103 unsigned long shared = group_faults_shared(ng);
1104 unsigned long private = group_faults_priv(ng);
1106 period *= atomic_read(&ng->refcount);
1107 period *= shared + 1;
1108 period /= private + shared + 1;
1111 return max(smin, period);
1114 static unsigned int task_scan_max(struct task_struct *p)
1116 unsigned long smin = task_scan_min(p);
1117 unsigned long smax;
1119 /* Watch for min being lower than max due to floor calculations */
1120 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1122 /* Scale the maximum scan period with the amount of shared memory. */
1123 if (p->numa_group) {
1124 struct numa_group *ng = p->numa_group;
1125 unsigned long shared = group_faults_shared(ng);
1126 unsigned long private = group_faults_priv(ng);
1127 unsigned long period = smax;
1129 period *= atomic_read(&ng->refcount);
1130 period *= shared + 1;
1131 period /= private + shared + 1;
1133 smax = max(smax, period);
1136 return max(smin, smax);
1139 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1141 int mm_users = 0;
1142 struct mm_struct *mm = p->mm;
1144 if (mm) {
1145 mm_users = atomic_read(&mm->mm_users);
1146 if (mm_users == 1) {
1147 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1148 mm->numa_scan_seq = 0;
1151 p->node_stamp = 0;
1152 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
1153 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1154 p->numa_work.next = &p->numa_work;
1155 p->numa_faults = NULL;
1156 p->numa_group = NULL;
1157 p->last_task_numa_placement = 0;
1158 p->last_sum_exec_runtime = 0;
1160 /* New address space, reset the preferred nid */
1161 if (!(clone_flags & CLONE_VM)) {
1162 p->numa_preferred_nid = -1;
1163 return;
1167 * New thread, keep existing numa_preferred_nid which should be copied
1168 * already by arch_dup_task_struct but stagger when scans start.
1170 if (mm) {
1171 unsigned int delay;
1173 delay = min_t(unsigned int, task_scan_max(current),
1174 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1175 delay += 2 * TICK_NSEC;
1176 p->node_stamp = delay;
1180 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1182 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1183 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1186 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1188 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1189 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1192 /* Shared or private faults. */
1193 #define NR_NUMA_HINT_FAULT_TYPES 2
1195 /* Memory and CPU locality */
1196 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1198 /* Averaged statistics, and temporary buffers. */
1199 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1201 pid_t task_numa_group_id(struct task_struct *p)
1203 return p->numa_group ? p->numa_group->gid : 0;
1207 * The averaged statistics, shared & private, memory & CPU,
1208 * occupy the first half of the array. The second half of the
1209 * array is for current counters, which are averaged into the
1210 * first set by task_numa_placement.
1212 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1214 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1217 static inline unsigned long task_faults(struct task_struct *p, int nid)
1219 if (!p->numa_faults)
1220 return 0;
1222 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1223 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1226 static inline unsigned long group_faults(struct task_struct *p, int nid)
1228 if (!p->numa_group)
1229 return 0;
1231 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1232 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1235 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1237 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1238 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1241 static inline unsigned long group_faults_priv(struct numa_group *ng)
1243 unsigned long faults = 0;
1244 int node;
1246 for_each_online_node(node) {
1247 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1250 return faults;
1253 static inline unsigned long group_faults_shared(struct numa_group *ng)
1255 unsigned long faults = 0;
1256 int node;
1258 for_each_online_node(node) {
1259 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1262 return faults;
1266 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1267 * considered part of a numa group's pseudo-interleaving set. Migrations
1268 * between these nodes are slowed down, to allow things to settle down.
1270 #define ACTIVE_NODE_FRACTION 3
1272 static bool numa_is_active_node(int nid, struct numa_group *ng)
1274 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1277 /* Handle placement on systems where not all nodes are directly connected. */
1278 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1279 int maxdist, bool task)
1281 unsigned long score = 0;
1282 int node;
1285 * All nodes are directly connected, and the same distance
1286 * from each other. No need for fancy placement algorithms.
1288 if (sched_numa_topology_type == NUMA_DIRECT)
1289 return 0;
1292 * This code is called for each node, introducing N^2 complexity,
1293 * which should be ok given the number of nodes rarely exceeds 8.
1295 for_each_online_node(node) {
1296 unsigned long faults;
1297 int dist = node_distance(nid, node);
1300 * The furthest away nodes in the system are not interesting
1301 * for placement; nid was already counted.
1303 if (dist == sched_max_numa_distance || node == nid)
1304 continue;
1307 * On systems with a backplane NUMA topology, compare groups
1308 * of nodes, and move tasks towards the group with the most
1309 * memory accesses. When comparing two nodes at distance
1310 * "hoplimit", only nodes closer by than "hoplimit" are part
1311 * of each group. Skip other nodes.
1313 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1314 dist >= maxdist)
1315 continue;
1317 /* Add up the faults from nearby nodes. */
1318 if (task)
1319 faults = task_faults(p, node);
1320 else
1321 faults = group_faults(p, node);
1324 * On systems with a glueless mesh NUMA topology, there are
1325 * no fixed "groups of nodes". Instead, nodes that are not
1326 * directly connected bounce traffic through intermediate
1327 * nodes; a numa_group can occupy any set of nodes.
1328 * The further away a node is, the less the faults count.
1329 * This seems to result in good task placement.
1331 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1332 faults *= (sched_max_numa_distance - dist);
1333 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1336 score += faults;
1339 return score;
1343 * These return the fraction of accesses done by a particular task, or
1344 * task group, on a particular numa node. The group weight is given a
1345 * larger multiplier, in order to group tasks together that are almost
1346 * evenly spread out between numa nodes.
1348 static inline unsigned long task_weight(struct task_struct *p, int nid,
1349 int dist)
1351 unsigned long faults, total_faults;
1353 if (!p->numa_faults)
1354 return 0;
1356 total_faults = p->total_numa_faults;
1358 if (!total_faults)
1359 return 0;
1361 faults = task_faults(p, nid);
1362 faults += score_nearby_nodes(p, nid, dist, true);
1364 return 1000 * faults / total_faults;
1367 static inline unsigned long group_weight(struct task_struct *p, int nid,
1368 int dist)
1370 unsigned long faults, total_faults;
1372 if (!p->numa_group)
1373 return 0;
1375 total_faults = p->numa_group->total_faults;
1377 if (!total_faults)
1378 return 0;
1380 faults = group_faults(p, nid);
1381 faults += score_nearby_nodes(p, nid, dist, false);
1383 return 1000 * faults / total_faults;
1386 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1387 int src_nid, int dst_cpu)
1389 struct numa_group *ng = p->numa_group;
1390 int dst_nid = cpu_to_node(dst_cpu);
1391 int last_cpupid, this_cpupid;
1393 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1394 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1397 * Allow first faults or private faults to migrate immediately early in
1398 * the lifetime of a task. The magic number 4 is based on waiting for
1399 * two full passes of the "multi-stage node selection" test that is
1400 * executed below.
1402 if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
1403 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1404 return true;
1407 * Multi-stage node selection is used in conjunction with a periodic
1408 * migration fault to build a temporal task<->page relation. By using
1409 * a two-stage filter we remove short/unlikely relations.
1411 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1412 * a task's usage of a particular page (n_p) per total usage of this
1413 * page (n_t) (in a given time-span) to a probability.
1415 * Our periodic faults will sample this probability and getting the
1416 * same result twice in a row, given these samples are fully
1417 * independent, is then given by P(n)^2, provided our sample period
1418 * is sufficiently short compared to the usage pattern.
1420 * This quadric squishes small probabilities, making it less likely we
1421 * act on an unlikely task<->page relation.
1423 if (!cpupid_pid_unset(last_cpupid) &&
1424 cpupid_to_nid(last_cpupid) != dst_nid)
1425 return false;
1427 /* Always allow migrate on private faults */
1428 if (cpupid_match_pid(p, last_cpupid))
1429 return true;
1431 /* A shared fault, but p->numa_group has not been set up yet. */
1432 if (!ng)
1433 return true;
1436 * Destination node is much more heavily used than the source
1437 * node? Allow migration.
1439 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1440 ACTIVE_NODE_FRACTION)
1441 return true;
1444 * Distribute memory according to CPU & memory use on each node,
1445 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1447 * faults_cpu(dst) 3 faults_cpu(src)
1448 * --------------- * - > ---------------
1449 * faults_mem(dst) 4 faults_mem(src)
1451 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1452 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1455 static unsigned long weighted_cpuload(struct rq *rq);
1456 static unsigned long source_load(int cpu, int type);
1457 static unsigned long target_load(int cpu, int type);
1458 static unsigned long capacity_of(int cpu);
1460 /* Cached statistics for all CPUs within a node */
1461 struct numa_stats {
1462 unsigned long load;
1464 /* Total compute capacity of CPUs on a node */
1465 unsigned long compute_capacity;
1467 unsigned int nr_running;
1471 * XXX borrowed from update_sg_lb_stats
1473 static void update_numa_stats(struct numa_stats *ns, int nid)
1475 int smt, cpu, cpus = 0;
1476 unsigned long capacity;
1478 memset(ns, 0, sizeof(*ns));
1479 for_each_cpu(cpu, cpumask_of_node(nid)) {
1480 struct rq *rq = cpu_rq(cpu);
1482 ns->nr_running += rq->nr_running;
1483 ns->load += weighted_cpuload(rq);
1484 ns->compute_capacity += capacity_of(cpu);
1486 cpus++;
1490 * If we raced with hotplug and there are no CPUs left in our mask
1491 * the @ns structure is NULL'ed and task_numa_compare() will
1492 * not find this node attractive.
1494 * We'll detect a huge imbalance and bail there.
1496 if (!cpus)
1497 return;
1499 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1500 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1501 capacity = cpus / smt; /* cores */
1503 capacity = min_t(unsigned, capacity,
1504 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1507 struct task_numa_env {
1508 struct task_struct *p;
1510 int src_cpu, src_nid;
1511 int dst_cpu, dst_nid;
1513 struct numa_stats src_stats, dst_stats;
1515 int imbalance_pct;
1516 int dist;
1518 struct task_struct *best_task;
1519 long best_imp;
1520 int best_cpu;
1523 static void task_numa_assign(struct task_numa_env *env,
1524 struct task_struct *p, long imp)
1526 struct rq *rq = cpu_rq(env->dst_cpu);
1528 /* Bail out if run-queue part of active NUMA balance. */
1529 if (xchg(&rq->numa_migrate_on, 1))
1530 return;
1533 * Clear previous best_cpu/rq numa-migrate flag, since task now
1534 * found a better CPU to move/swap.
1536 if (env->best_cpu != -1) {
1537 rq = cpu_rq(env->best_cpu);
1538 WRITE_ONCE(rq->numa_migrate_on, 0);
1541 if (env->best_task)
1542 put_task_struct(env->best_task);
1543 if (p)
1544 get_task_struct(p);
1546 env->best_task = p;
1547 env->best_imp = imp;
1548 env->best_cpu = env->dst_cpu;
1551 static bool load_too_imbalanced(long src_load, long dst_load,
1552 struct task_numa_env *env)
1554 long imb, old_imb;
1555 long orig_src_load, orig_dst_load;
1556 long src_capacity, dst_capacity;
1559 * The load is corrected for the CPU capacity available on each node.
1561 * src_load dst_load
1562 * ------------ vs ---------
1563 * src_capacity dst_capacity
1565 src_capacity = env->src_stats.compute_capacity;
1566 dst_capacity = env->dst_stats.compute_capacity;
1568 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1570 orig_src_load = env->src_stats.load;
1571 orig_dst_load = env->dst_stats.load;
1573 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1575 /* Would this change make things worse? */
1576 return (imb > old_imb);
1580 * Maximum NUMA importance can be 1998 (2*999);
1581 * SMALLIMP @ 30 would be close to 1998/64.
1582 * Used to deter task migration.
1584 #define SMALLIMP 30
1587 * This checks if the overall compute and NUMA accesses of the system would
1588 * be improved if the source tasks was migrated to the target dst_cpu taking
1589 * into account that it might be best if task running on the dst_cpu should
1590 * be exchanged with the source task
1592 static void task_numa_compare(struct task_numa_env *env,
1593 long taskimp, long groupimp, bool maymove)
1595 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1596 struct task_struct *cur;
1597 long src_load, dst_load;
1598 long load;
1599 long imp = env->p->numa_group ? groupimp : taskimp;
1600 long moveimp = imp;
1601 int dist = env->dist;
1603 if (READ_ONCE(dst_rq->numa_migrate_on))
1604 return;
1606 rcu_read_lock();
1607 cur = task_rcu_dereference(&dst_rq->curr);
1608 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1609 cur = NULL;
1612 * Because we have preemption enabled we can get migrated around and
1613 * end try selecting ourselves (current == env->p) as a swap candidate.
1615 if (cur == env->p)
1616 goto unlock;
1618 if (!cur) {
1619 if (maymove && moveimp >= env->best_imp)
1620 goto assign;
1621 else
1622 goto unlock;
1626 * "imp" is the fault differential for the source task between the
1627 * source and destination node. Calculate the total differential for
1628 * the source task and potential destination task. The more negative
1629 * the value is, the more remote accesses that would be expected to
1630 * be incurred if the tasks were swapped.
1632 /* Skip this swap candidate if cannot move to the source cpu */
1633 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1634 goto unlock;
1637 * If dst and source tasks are in the same NUMA group, or not
1638 * in any group then look only at task weights.
1640 if (cur->numa_group == env->p->numa_group) {
1641 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1642 task_weight(cur, env->dst_nid, dist);
1644 * Add some hysteresis to prevent swapping the
1645 * tasks within a group over tiny differences.
1647 if (cur->numa_group)
1648 imp -= imp / 16;
1649 } else {
1651 * Compare the group weights. If a task is all by itself
1652 * (not part of a group), use the task weight instead.
1654 if (cur->numa_group && env->p->numa_group)
1655 imp += group_weight(cur, env->src_nid, dist) -
1656 group_weight(cur, env->dst_nid, dist);
1657 else
1658 imp += task_weight(cur, env->src_nid, dist) -
1659 task_weight(cur, env->dst_nid, dist);
1662 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1663 imp = moveimp;
1664 cur = NULL;
1665 goto assign;
1669 * If the NUMA importance is less than SMALLIMP,
1670 * task migration might only result in ping pong
1671 * of tasks and also hurt performance due to cache
1672 * misses.
1674 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1675 goto unlock;
1678 * In the overloaded case, try and keep the load balanced.
1680 load = task_h_load(env->p) - task_h_load(cur);
1681 if (!load)
1682 goto assign;
1684 dst_load = env->dst_stats.load + load;
1685 src_load = env->src_stats.load - load;
1687 if (load_too_imbalanced(src_load, dst_load, env))
1688 goto unlock;
1690 assign:
1692 * One idle CPU per node is evaluated for a task numa move.
1693 * Call select_idle_sibling to maybe find a better one.
1695 if (!cur) {
1697 * select_idle_siblings() uses an per-CPU cpumask that
1698 * can be used from IRQ context.
1700 local_irq_disable();
1701 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1702 env->dst_cpu);
1703 local_irq_enable();
1706 task_numa_assign(env, cur, imp);
1707 unlock:
1708 rcu_read_unlock();
1711 static void task_numa_find_cpu(struct task_numa_env *env,
1712 long taskimp, long groupimp)
1714 long src_load, dst_load, load;
1715 bool maymove = false;
1716 int cpu;
1718 load = task_h_load(env->p);
1719 dst_load = env->dst_stats.load + load;
1720 src_load = env->src_stats.load - load;
1723 * If the improvement from just moving env->p direction is better
1724 * than swapping tasks around, check if a move is possible.
1726 maymove = !load_too_imbalanced(src_load, dst_load, env);
1728 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1729 /* Skip this CPU if the source task cannot migrate */
1730 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1731 continue;
1733 env->dst_cpu = cpu;
1734 task_numa_compare(env, taskimp, groupimp, maymove);
1738 static int task_numa_migrate(struct task_struct *p)
1740 struct task_numa_env env = {
1741 .p = p,
1743 .src_cpu = task_cpu(p),
1744 .src_nid = task_node(p),
1746 .imbalance_pct = 112,
1748 .best_task = NULL,
1749 .best_imp = 0,
1750 .best_cpu = -1,
1752 struct sched_domain *sd;
1753 struct rq *best_rq;
1754 unsigned long taskweight, groupweight;
1755 int nid, ret, dist;
1756 long taskimp, groupimp;
1759 * Pick the lowest SD_NUMA domain, as that would have the smallest
1760 * imbalance and would be the first to start moving tasks about.
1762 * And we want to avoid any moving of tasks about, as that would create
1763 * random movement of tasks -- counter the numa conditions we're trying
1764 * to satisfy here.
1766 rcu_read_lock();
1767 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1768 if (sd)
1769 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1770 rcu_read_unlock();
1773 * Cpusets can break the scheduler domain tree into smaller
1774 * balance domains, some of which do not cross NUMA boundaries.
1775 * Tasks that are "trapped" in such domains cannot be migrated
1776 * elsewhere, so there is no point in (re)trying.
1778 if (unlikely(!sd)) {
1779 sched_setnuma(p, task_node(p));
1780 return -EINVAL;
1783 env.dst_nid = p->numa_preferred_nid;
1784 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1785 taskweight = task_weight(p, env.src_nid, dist);
1786 groupweight = group_weight(p, env.src_nid, dist);
1787 update_numa_stats(&env.src_stats, env.src_nid);
1788 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1789 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1790 update_numa_stats(&env.dst_stats, env.dst_nid);
1792 /* Try to find a spot on the preferred nid. */
1793 task_numa_find_cpu(&env, taskimp, groupimp);
1796 * Look at other nodes in these cases:
1797 * - there is no space available on the preferred_nid
1798 * - the task is part of a numa_group that is interleaved across
1799 * multiple NUMA nodes; in order to better consolidate the group,
1800 * we need to check other locations.
1802 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1803 for_each_online_node(nid) {
1804 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1805 continue;
1807 dist = node_distance(env.src_nid, env.dst_nid);
1808 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1809 dist != env.dist) {
1810 taskweight = task_weight(p, env.src_nid, dist);
1811 groupweight = group_weight(p, env.src_nid, dist);
1814 /* Only consider nodes where both task and groups benefit */
1815 taskimp = task_weight(p, nid, dist) - taskweight;
1816 groupimp = group_weight(p, nid, dist) - groupweight;
1817 if (taskimp < 0 && groupimp < 0)
1818 continue;
1820 env.dist = dist;
1821 env.dst_nid = nid;
1822 update_numa_stats(&env.dst_stats, env.dst_nid);
1823 task_numa_find_cpu(&env, taskimp, groupimp);
1828 * If the task is part of a workload that spans multiple NUMA nodes,
1829 * and is migrating into one of the workload's active nodes, remember
1830 * this node as the task's preferred numa node, so the workload can
1831 * settle down.
1832 * A task that migrated to a second choice node will be better off
1833 * trying for a better one later. Do not set the preferred node here.
1835 if (p->numa_group) {
1836 if (env.best_cpu == -1)
1837 nid = env.src_nid;
1838 else
1839 nid = cpu_to_node(env.best_cpu);
1841 if (nid != p->numa_preferred_nid)
1842 sched_setnuma(p, nid);
1845 /* No better CPU than the current one was found. */
1846 if (env.best_cpu == -1)
1847 return -EAGAIN;
1849 best_rq = cpu_rq(env.best_cpu);
1850 if (env.best_task == NULL) {
1851 ret = migrate_task_to(p, env.best_cpu);
1852 WRITE_ONCE(best_rq->numa_migrate_on, 0);
1853 if (ret != 0)
1854 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1855 return ret;
1858 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1859 WRITE_ONCE(best_rq->numa_migrate_on, 0);
1861 if (ret != 0)
1862 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1863 put_task_struct(env.best_task);
1864 return ret;
1867 /* Attempt to migrate a task to a CPU on the preferred node. */
1868 static void numa_migrate_preferred(struct task_struct *p)
1870 unsigned long interval = HZ;
1872 /* This task has no NUMA fault statistics yet */
1873 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1874 return;
1876 /* Periodically retry migrating the task to the preferred node */
1877 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1878 p->numa_migrate_retry = jiffies + interval;
1880 /* Success if task is already running on preferred CPU */
1881 if (task_node(p) == p->numa_preferred_nid)
1882 return;
1884 /* Otherwise, try migrate to a CPU on the preferred node */
1885 task_numa_migrate(p);
1889 * Find out how many nodes on the workload is actively running on. Do this by
1890 * tracking the nodes from which NUMA hinting faults are triggered. This can
1891 * be different from the set of nodes where the workload's memory is currently
1892 * located.
1894 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1896 unsigned long faults, max_faults = 0;
1897 int nid, active_nodes = 0;
1899 for_each_online_node(nid) {
1900 faults = group_faults_cpu(numa_group, nid);
1901 if (faults > max_faults)
1902 max_faults = faults;
1905 for_each_online_node(nid) {
1906 faults = group_faults_cpu(numa_group, nid);
1907 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1908 active_nodes++;
1911 numa_group->max_faults_cpu = max_faults;
1912 numa_group->active_nodes = active_nodes;
1916 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1917 * increments. The more local the fault statistics are, the higher the scan
1918 * period will be for the next scan window. If local/(local+remote) ratio is
1919 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1920 * the scan period will decrease. Aim for 70% local accesses.
1922 #define NUMA_PERIOD_SLOTS 10
1923 #define NUMA_PERIOD_THRESHOLD 7
1926 * Increase the scan period (slow down scanning) if the majority of
1927 * our memory is already on our local node, or if the majority of
1928 * the page accesses are shared with other processes.
1929 * Otherwise, decrease the scan period.
1931 static void update_task_scan_period(struct task_struct *p,
1932 unsigned long shared, unsigned long private)
1934 unsigned int period_slot;
1935 int lr_ratio, ps_ratio;
1936 int diff;
1938 unsigned long remote = p->numa_faults_locality[0];
1939 unsigned long local = p->numa_faults_locality[1];
1942 * If there were no record hinting faults then either the task is
1943 * completely idle or all activity is areas that are not of interest
1944 * to automatic numa balancing. Related to that, if there were failed
1945 * migration then it implies we are migrating too quickly or the local
1946 * node is overloaded. In either case, scan slower
1948 if (local + shared == 0 || p->numa_faults_locality[2]) {
1949 p->numa_scan_period = min(p->numa_scan_period_max,
1950 p->numa_scan_period << 1);
1952 p->mm->numa_next_scan = jiffies +
1953 msecs_to_jiffies(p->numa_scan_period);
1955 return;
1959 * Prepare to scale scan period relative to the current period.
1960 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1961 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1962 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1964 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1965 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1966 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1968 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1970 * Most memory accesses are local. There is no need to
1971 * do fast NUMA scanning, since memory is already local.
1973 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1974 if (!slot)
1975 slot = 1;
1976 diff = slot * period_slot;
1977 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1979 * Most memory accesses are shared with other tasks.
1980 * There is no point in continuing fast NUMA scanning,
1981 * since other tasks may just move the memory elsewhere.
1983 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1984 if (!slot)
1985 slot = 1;
1986 diff = slot * period_slot;
1987 } else {
1989 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1990 * yet they are not on the local NUMA node. Speed up
1991 * NUMA scanning to get the memory moved over.
1993 int ratio = max(lr_ratio, ps_ratio);
1994 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1997 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1998 task_scan_min(p), task_scan_max(p));
1999 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2003 * Get the fraction of time the task has been running since the last
2004 * NUMA placement cycle. The scheduler keeps similar statistics, but
2005 * decays those on a 32ms period, which is orders of magnitude off
2006 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2007 * stats only if the task is so new there are no NUMA statistics yet.
2009 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2011 u64 runtime, delta, now;
2012 /* Use the start of this time slice to avoid calculations. */
2013 now = p->se.exec_start;
2014 runtime = p->se.sum_exec_runtime;
2016 if (p->last_task_numa_placement) {
2017 delta = runtime - p->last_sum_exec_runtime;
2018 *period = now - p->last_task_numa_placement;
2019 } else {
2020 delta = p->se.avg.load_sum;
2021 *period = LOAD_AVG_MAX;
2024 p->last_sum_exec_runtime = runtime;
2025 p->last_task_numa_placement = now;
2027 return delta;
2031 * Determine the preferred nid for a task in a numa_group. This needs to
2032 * be done in a way that produces consistent results with group_weight,
2033 * otherwise workloads might not converge.
2035 static int preferred_group_nid(struct task_struct *p, int nid)
2037 nodemask_t nodes;
2038 int dist;
2040 /* Direct connections between all NUMA nodes. */
2041 if (sched_numa_topology_type == NUMA_DIRECT)
2042 return nid;
2045 * On a system with glueless mesh NUMA topology, group_weight
2046 * scores nodes according to the number of NUMA hinting faults on
2047 * both the node itself, and on nearby nodes.
2049 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2050 unsigned long score, max_score = 0;
2051 int node, max_node = nid;
2053 dist = sched_max_numa_distance;
2055 for_each_online_node(node) {
2056 score = group_weight(p, node, dist);
2057 if (score > max_score) {
2058 max_score = score;
2059 max_node = node;
2062 return max_node;
2066 * Finding the preferred nid in a system with NUMA backplane
2067 * interconnect topology is more involved. The goal is to locate
2068 * tasks from numa_groups near each other in the system, and
2069 * untangle workloads from different sides of the system. This requires
2070 * searching down the hierarchy of node groups, recursively searching
2071 * inside the highest scoring group of nodes. The nodemask tricks
2072 * keep the complexity of the search down.
2074 nodes = node_online_map;
2075 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2076 unsigned long max_faults = 0;
2077 nodemask_t max_group = NODE_MASK_NONE;
2078 int a, b;
2080 /* Are there nodes at this distance from each other? */
2081 if (!find_numa_distance(dist))
2082 continue;
2084 for_each_node_mask(a, nodes) {
2085 unsigned long faults = 0;
2086 nodemask_t this_group;
2087 nodes_clear(this_group);
2089 /* Sum group's NUMA faults; includes a==b case. */
2090 for_each_node_mask(b, nodes) {
2091 if (node_distance(a, b) < dist) {
2092 faults += group_faults(p, b);
2093 node_set(b, this_group);
2094 node_clear(b, nodes);
2098 /* Remember the top group. */
2099 if (faults > max_faults) {
2100 max_faults = faults;
2101 max_group = this_group;
2103 * subtle: at the smallest distance there is
2104 * just one node left in each "group", the
2105 * winner is the preferred nid.
2107 nid = a;
2110 /* Next round, evaluate the nodes within max_group. */
2111 if (!max_faults)
2112 break;
2113 nodes = max_group;
2115 return nid;
2118 static void task_numa_placement(struct task_struct *p)
2120 int seq, nid, max_nid = -1;
2121 unsigned long max_faults = 0;
2122 unsigned long fault_types[2] = { 0, 0 };
2123 unsigned long total_faults;
2124 u64 runtime, period;
2125 spinlock_t *group_lock = NULL;
2128 * The p->mm->numa_scan_seq field gets updated without
2129 * exclusive access. Use READ_ONCE() here to ensure
2130 * that the field is read in a single access:
2132 seq = READ_ONCE(p->mm->numa_scan_seq);
2133 if (p->numa_scan_seq == seq)
2134 return;
2135 p->numa_scan_seq = seq;
2136 p->numa_scan_period_max = task_scan_max(p);
2138 total_faults = p->numa_faults_locality[0] +
2139 p->numa_faults_locality[1];
2140 runtime = numa_get_avg_runtime(p, &period);
2142 /* If the task is part of a group prevent parallel updates to group stats */
2143 if (p->numa_group) {
2144 group_lock = &p->numa_group->lock;
2145 spin_lock_irq(group_lock);
2148 /* Find the node with the highest number of faults */
2149 for_each_online_node(nid) {
2150 /* Keep track of the offsets in numa_faults array */
2151 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2152 unsigned long faults = 0, group_faults = 0;
2153 int priv;
2155 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2156 long diff, f_diff, f_weight;
2158 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2159 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2160 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2161 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2163 /* Decay existing window, copy faults since last scan */
2164 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2165 fault_types[priv] += p->numa_faults[membuf_idx];
2166 p->numa_faults[membuf_idx] = 0;
2169 * Normalize the faults_from, so all tasks in a group
2170 * count according to CPU use, instead of by the raw
2171 * number of faults. Tasks with little runtime have
2172 * little over-all impact on throughput, and thus their
2173 * faults are less important.
2175 f_weight = div64_u64(runtime << 16, period + 1);
2176 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2177 (total_faults + 1);
2178 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2179 p->numa_faults[cpubuf_idx] = 0;
2181 p->numa_faults[mem_idx] += diff;
2182 p->numa_faults[cpu_idx] += f_diff;
2183 faults += p->numa_faults[mem_idx];
2184 p->total_numa_faults += diff;
2185 if (p->numa_group) {
2187 * safe because we can only change our own group
2189 * mem_idx represents the offset for a given
2190 * nid and priv in a specific region because it
2191 * is at the beginning of the numa_faults array.
2193 p->numa_group->faults[mem_idx] += diff;
2194 p->numa_group->faults_cpu[mem_idx] += f_diff;
2195 p->numa_group->total_faults += diff;
2196 group_faults += p->numa_group->faults[mem_idx];
2200 if (!p->numa_group) {
2201 if (faults > max_faults) {
2202 max_faults = faults;
2203 max_nid = nid;
2205 } else if (group_faults > max_faults) {
2206 max_faults = group_faults;
2207 max_nid = nid;
2211 if (p->numa_group) {
2212 numa_group_count_active_nodes(p->numa_group);
2213 spin_unlock_irq(group_lock);
2214 max_nid = preferred_group_nid(p, max_nid);
2217 if (max_faults) {
2218 /* Set the new preferred node */
2219 if (max_nid != p->numa_preferred_nid)
2220 sched_setnuma(p, max_nid);
2223 update_task_scan_period(p, fault_types[0], fault_types[1]);
2226 static inline int get_numa_group(struct numa_group *grp)
2228 return atomic_inc_not_zero(&grp->refcount);
2231 static inline void put_numa_group(struct numa_group *grp)
2233 if (atomic_dec_and_test(&grp->refcount))
2234 kfree_rcu(grp, rcu);
2237 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2238 int *priv)
2240 struct numa_group *grp, *my_grp;
2241 struct task_struct *tsk;
2242 bool join = false;
2243 int cpu = cpupid_to_cpu(cpupid);
2244 int i;
2246 if (unlikely(!p->numa_group)) {
2247 unsigned int size = sizeof(struct numa_group) +
2248 4*nr_node_ids*sizeof(unsigned long);
2250 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2251 if (!grp)
2252 return;
2254 atomic_set(&grp->refcount, 1);
2255 grp->active_nodes = 1;
2256 grp->max_faults_cpu = 0;
2257 spin_lock_init(&grp->lock);
2258 grp->gid = p->pid;
2259 /* Second half of the array tracks nids where faults happen */
2260 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2261 nr_node_ids;
2263 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2264 grp->faults[i] = p->numa_faults[i];
2266 grp->total_faults = p->total_numa_faults;
2268 grp->nr_tasks++;
2269 rcu_assign_pointer(p->numa_group, grp);
2272 rcu_read_lock();
2273 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2275 if (!cpupid_match_pid(tsk, cpupid))
2276 goto no_join;
2278 grp = rcu_dereference(tsk->numa_group);
2279 if (!grp)
2280 goto no_join;
2282 my_grp = p->numa_group;
2283 if (grp == my_grp)
2284 goto no_join;
2287 * Only join the other group if its bigger; if we're the bigger group,
2288 * the other task will join us.
2290 if (my_grp->nr_tasks > grp->nr_tasks)
2291 goto no_join;
2294 * Tie-break on the grp address.
2296 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2297 goto no_join;
2299 /* Always join threads in the same process. */
2300 if (tsk->mm == current->mm)
2301 join = true;
2303 /* Simple filter to avoid false positives due to PID collisions */
2304 if (flags & TNF_SHARED)
2305 join = true;
2307 /* Update priv based on whether false sharing was detected */
2308 *priv = !join;
2310 if (join && !get_numa_group(grp))
2311 goto no_join;
2313 rcu_read_unlock();
2315 if (!join)
2316 return;
2318 BUG_ON(irqs_disabled());
2319 double_lock_irq(&my_grp->lock, &grp->lock);
2321 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2322 my_grp->faults[i] -= p->numa_faults[i];
2323 grp->faults[i] += p->numa_faults[i];
2325 my_grp->total_faults -= p->total_numa_faults;
2326 grp->total_faults += p->total_numa_faults;
2328 my_grp->nr_tasks--;
2329 grp->nr_tasks++;
2331 spin_unlock(&my_grp->lock);
2332 spin_unlock_irq(&grp->lock);
2334 rcu_assign_pointer(p->numa_group, grp);
2336 put_numa_group(my_grp);
2337 return;
2339 no_join:
2340 rcu_read_unlock();
2341 return;
2344 void task_numa_free(struct task_struct *p)
2346 struct numa_group *grp = p->numa_group;
2347 void *numa_faults = p->numa_faults;
2348 unsigned long flags;
2349 int i;
2351 if (grp) {
2352 spin_lock_irqsave(&grp->lock, flags);
2353 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2354 grp->faults[i] -= p->numa_faults[i];
2355 grp->total_faults -= p->total_numa_faults;
2357 grp->nr_tasks--;
2358 spin_unlock_irqrestore(&grp->lock, flags);
2359 RCU_INIT_POINTER(p->numa_group, NULL);
2360 put_numa_group(grp);
2363 p->numa_faults = NULL;
2364 kfree(numa_faults);
2368 * Got a PROT_NONE fault for a page on @node.
2370 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2372 struct task_struct *p = current;
2373 bool migrated = flags & TNF_MIGRATED;
2374 int cpu_node = task_node(current);
2375 int local = !!(flags & TNF_FAULT_LOCAL);
2376 struct numa_group *ng;
2377 int priv;
2379 if (!static_branch_likely(&sched_numa_balancing))
2380 return;
2382 /* for example, ksmd faulting in a user's mm */
2383 if (!p->mm)
2384 return;
2386 /* Allocate buffer to track faults on a per-node basis */
2387 if (unlikely(!p->numa_faults)) {
2388 int size = sizeof(*p->numa_faults) *
2389 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2391 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2392 if (!p->numa_faults)
2393 return;
2395 p->total_numa_faults = 0;
2396 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2400 * First accesses are treated as private, otherwise consider accesses
2401 * to be private if the accessing pid has not changed
2403 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2404 priv = 1;
2405 } else {
2406 priv = cpupid_match_pid(p, last_cpupid);
2407 if (!priv && !(flags & TNF_NO_GROUP))
2408 task_numa_group(p, last_cpupid, flags, &priv);
2412 * If a workload spans multiple NUMA nodes, a shared fault that
2413 * occurs wholly within the set of nodes that the workload is
2414 * actively using should be counted as local. This allows the
2415 * scan rate to slow down when a workload has settled down.
2417 ng = p->numa_group;
2418 if (!priv && !local && ng && ng->active_nodes > 1 &&
2419 numa_is_active_node(cpu_node, ng) &&
2420 numa_is_active_node(mem_node, ng))
2421 local = 1;
2424 * Retry task to preferred node migration periodically, in case it
2425 * case it previously failed, or the scheduler moved us.
2427 if (time_after(jiffies, p->numa_migrate_retry)) {
2428 task_numa_placement(p);
2429 numa_migrate_preferred(p);
2432 if (migrated)
2433 p->numa_pages_migrated += pages;
2434 if (flags & TNF_MIGRATE_FAIL)
2435 p->numa_faults_locality[2] += pages;
2437 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2438 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2439 p->numa_faults_locality[local] += pages;
2442 static void reset_ptenuma_scan(struct task_struct *p)
2445 * We only did a read acquisition of the mmap sem, so
2446 * p->mm->numa_scan_seq is written to without exclusive access
2447 * and the update is not guaranteed to be atomic. That's not
2448 * much of an issue though, since this is just used for
2449 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2450 * expensive, to avoid any form of compiler optimizations:
2452 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2453 p->mm->numa_scan_offset = 0;
2457 * The expensive part of numa migration is done from task_work context.
2458 * Triggered from task_tick_numa().
2460 void task_numa_work(struct callback_head *work)
2462 unsigned long migrate, next_scan, now = jiffies;
2463 struct task_struct *p = current;
2464 struct mm_struct *mm = p->mm;
2465 u64 runtime = p->se.sum_exec_runtime;
2466 struct vm_area_struct *vma;
2467 unsigned long start, end;
2468 unsigned long nr_pte_updates = 0;
2469 long pages, virtpages;
2471 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2473 work->next = work; /* protect against double add */
2475 * Who cares about NUMA placement when they're dying.
2477 * NOTE: make sure not to dereference p->mm before this check,
2478 * exit_task_work() happens _after_ exit_mm() so we could be called
2479 * without p->mm even though we still had it when we enqueued this
2480 * work.
2482 if (p->flags & PF_EXITING)
2483 return;
2485 if (!mm->numa_next_scan) {
2486 mm->numa_next_scan = now +
2487 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2491 * Enforce maximal scan/migration frequency..
2493 migrate = mm->numa_next_scan;
2494 if (time_before(now, migrate))
2495 return;
2497 if (p->numa_scan_period == 0) {
2498 p->numa_scan_period_max = task_scan_max(p);
2499 p->numa_scan_period = task_scan_start(p);
2502 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2503 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2504 return;
2507 * Delay this task enough that another task of this mm will likely win
2508 * the next time around.
2510 p->node_stamp += 2 * TICK_NSEC;
2512 start = mm->numa_scan_offset;
2513 pages = sysctl_numa_balancing_scan_size;
2514 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2515 virtpages = pages * 8; /* Scan up to this much virtual space */
2516 if (!pages)
2517 return;
2520 if (!down_read_trylock(&mm->mmap_sem))
2521 return;
2522 vma = find_vma(mm, start);
2523 if (!vma) {
2524 reset_ptenuma_scan(p);
2525 start = 0;
2526 vma = mm->mmap;
2528 for (; vma; vma = vma->vm_next) {
2529 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2530 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2531 continue;
2535 * Shared library pages mapped by multiple processes are not
2536 * migrated as it is expected they are cache replicated. Avoid
2537 * hinting faults in read-only file-backed mappings or the vdso
2538 * as migrating the pages will be of marginal benefit.
2540 if (!vma->vm_mm ||
2541 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2542 continue;
2545 * Skip inaccessible VMAs to avoid any confusion between
2546 * PROT_NONE and NUMA hinting ptes
2548 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2549 continue;
2551 do {
2552 start = max(start, vma->vm_start);
2553 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2554 end = min(end, vma->vm_end);
2555 nr_pte_updates = change_prot_numa(vma, start, end);
2558 * Try to scan sysctl_numa_balancing_size worth of
2559 * hpages that have at least one present PTE that
2560 * is not already pte-numa. If the VMA contains
2561 * areas that are unused or already full of prot_numa
2562 * PTEs, scan up to virtpages, to skip through those
2563 * areas faster.
2565 if (nr_pte_updates)
2566 pages -= (end - start) >> PAGE_SHIFT;
2567 virtpages -= (end - start) >> PAGE_SHIFT;
2569 start = end;
2570 if (pages <= 0 || virtpages <= 0)
2571 goto out;
2573 cond_resched();
2574 } while (end != vma->vm_end);
2577 out:
2579 * It is possible to reach the end of the VMA list but the last few
2580 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2581 * would find the !migratable VMA on the next scan but not reset the
2582 * scanner to the start so check it now.
2584 if (vma)
2585 mm->numa_scan_offset = start;
2586 else
2587 reset_ptenuma_scan(p);
2588 up_read(&mm->mmap_sem);
2591 * Make sure tasks use at least 32x as much time to run other code
2592 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2593 * Usually update_task_scan_period slows down scanning enough; on an
2594 * overloaded system we need to limit overhead on a per task basis.
2596 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2597 u64 diff = p->se.sum_exec_runtime - runtime;
2598 p->node_stamp += 32 * diff;
2603 * Drive the periodic memory faults..
2605 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2607 struct callback_head *work = &curr->numa_work;
2608 u64 period, now;
2611 * We don't care about NUMA placement if we don't have memory.
2613 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2614 return;
2617 * Using runtime rather than walltime has the dual advantage that
2618 * we (mostly) drive the selection from busy threads and that the
2619 * task needs to have done some actual work before we bother with
2620 * NUMA placement.
2622 now = curr->se.sum_exec_runtime;
2623 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2625 if (now > curr->node_stamp + period) {
2626 if (!curr->node_stamp)
2627 curr->numa_scan_period = task_scan_start(curr);
2628 curr->node_stamp += period;
2630 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2631 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2632 task_work_add(curr, work, true);
2637 static void update_scan_period(struct task_struct *p, int new_cpu)
2639 int src_nid = cpu_to_node(task_cpu(p));
2640 int dst_nid = cpu_to_node(new_cpu);
2642 if (!static_branch_likely(&sched_numa_balancing))
2643 return;
2645 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2646 return;
2648 if (src_nid == dst_nid)
2649 return;
2652 * Allow resets if faults have been trapped before one scan
2653 * has completed. This is most likely due to a new task that
2654 * is pulled cross-node due to wakeups or load balancing.
2656 if (p->numa_scan_seq) {
2658 * Avoid scan adjustments if moving to the preferred
2659 * node or if the task was not previously running on
2660 * the preferred node.
2662 if (dst_nid == p->numa_preferred_nid ||
2663 (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
2664 return;
2667 p->numa_scan_period = task_scan_start(p);
2670 #else
2671 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2675 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2679 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2683 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2687 #endif /* CONFIG_NUMA_BALANCING */
2689 static void
2690 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2692 update_load_add(&cfs_rq->load, se->load.weight);
2693 if (!parent_entity(se))
2694 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2695 #ifdef CONFIG_SMP
2696 if (entity_is_task(se)) {
2697 struct rq *rq = rq_of(cfs_rq);
2699 account_numa_enqueue(rq, task_of(se));
2700 list_add(&se->group_node, &rq->cfs_tasks);
2702 #endif
2703 cfs_rq->nr_running++;
2706 static void
2707 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2709 update_load_sub(&cfs_rq->load, se->load.weight);
2710 if (!parent_entity(se))
2711 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2712 #ifdef CONFIG_SMP
2713 if (entity_is_task(se)) {
2714 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2715 list_del_init(&se->group_node);
2717 #endif
2718 cfs_rq->nr_running--;
2722 * Signed add and clamp on underflow.
2724 * Explicitly do a load-store to ensure the intermediate value never hits
2725 * memory. This allows lockless observations without ever seeing the negative
2726 * values.
2728 #define add_positive(_ptr, _val) do { \
2729 typeof(_ptr) ptr = (_ptr); \
2730 typeof(_val) val = (_val); \
2731 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2733 res = var + val; \
2735 if (val < 0 && res > var) \
2736 res = 0; \
2738 WRITE_ONCE(*ptr, res); \
2739 } while (0)
2742 * Unsigned subtract and clamp on underflow.
2744 * Explicitly do a load-store to ensure the intermediate value never hits
2745 * memory. This allows lockless observations without ever seeing the negative
2746 * values.
2748 #define sub_positive(_ptr, _val) do { \
2749 typeof(_ptr) ptr = (_ptr); \
2750 typeof(*ptr) val = (_val); \
2751 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2752 res = var - val; \
2753 if (res > var) \
2754 res = 0; \
2755 WRITE_ONCE(*ptr, res); \
2756 } while (0)
2758 #ifdef CONFIG_SMP
2759 static inline void
2760 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2762 cfs_rq->runnable_weight += se->runnable_weight;
2764 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2765 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2768 static inline void
2769 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2771 cfs_rq->runnable_weight -= se->runnable_weight;
2773 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2774 sub_positive(&cfs_rq->avg.runnable_load_sum,
2775 se_runnable(se) * se->avg.runnable_load_sum);
2778 static inline void
2779 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2781 cfs_rq->avg.load_avg += se->avg.load_avg;
2782 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2785 static inline void
2786 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2788 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2789 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2791 #else
2792 static inline void
2793 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2794 static inline void
2795 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2796 static inline void
2797 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2798 static inline void
2799 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2800 #endif
2802 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2803 unsigned long weight, unsigned long runnable)
2805 if (se->on_rq) {
2806 /* commit outstanding execution time */
2807 if (cfs_rq->curr == se)
2808 update_curr(cfs_rq);
2809 account_entity_dequeue(cfs_rq, se);
2810 dequeue_runnable_load_avg(cfs_rq, se);
2812 dequeue_load_avg(cfs_rq, se);
2814 se->runnable_weight = runnable;
2815 update_load_set(&se->load, weight);
2817 #ifdef CONFIG_SMP
2818 do {
2819 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2821 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2822 se->avg.runnable_load_avg =
2823 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2824 } while (0);
2825 #endif
2827 enqueue_load_avg(cfs_rq, se);
2828 if (se->on_rq) {
2829 account_entity_enqueue(cfs_rq, se);
2830 enqueue_runnable_load_avg(cfs_rq, se);
2834 void reweight_task(struct task_struct *p, int prio)
2836 struct sched_entity *se = &p->se;
2837 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2838 struct load_weight *load = &se->load;
2839 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2841 reweight_entity(cfs_rq, se, weight, weight);
2842 load->inv_weight = sched_prio_to_wmult[prio];
2845 #ifdef CONFIG_FAIR_GROUP_SCHED
2846 #ifdef CONFIG_SMP
2848 * All this does is approximate the hierarchical proportion which includes that
2849 * global sum we all love to hate.
2851 * That is, the weight of a group entity, is the proportional share of the
2852 * group weight based on the group runqueue weights. That is:
2854 * tg->weight * grq->load.weight
2855 * ge->load.weight = ----------------------------- (1)
2856 * \Sum grq->load.weight
2858 * Now, because computing that sum is prohibitively expensive to compute (been
2859 * there, done that) we approximate it with this average stuff. The average
2860 * moves slower and therefore the approximation is cheaper and more stable.
2862 * So instead of the above, we substitute:
2864 * grq->load.weight -> grq->avg.load_avg (2)
2866 * which yields the following:
2868 * tg->weight * grq->avg.load_avg
2869 * ge->load.weight = ------------------------------ (3)
2870 * tg->load_avg
2872 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2874 * That is shares_avg, and it is right (given the approximation (2)).
2876 * The problem with it is that because the average is slow -- it was designed
2877 * to be exactly that of course -- this leads to transients in boundary
2878 * conditions. In specific, the case where the group was idle and we start the
2879 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2880 * yielding bad latency etc..
2882 * Now, in that special case (1) reduces to:
2884 * tg->weight * grq->load.weight
2885 * ge->load.weight = ----------------------------- = tg->weight (4)
2886 * grp->load.weight
2888 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2890 * So what we do is modify our approximation (3) to approach (4) in the (near)
2891 * UP case, like:
2893 * ge->load.weight =
2895 * tg->weight * grq->load.weight
2896 * --------------------------------------------------- (5)
2897 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2899 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2900 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2903 * tg->weight * grq->load.weight
2904 * ge->load.weight = ----------------------------- (6)
2905 * tg_load_avg'
2907 * Where:
2909 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2910 * max(grq->load.weight, grq->avg.load_avg)
2912 * And that is shares_weight and is icky. In the (near) UP case it approaches
2913 * (4) while in the normal case it approaches (3). It consistently
2914 * overestimates the ge->load.weight and therefore:
2916 * \Sum ge->load.weight >= tg->weight
2918 * hence icky!
2920 static long calc_group_shares(struct cfs_rq *cfs_rq)
2922 long tg_weight, tg_shares, load, shares;
2923 struct task_group *tg = cfs_rq->tg;
2925 tg_shares = READ_ONCE(tg->shares);
2927 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2929 tg_weight = atomic_long_read(&tg->load_avg);
2931 /* Ensure tg_weight >= load */
2932 tg_weight -= cfs_rq->tg_load_avg_contrib;
2933 tg_weight += load;
2935 shares = (tg_shares * load);
2936 if (tg_weight)
2937 shares /= tg_weight;
2940 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2941 * of a group with small tg->shares value. It is a floor value which is
2942 * assigned as a minimum load.weight to the sched_entity representing
2943 * the group on a CPU.
2945 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2946 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2947 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2948 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2949 * instead of 0.
2951 return clamp_t(long, shares, MIN_SHARES, tg_shares);
2955 * This calculates the effective runnable weight for a group entity based on
2956 * the group entity weight calculated above.
2958 * Because of the above approximation (2), our group entity weight is
2959 * an load_avg based ratio (3). This means that it includes blocked load and
2960 * does not represent the runnable weight.
2962 * Approximate the group entity's runnable weight per ratio from the group
2963 * runqueue:
2965 * grq->avg.runnable_load_avg
2966 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2967 * grq->avg.load_avg
2969 * However, analogous to above, since the avg numbers are slow, this leads to
2970 * transients in the from-idle case. Instead we use:
2972 * ge->runnable_weight = ge->load.weight *
2974 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2975 * ----------------------------------------------------- (8)
2976 * max(grq->avg.load_avg, grq->load.weight)
2978 * Where these max() serve both to use the 'instant' values to fix the slow
2979 * from-idle and avoid the /0 on to-idle, similar to (6).
2981 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2983 long runnable, load_avg;
2985 load_avg = max(cfs_rq->avg.load_avg,
2986 scale_load_down(cfs_rq->load.weight));
2988 runnable = max(cfs_rq->avg.runnable_load_avg,
2989 scale_load_down(cfs_rq->runnable_weight));
2991 runnable *= shares;
2992 if (load_avg)
2993 runnable /= load_avg;
2995 return clamp_t(long, runnable, MIN_SHARES, shares);
2997 #endif /* CONFIG_SMP */
2999 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3002 * Recomputes the group entity based on the current state of its group
3003 * runqueue.
3005 static void update_cfs_group(struct sched_entity *se)
3007 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3008 long shares, runnable;
3010 if (!gcfs_rq)
3011 return;
3013 if (throttled_hierarchy(gcfs_rq))
3014 return;
3016 #ifndef CONFIG_SMP
3017 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3019 if (likely(se->load.weight == shares))
3020 return;
3021 #else
3022 shares = calc_group_shares(gcfs_rq);
3023 runnable = calc_group_runnable(gcfs_rq, shares);
3024 #endif
3026 reweight_entity(cfs_rq_of(se), se, shares, runnable);
3029 #else /* CONFIG_FAIR_GROUP_SCHED */
3030 static inline void update_cfs_group(struct sched_entity *se)
3033 #endif /* CONFIG_FAIR_GROUP_SCHED */
3035 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3037 struct rq *rq = rq_of(cfs_rq);
3039 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3041 * There are a few boundary cases this might miss but it should
3042 * get called often enough that that should (hopefully) not be
3043 * a real problem.
3045 * It will not get called when we go idle, because the idle
3046 * thread is a different class (!fair), nor will the utilization
3047 * number include things like RT tasks.
3049 * As is, the util number is not freq-invariant (we'd have to
3050 * implement arch_scale_freq_capacity() for that).
3052 * See cpu_util().
3054 cpufreq_update_util(rq, flags);
3058 #ifdef CONFIG_SMP
3059 #ifdef CONFIG_FAIR_GROUP_SCHED
3061 * update_tg_load_avg - update the tg's load avg
3062 * @cfs_rq: the cfs_rq whose avg changed
3063 * @force: update regardless of how small the difference
3065 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3066 * However, because tg->load_avg is a global value there are performance
3067 * considerations.
3069 * In order to avoid having to look at the other cfs_rq's, we use a
3070 * differential update where we store the last value we propagated. This in
3071 * turn allows skipping updates if the differential is 'small'.
3073 * Updating tg's load_avg is necessary before update_cfs_share().
3075 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3077 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3080 * No need to update load_avg for root_task_group as it is not used.
3082 if (cfs_rq->tg == &root_task_group)
3083 return;
3085 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3086 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3087 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3092 * Called within set_task_rq() right before setting a task's CPU. The
3093 * caller only guarantees p->pi_lock is held; no other assumptions,
3094 * including the state of rq->lock, should be made.
3096 void set_task_rq_fair(struct sched_entity *se,
3097 struct cfs_rq *prev, struct cfs_rq *next)
3099 u64 p_last_update_time;
3100 u64 n_last_update_time;
3102 if (!sched_feat(ATTACH_AGE_LOAD))
3103 return;
3106 * We are supposed to update the task to "current" time, then its up to
3107 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3108 * getting what current time is, so simply throw away the out-of-date
3109 * time. This will result in the wakee task is less decayed, but giving
3110 * the wakee more load sounds not bad.
3112 if (!(se->avg.last_update_time && prev))
3113 return;
3115 #ifndef CONFIG_64BIT
3117 u64 p_last_update_time_copy;
3118 u64 n_last_update_time_copy;
3120 do {
3121 p_last_update_time_copy = prev->load_last_update_time_copy;
3122 n_last_update_time_copy = next->load_last_update_time_copy;
3124 smp_rmb();
3126 p_last_update_time = prev->avg.last_update_time;
3127 n_last_update_time = next->avg.last_update_time;
3129 } while (p_last_update_time != p_last_update_time_copy ||
3130 n_last_update_time != n_last_update_time_copy);
3132 #else
3133 p_last_update_time = prev->avg.last_update_time;
3134 n_last_update_time = next->avg.last_update_time;
3135 #endif
3136 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3137 se->avg.last_update_time = n_last_update_time;
3142 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3143 * propagate its contribution. The key to this propagation is the invariant
3144 * that for each group:
3146 * ge->avg == grq->avg (1)
3148 * _IFF_ we look at the pure running and runnable sums. Because they
3149 * represent the very same entity, just at different points in the hierarchy.
3151 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3152 * sum over (but still wrong, because the group entity and group rq do not have
3153 * their PELT windows aligned).
3155 * However, update_tg_cfs_runnable() is more complex. So we have:
3157 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3159 * And since, like util, the runnable part should be directly transferable,
3160 * the following would _appear_ to be the straight forward approach:
3162 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3164 * And per (1) we have:
3166 * ge->avg.runnable_avg == grq->avg.runnable_avg
3168 * Which gives:
3170 * ge->load.weight * grq->avg.load_avg
3171 * ge->avg.load_avg = ----------------------------------- (4)
3172 * grq->load.weight
3174 * Except that is wrong!
3176 * Because while for entities historical weight is not important and we
3177 * really only care about our future and therefore can consider a pure
3178 * runnable sum, runqueues can NOT do this.
3180 * We specifically want runqueues to have a load_avg that includes
3181 * historical weights. Those represent the blocked load, the load we expect
3182 * to (shortly) return to us. This only works by keeping the weights as
3183 * integral part of the sum. We therefore cannot decompose as per (3).
3185 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3186 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3187 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3188 * runnable section of these tasks overlap (or not). If they were to perfectly
3189 * align the rq as a whole would be runnable 2/3 of the time. If however we
3190 * always have at least 1 runnable task, the rq as a whole is always runnable.
3192 * So we'll have to approximate.. :/
3194 * Given the constraint:
3196 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3198 * We can construct a rule that adds runnable to a rq by assuming minimal
3199 * overlap.
3201 * On removal, we'll assume each task is equally runnable; which yields:
3203 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3205 * XXX: only do this for the part of runnable > running ?
3209 static inline void
3210 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3212 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3214 /* Nothing to update */
3215 if (!delta)
3216 return;
3219 * The relation between sum and avg is:
3221 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3223 * however, the PELT windows are not aligned between grq and gse.
3226 /* Set new sched_entity's utilization */
3227 se->avg.util_avg = gcfs_rq->avg.util_avg;
3228 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3230 /* Update parent cfs_rq utilization */
3231 add_positive(&cfs_rq->avg.util_avg, delta);
3232 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3235 static inline void
3236 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3238 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3239 unsigned long runnable_load_avg, load_avg;
3240 u64 runnable_load_sum, load_sum = 0;
3241 s64 delta_sum;
3243 if (!runnable_sum)
3244 return;
3246 gcfs_rq->prop_runnable_sum = 0;
3248 if (runnable_sum >= 0) {
3250 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3251 * the CPU is saturated running == runnable.
3253 runnable_sum += se->avg.load_sum;
3254 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3255 } else {
3257 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3258 * assuming all tasks are equally runnable.
3260 if (scale_load_down(gcfs_rq->load.weight)) {
3261 load_sum = div_s64(gcfs_rq->avg.load_sum,
3262 scale_load_down(gcfs_rq->load.weight));
3265 /* But make sure to not inflate se's runnable */
3266 runnable_sum = min(se->avg.load_sum, load_sum);
3270 * runnable_sum can't be lower than running_sum
3271 * As running sum is scale with CPU capacity wehreas the runnable sum
3272 * is not we rescale running_sum 1st
3274 running_sum = se->avg.util_sum /
3275 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3276 runnable_sum = max(runnable_sum, running_sum);
3278 load_sum = (s64)se_weight(se) * runnable_sum;
3279 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3281 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3282 delta_avg = load_avg - se->avg.load_avg;
3284 se->avg.load_sum = runnable_sum;
3285 se->avg.load_avg = load_avg;
3286 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3287 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3289 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3290 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3291 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3292 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3294 se->avg.runnable_load_sum = runnable_sum;
3295 se->avg.runnable_load_avg = runnable_load_avg;
3297 if (se->on_rq) {
3298 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3299 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3303 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3305 cfs_rq->propagate = 1;
3306 cfs_rq->prop_runnable_sum += runnable_sum;
3309 /* Update task and its cfs_rq load average */
3310 static inline int propagate_entity_load_avg(struct sched_entity *se)
3312 struct cfs_rq *cfs_rq, *gcfs_rq;
3314 if (entity_is_task(se))
3315 return 0;
3317 gcfs_rq = group_cfs_rq(se);
3318 if (!gcfs_rq->propagate)
3319 return 0;
3321 gcfs_rq->propagate = 0;
3323 cfs_rq = cfs_rq_of(se);
3325 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3327 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3328 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3330 return 1;
3334 * Check if we need to update the load and the utilization of a blocked
3335 * group_entity:
3337 static inline bool skip_blocked_update(struct sched_entity *se)
3339 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3342 * If sched_entity still have not zero load or utilization, we have to
3343 * decay it:
3345 if (se->avg.load_avg || se->avg.util_avg)
3346 return false;
3349 * If there is a pending propagation, we have to update the load and
3350 * the utilization of the sched_entity:
3352 if (gcfs_rq->propagate)
3353 return false;
3356 * Otherwise, the load and the utilization of the sched_entity is
3357 * already zero and there is no pending propagation, so it will be a
3358 * waste of time to try to decay it:
3360 return true;
3363 #else /* CONFIG_FAIR_GROUP_SCHED */
3365 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3367 static inline int propagate_entity_load_avg(struct sched_entity *se)
3369 return 0;
3372 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3374 #endif /* CONFIG_FAIR_GROUP_SCHED */
3377 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3378 * @now: current time, as per cfs_rq_clock_task()
3379 * @cfs_rq: cfs_rq to update
3381 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3382 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3383 * post_init_entity_util_avg().
3385 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3387 * Returns true if the load decayed or we removed load.
3389 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3390 * call update_tg_load_avg() when this function returns true.
3392 static inline int
3393 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3395 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3396 struct sched_avg *sa = &cfs_rq->avg;
3397 int decayed = 0;
3399 if (cfs_rq->removed.nr) {
3400 unsigned long r;
3401 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3403 raw_spin_lock(&cfs_rq->removed.lock);
3404 swap(cfs_rq->removed.util_avg, removed_util);
3405 swap(cfs_rq->removed.load_avg, removed_load);
3406 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3407 cfs_rq->removed.nr = 0;
3408 raw_spin_unlock(&cfs_rq->removed.lock);
3410 r = removed_load;
3411 sub_positive(&sa->load_avg, r);
3412 sub_positive(&sa->load_sum, r * divider);
3414 r = removed_util;
3415 sub_positive(&sa->util_avg, r);
3416 sub_positive(&sa->util_sum, r * divider);
3418 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3420 decayed = 1;
3423 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3425 #ifndef CONFIG_64BIT
3426 smp_wmb();
3427 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3428 #endif
3430 if (decayed)
3431 cfs_rq_util_change(cfs_rq, 0);
3433 return decayed;
3437 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3438 * @cfs_rq: cfs_rq to attach to
3439 * @se: sched_entity to attach
3440 * @flags: migration hints
3442 * Must call update_cfs_rq_load_avg() before this, since we rely on
3443 * cfs_rq->avg.last_update_time being current.
3445 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3447 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3450 * When we attach the @se to the @cfs_rq, we must align the decay
3451 * window because without that, really weird and wonderful things can
3452 * happen.
3454 * XXX illustrate
3456 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3457 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3460 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3461 * period_contrib. This isn't strictly correct, but since we're
3462 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3463 * _sum a little.
3465 se->avg.util_sum = se->avg.util_avg * divider;
3467 se->avg.load_sum = divider;
3468 if (se_weight(se)) {
3469 se->avg.load_sum =
3470 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3473 se->avg.runnable_load_sum = se->avg.load_sum;
3475 enqueue_load_avg(cfs_rq, se);
3476 cfs_rq->avg.util_avg += se->avg.util_avg;
3477 cfs_rq->avg.util_sum += se->avg.util_sum;
3479 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3481 cfs_rq_util_change(cfs_rq, flags);
3485 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3486 * @cfs_rq: cfs_rq to detach from
3487 * @se: sched_entity to detach
3489 * Must call update_cfs_rq_load_avg() before this, since we rely on
3490 * cfs_rq->avg.last_update_time being current.
3492 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3494 dequeue_load_avg(cfs_rq, se);
3495 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3496 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3498 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3500 cfs_rq_util_change(cfs_rq, 0);
3504 * Optional action to be done while updating the load average
3506 #define UPDATE_TG 0x1
3507 #define SKIP_AGE_LOAD 0x2
3508 #define DO_ATTACH 0x4
3510 /* Update task and its cfs_rq load average */
3511 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3513 u64 now = cfs_rq_clock_task(cfs_rq);
3514 struct rq *rq = rq_of(cfs_rq);
3515 int cpu = cpu_of(rq);
3516 int decayed;
3519 * Track task load average for carrying it to new CPU after migrated, and
3520 * track group sched_entity load average for task_h_load calc in migration
3522 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3523 __update_load_avg_se(now, cpu, cfs_rq, se);
3525 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3526 decayed |= propagate_entity_load_avg(se);
3528 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3531 * DO_ATTACH means we're here from enqueue_entity().
3532 * !last_update_time means we've passed through
3533 * migrate_task_rq_fair() indicating we migrated.
3535 * IOW we're enqueueing a task on a new CPU.
3537 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3538 update_tg_load_avg(cfs_rq, 0);
3540 } else if (decayed && (flags & UPDATE_TG))
3541 update_tg_load_avg(cfs_rq, 0);
3544 #ifndef CONFIG_64BIT
3545 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3547 u64 last_update_time_copy;
3548 u64 last_update_time;
3550 do {
3551 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3552 smp_rmb();
3553 last_update_time = cfs_rq->avg.last_update_time;
3554 } while (last_update_time != last_update_time_copy);
3556 return last_update_time;
3558 #else
3559 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3561 return cfs_rq->avg.last_update_time;
3563 #endif
3566 * Synchronize entity load avg of dequeued entity without locking
3567 * the previous rq.
3569 void sync_entity_load_avg(struct sched_entity *se)
3571 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3572 u64 last_update_time;
3574 last_update_time = cfs_rq_last_update_time(cfs_rq);
3575 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3579 * Task first catches up with cfs_rq, and then subtract
3580 * itself from the cfs_rq (task must be off the queue now).
3582 void remove_entity_load_avg(struct sched_entity *se)
3584 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3585 unsigned long flags;
3588 * tasks cannot exit without having gone through wake_up_new_task() ->
3589 * post_init_entity_util_avg() which will have added things to the
3590 * cfs_rq, so we can remove unconditionally.
3592 * Similarly for groups, they will have passed through
3593 * post_init_entity_util_avg() before unregister_sched_fair_group()
3594 * calls this.
3597 sync_entity_load_avg(se);
3599 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3600 ++cfs_rq->removed.nr;
3601 cfs_rq->removed.util_avg += se->avg.util_avg;
3602 cfs_rq->removed.load_avg += se->avg.load_avg;
3603 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
3604 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3607 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3609 return cfs_rq->avg.runnable_load_avg;
3612 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3614 return cfs_rq->avg.load_avg;
3617 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3619 static inline unsigned long task_util(struct task_struct *p)
3621 return READ_ONCE(p->se.avg.util_avg);
3624 static inline unsigned long _task_util_est(struct task_struct *p)
3626 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3628 return max(ue.ewma, ue.enqueued);
3631 static inline unsigned long task_util_est(struct task_struct *p)
3633 return max(task_util(p), _task_util_est(p));
3636 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3637 struct task_struct *p)
3639 unsigned int enqueued;
3641 if (!sched_feat(UTIL_EST))
3642 return;
3644 /* Update root cfs_rq's estimated utilization */
3645 enqueued = cfs_rq->avg.util_est.enqueued;
3646 enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3647 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3651 * Check if a (signed) value is within a specified (unsigned) margin,
3652 * based on the observation that:
3654 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3656 * NOTE: this only works when value + maring < INT_MAX.
3658 static inline bool within_margin(int value, int margin)
3660 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3663 static void
3664 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3666 long last_ewma_diff;
3667 struct util_est ue;
3669 if (!sched_feat(UTIL_EST))
3670 return;
3672 /* Update root cfs_rq's estimated utilization */
3673 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3674 ue.enqueued -= min_t(unsigned int, ue.enqueued,
3675 (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3676 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3679 * Skip update of task's estimated utilization when the task has not
3680 * yet completed an activation, e.g. being migrated.
3682 if (!task_sleep)
3683 return;
3686 * If the PELT values haven't changed since enqueue time,
3687 * skip the util_est update.
3689 ue = p->se.avg.util_est;
3690 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3691 return;
3694 * Skip update of task's estimated utilization when its EWMA is
3695 * already ~1% close to its last activation value.
3697 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3698 last_ewma_diff = ue.enqueued - ue.ewma;
3699 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3700 return;
3703 * Update Task's estimated utilization
3705 * When *p completes an activation we can consolidate another sample
3706 * of the task size. This is done by storing the current PELT value
3707 * as ue.enqueued and by using this value to update the Exponential
3708 * Weighted Moving Average (EWMA):
3710 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3711 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3712 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3713 * = w * ( last_ewma_diff ) + ewma(t-1)
3714 * = w * (last_ewma_diff + ewma(t-1) / w)
3716 * Where 'w' is the weight of new samples, which is configured to be
3717 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3719 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3720 ue.ewma += last_ewma_diff;
3721 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3722 WRITE_ONCE(p->se.avg.util_est, ue);
3725 #else /* CONFIG_SMP */
3727 #define UPDATE_TG 0x0
3728 #define SKIP_AGE_LOAD 0x0
3729 #define DO_ATTACH 0x0
3731 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3733 cfs_rq_util_change(cfs_rq, 0);
3736 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3738 static inline void
3739 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3740 static inline void
3741 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3743 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3745 return 0;
3748 static inline void
3749 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3751 static inline void
3752 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3753 bool task_sleep) {}
3755 #endif /* CONFIG_SMP */
3757 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3759 #ifdef CONFIG_SCHED_DEBUG
3760 s64 d = se->vruntime - cfs_rq->min_vruntime;
3762 if (d < 0)
3763 d = -d;
3765 if (d > 3*sysctl_sched_latency)
3766 schedstat_inc(cfs_rq->nr_spread_over);
3767 #endif
3770 static void
3771 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3773 u64 vruntime = cfs_rq->min_vruntime;
3776 * The 'current' period is already promised to the current tasks,
3777 * however the extra weight of the new task will slow them down a
3778 * little, place the new task so that it fits in the slot that
3779 * stays open at the end.
3781 if (initial && sched_feat(START_DEBIT))
3782 vruntime += sched_vslice(cfs_rq, se);
3784 /* sleeps up to a single latency don't count. */
3785 if (!initial) {
3786 unsigned long thresh = sysctl_sched_latency;
3789 * Halve their sleep time's effect, to allow
3790 * for a gentler effect of sleepers:
3792 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3793 thresh >>= 1;
3795 vruntime -= thresh;
3798 /* ensure we never gain time by being placed backwards. */
3799 se->vruntime = max_vruntime(se->vruntime, vruntime);
3802 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3804 static inline void check_schedstat_required(void)
3806 #ifdef CONFIG_SCHEDSTATS
3807 if (schedstat_enabled())
3808 return;
3810 /* Force schedstat enabled if a dependent tracepoint is active */
3811 if (trace_sched_stat_wait_enabled() ||
3812 trace_sched_stat_sleep_enabled() ||
3813 trace_sched_stat_iowait_enabled() ||
3814 trace_sched_stat_blocked_enabled() ||
3815 trace_sched_stat_runtime_enabled()) {
3816 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3817 "stat_blocked and stat_runtime require the "
3818 "kernel parameter schedstats=enable or "
3819 "kernel.sched_schedstats=1\n");
3821 #endif
3826 * MIGRATION
3828 * dequeue
3829 * update_curr()
3830 * update_min_vruntime()
3831 * vruntime -= min_vruntime
3833 * enqueue
3834 * update_curr()
3835 * update_min_vruntime()
3836 * vruntime += min_vruntime
3838 * this way the vruntime transition between RQs is done when both
3839 * min_vruntime are up-to-date.
3841 * WAKEUP (remote)
3843 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3844 * vruntime -= min_vruntime
3846 * enqueue
3847 * update_curr()
3848 * update_min_vruntime()
3849 * vruntime += min_vruntime
3851 * this way we don't have the most up-to-date min_vruntime on the originating
3852 * CPU and an up-to-date min_vruntime on the destination CPU.
3855 static void
3856 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3858 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3859 bool curr = cfs_rq->curr == se;
3862 * If we're the current task, we must renormalise before calling
3863 * update_curr().
3865 if (renorm && curr)
3866 se->vruntime += cfs_rq->min_vruntime;
3868 update_curr(cfs_rq);
3871 * Otherwise, renormalise after, such that we're placed at the current
3872 * moment in time, instead of some random moment in the past. Being
3873 * placed in the past could significantly boost this task to the
3874 * fairness detriment of existing tasks.
3876 if (renorm && !curr)
3877 se->vruntime += cfs_rq->min_vruntime;
3880 * When enqueuing a sched_entity, we must:
3881 * - Update loads to have both entity and cfs_rq synced with now.
3882 * - Add its load to cfs_rq->runnable_avg
3883 * - For group_entity, update its weight to reflect the new share of
3884 * its group cfs_rq
3885 * - Add its new weight to cfs_rq->load.weight
3887 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3888 update_cfs_group(se);
3889 enqueue_runnable_load_avg(cfs_rq, se);
3890 account_entity_enqueue(cfs_rq, se);
3892 if (flags & ENQUEUE_WAKEUP)
3893 place_entity(cfs_rq, se, 0);
3895 check_schedstat_required();
3896 update_stats_enqueue(cfs_rq, se, flags);
3897 check_spread(cfs_rq, se);
3898 if (!curr)
3899 __enqueue_entity(cfs_rq, se);
3900 se->on_rq = 1;
3902 if (cfs_rq->nr_running == 1) {
3903 list_add_leaf_cfs_rq(cfs_rq);
3904 check_enqueue_throttle(cfs_rq);
3908 static void __clear_buddies_last(struct sched_entity *se)
3910 for_each_sched_entity(se) {
3911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3912 if (cfs_rq->last != se)
3913 break;
3915 cfs_rq->last = NULL;
3919 static void __clear_buddies_next(struct sched_entity *se)
3921 for_each_sched_entity(se) {
3922 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3923 if (cfs_rq->next != se)
3924 break;
3926 cfs_rq->next = NULL;
3930 static void __clear_buddies_skip(struct sched_entity *se)
3932 for_each_sched_entity(se) {
3933 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3934 if (cfs_rq->skip != se)
3935 break;
3937 cfs_rq->skip = NULL;
3941 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3943 if (cfs_rq->last == se)
3944 __clear_buddies_last(se);
3946 if (cfs_rq->next == se)
3947 __clear_buddies_next(se);
3949 if (cfs_rq->skip == se)
3950 __clear_buddies_skip(se);
3953 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3955 static void
3956 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3959 * Update run-time statistics of the 'current'.
3961 update_curr(cfs_rq);
3964 * When dequeuing a sched_entity, we must:
3965 * - Update loads to have both entity and cfs_rq synced with now.
3966 * - Substract its load from the cfs_rq->runnable_avg.
3967 * - Substract its previous weight from cfs_rq->load.weight.
3968 * - For group entity, update its weight to reflect the new share
3969 * of its group cfs_rq.
3971 update_load_avg(cfs_rq, se, UPDATE_TG);
3972 dequeue_runnable_load_avg(cfs_rq, se);
3974 update_stats_dequeue(cfs_rq, se, flags);
3976 clear_buddies(cfs_rq, se);
3978 if (se != cfs_rq->curr)
3979 __dequeue_entity(cfs_rq, se);
3980 se->on_rq = 0;
3981 account_entity_dequeue(cfs_rq, se);
3984 * Normalize after update_curr(); which will also have moved
3985 * min_vruntime if @se is the one holding it back. But before doing
3986 * update_min_vruntime() again, which will discount @se's position and
3987 * can move min_vruntime forward still more.
3989 if (!(flags & DEQUEUE_SLEEP))
3990 se->vruntime -= cfs_rq->min_vruntime;
3992 /* return excess runtime on last dequeue */
3993 return_cfs_rq_runtime(cfs_rq);
3995 update_cfs_group(se);
3998 * Now advance min_vruntime if @se was the entity holding it back,
3999 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4000 * put back on, and if we advance min_vruntime, we'll be placed back
4001 * further than we started -- ie. we'll be penalized.
4003 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4004 update_min_vruntime(cfs_rq);
4008 * Preempt the current task with a newly woken task if needed:
4010 static void
4011 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4013 unsigned long ideal_runtime, delta_exec;
4014 struct sched_entity *se;
4015 s64 delta;
4017 ideal_runtime = sched_slice(cfs_rq, curr);
4018 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4019 if (delta_exec > ideal_runtime) {
4020 resched_curr(rq_of(cfs_rq));
4022 * The current task ran long enough, ensure it doesn't get
4023 * re-elected due to buddy favours.
4025 clear_buddies(cfs_rq, curr);
4026 return;
4030 * Ensure that a task that missed wakeup preemption by a
4031 * narrow margin doesn't have to wait for a full slice.
4032 * This also mitigates buddy induced latencies under load.
4034 if (delta_exec < sysctl_sched_min_granularity)
4035 return;
4037 se = __pick_first_entity(cfs_rq);
4038 delta = curr->vruntime - se->vruntime;
4040 if (delta < 0)
4041 return;
4043 if (delta > ideal_runtime)
4044 resched_curr(rq_of(cfs_rq));
4047 static void
4048 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4050 /* 'current' is not kept within the tree. */
4051 if (se->on_rq) {
4053 * Any task has to be enqueued before it get to execute on
4054 * a CPU. So account for the time it spent waiting on the
4055 * runqueue.
4057 update_stats_wait_end(cfs_rq, se);
4058 __dequeue_entity(cfs_rq, se);
4059 update_load_avg(cfs_rq, se, UPDATE_TG);
4062 update_stats_curr_start(cfs_rq, se);
4063 cfs_rq->curr = se;
4066 * Track our maximum slice length, if the CPU's load is at
4067 * least twice that of our own weight (i.e. dont track it
4068 * when there are only lesser-weight tasks around):
4070 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4071 schedstat_set(se->statistics.slice_max,
4072 max((u64)schedstat_val(se->statistics.slice_max),
4073 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4076 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4079 static int
4080 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4083 * Pick the next process, keeping these things in mind, in this order:
4084 * 1) keep things fair between processes/task groups
4085 * 2) pick the "next" process, since someone really wants that to run
4086 * 3) pick the "last" process, for cache locality
4087 * 4) do not run the "skip" process, if something else is available
4089 static struct sched_entity *
4090 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4092 struct sched_entity *left = __pick_first_entity(cfs_rq);
4093 struct sched_entity *se;
4096 * If curr is set we have to see if its left of the leftmost entity
4097 * still in the tree, provided there was anything in the tree at all.
4099 if (!left || (curr && entity_before(curr, left)))
4100 left = curr;
4102 se = left; /* ideally we run the leftmost entity */
4105 * Avoid running the skip buddy, if running something else can
4106 * be done without getting too unfair.
4108 if (cfs_rq->skip == se) {
4109 struct sched_entity *second;
4111 if (se == curr) {
4112 second = __pick_first_entity(cfs_rq);
4113 } else {
4114 second = __pick_next_entity(se);
4115 if (!second || (curr && entity_before(curr, second)))
4116 second = curr;
4119 if (second && wakeup_preempt_entity(second, left) < 1)
4120 se = second;
4124 * Prefer last buddy, try to return the CPU to a preempted task.
4126 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4127 se = cfs_rq->last;
4130 * Someone really wants this to run. If it's not unfair, run it.
4132 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4133 se = cfs_rq->next;
4135 clear_buddies(cfs_rq, se);
4137 return se;
4140 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4142 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4145 * If still on the runqueue then deactivate_task()
4146 * was not called and update_curr() has to be done:
4148 if (prev->on_rq)
4149 update_curr(cfs_rq);
4151 /* throttle cfs_rqs exceeding runtime */
4152 check_cfs_rq_runtime(cfs_rq);
4154 check_spread(cfs_rq, prev);
4156 if (prev->on_rq) {
4157 update_stats_wait_start(cfs_rq, prev);
4158 /* Put 'current' back into the tree. */
4159 __enqueue_entity(cfs_rq, prev);
4160 /* in !on_rq case, update occurred at dequeue */
4161 update_load_avg(cfs_rq, prev, 0);
4163 cfs_rq->curr = NULL;
4166 static void
4167 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4170 * Update run-time statistics of the 'current'.
4172 update_curr(cfs_rq);
4175 * Ensure that runnable average is periodically updated.
4177 update_load_avg(cfs_rq, curr, UPDATE_TG);
4178 update_cfs_group(curr);
4180 #ifdef CONFIG_SCHED_HRTICK
4182 * queued ticks are scheduled to match the slice, so don't bother
4183 * validating it and just reschedule.
4185 if (queued) {
4186 resched_curr(rq_of(cfs_rq));
4187 return;
4190 * don't let the period tick interfere with the hrtick preemption
4192 if (!sched_feat(DOUBLE_TICK) &&
4193 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4194 return;
4195 #endif
4197 if (cfs_rq->nr_running > 1)
4198 check_preempt_tick(cfs_rq, curr);
4202 /**************************************************
4203 * CFS bandwidth control machinery
4206 #ifdef CONFIG_CFS_BANDWIDTH
4208 #ifdef HAVE_JUMP_LABEL
4209 static struct static_key __cfs_bandwidth_used;
4211 static inline bool cfs_bandwidth_used(void)
4213 return static_key_false(&__cfs_bandwidth_used);
4216 void cfs_bandwidth_usage_inc(void)
4218 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4221 void cfs_bandwidth_usage_dec(void)
4223 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4225 #else /* HAVE_JUMP_LABEL */
4226 static bool cfs_bandwidth_used(void)
4228 return true;
4231 void cfs_bandwidth_usage_inc(void) {}
4232 void cfs_bandwidth_usage_dec(void) {}
4233 #endif /* HAVE_JUMP_LABEL */
4236 * default period for cfs group bandwidth.
4237 * default: 0.1s, units: nanoseconds
4239 static inline u64 default_cfs_period(void)
4241 return 100000000ULL;
4244 static inline u64 sched_cfs_bandwidth_slice(void)
4246 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4250 * Replenish runtime according to assigned quota and update expiration time.
4251 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4252 * additional synchronization around rq->lock.
4254 * requires cfs_b->lock
4256 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4258 u64 now;
4260 if (cfs_b->quota == RUNTIME_INF)
4261 return;
4263 now = sched_clock_cpu(smp_processor_id());
4264 cfs_b->runtime = cfs_b->quota;
4265 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4266 cfs_b->expires_seq++;
4269 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4271 return &tg->cfs_bandwidth;
4274 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4275 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4277 if (unlikely(cfs_rq->throttle_count))
4278 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4280 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4283 /* returns 0 on failure to allocate runtime */
4284 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4286 struct task_group *tg = cfs_rq->tg;
4287 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4288 u64 amount = 0, min_amount, expires;
4289 int expires_seq;
4291 /* note: this is a positive sum as runtime_remaining <= 0 */
4292 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4294 raw_spin_lock(&cfs_b->lock);
4295 if (cfs_b->quota == RUNTIME_INF)
4296 amount = min_amount;
4297 else {
4298 start_cfs_bandwidth(cfs_b);
4300 if (cfs_b->runtime > 0) {
4301 amount = min(cfs_b->runtime, min_amount);
4302 cfs_b->runtime -= amount;
4303 cfs_b->idle = 0;
4306 expires_seq = cfs_b->expires_seq;
4307 expires = cfs_b->runtime_expires;
4308 raw_spin_unlock(&cfs_b->lock);
4310 cfs_rq->runtime_remaining += amount;
4312 * we may have advanced our local expiration to account for allowed
4313 * spread between our sched_clock and the one on which runtime was
4314 * issued.
4316 if (cfs_rq->expires_seq != expires_seq) {
4317 cfs_rq->expires_seq = expires_seq;
4318 cfs_rq->runtime_expires = expires;
4321 return cfs_rq->runtime_remaining > 0;
4325 * Note: This depends on the synchronization provided by sched_clock and the
4326 * fact that rq->clock snapshots this value.
4328 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4330 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4332 /* if the deadline is ahead of our clock, nothing to do */
4333 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4334 return;
4336 if (cfs_rq->runtime_remaining < 0)
4337 return;
4340 * If the local deadline has passed we have to consider the
4341 * possibility that our sched_clock is 'fast' and the global deadline
4342 * has not truly expired.
4344 * Fortunately we can check determine whether this the case by checking
4345 * whether the global deadline(cfs_b->expires_seq) has advanced.
4347 if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4348 /* extend local deadline, drift is bounded above by 2 ticks */
4349 cfs_rq->runtime_expires += TICK_NSEC;
4350 } else {
4351 /* global deadline is ahead, expiration has passed */
4352 cfs_rq->runtime_remaining = 0;
4356 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4358 /* dock delta_exec before expiring quota (as it could span periods) */
4359 cfs_rq->runtime_remaining -= delta_exec;
4360 expire_cfs_rq_runtime(cfs_rq);
4362 if (likely(cfs_rq->runtime_remaining > 0))
4363 return;
4366 * if we're unable to extend our runtime we resched so that the active
4367 * hierarchy can be throttled
4369 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4370 resched_curr(rq_of(cfs_rq));
4373 static __always_inline
4374 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4376 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4377 return;
4379 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4382 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4384 return cfs_bandwidth_used() && cfs_rq->throttled;
4387 /* check whether cfs_rq, or any parent, is throttled */
4388 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4390 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4394 * Ensure that neither of the group entities corresponding to src_cpu or
4395 * dest_cpu are members of a throttled hierarchy when performing group
4396 * load-balance operations.
4398 static inline int throttled_lb_pair(struct task_group *tg,
4399 int src_cpu, int dest_cpu)
4401 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4403 src_cfs_rq = tg->cfs_rq[src_cpu];
4404 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4406 return throttled_hierarchy(src_cfs_rq) ||
4407 throttled_hierarchy(dest_cfs_rq);
4410 static int tg_unthrottle_up(struct task_group *tg, void *data)
4412 struct rq *rq = data;
4413 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4415 cfs_rq->throttle_count--;
4416 if (!cfs_rq->throttle_count) {
4417 /* adjust cfs_rq_clock_task() */
4418 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4419 cfs_rq->throttled_clock_task;
4422 return 0;
4425 static int tg_throttle_down(struct task_group *tg, void *data)
4427 struct rq *rq = data;
4428 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4430 /* group is entering throttled state, stop time */
4431 if (!cfs_rq->throttle_count)
4432 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4433 cfs_rq->throttle_count++;
4435 return 0;
4438 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4440 struct rq *rq = rq_of(cfs_rq);
4441 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4442 struct sched_entity *se;
4443 long task_delta, dequeue = 1;
4444 bool empty;
4446 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4448 /* freeze hierarchy runnable averages while throttled */
4449 rcu_read_lock();
4450 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4451 rcu_read_unlock();
4453 task_delta = cfs_rq->h_nr_running;
4454 for_each_sched_entity(se) {
4455 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4456 /* throttled entity or throttle-on-deactivate */
4457 if (!se->on_rq)
4458 break;
4460 if (dequeue)
4461 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4462 qcfs_rq->h_nr_running -= task_delta;
4464 if (qcfs_rq->load.weight)
4465 dequeue = 0;
4468 if (!se)
4469 sub_nr_running(rq, task_delta);
4471 cfs_rq->throttled = 1;
4472 cfs_rq->throttled_clock = rq_clock(rq);
4473 raw_spin_lock(&cfs_b->lock);
4474 empty = list_empty(&cfs_b->throttled_cfs_rq);
4477 * Add to the _head_ of the list, so that an already-started
4478 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4479 * not running add to the tail so that later runqueues don't get starved.
4481 if (cfs_b->distribute_running)
4482 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4483 else
4484 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4487 * If we're the first throttled task, make sure the bandwidth
4488 * timer is running.
4490 if (empty)
4491 start_cfs_bandwidth(cfs_b);
4493 raw_spin_unlock(&cfs_b->lock);
4496 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4498 struct rq *rq = rq_of(cfs_rq);
4499 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4500 struct sched_entity *se;
4501 int enqueue = 1;
4502 long task_delta;
4504 se = cfs_rq->tg->se[cpu_of(rq)];
4506 cfs_rq->throttled = 0;
4508 update_rq_clock(rq);
4510 raw_spin_lock(&cfs_b->lock);
4511 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4512 list_del_rcu(&cfs_rq->throttled_list);
4513 raw_spin_unlock(&cfs_b->lock);
4515 /* update hierarchical throttle state */
4516 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4518 if (!cfs_rq->load.weight)
4519 return;
4521 task_delta = cfs_rq->h_nr_running;
4522 for_each_sched_entity(se) {
4523 if (se->on_rq)
4524 enqueue = 0;
4526 cfs_rq = cfs_rq_of(se);
4527 if (enqueue)
4528 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4529 cfs_rq->h_nr_running += task_delta;
4531 if (cfs_rq_throttled(cfs_rq))
4532 break;
4535 if (!se)
4536 add_nr_running(rq, task_delta);
4538 /* Determine whether we need to wake up potentially idle CPU: */
4539 if (rq->curr == rq->idle && rq->cfs.nr_running)
4540 resched_curr(rq);
4543 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4544 u64 remaining, u64 expires)
4546 struct cfs_rq *cfs_rq;
4547 u64 runtime;
4548 u64 starting_runtime = remaining;
4550 rcu_read_lock();
4551 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4552 throttled_list) {
4553 struct rq *rq = rq_of(cfs_rq);
4554 struct rq_flags rf;
4556 rq_lock(rq, &rf);
4557 if (!cfs_rq_throttled(cfs_rq))
4558 goto next;
4560 runtime = -cfs_rq->runtime_remaining + 1;
4561 if (runtime > remaining)
4562 runtime = remaining;
4563 remaining -= runtime;
4565 cfs_rq->runtime_remaining += runtime;
4566 cfs_rq->runtime_expires = expires;
4568 /* we check whether we're throttled above */
4569 if (cfs_rq->runtime_remaining > 0)
4570 unthrottle_cfs_rq(cfs_rq);
4572 next:
4573 rq_unlock(rq, &rf);
4575 if (!remaining)
4576 break;
4578 rcu_read_unlock();
4580 return starting_runtime - remaining;
4584 * Responsible for refilling a task_group's bandwidth and unthrottling its
4585 * cfs_rqs as appropriate. If there has been no activity within the last
4586 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4587 * used to track this state.
4589 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4591 u64 runtime, runtime_expires;
4592 int throttled;
4594 /* no need to continue the timer with no bandwidth constraint */
4595 if (cfs_b->quota == RUNTIME_INF)
4596 goto out_deactivate;
4598 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4599 cfs_b->nr_periods += overrun;
4602 * idle depends on !throttled (for the case of a large deficit), and if
4603 * we're going inactive then everything else can be deferred
4605 if (cfs_b->idle && !throttled)
4606 goto out_deactivate;
4608 __refill_cfs_bandwidth_runtime(cfs_b);
4610 if (!throttled) {
4611 /* mark as potentially idle for the upcoming period */
4612 cfs_b->idle = 1;
4613 return 0;
4616 /* account preceding periods in which throttling occurred */
4617 cfs_b->nr_throttled += overrun;
4619 runtime_expires = cfs_b->runtime_expires;
4622 * This check is repeated as we are holding onto the new bandwidth while
4623 * we unthrottle. This can potentially race with an unthrottled group
4624 * trying to acquire new bandwidth from the global pool. This can result
4625 * in us over-using our runtime if it is all used during this loop, but
4626 * only by limited amounts in that extreme case.
4628 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4629 runtime = cfs_b->runtime;
4630 cfs_b->distribute_running = 1;
4631 raw_spin_unlock(&cfs_b->lock);
4632 /* we can't nest cfs_b->lock while distributing bandwidth */
4633 runtime = distribute_cfs_runtime(cfs_b, runtime,
4634 runtime_expires);
4635 raw_spin_lock(&cfs_b->lock);
4637 cfs_b->distribute_running = 0;
4638 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4640 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4644 * While we are ensured activity in the period following an
4645 * unthrottle, this also covers the case in which the new bandwidth is
4646 * insufficient to cover the existing bandwidth deficit. (Forcing the
4647 * timer to remain active while there are any throttled entities.)
4649 cfs_b->idle = 0;
4651 return 0;
4653 out_deactivate:
4654 return 1;
4657 /* a cfs_rq won't donate quota below this amount */
4658 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4659 /* minimum remaining period time to redistribute slack quota */
4660 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4661 /* how long we wait to gather additional slack before distributing */
4662 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4665 * Are we near the end of the current quota period?
4667 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4668 * hrtimer base being cleared by hrtimer_start. In the case of
4669 * migrate_hrtimers, base is never cleared, so we are fine.
4671 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4673 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4674 u64 remaining;
4676 /* if the call-back is running a quota refresh is already occurring */
4677 if (hrtimer_callback_running(refresh_timer))
4678 return 1;
4680 /* is a quota refresh about to occur? */
4681 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4682 if (remaining < min_expire)
4683 return 1;
4685 return 0;
4688 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4690 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4692 /* if there's a quota refresh soon don't bother with slack */
4693 if (runtime_refresh_within(cfs_b, min_left))
4694 return;
4696 hrtimer_start(&cfs_b->slack_timer,
4697 ns_to_ktime(cfs_bandwidth_slack_period),
4698 HRTIMER_MODE_REL);
4701 /* we know any runtime found here is valid as update_curr() precedes return */
4702 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4704 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4705 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4707 if (slack_runtime <= 0)
4708 return;
4710 raw_spin_lock(&cfs_b->lock);
4711 if (cfs_b->quota != RUNTIME_INF &&
4712 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4713 cfs_b->runtime += slack_runtime;
4715 /* we are under rq->lock, defer unthrottling using a timer */
4716 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4717 !list_empty(&cfs_b->throttled_cfs_rq))
4718 start_cfs_slack_bandwidth(cfs_b);
4720 raw_spin_unlock(&cfs_b->lock);
4722 /* even if it's not valid for return we don't want to try again */
4723 cfs_rq->runtime_remaining -= slack_runtime;
4726 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4728 if (!cfs_bandwidth_used())
4729 return;
4731 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4732 return;
4734 __return_cfs_rq_runtime(cfs_rq);
4738 * This is done with a timer (instead of inline with bandwidth return) since
4739 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4741 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4743 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4744 u64 expires;
4746 /* confirm we're still not at a refresh boundary */
4747 raw_spin_lock(&cfs_b->lock);
4748 if (cfs_b->distribute_running) {
4749 raw_spin_unlock(&cfs_b->lock);
4750 return;
4753 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4754 raw_spin_unlock(&cfs_b->lock);
4755 return;
4758 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4759 runtime = cfs_b->runtime;
4761 expires = cfs_b->runtime_expires;
4762 if (runtime)
4763 cfs_b->distribute_running = 1;
4765 raw_spin_unlock(&cfs_b->lock);
4767 if (!runtime)
4768 return;
4770 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4772 raw_spin_lock(&cfs_b->lock);
4773 if (expires == cfs_b->runtime_expires)
4774 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4775 cfs_b->distribute_running = 0;
4776 raw_spin_unlock(&cfs_b->lock);
4780 * When a group wakes up we want to make sure that its quota is not already
4781 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4782 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4784 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4786 if (!cfs_bandwidth_used())
4787 return;
4789 /* an active group must be handled by the update_curr()->put() path */
4790 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4791 return;
4793 /* ensure the group is not already throttled */
4794 if (cfs_rq_throttled(cfs_rq))
4795 return;
4797 /* update runtime allocation */
4798 account_cfs_rq_runtime(cfs_rq, 0);
4799 if (cfs_rq->runtime_remaining <= 0)
4800 throttle_cfs_rq(cfs_rq);
4803 static void sync_throttle(struct task_group *tg, int cpu)
4805 struct cfs_rq *pcfs_rq, *cfs_rq;
4807 if (!cfs_bandwidth_used())
4808 return;
4810 if (!tg->parent)
4811 return;
4813 cfs_rq = tg->cfs_rq[cpu];
4814 pcfs_rq = tg->parent->cfs_rq[cpu];
4816 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4817 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4820 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4821 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4823 if (!cfs_bandwidth_used())
4824 return false;
4826 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4827 return false;
4830 * it's possible for a throttled entity to be forced into a running
4831 * state (e.g. set_curr_task), in this case we're finished.
4833 if (cfs_rq_throttled(cfs_rq))
4834 return true;
4836 throttle_cfs_rq(cfs_rq);
4837 return true;
4840 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4842 struct cfs_bandwidth *cfs_b =
4843 container_of(timer, struct cfs_bandwidth, slack_timer);
4845 do_sched_cfs_slack_timer(cfs_b);
4847 return HRTIMER_NORESTART;
4850 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4852 struct cfs_bandwidth *cfs_b =
4853 container_of(timer, struct cfs_bandwidth, period_timer);
4854 int overrun;
4855 int idle = 0;
4857 raw_spin_lock(&cfs_b->lock);
4858 for (;;) {
4859 overrun = hrtimer_forward_now(timer, cfs_b->period);
4860 if (!overrun)
4861 break;
4863 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4865 if (idle)
4866 cfs_b->period_active = 0;
4867 raw_spin_unlock(&cfs_b->lock);
4869 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4872 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4874 raw_spin_lock_init(&cfs_b->lock);
4875 cfs_b->runtime = 0;
4876 cfs_b->quota = RUNTIME_INF;
4877 cfs_b->period = ns_to_ktime(default_cfs_period());
4879 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4880 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4881 cfs_b->period_timer.function = sched_cfs_period_timer;
4882 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4883 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4884 cfs_b->distribute_running = 0;
4887 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4889 cfs_rq->runtime_enabled = 0;
4890 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4893 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4895 u64 overrun;
4897 lockdep_assert_held(&cfs_b->lock);
4899 if (cfs_b->period_active)
4900 return;
4902 cfs_b->period_active = 1;
4903 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4904 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4905 cfs_b->expires_seq++;
4906 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4909 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4911 /* init_cfs_bandwidth() was not called */
4912 if (!cfs_b->throttled_cfs_rq.next)
4913 return;
4915 hrtimer_cancel(&cfs_b->period_timer);
4916 hrtimer_cancel(&cfs_b->slack_timer);
4920 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4922 * The race is harmless, since modifying bandwidth settings of unhooked group
4923 * bits doesn't do much.
4926 /* cpu online calback */
4927 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4929 struct task_group *tg;
4931 lockdep_assert_held(&rq->lock);
4933 rcu_read_lock();
4934 list_for_each_entry_rcu(tg, &task_groups, list) {
4935 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4936 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4938 raw_spin_lock(&cfs_b->lock);
4939 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4940 raw_spin_unlock(&cfs_b->lock);
4942 rcu_read_unlock();
4945 /* cpu offline callback */
4946 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4948 struct task_group *tg;
4950 lockdep_assert_held(&rq->lock);
4952 rcu_read_lock();
4953 list_for_each_entry_rcu(tg, &task_groups, list) {
4954 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4956 if (!cfs_rq->runtime_enabled)
4957 continue;
4960 * clock_task is not advancing so we just need to make sure
4961 * there's some valid quota amount
4963 cfs_rq->runtime_remaining = 1;
4965 * Offline rq is schedulable till CPU is completely disabled
4966 * in take_cpu_down(), so we prevent new cfs throttling here.
4968 cfs_rq->runtime_enabled = 0;
4970 if (cfs_rq_throttled(cfs_rq))
4971 unthrottle_cfs_rq(cfs_rq);
4973 rcu_read_unlock();
4976 #else /* CONFIG_CFS_BANDWIDTH */
4977 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4979 return rq_clock_task(rq_of(cfs_rq));
4982 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4983 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4984 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4985 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4986 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4988 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4990 return 0;
4993 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4995 return 0;
4998 static inline int throttled_lb_pair(struct task_group *tg,
4999 int src_cpu, int dest_cpu)
5001 return 0;
5004 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5006 #ifdef CONFIG_FAIR_GROUP_SCHED
5007 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5008 #endif
5010 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5012 return NULL;
5014 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5015 static inline void update_runtime_enabled(struct rq *rq) {}
5016 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5018 #endif /* CONFIG_CFS_BANDWIDTH */
5020 /**************************************************
5021 * CFS operations on tasks:
5024 #ifdef CONFIG_SCHED_HRTICK
5025 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5027 struct sched_entity *se = &p->se;
5028 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5030 SCHED_WARN_ON(task_rq(p) != rq);
5032 if (rq->cfs.h_nr_running > 1) {
5033 u64 slice = sched_slice(cfs_rq, se);
5034 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5035 s64 delta = slice - ran;
5037 if (delta < 0) {
5038 if (rq->curr == p)
5039 resched_curr(rq);
5040 return;
5042 hrtick_start(rq, delta);
5047 * called from enqueue/dequeue and updates the hrtick when the
5048 * current task is from our class and nr_running is low enough
5049 * to matter.
5051 static void hrtick_update(struct rq *rq)
5053 struct task_struct *curr = rq->curr;
5055 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5056 return;
5058 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5059 hrtick_start_fair(rq, curr);
5061 #else /* !CONFIG_SCHED_HRTICK */
5062 static inline void
5063 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5067 static inline void hrtick_update(struct rq *rq)
5070 #endif
5073 * The enqueue_task method is called before nr_running is
5074 * increased. Here we update the fair scheduling stats and
5075 * then put the task into the rbtree:
5077 static void
5078 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5080 struct cfs_rq *cfs_rq;
5081 struct sched_entity *se = &p->se;
5084 * The code below (indirectly) updates schedutil which looks at
5085 * the cfs_rq utilization to select a frequency.
5086 * Let's add the task's estimated utilization to the cfs_rq's
5087 * estimated utilization, before we update schedutil.
5089 util_est_enqueue(&rq->cfs, p);
5092 * If in_iowait is set, the code below may not trigger any cpufreq
5093 * utilization updates, so do it here explicitly with the IOWAIT flag
5094 * passed.
5096 if (p->in_iowait)
5097 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5099 for_each_sched_entity(se) {
5100 if (se->on_rq)
5101 break;
5102 cfs_rq = cfs_rq_of(se);
5103 enqueue_entity(cfs_rq, se, flags);
5106 * end evaluation on encountering a throttled cfs_rq
5108 * note: in the case of encountering a throttled cfs_rq we will
5109 * post the final h_nr_running increment below.
5111 if (cfs_rq_throttled(cfs_rq))
5112 break;
5113 cfs_rq->h_nr_running++;
5115 flags = ENQUEUE_WAKEUP;
5118 for_each_sched_entity(se) {
5119 cfs_rq = cfs_rq_of(se);
5120 cfs_rq->h_nr_running++;
5122 if (cfs_rq_throttled(cfs_rq))
5123 break;
5125 update_load_avg(cfs_rq, se, UPDATE_TG);
5126 update_cfs_group(se);
5129 if (!se)
5130 add_nr_running(rq, 1);
5132 hrtick_update(rq);
5135 static void set_next_buddy(struct sched_entity *se);
5138 * The dequeue_task method is called before nr_running is
5139 * decreased. We remove the task from the rbtree and
5140 * update the fair scheduling stats:
5142 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5144 struct cfs_rq *cfs_rq;
5145 struct sched_entity *se = &p->se;
5146 int task_sleep = flags & DEQUEUE_SLEEP;
5148 for_each_sched_entity(se) {
5149 cfs_rq = cfs_rq_of(se);
5150 dequeue_entity(cfs_rq, se, flags);
5153 * end evaluation on encountering a throttled cfs_rq
5155 * note: in the case of encountering a throttled cfs_rq we will
5156 * post the final h_nr_running decrement below.
5158 if (cfs_rq_throttled(cfs_rq))
5159 break;
5160 cfs_rq->h_nr_running--;
5162 /* Don't dequeue parent if it has other entities besides us */
5163 if (cfs_rq->load.weight) {
5164 /* Avoid re-evaluating load for this entity: */
5165 se = parent_entity(se);
5167 * Bias pick_next to pick a task from this cfs_rq, as
5168 * p is sleeping when it is within its sched_slice.
5170 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5171 set_next_buddy(se);
5172 break;
5174 flags |= DEQUEUE_SLEEP;
5177 for_each_sched_entity(se) {
5178 cfs_rq = cfs_rq_of(se);
5179 cfs_rq->h_nr_running--;
5181 if (cfs_rq_throttled(cfs_rq))
5182 break;
5184 update_load_avg(cfs_rq, se, UPDATE_TG);
5185 update_cfs_group(se);
5188 if (!se)
5189 sub_nr_running(rq, 1);
5191 util_est_dequeue(&rq->cfs, p, task_sleep);
5192 hrtick_update(rq);
5195 #ifdef CONFIG_SMP
5197 /* Working cpumask for: load_balance, load_balance_newidle. */
5198 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5199 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5201 #ifdef CONFIG_NO_HZ_COMMON
5203 * per rq 'load' arrray crap; XXX kill this.
5207 * The exact cpuload calculated at every tick would be:
5209 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5211 * If a CPU misses updates for n ticks (as it was idle) and update gets
5212 * called on the n+1-th tick when CPU may be busy, then we have:
5214 * load_n = (1 - 1/2^i)^n * load_0
5215 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
5217 * decay_load_missed() below does efficient calculation of
5219 * load' = (1 - 1/2^i)^n * load
5221 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5222 * This allows us to precompute the above in said factors, thereby allowing the
5223 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5224 * fixed_power_int())
5226 * The calculation is approximated on a 128 point scale.
5228 #define DEGRADE_SHIFT 7
5230 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5231 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5232 { 0, 0, 0, 0, 0, 0, 0, 0 },
5233 { 64, 32, 8, 0, 0, 0, 0, 0 },
5234 { 96, 72, 40, 12, 1, 0, 0, 0 },
5235 { 112, 98, 75, 43, 15, 1, 0, 0 },
5236 { 120, 112, 98, 76, 45, 16, 2, 0 }
5240 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5241 * would be when CPU is idle and so we just decay the old load without
5242 * adding any new load.
5244 static unsigned long
5245 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5247 int j = 0;
5249 if (!missed_updates)
5250 return load;
5252 if (missed_updates >= degrade_zero_ticks[idx])
5253 return 0;
5255 if (idx == 1)
5256 return load >> missed_updates;
5258 while (missed_updates) {
5259 if (missed_updates % 2)
5260 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5262 missed_updates >>= 1;
5263 j++;
5265 return load;
5268 static struct {
5269 cpumask_var_t idle_cpus_mask;
5270 atomic_t nr_cpus;
5271 int has_blocked; /* Idle CPUS has blocked load */
5272 unsigned long next_balance; /* in jiffy units */
5273 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5274 } nohz ____cacheline_aligned;
5276 #endif /* CONFIG_NO_HZ_COMMON */
5279 * __cpu_load_update - update the rq->cpu_load[] statistics
5280 * @this_rq: The rq to update statistics for
5281 * @this_load: The current load
5282 * @pending_updates: The number of missed updates
5284 * Update rq->cpu_load[] statistics. This function is usually called every
5285 * scheduler tick (TICK_NSEC).
5287 * This function computes a decaying average:
5289 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5291 * Because of NOHZ it might not get called on every tick which gives need for
5292 * the @pending_updates argument.
5294 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5295 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5296 * = A * (A * load[i]_n-2 + B) + B
5297 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5298 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5299 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5300 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5301 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5303 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5304 * any change in load would have resulted in the tick being turned back on.
5306 * For regular NOHZ, this reduces to:
5308 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5310 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5311 * term.
5313 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5314 unsigned long pending_updates)
5316 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5317 int i, scale;
5319 this_rq->nr_load_updates++;
5321 /* Update our load: */
5322 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5323 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5324 unsigned long old_load, new_load;
5326 /* scale is effectively 1 << i now, and >> i divides by scale */
5328 old_load = this_rq->cpu_load[i];
5329 #ifdef CONFIG_NO_HZ_COMMON
5330 old_load = decay_load_missed(old_load, pending_updates - 1, i);
5331 if (tickless_load) {
5332 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5334 * old_load can never be a negative value because a
5335 * decayed tickless_load cannot be greater than the
5336 * original tickless_load.
5338 old_load += tickless_load;
5340 #endif
5341 new_load = this_load;
5343 * Round up the averaging division if load is increasing. This
5344 * prevents us from getting stuck on 9 if the load is 10, for
5345 * example.
5347 if (new_load > old_load)
5348 new_load += scale - 1;
5350 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5354 /* Used instead of source_load when we know the type == 0 */
5355 static unsigned long weighted_cpuload(struct rq *rq)
5357 return cfs_rq_runnable_load_avg(&rq->cfs);
5360 #ifdef CONFIG_NO_HZ_COMMON
5362 * There is no sane way to deal with nohz on smp when using jiffies because the
5363 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5364 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5366 * Therefore we need to avoid the delta approach from the regular tick when
5367 * possible since that would seriously skew the load calculation. This is why we
5368 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5369 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5370 * loop exit, nohz_idle_balance, nohz full exit...)
5372 * This means we might still be one tick off for nohz periods.
5375 static void cpu_load_update_nohz(struct rq *this_rq,
5376 unsigned long curr_jiffies,
5377 unsigned long load)
5379 unsigned long pending_updates;
5381 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5382 if (pending_updates) {
5383 this_rq->last_load_update_tick = curr_jiffies;
5385 * In the regular NOHZ case, we were idle, this means load 0.
5386 * In the NOHZ_FULL case, we were non-idle, we should consider
5387 * its weighted load.
5389 cpu_load_update(this_rq, load, pending_updates);
5394 * Called from nohz_idle_balance() to update the load ratings before doing the
5395 * idle balance.
5397 static void cpu_load_update_idle(struct rq *this_rq)
5400 * bail if there's load or we're actually up-to-date.
5402 if (weighted_cpuload(this_rq))
5403 return;
5405 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5409 * Record CPU load on nohz entry so we know the tickless load to account
5410 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5411 * than other cpu_load[idx] but it should be fine as cpu_load readers
5412 * shouldn't rely into synchronized cpu_load[*] updates.
5414 void cpu_load_update_nohz_start(void)
5416 struct rq *this_rq = this_rq();
5419 * This is all lockless but should be fine. If weighted_cpuload changes
5420 * concurrently we'll exit nohz. And cpu_load write can race with
5421 * cpu_load_update_idle() but both updater would be writing the same.
5423 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5427 * Account the tickless load in the end of a nohz frame.
5429 void cpu_load_update_nohz_stop(void)
5431 unsigned long curr_jiffies = READ_ONCE(jiffies);
5432 struct rq *this_rq = this_rq();
5433 unsigned long load;
5434 struct rq_flags rf;
5436 if (curr_jiffies == this_rq->last_load_update_tick)
5437 return;
5439 load = weighted_cpuload(this_rq);
5440 rq_lock(this_rq, &rf);
5441 update_rq_clock(this_rq);
5442 cpu_load_update_nohz(this_rq, curr_jiffies, load);
5443 rq_unlock(this_rq, &rf);
5445 #else /* !CONFIG_NO_HZ_COMMON */
5446 static inline void cpu_load_update_nohz(struct rq *this_rq,
5447 unsigned long curr_jiffies,
5448 unsigned long load) { }
5449 #endif /* CONFIG_NO_HZ_COMMON */
5451 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5453 #ifdef CONFIG_NO_HZ_COMMON
5454 /* See the mess around cpu_load_update_nohz(). */
5455 this_rq->last_load_update_tick = READ_ONCE(jiffies);
5456 #endif
5457 cpu_load_update(this_rq, load, 1);
5461 * Called from scheduler_tick()
5463 void cpu_load_update_active(struct rq *this_rq)
5465 unsigned long load = weighted_cpuload(this_rq);
5467 if (tick_nohz_tick_stopped())
5468 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5469 else
5470 cpu_load_update_periodic(this_rq, load);
5474 * Return a low guess at the load of a migration-source CPU weighted
5475 * according to the scheduling class and "nice" value.
5477 * We want to under-estimate the load of migration sources, to
5478 * balance conservatively.
5480 static unsigned long source_load(int cpu, int type)
5482 struct rq *rq = cpu_rq(cpu);
5483 unsigned long total = weighted_cpuload(rq);
5485 if (type == 0 || !sched_feat(LB_BIAS))
5486 return total;
5488 return min(rq->cpu_load[type-1], total);
5492 * Return a high guess at the load of a migration-target CPU weighted
5493 * according to the scheduling class and "nice" value.
5495 static unsigned long target_load(int cpu, int type)
5497 struct rq *rq = cpu_rq(cpu);
5498 unsigned long total = weighted_cpuload(rq);
5500 if (type == 0 || !sched_feat(LB_BIAS))
5501 return total;
5503 return max(rq->cpu_load[type-1], total);
5506 static unsigned long capacity_of(int cpu)
5508 return cpu_rq(cpu)->cpu_capacity;
5511 static unsigned long capacity_orig_of(int cpu)
5513 return cpu_rq(cpu)->cpu_capacity_orig;
5516 static unsigned long cpu_avg_load_per_task(int cpu)
5518 struct rq *rq = cpu_rq(cpu);
5519 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5520 unsigned long load_avg = weighted_cpuload(rq);
5522 if (nr_running)
5523 return load_avg / nr_running;
5525 return 0;
5528 static void record_wakee(struct task_struct *p)
5531 * Only decay a single time; tasks that have less then 1 wakeup per
5532 * jiffy will not have built up many flips.
5534 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5535 current->wakee_flips >>= 1;
5536 current->wakee_flip_decay_ts = jiffies;
5539 if (current->last_wakee != p) {
5540 current->last_wakee = p;
5541 current->wakee_flips++;
5546 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5548 * A waker of many should wake a different task than the one last awakened
5549 * at a frequency roughly N times higher than one of its wakees.
5551 * In order to determine whether we should let the load spread vs consolidating
5552 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5553 * partner, and a factor of lls_size higher frequency in the other.
5555 * With both conditions met, we can be relatively sure that the relationship is
5556 * non-monogamous, with partner count exceeding socket size.
5558 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5559 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5560 * socket size.
5562 static int wake_wide(struct task_struct *p)
5564 unsigned int master = current->wakee_flips;
5565 unsigned int slave = p->wakee_flips;
5566 int factor = this_cpu_read(sd_llc_size);
5568 if (master < slave)
5569 swap(master, slave);
5570 if (slave < factor || master < slave * factor)
5571 return 0;
5572 return 1;
5576 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5577 * soonest. For the purpose of speed we only consider the waking and previous
5578 * CPU.
5580 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5581 * cache-affine and is (or will be) idle.
5583 * wake_affine_weight() - considers the weight to reflect the average
5584 * scheduling latency of the CPUs. This seems to work
5585 * for the overloaded case.
5587 static int
5588 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5591 * If this_cpu is idle, it implies the wakeup is from interrupt
5592 * context. Only allow the move if cache is shared. Otherwise an
5593 * interrupt intensive workload could force all tasks onto one
5594 * node depending on the IO topology or IRQ affinity settings.
5596 * If the prev_cpu is idle and cache affine then avoid a migration.
5597 * There is no guarantee that the cache hot data from an interrupt
5598 * is more important than cache hot data on the prev_cpu and from
5599 * a cpufreq perspective, it's better to have higher utilisation
5600 * on one CPU.
5602 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5603 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5605 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5606 return this_cpu;
5608 return nr_cpumask_bits;
5611 static int
5612 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5613 int this_cpu, int prev_cpu, int sync)
5615 s64 this_eff_load, prev_eff_load;
5616 unsigned long task_load;
5618 this_eff_load = target_load(this_cpu, sd->wake_idx);
5620 if (sync) {
5621 unsigned long current_load = task_h_load(current);
5623 if (current_load > this_eff_load)
5624 return this_cpu;
5626 this_eff_load -= current_load;
5629 task_load = task_h_load(p);
5631 this_eff_load += task_load;
5632 if (sched_feat(WA_BIAS))
5633 this_eff_load *= 100;
5634 this_eff_load *= capacity_of(prev_cpu);
5636 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5637 prev_eff_load -= task_load;
5638 if (sched_feat(WA_BIAS))
5639 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5640 prev_eff_load *= capacity_of(this_cpu);
5643 * If sync, adjust the weight of prev_eff_load such that if
5644 * prev_eff == this_eff that select_idle_sibling() will consider
5645 * stacking the wakee on top of the waker if no other CPU is
5646 * idle.
5648 if (sync)
5649 prev_eff_load += 1;
5651 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5654 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5655 int this_cpu, int prev_cpu, int sync)
5657 int target = nr_cpumask_bits;
5659 if (sched_feat(WA_IDLE))
5660 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5662 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5663 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5665 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5666 if (target == nr_cpumask_bits)
5667 return prev_cpu;
5669 schedstat_inc(sd->ttwu_move_affine);
5670 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5671 return target;
5674 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5676 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5678 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5682 * find_idlest_group finds and returns the least busy CPU group within the
5683 * domain.
5685 * Assumes p is allowed on at least one CPU in sd.
5687 static struct sched_group *
5688 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5689 int this_cpu, int sd_flag)
5691 struct sched_group *idlest = NULL, *group = sd->groups;
5692 struct sched_group *most_spare_sg = NULL;
5693 unsigned long min_runnable_load = ULONG_MAX;
5694 unsigned long this_runnable_load = ULONG_MAX;
5695 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5696 unsigned long most_spare = 0, this_spare = 0;
5697 int load_idx = sd->forkexec_idx;
5698 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5699 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5700 (sd->imbalance_pct-100) / 100;
5702 if (sd_flag & SD_BALANCE_WAKE)
5703 load_idx = sd->wake_idx;
5705 do {
5706 unsigned long load, avg_load, runnable_load;
5707 unsigned long spare_cap, max_spare_cap;
5708 int local_group;
5709 int i;
5711 /* Skip over this group if it has no CPUs allowed */
5712 if (!cpumask_intersects(sched_group_span(group),
5713 &p->cpus_allowed))
5714 continue;
5716 local_group = cpumask_test_cpu(this_cpu,
5717 sched_group_span(group));
5720 * Tally up the load of all CPUs in the group and find
5721 * the group containing the CPU with most spare capacity.
5723 avg_load = 0;
5724 runnable_load = 0;
5725 max_spare_cap = 0;
5727 for_each_cpu(i, sched_group_span(group)) {
5728 /* Bias balancing toward CPUs of our domain */
5729 if (local_group)
5730 load = source_load(i, load_idx);
5731 else
5732 load = target_load(i, load_idx);
5734 runnable_load += load;
5736 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5738 spare_cap = capacity_spare_without(i, p);
5740 if (spare_cap > max_spare_cap)
5741 max_spare_cap = spare_cap;
5744 /* Adjust by relative CPU capacity of the group */
5745 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5746 group->sgc->capacity;
5747 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5748 group->sgc->capacity;
5750 if (local_group) {
5751 this_runnable_load = runnable_load;
5752 this_avg_load = avg_load;
5753 this_spare = max_spare_cap;
5754 } else {
5755 if (min_runnable_load > (runnable_load + imbalance)) {
5757 * The runnable load is significantly smaller
5758 * so we can pick this new CPU:
5760 min_runnable_load = runnable_load;
5761 min_avg_load = avg_load;
5762 idlest = group;
5763 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5764 (100*min_avg_load > imbalance_scale*avg_load)) {
5766 * The runnable loads are close so take the
5767 * blocked load into account through avg_load:
5769 min_avg_load = avg_load;
5770 idlest = group;
5773 if (most_spare < max_spare_cap) {
5774 most_spare = max_spare_cap;
5775 most_spare_sg = group;
5778 } while (group = group->next, group != sd->groups);
5781 * The cross-over point between using spare capacity or least load
5782 * is too conservative for high utilization tasks on partially
5783 * utilized systems if we require spare_capacity > task_util(p),
5784 * so we allow for some task stuffing by using
5785 * spare_capacity > task_util(p)/2.
5787 * Spare capacity can't be used for fork because the utilization has
5788 * not been set yet, we must first select a rq to compute the initial
5789 * utilization.
5791 if (sd_flag & SD_BALANCE_FORK)
5792 goto skip_spare;
5794 if (this_spare > task_util(p) / 2 &&
5795 imbalance_scale*this_spare > 100*most_spare)
5796 return NULL;
5798 if (most_spare > task_util(p) / 2)
5799 return most_spare_sg;
5801 skip_spare:
5802 if (!idlest)
5803 return NULL;
5806 * When comparing groups across NUMA domains, it's possible for the
5807 * local domain to be very lightly loaded relative to the remote
5808 * domains but "imbalance" skews the comparison making remote CPUs
5809 * look much more favourable. When considering cross-domain, add
5810 * imbalance to the runnable load on the remote node and consider
5811 * staying local.
5813 if ((sd->flags & SD_NUMA) &&
5814 min_runnable_load + imbalance >= this_runnable_load)
5815 return NULL;
5817 if (min_runnable_load > (this_runnable_load + imbalance))
5818 return NULL;
5820 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5821 (100*this_avg_load < imbalance_scale*min_avg_load))
5822 return NULL;
5824 return idlest;
5828 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5830 static int
5831 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5833 unsigned long load, min_load = ULONG_MAX;
5834 unsigned int min_exit_latency = UINT_MAX;
5835 u64 latest_idle_timestamp = 0;
5836 int least_loaded_cpu = this_cpu;
5837 int shallowest_idle_cpu = -1;
5838 int i;
5840 /* Check if we have any choice: */
5841 if (group->group_weight == 1)
5842 return cpumask_first(sched_group_span(group));
5844 /* Traverse only the allowed CPUs */
5845 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5846 if (available_idle_cpu(i)) {
5847 struct rq *rq = cpu_rq(i);
5848 struct cpuidle_state *idle = idle_get_state(rq);
5849 if (idle && idle->exit_latency < min_exit_latency) {
5851 * We give priority to a CPU whose idle state
5852 * has the smallest exit latency irrespective
5853 * of any idle timestamp.
5855 min_exit_latency = idle->exit_latency;
5856 latest_idle_timestamp = rq->idle_stamp;
5857 shallowest_idle_cpu = i;
5858 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5859 rq->idle_stamp > latest_idle_timestamp) {
5861 * If equal or no active idle state, then
5862 * the most recently idled CPU might have
5863 * a warmer cache.
5865 latest_idle_timestamp = rq->idle_stamp;
5866 shallowest_idle_cpu = i;
5868 } else if (shallowest_idle_cpu == -1) {
5869 load = weighted_cpuload(cpu_rq(i));
5870 if (load < min_load) {
5871 min_load = load;
5872 least_loaded_cpu = i;
5877 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5880 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5881 int cpu, int prev_cpu, int sd_flag)
5883 int new_cpu = cpu;
5885 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5886 return prev_cpu;
5889 * We need task's util for capacity_spare_without, sync it up to
5890 * prev_cpu's last_update_time.
5892 if (!(sd_flag & SD_BALANCE_FORK))
5893 sync_entity_load_avg(&p->se);
5895 while (sd) {
5896 struct sched_group *group;
5897 struct sched_domain *tmp;
5898 int weight;
5900 if (!(sd->flags & sd_flag)) {
5901 sd = sd->child;
5902 continue;
5905 group = find_idlest_group(sd, p, cpu, sd_flag);
5906 if (!group) {
5907 sd = sd->child;
5908 continue;
5911 new_cpu = find_idlest_group_cpu(group, p, cpu);
5912 if (new_cpu == cpu) {
5913 /* Now try balancing at a lower domain level of 'cpu': */
5914 sd = sd->child;
5915 continue;
5918 /* Now try balancing at a lower domain level of 'new_cpu': */
5919 cpu = new_cpu;
5920 weight = sd->span_weight;
5921 sd = NULL;
5922 for_each_domain(cpu, tmp) {
5923 if (weight <= tmp->span_weight)
5924 break;
5925 if (tmp->flags & sd_flag)
5926 sd = tmp;
5930 return new_cpu;
5933 #ifdef CONFIG_SCHED_SMT
5934 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5935 EXPORT_SYMBOL_GPL(sched_smt_present);
5937 static inline void set_idle_cores(int cpu, int val)
5939 struct sched_domain_shared *sds;
5941 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5942 if (sds)
5943 WRITE_ONCE(sds->has_idle_cores, val);
5946 static inline bool test_idle_cores(int cpu, bool def)
5948 struct sched_domain_shared *sds;
5950 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5951 if (sds)
5952 return READ_ONCE(sds->has_idle_cores);
5954 return def;
5958 * Scans the local SMT mask to see if the entire core is idle, and records this
5959 * information in sd_llc_shared->has_idle_cores.
5961 * Since SMT siblings share all cache levels, inspecting this limited remote
5962 * state should be fairly cheap.
5964 void __update_idle_core(struct rq *rq)
5966 int core = cpu_of(rq);
5967 int cpu;
5969 rcu_read_lock();
5970 if (test_idle_cores(core, true))
5971 goto unlock;
5973 for_each_cpu(cpu, cpu_smt_mask(core)) {
5974 if (cpu == core)
5975 continue;
5977 if (!available_idle_cpu(cpu))
5978 goto unlock;
5981 set_idle_cores(core, 1);
5982 unlock:
5983 rcu_read_unlock();
5987 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5988 * there are no idle cores left in the system; tracked through
5989 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5991 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5993 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5994 int core, cpu;
5996 if (!static_branch_likely(&sched_smt_present))
5997 return -1;
5999 if (!test_idle_cores(target, false))
6000 return -1;
6002 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6004 for_each_cpu_wrap(core, cpus, target) {
6005 bool idle = true;
6007 for_each_cpu(cpu, cpu_smt_mask(core)) {
6008 cpumask_clear_cpu(cpu, cpus);
6009 if (!available_idle_cpu(cpu))
6010 idle = false;
6013 if (idle)
6014 return core;
6018 * Failed to find an idle core; stop looking for one.
6020 set_idle_cores(target, 0);
6022 return -1;
6026 * Scan the local SMT mask for idle CPUs.
6028 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6030 int cpu;
6032 if (!static_branch_likely(&sched_smt_present))
6033 return -1;
6035 for_each_cpu(cpu, cpu_smt_mask(target)) {
6036 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6037 continue;
6038 if (available_idle_cpu(cpu))
6039 return cpu;
6042 return -1;
6045 #else /* CONFIG_SCHED_SMT */
6047 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6049 return -1;
6052 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6054 return -1;
6057 #endif /* CONFIG_SCHED_SMT */
6060 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6061 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6062 * average idle time for this rq (as found in rq->avg_idle).
6064 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6066 struct sched_domain *this_sd;
6067 u64 avg_cost, avg_idle;
6068 u64 time, cost;
6069 s64 delta;
6070 int cpu, nr = INT_MAX;
6072 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6073 if (!this_sd)
6074 return -1;
6077 * Due to large variance we need a large fuzz factor; hackbench in
6078 * particularly is sensitive here.
6080 avg_idle = this_rq()->avg_idle / 512;
6081 avg_cost = this_sd->avg_scan_cost + 1;
6083 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6084 return -1;
6086 if (sched_feat(SIS_PROP)) {
6087 u64 span_avg = sd->span_weight * avg_idle;
6088 if (span_avg > 4*avg_cost)
6089 nr = div_u64(span_avg, avg_cost);
6090 else
6091 nr = 4;
6094 time = local_clock();
6096 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6097 if (!--nr)
6098 return -1;
6099 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6100 continue;
6101 if (available_idle_cpu(cpu))
6102 break;
6105 time = local_clock() - time;
6106 cost = this_sd->avg_scan_cost;
6107 delta = (s64)(time - cost) / 8;
6108 this_sd->avg_scan_cost += delta;
6110 return cpu;
6114 * Try and locate an idle core/thread in the LLC cache domain.
6116 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6118 struct sched_domain *sd;
6119 int i, recent_used_cpu;
6121 if (available_idle_cpu(target))
6122 return target;
6125 * If the previous CPU is cache affine and idle, don't be stupid:
6127 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6128 return prev;
6130 /* Check a recently used CPU as a potential idle candidate: */
6131 recent_used_cpu = p->recent_used_cpu;
6132 if (recent_used_cpu != prev &&
6133 recent_used_cpu != target &&
6134 cpus_share_cache(recent_used_cpu, target) &&
6135 available_idle_cpu(recent_used_cpu) &&
6136 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6138 * Replace recent_used_cpu with prev as it is a potential
6139 * candidate for the next wake:
6141 p->recent_used_cpu = prev;
6142 return recent_used_cpu;
6145 sd = rcu_dereference(per_cpu(sd_llc, target));
6146 if (!sd)
6147 return target;
6149 i = select_idle_core(p, sd, target);
6150 if ((unsigned)i < nr_cpumask_bits)
6151 return i;
6153 i = select_idle_cpu(p, sd, target);
6154 if ((unsigned)i < nr_cpumask_bits)
6155 return i;
6157 i = select_idle_smt(p, sd, target);
6158 if ((unsigned)i < nr_cpumask_bits)
6159 return i;
6161 return target;
6165 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6166 * @cpu: the CPU to get the utilization of
6168 * The unit of the return value must be the one of capacity so we can compare
6169 * the utilization with the capacity of the CPU that is available for CFS task
6170 * (ie cpu_capacity).
6172 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6173 * recent utilization of currently non-runnable tasks on a CPU. It represents
6174 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6175 * capacity_orig is the cpu_capacity available at the highest frequency
6176 * (arch_scale_freq_capacity()).
6177 * The utilization of a CPU converges towards a sum equal to or less than the
6178 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6179 * the running time on this CPU scaled by capacity_curr.
6181 * The estimated utilization of a CPU is defined to be the maximum between its
6182 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6183 * currently RUNNABLE on that CPU.
6184 * This allows to properly represent the expected utilization of a CPU which
6185 * has just got a big task running since a long sleep period. At the same time
6186 * however it preserves the benefits of the "blocked utilization" in
6187 * describing the potential for other tasks waking up on the same CPU.
6189 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6190 * higher than capacity_orig because of unfortunate rounding in
6191 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6192 * the average stabilizes with the new running time. We need to check that the
6193 * utilization stays within the range of [0..capacity_orig] and cap it if
6194 * necessary. Without utilization capping, a group could be seen as overloaded
6195 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6196 * available capacity. We allow utilization to overshoot capacity_curr (but not
6197 * capacity_orig) as it useful for predicting the capacity required after task
6198 * migrations (scheduler-driven DVFS).
6200 * Return: the (estimated) utilization for the specified CPU
6202 static inline unsigned long cpu_util(int cpu)
6204 struct cfs_rq *cfs_rq;
6205 unsigned int util;
6207 cfs_rq = &cpu_rq(cpu)->cfs;
6208 util = READ_ONCE(cfs_rq->avg.util_avg);
6210 if (sched_feat(UTIL_EST))
6211 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6213 return min_t(unsigned long, util, capacity_orig_of(cpu));
6217 * cpu_util_without: compute cpu utilization without any contributions from *p
6218 * @cpu: the CPU which utilization is requested
6219 * @p: the task which utilization should be discounted
6221 * The utilization of a CPU is defined by the utilization of tasks currently
6222 * enqueued on that CPU as well as tasks which are currently sleeping after an
6223 * execution on that CPU.
6225 * This method returns the utilization of the specified CPU by discounting the
6226 * utilization of the specified task, whenever the task is currently
6227 * contributing to the CPU utilization.
6229 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6231 struct cfs_rq *cfs_rq;
6232 unsigned int util;
6234 /* Task has no contribution or is new */
6235 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6236 return cpu_util(cpu);
6238 cfs_rq = &cpu_rq(cpu)->cfs;
6239 util = READ_ONCE(cfs_rq->avg.util_avg);
6241 /* Discount task's util from CPU's util */
6242 util -= min_t(unsigned int, util, task_util(p));
6245 * Covered cases:
6247 * a) if *p is the only task sleeping on this CPU, then:
6248 * cpu_util (== task_util) > util_est (== 0)
6249 * and thus we return:
6250 * cpu_util_without = (cpu_util - task_util) = 0
6252 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6253 * IDLE, then:
6254 * cpu_util >= task_util
6255 * cpu_util > util_est (== 0)
6256 * and thus we discount *p's blocked utilization to return:
6257 * cpu_util_without = (cpu_util - task_util) >= 0
6259 * c) if other tasks are RUNNABLE on that CPU and
6260 * util_est > cpu_util
6261 * then we use util_est since it returns a more restrictive
6262 * estimation of the spare capacity on that CPU, by just
6263 * considering the expected utilization of tasks already
6264 * runnable on that CPU.
6266 * Cases a) and b) are covered by the above code, while case c) is
6267 * covered by the following code when estimated utilization is
6268 * enabled.
6270 if (sched_feat(UTIL_EST)) {
6271 unsigned int estimated =
6272 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6275 * Despite the following checks we still have a small window
6276 * for a possible race, when an execl's select_task_rq_fair()
6277 * races with LB's detach_task():
6279 * detach_task()
6280 * p->on_rq = TASK_ON_RQ_MIGRATING;
6281 * ---------------------------------- A
6282 * deactivate_task() \
6283 * dequeue_task() + RaceTime
6284 * util_est_dequeue() /
6285 * ---------------------------------- B
6287 * The additional check on "current == p" it's required to
6288 * properly fix the execl regression and it helps in further
6289 * reducing the chances for the above race.
6291 if (unlikely(task_on_rq_queued(p) || current == p)) {
6292 estimated -= min_t(unsigned int, estimated,
6293 (_task_util_est(p) | UTIL_AVG_UNCHANGED));
6295 util = max(util, estimated);
6299 * Utilization (estimated) can exceed the CPU capacity, thus let's
6300 * clamp to the maximum CPU capacity to ensure consistency with
6301 * the cpu_util call.
6303 return min_t(unsigned long, util, capacity_orig_of(cpu));
6307 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6308 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6310 * In that case WAKE_AFFINE doesn't make sense and we'll let
6311 * BALANCE_WAKE sort things out.
6313 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6315 long min_cap, max_cap;
6317 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6318 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6320 /* Minimum capacity is close to max, no need to abort wake_affine */
6321 if (max_cap - min_cap < max_cap >> 3)
6322 return 0;
6324 /* Bring task utilization in sync with prev_cpu */
6325 sync_entity_load_avg(&p->se);
6327 return min_cap * 1024 < task_util(p) * capacity_margin;
6331 * select_task_rq_fair: Select target runqueue for the waking task in domains
6332 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6333 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6335 * Balances load by selecting the idlest CPU in the idlest group, or under
6336 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6338 * Returns the target CPU number.
6340 * preempt must be disabled.
6342 static int
6343 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6345 struct sched_domain *tmp, *sd = NULL;
6346 int cpu = smp_processor_id();
6347 int new_cpu = prev_cpu;
6348 int want_affine = 0;
6349 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6351 if (sd_flag & SD_BALANCE_WAKE) {
6352 record_wakee(p);
6353 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6354 && cpumask_test_cpu(cpu, &p->cpus_allowed);
6357 rcu_read_lock();
6358 for_each_domain(cpu, tmp) {
6359 if (!(tmp->flags & SD_LOAD_BALANCE))
6360 break;
6363 * If both 'cpu' and 'prev_cpu' are part of this domain,
6364 * cpu is a valid SD_WAKE_AFFINE target.
6366 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6367 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6368 if (cpu != prev_cpu)
6369 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6371 sd = NULL; /* Prefer wake_affine over balance flags */
6372 break;
6375 if (tmp->flags & sd_flag)
6376 sd = tmp;
6377 else if (!want_affine)
6378 break;
6381 if (unlikely(sd)) {
6382 /* Slow path */
6383 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6384 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6385 /* Fast path */
6387 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6389 if (want_affine)
6390 current->recent_used_cpu = cpu;
6392 rcu_read_unlock();
6394 return new_cpu;
6397 static void detach_entity_cfs_rq(struct sched_entity *se);
6400 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6401 * cfs_rq_of(p) references at time of call are still valid and identify the
6402 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6404 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6407 * As blocked tasks retain absolute vruntime the migration needs to
6408 * deal with this by subtracting the old and adding the new
6409 * min_vruntime -- the latter is done by enqueue_entity() when placing
6410 * the task on the new runqueue.
6412 if (p->state == TASK_WAKING) {
6413 struct sched_entity *se = &p->se;
6414 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6415 u64 min_vruntime;
6417 #ifndef CONFIG_64BIT
6418 u64 min_vruntime_copy;
6420 do {
6421 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6422 smp_rmb();
6423 min_vruntime = cfs_rq->min_vruntime;
6424 } while (min_vruntime != min_vruntime_copy);
6425 #else
6426 min_vruntime = cfs_rq->min_vruntime;
6427 #endif
6429 se->vruntime -= min_vruntime;
6432 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6434 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6435 * rq->lock and can modify state directly.
6437 lockdep_assert_held(&task_rq(p)->lock);
6438 detach_entity_cfs_rq(&p->se);
6440 } else {
6442 * We are supposed to update the task to "current" time, then
6443 * its up to date and ready to go to new CPU/cfs_rq. But we
6444 * have difficulty in getting what current time is, so simply
6445 * throw away the out-of-date time. This will result in the
6446 * wakee task is less decayed, but giving the wakee more load
6447 * sounds not bad.
6449 remove_entity_load_avg(&p->se);
6452 /* Tell new CPU we are migrated */
6453 p->se.avg.last_update_time = 0;
6455 /* We have migrated, no longer consider this task hot */
6456 p->se.exec_start = 0;
6458 update_scan_period(p, new_cpu);
6461 static void task_dead_fair(struct task_struct *p)
6463 remove_entity_load_avg(&p->se);
6465 #endif /* CONFIG_SMP */
6467 static unsigned long wakeup_gran(struct sched_entity *se)
6469 unsigned long gran = sysctl_sched_wakeup_granularity;
6472 * Since its curr running now, convert the gran from real-time
6473 * to virtual-time in his units.
6475 * By using 'se' instead of 'curr' we penalize light tasks, so
6476 * they get preempted easier. That is, if 'se' < 'curr' then
6477 * the resulting gran will be larger, therefore penalizing the
6478 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6479 * be smaller, again penalizing the lighter task.
6481 * This is especially important for buddies when the leftmost
6482 * task is higher priority than the buddy.
6484 return calc_delta_fair(gran, se);
6488 * Should 'se' preempt 'curr'.
6490 * |s1
6491 * |s2
6492 * |s3
6494 * |<--->|c
6496 * w(c, s1) = -1
6497 * w(c, s2) = 0
6498 * w(c, s3) = 1
6501 static int
6502 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6504 s64 gran, vdiff = curr->vruntime - se->vruntime;
6506 if (vdiff <= 0)
6507 return -1;
6509 gran = wakeup_gran(se);
6510 if (vdiff > gran)
6511 return 1;
6513 return 0;
6516 static void set_last_buddy(struct sched_entity *se)
6518 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6519 return;
6521 for_each_sched_entity(se) {
6522 if (SCHED_WARN_ON(!se->on_rq))
6523 return;
6524 cfs_rq_of(se)->last = se;
6528 static void set_next_buddy(struct sched_entity *se)
6530 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6531 return;
6533 for_each_sched_entity(se) {
6534 if (SCHED_WARN_ON(!se->on_rq))
6535 return;
6536 cfs_rq_of(se)->next = se;
6540 static void set_skip_buddy(struct sched_entity *se)
6542 for_each_sched_entity(se)
6543 cfs_rq_of(se)->skip = se;
6547 * Preempt the current task with a newly woken task if needed:
6549 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6551 struct task_struct *curr = rq->curr;
6552 struct sched_entity *se = &curr->se, *pse = &p->se;
6553 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6554 int scale = cfs_rq->nr_running >= sched_nr_latency;
6555 int next_buddy_marked = 0;
6557 if (unlikely(se == pse))
6558 return;
6561 * This is possible from callers such as attach_tasks(), in which we
6562 * unconditionally check_prempt_curr() after an enqueue (which may have
6563 * lead to a throttle). This both saves work and prevents false
6564 * next-buddy nomination below.
6566 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6567 return;
6569 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6570 set_next_buddy(pse);
6571 next_buddy_marked = 1;
6575 * We can come here with TIF_NEED_RESCHED already set from new task
6576 * wake up path.
6578 * Note: this also catches the edge-case of curr being in a throttled
6579 * group (e.g. via set_curr_task), since update_curr() (in the
6580 * enqueue of curr) will have resulted in resched being set. This
6581 * prevents us from potentially nominating it as a false LAST_BUDDY
6582 * below.
6584 if (test_tsk_need_resched(curr))
6585 return;
6587 /* Idle tasks are by definition preempted by non-idle tasks. */
6588 if (unlikely(curr->policy == SCHED_IDLE) &&
6589 likely(p->policy != SCHED_IDLE))
6590 goto preempt;
6593 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6594 * is driven by the tick):
6596 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6597 return;
6599 find_matching_se(&se, &pse);
6600 update_curr(cfs_rq_of(se));
6601 BUG_ON(!pse);
6602 if (wakeup_preempt_entity(se, pse) == 1) {
6604 * Bias pick_next to pick the sched entity that is
6605 * triggering this preemption.
6607 if (!next_buddy_marked)
6608 set_next_buddy(pse);
6609 goto preempt;
6612 return;
6614 preempt:
6615 resched_curr(rq);
6617 * Only set the backward buddy when the current task is still
6618 * on the rq. This can happen when a wakeup gets interleaved
6619 * with schedule on the ->pre_schedule() or idle_balance()
6620 * point, either of which can * drop the rq lock.
6622 * Also, during early boot the idle thread is in the fair class,
6623 * for obvious reasons its a bad idea to schedule back to it.
6625 if (unlikely(!se->on_rq || curr == rq->idle))
6626 return;
6628 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6629 set_last_buddy(se);
6632 static struct task_struct *
6633 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6635 struct cfs_rq *cfs_rq = &rq->cfs;
6636 struct sched_entity *se;
6637 struct task_struct *p;
6638 int new_tasks;
6640 again:
6641 if (!cfs_rq->nr_running)
6642 goto idle;
6644 #ifdef CONFIG_FAIR_GROUP_SCHED
6645 if (prev->sched_class != &fair_sched_class)
6646 goto simple;
6649 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6650 * likely that a next task is from the same cgroup as the current.
6652 * Therefore attempt to avoid putting and setting the entire cgroup
6653 * hierarchy, only change the part that actually changes.
6656 do {
6657 struct sched_entity *curr = cfs_rq->curr;
6660 * Since we got here without doing put_prev_entity() we also
6661 * have to consider cfs_rq->curr. If it is still a runnable
6662 * entity, update_curr() will update its vruntime, otherwise
6663 * forget we've ever seen it.
6665 if (curr) {
6666 if (curr->on_rq)
6667 update_curr(cfs_rq);
6668 else
6669 curr = NULL;
6672 * This call to check_cfs_rq_runtime() will do the
6673 * throttle and dequeue its entity in the parent(s).
6674 * Therefore the nr_running test will indeed
6675 * be correct.
6677 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6678 cfs_rq = &rq->cfs;
6680 if (!cfs_rq->nr_running)
6681 goto idle;
6683 goto simple;
6687 se = pick_next_entity(cfs_rq, curr);
6688 cfs_rq = group_cfs_rq(se);
6689 } while (cfs_rq);
6691 p = task_of(se);
6694 * Since we haven't yet done put_prev_entity and if the selected task
6695 * is a different task than we started out with, try and touch the
6696 * least amount of cfs_rqs.
6698 if (prev != p) {
6699 struct sched_entity *pse = &prev->se;
6701 while (!(cfs_rq = is_same_group(se, pse))) {
6702 int se_depth = se->depth;
6703 int pse_depth = pse->depth;
6705 if (se_depth <= pse_depth) {
6706 put_prev_entity(cfs_rq_of(pse), pse);
6707 pse = parent_entity(pse);
6709 if (se_depth >= pse_depth) {
6710 set_next_entity(cfs_rq_of(se), se);
6711 se = parent_entity(se);
6715 put_prev_entity(cfs_rq, pse);
6716 set_next_entity(cfs_rq, se);
6719 goto done;
6720 simple:
6721 #endif
6723 put_prev_task(rq, prev);
6725 do {
6726 se = pick_next_entity(cfs_rq, NULL);
6727 set_next_entity(cfs_rq, se);
6728 cfs_rq = group_cfs_rq(se);
6729 } while (cfs_rq);
6731 p = task_of(se);
6733 done: __maybe_unused;
6734 #ifdef CONFIG_SMP
6736 * Move the next running task to the front of
6737 * the list, so our cfs_tasks list becomes MRU
6738 * one.
6740 list_move(&p->se.group_node, &rq->cfs_tasks);
6741 #endif
6743 if (hrtick_enabled(rq))
6744 hrtick_start_fair(rq, p);
6746 return p;
6748 idle:
6749 new_tasks = idle_balance(rq, rf);
6752 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6753 * possible for any higher priority task to appear. In that case we
6754 * must re-start the pick_next_entity() loop.
6756 if (new_tasks < 0)
6757 return RETRY_TASK;
6759 if (new_tasks > 0)
6760 goto again;
6762 return NULL;
6766 * Account for a descheduled task:
6768 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6770 struct sched_entity *se = &prev->se;
6771 struct cfs_rq *cfs_rq;
6773 for_each_sched_entity(se) {
6774 cfs_rq = cfs_rq_of(se);
6775 put_prev_entity(cfs_rq, se);
6780 * sched_yield() is very simple
6782 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6784 static void yield_task_fair(struct rq *rq)
6786 struct task_struct *curr = rq->curr;
6787 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6788 struct sched_entity *se = &curr->se;
6791 * Are we the only task in the tree?
6793 if (unlikely(rq->nr_running == 1))
6794 return;
6796 clear_buddies(cfs_rq, se);
6798 if (curr->policy != SCHED_BATCH) {
6799 update_rq_clock(rq);
6801 * Update run-time statistics of the 'current'.
6803 update_curr(cfs_rq);
6805 * Tell update_rq_clock() that we've just updated,
6806 * so we don't do microscopic update in schedule()
6807 * and double the fastpath cost.
6809 rq_clock_skip_update(rq);
6812 set_skip_buddy(se);
6815 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6817 struct sched_entity *se = &p->se;
6819 /* throttled hierarchies are not runnable */
6820 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6821 return false;
6823 /* Tell the scheduler that we'd really like pse to run next. */
6824 set_next_buddy(se);
6826 yield_task_fair(rq);
6828 return true;
6831 #ifdef CONFIG_SMP
6832 /**************************************************
6833 * Fair scheduling class load-balancing methods.
6835 * BASICS
6837 * The purpose of load-balancing is to achieve the same basic fairness the
6838 * per-CPU scheduler provides, namely provide a proportional amount of compute
6839 * time to each task. This is expressed in the following equation:
6841 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6843 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6844 * W_i,0 is defined as:
6846 * W_i,0 = \Sum_j w_i,j (2)
6848 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6849 * is derived from the nice value as per sched_prio_to_weight[].
6851 * The weight average is an exponential decay average of the instantaneous
6852 * weight:
6854 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6856 * C_i is the compute capacity of CPU i, typically it is the
6857 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6858 * can also include other factors [XXX].
6860 * To achieve this balance we define a measure of imbalance which follows
6861 * directly from (1):
6863 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6865 * We them move tasks around to minimize the imbalance. In the continuous
6866 * function space it is obvious this converges, in the discrete case we get
6867 * a few fun cases generally called infeasible weight scenarios.
6869 * [XXX expand on:
6870 * - infeasible weights;
6871 * - local vs global optima in the discrete case. ]
6874 * SCHED DOMAINS
6876 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6877 * for all i,j solution, we create a tree of CPUs that follows the hardware
6878 * topology where each level pairs two lower groups (or better). This results
6879 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6880 * tree to only the first of the previous level and we decrease the frequency
6881 * of load-balance at each level inv. proportional to the number of CPUs in
6882 * the groups.
6884 * This yields:
6886 * log_2 n 1 n
6887 * \Sum { --- * --- * 2^i } = O(n) (5)
6888 * i = 0 2^i 2^i
6889 * `- size of each group
6890 * | | `- number of CPUs doing load-balance
6891 * | `- freq
6892 * `- sum over all levels
6894 * Coupled with a limit on how many tasks we can migrate every balance pass,
6895 * this makes (5) the runtime complexity of the balancer.
6897 * An important property here is that each CPU is still (indirectly) connected
6898 * to every other CPU in at most O(log n) steps:
6900 * The adjacency matrix of the resulting graph is given by:
6902 * log_2 n
6903 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6904 * k = 0
6906 * And you'll find that:
6908 * A^(log_2 n)_i,j != 0 for all i,j (7)
6910 * Showing there's indeed a path between every CPU in at most O(log n) steps.
6911 * The task movement gives a factor of O(m), giving a convergence complexity
6912 * of:
6914 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6917 * WORK CONSERVING
6919 * In order to avoid CPUs going idle while there's still work to do, new idle
6920 * balancing is more aggressive and has the newly idle CPU iterate up the domain
6921 * tree itself instead of relying on other CPUs to bring it work.
6923 * This adds some complexity to both (5) and (8) but it reduces the total idle
6924 * time.
6926 * [XXX more?]
6929 * CGROUPS
6931 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6933 * s_k,i
6934 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6935 * S_k
6937 * Where
6939 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6941 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
6943 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6944 * property.
6946 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6947 * rewrite all of this once again.]
6950 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6952 enum fbq_type { regular, remote, all };
6954 #define LBF_ALL_PINNED 0x01
6955 #define LBF_NEED_BREAK 0x02
6956 #define LBF_DST_PINNED 0x04
6957 #define LBF_SOME_PINNED 0x08
6958 #define LBF_NOHZ_STATS 0x10
6959 #define LBF_NOHZ_AGAIN 0x20
6961 struct lb_env {
6962 struct sched_domain *sd;
6964 struct rq *src_rq;
6965 int src_cpu;
6967 int dst_cpu;
6968 struct rq *dst_rq;
6970 struct cpumask *dst_grpmask;
6971 int new_dst_cpu;
6972 enum cpu_idle_type idle;
6973 long imbalance;
6974 /* The set of CPUs under consideration for load-balancing */
6975 struct cpumask *cpus;
6977 unsigned int flags;
6979 unsigned int loop;
6980 unsigned int loop_break;
6981 unsigned int loop_max;
6983 enum fbq_type fbq_type;
6984 struct list_head tasks;
6988 * Is this task likely cache-hot:
6990 static int task_hot(struct task_struct *p, struct lb_env *env)
6992 s64 delta;
6994 lockdep_assert_held(&env->src_rq->lock);
6996 if (p->sched_class != &fair_sched_class)
6997 return 0;
6999 if (unlikely(p->policy == SCHED_IDLE))
7000 return 0;
7003 * Buddy candidates are cache hot:
7005 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7006 (&p->se == cfs_rq_of(&p->se)->next ||
7007 &p->se == cfs_rq_of(&p->se)->last))
7008 return 1;
7010 if (sysctl_sched_migration_cost == -1)
7011 return 1;
7012 if (sysctl_sched_migration_cost == 0)
7013 return 0;
7015 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7017 return delta < (s64)sysctl_sched_migration_cost;
7020 #ifdef CONFIG_NUMA_BALANCING
7022 * Returns 1, if task migration degrades locality
7023 * Returns 0, if task migration improves locality i.e migration preferred.
7024 * Returns -1, if task migration is not affected by locality.
7026 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7028 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7029 unsigned long src_weight, dst_weight;
7030 int src_nid, dst_nid, dist;
7032 if (!static_branch_likely(&sched_numa_balancing))
7033 return -1;
7035 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7036 return -1;
7038 src_nid = cpu_to_node(env->src_cpu);
7039 dst_nid = cpu_to_node(env->dst_cpu);
7041 if (src_nid == dst_nid)
7042 return -1;
7044 /* Migrating away from the preferred node is always bad. */
7045 if (src_nid == p->numa_preferred_nid) {
7046 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7047 return 1;
7048 else
7049 return -1;
7052 /* Encourage migration to the preferred node. */
7053 if (dst_nid == p->numa_preferred_nid)
7054 return 0;
7056 /* Leaving a core idle is often worse than degrading locality. */
7057 if (env->idle == CPU_IDLE)
7058 return -1;
7060 dist = node_distance(src_nid, dst_nid);
7061 if (numa_group) {
7062 src_weight = group_weight(p, src_nid, dist);
7063 dst_weight = group_weight(p, dst_nid, dist);
7064 } else {
7065 src_weight = task_weight(p, src_nid, dist);
7066 dst_weight = task_weight(p, dst_nid, dist);
7069 return dst_weight < src_weight;
7072 #else
7073 static inline int migrate_degrades_locality(struct task_struct *p,
7074 struct lb_env *env)
7076 return -1;
7078 #endif
7081 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7083 static
7084 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7086 int tsk_cache_hot;
7088 lockdep_assert_held(&env->src_rq->lock);
7091 * We do not migrate tasks that are:
7092 * 1) throttled_lb_pair, or
7093 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7094 * 3) running (obviously), or
7095 * 4) are cache-hot on their current CPU.
7097 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7098 return 0;
7100 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7101 int cpu;
7103 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7105 env->flags |= LBF_SOME_PINNED;
7108 * Remember if this task can be migrated to any other CPU in
7109 * our sched_group. We may want to revisit it if we couldn't
7110 * meet load balance goals by pulling other tasks on src_cpu.
7112 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7113 * already computed one in current iteration.
7115 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7116 return 0;
7118 /* Prevent to re-select dst_cpu via env's CPUs: */
7119 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7120 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7121 env->flags |= LBF_DST_PINNED;
7122 env->new_dst_cpu = cpu;
7123 break;
7127 return 0;
7130 /* Record that we found atleast one task that could run on dst_cpu */
7131 env->flags &= ~LBF_ALL_PINNED;
7133 if (task_running(env->src_rq, p)) {
7134 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7135 return 0;
7139 * Aggressive migration if:
7140 * 1) destination numa is preferred
7141 * 2) task is cache cold, or
7142 * 3) too many balance attempts have failed.
7144 tsk_cache_hot = migrate_degrades_locality(p, env);
7145 if (tsk_cache_hot == -1)
7146 tsk_cache_hot = task_hot(p, env);
7148 if (tsk_cache_hot <= 0 ||
7149 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7150 if (tsk_cache_hot == 1) {
7151 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7152 schedstat_inc(p->se.statistics.nr_forced_migrations);
7154 return 1;
7157 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7158 return 0;
7162 * detach_task() -- detach the task for the migration specified in env
7164 static void detach_task(struct task_struct *p, struct lb_env *env)
7166 lockdep_assert_held(&env->src_rq->lock);
7168 p->on_rq = TASK_ON_RQ_MIGRATING;
7169 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7170 set_task_cpu(p, env->dst_cpu);
7174 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7175 * part of active balancing operations within "domain".
7177 * Returns a task if successful and NULL otherwise.
7179 static struct task_struct *detach_one_task(struct lb_env *env)
7181 struct task_struct *p;
7183 lockdep_assert_held(&env->src_rq->lock);
7185 list_for_each_entry_reverse(p,
7186 &env->src_rq->cfs_tasks, se.group_node) {
7187 if (!can_migrate_task(p, env))
7188 continue;
7190 detach_task(p, env);
7193 * Right now, this is only the second place where
7194 * lb_gained[env->idle] is updated (other is detach_tasks)
7195 * so we can safely collect stats here rather than
7196 * inside detach_tasks().
7198 schedstat_inc(env->sd->lb_gained[env->idle]);
7199 return p;
7201 return NULL;
7204 static const unsigned int sched_nr_migrate_break = 32;
7207 * detach_tasks() -- tries to detach up to imbalance weighted load from
7208 * busiest_rq, as part of a balancing operation within domain "sd".
7210 * Returns number of detached tasks if successful and 0 otherwise.
7212 static int detach_tasks(struct lb_env *env)
7214 struct list_head *tasks = &env->src_rq->cfs_tasks;
7215 struct task_struct *p;
7216 unsigned long load;
7217 int detached = 0;
7219 lockdep_assert_held(&env->src_rq->lock);
7221 if (env->imbalance <= 0)
7222 return 0;
7224 while (!list_empty(tasks)) {
7226 * We don't want to steal all, otherwise we may be treated likewise,
7227 * which could at worst lead to a livelock crash.
7229 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7230 break;
7232 p = list_last_entry(tasks, struct task_struct, se.group_node);
7234 env->loop++;
7235 /* We've more or less seen every task there is, call it quits */
7236 if (env->loop > env->loop_max)
7237 break;
7239 /* take a breather every nr_migrate tasks */
7240 if (env->loop > env->loop_break) {
7241 env->loop_break += sched_nr_migrate_break;
7242 env->flags |= LBF_NEED_BREAK;
7243 break;
7246 if (!can_migrate_task(p, env))
7247 goto next;
7249 load = task_h_load(p);
7251 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7252 goto next;
7254 if ((load / 2) > env->imbalance)
7255 goto next;
7257 detach_task(p, env);
7258 list_add(&p->se.group_node, &env->tasks);
7260 detached++;
7261 env->imbalance -= load;
7263 #ifdef CONFIG_PREEMPT
7265 * NEWIDLE balancing is a source of latency, so preemptible
7266 * kernels will stop after the first task is detached to minimize
7267 * the critical section.
7269 if (env->idle == CPU_NEWLY_IDLE)
7270 break;
7271 #endif
7274 * We only want to steal up to the prescribed amount of
7275 * weighted load.
7277 if (env->imbalance <= 0)
7278 break;
7280 continue;
7281 next:
7282 list_move(&p->se.group_node, tasks);
7286 * Right now, this is one of only two places we collect this stat
7287 * so we can safely collect detach_one_task() stats here rather
7288 * than inside detach_one_task().
7290 schedstat_add(env->sd->lb_gained[env->idle], detached);
7292 return detached;
7296 * attach_task() -- attach the task detached by detach_task() to its new rq.
7298 static void attach_task(struct rq *rq, struct task_struct *p)
7300 lockdep_assert_held(&rq->lock);
7302 BUG_ON(task_rq(p) != rq);
7303 activate_task(rq, p, ENQUEUE_NOCLOCK);
7304 p->on_rq = TASK_ON_RQ_QUEUED;
7305 check_preempt_curr(rq, p, 0);
7309 * attach_one_task() -- attaches the task returned from detach_one_task() to
7310 * its new rq.
7312 static void attach_one_task(struct rq *rq, struct task_struct *p)
7314 struct rq_flags rf;
7316 rq_lock(rq, &rf);
7317 update_rq_clock(rq);
7318 attach_task(rq, p);
7319 rq_unlock(rq, &rf);
7323 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7324 * new rq.
7326 static void attach_tasks(struct lb_env *env)
7328 struct list_head *tasks = &env->tasks;
7329 struct task_struct *p;
7330 struct rq_flags rf;
7332 rq_lock(env->dst_rq, &rf);
7333 update_rq_clock(env->dst_rq);
7335 while (!list_empty(tasks)) {
7336 p = list_first_entry(tasks, struct task_struct, se.group_node);
7337 list_del_init(&p->se.group_node);
7339 attach_task(env->dst_rq, p);
7342 rq_unlock(env->dst_rq, &rf);
7345 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7347 if (cfs_rq->avg.load_avg)
7348 return true;
7350 if (cfs_rq->avg.util_avg)
7351 return true;
7353 return false;
7356 static inline bool others_have_blocked(struct rq *rq)
7358 if (READ_ONCE(rq->avg_rt.util_avg))
7359 return true;
7361 if (READ_ONCE(rq->avg_dl.util_avg))
7362 return true;
7364 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7365 if (READ_ONCE(rq->avg_irq.util_avg))
7366 return true;
7367 #endif
7369 return false;
7372 #ifdef CONFIG_FAIR_GROUP_SCHED
7374 static void update_blocked_averages(int cpu)
7376 struct rq *rq = cpu_rq(cpu);
7377 struct cfs_rq *cfs_rq;
7378 const struct sched_class *curr_class;
7379 struct rq_flags rf;
7380 bool done = true;
7382 rq_lock_irqsave(rq, &rf);
7383 update_rq_clock(rq);
7386 * Iterates the task_group tree in a bottom up fashion, see
7387 * list_add_leaf_cfs_rq() for details.
7389 for_each_leaf_cfs_rq(rq, cfs_rq) {
7390 struct sched_entity *se;
7392 /* throttled entities do not contribute to load */
7393 if (throttled_hierarchy(cfs_rq))
7394 continue;
7396 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7397 update_tg_load_avg(cfs_rq, 0);
7399 /* Propagate pending load changes to the parent, if any: */
7400 se = cfs_rq->tg->se[cpu];
7401 if (se && !skip_blocked_update(se))
7402 update_load_avg(cfs_rq_of(se), se, 0);
7404 /* Don't need periodic decay once load/util_avg are null */
7405 if (cfs_rq_has_blocked(cfs_rq))
7406 done = false;
7409 curr_class = rq->curr->sched_class;
7410 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7411 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7412 update_irq_load_avg(rq, 0);
7413 /* Don't need periodic decay once load/util_avg are null */
7414 if (others_have_blocked(rq))
7415 done = false;
7417 #ifdef CONFIG_NO_HZ_COMMON
7418 rq->last_blocked_load_update_tick = jiffies;
7419 if (done)
7420 rq->has_blocked_load = 0;
7421 #endif
7422 rq_unlock_irqrestore(rq, &rf);
7426 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7427 * This needs to be done in a top-down fashion because the load of a child
7428 * group is a fraction of its parents load.
7430 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7432 struct rq *rq = rq_of(cfs_rq);
7433 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7434 unsigned long now = jiffies;
7435 unsigned long load;
7437 if (cfs_rq->last_h_load_update == now)
7438 return;
7440 cfs_rq->h_load_next = NULL;
7441 for_each_sched_entity(se) {
7442 cfs_rq = cfs_rq_of(se);
7443 cfs_rq->h_load_next = se;
7444 if (cfs_rq->last_h_load_update == now)
7445 break;
7448 if (!se) {
7449 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7450 cfs_rq->last_h_load_update = now;
7453 while ((se = cfs_rq->h_load_next) != NULL) {
7454 load = cfs_rq->h_load;
7455 load = div64_ul(load * se->avg.load_avg,
7456 cfs_rq_load_avg(cfs_rq) + 1);
7457 cfs_rq = group_cfs_rq(se);
7458 cfs_rq->h_load = load;
7459 cfs_rq->last_h_load_update = now;
7463 static unsigned long task_h_load(struct task_struct *p)
7465 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7467 update_cfs_rq_h_load(cfs_rq);
7468 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7469 cfs_rq_load_avg(cfs_rq) + 1);
7471 #else
7472 static inline void update_blocked_averages(int cpu)
7474 struct rq *rq = cpu_rq(cpu);
7475 struct cfs_rq *cfs_rq = &rq->cfs;
7476 const struct sched_class *curr_class;
7477 struct rq_flags rf;
7479 rq_lock_irqsave(rq, &rf);
7480 update_rq_clock(rq);
7481 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7483 curr_class = rq->curr->sched_class;
7484 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7485 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7486 update_irq_load_avg(rq, 0);
7487 #ifdef CONFIG_NO_HZ_COMMON
7488 rq->last_blocked_load_update_tick = jiffies;
7489 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7490 rq->has_blocked_load = 0;
7491 #endif
7492 rq_unlock_irqrestore(rq, &rf);
7495 static unsigned long task_h_load(struct task_struct *p)
7497 return p->se.avg.load_avg;
7499 #endif
7501 /********** Helpers for find_busiest_group ************************/
7503 enum group_type {
7504 group_other = 0,
7505 group_imbalanced,
7506 group_overloaded,
7510 * sg_lb_stats - stats of a sched_group required for load_balancing
7512 struct sg_lb_stats {
7513 unsigned long avg_load; /*Avg load across the CPUs of the group */
7514 unsigned long group_load; /* Total load over the CPUs of the group */
7515 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7516 unsigned long load_per_task;
7517 unsigned long group_capacity;
7518 unsigned long group_util; /* Total utilization of the group */
7519 unsigned int sum_nr_running; /* Nr tasks running in the group */
7520 unsigned int idle_cpus;
7521 unsigned int group_weight;
7522 enum group_type group_type;
7523 int group_no_capacity;
7524 #ifdef CONFIG_NUMA_BALANCING
7525 unsigned int nr_numa_running;
7526 unsigned int nr_preferred_running;
7527 #endif
7531 * sd_lb_stats - Structure to store the statistics of a sched_domain
7532 * during load balancing.
7534 struct sd_lb_stats {
7535 struct sched_group *busiest; /* Busiest group in this sd */
7536 struct sched_group *local; /* Local group in this sd */
7537 unsigned long total_running;
7538 unsigned long total_load; /* Total load of all groups in sd */
7539 unsigned long total_capacity; /* Total capacity of all groups in sd */
7540 unsigned long avg_load; /* Average load across all groups in sd */
7542 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7543 struct sg_lb_stats local_stat; /* Statistics of the local group */
7546 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7549 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7550 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7551 * We must however clear busiest_stat::avg_load because
7552 * update_sd_pick_busiest() reads this before assignment.
7554 *sds = (struct sd_lb_stats){
7555 .busiest = NULL,
7556 .local = NULL,
7557 .total_running = 0UL,
7558 .total_load = 0UL,
7559 .total_capacity = 0UL,
7560 .busiest_stat = {
7561 .avg_load = 0UL,
7562 .sum_nr_running = 0,
7563 .group_type = group_other,
7569 * get_sd_load_idx - Obtain the load index for a given sched domain.
7570 * @sd: The sched_domain whose load_idx is to be obtained.
7571 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7573 * Return: The load index.
7575 static inline int get_sd_load_idx(struct sched_domain *sd,
7576 enum cpu_idle_type idle)
7578 int load_idx;
7580 switch (idle) {
7581 case CPU_NOT_IDLE:
7582 load_idx = sd->busy_idx;
7583 break;
7585 case CPU_NEWLY_IDLE:
7586 load_idx = sd->newidle_idx;
7587 break;
7588 default:
7589 load_idx = sd->idle_idx;
7590 break;
7593 return load_idx;
7596 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7598 struct rq *rq = cpu_rq(cpu);
7599 unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7600 unsigned long used, free;
7601 unsigned long irq;
7603 irq = cpu_util_irq(rq);
7605 if (unlikely(irq >= max))
7606 return 1;
7608 used = READ_ONCE(rq->avg_rt.util_avg);
7609 used += READ_ONCE(rq->avg_dl.util_avg);
7611 if (unlikely(used >= max))
7612 return 1;
7614 free = max - used;
7616 return scale_irq_capacity(free, irq, max);
7619 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7621 unsigned long capacity = scale_rt_capacity(sd, cpu);
7622 struct sched_group *sdg = sd->groups;
7624 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7626 if (!capacity)
7627 capacity = 1;
7629 cpu_rq(cpu)->cpu_capacity = capacity;
7630 sdg->sgc->capacity = capacity;
7631 sdg->sgc->min_capacity = capacity;
7634 void update_group_capacity(struct sched_domain *sd, int cpu)
7636 struct sched_domain *child = sd->child;
7637 struct sched_group *group, *sdg = sd->groups;
7638 unsigned long capacity, min_capacity;
7639 unsigned long interval;
7641 interval = msecs_to_jiffies(sd->balance_interval);
7642 interval = clamp(interval, 1UL, max_load_balance_interval);
7643 sdg->sgc->next_update = jiffies + interval;
7645 if (!child) {
7646 update_cpu_capacity(sd, cpu);
7647 return;
7650 capacity = 0;
7651 min_capacity = ULONG_MAX;
7653 if (child->flags & SD_OVERLAP) {
7655 * SD_OVERLAP domains cannot assume that child groups
7656 * span the current group.
7659 for_each_cpu(cpu, sched_group_span(sdg)) {
7660 struct sched_group_capacity *sgc;
7661 struct rq *rq = cpu_rq(cpu);
7664 * build_sched_domains() -> init_sched_groups_capacity()
7665 * gets here before we've attached the domains to the
7666 * runqueues.
7668 * Use capacity_of(), which is set irrespective of domains
7669 * in update_cpu_capacity().
7671 * This avoids capacity from being 0 and
7672 * causing divide-by-zero issues on boot.
7674 if (unlikely(!rq->sd)) {
7675 capacity += capacity_of(cpu);
7676 } else {
7677 sgc = rq->sd->groups->sgc;
7678 capacity += sgc->capacity;
7681 min_capacity = min(capacity, min_capacity);
7683 } else {
7685 * !SD_OVERLAP domains can assume that child groups
7686 * span the current group.
7689 group = child->groups;
7690 do {
7691 struct sched_group_capacity *sgc = group->sgc;
7693 capacity += sgc->capacity;
7694 min_capacity = min(sgc->min_capacity, min_capacity);
7695 group = group->next;
7696 } while (group != child->groups);
7699 sdg->sgc->capacity = capacity;
7700 sdg->sgc->min_capacity = min_capacity;
7704 * Check whether the capacity of the rq has been noticeably reduced by side
7705 * activity. The imbalance_pct is used for the threshold.
7706 * Return true is the capacity is reduced
7708 static inline int
7709 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7711 return ((rq->cpu_capacity * sd->imbalance_pct) <
7712 (rq->cpu_capacity_orig * 100));
7716 * Group imbalance indicates (and tries to solve) the problem where balancing
7717 * groups is inadequate due to ->cpus_allowed constraints.
7719 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7720 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7721 * Something like:
7723 * { 0 1 2 3 } { 4 5 6 7 }
7724 * * * * *
7726 * If we were to balance group-wise we'd place two tasks in the first group and
7727 * two tasks in the second group. Clearly this is undesired as it will overload
7728 * cpu 3 and leave one of the CPUs in the second group unused.
7730 * The current solution to this issue is detecting the skew in the first group
7731 * by noticing the lower domain failed to reach balance and had difficulty
7732 * moving tasks due to affinity constraints.
7734 * When this is so detected; this group becomes a candidate for busiest; see
7735 * update_sd_pick_busiest(). And calculate_imbalance() and
7736 * find_busiest_group() avoid some of the usual balance conditions to allow it
7737 * to create an effective group imbalance.
7739 * This is a somewhat tricky proposition since the next run might not find the
7740 * group imbalance and decide the groups need to be balanced again. A most
7741 * subtle and fragile situation.
7744 static inline int sg_imbalanced(struct sched_group *group)
7746 return group->sgc->imbalance;
7750 * group_has_capacity returns true if the group has spare capacity that could
7751 * be used by some tasks.
7752 * We consider that a group has spare capacity if the * number of task is
7753 * smaller than the number of CPUs or if the utilization is lower than the
7754 * available capacity for CFS tasks.
7755 * For the latter, we use a threshold to stabilize the state, to take into
7756 * account the variance of the tasks' load and to return true if the available
7757 * capacity in meaningful for the load balancer.
7758 * As an example, an available capacity of 1% can appear but it doesn't make
7759 * any benefit for the load balance.
7761 static inline bool
7762 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7764 if (sgs->sum_nr_running < sgs->group_weight)
7765 return true;
7767 if ((sgs->group_capacity * 100) >
7768 (sgs->group_util * env->sd->imbalance_pct))
7769 return true;
7771 return false;
7775 * group_is_overloaded returns true if the group has more tasks than it can
7776 * handle.
7777 * group_is_overloaded is not equals to !group_has_capacity because a group
7778 * with the exact right number of tasks, has no more spare capacity but is not
7779 * overloaded so both group_has_capacity and group_is_overloaded return
7780 * false.
7782 static inline bool
7783 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7785 if (sgs->sum_nr_running <= sgs->group_weight)
7786 return false;
7788 if ((sgs->group_capacity * 100) <
7789 (sgs->group_util * env->sd->imbalance_pct))
7790 return true;
7792 return false;
7796 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7797 * per-CPU capacity than sched_group ref.
7799 static inline bool
7800 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7802 return sg->sgc->min_capacity * capacity_margin <
7803 ref->sgc->min_capacity * 1024;
7806 static inline enum
7807 group_type group_classify(struct sched_group *group,
7808 struct sg_lb_stats *sgs)
7810 if (sgs->group_no_capacity)
7811 return group_overloaded;
7813 if (sg_imbalanced(group))
7814 return group_imbalanced;
7816 return group_other;
7819 static bool update_nohz_stats(struct rq *rq, bool force)
7821 #ifdef CONFIG_NO_HZ_COMMON
7822 unsigned int cpu = rq->cpu;
7824 if (!rq->has_blocked_load)
7825 return false;
7827 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7828 return false;
7830 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7831 return true;
7833 update_blocked_averages(cpu);
7835 return rq->has_blocked_load;
7836 #else
7837 return false;
7838 #endif
7842 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7843 * @env: The load balancing environment.
7844 * @group: sched_group whose statistics are to be updated.
7845 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7846 * @local_group: Does group contain this_cpu.
7847 * @sgs: variable to hold the statistics for this group.
7848 * @overload: Indicate more than one runnable task for any CPU.
7850 static inline void update_sg_lb_stats(struct lb_env *env,
7851 struct sched_group *group, int load_idx,
7852 int local_group, struct sg_lb_stats *sgs,
7853 bool *overload)
7855 unsigned long load;
7856 int i, nr_running;
7858 memset(sgs, 0, sizeof(*sgs));
7860 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7861 struct rq *rq = cpu_rq(i);
7863 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7864 env->flags |= LBF_NOHZ_AGAIN;
7866 /* Bias balancing toward CPUs of our domain: */
7867 if (local_group)
7868 load = target_load(i, load_idx);
7869 else
7870 load = source_load(i, load_idx);
7872 sgs->group_load += load;
7873 sgs->group_util += cpu_util(i);
7874 sgs->sum_nr_running += rq->cfs.h_nr_running;
7876 nr_running = rq->nr_running;
7877 if (nr_running > 1)
7878 *overload = true;
7880 #ifdef CONFIG_NUMA_BALANCING
7881 sgs->nr_numa_running += rq->nr_numa_running;
7882 sgs->nr_preferred_running += rq->nr_preferred_running;
7883 #endif
7884 sgs->sum_weighted_load += weighted_cpuload(rq);
7886 * No need to call idle_cpu() if nr_running is not 0
7888 if (!nr_running && idle_cpu(i))
7889 sgs->idle_cpus++;
7892 /* Adjust by relative CPU capacity of the group */
7893 sgs->group_capacity = group->sgc->capacity;
7894 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7896 if (sgs->sum_nr_running)
7897 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7899 sgs->group_weight = group->group_weight;
7901 sgs->group_no_capacity = group_is_overloaded(env, sgs);
7902 sgs->group_type = group_classify(group, sgs);
7906 * update_sd_pick_busiest - return 1 on busiest group
7907 * @env: The load balancing environment.
7908 * @sds: sched_domain statistics
7909 * @sg: sched_group candidate to be checked for being the busiest
7910 * @sgs: sched_group statistics
7912 * Determine if @sg is a busier group than the previously selected
7913 * busiest group.
7915 * Return: %true if @sg is a busier group than the previously selected
7916 * busiest group. %false otherwise.
7918 static bool update_sd_pick_busiest(struct lb_env *env,
7919 struct sd_lb_stats *sds,
7920 struct sched_group *sg,
7921 struct sg_lb_stats *sgs)
7923 struct sg_lb_stats *busiest = &sds->busiest_stat;
7925 if (sgs->group_type > busiest->group_type)
7926 return true;
7928 if (sgs->group_type < busiest->group_type)
7929 return false;
7931 if (sgs->avg_load <= busiest->avg_load)
7932 return false;
7934 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7935 goto asym_packing;
7938 * Candidate sg has no more than one task per CPU and
7939 * has higher per-CPU capacity. Migrating tasks to less
7940 * capable CPUs may harm throughput. Maximize throughput,
7941 * power/energy consequences are not considered.
7943 if (sgs->sum_nr_running <= sgs->group_weight &&
7944 group_smaller_cpu_capacity(sds->local, sg))
7945 return false;
7947 asym_packing:
7948 /* This is the busiest node in its class. */
7949 if (!(env->sd->flags & SD_ASYM_PACKING))
7950 return true;
7952 /* No ASYM_PACKING if target CPU is already busy */
7953 if (env->idle == CPU_NOT_IDLE)
7954 return true;
7956 * ASYM_PACKING needs to move all the work to the highest
7957 * prority CPUs in the group, therefore mark all groups
7958 * of lower priority than ourself as busy.
7960 if (sgs->sum_nr_running &&
7961 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7962 if (!sds->busiest)
7963 return true;
7965 /* Prefer to move from lowest priority CPU's work */
7966 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7967 sg->asym_prefer_cpu))
7968 return true;
7971 return false;
7974 #ifdef CONFIG_NUMA_BALANCING
7975 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7977 if (sgs->sum_nr_running > sgs->nr_numa_running)
7978 return regular;
7979 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7980 return remote;
7981 return all;
7984 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7986 if (rq->nr_running > rq->nr_numa_running)
7987 return regular;
7988 if (rq->nr_running > rq->nr_preferred_running)
7989 return remote;
7990 return all;
7992 #else
7993 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7995 return all;
7998 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8000 return regular;
8002 #endif /* CONFIG_NUMA_BALANCING */
8005 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8006 * @env: The load balancing environment.
8007 * @sds: variable to hold the statistics for this sched_domain.
8009 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8011 struct sched_domain *child = env->sd->child;
8012 struct sched_group *sg = env->sd->groups;
8013 struct sg_lb_stats *local = &sds->local_stat;
8014 struct sg_lb_stats tmp_sgs;
8015 int load_idx, prefer_sibling = 0;
8016 bool overload = false;
8018 if (child && child->flags & SD_PREFER_SIBLING)
8019 prefer_sibling = 1;
8021 #ifdef CONFIG_NO_HZ_COMMON
8022 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8023 env->flags |= LBF_NOHZ_STATS;
8024 #endif
8026 load_idx = get_sd_load_idx(env->sd, env->idle);
8028 do {
8029 struct sg_lb_stats *sgs = &tmp_sgs;
8030 int local_group;
8032 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8033 if (local_group) {
8034 sds->local = sg;
8035 sgs = local;
8037 if (env->idle != CPU_NEWLY_IDLE ||
8038 time_after_eq(jiffies, sg->sgc->next_update))
8039 update_group_capacity(env->sd, env->dst_cpu);
8042 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
8043 &overload);
8045 if (local_group)
8046 goto next_group;
8049 * In case the child domain prefers tasks go to siblings
8050 * first, lower the sg capacity so that we'll try
8051 * and move all the excess tasks away. We lower the capacity
8052 * of a group only if the local group has the capacity to fit
8053 * these excess tasks. The extra check prevents the case where
8054 * you always pull from the heaviest group when it is already
8055 * under-utilized (possible with a large weight task outweighs
8056 * the tasks on the system).
8058 if (prefer_sibling && sds->local &&
8059 group_has_capacity(env, local) &&
8060 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8061 sgs->group_no_capacity = 1;
8062 sgs->group_type = group_classify(sg, sgs);
8065 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8066 sds->busiest = sg;
8067 sds->busiest_stat = *sgs;
8070 next_group:
8071 /* Now, start updating sd_lb_stats */
8072 sds->total_running += sgs->sum_nr_running;
8073 sds->total_load += sgs->group_load;
8074 sds->total_capacity += sgs->group_capacity;
8076 sg = sg->next;
8077 } while (sg != env->sd->groups);
8079 #ifdef CONFIG_NO_HZ_COMMON
8080 if ((env->flags & LBF_NOHZ_AGAIN) &&
8081 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8083 WRITE_ONCE(nohz.next_blocked,
8084 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8086 #endif
8088 if (env->sd->flags & SD_NUMA)
8089 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8091 if (!env->sd->parent) {
8092 /* update overload indicator if we are at root domain */
8093 if (env->dst_rq->rd->overload != overload)
8094 env->dst_rq->rd->overload = overload;
8099 * check_asym_packing - Check to see if the group is packed into the
8100 * sched domain.
8102 * This is primarily intended to used at the sibling level. Some
8103 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8104 * case of POWER7, it can move to lower SMT modes only when higher
8105 * threads are idle. When in lower SMT modes, the threads will
8106 * perform better since they share less core resources. Hence when we
8107 * have idle threads, we want them to be the higher ones.
8109 * This packing function is run on idle threads. It checks to see if
8110 * the busiest CPU in this domain (core in the P7 case) has a higher
8111 * CPU number than the packing function is being run on. Here we are
8112 * assuming lower CPU number will be equivalent to lower a SMT thread
8113 * number.
8115 * Return: 1 when packing is required and a task should be moved to
8116 * this CPU. The amount of the imbalance is returned in env->imbalance.
8118 * @env: The load balancing environment.
8119 * @sds: Statistics of the sched_domain which is to be packed
8121 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8123 int busiest_cpu;
8125 if (!(env->sd->flags & SD_ASYM_PACKING))
8126 return 0;
8128 if (env->idle == CPU_NOT_IDLE)
8129 return 0;
8131 if (!sds->busiest)
8132 return 0;
8134 busiest_cpu = sds->busiest->asym_prefer_cpu;
8135 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8136 return 0;
8138 env->imbalance = DIV_ROUND_CLOSEST(
8139 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8140 SCHED_CAPACITY_SCALE);
8142 return 1;
8146 * fix_small_imbalance - Calculate the minor imbalance that exists
8147 * amongst the groups of a sched_domain, during
8148 * load balancing.
8149 * @env: The load balancing environment.
8150 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8152 static inline
8153 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8155 unsigned long tmp, capa_now = 0, capa_move = 0;
8156 unsigned int imbn = 2;
8157 unsigned long scaled_busy_load_per_task;
8158 struct sg_lb_stats *local, *busiest;
8160 local = &sds->local_stat;
8161 busiest = &sds->busiest_stat;
8163 if (!local->sum_nr_running)
8164 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8165 else if (busiest->load_per_task > local->load_per_task)
8166 imbn = 1;
8168 scaled_busy_load_per_task =
8169 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8170 busiest->group_capacity;
8172 if (busiest->avg_load + scaled_busy_load_per_task >=
8173 local->avg_load + (scaled_busy_load_per_task * imbn)) {
8174 env->imbalance = busiest->load_per_task;
8175 return;
8179 * OK, we don't have enough imbalance to justify moving tasks,
8180 * however we may be able to increase total CPU capacity used by
8181 * moving them.
8184 capa_now += busiest->group_capacity *
8185 min(busiest->load_per_task, busiest->avg_load);
8186 capa_now += local->group_capacity *
8187 min(local->load_per_task, local->avg_load);
8188 capa_now /= SCHED_CAPACITY_SCALE;
8190 /* Amount of load we'd subtract */
8191 if (busiest->avg_load > scaled_busy_load_per_task) {
8192 capa_move += busiest->group_capacity *
8193 min(busiest->load_per_task,
8194 busiest->avg_load - scaled_busy_load_per_task);
8197 /* Amount of load we'd add */
8198 if (busiest->avg_load * busiest->group_capacity <
8199 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8200 tmp = (busiest->avg_load * busiest->group_capacity) /
8201 local->group_capacity;
8202 } else {
8203 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8204 local->group_capacity;
8206 capa_move += local->group_capacity *
8207 min(local->load_per_task, local->avg_load + tmp);
8208 capa_move /= SCHED_CAPACITY_SCALE;
8210 /* Move if we gain throughput */
8211 if (capa_move > capa_now)
8212 env->imbalance = busiest->load_per_task;
8216 * calculate_imbalance - Calculate the amount of imbalance present within the
8217 * groups of a given sched_domain during load balance.
8218 * @env: load balance environment
8219 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8221 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8223 unsigned long max_pull, load_above_capacity = ~0UL;
8224 struct sg_lb_stats *local, *busiest;
8226 local = &sds->local_stat;
8227 busiest = &sds->busiest_stat;
8229 if (busiest->group_type == group_imbalanced) {
8231 * In the group_imb case we cannot rely on group-wide averages
8232 * to ensure CPU-load equilibrium, look at wider averages. XXX
8234 busiest->load_per_task =
8235 min(busiest->load_per_task, sds->avg_load);
8239 * Avg load of busiest sg can be less and avg load of local sg can
8240 * be greater than avg load across all sgs of sd because avg load
8241 * factors in sg capacity and sgs with smaller group_type are
8242 * skipped when updating the busiest sg:
8244 if (busiest->avg_load <= sds->avg_load ||
8245 local->avg_load >= sds->avg_load) {
8246 env->imbalance = 0;
8247 return fix_small_imbalance(env, sds);
8251 * If there aren't any idle CPUs, avoid creating some.
8253 if (busiest->group_type == group_overloaded &&
8254 local->group_type == group_overloaded) {
8255 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8256 if (load_above_capacity > busiest->group_capacity) {
8257 load_above_capacity -= busiest->group_capacity;
8258 load_above_capacity *= scale_load_down(NICE_0_LOAD);
8259 load_above_capacity /= busiest->group_capacity;
8260 } else
8261 load_above_capacity = ~0UL;
8265 * We're trying to get all the CPUs to the average_load, so we don't
8266 * want to push ourselves above the average load, nor do we wish to
8267 * reduce the max loaded CPU below the average load. At the same time,
8268 * we also don't want to reduce the group load below the group
8269 * capacity. Thus we look for the minimum possible imbalance.
8271 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8273 /* How much load to actually move to equalise the imbalance */
8274 env->imbalance = min(
8275 max_pull * busiest->group_capacity,
8276 (sds->avg_load - local->avg_load) * local->group_capacity
8277 ) / SCHED_CAPACITY_SCALE;
8280 * if *imbalance is less than the average load per runnable task
8281 * there is no guarantee that any tasks will be moved so we'll have
8282 * a think about bumping its value to force at least one task to be
8283 * moved
8285 if (env->imbalance < busiest->load_per_task)
8286 return fix_small_imbalance(env, sds);
8289 /******* find_busiest_group() helpers end here *********************/
8292 * find_busiest_group - Returns the busiest group within the sched_domain
8293 * if there is an imbalance.
8295 * Also calculates the amount of weighted load which should be moved
8296 * to restore balance.
8298 * @env: The load balancing environment.
8300 * Return: - The busiest group if imbalance exists.
8302 static struct sched_group *find_busiest_group(struct lb_env *env)
8304 struct sg_lb_stats *local, *busiest;
8305 struct sd_lb_stats sds;
8307 init_sd_lb_stats(&sds);
8310 * Compute the various statistics relavent for load balancing at
8311 * this level.
8313 update_sd_lb_stats(env, &sds);
8314 local = &sds.local_stat;
8315 busiest = &sds.busiest_stat;
8317 /* ASYM feature bypasses nice load balance check */
8318 if (check_asym_packing(env, &sds))
8319 return sds.busiest;
8321 /* There is no busy sibling group to pull tasks from */
8322 if (!sds.busiest || busiest->sum_nr_running == 0)
8323 goto out_balanced;
8325 /* XXX broken for overlapping NUMA groups */
8326 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8327 / sds.total_capacity;
8330 * If the busiest group is imbalanced the below checks don't
8331 * work because they assume all things are equal, which typically
8332 * isn't true due to cpus_allowed constraints and the like.
8334 if (busiest->group_type == group_imbalanced)
8335 goto force_balance;
8338 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8339 * capacities from resulting in underutilization due to avg_load.
8341 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8342 busiest->group_no_capacity)
8343 goto force_balance;
8346 * If the local group is busier than the selected busiest group
8347 * don't try and pull any tasks.
8349 if (local->avg_load >= busiest->avg_load)
8350 goto out_balanced;
8353 * Don't pull any tasks if this group is already above the domain
8354 * average load.
8356 if (local->avg_load >= sds.avg_load)
8357 goto out_balanced;
8359 if (env->idle == CPU_IDLE) {
8361 * This CPU is idle. If the busiest group is not overloaded
8362 * and there is no imbalance between this and busiest group
8363 * wrt idle CPUs, it is balanced. The imbalance becomes
8364 * significant if the diff is greater than 1 otherwise we
8365 * might end up to just move the imbalance on another group
8367 if ((busiest->group_type != group_overloaded) &&
8368 (local->idle_cpus <= (busiest->idle_cpus + 1)))
8369 goto out_balanced;
8370 } else {
8372 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8373 * imbalance_pct to be conservative.
8375 if (100 * busiest->avg_load <=
8376 env->sd->imbalance_pct * local->avg_load)
8377 goto out_balanced;
8380 force_balance:
8381 /* Looks like there is an imbalance. Compute it */
8382 calculate_imbalance(env, &sds);
8383 return env->imbalance ? sds.busiest : NULL;
8385 out_balanced:
8386 env->imbalance = 0;
8387 return NULL;
8391 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8393 static struct rq *find_busiest_queue(struct lb_env *env,
8394 struct sched_group *group)
8396 struct rq *busiest = NULL, *rq;
8397 unsigned long busiest_load = 0, busiest_capacity = 1;
8398 int i;
8400 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8401 unsigned long capacity, wl;
8402 enum fbq_type rt;
8404 rq = cpu_rq(i);
8405 rt = fbq_classify_rq(rq);
8408 * We classify groups/runqueues into three groups:
8409 * - regular: there are !numa tasks
8410 * - remote: there are numa tasks that run on the 'wrong' node
8411 * - all: there is no distinction
8413 * In order to avoid migrating ideally placed numa tasks,
8414 * ignore those when there's better options.
8416 * If we ignore the actual busiest queue to migrate another
8417 * task, the next balance pass can still reduce the busiest
8418 * queue by moving tasks around inside the node.
8420 * If we cannot move enough load due to this classification
8421 * the next pass will adjust the group classification and
8422 * allow migration of more tasks.
8424 * Both cases only affect the total convergence complexity.
8426 if (rt > env->fbq_type)
8427 continue;
8429 capacity = capacity_of(i);
8431 wl = weighted_cpuload(rq);
8434 * When comparing with imbalance, use weighted_cpuload()
8435 * which is not scaled with the CPU capacity.
8438 if (rq->nr_running == 1 && wl > env->imbalance &&
8439 !check_cpu_capacity(rq, env->sd))
8440 continue;
8443 * For the load comparisons with the other CPU's, consider
8444 * the weighted_cpuload() scaled with the CPU capacity, so
8445 * that the load can be moved away from the CPU that is
8446 * potentially running at a lower capacity.
8448 * Thus we're looking for max(wl_i / capacity_i), crosswise
8449 * multiplication to rid ourselves of the division works out
8450 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8451 * our previous maximum.
8453 if (wl * busiest_capacity > busiest_load * capacity) {
8454 busiest_load = wl;
8455 busiest_capacity = capacity;
8456 busiest = rq;
8460 return busiest;
8464 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8465 * so long as it is large enough.
8467 #define MAX_PINNED_INTERVAL 512
8469 static int need_active_balance(struct lb_env *env)
8471 struct sched_domain *sd = env->sd;
8473 if (env->idle == CPU_NEWLY_IDLE) {
8476 * ASYM_PACKING needs to force migrate tasks from busy but
8477 * lower priority CPUs in order to pack all tasks in the
8478 * highest priority CPUs.
8480 if ((sd->flags & SD_ASYM_PACKING) &&
8481 sched_asym_prefer(env->dst_cpu, env->src_cpu))
8482 return 1;
8486 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8487 * It's worth migrating the task if the src_cpu's capacity is reduced
8488 * because of other sched_class or IRQs if more capacity stays
8489 * available on dst_cpu.
8491 if ((env->idle != CPU_NOT_IDLE) &&
8492 (env->src_rq->cfs.h_nr_running == 1)) {
8493 if ((check_cpu_capacity(env->src_rq, sd)) &&
8494 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8495 return 1;
8498 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8501 static int active_load_balance_cpu_stop(void *data);
8503 static int should_we_balance(struct lb_env *env)
8505 struct sched_group *sg = env->sd->groups;
8506 int cpu, balance_cpu = -1;
8509 * Ensure the balancing environment is consistent; can happen
8510 * when the softirq triggers 'during' hotplug.
8512 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8513 return 0;
8516 * In the newly idle case, we will allow all the CPUs
8517 * to do the newly idle load balance.
8519 if (env->idle == CPU_NEWLY_IDLE)
8520 return 1;
8522 /* Try to find first idle CPU */
8523 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8524 if (!idle_cpu(cpu))
8525 continue;
8527 balance_cpu = cpu;
8528 break;
8531 if (balance_cpu == -1)
8532 balance_cpu = group_balance_cpu(sg);
8535 * First idle CPU or the first CPU(busiest) in this sched group
8536 * is eligible for doing load balancing at this and above domains.
8538 return balance_cpu == env->dst_cpu;
8542 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8543 * tasks if there is an imbalance.
8545 static int load_balance(int this_cpu, struct rq *this_rq,
8546 struct sched_domain *sd, enum cpu_idle_type idle,
8547 int *continue_balancing)
8549 int ld_moved, cur_ld_moved, active_balance = 0;
8550 struct sched_domain *sd_parent = sd->parent;
8551 struct sched_group *group;
8552 struct rq *busiest;
8553 struct rq_flags rf;
8554 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8556 struct lb_env env = {
8557 .sd = sd,
8558 .dst_cpu = this_cpu,
8559 .dst_rq = this_rq,
8560 .dst_grpmask = sched_group_span(sd->groups),
8561 .idle = idle,
8562 .loop_break = sched_nr_migrate_break,
8563 .cpus = cpus,
8564 .fbq_type = all,
8565 .tasks = LIST_HEAD_INIT(env.tasks),
8568 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8570 schedstat_inc(sd->lb_count[idle]);
8572 redo:
8573 if (!should_we_balance(&env)) {
8574 *continue_balancing = 0;
8575 goto out_balanced;
8578 group = find_busiest_group(&env);
8579 if (!group) {
8580 schedstat_inc(sd->lb_nobusyg[idle]);
8581 goto out_balanced;
8584 busiest = find_busiest_queue(&env, group);
8585 if (!busiest) {
8586 schedstat_inc(sd->lb_nobusyq[idle]);
8587 goto out_balanced;
8590 BUG_ON(busiest == env.dst_rq);
8592 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8594 env.src_cpu = busiest->cpu;
8595 env.src_rq = busiest;
8597 ld_moved = 0;
8598 if (busiest->nr_running > 1) {
8600 * Attempt to move tasks. If find_busiest_group has found
8601 * an imbalance but busiest->nr_running <= 1, the group is
8602 * still unbalanced. ld_moved simply stays zero, so it is
8603 * correctly treated as an imbalance.
8605 env.flags |= LBF_ALL_PINNED;
8606 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8608 more_balance:
8609 rq_lock_irqsave(busiest, &rf);
8610 update_rq_clock(busiest);
8613 * cur_ld_moved - load moved in current iteration
8614 * ld_moved - cumulative load moved across iterations
8616 cur_ld_moved = detach_tasks(&env);
8619 * We've detached some tasks from busiest_rq. Every
8620 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8621 * unlock busiest->lock, and we are able to be sure
8622 * that nobody can manipulate the tasks in parallel.
8623 * See task_rq_lock() family for the details.
8626 rq_unlock(busiest, &rf);
8628 if (cur_ld_moved) {
8629 attach_tasks(&env);
8630 ld_moved += cur_ld_moved;
8633 local_irq_restore(rf.flags);
8635 if (env.flags & LBF_NEED_BREAK) {
8636 env.flags &= ~LBF_NEED_BREAK;
8637 goto more_balance;
8641 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8642 * us and move them to an alternate dst_cpu in our sched_group
8643 * where they can run. The upper limit on how many times we
8644 * iterate on same src_cpu is dependent on number of CPUs in our
8645 * sched_group.
8647 * This changes load balance semantics a bit on who can move
8648 * load to a given_cpu. In addition to the given_cpu itself
8649 * (or a ilb_cpu acting on its behalf where given_cpu is
8650 * nohz-idle), we now have balance_cpu in a position to move
8651 * load to given_cpu. In rare situations, this may cause
8652 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8653 * _independently_ and at _same_ time to move some load to
8654 * given_cpu) causing exceess load to be moved to given_cpu.
8655 * This however should not happen so much in practice and
8656 * moreover subsequent load balance cycles should correct the
8657 * excess load moved.
8659 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8661 /* Prevent to re-select dst_cpu via env's CPUs */
8662 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8664 env.dst_rq = cpu_rq(env.new_dst_cpu);
8665 env.dst_cpu = env.new_dst_cpu;
8666 env.flags &= ~LBF_DST_PINNED;
8667 env.loop = 0;
8668 env.loop_break = sched_nr_migrate_break;
8671 * Go back to "more_balance" rather than "redo" since we
8672 * need to continue with same src_cpu.
8674 goto more_balance;
8678 * We failed to reach balance because of affinity.
8680 if (sd_parent) {
8681 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8683 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8684 *group_imbalance = 1;
8687 /* All tasks on this runqueue were pinned by CPU affinity */
8688 if (unlikely(env.flags & LBF_ALL_PINNED)) {
8689 cpumask_clear_cpu(cpu_of(busiest), cpus);
8691 * Attempting to continue load balancing at the current
8692 * sched_domain level only makes sense if there are
8693 * active CPUs remaining as possible busiest CPUs to
8694 * pull load from which are not contained within the
8695 * destination group that is receiving any migrated
8696 * load.
8698 if (!cpumask_subset(cpus, env.dst_grpmask)) {
8699 env.loop = 0;
8700 env.loop_break = sched_nr_migrate_break;
8701 goto redo;
8703 goto out_all_pinned;
8707 if (!ld_moved) {
8708 schedstat_inc(sd->lb_failed[idle]);
8710 * Increment the failure counter only on periodic balance.
8711 * We do not want newidle balance, which can be very
8712 * frequent, pollute the failure counter causing
8713 * excessive cache_hot migrations and active balances.
8715 if (idle != CPU_NEWLY_IDLE)
8716 sd->nr_balance_failed++;
8718 if (need_active_balance(&env)) {
8719 unsigned long flags;
8721 raw_spin_lock_irqsave(&busiest->lock, flags);
8724 * Don't kick the active_load_balance_cpu_stop,
8725 * if the curr task on busiest CPU can't be
8726 * moved to this_cpu:
8728 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8729 raw_spin_unlock_irqrestore(&busiest->lock,
8730 flags);
8731 env.flags |= LBF_ALL_PINNED;
8732 goto out_one_pinned;
8736 * ->active_balance synchronizes accesses to
8737 * ->active_balance_work. Once set, it's cleared
8738 * only after active load balance is finished.
8740 if (!busiest->active_balance) {
8741 busiest->active_balance = 1;
8742 busiest->push_cpu = this_cpu;
8743 active_balance = 1;
8745 raw_spin_unlock_irqrestore(&busiest->lock, flags);
8747 if (active_balance) {
8748 stop_one_cpu_nowait(cpu_of(busiest),
8749 active_load_balance_cpu_stop, busiest,
8750 &busiest->active_balance_work);
8753 /* We've kicked active balancing, force task migration. */
8754 sd->nr_balance_failed = sd->cache_nice_tries+1;
8756 } else
8757 sd->nr_balance_failed = 0;
8759 if (likely(!active_balance)) {
8760 /* We were unbalanced, so reset the balancing interval */
8761 sd->balance_interval = sd->min_interval;
8762 } else {
8764 * If we've begun active balancing, start to back off. This
8765 * case may not be covered by the all_pinned logic if there
8766 * is only 1 task on the busy runqueue (because we don't call
8767 * detach_tasks).
8769 if (sd->balance_interval < sd->max_interval)
8770 sd->balance_interval *= 2;
8773 goto out;
8775 out_balanced:
8777 * We reach balance although we may have faced some affinity
8778 * constraints. Clear the imbalance flag if it was set.
8780 if (sd_parent) {
8781 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8783 if (*group_imbalance)
8784 *group_imbalance = 0;
8787 out_all_pinned:
8789 * We reach balance because all tasks are pinned at this level so
8790 * we can't migrate them. Let the imbalance flag set so parent level
8791 * can try to migrate them.
8793 schedstat_inc(sd->lb_balanced[idle]);
8795 sd->nr_balance_failed = 0;
8797 out_one_pinned:
8798 /* tune up the balancing interval */
8799 if (((env.flags & LBF_ALL_PINNED) &&
8800 sd->balance_interval < MAX_PINNED_INTERVAL) ||
8801 (sd->balance_interval < sd->max_interval))
8802 sd->balance_interval *= 2;
8804 ld_moved = 0;
8805 out:
8806 return ld_moved;
8809 static inline unsigned long
8810 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8812 unsigned long interval = sd->balance_interval;
8814 if (cpu_busy)
8815 interval *= sd->busy_factor;
8817 /* scale ms to jiffies */
8818 interval = msecs_to_jiffies(interval);
8819 interval = clamp(interval, 1UL, max_load_balance_interval);
8821 return interval;
8824 static inline void
8825 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8827 unsigned long interval, next;
8829 /* used by idle balance, so cpu_busy = 0 */
8830 interval = get_sd_balance_interval(sd, 0);
8831 next = sd->last_balance + interval;
8833 if (time_after(*next_balance, next))
8834 *next_balance = next;
8838 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8839 * running tasks off the busiest CPU onto idle CPUs. It requires at
8840 * least 1 task to be running on each physical CPU where possible, and
8841 * avoids physical / logical imbalances.
8843 static int active_load_balance_cpu_stop(void *data)
8845 struct rq *busiest_rq = data;
8846 int busiest_cpu = cpu_of(busiest_rq);
8847 int target_cpu = busiest_rq->push_cpu;
8848 struct rq *target_rq = cpu_rq(target_cpu);
8849 struct sched_domain *sd;
8850 struct task_struct *p = NULL;
8851 struct rq_flags rf;
8853 rq_lock_irq(busiest_rq, &rf);
8855 * Between queueing the stop-work and running it is a hole in which
8856 * CPUs can become inactive. We should not move tasks from or to
8857 * inactive CPUs.
8859 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8860 goto out_unlock;
8862 /* Make sure the requested CPU hasn't gone down in the meantime: */
8863 if (unlikely(busiest_cpu != smp_processor_id() ||
8864 !busiest_rq->active_balance))
8865 goto out_unlock;
8867 /* Is there any task to move? */
8868 if (busiest_rq->nr_running <= 1)
8869 goto out_unlock;
8872 * This condition is "impossible", if it occurs
8873 * we need to fix it. Originally reported by
8874 * Bjorn Helgaas on a 128-CPU setup.
8876 BUG_ON(busiest_rq == target_rq);
8878 /* Search for an sd spanning us and the target CPU. */
8879 rcu_read_lock();
8880 for_each_domain(target_cpu, sd) {
8881 if ((sd->flags & SD_LOAD_BALANCE) &&
8882 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8883 break;
8886 if (likely(sd)) {
8887 struct lb_env env = {
8888 .sd = sd,
8889 .dst_cpu = target_cpu,
8890 .dst_rq = target_rq,
8891 .src_cpu = busiest_rq->cpu,
8892 .src_rq = busiest_rq,
8893 .idle = CPU_IDLE,
8895 * can_migrate_task() doesn't need to compute new_dst_cpu
8896 * for active balancing. Since we have CPU_IDLE, but no
8897 * @dst_grpmask we need to make that test go away with lying
8898 * about DST_PINNED.
8900 .flags = LBF_DST_PINNED,
8903 schedstat_inc(sd->alb_count);
8904 update_rq_clock(busiest_rq);
8906 p = detach_one_task(&env);
8907 if (p) {
8908 schedstat_inc(sd->alb_pushed);
8909 /* Active balancing done, reset the failure counter. */
8910 sd->nr_balance_failed = 0;
8911 } else {
8912 schedstat_inc(sd->alb_failed);
8915 rcu_read_unlock();
8916 out_unlock:
8917 busiest_rq->active_balance = 0;
8918 rq_unlock(busiest_rq, &rf);
8920 if (p)
8921 attach_one_task(target_rq, p);
8923 local_irq_enable();
8925 return 0;
8928 static DEFINE_SPINLOCK(balancing);
8931 * Scale the max load_balance interval with the number of CPUs in the system.
8932 * This trades load-balance latency on larger machines for less cross talk.
8934 void update_max_interval(void)
8936 max_load_balance_interval = HZ*num_online_cpus()/10;
8940 * It checks each scheduling domain to see if it is due to be balanced,
8941 * and initiates a balancing operation if so.
8943 * Balancing parameters are set up in init_sched_domains.
8945 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8947 int continue_balancing = 1;
8948 int cpu = rq->cpu;
8949 unsigned long interval;
8950 struct sched_domain *sd;
8951 /* Earliest time when we have to do rebalance again */
8952 unsigned long next_balance = jiffies + 60*HZ;
8953 int update_next_balance = 0;
8954 int need_serialize, need_decay = 0;
8955 u64 max_cost = 0;
8957 rcu_read_lock();
8958 for_each_domain(cpu, sd) {
8960 * Decay the newidle max times here because this is a regular
8961 * visit to all the domains. Decay ~1% per second.
8963 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8964 sd->max_newidle_lb_cost =
8965 (sd->max_newidle_lb_cost * 253) / 256;
8966 sd->next_decay_max_lb_cost = jiffies + HZ;
8967 need_decay = 1;
8969 max_cost += sd->max_newidle_lb_cost;
8971 if (!(sd->flags & SD_LOAD_BALANCE))
8972 continue;
8975 * Stop the load balance at this level. There is another
8976 * CPU in our sched group which is doing load balancing more
8977 * actively.
8979 if (!continue_balancing) {
8980 if (need_decay)
8981 continue;
8982 break;
8985 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8987 need_serialize = sd->flags & SD_SERIALIZE;
8988 if (need_serialize) {
8989 if (!spin_trylock(&balancing))
8990 goto out;
8993 if (time_after_eq(jiffies, sd->last_balance + interval)) {
8994 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8996 * The LBF_DST_PINNED logic could have changed
8997 * env->dst_cpu, so we can't know our idle
8998 * state even if we migrated tasks. Update it.
9000 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9002 sd->last_balance = jiffies;
9003 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9005 if (need_serialize)
9006 spin_unlock(&balancing);
9007 out:
9008 if (time_after(next_balance, sd->last_balance + interval)) {
9009 next_balance = sd->last_balance + interval;
9010 update_next_balance = 1;
9013 if (need_decay) {
9015 * Ensure the rq-wide value also decays but keep it at a
9016 * reasonable floor to avoid funnies with rq->avg_idle.
9018 rq->max_idle_balance_cost =
9019 max((u64)sysctl_sched_migration_cost, max_cost);
9021 rcu_read_unlock();
9024 * next_balance will be updated only when there is a need.
9025 * When the cpu is attached to null domain for ex, it will not be
9026 * updated.
9028 if (likely(update_next_balance)) {
9029 rq->next_balance = next_balance;
9031 #ifdef CONFIG_NO_HZ_COMMON
9033 * If this CPU has been elected to perform the nohz idle
9034 * balance. Other idle CPUs have already rebalanced with
9035 * nohz_idle_balance() and nohz.next_balance has been
9036 * updated accordingly. This CPU is now running the idle load
9037 * balance for itself and we need to update the
9038 * nohz.next_balance accordingly.
9040 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9041 nohz.next_balance = rq->next_balance;
9042 #endif
9046 static inline int on_null_domain(struct rq *rq)
9048 return unlikely(!rcu_dereference_sched(rq->sd));
9051 #ifdef CONFIG_NO_HZ_COMMON
9053 * idle load balancing details
9054 * - When one of the busy CPUs notice that there may be an idle rebalancing
9055 * needed, they will kick the idle load balancer, which then does idle
9056 * load balancing for all the idle CPUs.
9059 static inline int find_new_ilb(void)
9061 int ilb = cpumask_first(nohz.idle_cpus_mask);
9063 if (ilb < nr_cpu_ids && idle_cpu(ilb))
9064 return ilb;
9066 return nr_cpu_ids;
9070 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9071 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9072 * CPU (if there is one).
9074 static void kick_ilb(unsigned int flags)
9076 int ilb_cpu;
9078 nohz.next_balance++;
9080 ilb_cpu = find_new_ilb();
9082 if (ilb_cpu >= nr_cpu_ids)
9083 return;
9085 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9086 if (flags & NOHZ_KICK_MASK)
9087 return;
9090 * Use smp_send_reschedule() instead of resched_cpu().
9091 * This way we generate a sched IPI on the target CPU which
9092 * is idle. And the softirq performing nohz idle load balance
9093 * will be run before returning from the IPI.
9095 smp_send_reschedule(ilb_cpu);
9099 * Current heuristic for kicking the idle load balancer in the presence
9100 * of an idle cpu in the system.
9101 * - This rq has more than one task.
9102 * - This rq has at least one CFS task and the capacity of the CPU is
9103 * significantly reduced because of RT tasks or IRQs.
9104 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9105 * multiple busy cpu.
9106 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9107 * domain span are idle.
9109 static void nohz_balancer_kick(struct rq *rq)
9111 unsigned long now = jiffies;
9112 struct sched_domain_shared *sds;
9113 struct sched_domain *sd;
9114 int nr_busy, i, cpu = rq->cpu;
9115 unsigned int flags = 0;
9117 if (unlikely(rq->idle_balance))
9118 return;
9121 * We may be recently in ticked or tickless idle mode. At the first
9122 * busy tick after returning from idle, we will update the busy stats.
9124 nohz_balance_exit_idle(rq);
9127 * None are in tickless mode and hence no need for NOHZ idle load
9128 * balancing.
9130 if (likely(!atomic_read(&nohz.nr_cpus)))
9131 return;
9133 if (READ_ONCE(nohz.has_blocked) &&
9134 time_after(now, READ_ONCE(nohz.next_blocked)))
9135 flags = NOHZ_STATS_KICK;
9137 if (time_before(now, nohz.next_balance))
9138 goto out;
9140 if (rq->nr_running >= 2) {
9141 flags = NOHZ_KICK_MASK;
9142 goto out;
9145 rcu_read_lock();
9146 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9147 if (sds) {
9149 * XXX: write a coherent comment on why we do this.
9150 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9152 nr_busy = atomic_read(&sds->nr_busy_cpus);
9153 if (nr_busy > 1) {
9154 flags = NOHZ_KICK_MASK;
9155 goto unlock;
9160 sd = rcu_dereference(rq->sd);
9161 if (sd) {
9162 if ((rq->cfs.h_nr_running >= 1) &&
9163 check_cpu_capacity(rq, sd)) {
9164 flags = NOHZ_KICK_MASK;
9165 goto unlock;
9169 sd = rcu_dereference(per_cpu(sd_asym, cpu));
9170 if (sd) {
9171 for_each_cpu(i, sched_domain_span(sd)) {
9172 if (i == cpu ||
9173 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9174 continue;
9176 if (sched_asym_prefer(i, cpu)) {
9177 flags = NOHZ_KICK_MASK;
9178 goto unlock;
9182 unlock:
9183 rcu_read_unlock();
9184 out:
9185 if (flags)
9186 kick_ilb(flags);
9189 static void set_cpu_sd_state_busy(int cpu)
9191 struct sched_domain *sd;
9193 rcu_read_lock();
9194 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9196 if (!sd || !sd->nohz_idle)
9197 goto unlock;
9198 sd->nohz_idle = 0;
9200 atomic_inc(&sd->shared->nr_busy_cpus);
9201 unlock:
9202 rcu_read_unlock();
9205 void nohz_balance_exit_idle(struct rq *rq)
9207 SCHED_WARN_ON(rq != this_rq());
9209 if (likely(!rq->nohz_tick_stopped))
9210 return;
9212 rq->nohz_tick_stopped = 0;
9213 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9214 atomic_dec(&nohz.nr_cpus);
9216 set_cpu_sd_state_busy(rq->cpu);
9219 static void set_cpu_sd_state_idle(int cpu)
9221 struct sched_domain *sd;
9223 rcu_read_lock();
9224 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9226 if (!sd || sd->nohz_idle)
9227 goto unlock;
9228 sd->nohz_idle = 1;
9230 atomic_dec(&sd->shared->nr_busy_cpus);
9231 unlock:
9232 rcu_read_unlock();
9236 * This routine will record that the CPU is going idle with tick stopped.
9237 * This info will be used in performing idle load balancing in the future.
9239 void nohz_balance_enter_idle(int cpu)
9241 struct rq *rq = cpu_rq(cpu);
9243 SCHED_WARN_ON(cpu != smp_processor_id());
9245 /* If this CPU is going down, then nothing needs to be done: */
9246 if (!cpu_active(cpu))
9247 return;
9249 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9250 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9251 return;
9254 * Can be set safely without rq->lock held
9255 * If a clear happens, it will have evaluated last additions because
9256 * rq->lock is held during the check and the clear
9258 rq->has_blocked_load = 1;
9261 * The tick is still stopped but load could have been added in the
9262 * meantime. We set the nohz.has_blocked flag to trig a check of the
9263 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9264 * of nohz.has_blocked can only happen after checking the new load
9266 if (rq->nohz_tick_stopped)
9267 goto out;
9269 /* If we're a completely isolated CPU, we don't play: */
9270 if (on_null_domain(rq))
9271 return;
9273 rq->nohz_tick_stopped = 1;
9275 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9276 atomic_inc(&nohz.nr_cpus);
9279 * Ensures that if nohz_idle_balance() fails to observe our
9280 * @idle_cpus_mask store, it must observe the @has_blocked
9281 * store.
9283 smp_mb__after_atomic();
9285 set_cpu_sd_state_idle(cpu);
9287 out:
9289 * Each time a cpu enter idle, we assume that it has blocked load and
9290 * enable the periodic update of the load of idle cpus
9292 WRITE_ONCE(nohz.has_blocked, 1);
9296 * Internal function that runs load balance for all idle cpus. The load balance
9297 * can be a simple update of blocked load or a complete load balance with
9298 * tasks movement depending of flags.
9299 * The function returns false if the loop has stopped before running
9300 * through all idle CPUs.
9302 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9303 enum cpu_idle_type idle)
9305 /* Earliest time when we have to do rebalance again */
9306 unsigned long now = jiffies;
9307 unsigned long next_balance = now + 60*HZ;
9308 bool has_blocked_load = false;
9309 int update_next_balance = 0;
9310 int this_cpu = this_rq->cpu;
9311 int balance_cpu;
9312 int ret = false;
9313 struct rq *rq;
9315 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9318 * We assume there will be no idle load after this update and clear
9319 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9320 * set the has_blocked flag and trig another update of idle load.
9321 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9322 * setting the flag, we are sure to not clear the state and not
9323 * check the load of an idle cpu.
9325 WRITE_ONCE(nohz.has_blocked, 0);
9328 * Ensures that if we miss the CPU, we must see the has_blocked
9329 * store from nohz_balance_enter_idle().
9331 smp_mb();
9333 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9334 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9335 continue;
9338 * If this CPU gets work to do, stop the load balancing
9339 * work being done for other CPUs. Next load
9340 * balancing owner will pick it up.
9342 if (need_resched()) {
9343 has_blocked_load = true;
9344 goto abort;
9347 rq = cpu_rq(balance_cpu);
9349 has_blocked_load |= update_nohz_stats(rq, true);
9352 * If time for next balance is due,
9353 * do the balance.
9355 if (time_after_eq(jiffies, rq->next_balance)) {
9356 struct rq_flags rf;
9358 rq_lock_irqsave(rq, &rf);
9359 update_rq_clock(rq);
9360 cpu_load_update_idle(rq);
9361 rq_unlock_irqrestore(rq, &rf);
9363 if (flags & NOHZ_BALANCE_KICK)
9364 rebalance_domains(rq, CPU_IDLE);
9367 if (time_after(next_balance, rq->next_balance)) {
9368 next_balance = rq->next_balance;
9369 update_next_balance = 1;
9373 /* Newly idle CPU doesn't need an update */
9374 if (idle != CPU_NEWLY_IDLE) {
9375 update_blocked_averages(this_cpu);
9376 has_blocked_load |= this_rq->has_blocked_load;
9379 if (flags & NOHZ_BALANCE_KICK)
9380 rebalance_domains(this_rq, CPU_IDLE);
9382 WRITE_ONCE(nohz.next_blocked,
9383 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9385 /* The full idle balance loop has been done */
9386 ret = true;
9388 abort:
9389 /* There is still blocked load, enable periodic update */
9390 if (has_blocked_load)
9391 WRITE_ONCE(nohz.has_blocked, 1);
9394 * next_balance will be updated only when there is a need.
9395 * When the CPU is attached to null domain for ex, it will not be
9396 * updated.
9398 if (likely(update_next_balance))
9399 nohz.next_balance = next_balance;
9401 return ret;
9405 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9406 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9408 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9410 int this_cpu = this_rq->cpu;
9411 unsigned int flags;
9413 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9414 return false;
9416 if (idle != CPU_IDLE) {
9417 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9418 return false;
9422 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9424 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9425 if (!(flags & NOHZ_KICK_MASK))
9426 return false;
9428 _nohz_idle_balance(this_rq, flags, idle);
9430 return true;
9433 static void nohz_newidle_balance(struct rq *this_rq)
9435 int this_cpu = this_rq->cpu;
9438 * This CPU doesn't want to be disturbed by scheduler
9439 * housekeeping
9441 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9442 return;
9444 /* Will wake up very soon. No time for doing anything else*/
9445 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9446 return;
9448 /* Don't need to update blocked load of idle CPUs*/
9449 if (!READ_ONCE(nohz.has_blocked) ||
9450 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9451 return;
9453 raw_spin_unlock(&this_rq->lock);
9455 * This CPU is going to be idle and blocked load of idle CPUs
9456 * need to be updated. Run the ilb locally as it is a good
9457 * candidate for ilb instead of waking up another idle CPU.
9458 * Kick an normal ilb if we failed to do the update.
9460 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9461 kick_ilb(NOHZ_STATS_KICK);
9462 raw_spin_lock(&this_rq->lock);
9465 #else /* !CONFIG_NO_HZ_COMMON */
9466 static inline void nohz_balancer_kick(struct rq *rq) { }
9468 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9470 return false;
9473 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9474 #endif /* CONFIG_NO_HZ_COMMON */
9477 * idle_balance is called by schedule() if this_cpu is about to become
9478 * idle. Attempts to pull tasks from other CPUs.
9480 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9482 unsigned long next_balance = jiffies + HZ;
9483 int this_cpu = this_rq->cpu;
9484 struct sched_domain *sd;
9485 int pulled_task = 0;
9486 u64 curr_cost = 0;
9489 * We must set idle_stamp _before_ calling idle_balance(), such that we
9490 * measure the duration of idle_balance() as idle time.
9492 this_rq->idle_stamp = rq_clock(this_rq);
9495 * Do not pull tasks towards !active CPUs...
9497 if (!cpu_active(this_cpu))
9498 return 0;
9501 * This is OK, because current is on_cpu, which avoids it being picked
9502 * for load-balance and preemption/IRQs are still disabled avoiding
9503 * further scheduler activity on it and we're being very careful to
9504 * re-start the picking loop.
9506 rq_unpin_lock(this_rq, rf);
9508 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9509 !this_rq->rd->overload) {
9511 rcu_read_lock();
9512 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9513 if (sd)
9514 update_next_balance(sd, &next_balance);
9515 rcu_read_unlock();
9517 nohz_newidle_balance(this_rq);
9519 goto out;
9522 raw_spin_unlock(&this_rq->lock);
9524 update_blocked_averages(this_cpu);
9525 rcu_read_lock();
9526 for_each_domain(this_cpu, sd) {
9527 int continue_balancing = 1;
9528 u64 t0, domain_cost;
9530 if (!(sd->flags & SD_LOAD_BALANCE))
9531 continue;
9533 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9534 update_next_balance(sd, &next_balance);
9535 break;
9538 if (sd->flags & SD_BALANCE_NEWIDLE) {
9539 t0 = sched_clock_cpu(this_cpu);
9541 pulled_task = load_balance(this_cpu, this_rq,
9542 sd, CPU_NEWLY_IDLE,
9543 &continue_balancing);
9545 domain_cost = sched_clock_cpu(this_cpu) - t0;
9546 if (domain_cost > sd->max_newidle_lb_cost)
9547 sd->max_newidle_lb_cost = domain_cost;
9549 curr_cost += domain_cost;
9552 update_next_balance(sd, &next_balance);
9555 * Stop searching for tasks to pull if there are
9556 * now runnable tasks on this rq.
9558 if (pulled_task || this_rq->nr_running > 0)
9559 break;
9561 rcu_read_unlock();
9563 raw_spin_lock(&this_rq->lock);
9565 if (curr_cost > this_rq->max_idle_balance_cost)
9566 this_rq->max_idle_balance_cost = curr_cost;
9568 out:
9570 * While browsing the domains, we released the rq lock, a task could
9571 * have been enqueued in the meantime. Since we're not going idle,
9572 * pretend we pulled a task.
9574 if (this_rq->cfs.h_nr_running && !pulled_task)
9575 pulled_task = 1;
9577 /* Move the next balance forward */
9578 if (time_after(this_rq->next_balance, next_balance))
9579 this_rq->next_balance = next_balance;
9581 /* Is there a task of a high priority class? */
9582 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9583 pulled_task = -1;
9585 if (pulled_task)
9586 this_rq->idle_stamp = 0;
9588 rq_repin_lock(this_rq, rf);
9590 return pulled_task;
9594 * run_rebalance_domains is triggered when needed from the scheduler tick.
9595 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9597 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9599 struct rq *this_rq = this_rq();
9600 enum cpu_idle_type idle = this_rq->idle_balance ?
9601 CPU_IDLE : CPU_NOT_IDLE;
9604 * If this CPU has a pending nohz_balance_kick, then do the
9605 * balancing on behalf of the other idle CPUs whose ticks are
9606 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9607 * give the idle CPUs a chance to load balance. Else we may
9608 * load balance only within the local sched_domain hierarchy
9609 * and abort nohz_idle_balance altogether if we pull some load.
9611 if (nohz_idle_balance(this_rq, idle))
9612 return;
9614 /* normal load balance */
9615 update_blocked_averages(this_rq->cpu);
9616 rebalance_domains(this_rq, idle);
9620 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9622 void trigger_load_balance(struct rq *rq)
9624 /* Don't need to rebalance while attached to NULL domain */
9625 if (unlikely(on_null_domain(rq)))
9626 return;
9628 if (time_after_eq(jiffies, rq->next_balance))
9629 raise_softirq(SCHED_SOFTIRQ);
9631 nohz_balancer_kick(rq);
9634 static void rq_online_fair(struct rq *rq)
9636 update_sysctl();
9638 update_runtime_enabled(rq);
9641 static void rq_offline_fair(struct rq *rq)
9643 update_sysctl();
9645 /* Ensure any throttled groups are reachable by pick_next_task */
9646 unthrottle_offline_cfs_rqs(rq);
9649 #endif /* CONFIG_SMP */
9652 * scheduler tick hitting a task of our scheduling class.
9654 * NOTE: This function can be called remotely by the tick offload that
9655 * goes along full dynticks. Therefore no local assumption can be made
9656 * and everything must be accessed through the @rq and @curr passed in
9657 * parameters.
9659 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9661 struct cfs_rq *cfs_rq;
9662 struct sched_entity *se = &curr->se;
9664 for_each_sched_entity(se) {
9665 cfs_rq = cfs_rq_of(se);
9666 entity_tick(cfs_rq, se, queued);
9669 if (static_branch_unlikely(&sched_numa_balancing))
9670 task_tick_numa(rq, curr);
9674 * called on fork with the child task as argument from the parent's context
9675 * - child not yet on the tasklist
9676 * - preemption disabled
9678 static void task_fork_fair(struct task_struct *p)
9680 struct cfs_rq *cfs_rq;
9681 struct sched_entity *se = &p->se, *curr;
9682 struct rq *rq = this_rq();
9683 struct rq_flags rf;
9685 rq_lock(rq, &rf);
9686 update_rq_clock(rq);
9688 cfs_rq = task_cfs_rq(current);
9689 curr = cfs_rq->curr;
9690 if (curr) {
9691 update_curr(cfs_rq);
9692 se->vruntime = curr->vruntime;
9694 place_entity(cfs_rq, se, 1);
9696 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9698 * Upon rescheduling, sched_class::put_prev_task() will place
9699 * 'current' within the tree based on its new key value.
9701 swap(curr->vruntime, se->vruntime);
9702 resched_curr(rq);
9705 se->vruntime -= cfs_rq->min_vruntime;
9706 rq_unlock(rq, &rf);
9710 * Priority of the task has changed. Check to see if we preempt
9711 * the current task.
9713 static void
9714 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9716 if (!task_on_rq_queued(p))
9717 return;
9720 * Reschedule if we are currently running on this runqueue and
9721 * our priority decreased, or if we are not currently running on
9722 * this runqueue and our priority is higher than the current's
9724 if (rq->curr == p) {
9725 if (p->prio > oldprio)
9726 resched_curr(rq);
9727 } else
9728 check_preempt_curr(rq, p, 0);
9731 static inline bool vruntime_normalized(struct task_struct *p)
9733 struct sched_entity *se = &p->se;
9736 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9737 * the dequeue_entity(.flags=0) will already have normalized the
9738 * vruntime.
9740 if (p->on_rq)
9741 return true;
9744 * When !on_rq, vruntime of the task has usually NOT been normalized.
9745 * But there are some cases where it has already been normalized:
9747 * - A forked child which is waiting for being woken up by
9748 * wake_up_new_task().
9749 * - A task which has been woken up by try_to_wake_up() and
9750 * waiting for actually being woken up by sched_ttwu_pending().
9752 if (!se->sum_exec_runtime ||
9753 (p->state == TASK_WAKING && p->sched_remote_wakeup))
9754 return true;
9756 return false;
9759 #ifdef CONFIG_FAIR_GROUP_SCHED
9761 * Propagate the changes of the sched_entity across the tg tree to make it
9762 * visible to the root
9764 static void propagate_entity_cfs_rq(struct sched_entity *se)
9766 struct cfs_rq *cfs_rq;
9768 /* Start to propagate at parent */
9769 se = se->parent;
9771 for_each_sched_entity(se) {
9772 cfs_rq = cfs_rq_of(se);
9774 if (cfs_rq_throttled(cfs_rq))
9775 break;
9777 update_load_avg(cfs_rq, se, UPDATE_TG);
9780 #else
9781 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9782 #endif
9784 static void detach_entity_cfs_rq(struct sched_entity *se)
9786 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9788 /* Catch up with the cfs_rq and remove our load when we leave */
9789 update_load_avg(cfs_rq, se, 0);
9790 detach_entity_load_avg(cfs_rq, se);
9791 update_tg_load_avg(cfs_rq, false);
9792 propagate_entity_cfs_rq(se);
9795 static void attach_entity_cfs_rq(struct sched_entity *se)
9797 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9799 #ifdef CONFIG_FAIR_GROUP_SCHED
9801 * Since the real-depth could have been changed (only FAIR
9802 * class maintain depth value), reset depth properly.
9804 se->depth = se->parent ? se->parent->depth + 1 : 0;
9805 #endif
9807 /* Synchronize entity with its cfs_rq */
9808 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9809 attach_entity_load_avg(cfs_rq, se, 0);
9810 update_tg_load_avg(cfs_rq, false);
9811 propagate_entity_cfs_rq(se);
9814 static void detach_task_cfs_rq(struct task_struct *p)
9816 struct sched_entity *se = &p->se;
9817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9819 if (!vruntime_normalized(p)) {
9821 * Fix up our vruntime so that the current sleep doesn't
9822 * cause 'unlimited' sleep bonus.
9824 place_entity(cfs_rq, se, 0);
9825 se->vruntime -= cfs_rq->min_vruntime;
9828 detach_entity_cfs_rq(se);
9831 static void attach_task_cfs_rq(struct task_struct *p)
9833 struct sched_entity *se = &p->se;
9834 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9836 attach_entity_cfs_rq(se);
9838 if (!vruntime_normalized(p))
9839 se->vruntime += cfs_rq->min_vruntime;
9842 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9844 detach_task_cfs_rq(p);
9847 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9849 attach_task_cfs_rq(p);
9851 if (task_on_rq_queued(p)) {
9853 * We were most likely switched from sched_rt, so
9854 * kick off the schedule if running, otherwise just see
9855 * if we can still preempt the current task.
9857 if (rq->curr == p)
9858 resched_curr(rq);
9859 else
9860 check_preempt_curr(rq, p, 0);
9864 /* Account for a task changing its policy or group.
9866 * This routine is mostly called to set cfs_rq->curr field when a task
9867 * migrates between groups/classes.
9869 static void set_curr_task_fair(struct rq *rq)
9871 struct sched_entity *se = &rq->curr->se;
9873 for_each_sched_entity(se) {
9874 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9876 set_next_entity(cfs_rq, se);
9877 /* ensure bandwidth has been allocated on our new cfs_rq */
9878 account_cfs_rq_runtime(cfs_rq, 0);
9882 void init_cfs_rq(struct cfs_rq *cfs_rq)
9884 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9885 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9886 #ifndef CONFIG_64BIT
9887 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9888 #endif
9889 #ifdef CONFIG_SMP
9890 raw_spin_lock_init(&cfs_rq->removed.lock);
9891 #endif
9894 #ifdef CONFIG_FAIR_GROUP_SCHED
9895 static void task_set_group_fair(struct task_struct *p)
9897 struct sched_entity *se = &p->se;
9899 set_task_rq(p, task_cpu(p));
9900 se->depth = se->parent ? se->parent->depth + 1 : 0;
9903 static void task_move_group_fair(struct task_struct *p)
9905 detach_task_cfs_rq(p);
9906 set_task_rq(p, task_cpu(p));
9908 #ifdef CONFIG_SMP
9909 /* Tell se's cfs_rq has been changed -- migrated */
9910 p->se.avg.last_update_time = 0;
9911 #endif
9912 attach_task_cfs_rq(p);
9915 static void task_change_group_fair(struct task_struct *p, int type)
9917 switch (type) {
9918 case TASK_SET_GROUP:
9919 task_set_group_fair(p);
9920 break;
9922 case TASK_MOVE_GROUP:
9923 task_move_group_fair(p);
9924 break;
9928 void free_fair_sched_group(struct task_group *tg)
9930 int i;
9932 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9934 for_each_possible_cpu(i) {
9935 if (tg->cfs_rq)
9936 kfree(tg->cfs_rq[i]);
9937 if (tg->se)
9938 kfree(tg->se[i]);
9941 kfree(tg->cfs_rq);
9942 kfree(tg->se);
9945 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9947 struct sched_entity *se;
9948 struct cfs_rq *cfs_rq;
9949 int i;
9951 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
9952 if (!tg->cfs_rq)
9953 goto err;
9954 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
9955 if (!tg->se)
9956 goto err;
9958 tg->shares = NICE_0_LOAD;
9960 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9962 for_each_possible_cpu(i) {
9963 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9964 GFP_KERNEL, cpu_to_node(i));
9965 if (!cfs_rq)
9966 goto err;
9968 se = kzalloc_node(sizeof(struct sched_entity),
9969 GFP_KERNEL, cpu_to_node(i));
9970 if (!se)
9971 goto err_free_rq;
9973 init_cfs_rq(cfs_rq);
9974 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9975 init_entity_runnable_average(se);
9978 return 1;
9980 err_free_rq:
9981 kfree(cfs_rq);
9982 err:
9983 return 0;
9986 void online_fair_sched_group(struct task_group *tg)
9988 struct sched_entity *se;
9989 struct rq *rq;
9990 int i;
9992 for_each_possible_cpu(i) {
9993 rq = cpu_rq(i);
9994 se = tg->se[i];
9996 raw_spin_lock_irq(&rq->lock);
9997 update_rq_clock(rq);
9998 attach_entity_cfs_rq(se);
9999 sync_throttle(tg, i);
10000 raw_spin_unlock_irq(&rq->lock);
10004 void unregister_fair_sched_group(struct task_group *tg)
10006 unsigned long flags;
10007 struct rq *rq;
10008 int cpu;
10010 for_each_possible_cpu(cpu) {
10011 if (tg->se[cpu])
10012 remove_entity_load_avg(tg->se[cpu]);
10015 * Only empty task groups can be destroyed; so we can speculatively
10016 * check on_list without danger of it being re-added.
10018 if (!tg->cfs_rq[cpu]->on_list)
10019 continue;
10021 rq = cpu_rq(cpu);
10023 raw_spin_lock_irqsave(&rq->lock, flags);
10024 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10025 raw_spin_unlock_irqrestore(&rq->lock, flags);
10029 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10030 struct sched_entity *se, int cpu,
10031 struct sched_entity *parent)
10033 struct rq *rq = cpu_rq(cpu);
10035 cfs_rq->tg = tg;
10036 cfs_rq->rq = rq;
10037 init_cfs_rq_runtime(cfs_rq);
10039 tg->cfs_rq[cpu] = cfs_rq;
10040 tg->se[cpu] = se;
10042 /* se could be NULL for root_task_group */
10043 if (!se)
10044 return;
10046 if (!parent) {
10047 se->cfs_rq = &rq->cfs;
10048 se->depth = 0;
10049 } else {
10050 se->cfs_rq = parent->my_q;
10051 se->depth = parent->depth + 1;
10054 se->my_q = cfs_rq;
10055 /* guarantee group entities always have weight */
10056 update_load_set(&se->load, NICE_0_LOAD);
10057 se->parent = parent;
10060 static DEFINE_MUTEX(shares_mutex);
10062 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10064 int i;
10067 * We can't change the weight of the root cgroup.
10069 if (!tg->se[0])
10070 return -EINVAL;
10072 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10074 mutex_lock(&shares_mutex);
10075 if (tg->shares == shares)
10076 goto done;
10078 tg->shares = shares;
10079 for_each_possible_cpu(i) {
10080 struct rq *rq = cpu_rq(i);
10081 struct sched_entity *se = tg->se[i];
10082 struct rq_flags rf;
10084 /* Propagate contribution to hierarchy */
10085 rq_lock_irqsave(rq, &rf);
10086 update_rq_clock(rq);
10087 for_each_sched_entity(se) {
10088 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10089 update_cfs_group(se);
10091 rq_unlock_irqrestore(rq, &rf);
10094 done:
10095 mutex_unlock(&shares_mutex);
10096 return 0;
10098 #else /* CONFIG_FAIR_GROUP_SCHED */
10100 void free_fair_sched_group(struct task_group *tg) { }
10102 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10104 return 1;
10107 void online_fair_sched_group(struct task_group *tg) { }
10109 void unregister_fair_sched_group(struct task_group *tg) { }
10111 #endif /* CONFIG_FAIR_GROUP_SCHED */
10114 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10116 struct sched_entity *se = &task->se;
10117 unsigned int rr_interval = 0;
10120 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10121 * idle runqueue:
10123 if (rq->cfs.load.weight)
10124 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10126 return rr_interval;
10130 * All the scheduling class methods:
10132 const struct sched_class fair_sched_class = {
10133 .next = &idle_sched_class,
10134 .enqueue_task = enqueue_task_fair,
10135 .dequeue_task = dequeue_task_fair,
10136 .yield_task = yield_task_fair,
10137 .yield_to_task = yield_to_task_fair,
10139 .check_preempt_curr = check_preempt_wakeup,
10141 .pick_next_task = pick_next_task_fair,
10142 .put_prev_task = put_prev_task_fair,
10144 #ifdef CONFIG_SMP
10145 .select_task_rq = select_task_rq_fair,
10146 .migrate_task_rq = migrate_task_rq_fair,
10148 .rq_online = rq_online_fair,
10149 .rq_offline = rq_offline_fair,
10151 .task_dead = task_dead_fair,
10152 .set_cpus_allowed = set_cpus_allowed_common,
10153 #endif
10155 .set_curr_task = set_curr_task_fair,
10156 .task_tick = task_tick_fair,
10157 .task_fork = task_fork_fair,
10159 .prio_changed = prio_changed_fair,
10160 .switched_from = switched_from_fair,
10161 .switched_to = switched_to_fair,
10163 .get_rr_interval = get_rr_interval_fair,
10165 .update_curr = update_curr_fair,
10167 #ifdef CONFIG_FAIR_GROUP_SCHED
10168 .task_change_group = task_change_group_fair,
10169 #endif
10172 #ifdef CONFIG_SCHED_DEBUG
10173 void print_cfs_stats(struct seq_file *m, int cpu)
10175 struct cfs_rq *cfs_rq;
10177 rcu_read_lock();
10178 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
10179 print_cfs_rq(m, cpu, cfs_rq);
10180 rcu_read_unlock();
10183 #ifdef CONFIG_NUMA_BALANCING
10184 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10186 int node;
10187 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10189 for_each_online_node(node) {
10190 if (p->numa_faults) {
10191 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10192 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10194 if (p->numa_group) {
10195 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10196 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10198 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10201 #endif /* CONFIG_NUMA_BALANCING */
10202 #endif /* CONFIG_SCHED_DEBUG */
10204 __init void init_sched_fair_class(void)
10206 #ifdef CONFIG_SMP
10207 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10209 #ifdef CONFIG_NO_HZ_COMMON
10210 nohz.next_balance = jiffies;
10211 nohz.next_blocked = jiffies;
10212 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10213 #endif
10214 #endif /* SMP */