2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
14 * A code-rewriter that enables instruction single-stepping.
15 * Derived from iLib's single-stepping code.
18 #ifndef __tilegx__ /* Hardware support for single step unavailable. */
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <asm/opcode-tile.h>
29 #include <asm/opcode_constants.h>
32 #define signExtend17(val) sign_extend((val), 17)
33 #define TILE_X1_MASK (0xffffffffULL << 31)
37 static int __init
setup_unaligned_printk(char *str
)
40 if (strict_strtol(str
, 0, &val
) != 0)
42 unaligned_printk
= val
;
43 pr_info("Printk for each unaligned data accesses is %s\n",
44 unaligned_printk
? "enabled" : "disabled");
47 __setup("unaligned_printk=", setup_unaligned_printk
);
49 unsigned int unaligned_fixup_count
;
59 static inline tile_bundle_bits
set_BrOff_X1(tile_bundle_bits n
, s32 offset
)
61 tile_bundle_bits result
;
63 /* mask out the old offset */
64 tile_bundle_bits mask
= create_BrOff_X1(-1);
67 /* or in the new offset */
68 result
|= create_BrOff_X1(offset
);
73 static inline tile_bundle_bits
move_X1(tile_bundle_bits n
, int dest
, int src
)
75 tile_bundle_bits result
;
78 result
= n
& (~TILE_X1_MASK
);
80 op
= create_Opcode_X1(SPECIAL_0_OPCODE_X1
) |
81 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1
) |
82 create_Dest_X1(dest
) |
83 create_SrcB_X1(TREG_ZERO
) |
90 static inline tile_bundle_bits
nop_X1(tile_bundle_bits n
)
92 return move_X1(n
, TREG_ZERO
, TREG_ZERO
);
95 static inline tile_bundle_bits
addi_X1(
96 tile_bundle_bits n
, int dest
, int src
, int imm
)
100 n
|= (create_SrcA_X1(src
) |
101 create_Dest_X1(dest
) |
102 create_Imm8_X1(imm
) |
104 create_Opcode_X1(IMM_0_OPCODE_X1
) |
105 create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1
));
110 static tile_bundle_bits
rewrite_load_store_unaligned(
111 struct single_step_state
*state
,
112 tile_bundle_bits bundle
,
113 struct pt_regs
*regs
,
115 int size
, int sign_ext
)
117 unsigned char __user
*addr
;
118 int val_reg
, addr_reg
, err
, val
;
120 /* Get address and value registers */
121 if (bundle
& TILE_BUNDLE_Y_ENCODING_MASK
) {
122 addr_reg
= get_SrcA_Y2(bundle
);
123 val_reg
= get_SrcBDest_Y2(bundle
);
124 } else if (mem_op
== MEMOP_LOAD
|| mem_op
== MEMOP_LOAD_POSTINCR
) {
125 addr_reg
= get_SrcA_X1(bundle
);
126 val_reg
= get_Dest_X1(bundle
);
128 addr_reg
= get_SrcA_X1(bundle
);
129 val_reg
= get_SrcB_X1(bundle
);
133 * If registers are not GPRs, don't try to handle it.
135 * FIXME: we could handle non-GPR loads by getting the real value
136 * from memory, writing it to the single step buffer, using a
137 * temp_reg to hold a pointer to that memory, then executing that
138 * instruction and resetting temp_reg. For non-GPR stores, it's a
139 * little trickier; we could use the single step buffer for that
140 * too, but we'd have to add some more state bits so that we could
141 * call back in here to copy that value to the real target. For
142 * now, we just handle the simple case.
144 if ((val_reg
>= PTREGS_NR_GPRS
&&
145 (val_reg
!= TREG_ZERO
||
146 mem_op
== MEMOP_LOAD
||
147 mem_op
== MEMOP_LOAD_POSTINCR
)) ||
148 addr_reg
>= PTREGS_NR_GPRS
)
151 /* If it's aligned, don't handle it specially */
152 addr
= (void __user
*)regs
->regs
[addr_reg
];
153 if (((unsigned long)addr
% size
) == 0)
156 #ifndef __LITTLE_ENDIAN
157 # error We assume little-endian representation with copy_xx_user size 2 here
159 /* Handle unaligned load/store */
160 if (mem_op
== MEMOP_LOAD
|| mem_op
== MEMOP_LOAD_POSTINCR
) {
161 unsigned short val_16
;
164 err
= copy_from_user(&val_16
, addr
, sizeof(val_16
));
165 val
= sign_ext
? ((short)val_16
) : val_16
;
168 err
= copy_from_user(&val
, addr
, sizeof(val
));
174 state
->update_reg
= val_reg
;
175 state
->update_value
= val
;
179 val
= (val_reg
== TREG_ZERO
) ? 0 : regs
->regs
[val_reg
];
180 err
= copy_to_user(addr
, &val
, size
);
186 .si_code
= SEGV_MAPERR
,
189 trace_unhandled_signal("segfault", regs
,
190 (unsigned long)addr
, SIGSEGV
);
191 force_sig_info(info
.si_signo
, &info
, current
);
192 return (tile_bundle_bits
) 0;
195 if (unaligned_fixup
== 0) {
198 .si_code
= BUS_ADRALN
,
201 trace_unhandled_signal("unaligned trap", regs
,
202 (unsigned long)addr
, SIGBUS
);
203 force_sig_info(info
.si_signo
, &info
, current
);
204 return (tile_bundle_bits
) 0;
207 if (unaligned_printk
|| unaligned_fixup_count
== 0) {
208 pr_info("Process %d/%s: PC %#lx: Fixup of"
209 " unaligned %s at %#lx.\n",
210 current
->pid
, current
->comm
, regs
->pc
,
211 (mem_op
== MEMOP_LOAD
||
212 mem_op
== MEMOP_LOAD_POSTINCR
) ?
214 (unsigned long)addr
);
215 if (!unaligned_printk
) {
218 P("Unaligned fixups in the kernel will slow your application considerably.\n");
219 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
220 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
221 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
222 P("access will become a SIGBUS you can debug. No further warnings will be\n");
223 P("shown so as to avoid additional slowdown, but you can track the number\n");
224 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
225 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
230 ++unaligned_fixup_count
;
232 if (bundle
& TILE_BUNDLE_Y_ENCODING_MASK
) {
233 /* Convert the Y2 instruction to a prefetch. */
234 bundle
&= ~(create_SrcBDest_Y2(-1) |
235 create_Opcode_Y2(-1));
236 bundle
|= (create_SrcBDest_Y2(TREG_ZERO
) |
237 create_Opcode_Y2(LW_OPCODE_Y2
));
238 /* Replace the load postincr with an addi */
239 } else if (mem_op
== MEMOP_LOAD_POSTINCR
) {
240 bundle
= addi_X1(bundle
, addr_reg
, addr_reg
,
241 get_Imm8_X1(bundle
));
242 /* Replace the store postincr with an addi */
243 } else if (mem_op
== MEMOP_STORE_POSTINCR
) {
244 bundle
= addi_X1(bundle
, addr_reg
, addr_reg
,
245 get_Dest_Imm8_X1(bundle
));
247 /* Convert the X1 instruction to a nop. */
248 bundle
&= ~(create_Opcode_X1(-1) |
249 create_UnShOpcodeExtension_X1(-1) |
250 create_UnOpcodeExtension_X1(-1));
251 bundle
|= (create_Opcode_X1(SHUN_0_OPCODE_X1
) |
252 create_UnShOpcodeExtension_X1(
253 UN_0_SHUN_0_OPCODE_X1
) |
254 create_UnOpcodeExtension_X1(
255 NOP_UN_0_SHUN_0_OPCODE_X1
));
262 * Called after execve() has started the new image. This allows us
263 * to reset the info state. Note that the the mmap'ed memory, if there
264 * was any, has already been unmapped by the exec.
266 void single_step_execve(void)
268 struct thread_info
*ti
= current_thread_info();
269 kfree(ti
->step_state
);
270 ti
->step_state
= NULL
;
274 * single_step_once() - entry point when single stepping has been triggered.
275 * @regs: The machine register state
277 * When we arrive at this routine via a trampoline, the single step
278 * engine copies the executing bundle to the single step buffer.
279 * If the instruction is a condition branch, then the target is
280 * reset to one past the next instruction. If the instruction
281 * sets the lr, then that is noted. If the instruction is a jump
282 * or call, then the new target pc is preserved and the current
283 * bundle instruction set to null.
285 * The necessary post-single-step rewriting information is stored in
286 * single_step_state-> We use data segment values because the
287 * stack will be rewound when we run the rewritten single-stepped
290 void single_step_once(struct pt_regs
*regs
)
292 extern tile_bundle_bits __single_step_ill_insn
;
293 extern tile_bundle_bits __single_step_j_insn
;
294 extern tile_bundle_bits __single_step_addli_insn
;
295 extern tile_bundle_bits __single_step_auli_insn
;
296 struct thread_info
*info
= (void *)current_thread_info();
297 struct single_step_state
*state
= info
->step_state
;
298 int is_single_step
= test_ti_thread_flag(info
, TIF_SINGLESTEP
);
299 tile_bundle_bits __user
*buffer
, *pc
;
300 tile_bundle_bits bundle
;
302 int target_reg
= TREG_LR
;
304 enum mem_op mem_op
= MEMOP_NONE
;
305 int size
= 0, sign_ext
= 0; /* happy compiler */
308 " .pushsection .rodata.single_step\n"
310 " .globl __single_step_ill_insn\n"
311 "__single_step_ill_insn:\n"
313 " .globl __single_step_addli_insn\n"
314 "__single_step_addli_insn:\n"
315 " { nop; addli r0, zero, 0 }\n"
316 " .globl __single_step_auli_insn\n"
317 "__single_step_auli_insn:\n"
318 " { nop; auli r0, r0, 0 }\n"
319 " .globl __single_step_j_insn\n"
320 "__single_step_j_insn:\n"
326 * Enable interrupts here to allow touching userspace and the like.
327 * The callers expect this: do_trap() already has interrupts
328 * enabled, and do_work_pending() handles functions that enable
329 * interrupts internally.
334 /* allocate a page of writable, executable memory */
335 state
= kmalloc(sizeof(struct single_step_state
), GFP_KERNEL
);
337 pr_err("Out of kernel memory trying to single-step\n");
341 /* allocate a cache line of writable, executable memory */
342 down_write(¤t
->mm
->mmap_sem
);
343 buffer
= (void __user
*) do_mmap(NULL
, 0, 64,
344 PROT_EXEC
| PROT_READ
| PROT_WRITE
,
345 MAP_PRIVATE
| MAP_ANONYMOUS
,
347 up_write(¤t
->mm
->mmap_sem
);
349 if (IS_ERR((void __force
*)buffer
)) {
351 pr_err("Out of kernel pages trying to single-step\n");
355 state
->buffer
= buffer
;
356 state
->is_enabled
= 0;
358 info
->step_state
= state
;
360 /* Validate our stored instruction patterns */
361 BUG_ON(get_Opcode_X1(__single_step_addli_insn
) !=
363 BUG_ON(get_Opcode_X1(__single_step_auli_insn
) !=
365 BUG_ON(get_SrcA_X1(__single_step_addli_insn
) != TREG_ZERO
);
366 BUG_ON(get_Dest_X1(__single_step_addli_insn
) != 0);
367 BUG_ON(get_JOffLong_X1(__single_step_j_insn
) != 0);
371 * If we are returning from a syscall, we still haven't hit the
372 * "ill" for the swint1 instruction. So back the PC up to be
373 * pointing at the swint1, but we'll actually return directly
374 * back to the "ill" so we come back in via SIGILL as if we
375 * had "executed" the swint1 without ever being in kernel space.
377 if (regs
->faultnum
== INT_SWINT_1
)
380 pc
= (tile_bundle_bits __user
*)(regs
->pc
);
381 if (get_user(bundle
, pc
) != 0) {
382 pr_err("Couldn't read instruction at %p trying to step\n", pc
);
386 /* We'll follow the instruction with 2 ill op bundles */
387 state
->orig_pc
= (unsigned long)pc
;
388 state
->next_pc
= (unsigned long)(pc
+ 1);
389 state
->branch_next_pc
= 0;
392 if (!(bundle
& TILE_BUNDLE_Y_ENCODING_MASK
)) {
393 /* two wide, check for control flow */
394 int opcode
= get_Opcode_X1(bundle
);
398 case BRANCH_OPCODE_X1
:
400 s32 offset
= signExtend17(get_BrOff_X1(bundle
));
403 * For branches, we use a rewriting trick to let the
404 * hardware evaluate whether the branch is taken or
405 * untaken. We record the target offset and then
406 * rewrite the branch instruction to target 1 insn
407 * ahead if the branch is taken. We then follow the
408 * rewritten branch with two bundles, each containing
409 * an "ill" instruction. The supervisor examines the
410 * pc after the single step code is executed, and if
411 * the pc is the first ill instruction, then the
412 * branch (if any) was not taken. If the pc is the
413 * second ill instruction, then the branch was
414 * taken. The new pc is computed for these cases, and
415 * inserted into the registers for the thread. If
416 * the pc is the start of the single step code, then
417 * an exception or interrupt was taken before the
418 * code started processing, and the same "original"
419 * pc is restored. This change, different from the
420 * original implementation, has the advantage of
421 * executing a single user instruction.
423 state
->branch_next_pc
= (unsigned long)(pc
+ offset
);
425 /* rewrite branch offset to go forward one bundle */
426 bundle
= set_BrOff_X1(bundle
, 2);
435 (unsigned long) (pc
+ get_JOffLong_X1(bundle
));
441 (unsigned long) (pc
+ get_JOffLong_X1(bundle
));
442 bundle
= nop_X1(bundle
);
445 case SPECIAL_0_OPCODE_X1
:
446 switch (get_RRROpcodeExtension_X1(bundle
)) {
448 case JALRP_SPECIAL_0_OPCODE_X1
:
449 case JALR_SPECIAL_0_OPCODE_X1
:
452 regs
->regs
[get_SrcA_X1(bundle
)];
455 case JRP_SPECIAL_0_OPCODE_X1
:
456 case JR_SPECIAL_0_OPCODE_X1
:
458 regs
->regs
[get_SrcA_X1(bundle
)];
459 bundle
= nop_X1(bundle
);
462 case LNK_SPECIAL_0_OPCODE_X1
:
464 target_reg
= get_Dest_X1(bundle
);
468 case SH_SPECIAL_0_OPCODE_X1
:
469 mem_op
= MEMOP_STORE
;
473 case SW_SPECIAL_0_OPCODE_X1
:
474 mem_op
= MEMOP_STORE
;
481 case SHUN_0_OPCODE_X1
:
482 if (get_UnShOpcodeExtension_X1(bundle
) ==
483 UN_0_SHUN_0_OPCODE_X1
) {
484 switch (get_UnOpcodeExtension_X1(bundle
)) {
485 case LH_UN_0_SHUN_0_OPCODE_X1
:
491 case LH_U_UN_0_SHUN_0_OPCODE_X1
:
497 case LW_UN_0_SHUN_0_OPCODE_X1
:
502 case IRET_UN_0_SHUN_0_OPCODE_X1
:
504 unsigned long ex0_0
= __insn_mfspr(
506 unsigned long ex0_1
= __insn_mfspr(
509 * Special-case it if we're iret'ing
510 * to PL0 again. Otherwise just let
511 * it run and it will generate SIGILL.
513 if (EX1_PL(ex0_1
) == USER_PL
) {
514 state
->next_pc
= ex0_0
;
516 bundle
= nop_X1(bundle
);
524 /* postincrement operations */
525 case IMM_0_OPCODE_X1
:
526 switch (get_ImmOpcodeExtension_X1(bundle
)) {
527 case LWADD_IMM_0_OPCODE_X1
:
528 mem_op
= MEMOP_LOAD_POSTINCR
;
532 case LHADD_IMM_0_OPCODE_X1
:
533 mem_op
= MEMOP_LOAD_POSTINCR
;
538 case LHADD_U_IMM_0_OPCODE_X1
:
539 mem_op
= MEMOP_LOAD_POSTINCR
;
544 case SWADD_IMM_0_OPCODE_X1
:
545 mem_op
= MEMOP_STORE_POSTINCR
;
549 case SHADD_IMM_0_OPCODE_X1
:
550 mem_op
= MEMOP_STORE_POSTINCR
;
558 #endif /* CHIP_HAS_WH64() */
563 * Get an available register. We start with a
564 * bitmask with 1's for available registers.
565 * We truncate to the low 32 registers since
566 * we are guaranteed to have set bits in the
567 * low 32 bits, then use ctz to pick the first.
569 u32 mask
= (u32
) ~((1ULL << get_Dest_X0(bundle
)) |
570 (1ULL << get_SrcA_X0(bundle
)) |
571 (1ULL << get_SrcB_X0(bundle
)) |
572 (1ULL << target_reg
));
573 temp_reg
= __builtin_ctz(mask
);
574 state
->update_reg
= temp_reg
;
575 state
->update_value
= regs
->regs
[temp_reg
];
576 regs
->regs
[temp_reg
] = (unsigned long) (pc
+1);
577 regs
->flags
|= PT_FLAGS_RESTORE_REGS
;
578 bundle
= move_X1(bundle
, target_reg
, temp_reg
);
581 int opcode
= get_Opcode_Y2(bundle
);
604 mem_op
= MEMOP_STORE
;
609 mem_op
= MEMOP_STORE
;
616 * Check if we need to rewrite an unaligned load/store.
617 * Returning zero is a special value meaning we need to SIGSEGV.
619 if (mem_op
!= MEMOP_NONE
&& unaligned_fixup
>= 0) {
620 bundle
= rewrite_load_store_unaligned(state
, bundle
, regs
,
621 mem_op
, size
, sign_ext
);
626 /* write the bundle to our execution area */
627 buffer
= state
->buffer
;
628 err
= __put_user(bundle
, buffer
++);
631 * If we're really single-stepping, we take an INT_ILL after.
632 * If we're just handling an unaligned access, we can just
633 * jump directly back to where we were in user code.
635 if (is_single_step
) {
636 err
|= __put_user(__single_step_ill_insn
, buffer
++);
637 err
|= __put_user(__single_step_ill_insn
, buffer
++);
642 /* We have some state to update; do it inline */
644 bundle
= __single_step_addli_insn
;
645 bundle
|= create_Dest_X1(state
->update_reg
);
646 bundle
|= create_Imm16_X1(state
->update_value
);
647 err
|= __put_user(bundle
, buffer
++);
648 bundle
= __single_step_auli_insn
;
649 bundle
|= create_Dest_X1(state
->update_reg
);
650 bundle
|= create_SrcA_X1(state
->update_reg
);
651 ha16
= (state
->update_value
+ 0x8000) >> 16;
652 bundle
|= create_Imm16_X1(ha16
);
653 err
|= __put_user(bundle
, buffer
++);
657 /* End with a jump back to the next instruction */
658 delta
= ((regs
->pc
+ TILE_BUNDLE_SIZE_IN_BYTES
) -
659 (unsigned long)buffer
) >>
660 TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES
;
661 bundle
= __single_step_j_insn
;
662 bundle
|= create_JOffLong_X1(delta
);
663 err
|= __put_user(bundle
, buffer
++);
667 pr_err("Fault when writing to single-step buffer\n");
673 * We do a local flush only, since this is a thread-specific buffer.
675 __flush_icache_range((unsigned long)state
->buffer
,
676 (unsigned long)buffer
);
678 /* Indicate enabled */
679 state
->is_enabled
= is_single_step
;
680 regs
->pc
= (unsigned long)state
->buffer
;
682 /* Fault immediately if we are coming back from a syscall. */
683 if (regs
->faultnum
== INT_SWINT_1
)
688 #include <linux/smp.h>
689 #include <linux/ptrace.h>
690 #include <arch/spr_def.h>
692 static DEFINE_PER_CPU(unsigned long, ss_saved_pc
);
696 * Called directly on the occasion of an interrupt.
698 * If the process doesn't have single step set, then we use this as an
699 * opportunity to turn single step off.
701 * It has been mentioned that we could conditionally turn off single stepping
702 * on each entry into the kernel and rely on single_step_once to turn it
703 * on for the processes that matter (as we already do), but this
704 * implementation is somewhat more efficient in that we muck with registers
705 * once on a bum interrupt rather than on every entry into the kernel.
707 * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
708 * so we have to run through this process again before we can say that an
709 * instruction has executed.
711 * swint will set CANCELED, but it's a legitimate instruction. Fortunately
712 * it changes the PC. If it hasn't changed, then we know that the interrupt
713 * wasn't generated by swint and we'll need to run this process again before
714 * we can say an instruction has executed.
716 * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
720 void gx_singlestep_handle(struct pt_regs
*regs
, int fault_num
)
722 unsigned long *ss_pc
= &__get_cpu_var(ss_saved_pc
);
723 struct thread_info
*info
= (void *)current_thread_info();
724 int is_single_step
= test_ti_thread_flag(info
, TIF_SINGLESTEP
);
725 unsigned long control
= __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K
);
727 if (is_single_step
== 0) {
728 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K
, 0);
730 } else if ((*ss_pc
!= regs
->pc
) ||
731 (!(control
& SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK
))) {
733 ptrace_notify(SIGTRAP
);
734 control
|= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK
;
735 control
|= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK
;
736 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K
, control
);
742 * Called from need_singlestep. Set up the control registers and the enable
743 * register, then return back.
746 void single_step_once(struct pt_regs
*regs
)
748 unsigned long *ss_pc
= &__get_cpu_var(ss_saved_pc
);
749 unsigned long control
= __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K
);
752 control
|= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK
;
753 control
|= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK
;
754 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K
, control
);
755 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K
, 1 << USER_PL
);
758 void single_step_execve(void)
763 #endif /* !__tilegx__ */