2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
51 #include <trace/events/timer.h>
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
62 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
68 .index
= CLOCK_REALTIME
,
69 .get_time
= &ktime_get_real
,
70 .resolution
= KTIME_LOW_RES
,
73 .index
= CLOCK_MONOTONIC
,
74 .get_time
= &ktime_get
,
75 .resolution
= KTIME_LOW_RES
,
81 * Get the coarse grained time at the softirq based on xtime and
84 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
87 struct timespec xts
, tom
;
91 seq
= read_seqbegin(&xtime_lock
);
92 xts
= current_kernel_time();
93 tom
= wall_to_monotonic
;
94 } while (read_seqretry(&xtime_lock
, seq
));
96 xtim
= timespec_to_ktime(xts
);
97 tomono
= timespec_to_ktime(tom
);
98 base
->clock_base
[CLOCK_REALTIME
].softirq_time
= xtim
;
99 base
->clock_base
[CLOCK_MONOTONIC
].softirq_time
=
100 ktime_add(xtim
, tomono
);
104 * Functions and macros which are different for UP/SMP systems are kept in a
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
122 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
123 unsigned long *flags
)
125 struct hrtimer_clock_base
*base
;
129 if (likely(base
!= NULL
)) {
130 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
131 if (likely(base
== timer
->base
))
133 /* The timer has migrated to another CPU: */
134 spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
142 * Get the preferred target CPU for NOHZ
144 static int hrtimer_get_target(int this_cpu
, int pinned
)
147 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(this_cpu
)) {
148 int preferred_cpu
= get_nohz_load_balancer();
150 if (preferred_cpu
>= 0)
151 return preferred_cpu
;
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
162 * Called with cpu_base->lock of target cpu held.
165 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
167 #ifdef CONFIG_HIGH_RES_TIMERS
170 if (!new_base
->cpu_base
->hres_active
)
173 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
174 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
181 * Switch the timer base to the current CPU when possible.
183 static inline struct hrtimer_clock_base
*
184 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
187 struct hrtimer_clock_base
*new_base
;
188 struct hrtimer_cpu_base
*new_cpu_base
;
189 int this_cpu
= smp_processor_id();
190 int cpu
= hrtimer_get_target(this_cpu
, pinned
);
193 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
194 new_base
= &new_cpu_base
->clock_base
[base
->index
];
196 if (base
!= new_base
) {
198 * We are trying to move timer to new_base.
199 * However we can't change timer's base while it is running,
200 * so we keep it on the same CPU. No hassle vs. reprogramming
201 * the event source in the high resolution case. The softirq
202 * code will take care of this when the timer function has
203 * completed. There is no conflict as we hold the lock until
204 * the timer is enqueued.
206 if (unlikely(hrtimer_callback_running(timer
)))
209 /* See the comment in lock_timer_base() */
211 spin_unlock(&base
->cpu_base
->lock
);
212 spin_lock(&new_base
->cpu_base
->lock
);
214 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
216 spin_unlock(&new_base
->cpu_base
->lock
);
217 spin_lock(&base
->cpu_base
->lock
);
221 timer
->base
= new_base
;
226 #else /* CONFIG_SMP */
228 static inline struct hrtimer_clock_base
*
229 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
231 struct hrtimer_clock_base
*base
= timer
->base
;
233 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
238 # define switch_hrtimer_base(t, b, p) (b)
240 #endif /* !CONFIG_SMP */
243 * Functions for the union type storage format of ktime_t which are
244 * too large for inlining:
246 #if BITS_PER_LONG < 64
247 # ifndef CONFIG_KTIME_SCALAR
249 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
251 * @nsec: the scalar nsec value to add
253 * Returns the sum of kt and nsec in ktime_t format
255 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
259 if (likely(nsec
< NSEC_PER_SEC
)) {
262 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
264 tmp
= ktime_set((long)nsec
, rem
);
267 return ktime_add(kt
, tmp
);
270 EXPORT_SYMBOL_GPL(ktime_add_ns
);
273 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
275 * @nsec: the scalar nsec value to subtract
277 * Returns the subtraction of @nsec from @kt in ktime_t format
279 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
283 if (likely(nsec
< NSEC_PER_SEC
)) {
286 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
288 tmp
= ktime_set((long)nsec
, rem
);
291 return ktime_sub(kt
, tmp
);
294 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
295 # endif /* !CONFIG_KTIME_SCALAR */
298 * Divide a ktime value by a nanosecond value
300 u64
ktime_divns(const ktime_t kt
, s64 div
)
305 dclc
= ktime_to_ns(kt
);
306 /* Make sure the divisor is less than 2^32: */
312 do_div(dclc
, (unsigned long) div
);
316 #endif /* BITS_PER_LONG >= 64 */
319 * Add two ktime values and do a safety check for overflow:
321 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
323 ktime_t res
= ktime_add(lhs
, rhs
);
326 * We use KTIME_SEC_MAX here, the maximum timeout which we can
327 * return to user space in a timespec:
329 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
330 res
= ktime_set(KTIME_SEC_MAX
, 0);
335 EXPORT_SYMBOL_GPL(ktime_add_safe
);
337 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
339 static struct debug_obj_descr hrtimer_debug_descr
;
342 * fixup_init is called when:
343 * - an active object is initialized
345 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
347 struct hrtimer
*timer
= addr
;
350 case ODEBUG_STATE_ACTIVE
:
351 hrtimer_cancel(timer
);
352 debug_object_init(timer
, &hrtimer_debug_descr
);
360 * fixup_activate is called when:
361 * - an active object is activated
362 * - an unknown object is activated (might be a statically initialized object)
364 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
368 case ODEBUG_STATE_NOTAVAILABLE
:
372 case ODEBUG_STATE_ACTIVE
:
381 * fixup_free is called when:
382 * - an active object is freed
384 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
386 struct hrtimer
*timer
= addr
;
389 case ODEBUG_STATE_ACTIVE
:
390 hrtimer_cancel(timer
);
391 debug_object_free(timer
, &hrtimer_debug_descr
);
398 static struct debug_obj_descr hrtimer_debug_descr
= {
400 .fixup_init
= hrtimer_fixup_init
,
401 .fixup_activate
= hrtimer_fixup_activate
,
402 .fixup_free
= hrtimer_fixup_free
,
405 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
407 debug_object_init(timer
, &hrtimer_debug_descr
);
410 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
412 debug_object_activate(timer
, &hrtimer_debug_descr
);
415 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
417 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
420 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
422 debug_object_free(timer
, &hrtimer_debug_descr
);
425 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
426 enum hrtimer_mode mode
);
428 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
429 enum hrtimer_mode mode
)
431 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
432 __hrtimer_init(timer
, clock_id
, mode
);
434 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
436 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
438 debug_object_free(timer
, &hrtimer_debug_descr
);
442 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
443 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
444 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
448 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
449 enum hrtimer_mode mode
)
451 debug_hrtimer_init(timer
);
452 trace_hrtimer_init(timer
, clockid
, mode
);
455 static inline void debug_activate(struct hrtimer
*timer
)
457 debug_hrtimer_activate(timer
);
458 trace_hrtimer_start(timer
);
461 static inline void debug_deactivate(struct hrtimer
*timer
)
463 debug_hrtimer_deactivate(timer
);
464 trace_hrtimer_cancel(timer
);
467 /* High resolution timer related functions */
468 #ifdef CONFIG_HIGH_RES_TIMERS
471 * High resolution timer enabled ?
473 static int hrtimer_hres_enabled __read_mostly
= 1;
476 * Enable / Disable high resolution mode
478 static int __init
setup_hrtimer_hres(char *str
)
480 if (!strcmp(str
, "off"))
481 hrtimer_hres_enabled
= 0;
482 else if (!strcmp(str
, "on"))
483 hrtimer_hres_enabled
= 1;
489 __setup("highres=", setup_hrtimer_hres
);
492 * hrtimer_high_res_enabled - query, if the highres mode is enabled
494 static inline int hrtimer_is_hres_enabled(void)
496 return hrtimer_hres_enabled
;
500 * Is the high resolution mode active ?
502 static inline int hrtimer_hres_active(void)
504 return __get_cpu_var(hrtimer_bases
).hres_active
;
508 * Reprogram the event source with checking both queues for the
510 * Called with interrupts disabled and base->lock held
513 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
516 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
517 ktime_t expires
, expires_next
;
519 expires_next
.tv64
= KTIME_MAX
;
521 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
522 struct hrtimer
*timer
;
526 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
527 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
529 * clock_was_set() has changed base->offset so the
530 * result might be negative. Fix it up to prevent a
531 * false positive in clockevents_program_event()
533 if (expires
.tv64
< 0)
535 if (expires
.tv64
< expires_next
.tv64
)
536 expires_next
= expires
;
539 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
542 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
544 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
545 tick_program_event(cpu_base
->expires_next
, 1);
549 * Shared reprogramming for clock_realtime and clock_monotonic
551 * When a timer is enqueued and expires earlier than the already enqueued
552 * timers, we have to check, whether it expires earlier than the timer for
553 * which the clock event device was armed.
555 * Called with interrupts disabled and base->cpu_base.lock held
557 static int hrtimer_reprogram(struct hrtimer
*timer
,
558 struct hrtimer_clock_base
*base
)
560 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
561 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
564 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
567 * When the callback is running, we do not reprogram the clock event
568 * device. The timer callback is either running on a different CPU or
569 * the callback is executed in the hrtimer_interrupt context. The
570 * reprogramming is handled either by the softirq, which called the
571 * callback or at the end of the hrtimer_interrupt.
573 if (hrtimer_callback_running(timer
))
577 * CLOCK_REALTIME timer might be requested with an absolute
578 * expiry time which is less than base->offset. Nothing wrong
579 * about that, just avoid to call into the tick code, which
580 * has now objections against negative expiry values.
582 if (expires
.tv64
< 0)
585 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
589 * If a hang was detected in the last timer interrupt then we
590 * do not schedule a timer which is earlier than the expiry
591 * which we enforced in the hang detection. We want the system
594 if (cpu_base
->hang_detected
)
598 * Clockevents returns -ETIME, when the event was in the past.
600 res
= tick_program_event(expires
, 0);
601 if (!IS_ERR_VALUE(res
))
602 cpu_base
->expires_next
= expires
;
608 * Retrigger next event is called after clock was set
610 * Called with interrupts disabled via on_each_cpu()
612 static void retrigger_next_event(void *arg
)
614 struct hrtimer_cpu_base
*base
;
615 struct timespec realtime_offset
;
618 if (!hrtimer_hres_active())
622 seq
= read_seqbegin(&xtime_lock
);
623 set_normalized_timespec(&realtime_offset
,
624 -wall_to_monotonic
.tv_sec
,
625 -wall_to_monotonic
.tv_nsec
);
626 } while (read_seqretry(&xtime_lock
, seq
));
628 base
= &__get_cpu_var(hrtimer_bases
);
630 /* Adjust CLOCK_REALTIME offset */
631 spin_lock(&base
->lock
);
632 base
->clock_base
[CLOCK_REALTIME
].offset
=
633 timespec_to_ktime(realtime_offset
);
635 hrtimer_force_reprogram(base
, 0);
636 spin_unlock(&base
->lock
);
640 * Clock realtime was set
642 * Change the offset of the realtime clock vs. the monotonic
645 * We might have to reprogram the high resolution timer interrupt. On
646 * SMP we call the architecture specific code to retrigger _all_ high
647 * resolution timer interrupts. On UP we just disable interrupts and
648 * call the high resolution interrupt code.
650 void clock_was_set(void)
652 /* Retrigger the CPU local events everywhere */
653 on_each_cpu(retrigger_next_event
, NULL
, 1);
657 * During resume we might have to reprogram the high resolution timer
658 * interrupt (on the local CPU):
660 void hres_timers_resume(void)
662 WARN_ONCE(!irqs_disabled(),
663 KERN_INFO
"hres_timers_resume() called with IRQs enabled!");
665 retrigger_next_event(NULL
);
669 * Initialize the high resolution related parts of cpu_base
671 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
673 base
->expires_next
.tv64
= KTIME_MAX
;
674 base
->hres_active
= 0;
678 * Initialize the high resolution related parts of a hrtimer
680 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
)
686 * When High resolution timers are active, try to reprogram. Note, that in case
687 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
688 * check happens. The timer gets enqueued into the rbtree. The reprogramming
689 * and expiry check is done in the hrtimer_interrupt or in the softirq.
691 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
692 struct hrtimer_clock_base
*base
,
695 if (base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
)) {
697 spin_unlock(&base
->cpu_base
->lock
);
698 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
699 spin_lock(&base
->cpu_base
->lock
);
701 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
710 * Switch to high resolution mode
712 static int hrtimer_switch_to_hres(void)
714 int cpu
= smp_processor_id();
715 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
718 if (base
->hres_active
)
721 local_irq_save(flags
);
723 if (tick_init_highres()) {
724 local_irq_restore(flags
);
725 printk(KERN_WARNING
"Could not switch to high resolution "
726 "mode on CPU %d\n", cpu
);
729 base
->hres_active
= 1;
730 base
->clock_base
[CLOCK_REALTIME
].resolution
= KTIME_HIGH_RES
;
731 base
->clock_base
[CLOCK_MONOTONIC
].resolution
= KTIME_HIGH_RES
;
733 tick_setup_sched_timer();
735 /* "Retrigger" the interrupt to get things going */
736 retrigger_next_event(NULL
);
737 local_irq_restore(flags
);
743 static inline int hrtimer_hres_active(void) { return 0; }
744 static inline int hrtimer_is_hres_enabled(void) { return 0; }
745 static inline int hrtimer_switch_to_hres(void) { return 0; }
747 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
748 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
749 struct hrtimer_clock_base
*base
,
754 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
755 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
) { }
757 #endif /* CONFIG_HIGH_RES_TIMERS */
759 #ifdef CONFIG_TIMER_STATS
760 void __timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
, void *addr
)
762 if (timer
->start_site
)
765 timer
->start_site
= addr
;
766 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
767 timer
->start_pid
= current
->pid
;
772 * Counterpart to lock_hrtimer_base above:
775 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
777 spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
781 * hrtimer_forward - forward the timer expiry
782 * @timer: hrtimer to forward
783 * @now: forward past this time
784 * @interval: the interval to forward
786 * Forward the timer expiry so it will expire in the future.
787 * Returns the number of overruns.
789 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
794 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
799 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
800 interval
.tv64
= timer
->base
->resolution
.tv64
;
802 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
803 s64 incr
= ktime_to_ns(interval
);
805 orun
= ktime_divns(delta
, incr
);
806 hrtimer_add_expires_ns(timer
, incr
* orun
);
807 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
810 * This (and the ktime_add() below) is the
811 * correction for exact:
815 hrtimer_add_expires(timer
, interval
);
819 EXPORT_SYMBOL_GPL(hrtimer_forward
);
822 * enqueue_hrtimer - internal function to (re)start a timer
824 * The timer is inserted in expiry order. Insertion into the
825 * red black tree is O(log(n)). Must hold the base lock.
827 * Returns 1 when the new timer is the leftmost timer in the tree.
829 static int enqueue_hrtimer(struct hrtimer
*timer
,
830 struct hrtimer_clock_base
*base
)
832 struct rb_node
**link
= &base
->active
.rb_node
;
833 struct rb_node
*parent
= NULL
;
834 struct hrtimer
*entry
;
837 debug_activate(timer
);
840 * Find the right place in the rbtree:
844 entry
= rb_entry(parent
, struct hrtimer
, node
);
846 * We dont care about collisions. Nodes with
847 * the same expiry time stay together.
849 if (hrtimer_get_expires_tv64(timer
) <
850 hrtimer_get_expires_tv64(entry
)) {
851 link
= &(*link
)->rb_left
;
853 link
= &(*link
)->rb_right
;
859 * Insert the timer to the rbtree and check whether it
860 * replaces the first pending timer
863 base
->first
= &timer
->node
;
865 rb_link_node(&timer
->node
, parent
, link
);
866 rb_insert_color(&timer
->node
, &base
->active
);
868 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
869 * state of a possibly running callback.
871 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
877 * __remove_hrtimer - internal function to remove a timer
879 * Caller must hold the base lock.
881 * High resolution timer mode reprograms the clock event device when the
882 * timer is the one which expires next. The caller can disable this by setting
883 * reprogram to zero. This is useful, when the context does a reprogramming
884 * anyway (e.g. timer interrupt)
886 static void __remove_hrtimer(struct hrtimer
*timer
,
887 struct hrtimer_clock_base
*base
,
888 unsigned long newstate
, int reprogram
)
890 if (!(timer
->state
& HRTIMER_STATE_ENQUEUED
))
894 * Remove the timer from the rbtree and replace the first
895 * entry pointer if necessary.
897 if (base
->first
== &timer
->node
) {
898 base
->first
= rb_next(&timer
->node
);
899 #ifdef CONFIG_HIGH_RES_TIMERS
900 /* Reprogram the clock event device. if enabled */
901 if (reprogram
&& hrtimer_hres_active()) {
904 expires
= ktime_sub(hrtimer_get_expires(timer
),
906 if (base
->cpu_base
->expires_next
.tv64
== expires
.tv64
)
907 hrtimer_force_reprogram(base
->cpu_base
, 1);
911 rb_erase(&timer
->node
, &base
->active
);
913 timer
->state
= newstate
;
917 * remove hrtimer, called with base lock held
920 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
922 if (hrtimer_is_queued(timer
)) {
927 * Remove the timer and force reprogramming when high
928 * resolution mode is active and the timer is on the current
929 * CPU. If we remove a timer on another CPU, reprogramming is
930 * skipped. The interrupt event on this CPU is fired and
931 * reprogramming happens in the interrupt handler. This is a
932 * rare case and less expensive than a smp call.
934 debug_deactivate(timer
);
935 timer_stats_hrtimer_clear_start_info(timer
);
936 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
938 * We must preserve the CALLBACK state flag here,
939 * otherwise we could move the timer base in
940 * switch_hrtimer_base.
942 state
= timer
->state
& HRTIMER_STATE_CALLBACK
;
943 __remove_hrtimer(timer
, base
, state
, reprogram
);
949 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
950 unsigned long delta_ns
, const enum hrtimer_mode mode
,
953 struct hrtimer_clock_base
*base
, *new_base
;
957 base
= lock_hrtimer_base(timer
, &flags
);
959 /* Remove an active timer from the queue: */
960 ret
= remove_hrtimer(timer
, base
);
962 /* Switch the timer base, if necessary: */
963 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
965 if (mode
& HRTIMER_MODE_REL
) {
966 tim
= ktime_add_safe(tim
, new_base
->get_time());
968 * CONFIG_TIME_LOW_RES is a temporary way for architectures
969 * to signal that they simply return xtime in
970 * do_gettimeoffset(). In this case we want to round up by
971 * resolution when starting a relative timer, to avoid short
972 * timeouts. This will go away with the GTOD framework.
974 #ifdef CONFIG_TIME_LOW_RES
975 tim
= ktime_add_safe(tim
, base
->resolution
);
979 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
981 timer_stats_hrtimer_set_start_info(timer
);
983 leftmost
= enqueue_hrtimer(timer
, new_base
);
986 * Only allow reprogramming if the new base is on this CPU.
987 * (it might still be on another CPU if the timer was pending)
989 * XXX send_remote_softirq() ?
991 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
))
992 hrtimer_enqueue_reprogram(timer
, new_base
, wakeup
);
994 unlock_hrtimer_base(timer
, &flags
);
1000 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1001 * @timer: the timer to be added
1003 * @delta_ns: "slack" range for the timer
1004 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1008 * 1 when the timer was active
1010 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1011 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1013 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1015 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1018 * hrtimer_start - (re)start an hrtimer on the current CPU
1019 * @timer: the timer to be added
1021 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1025 * 1 when the timer was active
1028 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1030 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1032 EXPORT_SYMBOL_GPL(hrtimer_start
);
1036 * hrtimer_try_to_cancel - try to deactivate a timer
1037 * @timer: hrtimer to stop
1040 * 0 when the timer was not active
1041 * 1 when the timer was active
1042 * -1 when the timer is currently excuting the callback function and
1045 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1047 struct hrtimer_clock_base
*base
;
1048 unsigned long flags
;
1051 base
= lock_hrtimer_base(timer
, &flags
);
1053 if (!hrtimer_callback_running(timer
))
1054 ret
= remove_hrtimer(timer
, base
);
1056 unlock_hrtimer_base(timer
, &flags
);
1061 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1064 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1065 * @timer: the timer to be cancelled
1068 * 0 when the timer was not active
1069 * 1 when the timer was active
1071 int hrtimer_cancel(struct hrtimer
*timer
)
1074 int ret
= hrtimer_try_to_cancel(timer
);
1081 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1084 * hrtimer_get_remaining - get remaining time for the timer
1085 * @timer: the timer to read
1087 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1089 struct hrtimer_clock_base
*base
;
1090 unsigned long flags
;
1093 base
= lock_hrtimer_base(timer
, &flags
);
1094 rem
= hrtimer_expires_remaining(timer
);
1095 unlock_hrtimer_base(timer
, &flags
);
1099 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1103 * hrtimer_get_next_event - get the time until next expiry event
1105 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1108 ktime_t
hrtimer_get_next_event(void)
1110 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1111 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1112 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1113 unsigned long flags
;
1116 spin_lock_irqsave(&cpu_base
->lock
, flags
);
1118 if (!hrtimer_hres_active()) {
1119 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1120 struct hrtimer
*timer
;
1125 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
1126 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1127 delta
= ktime_sub(delta
, base
->get_time());
1128 if (delta
.tv64
< mindelta
.tv64
)
1129 mindelta
.tv64
= delta
.tv64
;
1133 spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1135 if (mindelta
.tv64
< 0)
1141 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1142 enum hrtimer_mode mode
)
1144 struct hrtimer_cpu_base
*cpu_base
;
1146 memset(timer
, 0, sizeof(struct hrtimer
));
1148 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1150 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1151 clock_id
= CLOCK_MONOTONIC
;
1153 timer
->base
= &cpu_base
->clock_base
[clock_id
];
1154 hrtimer_init_timer_hres(timer
);
1156 #ifdef CONFIG_TIMER_STATS
1157 timer
->start_site
= NULL
;
1158 timer
->start_pid
= -1;
1159 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1164 * hrtimer_init - initialize a timer to the given clock
1165 * @timer: the timer to be initialized
1166 * @clock_id: the clock to be used
1167 * @mode: timer mode abs/rel
1169 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1170 enum hrtimer_mode mode
)
1172 debug_init(timer
, clock_id
, mode
);
1173 __hrtimer_init(timer
, clock_id
, mode
);
1175 EXPORT_SYMBOL_GPL(hrtimer_init
);
1178 * hrtimer_get_res - get the timer resolution for a clock
1179 * @which_clock: which clock to query
1180 * @tp: pointer to timespec variable to store the resolution
1182 * Store the resolution of the clock selected by @which_clock in the
1183 * variable pointed to by @tp.
1185 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1187 struct hrtimer_cpu_base
*cpu_base
;
1189 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1190 *tp
= ktime_to_timespec(cpu_base
->clock_base
[which_clock
].resolution
);
1194 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1196 static void __run_hrtimer(struct hrtimer
*timer
, ktime_t
*now
)
1198 struct hrtimer_clock_base
*base
= timer
->base
;
1199 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1200 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1203 WARN_ON(!irqs_disabled());
1205 debug_deactivate(timer
);
1206 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1207 timer_stats_account_hrtimer(timer
);
1208 fn
= timer
->function
;
1211 * Because we run timers from hardirq context, there is no chance
1212 * they get migrated to another cpu, therefore its safe to unlock
1215 spin_unlock(&cpu_base
->lock
);
1216 trace_hrtimer_expire_entry(timer
, now
);
1217 restart
= fn(timer
);
1218 trace_hrtimer_expire_exit(timer
);
1219 spin_lock(&cpu_base
->lock
);
1222 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1223 * we do not reprogramm the event hardware. Happens either in
1224 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1226 if (restart
!= HRTIMER_NORESTART
) {
1227 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1228 enqueue_hrtimer(timer
, base
);
1231 WARN_ON_ONCE(!(timer
->state
& HRTIMER_STATE_CALLBACK
));
1233 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1236 #ifdef CONFIG_HIGH_RES_TIMERS
1239 * High resolution timer interrupt
1240 * Called with interrupts disabled
1242 void hrtimer_interrupt(struct clock_event_device
*dev
)
1244 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1245 struct hrtimer_clock_base
*base
;
1246 ktime_t expires_next
, now
, entry_time
, delta
;
1249 BUG_ON(!cpu_base
->hres_active
);
1250 cpu_base
->nr_events
++;
1251 dev
->next_event
.tv64
= KTIME_MAX
;
1253 entry_time
= now
= ktime_get();
1255 expires_next
.tv64
= KTIME_MAX
;
1257 spin_lock(&cpu_base
->lock
);
1259 * We set expires_next to KTIME_MAX here with cpu_base->lock
1260 * held to prevent that a timer is enqueued in our queue via
1261 * the migration code. This does not affect enqueueing of
1262 * timers which run their callback and need to be requeued on
1265 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1267 base
= cpu_base
->clock_base
;
1269 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1271 struct rb_node
*node
;
1273 basenow
= ktime_add(now
, base
->offset
);
1275 while ((node
= base
->first
)) {
1276 struct hrtimer
*timer
;
1278 timer
= rb_entry(node
, struct hrtimer
, node
);
1281 * The immediate goal for using the softexpires is
1282 * minimizing wakeups, not running timers at the
1283 * earliest interrupt after their soft expiration.
1284 * This allows us to avoid using a Priority Search
1285 * Tree, which can answer a stabbing querry for
1286 * overlapping intervals and instead use the simple
1287 * BST we already have.
1288 * We don't add extra wakeups by delaying timers that
1289 * are right-of a not yet expired timer, because that
1290 * timer will have to trigger a wakeup anyway.
1293 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1296 expires
= ktime_sub(hrtimer_get_expires(timer
),
1298 if (expires
.tv64
< expires_next
.tv64
)
1299 expires_next
= expires
;
1303 __run_hrtimer(timer
, &basenow
);
1309 * Store the new expiry value so the migration code can verify
1312 cpu_base
->expires_next
= expires_next
;
1313 spin_unlock(&cpu_base
->lock
);
1315 /* Reprogramming necessary ? */
1316 if (expires_next
.tv64
== KTIME_MAX
||
1317 !tick_program_event(expires_next
, 0)) {
1318 cpu_base
->hang_detected
= 0;
1323 * The next timer was already expired due to:
1325 * - long lasting callbacks
1326 * - being scheduled away when running in a VM
1328 * We need to prevent that we loop forever in the hrtimer
1329 * interrupt routine. We give it 3 attempts to avoid
1330 * overreacting on some spurious event.
1333 cpu_base
->nr_retries
++;
1337 * Give the system a chance to do something else than looping
1338 * here. We stored the entry time, so we know exactly how long
1339 * we spent here. We schedule the next event this amount of
1342 cpu_base
->nr_hangs
++;
1343 cpu_base
->hang_detected
= 1;
1344 delta
= ktime_sub(now
, entry_time
);
1345 if (delta
.tv64
> cpu_base
->max_hang_time
.tv64
)
1346 cpu_base
->max_hang_time
= delta
;
1348 * Limit it to a sensible value as we enforce a longer
1349 * delay. Give the CPU at least 100ms to catch up.
1351 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1352 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1354 expires_next
= ktime_add(now
, delta
);
1355 tick_program_event(expires_next
, 1);
1356 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1357 ktime_to_ns(delta
));
1361 * local version of hrtimer_peek_ahead_timers() called with interrupts
1364 static void __hrtimer_peek_ahead_timers(void)
1366 struct tick_device
*td
;
1368 if (!hrtimer_hres_active())
1371 td
= &__get_cpu_var(tick_cpu_device
);
1372 if (td
&& td
->evtdev
)
1373 hrtimer_interrupt(td
->evtdev
);
1377 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1379 * hrtimer_peek_ahead_timers will peek at the timer queue of
1380 * the current cpu and check if there are any timers for which
1381 * the soft expires time has passed. If any such timers exist,
1382 * they are run immediately and then removed from the timer queue.
1385 void hrtimer_peek_ahead_timers(void)
1387 unsigned long flags
;
1389 local_irq_save(flags
);
1390 __hrtimer_peek_ahead_timers();
1391 local_irq_restore(flags
);
1394 static void run_hrtimer_softirq(struct softirq_action
*h
)
1396 hrtimer_peek_ahead_timers();
1399 #else /* CONFIG_HIGH_RES_TIMERS */
1401 static inline void __hrtimer_peek_ahead_timers(void) { }
1403 #endif /* !CONFIG_HIGH_RES_TIMERS */
1406 * Called from timer softirq every jiffy, expire hrtimers:
1408 * For HRT its the fall back code to run the softirq in the timer
1409 * softirq context in case the hrtimer initialization failed or has
1410 * not been done yet.
1412 void hrtimer_run_pending(void)
1414 if (hrtimer_hres_active())
1418 * This _is_ ugly: We have to check in the softirq context,
1419 * whether we can switch to highres and / or nohz mode. The
1420 * clocksource switch happens in the timer interrupt with
1421 * xtime_lock held. Notification from there only sets the
1422 * check bit in the tick_oneshot code, otherwise we might
1423 * deadlock vs. xtime_lock.
1425 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1426 hrtimer_switch_to_hres();
1430 * Called from hardirq context every jiffy
1432 void hrtimer_run_queues(void)
1434 struct rb_node
*node
;
1435 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1436 struct hrtimer_clock_base
*base
;
1437 int index
, gettime
= 1;
1439 if (hrtimer_hres_active())
1442 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1443 base
= &cpu_base
->clock_base
[index
];
1449 hrtimer_get_softirq_time(cpu_base
);
1453 spin_lock(&cpu_base
->lock
);
1455 while ((node
= base
->first
)) {
1456 struct hrtimer
*timer
;
1458 timer
= rb_entry(node
, struct hrtimer
, node
);
1459 if (base
->softirq_time
.tv64
<=
1460 hrtimer_get_expires_tv64(timer
))
1463 __run_hrtimer(timer
, &base
->softirq_time
);
1465 spin_unlock(&cpu_base
->lock
);
1470 * Sleep related functions:
1472 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1474 struct hrtimer_sleeper
*t
=
1475 container_of(timer
, struct hrtimer_sleeper
, timer
);
1476 struct task_struct
*task
= t
->task
;
1480 wake_up_process(task
);
1482 return HRTIMER_NORESTART
;
1485 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1487 sl
->timer
.function
= hrtimer_wakeup
;
1490 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1492 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1494 hrtimer_init_sleeper(t
, current
);
1497 set_current_state(TASK_INTERRUPTIBLE
);
1498 hrtimer_start_expires(&t
->timer
, mode
);
1499 if (!hrtimer_active(&t
->timer
))
1502 if (likely(t
->task
))
1505 hrtimer_cancel(&t
->timer
);
1506 mode
= HRTIMER_MODE_ABS
;
1508 } while (t
->task
&& !signal_pending(current
));
1510 __set_current_state(TASK_RUNNING
);
1512 return t
->task
== NULL
;
1515 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1517 struct timespec rmt
;
1520 rem
= hrtimer_expires_remaining(timer
);
1523 rmt
= ktime_to_timespec(rem
);
1525 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1531 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1533 struct hrtimer_sleeper t
;
1534 struct timespec __user
*rmtp
;
1537 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.index
,
1539 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1541 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1544 rmtp
= restart
->nanosleep
.rmtp
;
1546 ret
= update_rmtp(&t
.timer
, rmtp
);
1551 /* The other values in restart are already filled in */
1552 ret
= -ERESTART_RESTARTBLOCK
;
1554 destroy_hrtimer_on_stack(&t
.timer
);
1558 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1559 const enum hrtimer_mode mode
, const clockid_t clockid
)
1561 struct restart_block
*restart
;
1562 struct hrtimer_sleeper t
;
1564 unsigned long slack
;
1566 slack
= current
->timer_slack_ns
;
1567 if (rt_task(current
))
1570 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1571 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1572 if (do_nanosleep(&t
, mode
))
1575 /* Absolute timers do not update the rmtp value and restart: */
1576 if (mode
== HRTIMER_MODE_ABS
) {
1577 ret
= -ERESTARTNOHAND
;
1582 ret
= update_rmtp(&t
.timer
, rmtp
);
1587 restart
= ¤t_thread_info()->restart_block
;
1588 restart
->fn
= hrtimer_nanosleep_restart
;
1589 restart
->nanosleep
.index
= t
.timer
.base
->index
;
1590 restart
->nanosleep
.rmtp
= rmtp
;
1591 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1593 ret
= -ERESTART_RESTARTBLOCK
;
1595 destroy_hrtimer_on_stack(&t
.timer
);
1599 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1600 struct timespec __user
*, rmtp
)
1604 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1607 if (!timespec_valid(&tu
))
1610 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1614 * Functions related to boot-time initialization:
1616 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1618 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1621 spin_lock_init(&cpu_base
->lock
);
1623 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1624 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1626 hrtimer_init_hres(cpu_base
);
1629 #ifdef CONFIG_HOTPLUG_CPU
1631 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1632 struct hrtimer_clock_base
*new_base
)
1634 struct hrtimer
*timer
;
1635 struct rb_node
*node
;
1637 while ((node
= rb_first(&old_base
->active
))) {
1638 timer
= rb_entry(node
, struct hrtimer
, node
);
1639 BUG_ON(hrtimer_callback_running(timer
));
1640 debug_deactivate(timer
);
1643 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1644 * timer could be seen as !active and just vanish away
1645 * under us on another CPU
1647 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1648 timer
->base
= new_base
;
1650 * Enqueue the timers on the new cpu. This does not
1651 * reprogram the event device in case the timer
1652 * expires before the earliest on this CPU, but we run
1653 * hrtimer_interrupt after we migrated everything to
1654 * sort out already expired timers and reprogram the
1657 enqueue_hrtimer(timer
, new_base
);
1659 /* Clear the migration state bit */
1660 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1664 static void migrate_hrtimers(int scpu
)
1666 struct hrtimer_cpu_base
*old_base
, *new_base
;
1669 BUG_ON(cpu_online(scpu
));
1670 tick_cancel_sched_timer(scpu
);
1672 local_irq_disable();
1673 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1674 new_base
= &__get_cpu_var(hrtimer_bases
);
1676 * The caller is globally serialized and nobody else
1677 * takes two locks at once, deadlock is not possible.
1679 spin_lock(&new_base
->lock
);
1680 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1682 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1683 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1684 &new_base
->clock_base
[i
]);
1687 spin_unlock(&old_base
->lock
);
1688 spin_unlock(&new_base
->lock
);
1690 /* Check, if we got expired work to do */
1691 __hrtimer_peek_ahead_timers();
1695 #endif /* CONFIG_HOTPLUG_CPU */
1697 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1698 unsigned long action
, void *hcpu
)
1700 int scpu
= (long)hcpu
;
1704 case CPU_UP_PREPARE
:
1705 case CPU_UP_PREPARE_FROZEN
:
1706 init_hrtimers_cpu(scpu
);
1709 #ifdef CONFIG_HOTPLUG_CPU
1711 case CPU_DYING_FROZEN
:
1712 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1715 case CPU_DEAD_FROZEN
:
1717 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1718 migrate_hrtimers(scpu
);
1730 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1731 .notifier_call
= hrtimer_cpu_notify
,
1734 void __init
hrtimers_init(void)
1736 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1737 (void *)(long)smp_processor_id());
1738 register_cpu_notifier(&hrtimers_nb
);
1739 #ifdef CONFIG_HIGH_RES_TIMERS
1740 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1745 * schedule_hrtimeout_range - sleep until timeout
1746 * @expires: timeout value (ktime_t)
1747 * @delta: slack in expires timeout (ktime_t)
1748 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1750 * Make the current task sleep until the given expiry time has
1751 * elapsed. The routine will return immediately unless
1752 * the current task state has been set (see set_current_state()).
1754 * The @delta argument gives the kernel the freedom to schedule the
1755 * actual wakeup to a time that is both power and performance friendly.
1756 * The kernel give the normal best effort behavior for "@expires+@delta",
1757 * but may decide to fire the timer earlier, but no earlier than @expires.
1759 * You can set the task state as follows -
1761 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1762 * pass before the routine returns.
1764 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1765 * delivered to the current task.
1767 * The current task state is guaranteed to be TASK_RUNNING when this
1770 * Returns 0 when the timer has expired otherwise -EINTR
1772 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1773 const enum hrtimer_mode mode
)
1775 struct hrtimer_sleeper t
;
1778 * Optimize when a zero timeout value is given. It does not
1779 * matter whether this is an absolute or a relative time.
1781 if (expires
&& !expires
->tv64
) {
1782 __set_current_state(TASK_RUNNING
);
1787 * A NULL parameter means "inifinte"
1791 __set_current_state(TASK_RUNNING
);
1795 hrtimer_init_on_stack(&t
.timer
, CLOCK_MONOTONIC
, mode
);
1796 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1798 hrtimer_init_sleeper(&t
, current
);
1800 hrtimer_start_expires(&t
.timer
, mode
);
1801 if (!hrtimer_active(&t
.timer
))
1807 hrtimer_cancel(&t
.timer
);
1808 destroy_hrtimer_on_stack(&t
.timer
);
1810 __set_current_state(TASK_RUNNING
);
1812 return !t
.task
? 0 : -EINTR
;
1814 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1817 * schedule_hrtimeout - sleep until timeout
1818 * @expires: timeout value (ktime_t)
1819 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1821 * Make the current task sleep until the given expiry time has
1822 * elapsed. The routine will return immediately unless
1823 * the current task state has been set (see set_current_state()).
1825 * You can set the task state as follows -
1827 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1828 * pass before the routine returns.
1830 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1831 * delivered to the current task.
1833 * The current task state is guaranteed to be TASK_RUNNING when this
1836 * Returns 0 when the timer has expired otherwise -EINTR
1838 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1839 const enum hrtimer_mode mode
)
1841 return schedule_hrtimeout_range(expires
, 0, mode
);
1843 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);