sched: Fix wake_affine() vs RT tasks
[linux/fpc-iii.git] / kernel / sched.c
blobdf16a0a81d62f7879052df195f4e8cea6d197a0b
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166 if (!overrun)
167 break;
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 ktime_t now;
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
228 #endif
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_CGROUP_SCHED
238 #include <linux/cgroup.h>
240 struct cfs_rq;
242 static LIST_HEAD(task_groups);
244 /* task group related information */
245 struct task_group {
246 struct cgroup_subsys_state css;
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
254 #endif
256 #ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
260 struct rt_bandwidth rt_bandwidth;
261 #endif
263 struct rcu_head rcu;
264 struct list_head list;
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
271 #define root_task_group init_task_group
273 /* task_group_lock serializes add/remove of task groups and also changes to
274 * a task group's cpu shares.
276 static DEFINE_SPINLOCK(task_group_lock);
278 #ifdef CONFIG_FAIR_GROUP_SCHED
280 #ifdef CONFIG_SMP
281 static int root_task_group_empty(void)
283 return list_empty(&root_task_group.children);
285 #endif
287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
297 #define MIN_SHARES 2
298 #define MAX_SHARES (1UL << 18)
300 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301 #endif
303 /* Default task group.
304 * Every task in system belong to this group at bootup.
306 struct task_group init_task_group;
308 /* return group to which a task belongs */
309 static inline struct task_group *task_group(struct task_struct *p)
311 struct task_group *tg;
313 #ifdef CONFIG_CGROUP_SCHED
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
316 #else
317 tg = &init_task_group;
318 #endif
319 return tg;
322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
323 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
328 #endif
330 #ifdef CONFIG_RT_GROUP_SCHED
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
333 #endif
336 #else
338 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 static inline struct task_group *task_group(struct task_struct *p)
341 return NULL;
344 #endif /* CONFIG_CGROUP_SCHED */
346 /* CFS-related fields in a runqueue */
347 struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
351 u64 exec_clock;
352 u64 min_vruntime;
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
357 struct list_head tasks;
358 struct list_head *balance_iterator;
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
364 struct sched_entity *curr, *next, *last;
366 unsigned int nr_spread_over;
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
382 #ifdef CONFIG_SMP
384 * the part of load.weight contributed by tasks
386 unsigned long task_weight;
389 * h_load = weight * f(tg)
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
394 unsigned long h_load;
397 * this cpu's part of tg->shares
399 unsigned long shares;
402 * load.weight at the time we set shares
404 unsigned long rq_weight;
405 #endif
406 #endif
409 /* Real-Time classes' related field in a runqueue: */
410 struct rt_rq {
411 struct rt_prio_array active;
412 unsigned long rt_nr_running;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 struct {
415 int curr; /* highest queued rt task prio */
416 #ifdef CONFIG_SMP
417 int next; /* next highest */
418 #endif
419 } highest_prio;
420 #endif
421 #ifdef CONFIG_SMP
422 unsigned long rt_nr_migratory;
423 unsigned long rt_nr_total;
424 int overloaded;
425 struct plist_head pushable_tasks;
426 #endif
427 int rt_throttled;
428 u64 rt_time;
429 u64 rt_runtime;
430 /* Nests inside the rq lock: */
431 spinlock_t rt_runtime_lock;
433 #ifdef CONFIG_RT_GROUP_SCHED
434 unsigned long rt_nr_boosted;
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
439 struct sched_rt_entity *rt_se;
440 #endif
443 #ifdef CONFIG_SMP
446 * We add the notion of a root-domain which will be used to define per-domain
447 * variables. Each exclusive cpuset essentially defines an island domain by
448 * fully partitioning the member cpus from any other cpuset. Whenever a new
449 * exclusive cpuset is created, we also create and attach a new root-domain
450 * object.
453 struct root_domain {
454 atomic_t refcount;
455 cpumask_var_t span;
456 cpumask_var_t online;
459 * The "RT overload" flag: it gets set if a CPU has more than
460 * one runnable RT task.
462 cpumask_var_t rto_mask;
463 atomic_t rto_count;
464 #ifdef CONFIG_SMP
465 struct cpupri cpupri;
466 #endif
470 * By default the system creates a single root-domain with all cpus as
471 * members (mimicking the global state we have today).
473 static struct root_domain def_root_domain;
475 #endif
478 * This is the main, per-CPU runqueue data structure.
480 * Locking rule: those places that want to lock multiple runqueues
481 * (such as the load balancing or the thread migration code), lock
482 * acquire operations must be ordered by ascending &runqueue.
484 struct rq {
485 /* runqueue lock: */
486 spinlock_t lock;
489 * nr_running and cpu_load should be in the same cacheline because
490 * remote CPUs use both these fields when doing load calculation.
492 unsigned long nr_running;
493 #define CPU_LOAD_IDX_MAX 5
494 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
495 #ifdef CONFIG_NO_HZ
496 unsigned long last_tick_seen;
497 unsigned char in_nohz_recently;
498 #endif
499 /* capture load from *all* tasks on this cpu: */
500 struct load_weight load;
501 unsigned long nr_load_updates;
502 u64 nr_switches;
504 struct cfs_rq cfs;
505 struct rt_rq rt;
507 #ifdef CONFIG_FAIR_GROUP_SCHED
508 /* list of leaf cfs_rq on this cpu: */
509 struct list_head leaf_cfs_rq_list;
510 #endif
511 #ifdef CONFIG_RT_GROUP_SCHED
512 struct list_head leaf_rt_rq_list;
513 #endif
516 * This is part of a global counter where only the total sum
517 * over all CPUs matters. A task can increase this counter on
518 * one CPU and if it got migrated afterwards it may decrease
519 * it on another CPU. Always updated under the runqueue lock:
521 unsigned long nr_uninterruptible;
523 struct task_struct *curr, *idle;
524 unsigned long next_balance;
525 struct mm_struct *prev_mm;
527 u64 clock;
528 u64 clock_task;
530 atomic_t nr_iowait;
532 #ifdef CONFIG_SMP
533 struct root_domain *rd;
534 struct sched_domain *sd;
536 unsigned long cpu_power;
538 unsigned char idle_at_tick;
539 /* For active balancing */
540 int post_schedule;
541 int active_balance;
542 int push_cpu;
543 /* cpu of this runqueue: */
544 int cpu;
545 int online;
547 unsigned long avg_load_per_task;
549 struct task_struct *migration_thread;
550 struct list_head migration_queue;
552 u64 rt_avg;
553 u64 age_stamp;
554 u64 idle_stamp;
555 u64 avg_idle;
556 #endif
558 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
559 u64 prev_irq_time;
560 #endif
562 /* calc_load related fields */
563 unsigned long calc_load_update;
564 long calc_load_active;
566 #ifdef CONFIG_SCHED_HRTICK
567 #ifdef CONFIG_SMP
568 int hrtick_csd_pending;
569 struct call_single_data hrtick_csd;
570 #endif
571 struct hrtimer hrtick_timer;
572 #endif
574 #ifdef CONFIG_SCHEDSTATS
575 /* latency stats */
576 struct sched_info rq_sched_info;
577 unsigned long long rq_cpu_time;
578 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
580 /* sys_sched_yield() stats */
581 unsigned int yld_count;
583 /* schedule() stats */
584 unsigned int sched_switch;
585 unsigned int sched_count;
586 unsigned int sched_goidle;
588 /* try_to_wake_up() stats */
589 unsigned int ttwu_count;
590 unsigned int ttwu_local;
592 /* BKL stats */
593 unsigned int bkl_count;
594 #endif
597 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
599 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
601 static inline int cpu_of(struct rq *rq)
603 #ifdef CONFIG_SMP
604 return rq->cpu;
605 #else
606 return 0;
607 #endif
611 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
612 * See detach_destroy_domains: synchronize_sched for details.
614 * The domain tree of any CPU may only be accessed from within
615 * preempt-disabled sections.
617 #define for_each_domain(cpu, __sd) \
618 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
620 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
621 #define this_rq() (&__get_cpu_var(runqueues))
622 #define task_rq(p) cpu_rq(task_cpu(p))
623 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
624 #define raw_rq() (&__raw_get_cpu_var(runqueues))
626 static u64 irq_time_cpu(int cpu);
627 static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
629 inline void update_rq_clock(struct rq *rq)
631 int cpu = cpu_of(rq);
632 u64 irq_time;
634 rq->clock = sched_clock_cpu(cpu_of(rq));
635 irq_time = irq_time_cpu(cpu);
636 if (rq->clock - irq_time > rq->clock_task)
637 rq->clock_task = rq->clock - irq_time;
639 sched_irq_time_avg_update(rq, irq_time);
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
645 #ifdef CONFIG_SCHED_DEBUG
646 # define const_debug __read_mostly
647 #else
648 # define const_debug static const
649 #endif
652 * runqueue_is_locked
653 * @cpu: the processor in question.
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
659 int runqueue_is_locked(int cpu)
661 return spin_is_locked(&cpu_rq(cpu)->lock);
665 * Debugging: various feature bits
668 #define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
671 enum {
672 #include "sched_features.h"
675 #undef SCHED_FEAT
677 #define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
680 const_debug unsigned int sysctl_sched_features =
681 #include "sched_features.h"
684 #undef SCHED_FEAT
686 #ifdef CONFIG_SCHED_DEBUG
687 #define SCHED_FEAT(name, enabled) \
688 #name ,
690 static __read_mostly char *sched_feat_names[] = {
691 #include "sched_features.h"
692 NULL
695 #undef SCHED_FEAT
697 static int sched_feat_show(struct seq_file *m, void *v)
699 int i;
701 for (i = 0; sched_feat_names[i]; i++) {
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
706 seq_puts(m, "\n");
708 return 0;
711 static ssize_t
712 sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
715 char buf[64];
716 char *cmp;
717 int neg = 0;
718 int i;
720 if (cnt > 63)
721 cnt = 63;
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
726 buf[cnt] = 0;
727 cmp = strstrip(buf);
729 if (strncmp(buf, "NO_", 3) == 0) {
730 neg = 1;
731 cmp += 3;
734 for (i = 0; sched_feat_names[i]; i++) {
735 if (strcmp(cmp, sched_feat_names[i]) == 0) {
736 if (neg)
737 sysctl_sched_features &= ~(1UL << i);
738 else
739 sysctl_sched_features |= (1UL << i);
740 break;
744 if (!sched_feat_names[i])
745 return -EINVAL;
747 filp->f_pos += cnt;
749 return cnt;
752 static int sched_feat_open(struct inode *inode, struct file *filp)
754 return single_open(filp, sched_feat_show, NULL);
757 static const struct file_operations sched_feat_fops = {
758 .open = sched_feat_open,
759 .write = sched_feat_write,
760 .read = seq_read,
761 .llseek = seq_lseek,
762 .release = single_release,
765 static __init int sched_init_debug(void)
767 debugfs_create_file("sched_features", 0644, NULL, NULL,
768 &sched_feat_fops);
770 return 0;
772 late_initcall(sched_init_debug);
774 #endif
776 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
779 * Number of tasks to iterate in a single balance run.
780 * Limited because this is done with IRQs disabled.
782 const_debug unsigned int sysctl_sched_nr_migrate = 32;
785 * ratelimit for updating the group shares.
786 * default: 0.25ms
788 unsigned int sysctl_sched_shares_ratelimit = 250000;
789 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
792 * Inject some fuzzyness into changing the per-cpu group shares
793 * this avoids remote rq-locks at the expense of fairness.
794 * default: 4
796 unsigned int sysctl_sched_shares_thresh = 4;
799 * period over which we average the RT time consumption, measured
800 * in ms.
802 * default: 1s
804 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
807 * period over which we measure -rt task cpu usage in us.
808 * default: 1s
810 unsigned int sysctl_sched_rt_period = 1000000;
812 static __read_mostly int scheduler_running;
815 * part of the period that we allow rt tasks to run in us.
816 * default: 0.95s
818 int sysctl_sched_rt_runtime = 950000;
820 static inline u64 global_rt_period(void)
822 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
825 static inline u64 global_rt_runtime(void)
827 if (sysctl_sched_rt_runtime < 0)
828 return RUNTIME_INF;
830 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
833 #ifndef prepare_arch_switch
834 # define prepare_arch_switch(next) do { } while (0)
835 #endif
836 #ifndef finish_arch_switch
837 # define finish_arch_switch(prev) do { } while (0)
838 #endif
840 static inline int task_current(struct rq *rq, struct task_struct *p)
842 return rq->curr == p;
845 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
846 static inline int task_running(struct rq *rq, struct task_struct *p)
848 return task_current(rq, p);
851 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
855 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857 #ifdef CONFIG_DEBUG_SPINLOCK
858 /* this is a valid case when another task releases the spinlock */
859 rq->lock.owner = current;
860 #endif
862 * If we are tracking spinlock dependencies then we have to
863 * fix up the runqueue lock - which gets 'carried over' from
864 * prev into current:
866 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868 spin_unlock_irq(&rq->lock);
871 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
872 static inline int task_running(struct rq *rq, struct task_struct *p)
874 #ifdef CONFIG_SMP
875 return p->oncpu;
876 #else
877 return task_current(rq, p);
878 #endif
881 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 #ifdef CONFIG_SMP
885 * We can optimise this out completely for !SMP, because the
886 * SMP rebalancing from interrupt is the only thing that cares
887 * here.
889 next->oncpu = 1;
890 #endif
891 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
892 spin_unlock_irq(&rq->lock);
893 #else
894 spin_unlock(&rq->lock);
895 #endif
898 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 #ifdef CONFIG_SMP
902 * After ->oncpu is cleared, the task can be moved to a different CPU.
903 * We must ensure this doesn't happen until the switch is completely
904 * finished.
906 smp_wmb();
907 prev->oncpu = 0;
908 #endif
909 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910 local_irq_enable();
911 #endif
913 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
916 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
917 * against ttwu().
919 static inline int task_is_waking(struct task_struct *p)
921 return unlikely(p->state == TASK_WAKING);
925 * __task_rq_lock - lock the runqueue a given task resides on.
926 * Must be called interrupts disabled.
928 static inline struct rq *__task_rq_lock(struct task_struct *p)
929 __acquires(rq->lock)
931 struct rq *rq;
933 for (;;) {
934 rq = task_rq(p);
935 spin_lock(&rq->lock);
936 if (likely(rq == task_rq(p)))
937 return rq;
938 spin_unlock(&rq->lock);
943 * task_rq_lock - lock the runqueue a given task resides on and disable
944 * interrupts. Note the ordering: we can safely lookup the task_rq without
945 * explicitly disabling preemption.
947 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
948 __acquires(rq->lock)
950 struct rq *rq;
952 for (;;) {
953 local_irq_save(*flags);
954 rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
958 spin_unlock_irqrestore(&rq->lock, *flags);
962 void task_rq_unlock_wait(struct task_struct *p)
964 struct rq *rq = task_rq(p);
966 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
967 spin_unlock_wait(&rq->lock);
970 static void __task_rq_unlock(struct rq *rq)
971 __releases(rq->lock)
973 spin_unlock(&rq->lock);
976 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
977 __releases(rq->lock)
979 spin_unlock_irqrestore(&rq->lock, *flags);
983 * this_rq_lock - lock this runqueue and disable interrupts.
985 static struct rq *this_rq_lock(void)
986 __acquires(rq->lock)
988 struct rq *rq;
990 local_irq_disable();
991 rq = this_rq();
992 spin_lock(&rq->lock);
994 return rq;
997 #ifdef CONFIG_SCHED_HRTICK
999 * Use HR-timers to deliver accurate preemption points.
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1014 static inline int hrtick_enabled(struct rq *rq)
1016 if (!sched_feat(HRTICK))
1017 return 0;
1018 if (!cpu_active(cpu_of(rq)))
1019 return 0;
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1023 static void hrtick_clear(struct rq *rq)
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1033 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1039 spin_lock(&rq->lock);
1040 update_rq_clock(rq);
1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1042 spin_unlock(&rq->lock);
1044 return HRTIMER_NORESTART;
1047 #ifdef CONFIG_SMP
1049 * called from hardirq (IPI) context
1051 static void __hrtick_start(void *arg)
1053 struct rq *rq = arg;
1055 spin_lock(&rq->lock);
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
1058 spin_unlock(&rq->lock);
1062 * Called to set the hrtick timer state.
1064 * called with rq->lock held and irqs disabled
1066 static void hrtick_start(struct rq *rq, u64 delay)
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1071 hrtimer_set_expires(timer, time);
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1077 rq->hrtick_csd_pending = 1;
1081 static int
1082 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1084 int cpu = (int)(long)hcpu;
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
1093 hrtick_clear(cpu_rq(cpu));
1094 return NOTIFY_OK;
1097 return NOTIFY_DONE;
1100 static __init void init_hrtick(void)
1102 hotcpu_notifier(hotplug_hrtick, 0);
1104 #else
1106 * Called to set the hrtick timer state.
1108 * called with rq->lock held and irqs disabled
1110 static void hrtick_start(struct rq *rq, u64 delay)
1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1113 HRTIMER_MODE_REL_PINNED, 0);
1116 static inline void init_hrtick(void)
1119 #endif /* CONFIG_SMP */
1121 static void init_rq_hrtick(struct rq *rq)
1123 #ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129 #endif
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
1134 #else /* CONFIG_SCHED_HRTICK */
1135 static inline void hrtick_clear(struct rq *rq)
1139 static inline void init_rq_hrtick(struct rq *rq)
1143 static inline void init_hrtick(void)
1146 #endif /* CONFIG_SCHED_HRTICK */
1149 * resched_task - mark a task 'to be rescheduled now'.
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1155 #ifdef CONFIG_SMP
1157 #ifndef tsk_is_polling
1158 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159 #endif
1161 static void resched_task(struct task_struct *p)
1163 int cpu;
1165 assert_spin_locked(&task_rq(p)->lock);
1167 if (test_tsk_need_resched(p))
1168 return;
1170 set_tsk_need_resched(p);
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1182 static void resched_cpu(int cpu)
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1187 if (!spin_trylock_irqsave(&rq->lock, flags))
1188 return;
1189 resched_task(cpu_curr(cpu));
1190 spin_unlock_irqrestore(&rq->lock, flags);
1193 #ifdef CONFIG_NO_HZ
1195 * When add_timer_on() enqueues a timer into the timer wheel of an
1196 * idle CPU then this timer might expire before the next timer event
1197 * which is scheduled to wake up that CPU. In case of a completely
1198 * idle system the next event might even be infinite time into the
1199 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1200 * leaves the inner idle loop so the newly added timer is taken into
1201 * account when the CPU goes back to idle and evaluates the timer
1202 * wheel for the next timer event.
1204 void wake_up_idle_cpu(int cpu)
1206 struct rq *rq = cpu_rq(cpu);
1208 if (cpu == smp_processor_id())
1209 return;
1212 * This is safe, as this function is called with the timer
1213 * wheel base lock of (cpu) held. When the CPU is on the way
1214 * to idle and has not yet set rq->curr to idle then it will
1215 * be serialized on the timer wheel base lock and take the new
1216 * timer into account automatically.
1218 if (rq->curr != rq->idle)
1219 return;
1222 * We can set TIF_RESCHED on the idle task of the other CPU
1223 * lockless. The worst case is that the other CPU runs the
1224 * idle task through an additional NOOP schedule()
1226 set_tsk_need_resched(rq->idle);
1228 /* NEED_RESCHED must be visible before we test polling */
1229 smp_mb();
1230 if (!tsk_is_polling(rq->idle))
1231 smp_send_reschedule(cpu);
1233 #endif /* CONFIG_NO_HZ */
1235 static u64 sched_avg_period(void)
1237 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1240 static void sched_avg_update(struct rq *rq)
1242 s64 period = sched_avg_period();
1244 while ((s64)(rq->clock - rq->age_stamp) > period) {
1246 * Inline assembly required to prevent the compiler
1247 * optimising this loop into a divmod call.
1248 * See __iter_div_u64_rem() for another example of this.
1250 asm("" : "+rm" (rq->age_stamp));
1251 rq->age_stamp += period;
1252 rq->rt_avg /= 2;
1256 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1258 rq->rt_avg += rt_delta;
1259 sched_avg_update(rq);
1262 #else /* !CONFIG_SMP */
1263 static void resched_task(struct task_struct *p)
1265 assert_spin_locked(&task_rq(p)->lock);
1266 set_tsk_need_resched(p);
1269 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1273 static void sched_avg_update(struct rq *rq)
1276 #endif /* CONFIG_SMP */
1278 #if BITS_PER_LONG == 32
1279 # define WMULT_CONST (~0UL)
1280 #else
1281 # define WMULT_CONST (1UL << 32)
1282 #endif
1284 #define WMULT_SHIFT 32
1287 * Shift right and round:
1289 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1292 * delta *= weight / lw
1294 static unsigned long
1295 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1296 struct load_weight *lw)
1298 u64 tmp;
1300 if (!lw->inv_weight) {
1301 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1302 lw->inv_weight = 1;
1303 else
1304 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1305 / (lw->weight+1);
1308 tmp = (u64)delta_exec * weight;
1310 * Check whether we'd overflow the 64-bit multiplication:
1312 if (unlikely(tmp > WMULT_CONST))
1313 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1314 WMULT_SHIFT/2);
1315 else
1316 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1318 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1321 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1323 lw->weight += inc;
1324 lw->inv_weight = 0;
1327 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1329 lw->weight -= dec;
1330 lw->inv_weight = 0;
1334 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1335 * of tasks with abnormal "nice" values across CPUs the contribution that
1336 * each task makes to its run queue's load is weighted according to its
1337 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1338 * scaled version of the new time slice allocation that they receive on time
1339 * slice expiry etc.
1342 #define WEIGHT_IDLEPRIO 3
1343 #define WMULT_IDLEPRIO 1431655765
1346 * Nice levels are multiplicative, with a gentle 10% change for every
1347 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1348 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1349 * that remained on nice 0.
1351 * The "10% effect" is relative and cumulative: from _any_ nice level,
1352 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1353 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1354 * If a task goes up by ~10% and another task goes down by ~10% then
1355 * the relative distance between them is ~25%.)
1357 static const int prio_to_weight[40] = {
1358 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1359 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1360 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1361 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1362 /* 0 */ 1024, 820, 655, 526, 423,
1363 /* 5 */ 335, 272, 215, 172, 137,
1364 /* 10 */ 110, 87, 70, 56, 45,
1365 /* 15 */ 36, 29, 23, 18, 15,
1369 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1371 * In cases where the weight does not change often, we can use the
1372 * precalculated inverse to speed up arithmetics by turning divisions
1373 * into multiplications:
1375 static const u32 prio_to_wmult[40] = {
1376 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1377 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1378 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1379 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1380 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1381 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1382 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1383 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1386 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1389 * runqueue iterator, to support SMP load-balancing between different
1390 * scheduling classes, without having to expose their internal data
1391 * structures to the load-balancing proper:
1393 struct rq_iterator {
1394 void *arg;
1395 struct task_struct *(*start)(void *);
1396 struct task_struct *(*next)(void *);
1399 #ifdef CONFIG_SMP
1400 static unsigned long
1401 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1402 unsigned long max_load_move, struct sched_domain *sd,
1403 enum cpu_idle_type idle, int *all_pinned,
1404 int *this_best_prio, struct rq_iterator *iterator);
1406 static int
1407 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1408 struct sched_domain *sd, enum cpu_idle_type idle,
1409 struct rq_iterator *iterator);
1410 #endif
1412 /* Time spent by the tasks of the cpu accounting group executing in ... */
1413 enum cpuacct_stat_index {
1414 CPUACCT_STAT_USER, /* ... user mode */
1415 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1417 CPUACCT_STAT_NSTATS,
1420 #ifdef CONFIG_CGROUP_CPUACCT
1421 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1422 static void cpuacct_update_stats(struct task_struct *tsk,
1423 enum cpuacct_stat_index idx, cputime_t val);
1424 #else
1425 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1426 static inline void cpuacct_update_stats(struct task_struct *tsk,
1427 enum cpuacct_stat_index idx, cputime_t val) {}
1428 #endif
1430 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1432 update_load_add(&rq->load, load);
1435 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1437 update_load_sub(&rq->load, load);
1440 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1441 typedef int (*tg_visitor)(struct task_group *, void *);
1444 * Iterate the full tree, calling @down when first entering a node and @up when
1445 * leaving it for the final time.
1447 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1449 struct task_group *parent, *child;
1450 int ret;
1452 rcu_read_lock();
1453 parent = &root_task_group;
1454 down:
1455 ret = (*down)(parent, data);
1456 if (ret)
1457 goto out_unlock;
1458 list_for_each_entry_rcu(child, &parent->children, siblings) {
1459 parent = child;
1460 goto down;
1463 continue;
1465 ret = (*up)(parent, data);
1466 if (ret)
1467 goto out_unlock;
1469 child = parent;
1470 parent = parent->parent;
1471 if (parent)
1472 goto up;
1473 out_unlock:
1474 rcu_read_unlock();
1476 return ret;
1479 static int tg_nop(struct task_group *tg, void *data)
1481 return 0;
1483 #endif
1485 #ifdef CONFIG_SMP
1486 /* Used instead of source_load when we know the type == 0 */
1487 static unsigned long weighted_cpuload(const int cpu)
1489 return cpu_rq(cpu)->load.weight;
1493 * Return a low guess at the load of a migration-source cpu weighted
1494 * according to the scheduling class and "nice" value.
1496 * We want to under-estimate the load of migration sources, to
1497 * balance conservatively.
1499 static unsigned long source_load(int cpu, int type)
1501 struct rq *rq = cpu_rq(cpu);
1502 unsigned long total = weighted_cpuload(cpu);
1504 if (type == 0 || !sched_feat(LB_BIAS))
1505 return total;
1507 return min(rq->cpu_load[type-1], total);
1511 * Return a high guess at the load of a migration-target cpu weighted
1512 * according to the scheduling class and "nice" value.
1514 static unsigned long target_load(int cpu, int type)
1516 struct rq *rq = cpu_rq(cpu);
1517 unsigned long total = weighted_cpuload(cpu);
1519 if (type == 0 || !sched_feat(LB_BIAS))
1520 return total;
1522 return max(rq->cpu_load[type-1], total);
1525 static unsigned long power_of(int cpu)
1527 return cpu_rq(cpu)->cpu_power;
1530 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1532 static unsigned long cpu_avg_load_per_task(int cpu)
1534 struct rq *rq = cpu_rq(cpu);
1535 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1537 if (nr_running)
1538 rq->avg_load_per_task = rq->load.weight / nr_running;
1539 else
1540 rq->avg_load_per_task = 0;
1542 return rq->avg_load_per_task;
1545 #ifdef CONFIG_FAIR_GROUP_SCHED
1547 static __read_mostly unsigned long *update_shares_data;
1549 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1552 * Calculate and set the cpu's group shares.
1554 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1555 unsigned long sd_shares,
1556 unsigned long sd_rq_weight,
1557 unsigned long *usd_rq_weight)
1559 unsigned long shares, rq_weight;
1560 int boost = 0;
1562 rq_weight = usd_rq_weight[cpu];
1563 if (!rq_weight) {
1564 boost = 1;
1565 rq_weight = NICE_0_LOAD;
1569 * \Sum_j shares_j * rq_weight_i
1570 * shares_i = -----------------------------
1571 * \Sum_j rq_weight_j
1573 shares = (sd_shares * rq_weight) / sd_rq_weight;
1574 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1576 if (abs(shares - tg->se[cpu]->load.weight) >
1577 sysctl_sched_shares_thresh) {
1578 struct rq *rq = cpu_rq(cpu);
1579 unsigned long flags;
1581 spin_lock_irqsave(&rq->lock, flags);
1582 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1583 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1584 __set_se_shares(tg->se[cpu], shares);
1585 spin_unlock_irqrestore(&rq->lock, flags);
1590 * Re-compute the task group their per cpu shares over the given domain.
1591 * This needs to be done in a bottom-up fashion because the rq weight of a
1592 * parent group depends on the shares of its child groups.
1594 static int tg_shares_up(struct task_group *tg, void *data)
1596 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1597 unsigned long *usd_rq_weight;
1598 struct sched_domain *sd = data;
1599 unsigned long flags;
1600 int i;
1602 if (!tg->se[0])
1603 return 0;
1605 local_irq_save(flags);
1606 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1608 for_each_cpu(i, sched_domain_span(sd)) {
1609 weight = tg->cfs_rq[i]->load.weight;
1610 usd_rq_weight[i] = weight;
1612 rq_weight += weight;
1614 * If there are currently no tasks on the cpu pretend there
1615 * is one of average load so that when a new task gets to
1616 * run here it will not get delayed by group starvation.
1618 if (!weight)
1619 weight = NICE_0_LOAD;
1621 sum_weight += weight;
1622 shares += tg->cfs_rq[i]->shares;
1625 if (!rq_weight)
1626 rq_weight = sum_weight;
1628 if ((!shares && rq_weight) || shares > tg->shares)
1629 shares = tg->shares;
1631 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1632 shares = tg->shares;
1634 for_each_cpu(i, sched_domain_span(sd))
1635 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1637 local_irq_restore(flags);
1639 return 0;
1643 * Compute the cpu's hierarchical load factor for each task group.
1644 * This needs to be done in a top-down fashion because the load of a child
1645 * group is a fraction of its parents load.
1647 static int tg_load_down(struct task_group *tg, void *data)
1649 unsigned long load;
1650 long cpu = (long)data;
1652 if (!tg->parent) {
1653 load = cpu_rq(cpu)->load.weight;
1654 } else {
1655 load = tg->parent->cfs_rq[cpu]->h_load;
1656 load *= tg->cfs_rq[cpu]->shares;
1657 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1660 tg->cfs_rq[cpu]->h_load = load;
1662 return 0;
1665 static void update_shares(struct sched_domain *sd)
1667 s64 elapsed;
1668 u64 now;
1670 if (root_task_group_empty())
1671 return;
1673 now = cpu_clock(raw_smp_processor_id());
1674 elapsed = now - sd->last_update;
1676 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1677 sd->last_update = now;
1678 walk_tg_tree(tg_nop, tg_shares_up, sd);
1682 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1684 if (root_task_group_empty())
1685 return;
1687 spin_unlock(&rq->lock);
1688 update_shares(sd);
1689 spin_lock(&rq->lock);
1692 static void update_h_load(long cpu)
1694 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1697 #else
1699 static inline void update_shares(struct sched_domain *sd)
1703 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1707 #endif
1709 #ifdef CONFIG_PREEMPT
1711 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1714 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1715 * way at the expense of forcing extra atomic operations in all
1716 * invocations. This assures that the double_lock is acquired using the
1717 * same underlying policy as the spinlock_t on this architecture, which
1718 * reduces latency compared to the unfair variant below. However, it
1719 * also adds more overhead and therefore may reduce throughput.
1721 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1722 __releases(this_rq->lock)
1723 __acquires(busiest->lock)
1724 __acquires(this_rq->lock)
1726 spin_unlock(&this_rq->lock);
1727 double_rq_lock(this_rq, busiest);
1729 return 1;
1732 #else
1734 * Unfair double_lock_balance: Optimizes throughput at the expense of
1735 * latency by eliminating extra atomic operations when the locks are
1736 * already in proper order on entry. This favors lower cpu-ids and will
1737 * grant the double lock to lower cpus over higher ids under contention,
1738 * regardless of entry order into the function.
1740 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1741 __releases(this_rq->lock)
1742 __acquires(busiest->lock)
1743 __acquires(this_rq->lock)
1745 int ret = 0;
1747 if (unlikely(!spin_trylock(&busiest->lock))) {
1748 if (busiest < this_rq) {
1749 spin_unlock(&this_rq->lock);
1750 spin_lock(&busiest->lock);
1751 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1752 ret = 1;
1753 } else
1754 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1756 return ret;
1759 #endif /* CONFIG_PREEMPT */
1762 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1764 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766 if (unlikely(!irqs_disabled())) {
1767 /* printk() doesn't work good under rq->lock */
1768 spin_unlock(&this_rq->lock);
1769 BUG_ON(1);
1772 return _double_lock_balance(this_rq, busiest);
1775 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1776 __releases(busiest->lock)
1778 spin_unlock(&busiest->lock);
1779 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1781 #endif
1783 #ifdef CONFIG_FAIR_GROUP_SCHED
1784 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1786 #ifdef CONFIG_SMP
1787 cfs_rq->shares = shares;
1788 #endif
1790 #endif
1792 static void calc_load_account_active(struct rq *this_rq);
1793 static void update_sysctl(void);
1795 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1797 set_task_rq(p, cpu);
1798 #ifdef CONFIG_SMP
1800 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1801 * successfuly executed on another CPU. We must ensure that updates of
1802 * per-task data have been completed by this moment.
1804 smp_wmb();
1805 task_thread_info(p)->cpu = cpu;
1806 #endif
1809 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1812 * There are no locks covering percpu hardirq/softirq time.
1813 * They are only modified in account_system_vtime, on corresponding CPU
1814 * with interrupts disabled. So, writes are safe.
1815 * They are read and saved off onto struct rq in update_rq_clock().
1816 * This may result in other CPU reading this CPU's irq time and can
1817 * race with irq/account_system_vtime on this CPU. We would either get old
1818 * or new value (or semi updated value on 32 bit) with a side effect of
1819 * accounting a slice of irq time to wrong task when irq is in progress
1820 * while we read rq->clock. That is a worthy compromise in place of having
1821 * locks on each irq in account_system_time.
1823 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1824 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1826 static DEFINE_PER_CPU(u64, irq_start_time);
1827 static int sched_clock_irqtime;
1829 void enable_sched_clock_irqtime(void)
1831 sched_clock_irqtime = 1;
1834 void disable_sched_clock_irqtime(void)
1836 sched_clock_irqtime = 0;
1839 static u64 irq_time_cpu(int cpu)
1841 if (!sched_clock_irqtime)
1842 return 0;
1844 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1847 void account_system_vtime(struct task_struct *curr)
1849 unsigned long flags;
1850 int cpu;
1851 u64 now, delta;
1853 if (!sched_clock_irqtime)
1854 return;
1856 local_irq_save(flags);
1858 cpu = smp_processor_id();
1859 now = sched_clock_cpu(cpu);
1860 delta = now - per_cpu(irq_start_time, cpu);
1861 per_cpu(irq_start_time, cpu) = now;
1863 * We do not account for softirq time from ksoftirqd here.
1864 * We want to continue accounting softirq time to ksoftirqd thread
1865 * in that case, so as not to confuse scheduler with a special task
1866 * that do not consume any time, but still wants to run.
1868 if (hardirq_count())
1869 per_cpu(cpu_hardirq_time, cpu) += delta;
1870 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1871 per_cpu(cpu_softirq_time, cpu) += delta;
1873 local_irq_restore(flags);
1875 EXPORT_SYMBOL_GPL(account_system_vtime);
1877 static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
1879 if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
1880 u64 delta_irq = curr_irq_time - rq->prev_irq_time;
1881 rq->prev_irq_time = curr_irq_time;
1882 sched_rt_avg_update(rq, delta_irq);
1886 #else
1888 static u64 irq_time_cpu(int cpu)
1890 return 0;
1893 static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
1895 #endif
1897 #include "sched_stats.h"
1898 #include "sched_idletask.c"
1899 #include "sched_fair.c"
1900 #include "sched_rt.c"
1901 #ifdef CONFIG_SCHED_DEBUG
1902 # include "sched_debug.c"
1903 #endif
1905 #define sched_class_highest (&rt_sched_class)
1906 #define for_each_class(class) \
1907 for (class = sched_class_highest; class; class = class->next)
1909 static void inc_nr_running(struct rq *rq)
1911 rq->nr_running++;
1914 static void dec_nr_running(struct rq *rq)
1916 rq->nr_running--;
1919 static void set_load_weight(struct task_struct *p)
1921 if (task_has_rt_policy(p)) {
1922 p->se.load.weight = 0;
1923 p->se.load.inv_weight = WMULT_CONST;
1924 return;
1928 * SCHED_IDLE tasks get minimal weight:
1930 if (p->policy == SCHED_IDLE) {
1931 p->se.load.weight = WEIGHT_IDLEPRIO;
1932 p->se.load.inv_weight = WMULT_IDLEPRIO;
1933 return;
1936 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1937 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1940 static void update_avg(u64 *avg, u64 sample)
1942 s64 diff = sample - *avg;
1943 *avg += diff >> 3;
1946 static void
1947 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1949 if (wakeup)
1950 p->se.start_runtime = p->se.sum_exec_runtime;
1952 sched_info_queued(p);
1953 p->sched_class->enqueue_task(rq, p, wakeup, head);
1954 p->se.on_rq = 1;
1957 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1959 if (sleep) {
1960 if (p->se.last_wakeup) {
1961 update_avg(&p->se.avg_overlap,
1962 p->se.sum_exec_runtime - p->se.last_wakeup);
1963 p->se.last_wakeup = 0;
1964 } else {
1965 update_avg(&p->se.avg_wakeup,
1966 sysctl_sched_wakeup_granularity);
1970 sched_info_dequeued(p);
1971 p->sched_class->dequeue_task(rq, p, sleep);
1972 p->se.on_rq = 0;
1976 * __normal_prio - return the priority that is based on the static prio
1978 static inline int __normal_prio(struct task_struct *p)
1980 return p->static_prio;
1984 * Calculate the expected normal priority: i.e. priority
1985 * without taking RT-inheritance into account. Might be
1986 * boosted by interactivity modifiers. Changes upon fork,
1987 * setprio syscalls, and whenever the interactivity
1988 * estimator recalculates.
1990 static inline int normal_prio(struct task_struct *p)
1992 int prio;
1994 if (task_has_rt_policy(p))
1995 prio = MAX_RT_PRIO-1 - p->rt_priority;
1996 else
1997 prio = __normal_prio(p);
1998 return prio;
2002 * Calculate the current priority, i.e. the priority
2003 * taken into account by the scheduler. This value might
2004 * be boosted by RT tasks, or might be boosted by
2005 * interactivity modifiers. Will be RT if the task got
2006 * RT-boosted. If not then it returns p->normal_prio.
2008 static int effective_prio(struct task_struct *p)
2010 p->normal_prio = normal_prio(p);
2012 * If we are RT tasks or we were boosted to RT priority,
2013 * keep the priority unchanged. Otherwise, update priority
2014 * to the normal priority:
2016 if (!rt_prio(p->prio))
2017 return p->normal_prio;
2018 return p->prio;
2022 * activate_task - move a task to the runqueue.
2024 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
2026 if (task_contributes_to_load(p))
2027 rq->nr_uninterruptible--;
2029 enqueue_task(rq, p, wakeup, false);
2030 inc_nr_running(rq);
2034 * deactivate_task - remove a task from the runqueue.
2036 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
2038 if (task_contributes_to_load(p))
2039 rq->nr_uninterruptible++;
2041 dequeue_task(rq, p, sleep);
2042 dec_nr_running(rq);
2046 * task_curr - is this task currently executing on a CPU?
2047 * @p: the task in question.
2049 inline int task_curr(const struct task_struct *p)
2051 return cpu_curr(task_cpu(p)) == p;
2054 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2055 const struct sched_class *prev_class,
2056 int oldprio, int running)
2058 if (prev_class != p->sched_class) {
2059 if (prev_class->switched_from)
2060 prev_class->switched_from(rq, p, running);
2061 p->sched_class->switched_to(rq, p, running);
2062 } else
2063 p->sched_class->prio_changed(rq, p, oldprio, running);
2067 * kthread_bind - bind a just-created kthread to a cpu.
2068 * @p: thread created by kthread_create().
2069 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2071 * Description: This function is equivalent to set_cpus_allowed(),
2072 * except that @cpu doesn't need to be online, and the thread must be
2073 * stopped (i.e., just returned from kthread_create()).
2075 * Function lives here instead of kthread.c because it messes with
2076 * scheduler internals which require locking.
2078 void kthread_bind(struct task_struct *p, unsigned int cpu)
2080 /* Must have done schedule() in kthread() before we set_task_cpu */
2081 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2082 WARN_ON(1);
2083 return;
2086 p->cpus_allowed = cpumask_of_cpu(cpu);
2087 p->rt.nr_cpus_allowed = 1;
2088 p->flags |= PF_THREAD_BOUND;
2090 EXPORT_SYMBOL(kthread_bind);
2092 #ifdef CONFIG_SMP
2094 * Is this task likely cache-hot:
2096 static int
2097 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2099 s64 delta;
2101 if (p->sched_class != &fair_sched_class)
2102 return 0;
2104 if (unlikely(p->policy == SCHED_IDLE))
2105 return 0;
2108 * Buddy candidates are cache hot:
2110 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2111 (&p->se == cfs_rq_of(&p->se)->next ||
2112 &p->se == cfs_rq_of(&p->se)->last))
2113 return 1;
2115 if (sysctl_sched_migration_cost == -1)
2116 return 1;
2117 if (sysctl_sched_migration_cost == 0)
2118 return 0;
2120 delta = now - p->se.exec_start;
2122 return delta < (s64)sysctl_sched_migration_cost;
2126 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2128 int old_cpu = task_cpu(p);
2130 #ifdef CONFIG_SCHED_DEBUG
2132 * We should never call set_task_cpu() on a blocked task,
2133 * ttwu() will sort out the placement.
2135 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2136 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2137 #endif
2139 trace_sched_migrate_task(p, new_cpu);
2141 if (old_cpu != new_cpu) {
2142 p->se.nr_migrations++;
2143 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2144 1, 1, NULL, 0);
2147 __set_task_cpu(p, new_cpu);
2150 struct migration_req {
2151 struct list_head list;
2153 struct task_struct *task;
2154 int dest_cpu;
2156 struct completion done;
2160 * The task's runqueue lock must be held.
2161 * Returns true if you have to wait for migration thread.
2163 static int
2164 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2166 struct rq *rq = task_rq(p);
2169 * If the task is not on a runqueue (and not running), then
2170 * the next wake-up will properly place the task.
2172 if (!p->se.on_rq && !task_running(rq, p))
2173 return 0;
2175 init_completion(&req->done);
2176 req->task = p;
2177 req->dest_cpu = dest_cpu;
2178 list_add(&req->list, &rq->migration_queue);
2180 return 1;
2184 * wait_task_context_switch - wait for a thread to complete at least one
2185 * context switch.
2187 * @p must not be current.
2189 void wait_task_context_switch(struct task_struct *p)
2191 unsigned long nvcsw, nivcsw, flags;
2192 int running;
2193 struct rq *rq;
2195 nvcsw = p->nvcsw;
2196 nivcsw = p->nivcsw;
2197 for (;;) {
2199 * The runqueue is assigned before the actual context
2200 * switch. We need to take the runqueue lock.
2202 * We could check initially without the lock but it is
2203 * very likely that we need to take the lock in every
2204 * iteration.
2206 rq = task_rq_lock(p, &flags);
2207 running = task_running(rq, p);
2208 task_rq_unlock(rq, &flags);
2210 if (likely(!running))
2211 break;
2213 * The switch count is incremented before the actual
2214 * context switch. We thus wait for two switches to be
2215 * sure at least one completed.
2217 if ((p->nvcsw - nvcsw) > 1)
2218 break;
2219 if ((p->nivcsw - nivcsw) > 1)
2220 break;
2222 cpu_relax();
2227 * wait_task_inactive - wait for a thread to unschedule.
2229 * If @match_state is nonzero, it's the @p->state value just checked and
2230 * not expected to change. If it changes, i.e. @p might have woken up,
2231 * then return zero. When we succeed in waiting for @p to be off its CPU,
2232 * we return a positive number (its total switch count). If a second call
2233 * a short while later returns the same number, the caller can be sure that
2234 * @p has remained unscheduled the whole time.
2236 * The caller must ensure that the task *will* unschedule sometime soon,
2237 * else this function might spin for a *long* time. This function can't
2238 * be called with interrupts off, or it may introduce deadlock with
2239 * smp_call_function() if an IPI is sent by the same process we are
2240 * waiting to become inactive.
2242 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2244 unsigned long flags;
2245 int running, on_rq;
2246 unsigned long ncsw;
2247 struct rq *rq;
2249 for (;;) {
2251 * We do the initial early heuristics without holding
2252 * any task-queue locks at all. We'll only try to get
2253 * the runqueue lock when things look like they will
2254 * work out!
2256 rq = task_rq(p);
2259 * If the task is actively running on another CPU
2260 * still, just relax and busy-wait without holding
2261 * any locks.
2263 * NOTE! Since we don't hold any locks, it's not
2264 * even sure that "rq" stays as the right runqueue!
2265 * But we don't care, since "task_running()" will
2266 * return false if the runqueue has changed and p
2267 * is actually now running somewhere else!
2269 while (task_running(rq, p)) {
2270 if (match_state && unlikely(p->state != match_state))
2271 return 0;
2272 cpu_relax();
2276 * Ok, time to look more closely! We need the rq
2277 * lock now, to be *sure*. If we're wrong, we'll
2278 * just go back and repeat.
2280 rq = task_rq_lock(p, &flags);
2281 trace_sched_wait_task(rq, p);
2282 running = task_running(rq, p);
2283 on_rq = p->se.on_rq;
2284 ncsw = 0;
2285 if (!match_state || p->state == match_state)
2286 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2287 task_rq_unlock(rq, &flags);
2290 * If it changed from the expected state, bail out now.
2292 if (unlikely(!ncsw))
2293 break;
2296 * Was it really running after all now that we
2297 * checked with the proper locks actually held?
2299 * Oops. Go back and try again..
2301 if (unlikely(running)) {
2302 cpu_relax();
2303 continue;
2307 * It's not enough that it's not actively running,
2308 * it must be off the runqueue _entirely_, and not
2309 * preempted!
2311 * So if it was still runnable (but just not actively
2312 * running right now), it's preempted, and we should
2313 * yield - it could be a while.
2315 if (unlikely(on_rq)) {
2316 schedule_timeout_uninterruptible(1);
2317 continue;
2321 * Ahh, all good. It wasn't running, and it wasn't
2322 * runnable, which means that it will never become
2323 * running in the future either. We're all done!
2325 break;
2328 return ncsw;
2331 /***
2332 * kick_process - kick a running thread to enter/exit the kernel
2333 * @p: the to-be-kicked thread
2335 * Cause a process which is running on another CPU to enter
2336 * kernel-mode, without any delay. (to get signals handled.)
2338 * NOTE: this function doesnt have to take the runqueue lock,
2339 * because all it wants to ensure is that the remote task enters
2340 * the kernel. If the IPI races and the task has been migrated
2341 * to another CPU then no harm is done and the purpose has been
2342 * achieved as well.
2344 void kick_process(struct task_struct *p)
2346 int cpu;
2348 preempt_disable();
2349 cpu = task_cpu(p);
2350 if ((cpu != smp_processor_id()) && task_curr(p))
2351 smp_send_reschedule(cpu);
2352 preempt_enable();
2354 EXPORT_SYMBOL_GPL(kick_process);
2355 #endif /* CONFIG_SMP */
2358 * task_oncpu_function_call - call a function on the cpu on which a task runs
2359 * @p: the task to evaluate
2360 * @func: the function to be called
2361 * @info: the function call argument
2363 * Calls the function @func when the task is currently running. This might
2364 * be on the current CPU, which just calls the function directly
2366 void task_oncpu_function_call(struct task_struct *p,
2367 void (*func) (void *info), void *info)
2369 int cpu;
2371 preempt_disable();
2372 cpu = task_cpu(p);
2373 if (task_curr(p))
2374 smp_call_function_single(cpu, func, info, 1);
2375 preempt_enable();
2378 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2380 const struct sched_class *class;
2382 if (p->sched_class == rq->curr->sched_class) {
2383 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2384 } else {
2385 for_each_class(class) {
2386 if (class == rq->curr->sched_class)
2387 break;
2388 if (class == p->sched_class) {
2389 resched_task(rq->curr);
2390 break;
2396 #ifdef CONFIG_SMP
2398 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2400 static int select_fallback_rq(int cpu, struct task_struct *p)
2402 int dest_cpu;
2403 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2405 /* Look for allowed, online CPU in same node. */
2406 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2407 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2408 return dest_cpu;
2410 /* Any allowed, online CPU? */
2411 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2412 if (dest_cpu < nr_cpu_ids)
2413 return dest_cpu;
2415 /* No more Mr. Nice Guy. */
2416 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2417 dest_cpu = cpuset_cpus_allowed_fallback(p);
2419 * Don't tell them about moving exiting tasks or
2420 * kernel threads (both mm NULL), since they never
2421 * leave kernel.
2423 if (p->mm && printk_ratelimit()) {
2424 printk(KERN_INFO "process %d (%s) no "
2425 "longer affine to cpu%d\n",
2426 task_pid_nr(p), p->comm, cpu);
2430 return dest_cpu;
2434 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2436 static inline
2437 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2439 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2442 * In order not to call set_task_cpu() on a blocking task we need
2443 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2444 * cpu.
2446 * Since this is common to all placement strategies, this lives here.
2448 * [ this allows ->select_task() to simply return task_cpu(p) and
2449 * not worry about this generic constraint ]
2451 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2452 !cpu_online(cpu)))
2453 cpu = select_fallback_rq(task_cpu(p), p);
2455 return cpu;
2457 #endif
2459 /***
2460 * try_to_wake_up - wake up a thread
2461 * @p: the to-be-woken-up thread
2462 * @state: the mask of task states that can be woken
2463 * @sync: do a synchronous wakeup?
2465 * Put it on the run-queue if it's not already there. The "current"
2466 * thread is always on the run-queue (except when the actual
2467 * re-schedule is in progress), and as such you're allowed to do
2468 * the simpler "current->state = TASK_RUNNING" to mark yourself
2469 * runnable without the overhead of this.
2471 * returns failure only if the task is already active.
2473 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2474 int wake_flags)
2476 int cpu, orig_cpu, this_cpu, success = 0;
2477 unsigned long flags;
2478 struct rq *rq, *orig_rq;
2480 if (!sched_feat(SYNC_WAKEUPS))
2481 wake_flags &= ~WF_SYNC;
2483 this_cpu = get_cpu();
2485 smp_wmb();
2486 rq = orig_rq = task_rq_lock(p, &flags);
2487 update_rq_clock(rq);
2488 if (!(p->state & state))
2489 goto out;
2491 if (p->se.on_rq)
2492 goto out_running;
2494 cpu = task_cpu(p);
2495 orig_cpu = cpu;
2497 #ifdef CONFIG_SMP
2498 if (unlikely(task_running(rq, p)))
2499 goto out_activate;
2502 * In order to handle concurrent wakeups and release the rq->lock
2503 * we put the task in TASK_WAKING state.
2505 * First fix up the nr_uninterruptible count:
2507 if (task_contributes_to_load(p)) {
2508 if (likely(cpu_online(orig_cpu)))
2509 rq->nr_uninterruptible--;
2510 else
2511 this_rq()->nr_uninterruptible--;
2513 p->state = TASK_WAKING;
2515 if (p->sched_class->task_waking)
2516 p->sched_class->task_waking(rq, p);
2518 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2519 if (cpu != orig_cpu)
2520 set_task_cpu(p, cpu);
2521 __task_rq_unlock(rq);
2523 rq = cpu_rq(cpu);
2524 spin_lock(&rq->lock);
2525 update_rq_clock(rq);
2528 * We migrated the task without holding either rq->lock, however
2529 * since the task is not on the task list itself, nobody else
2530 * will try and migrate the task, hence the rq should match the
2531 * cpu we just moved it to.
2533 WARN_ON(task_cpu(p) != cpu);
2534 WARN_ON(p->state != TASK_WAKING);
2536 #ifdef CONFIG_SCHEDSTATS
2537 schedstat_inc(rq, ttwu_count);
2538 if (cpu == this_cpu)
2539 schedstat_inc(rq, ttwu_local);
2540 else {
2541 struct sched_domain *sd;
2542 for_each_domain(this_cpu, sd) {
2543 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2544 schedstat_inc(sd, ttwu_wake_remote);
2545 break;
2549 #endif /* CONFIG_SCHEDSTATS */
2551 out_activate:
2552 #endif /* CONFIG_SMP */
2553 schedstat_inc(p, se.nr_wakeups);
2554 if (wake_flags & WF_SYNC)
2555 schedstat_inc(p, se.nr_wakeups_sync);
2556 if (orig_cpu != cpu)
2557 schedstat_inc(p, se.nr_wakeups_migrate);
2558 if (cpu == this_cpu)
2559 schedstat_inc(p, se.nr_wakeups_local);
2560 else
2561 schedstat_inc(p, se.nr_wakeups_remote);
2562 activate_task(rq, p, 1);
2563 success = 1;
2566 * Only attribute actual wakeups done by this task.
2568 if (!in_interrupt()) {
2569 struct sched_entity *se = &current->se;
2570 u64 sample = se->sum_exec_runtime;
2572 if (se->last_wakeup)
2573 sample -= se->last_wakeup;
2574 else
2575 sample -= se->start_runtime;
2576 update_avg(&se->avg_wakeup, sample);
2578 se->last_wakeup = se->sum_exec_runtime;
2581 out_running:
2582 trace_sched_wakeup(rq, p, success);
2583 check_preempt_curr(rq, p, wake_flags);
2585 p->state = TASK_RUNNING;
2586 #ifdef CONFIG_SMP
2587 if (p->sched_class->task_woken)
2588 p->sched_class->task_woken(rq, p);
2590 if (unlikely(rq->idle_stamp)) {
2591 u64 delta = rq->clock - rq->idle_stamp;
2592 u64 max = 2*sysctl_sched_migration_cost;
2594 if (delta > max)
2595 rq->avg_idle = max;
2596 else
2597 update_avg(&rq->avg_idle, delta);
2598 rq->idle_stamp = 0;
2600 #endif
2601 out:
2602 task_rq_unlock(rq, &flags);
2603 put_cpu();
2605 return success;
2609 * wake_up_process - Wake up a specific process
2610 * @p: The process to be woken up.
2612 * Attempt to wake up the nominated process and move it to the set of runnable
2613 * processes. Returns 1 if the process was woken up, 0 if it was already
2614 * running.
2616 * It may be assumed that this function implies a write memory barrier before
2617 * changing the task state if and only if any tasks are woken up.
2619 int wake_up_process(struct task_struct *p)
2621 return try_to_wake_up(p, TASK_ALL, 0);
2623 EXPORT_SYMBOL(wake_up_process);
2625 int wake_up_state(struct task_struct *p, unsigned int state)
2627 return try_to_wake_up(p, state, 0);
2631 * Perform scheduler related setup for a newly forked process p.
2632 * p is forked by current.
2634 * __sched_fork() is basic setup used by init_idle() too:
2636 static void __sched_fork(struct task_struct *p)
2638 p->se.exec_start = 0;
2639 p->se.sum_exec_runtime = 0;
2640 p->se.prev_sum_exec_runtime = 0;
2641 p->se.nr_migrations = 0;
2642 p->se.last_wakeup = 0;
2643 p->se.avg_overlap = 0;
2644 p->se.start_runtime = 0;
2645 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2646 p->se.avg_running = 0;
2648 #ifdef CONFIG_SCHEDSTATS
2649 p->se.wait_start = 0;
2650 p->se.wait_max = 0;
2651 p->se.wait_count = 0;
2652 p->se.wait_sum = 0;
2654 p->se.sleep_start = 0;
2655 p->se.sleep_max = 0;
2656 p->se.sum_sleep_runtime = 0;
2658 p->se.block_start = 0;
2659 p->se.block_max = 0;
2660 p->se.exec_max = 0;
2661 p->se.slice_max = 0;
2663 p->se.nr_migrations_cold = 0;
2664 p->se.nr_failed_migrations_affine = 0;
2665 p->se.nr_failed_migrations_running = 0;
2666 p->se.nr_failed_migrations_hot = 0;
2667 p->se.nr_forced_migrations = 0;
2669 p->se.nr_wakeups = 0;
2670 p->se.nr_wakeups_sync = 0;
2671 p->se.nr_wakeups_migrate = 0;
2672 p->se.nr_wakeups_local = 0;
2673 p->se.nr_wakeups_remote = 0;
2674 p->se.nr_wakeups_affine = 0;
2675 p->se.nr_wakeups_affine_attempts = 0;
2676 p->se.nr_wakeups_passive = 0;
2677 p->se.nr_wakeups_idle = 0;
2679 #endif
2681 INIT_LIST_HEAD(&p->rt.run_list);
2682 p->se.on_rq = 0;
2683 INIT_LIST_HEAD(&p->se.group_node);
2685 #ifdef CONFIG_PREEMPT_NOTIFIERS
2686 INIT_HLIST_HEAD(&p->preempt_notifiers);
2687 #endif
2691 * fork()/clone()-time setup:
2693 void sched_fork(struct task_struct *p, int clone_flags)
2695 int cpu = get_cpu();
2697 __sched_fork(p);
2699 * We mark the process as running here. This guarantees that
2700 * nobody will actually run it, and a signal or other external
2701 * event cannot wake it up and insert it on the runqueue either.
2703 p->state = TASK_RUNNING;
2706 * Revert to default priority/policy on fork if requested.
2708 if (unlikely(p->sched_reset_on_fork)) {
2709 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2710 p->policy = SCHED_NORMAL;
2711 p->normal_prio = p->static_prio;
2714 if (PRIO_TO_NICE(p->static_prio) < 0) {
2715 p->static_prio = NICE_TO_PRIO(0);
2716 p->normal_prio = p->static_prio;
2717 set_load_weight(p);
2721 * We don't need the reset flag anymore after the fork. It has
2722 * fulfilled its duty:
2724 p->sched_reset_on_fork = 0;
2728 * Make sure we do not leak PI boosting priority to the child.
2730 p->prio = current->normal_prio;
2732 if (!rt_prio(p->prio))
2733 p->sched_class = &fair_sched_class;
2735 if (p->sched_class->task_fork)
2736 p->sched_class->task_fork(p);
2738 set_task_cpu(p, cpu);
2740 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2741 if (likely(sched_info_on()))
2742 memset(&p->sched_info, 0, sizeof(p->sched_info));
2743 #endif
2744 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2745 p->oncpu = 0;
2746 #endif
2747 #ifdef CONFIG_PREEMPT
2748 /* Want to start with kernel preemption disabled. */
2749 task_thread_info(p)->preempt_count = 1;
2750 #endif
2751 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2753 put_cpu();
2757 * wake_up_new_task - wake up a newly created task for the first time.
2759 * This function will do some initial scheduler statistics housekeeping
2760 * that must be done for every newly created context, then puts the task
2761 * on the runqueue and wakes it.
2763 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2765 unsigned long flags;
2766 struct rq *rq;
2767 int cpu = get_cpu();
2769 #ifdef CONFIG_SMP
2770 rq = task_rq_lock(p, &flags);
2771 p->state = TASK_WAKING;
2774 * Fork balancing, do it here and not earlier because:
2775 * - cpus_allowed can change in the fork path
2776 * - any previously selected cpu might disappear through hotplug
2778 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2779 * without people poking at ->cpus_allowed.
2781 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2782 set_task_cpu(p, cpu);
2784 p->state = TASK_RUNNING;
2785 task_rq_unlock(rq, &flags);
2786 #endif
2788 rq = task_rq_lock(p, &flags);
2789 update_rq_clock(rq);
2790 activate_task(rq, p, 0);
2791 trace_sched_wakeup_new(rq, p, 1);
2792 check_preempt_curr(rq, p, WF_FORK);
2793 #ifdef CONFIG_SMP
2794 if (p->sched_class->task_woken)
2795 p->sched_class->task_woken(rq, p);
2796 #endif
2797 task_rq_unlock(rq, &flags);
2798 put_cpu();
2801 #ifdef CONFIG_PREEMPT_NOTIFIERS
2804 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2805 * @notifier: notifier struct to register
2807 void preempt_notifier_register(struct preempt_notifier *notifier)
2809 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2811 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2814 * preempt_notifier_unregister - no longer interested in preemption notifications
2815 * @notifier: notifier struct to unregister
2817 * This is safe to call from within a preemption notifier.
2819 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2821 hlist_del(&notifier->link);
2823 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2825 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2827 struct preempt_notifier *notifier;
2828 struct hlist_node *node;
2830 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2831 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2834 static void
2835 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2836 struct task_struct *next)
2838 struct preempt_notifier *notifier;
2839 struct hlist_node *node;
2841 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2842 notifier->ops->sched_out(notifier, next);
2845 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2847 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2851 static void
2852 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2853 struct task_struct *next)
2857 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2860 * prepare_task_switch - prepare to switch tasks
2861 * @rq: the runqueue preparing to switch
2862 * @prev: the current task that is being switched out
2863 * @next: the task we are going to switch to.
2865 * This is called with the rq lock held and interrupts off. It must
2866 * be paired with a subsequent finish_task_switch after the context
2867 * switch.
2869 * prepare_task_switch sets up locking and calls architecture specific
2870 * hooks.
2872 static inline void
2873 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2874 struct task_struct *next)
2876 fire_sched_out_preempt_notifiers(prev, next);
2877 prepare_lock_switch(rq, next);
2878 prepare_arch_switch(next);
2882 * finish_task_switch - clean up after a task-switch
2883 * @rq: runqueue associated with task-switch
2884 * @prev: the thread we just switched away from.
2886 * finish_task_switch must be called after the context switch, paired
2887 * with a prepare_task_switch call before the context switch.
2888 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2889 * and do any other architecture-specific cleanup actions.
2891 * Note that we may have delayed dropping an mm in context_switch(). If
2892 * so, we finish that here outside of the runqueue lock. (Doing it
2893 * with the lock held can cause deadlocks; see schedule() for
2894 * details.)
2896 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2897 __releases(rq->lock)
2899 struct mm_struct *mm = rq->prev_mm;
2900 long prev_state;
2902 rq->prev_mm = NULL;
2905 * A task struct has one reference for the use as "current".
2906 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2907 * schedule one last time. The schedule call will never return, and
2908 * the scheduled task must drop that reference.
2909 * The test for TASK_DEAD must occur while the runqueue locks are
2910 * still held, otherwise prev could be scheduled on another cpu, die
2911 * there before we look at prev->state, and then the reference would
2912 * be dropped twice.
2913 * Manfred Spraul <manfred@colorfullife.com>
2915 prev_state = prev->state;
2916 finish_arch_switch(prev);
2917 perf_event_task_sched_in(current, cpu_of(rq));
2918 finish_lock_switch(rq, prev);
2920 fire_sched_in_preempt_notifiers(current);
2921 if (mm)
2922 mmdrop(mm);
2923 if (unlikely(prev_state == TASK_DEAD)) {
2925 * Remove function-return probe instances associated with this
2926 * task and put them back on the free list.
2928 kprobe_flush_task(prev);
2929 put_task_struct(prev);
2933 #ifdef CONFIG_SMP
2935 /* assumes rq->lock is held */
2936 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2938 if (prev->sched_class->pre_schedule)
2939 prev->sched_class->pre_schedule(rq, prev);
2942 /* rq->lock is NOT held, but preemption is disabled */
2943 static inline void post_schedule(struct rq *rq)
2945 if (rq->post_schedule) {
2946 unsigned long flags;
2948 spin_lock_irqsave(&rq->lock, flags);
2949 if (rq->curr->sched_class->post_schedule)
2950 rq->curr->sched_class->post_schedule(rq);
2951 spin_unlock_irqrestore(&rq->lock, flags);
2953 rq->post_schedule = 0;
2957 #else
2959 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2963 static inline void post_schedule(struct rq *rq)
2967 #endif
2970 * schedule_tail - first thing a freshly forked thread must call.
2971 * @prev: the thread we just switched away from.
2973 asmlinkage void schedule_tail(struct task_struct *prev)
2974 __releases(rq->lock)
2976 struct rq *rq = this_rq();
2978 finish_task_switch(rq, prev);
2981 * FIXME: do we need to worry about rq being invalidated by the
2982 * task_switch?
2984 post_schedule(rq);
2986 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2987 /* In this case, finish_task_switch does not reenable preemption */
2988 preempt_enable();
2989 #endif
2990 if (current->set_child_tid)
2991 put_user(task_pid_vnr(current), current->set_child_tid);
2995 * context_switch - switch to the new MM and the new
2996 * thread's register state.
2998 static inline void
2999 context_switch(struct rq *rq, struct task_struct *prev,
3000 struct task_struct *next)
3002 struct mm_struct *mm, *oldmm;
3004 prepare_task_switch(rq, prev, next);
3005 trace_sched_switch(rq, prev, next);
3006 mm = next->mm;
3007 oldmm = prev->active_mm;
3009 * For paravirt, this is coupled with an exit in switch_to to
3010 * combine the page table reload and the switch backend into
3011 * one hypercall.
3013 arch_start_context_switch(prev);
3015 if (unlikely(!mm)) {
3016 next->active_mm = oldmm;
3017 atomic_inc(&oldmm->mm_count);
3018 enter_lazy_tlb(oldmm, next);
3019 } else
3020 switch_mm(oldmm, mm, next);
3022 if (unlikely(!prev->mm)) {
3023 prev->active_mm = NULL;
3024 rq->prev_mm = oldmm;
3027 * Since the runqueue lock will be released by the next
3028 * task (which is an invalid locking op but in the case
3029 * of the scheduler it's an obvious special-case), so we
3030 * do an early lockdep release here:
3032 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3033 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3034 #endif
3036 /* Here we just switch the register state and the stack. */
3037 switch_to(prev, next, prev);
3039 barrier();
3041 * this_rq must be evaluated again because prev may have moved
3042 * CPUs since it called schedule(), thus the 'rq' on its stack
3043 * frame will be invalid.
3045 finish_task_switch(this_rq(), prev);
3049 * nr_running, nr_uninterruptible and nr_context_switches:
3051 * externally visible scheduler statistics: current number of runnable
3052 * threads, current number of uninterruptible-sleeping threads, total
3053 * number of context switches performed since bootup.
3055 unsigned long nr_running(void)
3057 unsigned long i, sum = 0;
3059 for_each_online_cpu(i)
3060 sum += cpu_rq(i)->nr_running;
3062 return sum;
3065 unsigned long nr_uninterruptible(void)
3067 unsigned long i, sum = 0;
3069 for_each_possible_cpu(i)
3070 sum += cpu_rq(i)->nr_uninterruptible;
3073 * Since we read the counters lockless, it might be slightly
3074 * inaccurate. Do not allow it to go below zero though:
3076 if (unlikely((long)sum < 0))
3077 sum = 0;
3079 return sum;
3082 unsigned long long nr_context_switches(void)
3084 int i;
3085 unsigned long long sum = 0;
3087 for_each_possible_cpu(i)
3088 sum += cpu_rq(i)->nr_switches;
3090 return sum;
3093 unsigned long nr_iowait(void)
3095 unsigned long i, sum = 0;
3097 for_each_possible_cpu(i)
3098 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3100 return sum;
3103 unsigned long nr_iowait_cpu(void)
3105 struct rq *this = this_rq();
3106 return atomic_read(&this->nr_iowait);
3109 unsigned long this_cpu_load(void)
3111 struct rq *this = this_rq();
3112 return this->cpu_load[0];
3116 /* Variables and functions for calc_load */
3117 static atomic_long_t calc_load_tasks;
3118 static unsigned long calc_load_update;
3119 unsigned long avenrun[3];
3120 EXPORT_SYMBOL(avenrun);
3123 * get_avenrun - get the load average array
3124 * @loads: pointer to dest load array
3125 * @offset: offset to add
3126 * @shift: shift count to shift the result left
3128 * These values are estimates at best, so no need for locking.
3130 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3132 loads[0] = (avenrun[0] + offset) << shift;
3133 loads[1] = (avenrun[1] + offset) << shift;
3134 loads[2] = (avenrun[2] + offset) << shift;
3137 static unsigned long
3138 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3140 load *= exp;
3141 load += active * (FIXED_1 - exp);
3142 return load >> FSHIFT;
3146 * calc_load - update the avenrun load estimates 10 ticks after the
3147 * CPUs have updated calc_load_tasks.
3149 void calc_global_load(void)
3151 unsigned long upd = calc_load_update + 10;
3152 long active;
3154 if (time_before(jiffies, upd))
3155 return;
3157 active = atomic_long_read(&calc_load_tasks);
3158 active = active > 0 ? active * FIXED_1 : 0;
3160 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3161 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3162 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3164 calc_load_update += LOAD_FREQ;
3168 * Either called from update_cpu_load() or from a cpu going idle
3170 static void calc_load_account_active(struct rq *this_rq)
3172 long nr_active, delta;
3174 nr_active = this_rq->nr_running;
3175 nr_active += (long) this_rq->nr_uninterruptible;
3177 if (nr_active != this_rq->calc_load_active) {
3178 delta = nr_active - this_rq->calc_load_active;
3179 this_rq->calc_load_active = nr_active;
3180 atomic_long_add(delta, &calc_load_tasks);
3185 * Update rq->cpu_load[] statistics. This function is usually called every
3186 * scheduler tick (TICK_NSEC).
3188 static void update_cpu_load(struct rq *this_rq)
3190 unsigned long this_load = this_rq->load.weight;
3191 int i, scale;
3193 this_rq->nr_load_updates++;
3195 /* Update our load: */
3196 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3197 unsigned long old_load, new_load;
3199 /* scale is effectively 1 << i now, and >> i divides by scale */
3201 old_load = this_rq->cpu_load[i];
3202 new_load = this_load;
3204 * Round up the averaging division if load is increasing. This
3205 * prevents us from getting stuck on 9 if the load is 10, for
3206 * example.
3208 if (new_load > old_load)
3209 new_load += scale-1;
3210 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3213 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3214 this_rq->calc_load_update += LOAD_FREQ;
3215 calc_load_account_active(this_rq);
3218 sched_avg_update(this_rq);
3221 #ifdef CONFIG_SMP
3224 * double_rq_lock - safely lock two runqueues
3226 * Note this does not disable interrupts like task_rq_lock,
3227 * you need to do so manually before calling.
3229 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3230 __acquires(rq1->lock)
3231 __acquires(rq2->lock)
3233 BUG_ON(!irqs_disabled());
3234 if (rq1 == rq2) {
3235 spin_lock(&rq1->lock);
3236 __acquire(rq2->lock); /* Fake it out ;) */
3237 } else {
3238 if (rq1 < rq2) {
3239 spin_lock(&rq1->lock);
3240 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3241 } else {
3242 spin_lock(&rq2->lock);
3243 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3246 update_rq_clock(rq1);
3247 update_rq_clock(rq2);
3251 * double_rq_unlock - safely unlock two runqueues
3253 * Note this does not restore interrupts like task_rq_unlock,
3254 * you need to do so manually after calling.
3256 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3257 __releases(rq1->lock)
3258 __releases(rq2->lock)
3260 spin_unlock(&rq1->lock);
3261 if (rq1 != rq2)
3262 spin_unlock(&rq2->lock);
3263 else
3264 __release(rq2->lock);
3268 * sched_exec - execve() is a valuable balancing opportunity, because at
3269 * this point the task has the smallest effective memory and cache footprint.
3271 void sched_exec(void)
3273 struct task_struct *p = current;
3274 struct migration_req req;
3275 unsigned long flags;
3276 struct rq *rq;
3277 int dest_cpu;
3279 rq = task_rq_lock(p, &flags);
3280 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3281 if (dest_cpu == smp_processor_id())
3282 goto unlock;
3285 * select_task_rq() can race against ->cpus_allowed
3287 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3288 likely(cpu_active(dest_cpu)) &&
3289 migrate_task(p, dest_cpu, &req)) {
3290 /* Need to wait for migration thread (might exit: take ref). */
3291 struct task_struct *mt = rq->migration_thread;
3293 get_task_struct(mt);
3294 task_rq_unlock(rq, &flags);
3295 wake_up_process(mt);
3296 put_task_struct(mt);
3297 wait_for_completion(&req.done);
3299 return;
3301 unlock:
3302 task_rq_unlock(rq, &flags);
3306 * pull_task - move a task from a remote runqueue to the local runqueue.
3307 * Both runqueues must be locked.
3309 static void pull_task(struct rq *src_rq, struct task_struct *p,
3310 struct rq *this_rq, int this_cpu)
3312 deactivate_task(src_rq, p, 0);
3313 set_task_cpu(p, this_cpu);
3314 activate_task(this_rq, p, 0);
3315 check_preempt_curr(this_rq, p, 0);
3319 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3321 static
3322 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3323 struct sched_domain *sd, enum cpu_idle_type idle,
3324 int *all_pinned)
3326 int tsk_cache_hot = 0;
3328 * We do not migrate tasks that are:
3329 * 1) running (obviously), or
3330 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3331 * 3) are cache-hot on their current CPU.
3333 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3334 schedstat_inc(p, se.nr_failed_migrations_affine);
3335 return 0;
3337 *all_pinned = 0;
3339 if (task_running(rq, p)) {
3340 schedstat_inc(p, se.nr_failed_migrations_running);
3341 return 0;
3345 * Aggressive migration if:
3346 * 1) task is cache cold, or
3347 * 2) too many balance attempts have failed.
3350 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
3351 if (!tsk_cache_hot ||
3352 sd->nr_balance_failed > sd->cache_nice_tries) {
3353 #ifdef CONFIG_SCHEDSTATS
3354 if (tsk_cache_hot) {
3355 schedstat_inc(sd, lb_hot_gained[idle]);
3356 schedstat_inc(p, se.nr_forced_migrations);
3358 #endif
3359 return 1;
3362 if (tsk_cache_hot) {
3363 schedstat_inc(p, se.nr_failed_migrations_hot);
3364 return 0;
3366 return 1;
3369 static unsigned long
3370 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3371 unsigned long max_load_move, struct sched_domain *sd,
3372 enum cpu_idle_type idle, int *all_pinned,
3373 int *this_best_prio, struct rq_iterator *iterator)
3375 int loops = 0, pulled = 0, pinned = 0;
3376 struct task_struct *p;
3377 long rem_load_move = max_load_move;
3379 if (max_load_move == 0)
3380 goto out;
3382 pinned = 1;
3385 * Start the load-balancing iterator:
3387 p = iterator->start(iterator->arg);
3388 next:
3389 if (!p || loops++ > sysctl_sched_nr_migrate)
3390 goto out;
3392 if ((p->se.load.weight >> 1) > rem_load_move ||
3393 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3394 p = iterator->next(iterator->arg);
3395 goto next;
3398 pull_task(busiest, p, this_rq, this_cpu);
3399 pulled++;
3400 rem_load_move -= p->se.load.weight;
3402 #ifdef CONFIG_PREEMPT
3404 * NEWIDLE balancing is a source of latency, so preemptible kernels
3405 * will stop after the first task is pulled to minimize the critical
3406 * section.
3408 if (idle == CPU_NEWLY_IDLE)
3409 goto out;
3410 #endif
3413 * We only want to steal up to the prescribed amount of weighted load.
3415 if (rem_load_move > 0) {
3416 if (p->prio < *this_best_prio)
3417 *this_best_prio = p->prio;
3418 p = iterator->next(iterator->arg);
3419 goto next;
3421 out:
3423 * Right now, this is one of only two places pull_task() is called,
3424 * so we can safely collect pull_task() stats here rather than
3425 * inside pull_task().
3427 schedstat_add(sd, lb_gained[idle], pulled);
3429 if (all_pinned)
3430 *all_pinned = pinned;
3432 return max_load_move - rem_load_move;
3436 * move_tasks tries to move up to max_load_move weighted load from busiest to
3437 * this_rq, as part of a balancing operation within domain "sd".
3438 * Returns 1 if successful and 0 otherwise.
3440 * Called with both runqueues locked.
3442 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3443 unsigned long max_load_move,
3444 struct sched_domain *sd, enum cpu_idle_type idle,
3445 int *all_pinned)
3447 const struct sched_class *class = sched_class_highest;
3448 unsigned long total_load_moved = 0;
3449 int this_best_prio = this_rq->curr->prio;
3451 do {
3452 total_load_moved +=
3453 class->load_balance(this_rq, this_cpu, busiest,
3454 max_load_move - total_load_moved,
3455 sd, idle, all_pinned, &this_best_prio);
3456 class = class->next;
3458 #ifdef CONFIG_PREEMPT
3460 * NEWIDLE balancing is a source of latency, so preemptible
3461 * kernels will stop after the first task is pulled to minimize
3462 * the critical section.
3464 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3465 break;
3466 #endif
3467 } while (class && max_load_move > total_load_moved);
3469 return total_load_moved > 0;
3472 static int
3473 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3474 struct sched_domain *sd, enum cpu_idle_type idle,
3475 struct rq_iterator *iterator)
3477 struct task_struct *p = iterator->start(iterator->arg);
3478 int pinned = 0;
3480 while (p) {
3481 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3482 pull_task(busiest, p, this_rq, this_cpu);
3484 * Right now, this is only the second place pull_task()
3485 * is called, so we can safely collect pull_task()
3486 * stats here rather than inside pull_task().
3488 schedstat_inc(sd, lb_gained[idle]);
3490 return 1;
3492 p = iterator->next(iterator->arg);
3495 return 0;
3499 * move_one_task tries to move exactly one task from busiest to this_rq, as
3500 * part of active balancing operations within "domain".
3501 * Returns 1 if successful and 0 otherwise.
3503 * Called with both runqueues locked.
3505 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3506 struct sched_domain *sd, enum cpu_idle_type idle)
3508 const struct sched_class *class;
3510 for_each_class(class) {
3511 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3512 return 1;
3515 return 0;
3517 /********** Helpers for find_busiest_group ************************/
3519 * sd_lb_stats - Structure to store the statistics of a sched_domain
3520 * during load balancing.
3522 struct sd_lb_stats {
3523 struct sched_group *busiest; /* Busiest group in this sd */
3524 struct sched_group *this; /* Local group in this sd */
3525 unsigned long total_load; /* Total load of all groups in sd */
3526 unsigned long total_pwr; /* Total power of all groups in sd */
3527 unsigned long avg_load; /* Average load across all groups in sd */
3529 /** Statistics of this group */
3530 unsigned long this_load;
3531 unsigned long this_load_per_task;
3532 unsigned long this_nr_running;
3533 unsigned long this_has_capacity;
3534 unsigned int this_idle_cpus;
3536 /* Statistics of the busiest group */
3537 unsigned int busiest_idle_cpus;
3538 unsigned long max_load;
3539 unsigned long busiest_load_per_task;
3540 unsigned long busiest_nr_running;
3541 unsigned long busiest_group_capacity;
3542 unsigned long busiest_has_capacity;
3543 unsigned int busiest_group_weight;
3545 int group_imb; /* Is there imbalance in this sd */
3546 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3547 int power_savings_balance; /* Is powersave balance needed for this sd */
3548 struct sched_group *group_min; /* Least loaded group in sd */
3549 struct sched_group *group_leader; /* Group which relieves group_min */
3550 unsigned long min_load_per_task; /* load_per_task in group_min */
3551 unsigned long leader_nr_running; /* Nr running of group_leader */
3552 unsigned long min_nr_running; /* Nr running of group_min */
3553 #endif
3557 * sg_lb_stats - stats of a sched_group required for load_balancing
3559 struct sg_lb_stats {
3560 unsigned long avg_load; /*Avg load across the CPUs of the group */
3561 unsigned long group_load; /* Total load over the CPUs of the group */
3562 unsigned long sum_nr_running; /* Nr tasks running in the group */
3563 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3564 unsigned long group_capacity;
3565 unsigned long idle_cpus;
3566 unsigned long group_weight;
3567 int group_imb; /* Is there an imbalance in the group ? */
3568 int group_has_capacity; /* Is there extra capacity in the group? */
3572 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3573 * @group: The group whose first cpu is to be returned.
3575 static inline unsigned int group_first_cpu(struct sched_group *group)
3577 return cpumask_first(sched_group_cpus(group));
3581 * get_sd_load_idx - Obtain the load index for a given sched domain.
3582 * @sd: The sched_domain whose load_idx is to be obtained.
3583 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3585 static inline int get_sd_load_idx(struct sched_domain *sd,
3586 enum cpu_idle_type idle)
3588 int load_idx;
3590 switch (idle) {
3591 case CPU_NOT_IDLE:
3592 load_idx = sd->busy_idx;
3593 break;
3595 case CPU_NEWLY_IDLE:
3596 load_idx = sd->newidle_idx;
3597 break;
3598 default:
3599 load_idx = sd->idle_idx;
3600 break;
3603 return load_idx;
3607 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3609 * init_sd_power_savings_stats - Initialize power savings statistics for
3610 * the given sched_domain, during load balancing.
3612 * @sd: Sched domain whose power-savings statistics are to be initialized.
3613 * @sds: Variable containing the statistics for sd.
3614 * @idle: Idle status of the CPU at which we're performing load-balancing.
3616 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3617 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3620 * Busy processors will not participate in power savings
3621 * balance.
3623 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3624 sds->power_savings_balance = 0;
3625 else {
3626 sds->power_savings_balance = 1;
3627 sds->min_nr_running = ULONG_MAX;
3628 sds->leader_nr_running = 0;
3633 * update_sd_power_savings_stats - Update the power saving stats for a
3634 * sched_domain while performing load balancing.
3636 * @group: sched_group belonging to the sched_domain under consideration.
3637 * @sds: Variable containing the statistics of the sched_domain
3638 * @local_group: Does group contain the CPU for which we're performing
3639 * load balancing ?
3640 * @sgs: Variable containing the statistics of the group.
3642 static inline void update_sd_power_savings_stats(struct sched_group *group,
3643 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3646 if (!sds->power_savings_balance)
3647 return;
3650 * If the local group is idle or completely loaded
3651 * no need to do power savings balance at this domain
3653 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3654 !sds->this_nr_running))
3655 sds->power_savings_balance = 0;
3658 * If a group is already running at full capacity or idle,
3659 * don't include that group in power savings calculations
3661 if (!sds->power_savings_balance ||
3662 sgs->sum_nr_running >= sgs->group_capacity ||
3663 !sgs->sum_nr_running)
3664 return;
3667 * Calculate the group which has the least non-idle load.
3668 * This is the group from where we need to pick up the load
3669 * for saving power
3671 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3672 (sgs->sum_nr_running == sds->min_nr_running &&
3673 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3674 sds->group_min = group;
3675 sds->min_nr_running = sgs->sum_nr_running;
3676 sds->min_load_per_task = sgs->sum_weighted_load /
3677 sgs->sum_nr_running;
3681 * Calculate the group which is almost near its
3682 * capacity but still has some space to pick up some load
3683 * from other group and save more power
3685 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3686 return;
3688 if (sgs->sum_nr_running > sds->leader_nr_running ||
3689 (sgs->sum_nr_running == sds->leader_nr_running &&
3690 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3691 sds->group_leader = group;
3692 sds->leader_nr_running = sgs->sum_nr_running;
3697 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3698 * @sds: Variable containing the statistics of the sched_domain
3699 * under consideration.
3700 * @this_cpu: Cpu at which we're currently performing load-balancing.
3701 * @imbalance: Variable to store the imbalance.
3703 * Description:
3704 * Check if we have potential to perform some power-savings balance.
3705 * If yes, set the busiest group to be the least loaded group in the
3706 * sched_domain, so that it's CPUs can be put to idle.
3708 * Returns 1 if there is potential to perform power-savings balance.
3709 * Else returns 0.
3711 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3712 int this_cpu, unsigned long *imbalance)
3714 if (!sds->power_savings_balance)
3715 return 0;
3717 if (sds->this != sds->group_leader ||
3718 sds->group_leader == sds->group_min)
3719 return 0;
3721 *imbalance = sds->min_load_per_task;
3722 sds->busiest = sds->group_min;
3724 return 1;
3727 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3728 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3729 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3731 return;
3734 static inline void update_sd_power_savings_stats(struct sched_group *group,
3735 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3737 return;
3740 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3741 int this_cpu, unsigned long *imbalance)
3743 return 0;
3745 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3748 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3750 return SCHED_LOAD_SCALE;
3753 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3755 return default_scale_freq_power(sd, cpu);
3758 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3760 unsigned long weight = sd->span_weight;
3761 unsigned long smt_gain = sd->smt_gain;
3763 smt_gain /= weight;
3765 return smt_gain;
3768 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3770 return default_scale_smt_power(sd, cpu);
3773 unsigned long scale_rt_power(int cpu)
3775 struct rq *rq = cpu_rq(cpu);
3776 u64 total, available;
3778 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3780 if (unlikely(total < rq->rt_avg)) {
3781 /* Ensures that power won't end up being negative */
3782 available = 0;
3783 } else {
3784 available = total - rq->rt_avg;
3787 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3788 total = SCHED_LOAD_SCALE;
3790 total >>= SCHED_LOAD_SHIFT;
3792 return div_u64(available, total);
3795 static void update_cpu_power(struct sched_domain *sd, int cpu)
3797 unsigned long weight = sd->span_weight;
3798 unsigned long power = SCHED_LOAD_SCALE;
3799 struct sched_group *sdg = sd->groups;
3801 if (sched_feat(ARCH_POWER))
3802 power *= arch_scale_freq_power(sd, cpu);
3803 else
3804 power *= default_scale_freq_power(sd, cpu);
3806 power >>= SCHED_LOAD_SHIFT;
3808 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3809 if (sched_feat(ARCH_POWER))
3810 power *= arch_scale_smt_power(sd, cpu);
3811 else
3812 power *= default_scale_smt_power(sd, cpu);
3814 power >>= SCHED_LOAD_SHIFT;
3817 power *= scale_rt_power(cpu);
3818 power >>= SCHED_LOAD_SHIFT;
3820 if (!power)
3821 power = 1;
3823 cpu_rq(cpu)->cpu_power = power;
3824 sdg->cpu_power = power;
3827 static void update_group_power(struct sched_domain *sd, int cpu)
3829 struct sched_domain *child = sd->child;
3830 struct sched_group *group, *sdg = sd->groups;
3831 unsigned long power;
3833 if (!child) {
3834 update_cpu_power(sd, cpu);
3835 return;
3838 power = 0;
3840 group = child->groups;
3841 do {
3842 power += group->cpu_power;
3843 group = group->next;
3844 } while (group != child->groups);
3846 sdg->cpu_power = power;
3850 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3851 * @sd: The sched_domain whose statistics are to be updated.
3852 * @group: sched_group whose statistics are to be updated.
3853 * @this_cpu: Cpu for which load balance is currently performed.
3854 * @idle: Idle status of this_cpu
3855 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3856 * @sd_idle: Idle status of the sched_domain containing group.
3857 * @local_group: Does group contain this_cpu.
3858 * @cpus: Set of cpus considered for load balancing.
3859 * @balance: Should we balance.
3860 * @sgs: variable to hold the statistics for this group.
3862 static inline void update_sg_lb_stats(struct sched_domain *sd,
3863 struct sched_group *group, int this_cpu,
3864 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3865 int local_group, const struct cpumask *cpus,
3866 int *balance, struct sg_lb_stats *sgs)
3868 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
3869 int i;
3870 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3871 unsigned long avg_load_per_task = 0;
3873 if (local_group) {
3874 balance_cpu = group_first_cpu(group);
3875 if (balance_cpu == this_cpu)
3876 update_group_power(sd, this_cpu);
3879 /* Tally up the load of all CPUs in the group */
3880 max_cpu_load = 0;
3881 min_cpu_load = ~0UL;
3882 max_nr_running = 0;
3884 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3885 struct rq *rq = cpu_rq(i);
3887 if (*sd_idle && rq->nr_running)
3888 *sd_idle = 0;
3890 /* Bias balancing toward cpus of our domain */
3891 if (local_group) {
3892 if (idle_cpu(i) && !first_idle_cpu) {
3893 first_idle_cpu = 1;
3894 balance_cpu = i;
3897 load = target_load(i, load_idx);
3898 } else {
3899 load = source_load(i, load_idx);
3900 if (load > max_cpu_load) {
3901 max_cpu_load = load;
3902 max_nr_running = rq->nr_running;
3904 if (min_cpu_load > load)
3905 min_cpu_load = load;
3908 sgs->group_load += load;
3909 sgs->sum_nr_running += rq->nr_running;
3910 sgs->sum_weighted_load += weighted_cpuload(i);
3911 if (idle_cpu(i))
3912 sgs->idle_cpus++;
3916 * First idle cpu or the first cpu(busiest) in this sched group
3917 * is eligible for doing load balancing at this and above
3918 * domains. In the newly idle case, we will allow all the cpu's
3919 * to do the newly idle load balance.
3921 if (idle != CPU_NEWLY_IDLE && local_group &&
3922 balance_cpu != this_cpu && balance) {
3923 *balance = 0;
3924 return;
3927 /* Adjust by relative CPU power of the group */
3928 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3931 * Consider the group unbalanced when the imbalance is larger
3932 * than the average weight of two tasks.
3934 * APZ: with cgroup the avg task weight can vary wildly and
3935 * might not be a suitable number - should we keep a
3936 * normalized nr_running number somewhere that negates
3937 * the hierarchy?
3939 if (sgs->sum_nr_running)
3940 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3942 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
3943 sgs->group_imb = 1;
3945 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3946 sgs->group_weight = group->group_weight;
3948 if (sgs->group_capacity > sgs->sum_nr_running)
3949 sgs->group_has_capacity = 1;
3953 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3954 * @sd: sched_domain whose statistics are to be updated.
3955 * @this_cpu: Cpu for which load balance is currently performed.
3956 * @idle: Idle status of this_cpu
3957 * @sd_idle: Idle status of the sched_domain containing group.
3958 * @cpus: Set of cpus considered for load balancing.
3959 * @balance: Should we balance.
3960 * @sds: variable to hold the statistics for this sched_domain.
3962 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3963 enum cpu_idle_type idle, int *sd_idle,
3964 const struct cpumask *cpus, int *balance,
3965 struct sd_lb_stats *sds)
3967 struct sched_domain *child = sd->child;
3968 struct sched_group *group = sd->groups;
3969 struct sg_lb_stats sgs;
3970 int load_idx, prefer_sibling = 0;
3972 if (child && child->flags & SD_PREFER_SIBLING)
3973 prefer_sibling = 1;
3975 init_sd_power_savings_stats(sd, sds, idle);
3976 load_idx = get_sd_load_idx(sd, idle);
3978 do {
3979 int local_group;
3981 local_group = cpumask_test_cpu(this_cpu,
3982 sched_group_cpus(group));
3983 memset(&sgs, 0, sizeof(sgs));
3984 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3985 local_group, cpus, balance, &sgs);
3987 if (local_group && balance && !(*balance))
3988 return;
3990 sds->total_load += sgs.group_load;
3991 sds->total_pwr += group->cpu_power;
3994 * In case the child domain prefers tasks go to siblings
3995 * first, lower the group capacity to one so that we'll try
3996 * and move all the excess tasks away. We lower the capacity
3997 * of a group only if the local group has the capacity to fit
3998 * these excess tasks, i.e. nr_running < group_capacity. The
3999 * extra check prevents the case where you always pull from the
4000 * heaviest group when it is already under-utilized (possible
4001 * with a large weight task outweighs the tasks on the system).
4003 if (prefer_sibling && !local_group && sds->this_has_capacity)
4004 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4006 if (local_group) {
4007 sds->this_load = sgs.avg_load;
4008 sds->this = group;
4009 sds->this_nr_running = sgs.sum_nr_running;
4010 sds->this_load_per_task = sgs.sum_weighted_load;
4011 sds->this_has_capacity = sgs.group_has_capacity;
4012 sds->this_idle_cpus = sgs.idle_cpus;
4013 } else if (sgs.avg_load > sds->max_load &&
4014 (sgs.sum_nr_running > sgs.group_capacity ||
4015 sgs.group_imb)) {
4016 sds->max_load = sgs.avg_load;
4017 sds->busiest = group;
4018 sds->busiest_nr_running = sgs.sum_nr_running;
4019 sds->busiest_idle_cpus = sgs.idle_cpus;
4020 sds->busiest_group_capacity = sgs.group_capacity;
4021 sds->busiest_group_weight = sgs.group_weight;
4022 sds->busiest_load_per_task = sgs.sum_weighted_load;
4023 sds->busiest_has_capacity = sgs.group_has_capacity;
4024 sds->group_imb = sgs.group_imb;
4027 update_sd_power_savings_stats(group, sds, local_group, &sgs);
4028 group = group->next;
4029 } while (group != sd->groups);
4033 * fix_small_imbalance - Calculate the minor imbalance that exists
4034 * amongst the groups of a sched_domain, during
4035 * load balancing.
4036 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4037 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4038 * @imbalance: Variable to store the imbalance.
4040 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
4041 int this_cpu, unsigned long *imbalance)
4043 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4044 unsigned int imbn = 2;
4045 unsigned long scaled_busy_load_per_task;
4047 if (sds->this_nr_running) {
4048 sds->this_load_per_task /= sds->this_nr_running;
4049 if (sds->busiest_load_per_task >
4050 sds->this_load_per_task)
4051 imbn = 1;
4052 } else
4053 sds->this_load_per_task =
4054 cpu_avg_load_per_task(this_cpu);
4056 scaled_busy_load_per_task = sds->busiest_load_per_task
4057 * SCHED_LOAD_SCALE;
4058 scaled_busy_load_per_task /= sds->busiest->cpu_power;
4060 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4061 (scaled_busy_load_per_task * imbn)) {
4062 *imbalance = sds->busiest_load_per_task;
4063 return;
4067 * OK, we don't have enough imbalance to justify moving tasks,
4068 * however we may be able to increase total CPU power used by
4069 * moving them.
4072 pwr_now += sds->busiest->cpu_power *
4073 min(sds->busiest_load_per_task, sds->max_load);
4074 pwr_now += sds->this->cpu_power *
4075 min(sds->this_load_per_task, sds->this_load);
4076 pwr_now /= SCHED_LOAD_SCALE;
4078 /* Amount of load we'd subtract */
4079 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
4080 sds->busiest->cpu_power;
4081 if (sds->max_load > tmp)
4082 pwr_move += sds->busiest->cpu_power *
4083 min(sds->busiest_load_per_task, sds->max_load - tmp);
4085 /* Amount of load we'd add */
4086 if (sds->max_load * sds->busiest->cpu_power <
4087 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
4088 tmp = (sds->max_load * sds->busiest->cpu_power) /
4089 sds->this->cpu_power;
4090 else
4091 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
4092 sds->this->cpu_power;
4093 pwr_move += sds->this->cpu_power *
4094 min(sds->this_load_per_task, sds->this_load + tmp);
4095 pwr_move /= SCHED_LOAD_SCALE;
4097 /* Move if we gain throughput */
4098 if (pwr_move > pwr_now)
4099 *imbalance = sds->busiest_load_per_task;
4103 * calculate_imbalance - Calculate the amount of imbalance present within the
4104 * groups of a given sched_domain during load balance.
4105 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4106 * @this_cpu: Cpu for which currently load balance is being performed.
4107 * @imbalance: The variable to store the imbalance.
4109 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4110 unsigned long *imbalance)
4112 unsigned long max_pull, load_above_capacity = ~0UL;
4114 sds->busiest_load_per_task /= sds->busiest_nr_running;
4115 if (sds->group_imb) {
4116 sds->busiest_load_per_task =
4117 min(sds->busiest_load_per_task, sds->avg_load);
4121 * In the presence of smp nice balancing, certain scenarios can have
4122 * max load less than avg load(as we skip the groups at or below
4123 * its cpu_power, while calculating max_load..)
4125 if (sds->max_load < sds->avg_load) {
4126 *imbalance = 0;
4127 return fix_small_imbalance(sds, this_cpu, imbalance);
4130 if (!sds->group_imb) {
4132 * Don't want to pull so many tasks that a group would go idle.
4134 load_above_capacity = (sds->busiest_nr_running -
4135 sds->busiest_group_capacity);
4137 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
4139 load_above_capacity /= sds->busiest->cpu_power;
4143 * We're trying to get all the cpus to the average_load, so we don't
4144 * want to push ourselves above the average load, nor do we wish to
4145 * reduce the max loaded cpu below the average load. At the same time,
4146 * we also don't want to reduce the group load below the group capacity
4147 * (so that we can implement power-savings policies etc). Thus we look
4148 * for the minimum possible imbalance.
4149 * Be careful of negative numbers as they'll appear as very large values
4150 * with unsigned longs.
4152 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4154 /* How much load to actually move to equalise the imbalance */
4155 *imbalance = min(max_pull * sds->busiest->cpu_power,
4156 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
4157 / SCHED_LOAD_SCALE;
4160 * if *imbalance is less than the average load per runnable task
4161 * there is no gaurantee that any tasks will be moved so we'll have
4162 * a think about bumping its value to force at least one task to be
4163 * moved
4165 if (*imbalance < sds->busiest_load_per_task)
4166 return fix_small_imbalance(sds, this_cpu, imbalance);
4170 /******* find_busiest_group() helpers end here *********************/
4173 * find_busiest_group - Returns the busiest group within the sched_domain
4174 * if there is an imbalance. If there isn't an imbalance, and
4175 * the user has opted for power-savings, it returns a group whose
4176 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4177 * such a group exists.
4179 * Also calculates the amount of weighted load which should be moved
4180 * to restore balance.
4182 * @sd: The sched_domain whose busiest group is to be returned.
4183 * @this_cpu: The cpu for which load balancing is currently being performed.
4184 * @imbalance: Variable which stores amount of weighted load which should
4185 * be moved to restore balance/put a group to idle.
4186 * @idle: The idle status of this_cpu.
4187 * @sd_idle: The idleness of sd
4188 * @cpus: The set of CPUs under consideration for load-balancing.
4189 * @balance: Pointer to a variable indicating if this_cpu
4190 * is the appropriate cpu to perform load balancing at this_level.
4192 * Returns: - the busiest group if imbalance exists.
4193 * - If no imbalance and user has opted for power-savings balance,
4194 * return the least loaded group whose CPUs can be
4195 * put to idle by rebalancing its tasks onto our group.
4197 static struct sched_group *
4198 find_busiest_group(struct sched_domain *sd, int this_cpu,
4199 unsigned long *imbalance, enum cpu_idle_type idle,
4200 int *sd_idle, const struct cpumask *cpus, int *balance)
4202 struct sd_lb_stats sds;
4204 memset(&sds, 0, sizeof(sds));
4207 * Compute the various statistics relavent for load balancing at
4208 * this level.
4210 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4211 balance, &sds);
4213 /* Cases where imbalance does not exist from POV of this_cpu */
4214 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4215 * at this level.
4216 * 2) There is no busy sibling group to pull from.
4217 * 3) This group is the busiest group.
4218 * 4) This group is more busy than the avg busieness at this
4219 * sched_domain.
4220 * 5) The imbalance is within the specified limit.
4222 * Note: when doing newidle balance, if the local group has excess
4223 * capacity (i.e. nr_running < group_capacity) and the busiest group
4224 * does not have any capacity, we force a load balance to pull tasks
4225 * to the local group. In this case, we skip past checks 3, 4 and 5.
4227 if (balance && !(*balance))
4228 goto ret;
4230 if (!sds.busiest || sds.busiest_nr_running == 0)
4231 goto out_balanced;
4233 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4234 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4235 !sds.busiest_has_capacity)
4236 goto force_balance;
4238 if (sds.this_load >= sds.max_load)
4239 goto out_balanced;
4241 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4243 if (sds.this_load >= sds.avg_load)
4244 goto out_balanced;
4247 * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
4248 * And to check for busy balance use !idle_cpu instead of
4249 * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
4250 * even when they are idle.
4252 if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
4253 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4254 goto out_balanced;
4255 } else {
4257 * This cpu is idle. If the busiest group load doesn't
4258 * have more tasks than the number of available cpu's and
4259 * there is no imbalance between this and busiest group
4260 * wrt to idle cpu's, it is balanced.
4262 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4263 sds.busiest_nr_running <= sds.busiest_group_weight)
4264 goto out_balanced;
4267 force_balance:
4268 /* Looks like there is an imbalance. Compute it */
4269 calculate_imbalance(&sds, this_cpu, imbalance);
4270 return sds.busiest;
4272 out_balanced:
4274 * There is no obvious imbalance. But check if we can do some balancing
4275 * to save power.
4277 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4278 return sds.busiest;
4279 ret:
4280 *imbalance = 0;
4281 return NULL;
4285 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4287 static struct rq *
4288 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4289 unsigned long imbalance, const struct cpumask *cpus)
4291 struct rq *busiest = NULL, *rq;
4292 unsigned long max_load = 0;
4293 int i;
4295 for_each_cpu(i, sched_group_cpus(group)) {
4296 unsigned long power = power_of(i);
4297 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4298 unsigned long wl;
4300 if (!cpumask_test_cpu(i, cpus))
4301 continue;
4303 rq = cpu_rq(i);
4304 wl = weighted_cpuload(i);
4307 * When comparing with imbalance, use weighted_cpuload()
4308 * which is not scaled with the cpu power.
4310 if (capacity && rq->nr_running == 1 && wl > imbalance)
4311 continue;
4314 * For the load comparisons with the other cpu's, consider
4315 * the weighted_cpuload() scaled with the cpu power, so that
4316 * the load can be moved away from the cpu that is potentially
4317 * running at a lower capacity.
4319 wl = (wl * SCHED_LOAD_SCALE) / power;
4321 if (wl > max_load) {
4322 max_load = wl;
4323 busiest = rq;
4327 return busiest;
4331 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4332 * so long as it is large enough.
4334 #define MAX_PINNED_INTERVAL 512
4336 /* Working cpumask for load_balance and load_balance_newidle. */
4337 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4340 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4341 * tasks if there is an imbalance.
4343 static int load_balance(int this_cpu, struct rq *this_rq,
4344 struct sched_domain *sd, enum cpu_idle_type idle,
4345 int *balance)
4347 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4348 struct sched_group *group;
4349 unsigned long imbalance;
4350 struct rq *busiest;
4351 unsigned long flags;
4352 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4354 cpumask_copy(cpus, cpu_active_mask);
4357 * When power savings policy is enabled for the parent domain, idle
4358 * sibling can pick up load irrespective of busy siblings. In this case,
4359 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4360 * portraying it as CPU_NOT_IDLE.
4362 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4363 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4364 sd_idle = 1;
4366 schedstat_inc(sd, lb_count[idle]);
4368 redo:
4369 update_shares(sd);
4370 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4371 cpus, balance);
4373 if (*balance == 0)
4374 goto out_balanced;
4376 if (!group) {
4377 schedstat_inc(sd, lb_nobusyg[idle]);
4378 goto out_balanced;
4381 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4382 if (!busiest) {
4383 schedstat_inc(sd, lb_nobusyq[idle]);
4384 goto out_balanced;
4387 BUG_ON(busiest == this_rq);
4389 schedstat_add(sd, lb_imbalance[idle], imbalance);
4391 ld_moved = 0;
4392 if (busiest->nr_running > 1) {
4394 * Attempt to move tasks. If find_busiest_group has found
4395 * an imbalance but busiest->nr_running <= 1, the group is
4396 * still unbalanced. ld_moved simply stays zero, so it is
4397 * correctly treated as an imbalance.
4399 local_irq_save(flags);
4400 double_rq_lock(this_rq, busiest);
4401 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4402 imbalance, sd, idle, &all_pinned);
4403 double_rq_unlock(this_rq, busiest);
4404 local_irq_restore(flags);
4407 * some other cpu did the load balance for us.
4409 if (ld_moved && this_cpu != smp_processor_id())
4410 resched_cpu(this_cpu);
4412 /* All tasks on this runqueue were pinned by CPU affinity */
4413 if (unlikely(all_pinned)) {
4414 cpumask_clear_cpu(cpu_of(busiest), cpus);
4415 if (!cpumask_empty(cpus))
4416 goto redo;
4417 goto out_balanced;
4421 if (!ld_moved) {
4422 schedstat_inc(sd, lb_failed[idle]);
4424 * Increment the failure counter only on periodic balance.
4425 * We do not want newidle balance, which can be very
4426 * frequent, pollute the failure counter causing
4427 * excessive cache_hot migrations and active balances.
4429 if (idle != CPU_NEWLY_IDLE)
4430 sd->nr_balance_failed++;
4432 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4434 spin_lock_irqsave(&busiest->lock, flags);
4436 /* don't kick the migration_thread, if the curr
4437 * task on busiest cpu can't be moved to this_cpu
4439 if (!cpumask_test_cpu(this_cpu,
4440 &busiest->curr->cpus_allowed)) {
4441 spin_unlock_irqrestore(&busiest->lock, flags);
4442 all_pinned = 1;
4443 goto out_one_pinned;
4446 if (!busiest->active_balance) {
4447 busiest->active_balance = 1;
4448 busiest->push_cpu = this_cpu;
4449 active_balance = 1;
4451 spin_unlock_irqrestore(&busiest->lock, flags);
4452 if (active_balance)
4453 wake_up_process(busiest->migration_thread);
4456 * We've kicked active balancing, reset the failure
4457 * counter.
4459 sd->nr_balance_failed = sd->cache_nice_tries+1;
4461 } else
4462 sd->nr_balance_failed = 0;
4464 if (likely(!active_balance)) {
4465 /* We were unbalanced, so reset the balancing interval */
4466 sd->balance_interval = sd->min_interval;
4467 } else {
4469 * If we've begun active balancing, start to back off. This
4470 * case may not be covered by the all_pinned logic if there
4471 * is only 1 task on the busy runqueue (because we don't call
4472 * move_tasks).
4474 if (sd->balance_interval < sd->max_interval)
4475 sd->balance_interval *= 2;
4478 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4479 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4480 ld_moved = -1;
4482 goto out;
4484 out_balanced:
4485 schedstat_inc(sd, lb_balanced[idle]);
4487 sd->nr_balance_failed = 0;
4489 out_one_pinned:
4490 /* tune up the balancing interval */
4491 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4492 (sd->balance_interval < sd->max_interval))
4493 sd->balance_interval *= 2;
4495 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4496 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4497 ld_moved = -1;
4498 else
4499 ld_moved = 0;
4500 out:
4501 if (ld_moved)
4502 update_shares(sd);
4503 return ld_moved;
4507 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4508 * tasks if there is an imbalance.
4510 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4511 * this_rq is locked.
4513 static int
4514 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4516 struct sched_group *group;
4517 struct rq *busiest = NULL;
4518 unsigned long imbalance;
4519 int ld_moved = 0;
4520 int sd_idle = 0;
4521 int all_pinned = 0;
4522 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4524 cpumask_copy(cpus, cpu_active_mask);
4527 * When power savings policy is enabled for the parent domain, idle
4528 * sibling can pick up load irrespective of busy siblings. In this case,
4529 * let the state of idle sibling percolate up as IDLE, instead of
4530 * portraying it as CPU_NOT_IDLE.
4532 if (sd->flags & SD_SHARE_CPUPOWER &&
4533 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4534 sd_idle = 1;
4536 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4537 redo:
4538 update_shares_locked(this_rq, sd);
4539 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4540 &sd_idle, cpus, NULL);
4541 if (!group) {
4542 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4543 goto out_balanced;
4546 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4547 if (!busiest) {
4548 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4549 goto out_balanced;
4552 BUG_ON(busiest == this_rq);
4554 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4556 ld_moved = 0;
4557 if (busiest->nr_running > 1) {
4558 /* Attempt to move tasks */
4559 double_lock_balance(this_rq, busiest);
4560 /* this_rq->clock is already updated */
4561 update_rq_clock(busiest);
4562 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4563 imbalance, sd, CPU_NEWLY_IDLE,
4564 &all_pinned);
4565 double_unlock_balance(this_rq, busiest);
4567 if (unlikely(all_pinned)) {
4568 cpumask_clear_cpu(cpu_of(busiest), cpus);
4569 if (!cpumask_empty(cpus))
4570 goto redo;
4574 if (!ld_moved) {
4575 int active_balance = 0;
4577 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4578 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4579 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4580 return -1;
4582 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4583 return -1;
4585 if (sd->nr_balance_failed++ < 2)
4586 return -1;
4589 * The only task running in a non-idle cpu can be moved to this
4590 * cpu in an attempt to completely freeup the other CPU
4591 * package. The same method used to move task in load_balance()
4592 * have been extended for load_balance_newidle() to speedup
4593 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4595 * The package power saving logic comes from
4596 * find_busiest_group(). If there are no imbalance, then
4597 * f_b_g() will return NULL. However when sched_mc={1,2} then
4598 * f_b_g() will select a group from which a running task may be
4599 * pulled to this cpu in order to make the other package idle.
4600 * If there is no opportunity to make a package idle and if
4601 * there are no imbalance, then f_b_g() will return NULL and no
4602 * action will be taken in load_balance_newidle().
4604 * Under normal task pull operation due to imbalance, there
4605 * will be more than one task in the source run queue and
4606 * move_tasks() will succeed. ld_moved will be true and this
4607 * active balance code will not be triggered.
4610 /* Lock busiest in correct order while this_rq is held */
4611 double_lock_balance(this_rq, busiest);
4614 * don't kick the migration_thread, if the curr
4615 * task on busiest cpu can't be moved to this_cpu
4617 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4618 double_unlock_balance(this_rq, busiest);
4619 all_pinned = 1;
4620 return ld_moved;
4623 if (!busiest->active_balance) {
4624 busiest->active_balance = 1;
4625 busiest->push_cpu = this_cpu;
4626 active_balance = 1;
4629 double_unlock_balance(this_rq, busiest);
4631 * Should not call ttwu while holding a rq->lock
4633 spin_unlock(&this_rq->lock);
4634 if (active_balance)
4635 wake_up_process(busiest->migration_thread);
4636 spin_lock(&this_rq->lock);
4638 } else
4639 sd->nr_balance_failed = 0;
4641 update_shares_locked(this_rq, sd);
4642 return ld_moved;
4644 out_balanced:
4645 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4646 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4647 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4648 return -1;
4649 sd->nr_balance_failed = 0;
4651 return 0;
4655 * idle_balance is called by schedule() if this_cpu is about to become
4656 * idle. Attempts to pull tasks from other CPUs.
4658 static void idle_balance(int this_cpu, struct rq *this_rq)
4660 struct sched_domain *sd;
4661 int pulled_task = 0;
4662 unsigned long next_balance = jiffies + HZ;
4664 this_rq->idle_stamp = this_rq->clock;
4666 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4667 return;
4669 for_each_domain(this_cpu, sd) {
4670 unsigned long interval;
4672 if (!(sd->flags & SD_LOAD_BALANCE))
4673 continue;
4675 if (sd->flags & SD_BALANCE_NEWIDLE)
4676 /* If we've pulled tasks over stop searching: */
4677 pulled_task = load_balance_newidle(this_cpu, this_rq,
4678 sd);
4680 interval = msecs_to_jiffies(sd->balance_interval);
4681 if (time_after(next_balance, sd->last_balance + interval))
4682 next_balance = sd->last_balance + interval;
4683 if (pulled_task) {
4684 this_rq->idle_stamp = 0;
4685 break;
4688 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4690 * We are going idle. next_balance may be set based on
4691 * a busy processor. So reset next_balance.
4693 this_rq->next_balance = next_balance;
4698 * active_load_balance is run by migration threads. It pushes running tasks
4699 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4700 * running on each physical CPU where possible, and avoids physical /
4701 * logical imbalances.
4703 * Called with busiest_rq locked.
4705 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4707 int target_cpu = busiest_rq->push_cpu;
4708 struct sched_domain *sd;
4709 struct rq *target_rq;
4711 /* Is there any task to move? */
4712 if (busiest_rq->nr_running <= 1)
4713 return;
4715 target_rq = cpu_rq(target_cpu);
4718 * This condition is "impossible", if it occurs
4719 * we need to fix it. Originally reported by
4720 * Bjorn Helgaas on a 128-cpu setup.
4722 BUG_ON(busiest_rq == target_rq);
4724 /* move a task from busiest_rq to target_rq */
4725 double_lock_balance(busiest_rq, target_rq);
4726 update_rq_clock(busiest_rq);
4727 update_rq_clock(target_rq);
4729 /* Search for an sd spanning us and the target CPU. */
4730 for_each_domain(target_cpu, sd) {
4731 if ((sd->flags & SD_LOAD_BALANCE) &&
4732 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4733 break;
4736 if (likely(sd)) {
4737 schedstat_inc(sd, alb_count);
4739 if (move_one_task(target_rq, target_cpu, busiest_rq,
4740 sd, CPU_IDLE))
4741 schedstat_inc(sd, alb_pushed);
4742 else
4743 schedstat_inc(sd, alb_failed);
4745 double_unlock_balance(busiest_rq, target_rq);
4748 #ifdef CONFIG_NO_HZ
4749 static struct {
4750 atomic_t load_balancer;
4751 cpumask_var_t cpu_mask;
4752 cpumask_var_t ilb_grp_nohz_mask;
4753 } nohz ____cacheline_aligned = {
4754 .load_balancer = ATOMIC_INIT(-1),
4757 int get_nohz_load_balancer(void)
4759 return atomic_read(&nohz.load_balancer);
4762 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4764 * lowest_flag_domain - Return lowest sched_domain containing flag.
4765 * @cpu: The cpu whose lowest level of sched domain is to
4766 * be returned.
4767 * @flag: The flag to check for the lowest sched_domain
4768 * for the given cpu.
4770 * Returns the lowest sched_domain of a cpu which contains the given flag.
4772 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4774 struct sched_domain *sd;
4776 for_each_domain(cpu, sd)
4777 if (sd && (sd->flags & flag))
4778 break;
4780 return sd;
4784 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4785 * @cpu: The cpu whose domains we're iterating over.
4786 * @sd: variable holding the value of the power_savings_sd
4787 * for cpu.
4788 * @flag: The flag to filter the sched_domains to be iterated.
4790 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4791 * set, starting from the lowest sched_domain to the highest.
4793 #define for_each_flag_domain(cpu, sd, flag) \
4794 for (sd = lowest_flag_domain(cpu, flag); \
4795 (sd && (sd->flags & flag)); sd = sd->parent)
4798 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4799 * @ilb_group: group to be checked for semi-idleness
4801 * Returns: 1 if the group is semi-idle. 0 otherwise.
4803 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4804 * and atleast one non-idle CPU. This helper function checks if the given
4805 * sched_group is semi-idle or not.
4807 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4809 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4810 sched_group_cpus(ilb_group));
4813 * A sched_group is semi-idle when it has atleast one busy cpu
4814 * and atleast one idle cpu.
4816 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4817 return 0;
4819 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4820 return 0;
4822 return 1;
4825 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4826 * @cpu: The cpu which is nominating a new idle_load_balancer.
4828 * Returns: Returns the id of the idle load balancer if it exists,
4829 * Else, returns >= nr_cpu_ids.
4831 * This algorithm picks the idle load balancer such that it belongs to a
4832 * semi-idle powersavings sched_domain. The idea is to try and avoid
4833 * completely idle packages/cores just for the purpose of idle load balancing
4834 * when there are other idle cpu's which are better suited for that job.
4836 static int find_new_ilb(int cpu)
4838 struct sched_domain *sd;
4839 struct sched_group *ilb_group;
4842 * Have idle load balancer selection from semi-idle packages only
4843 * when power-aware load balancing is enabled
4845 if (!(sched_smt_power_savings || sched_mc_power_savings))
4846 goto out_done;
4849 * Optimize for the case when we have no idle CPUs or only one
4850 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4852 if (cpumask_weight(nohz.cpu_mask) < 2)
4853 goto out_done;
4855 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4856 ilb_group = sd->groups;
4858 do {
4859 if (is_semi_idle_group(ilb_group))
4860 return cpumask_first(nohz.ilb_grp_nohz_mask);
4862 ilb_group = ilb_group->next;
4864 } while (ilb_group != sd->groups);
4867 out_done:
4868 return cpumask_first(nohz.cpu_mask);
4870 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4871 static inline int find_new_ilb(int call_cpu)
4873 return cpumask_first(nohz.cpu_mask);
4875 #endif
4878 * This routine will try to nominate the ilb (idle load balancing)
4879 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4880 * load balancing on behalf of all those cpus. If all the cpus in the system
4881 * go into this tickless mode, then there will be no ilb owner (as there is
4882 * no need for one) and all the cpus will sleep till the next wakeup event
4883 * arrives...
4885 * For the ilb owner, tick is not stopped. And this tick will be used
4886 * for idle load balancing. ilb owner will still be part of
4887 * nohz.cpu_mask..
4889 * While stopping the tick, this cpu will become the ilb owner if there
4890 * is no other owner. And will be the owner till that cpu becomes busy
4891 * or if all cpus in the system stop their ticks at which point
4892 * there is no need for ilb owner.
4894 * When the ilb owner becomes busy, it nominates another owner, during the
4895 * next busy scheduler_tick()
4897 int select_nohz_load_balancer(int stop_tick)
4899 int cpu = smp_processor_id();
4901 if (stop_tick) {
4902 cpu_rq(cpu)->in_nohz_recently = 1;
4904 if (!cpu_active(cpu)) {
4905 if (atomic_read(&nohz.load_balancer) != cpu)
4906 return 0;
4909 * If we are going offline and still the leader,
4910 * give up!
4912 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4913 BUG();
4915 return 0;
4918 cpumask_set_cpu(cpu, nohz.cpu_mask);
4920 /* time for ilb owner also to sleep */
4921 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4922 if (atomic_read(&nohz.load_balancer) == cpu)
4923 atomic_set(&nohz.load_balancer, -1);
4924 return 0;
4927 if (atomic_read(&nohz.load_balancer) == -1) {
4928 /* make me the ilb owner */
4929 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4930 return 1;
4931 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4932 int new_ilb;
4934 if (!(sched_smt_power_savings ||
4935 sched_mc_power_savings))
4936 return 1;
4938 * Check to see if there is a more power-efficient
4939 * ilb.
4941 new_ilb = find_new_ilb(cpu);
4942 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4943 atomic_set(&nohz.load_balancer, -1);
4944 resched_cpu(new_ilb);
4945 return 0;
4947 return 1;
4949 } else {
4950 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4951 return 0;
4953 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4955 if (atomic_read(&nohz.load_balancer) == cpu)
4956 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4957 BUG();
4959 return 0;
4961 #endif
4963 static DEFINE_SPINLOCK(balancing);
4966 * It checks each scheduling domain to see if it is due to be balanced,
4967 * and initiates a balancing operation if so.
4969 * Balancing parameters are set up in arch_init_sched_domains.
4971 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4973 int balance = 1;
4974 struct rq *rq = cpu_rq(cpu);
4975 unsigned long interval;
4976 struct sched_domain *sd;
4977 /* Earliest time when we have to do rebalance again */
4978 unsigned long next_balance = jiffies + 60*HZ;
4979 int update_next_balance = 0;
4980 int need_serialize;
4982 for_each_domain(cpu, sd) {
4983 if (!(sd->flags & SD_LOAD_BALANCE))
4984 continue;
4986 interval = sd->balance_interval;
4987 if (idle != CPU_IDLE)
4988 interval *= sd->busy_factor;
4990 /* scale ms to jiffies */
4991 interval = msecs_to_jiffies(interval);
4992 if (unlikely(!interval))
4993 interval = 1;
4994 if (interval > HZ*NR_CPUS/10)
4995 interval = HZ*NR_CPUS/10;
4997 need_serialize = sd->flags & SD_SERIALIZE;
4999 if (need_serialize) {
5000 if (!spin_trylock(&balancing))
5001 goto out;
5004 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5005 if (load_balance(cpu, rq, sd, idle, &balance)) {
5007 * We've pulled tasks over so either we're no
5008 * longer idle, or one of our SMT siblings is
5009 * not idle.
5011 idle = CPU_NOT_IDLE;
5013 sd->last_balance = jiffies;
5015 if (need_serialize)
5016 spin_unlock(&balancing);
5017 out:
5018 if (time_after(next_balance, sd->last_balance + interval)) {
5019 next_balance = sd->last_balance + interval;
5020 update_next_balance = 1;
5024 * Stop the load balance at this level. There is another
5025 * CPU in our sched group which is doing load balancing more
5026 * actively.
5028 if (!balance)
5029 break;
5033 * next_balance will be updated only when there is a need.
5034 * When the cpu is attached to null domain for ex, it will not be
5035 * updated.
5037 if (likely(update_next_balance))
5038 rq->next_balance = next_balance;
5042 * run_rebalance_domains is triggered when needed from the scheduler tick.
5043 * In CONFIG_NO_HZ case, the idle load balance owner will do the
5044 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5046 static void run_rebalance_domains(struct softirq_action *h)
5048 int this_cpu = smp_processor_id();
5049 struct rq *this_rq = cpu_rq(this_cpu);
5050 enum cpu_idle_type idle = this_rq->idle_at_tick ?
5051 CPU_IDLE : CPU_NOT_IDLE;
5053 rebalance_domains(this_cpu, idle);
5055 #ifdef CONFIG_NO_HZ
5057 * If this cpu is the owner for idle load balancing, then do the
5058 * balancing on behalf of the other idle cpus whose ticks are
5059 * stopped.
5061 if (this_rq->idle_at_tick &&
5062 atomic_read(&nohz.load_balancer) == this_cpu) {
5063 struct rq *rq;
5064 int balance_cpu;
5066 for_each_cpu(balance_cpu, nohz.cpu_mask) {
5067 if (balance_cpu == this_cpu)
5068 continue;
5071 * If this cpu gets work to do, stop the load balancing
5072 * work being done for other cpus. Next load
5073 * balancing owner will pick it up.
5075 if (need_resched())
5076 break;
5078 rebalance_domains(balance_cpu, CPU_IDLE);
5080 rq = cpu_rq(balance_cpu);
5081 if (time_after(this_rq->next_balance, rq->next_balance))
5082 this_rq->next_balance = rq->next_balance;
5085 #endif
5088 static inline int on_null_domain(int cpu)
5090 return !rcu_dereference(cpu_rq(cpu)->sd);
5094 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5096 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
5097 * idle load balancing owner or decide to stop the periodic load balancing,
5098 * if the whole system is idle.
5100 static inline void trigger_load_balance(struct rq *rq, int cpu)
5102 #ifdef CONFIG_NO_HZ
5104 * If we were in the nohz mode recently and busy at the current
5105 * scheduler tick, then check if we need to nominate new idle
5106 * load balancer.
5108 if (rq->in_nohz_recently && !rq->idle_at_tick) {
5109 rq->in_nohz_recently = 0;
5111 if (atomic_read(&nohz.load_balancer) == cpu) {
5112 cpumask_clear_cpu(cpu, nohz.cpu_mask);
5113 atomic_set(&nohz.load_balancer, -1);
5116 if (atomic_read(&nohz.load_balancer) == -1) {
5117 int ilb = find_new_ilb(cpu);
5119 if (ilb < nr_cpu_ids)
5120 resched_cpu(ilb);
5125 * If this cpu is idle and doing idle load balancing for all the
5126 * cpus with ticks stopped, is it time for that to stop?
5128 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
5129 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
5130 resched_cpu(cpu);
5131 return;
5135 * If this cpu is idle and the idle load balancing is done by
5136 * someone else, then no need raise the SCHED_SOFTIRQ
5138 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
5139 cpumask_test_cpu(cpu, nohz.cpu_mask))
5140 return;
5141 #endif
5142 /* Don't need to rebalance while attached to NULL domain */
5143 if (time_after_eq(jiffies, rq->next_balance) &&
5144 likely(!on_null_domain(cpu)))
5145 raise_softirq(SCHED_SOFTIRQ);
5148 #else /* CONFIG_SMP */
5151 * on UP we do not need to balance between CPUs:
5153 static inline void idle_balance(int cpu, struct rq *rq)
5157 #endif
5159 DEFINE_PER_CPU(struct kernel_stat, kstat);
5161 EXPORT_PER_CPU_SYMBOL(kstat);
5164 * Return any ns on the sched_clock that have not yet been accounted in
5165 * @p in case that task is currently running.
5167 * Called with task_rq_lock() held on @rq.
5169 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
5171 u64 ns = 0;
5173 if (task_current(rq, p)) {
5174 update_rq_clock(rq);
5175 ns = rq->clock_task - p->se.exec_start;
5176 if ((s64)ns < 0)
5177 ns = 0;
5180 return ns;
5183 unsigned long long task_delta_exec(struct task_struct *p)
5185 unsigned long flags;
5186 struct rq *rq;
5187 u64 ns = 0;
5189 rq = task_rq_lock(p, &flags);
5190 ns = do_task_delta_exec(p, rq);
5191 task_rq_unlock(rq, &flags);
5193 return ns;
5197 * Return accounted runtime for the task.
5198 * In case the task is currently running, return the runtime plus current's
5199 * pending runtime that have not been accounted yet.
5201 unsigned long long task_sched_runtime(struct task_struct *p)
5203 unsigned long flags;
5204 struct rq *rq;
5205 u64 ns = 0;
5207 rq = task_rq_lock(p, &flags);
5208 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5209 task_rq_unlock(rq, &flags);
5211 return ns;
5215 * Return sum_exec_runtime for the thread group.
5216 * In case the task is currently running, return the sum plus current's
5217 * pending runtime that have not been accounted yet.
5219 * Note that the thread group might have other running tasks as well,
5220 * so the return value not includes other pending runtime that other
5221 * running tasks might have.
5223 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5225 struct task_cputime totals;
5226 unsigned long flags;
5227 struct rq *rq;
5228 u64 ns;
5230 rq = task_rq_lock(p, &flags);
5231 thread_group_cputime(p, &totals);
5232 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5233 task_rq_unlock(rq, &flags);
5235 return ns;
5239 * Account user cpu time to a process.
5240 * @p: the process that the cpu time gets accounted to
5241 * @cputime: the cpu time spent in user space since the last update
5242 * @cputime_scaled: cputime scaled by cpu frequency
5244 void account_user_time(struct task_struct *p, cputime_t cputime,
5245 cputime_t cputime_scaled)
5247 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5248 cputime64_t tmp;
5250 /* Add user time to process. */
5251 p->utime = cputime_add(p->utime, cputime);
5252 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5253 account_group_user_time(p, cputime);
5255 /* Add user time to cpustat. */
5256 tmp = cputime_to_cputime64(cputime);
5257 if (TASK_NICE(p) > 0)
5258 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5259 else
5260 cpustat->user = cputime64_add(cpustat->user, tmp);
5262 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5263 /* Account for user time used */
5264 acct_update_integrals(p);
5268 * Account guest cpu time to a process.
5269 * @p: the process that the cpu time gets accounted to
5270 * @cputime: the cpu time spent in virtual machine since the last update
5271 * @cputime_scaled: cputime scaled by cpu frequency
5273 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5274 cputime_t cputime_scaled)
5276 cputime64_t tmp;
5277 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5279 tmp = cputime_to_cputime64(cputime);
5281 /* Add guest time to process. */
5282 p->utime = cputime_add(p->utime, cputime);
5283 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5284 account_group_user_time(p, cputime);
5285 p->gtime = cputime_add(p->gtime, cputime);
5287 /* Add guest time to cpustat. */
5288 cpustat->user = cputime64_add(cpustat->user, tmp);
5289 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5293 * Account system cpu time to a process.
5294 * @p: the process that the cpu time gets accounted to
5295 * @hardirq_offset: the offset to subtract from hardirq_count()
5296 * @cputime: the cpu time spent in kernel space since the last update
5297 * @cputime_scaled: cputime scaled by cpu frequency
5299 void account_system_time(struct task_struct *p, int hardirq_offset,
5300 cputime_t cputime, cputime_t cputime_scaled)
5302 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5303 cputime64_t tmp;
5305 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5306 account_guest_time(p, cputime, cputime_scaled);
5307 return;
5310 /* Add system time to process. */
5311 p->stime = cputime_add(p->stime, cputime);
5312 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5313 account_group_system_time(p, cputime);
5315 /* Add system time to cpustat. */
5316 tmp = cputime_to_cputime64(cputime);
5317 if (hardirq_count() - hardirq_offset)
5318 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5319 else if (in_serving_softirq())
5320 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5321 else
5322 cpustat->system = cputime64_add(cpustat->system, tmp);
5324 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5326 /* Account for system time used */
5327 acct_update_integrals(p);
5331 * Account for involuntary wait time.
5332 * @steal: the cpu time spent in involuntary wait
5334 void account_steal_time(cputime_t cputime)
5336 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5337 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5339 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5343 * Account for idle time.
5344 * @cputime: the cpu time spent in idle wait
5346 void account_idle_time(cputime_t cputime)
5348 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5349 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5350 struct rq *rq = this_rq();
5352 if (atomic_read(&rq->nr_iowait) > 0)
5353 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5354 else
5355 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5358 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5361 * Account a single tick of cpu time.
5362 * @p: the process that the cpu time gets accounted to
5363 * @user_tick: indicates if the tick is a user or a system tick
5365 void account_process_tick(struct task_struct *p, int user_tick)
5367 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5368 struct rq *rq = this_rq();
5370 if (user_tick)
5371 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5372 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5373 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5374 one_jiffy_scaled);
5375 else
5376 account_idle_time(cputime_one_jiffy);
5380 * Account multiple ticks of steal time.
5381 * @p: the process from which the cpu time has been stolen
5382 * @ticks: number of stolen ticks
5384 void account_steal_ticks(unsigned long ticks)
5386 account_steal_time(jiffies_to_cputime(ticks));
5390 * Account multiple ticks of idle time.
5391 * @ticks: number of stolen ticks
5393 void account_idle_ticks(unsigned long ticks)
5395 account_idle_time(jiffies_to_cputime(ticks));
5398 #endif
5401 * Use precise platform statistics if available:
5403 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5404 cputime_t task_utime(struct task_struct *p)
5406 return p->utime;
5409 cputime_t task_stime(struct task_struct *p)
5411 return p->stime;
5414 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5416 struct task_cputime cputime;
5418 thread_group_cputime(p, &cputime);
5420 *ut = cputime.utime;
5421 *st = cputime.stime;
5423 #else
5425 #ifndef nsecs_to_cputime
5426 # define nsecs_to_cputime(__nsecs) \
5427 msecs_to_cputime(div_u64((__nsecs), NSEC_PER_MSEC))
5428 #endif
5430 cputime_t task_utime(struct task_struct *p)
5432 cputime_t utime = p->utime, total = utime + p->stime;
5433 u64 temp;
5436 * Use CFS's precise accounting:
5438 temp = (u64)nsecs_to_cputime(p->se.sum_exec_runtime);
5440 if (total) {
5441 temp *= utime;
5442 do_div(temp, total);
5444 utime = (cputime_t)temp;
5446 p->prev_utime = max(p->prev_utime, utime);
5447 return p->prev_utime;
5450 cputime_t task_stime(struct task_struct *p)
5452 cputime_t stime;
5455 * Use CFS's precise accounting. (we subtract utime from
5456 * the total, to make sure the total observed by userspace
5457 * grows monotonically - apps rely on that):
5459 stime = nsecs_to_cputime(p->se.sum_exec_runtime) - task_utime(p);
5461 if (stime >= 0)
5462 p->prev_stime = max(p->prev_stime, stime);
5464 return p->prev_stime;
5468 * Must be called with siglock held.
5470 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5472 struct signal_struct *sig = p->signal;
5473 struct task_cputime cputime;
5474 cputime_t rtime, utime, total;
5476 thread_group_cputime(p, &cputime);
5478 total = cputime_add(cputime.utime, cputime.stime);
5479 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5481 if (total) {
5482 u64 temp = rtime;
5484 temp *= cputime.utime;
5485 do_div(temp, total);
5486 utime = (cputime_t)temp;
5487 } else
5488 utime = rtime;
5490 sig->prev_utime = max(sig->prev_utime, utime);
5491 sig->prev_stime = max(sig->prev_stime,
5492 cputime_sub(rtime, sig->prev_utime));
5494 *ut = sig->prev_utime;
5495 *st = sig->prev_stime;
5497 #endif
5499 inline cputime_t task_gtime(struct task_struct *p)
5501 return p->gtime;
5505 * This function gets called by the timer code, with HZ frequency.
5506 * We call it with interrupts disabled.
5508 * It also gets called by the fork code, when changing the parent's
5509 * timeslices.
5511 void scheduler_tick(void)
5513 int cpu = smp_processor_id();
5514 struct rq *rq = cpu_rq(cpu);
5515 struct task_struct *curr = rq->curr;
5517 sched_clock_tick();
5519 spin_lock(&rq->lock);
5520 update_rq_clock(rq);
5521 update_cpu_load(rq);
5522 curr->sched_class->task_tick(rq, curr, 0);
5523 spin_unlock(&rq->lock);
5525 perf_event_task_tick(curr, cpu);
5527 #ifdef CONFIG_SMP
5528 rq->idle_at_tick = idle_cpu(cpu);
5529 trigger_load_balance(rq, cpu);
5530 #endif
5533 notrace unsigned long get_parent_ip(unsigned long addr)
5535 if (in_lock_functions(addr)) {
5536 addr = CALLER_ADDR2;
5537 if (in_lock_functions(addr))
5538 addr = CALLER_ADDR3;
5540 return addr;
5543 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5544 defined(CONFIG_PREEMPT_TRACER))
5546 void __kprobes add_preempt_count(int val)
5548 #ifdef CONFIG_DEBUG_PREEMPT
5550 * Underflow?
5552 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5553 return;
5554 #endif
5555 preempt_count() += val;
5556 #ifdef CONFIG_DEBUG_PREEMPT
5558 * Spinlock count overflowing soon?
5560 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5561 PREEMPT_MASK - 10);
5562 #endif
5563 if (preempt_count() == val)
5564 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5566 EXPORT_SYMBOL(add_preempt_count);
5568 void __kprobes sub_preempt_count(int val)
5570 #ifdef CONFIG_DEBUG_PREEMPT
5572 * Underflow?
5574 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5575 return;
5577 * Is the spinlock portion underflowing?
5579 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5580 !(preempt_count() & PREEMPT_MASK)))
5581 return;
5582 #endif
5584 if (preempt_count() == val)
5585 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5586 preempt_count() -= val;
5588 EXPORT_SYMBOL(sub_preempt_count);
5590 #endif
5593 * Print scheduling while atomic bug:
5595 static noinline void __schedule_bug(struct task_struct *prev)
5597 struct pt_regs *regs = get_irq_regs();
5599 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5600 prev->comm, prev->pid, preempt_count());
5602 debug_show_held_locks(prev);
5603 print_modules();
5604 if (irqs_disabled())
5605 print_irqtrace_events(prev);
5607 if (regs)
5608 show_regs(regs);
5609 else
5610 dump_stack();
5614 * Various schedule()-time debugging checks and statistics:
5616 static inline void schedule_debug(struct task_struct *prev)
5619 * Test if we are atomic. Since do_exit() needs to call into
5620 * schedule() atomically, we ignore that path for now.
5621 * Otherwise, whine if we are scheduling when we should not be.
5623 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5624 __schedule_bug(prev);
5626 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5628 schedstat_inc(this_rq(), sched_count);
5629 #ifdef CONFIG_SCHEDSTATS
5630 if (unlikely(prev->lock_depth >= 0)) {
5631 schedstat_inc(this_rq(), bkl_count);
5632 schedstat_inc(prev, sched_info.bkl_count);
5634 #endif
5637 static void put_prev_task(struct rq *rq, struct task_struct *p)
5639 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5641 update_avg(&p->se.avg_running, runtime);
5643 if (p->state == TASK_RUNNING) {
5645 * In order to avoid avg_overlap growing stale when we are
5646 * indeed overlapping and hence not getting put to sleep, grow
5647 * the avg_overlap on preemption.
5649 * We use the average preemption runtime because that
5650 * correlates to the amount of cache footprint a task can
5651 * build up.
5653 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5654 update_avg(&p->se.avg_overlap, runtime);
5655 } else {
5656 update_avg(&p->se.avg_running, 0);
5658 p->sched_class->put_prev_task(rq, p);
5662 * Pick up the highest-prio task:
5664 static inline struct task_struct *
5665 pick_next_task(struct rq *rq)
5667 const struct sched_class *class;
5668 struct task_struct *p;
5671 * Optimization: we know that if all tasks are in
5672 * the fair class we can call that function directly:
5674 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5675 p = fair_sched_class.pick_next_task(rq);
5676 if (likely(p))
5677 return p;
5680 class = sched_class_highest;
5681 for ( ; ; ) {
5682 p = class->pick_next_task(rq);
5683 if (p)
5684 return p;
5686 * Will never be NULL as the idle class always
5687 * returns a non-NULL p:
5689 class = class->next;
5694 * schedule() is the main scheduler function.
5696 asmlinkage void __sched schedule(void)
5698 struct task_struct *prev, *next;
5699 unsigned long *switch_count;
5700 struct rq *rq;
5701 int cpu;
5703 need_resched:
5704 preempt_disable();
5705 cpu = smp_processor_id();
5706 rq = cpu_rq(cpu);
5707 rcu_sched_qs(cpu);
5708 prev = rq->curr;
5709 switch_count = &prev->nivcsw;
5711 release_kernel_lock(prev);
5712 need_resched_nonpreemptible:
5714 schedule_debug(prev);
5716 if (sched_feat(HRTICK))
5717 hrtick_clear(rq);
5719 spin_lock_irq(&rq->lock);
5720 update_rq_clock(rq);
5721 clear_tsk_need_resched(prev);
5723 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5724 if (unlikely(signal_pending_state(prev->state, prev)))
5725 prev->state = TASK_RUNNING;
5726 else
5727 deactivate_task(rq, prev, 1);
5728 switch_count = &prev->nvcsw;
5731 pre_schedule(rq, prev);
5733 if (unlikely(!rq->nr_running))
5734 idle_balance(cpu, rq);
5736 put_prev_task(rq, prev);
5737 next = pick_next_task(rq);
5739 if (likely(prev != next)) {
5740 sched_info_switch(prev, next);
5741 perf_event_task_sched_out(prev, next, cpu);
5743 rq->nr_switches++;
5744 rq->curr = next;
5745 ++*switch_count;
5747 context_switch(rq, prev, next); /* unlocks the rq */
5749 * the context switch might have flipped the stack from under
5750 * us, hence refresh the local variables.
5752 cpu = smp_processor_id();
5753 rq = cpu_rq(cpu);
5754 } else
5755 spin_unlock_irq(&rq->lock);
5757 post_schedule(rq);
5759 if (unlikely(reacquire_kernel_lock(current) < 0))
5760 goto need_resched_nonpreemptible;
5762 preempt_enable_no_resched();
5763 if (need_resched())
5764 goto need_resched;
5766 EXPORT_SYMBOL(schedule);
5768 #ifdef CONFIG_SMP
5770 * Look out! "owner" is an entirely speculative pointer
5771 * access and not reliable.
5773 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5775 unsigned int cpu;
5776 struct rq *rq;
5778 if (!sched_feat(OWNER_SPIN))
5779 return 0;
5781 #ifdef CONFIG_DEBUG_PAGEALLOC
5783 * Need to access the cpu field knowing that
5784 * DEBUG_PAGEALLOC could have unmapped it if
5785 * the mutex owner just released it and exited.
5787 if (probe_kernel_address(&owner->cpu, cpu))
5788 return 0;
5789 #else
5790 cpu = owner->cpu;
5791 #endif
5794 * Even if the access succeeded (likely case),
5795 * the cpu field may no longer be valid.
5797 if (cpu >= nr_cpumask_bits)
5798 return 0;
5801 * We need to validate that we can do a
5802 * get_cpu() and that we have the percpu area.
5804 if (!cpu_online(cpu))
5805 return 0;
5807 rq = cpu_rq(cpu);
5809 for (;;) {
5811 * Owner changed, break to re-assess state.
5813 if (lock->owner != owner)
5814 break;
5817 * Is that owner really running on that cpu?
5819 if (task_thread_info(rq->curr) != owner || need_resched())
5820 return 0;
5822 cpu_relax();
5825 return 1;
5827 #endif
5829 #ifdef CONFIG_PREEMPT
5831 * this is the entry point to schedule() from in-kernel preemption
5832 * off of preempt_enable. Kernel preemptions off return from interrupt
5833 * occur there and call schedule directly.
5835 asmlinkage void __sched preempt_schedule(void)
5837 struct thread_info *ti = current_thread_info();
5840 * If there is a non-zero preempt_count or interrupts are disabled,
5841 * we do not want to preempt the current task. Just return..
5843 if (likely(ti->preempt_count || irqs_disabled()))
5844 return;
5846 do {
5847 add_preempt_count(PREEMPT_ACTIVE);
5848 schedule();
5849 sub_preempt_count(PREEMPT_ACTIVE);
5852 * Check again in case we missed a preemption opportunity
5853 * between schedule and now.
5855 barrier();
5856 } while (need_resched());
5858 EXPORT_SYMBOL(preempt_schedule);
5861 * this is the entry point to schedule() from kernel preemption
5862 * off of irq context.
5863 * Note, that this is called and return with irqs disabled. This will
5864 * protect us against recursive calling from irq.
5866 asmlinkage void __sched preempt_schedule_irq(void)
5868 struct thread_info *ti = current_thread_info();
5870 /* Catch callers which need to be fixed */
5871 BUG_ON(ti->preempt_count || !irqs_disabled());
5873 do {
5874 add_preempt_count(PREEMPT_ACTIVE);
5875 local_irq_enable();
5876 schedule();
5877 local_irq_disable();
5878 sub_preempt_count(PREEMPT_ACTIVE);
5881 * Check again in case we missed a preemption opportunity
5882 * between schedule and now.
5884 barrier();
5885 } while (need_resched());
5888 #endif /* CONFIG_PREEMPT */
5890 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5891 void *key)
5893 return try_to_wake_up(curr->private, mode, wake_flags);
5895 EXPORT_SYMBOL(default_wake_function);
5898 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5899 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5900 * number) then we wake all the non-exclusive tasks and one exclusive task.
5902 * There are circumstances in which we can try to wake a task which has already
5903 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5904 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5906 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5907 int nr_exclusive, int wake_flags, void *key)
5909 wait_queue_t *curr, *next;
5911 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5912 unsigned flags = curr->flags;
5914 if (curr->func(curr, mode, wake_flags, key) &&
5915 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5916 break;
5921 * __wake_up - wake up threads blocked on a waitqueue.
5922 * @q: the waitqueue
5923 * @mode: which threads
5924 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5925 * @key: is directly passed to the wakeup function
5927 * It may be assumed that this function implies a write memory barrier before
5928 * changing the task state if and only if any tasks are woken up.
5930 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5931 int nr_exclusive, void *key)
5933 unsigned long flags;
5935 spin_lock_irqsave(&q->lock, flags);
5936 __wake_up_common(q, mode, nr_exclusive, 0, key);
5937 spin_unlock_irqrestore(&q->lock, flags);
5939 EXPORT_SYMBOL(__wake_up);
5942 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5944 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5946 __wake_up_common(q, mode, 1, 0, NULL);
5949 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5951 __wake_up_common(q, mode, 1, 0, key);
5955 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5956 * @q: the waitqueue
5957 * @mode: which threads
5958 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5959 * @key: opaque value to be passed to wakeup targets
5961 * The sync wakeup differs that the waker knows that it will schedule
5962 * away soon, so while the target thread will be woken up, it will not
5963 * be migrated to another CPU - ie. the two threads are 'synchronized'
5964 * with each other. This can prevent needless bouncing between CPUs.
5966 * On UP it can prevent extra preemption.
5968 * It may be assumed that this function implies a write memory barrier before
5969 * changing the task state if and only if any tasks are woken up.
5971 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5972 int nr_exclusive, void *key)
5974 unsigned long flags;
5975 int wake_flags = WF_SYNC;
5977 if (unlikely(!q))
5978 return;
5980 if (unlikely(!nr_exclusive))
5981 wake_flags = 0;
5983 spin_lock_irqsave(&q->lock, flags);
5984 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5985 spin_unlock_irqrestore(&q->lock, flags);
5987 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5990 * __wake_up_sync - see __wake_up_sync_key()
5992 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5994 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5996 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5999 * complete: - signals a single thread waiting on this completion
6000 * @x: holds the state of this particular completion
6002 * This will wake up a single thread waiting on this completion. Threads will be
6003 * awakened in the same order in which they were queued.
6005 * See also complete_all(), wait_for_completion() and related routines.
6007 * It may be assumed that this function implies a write memory barrier before
6008 * changing the task state if and only if any tasks are woken up.
6010 void complete(struct completion *x)
6012 unsigned long flags;
6014 spin_lock_irqsave(&x->wait.lock, flags);
6015 x->done++;
6016 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
6017 spin_unlock_irqrestore(&x->wait.lock, flags);
6019 EXPORT_SYMBOL(complete);
6022 * complete_all: - signals all threads waiting on this completion
6023 * @x: holds the state of this particular completion
6025 * This will wake up all threads waiting on this particular completion event.
6027 * It may be assumed that this function implies a write memory barrier before
6028 * changing the task state if and only if any tasks are woken up.
6030 void complete_all(struct completion *x)
6032 unsigned long flags;
6034 spin_lock_irqsave(&x->wait.lock, flags);
6035 x->done += UINT_MAX/2;
6036 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
6037 spin_unlock_irqrestore(&x->wait.lock, flags);
6039 EXPORT_SYMBOL(complete_all);
6041 static inline long __sched
6042 do_wait_for_common(struct completion *x, long timeout, int state)
6044 if (!x->done) {
6045 DECLARE_WAITQUEUE(wait, current);
6047 wait.flags |= WQ_FLAG_EXCLUSIVE;
6048 __add_wait_queue_tail(&x->wait, &wait);
6049 do {
6050 if (signal_pending_state(state, current)) {
6051 timeout = -ERESTARTSYS;
6052 break;
6054 __set_current_state(state);
6055 spin_unlock_irq(&x->wait.lock);
6056 timeout = schedule_timeout(timeout);
6057 spin_lock_irq(&x->wait.lock);
6058 } while (!x->done && timeout);
6059 __remove_wait_queue(&x->wait, &wait);
6060 if (!x->done)
6061 return timeout;
6063 x->done--;
6064 return timeout ?: 1;
6067 static long __sched
6068 wait_for_common(struct completion *x, long timeout, int state)
6070 might_sleep();
6072 spin_lock_irq(&x->wait.lock);
6073 timeout = do_wait_for_common(x, timeout, state);
6074 spin_unlock_irq(&x->wait.lock);
6075 return timeout;
6079 * wait_for_completion: - waits for completion of a task
6080 * @x: holds the state of this particular completion
6082 * This waits to be signaled for completion of a specific task. It is NOT
6083 * interruptible and there is no timeout.
6085 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
6086 * and interrupt capability. Also see complete().
6088 void __sched wait_for_completion(struct completion *x)
6090 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
6092 EXPORT_SYMBOL(wait_for_completion);
6095 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
6096 * @x: holds the state of this particular completion
6097 * @timeout: timeout value in jiffies
6099 * This waits for either a completion of a specific task to be signaled or for a
6100 * specified timeout to expire. The timeout is in jiffies. It is not
6101 * interruptible.
6103 unsigned long __sched
6104 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
6106 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
6108 EXPORT_SYMBOL(wait_for_completion_timeout);
6111 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
6112 * @x: holds the state of this particular completion
6114 * This waits for completion of a specific task to be signaled. It is
6115 * interruptible.
6117 int __sched wait_for_completion_interruptible(struct completion *x)
6119 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
6120 if (t == -ERESTARTSYS)
6121 return t;
6122 return 0;
6124 EXPORT_SYMBOL(wait_for_completion_interruptible);
6127 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
6128 * @x: holds the state of this particular completion
6129 * @timeout: timeout value in jiffies
6131 * This waits for either a completion of a specific task to be signaled or for a
6132 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
6134 unsigned long __sched
6135 wait_for_completion_interruptible_timeout(struct completion *x,
6136 unsigned long timeout)
6138 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
6140 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
6143 * wait_for_completion_killable: - waits for completion of a task (killable)
6144 * @x: holds the state of this particular completion
6146 * This waits to be signaled for completion of a specific task. It can be
6147 * interrupted by a kill signal.
6149 int __sched wait_for_completion_killable(struct completion *x)
6151 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
6152 if (t == -ERESTARTSYS)
6153 return t;
6154 return 0;
6156 EXPORT_SYMBOL(wait_for_completion_killable);
6159 * try_wait_for_completion - try to decrement a completion without blocking
6160 * @x: completion structure
6162 * Returns: 0 if a decrement cannot be done without blocking
6163 * 1 if a decrement succeeded.
6165 * If a completion is being used as a counting completion,
6166 * attempt to decrement the counter without blocking. This
6167 * enables us to avoid waiting if the resource the completion
6168 * is protecting is not available.
6170 bool try_wait_for_completion(struct completion *x)
6172 unsigned long flags;
6173 int ret = 1;
6175 spin_lock_irqsave(&x->wait.lock, flags);
6176 if (!x->done)
6177 ret = 0;
6178 else
6179 x->done--;
6180 spin_unlock_irqrestore(&x->wait.lock, flags);
6181 return ret;
6183 EXPORT_SYMBOL(try_wait_for_completion);
6186 * completion_done - Test to see if a completion has any waiters
6187 * @x: completion structure
6189 * Returns: 0 if there are waiters (wait_for_completion() in progress)
6190 * 1 if there are no waiters.
6193 bool completion_done(struct completion *x)
6195 unsigned long flags;
6196 int ret = 1;
6198 spin_lock_irqsave(&x->wait.lock, flags);
6199 if (!x->done)
6200 ret = 0;
6201 spin_unlock_irqrestore(&x->wait.lock, flags);
6202 return ret;
6204 EXPORT_SYMBOL(completion_done);
6206 static long __sched
6207 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
6209 unsigned long flags;
6210 wait_queue_t wait;
6212 init_waitqueue_entry(&wait, current);
6214 __set_current_state(state);
6216 spin_lock_irqsave(&q->lock, flags);
6217 __add_wait_queue(q, &wait);
6218 spin_unlock(&q->lock);
6219 timeout = schedule_timeout(timeout);
6220 spin_lock_irq(&q->lock);
6221 __remove_wait_queue(q, &wait);
6222 spin_unlock_irqrestore(&q->lock, flags);
6224 return timeout;
6227 void __sched interruptible_sleep_on(wait_queue_head_t *q)
6229 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6231 EXPORT_SYMBOL(interruptible_sleep_on);
6233 long __sched
6234 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
6236 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
6238 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6240 void __sched sleep_on(wait_queue_head_t *q)
6242 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6244 EXPORT_SYMBOL(sleep_on);
6246 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6248 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6250 EXPORT_SYMBOL(sleep_on_timeout);
6252 #ifdef CONFIG_RT_MUTEXES
6255 * rt_mutex_setprio - set the current priority of a task
6256 * @p: task
6257 * @prio: prio value (kernel-internal form)
6259 * This function changes the 'effective' priority of a task. It does
6260 * not touch ->normal_prio like __setscheduler().
6262 * Used by the rt_mutex code to implement priority inheritance logic.
6264 void rt_mutex_setprio(struct task_struct *p, int prio)
6266 unsigned long flags;
6267 int oldprio, on_rq, running;
6268 struct rq *rq;
6269 const struct sched_class *prev_class;
6271 BUG_ON(prio < 0 || prio > MAX_PRIO);
6273 rq = task_rq_lock(p, &flags);
6274 update_rq_clock(rq);
6276 oldprio = p->prio;
6277 prev_class = p->sched_class;
6278 on_rq = p->se.on_rq;
6279 running = task_current(rq, p);
6280 if (on_rq)
6281 dequeue_task(rq, p, 0);
6282 if (running)
6283 p->sched_class->put_prev_task(rq, p);
6285 if (rt_prio(prio))
6286 p->sched_class = &rt_sched_class;
6287 else
6288 p->sched_class = &fair_sched_class;
6290 p->prio = prio;
6292 if (running)
6293 p->sched_class->set_curr_task(rq);
6294 if (on_rq) {
6295 enqueue_task(rq, p, 0, oldprio < prio);
6297 check_class_changed(rq, p, prev_class, oldprio, running);
6299 task_rq_unlock(rq, &flags);
6302 #endif
6304 void set_user_nice(struct task_struct *p, long nice)
6306 int old_prio, delta, on_rq;
6307 unsigned long flags;
6308 struct rq *rq;
6310 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6311 return;
6313 * We have to be careful, if called from sys_setpriority(),
6314 * the task might be in the middle of scheduling on another CPU.
6316 rq = task_rq_lock(p, &flags);
6317 update_rq_clock(rq);
6319 * The RT priorities are set via sched_setscheduler(), but we still
6320 * allow the 'normal' nice value to be set - but as expected
6321 * it wont have any effect on scheduling until the task is
6322 * SCHED_FIFO/SCHED_RR:
6324 if (task_has_rt_policy(p)) {
6325 p->static_prio = NICE_TO_PRIO(nice);
6326 goto out_unlock;
6328 on_rq = p->se.on_rq;
6329 if (on_rq)
6330 dequeue_task(rq, p, 0);
6332 p->static_prio = NICE_TO_PRIO(nice);
6333 set_load_weight(p);
6334 old_prio = p->prio;
6335 p->prio = effective_prio(p);
6336 delta = p->prio - old_prio;
6338 if (on_rq) {
6339 enqueue_task(rq, p, 0, false);
6341 * If the task increased its priority or is running and
6342 * lowered its priority, then reschedule its CPU:
6344 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6345 resched_task(rq->curr);
6347 out_unlock:
6348 task_rq_unlock(rq, &flags);
6350 EXPORT_SYMBOL(set_user_nice);
6353 * can_nice - check if a task can reduce its nice value
6354 * @p: task
6355 * @nice: nice value
6357 int can_nice(const struct task_struct *p, const int nice)
6359 /* convert nice value [19,-20] to rlimit style value [1,40] */
6360 int nice_rlim = 20 - nice;
6362 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6363 capable(CAP_SYS_NICE));
6366 #ifdef __ARCH_WANT_SYS_NICE
6369 * sys_nice - change the priority of the current process.
6370 * @increment: priority increment
6372 * sys_setpriority is a more generic, but much slower function that
6373 * does similar things.
6375 SYSCALL_DEFINE1(nice, int, increment)
6377 long nice, retval;
6380 * Setpriority might change our priority at the same moment.
6381 * We don't have to worry. Conceptually one call occurs first
6382 * and we have a single winner.
6384 if (increment < -40)
6385 increment = -40;
6386 if (increment > 40)
6387 increment = 40;
6389 nice = TASK_NICE(current) + increment;
6390 if (nice < -20)
6391 nice = -20;
6392 if (nice > 19)
6393 nice = 19;
6395 if (increment < 0 && !can_nice(current, nice))
6396 return -EPERM;
6398 retval = security_task_setnice(current, nice);
6399 if (retval)
6400 return retval;
6402 set_user_nice(current, nice);
6403 return 0;
6406 #endif
6409 * task_prio - return the priority value of a given task.
6410 * @p: the task in question.
6412 * This is the priority value as seen by users in /proc.
6413 * RT tasks are offset by -200. Normal tasks are centered
6414 * around 0, value goes from -16 to +15.
6416 int task_prio(const struct task_struct *p)
6418 return p->prio - MAX_RT_PRIO;
6422 * task_nice - return the nice value of a given task.
6423 * @p: the task in question.
6425 int task_nice(const struct task_struct *p)
6427 return TASK_NICE(p);
6429 EXPORT_SYMBOL(task_nice);
6432 * idle_cpu - is a given cpu idle currently?
6433 * @cpu: the processor in question.
6435 int idle_cpu(int cpu)
6437 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6441 * idle_task - return the idle task for a given cpu.
6442 * @cpu: the processor in question.
6444 struct task_struct *idle_task(int cpu)
6446 return cpu_rq(cpu)->idle;
6450 * find_process_by_pid - find a process with a matching PID value.
6451 * @pid: the pid in question.
6453 static struct task_struct *find_process_by_pid(pid_t pid)
6455 return pid ? find_task_by_vpid(pid) : current;
6458 /* Actually do priority change: must hold rq lock. */
6459 static void
6460 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6462 BUG_ON(p->se.on_rq);
6464 p->policy = policy;
6465 switch (p->policy) {
6466 case SCHED_NORMAL:
6467 case SCHED_BATCH:
6468 case SCHED_IDLE:
6469 p->sched_class = &fair_sched_class;
6470 break;
6471 case SCHED_FIFO:
6472 case SCHED_RR:
6473 p->sched_class = &rt_sched_class;
6474 break;
6477 p->rt_priority = prio;
6478 p->normal_prio = normal_prio(p);
6479 /* we are holding p->pi_lock already */
6480 p->prio = rt_mutex_getprio(p);
6481 set_load_weight(p);
6485 * check the target process has a UID that matches the current process's
6487 static bool check_same_owner(struct task_struct *p)
6489 const struct cred *cred = current_cred(), *pcred;
6490 bool match;
6492 rcu_read_lock();
6493 pcred = __task_cred(p);
6494 match = (cred->euid == pcred->euid ||
6495 cred->euid == pcred->uid);
6496 rcu_read_unlock();
6497 return match;
6500 static int __sched_setscheduler(struct task_struct *p, int policy,
6501 struct sched_param *param, bool user)
6503 int retval, oldprio, oldpolicy = -1, on_rq, running;
6504 unsigned long flags;
6505 const struct sched_class *prev_class;
6506 struct rq *rq;
6507 int reset_on_fork;
6509 /* may grab non-irq protected spin_locks */
6510 BUG_ON(in_interrupt());
6511 recheck:
6512 /* double check policy once rq lock held */
6513 if (policy < 0) {
6514 reset_on_fork = p->sched_reset_on_fork;
6515 policy = oldpolicy = p->policy;
6516 } else {
6517 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6518 policy &= ~SCHED_RESET_ON_FORK;
6520 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6521 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6522 policy != SCHED_IDLE)
6523 return -EINVAL;
6527 * Valid priorities for SCHED_FIFO and SCHED_RR are
6528 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6529 * SCHED_BATCH and SCHED_IDLE is 0.
6531 if (param->sched_priority < 0 ||
6532 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6533 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6534 return -EINVAL;
6535 if (rt_policy(policy) != (param->sched_priority != 0))
6536 return -EINVAL;
6539 * Allow unprivileged RT tasks to decrease priority:
6541 if (user && !capable(CAP_SYS_NICE)) {
6542 if (rt_policy(policy)) {
6543 unsigned long rlim_rtprio;
6545 if (!lock_task_sighand(p, &flags))
6546 return -ESRCH;
6547 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6548 unlock_task_sighand(p, &flags);
6550 /* can't set/change the rt policy */
6551 if (policy != p->policy && !rlim_rtprio)
6552 return -EPERM;
6554 /* can't increase priority */
6555 if (param->sched_priority > p->rt_priority &&
6556 param->sched_priority > rlim_rtprio)
6557 return -EPERM;
6560 * Like positive nice levels, dont allow tasks to
6561 * move out of SCHED_IDLE either:
6563 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6564 return -EPERM;
6566 /* can't change other user's priorities */
6567 if (!check_same_owner(p))
6568 return -EPERM;
6570 /* Normal users shall not reset the sched_reset_on_fork flag */
6571 if (p->sched_reset_on_fork && !reset_on_fork)
6572 return -EPERM;
6575 if (user) {
6576 #ifdef CONFIG_RT_GROUP_SCHED
6578 * Do not allow realtime tasks into groups that have no runtime
6579 * assigned.
6581 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6582 task_group(p)->rt_bandwidth.rt_runtime == 0)
6583 return -EPERM;
6584 #endif
6586 retval = security_task_setscheduler(p, policy, param);
6587 if (retval)
6588 return retval;
6592 * make sure no PI-waiters arrive (or leave) while we are
6593 * changing the priority of the task:
6595 spin_lock_irqsave(&p->pi_lock, flags);
6597 * To be able to change p->policy safely, the apropriate
6598 * runqueue lock must be held.
6600 rq = __task_rq_lock(p);
6601 /* recheck policy now with rq lock held */
6602 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6603 policy = oldpolicy = -1;
6604 __task_rq_unlock(rq);
6605 spin_unlock_irqrestore(&p->pi_lock, flags);
6606 goto recheck;
6608 update_rq_clock(rq);
6609 on_rq = p->se.on_rq;
6610 running = task_current(rq, p);
6611 if (on_rq)
6612 deactivate_task(rq, p, 0);
6613 if (running)
6614 p->sched_class->put_prev_task(rq, p);
6616 p->sched_reset_on_fork = reset_on_fork;
6618 oldprio = p->prio;
6619 prev_class = p->sched_class;
6620 __setscheduler(rq, p, policy, param->sched_priority);
6622 if (running)
6623 p->sched_class->set_curr_task(rq);
6624 if (on_rq) {
6625 activate_task(rq, p, 0);
6627 check_class_changed(rq, p, prev_class, oldprio, running);
6629 __task_rq_unlock(rq);
6630 spin_unlock_irqrestore(&p->pi_lock, flags);
6632 rt_mutex_adjust_pi(p);
6634 return 0;
6638 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6639 * @p: the task in question.
6640 * @policy: new policy.
6641 * @param: structure containing the new RT priority.
6643 * NOTE that the task may be already dead.
6645 int sched_setscheduler(struct task_struct *p, int policy,
6646 struct sched_param *param)
6648 return __sched_setscheduler(p, policy, param, true);
6650 EXPORT_SYMBOL_GPL(sched_setscheduler);
6653 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6654 * @p: the task in question.
6655 * @policy: new policy.
6656 * @param: structure containing the new RT priority.
6658 * Just like sched_setscheduler, only don't bother checking if the
6659 * current context has permission. For example, this is needed in
6660 * stop_machine(): we create temporary high priority worker threads,
6661 * but our caller might not have that capability.
6663 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6664 struct sched_param *param)
6666 return __sched_setscheduler(p, policy, param, false);
6669 static int
6670 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6672 struct sched_param lparam;
6673 struct task_struct *p;
6674 int retval;
6676 if (!param || pid < 0)
6677 return -EINVAL;
6678 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6679 return -EFAULT;
6681 rcu_read_lock();
6682 retval = -ESRCH;
6683 p = find_process_by_pid(pid);
6684 if (p != NULL)
6685 retval = sched_setscheduler(p, policy, &lparam);
6686 rcu_read_unlock();
6688 return retval;
6692 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6693 * @pid: the pid in question.
6694 * @policy: new policy.
6695 * @param: structure containing the new RT priority.
6697 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6698 struct sched_param __user *, param)
6700 /* negative values for policy are not valid */
6701 if (policy < 0)
6702 return -EINVAL;
6704 return do_sched_setscheduler(pid, policy, param);
6708 * sys_sched_setparam - set/change the RT priority of a thread
6709 * @pid: the pid in question.
6710 * @param: structure containing the new RT priority.
6712 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6714 return do_sched_setscheduler(pid, -1, param);
6718 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6719 * @pid: the pid in question.
6721 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6723 struct task_struct *p;
6724 int retval;
6726 if (pid < 0)
6727 return -EINVAL;
6729 retval = -ESRCH;
6730 rcu_read_lock();
6731 p = find_process_by_pid(pid);
6732 if (p) {
6733 retval = security_task_getscheduler(p);
6734 if (!retval)
6735 retval = p->policy
6736 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6738 rcu_read_unlock();
6739 return retval;
6743 * sys_sched_getparam - get the RT priority of a thread
6744 * @pid: the pid in question.
6745 * @param: structure containing the RT priority.
6747 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6749 struct sched_param lp;
6750 struct task_struct *p;
6751 int retval;
6753 if (!param || pid < 0)
6754 return -EINVAL;
6756 rcu_read_lock();
6757 p = find_process_by_pid(pid);
6758 retval = -ESRCH;
6759 if (!p)
6760 goto out_unlock;
6762 retval = security_task_getscheduler(p);
6763 if (retval)
6764 goto out_unlock;
6766 lp.sched_priority = p->rt_priority;
6767 rcu_read_unlock();
6770 * This one might sleep, we cannot do it with a spinlock held ...
6772 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6774 return retval;
6776 out_unlock:
6777 rcu_read_unlock();
6778 return retval;
6781 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6783 cpumask_var_t cpus_allowed, new_mask;
6784 struct task_struct *p;
6785 int retval;
6787 get_online_cpus();
6788 rcu_read_lock();
6790 p = find_process_by_pid(pid);
6791 if (!p) {
6792 rcu_read_unlock();
6793 put_online_cpus();
6794 return -ESRCH;
6797 /* Prevent p going away */
6798 get_task_struct(p);
6799 rcu_read_unlock();
6801 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6802 retval = -ENOMEM;
6803 goto out_put_task;
6805 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6806 retval = -ENOMEM;
6807 goto out_free_cpus_allowed;
6809 retval = -EPERM;
6810 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6811 goto out_unlock;
6813 retval = security_task_setscheduler(p, 0, NULL);
6814 if (retval)
6815 goto out_unlock;
6817 cpuset_cpus_allowed(p, cpus_allowed);
6818 cpumask_and(new_mask, in_mask, cpus_allowed);
6819 again:
6820 retval = set_cpus_allowed_ptr(p, new_mask);
6822 if (!retval) {
6823 cpuset_cpus_allowed(p, cpus_allowed);
6824 if (!cpumask_subset(new_mask, cpus_allowed)) {
6826 * We must have raced with a concurrent cpuset
6827 * update. Just reset the cpus_allowed to the
6828 * cpuset's cpus_allowed
6830 cpumask_copy(new_mask, cpus_allowed);
6831 goto again;
6834 out_unlock:
6835 free_cpumask_var(new_mask);
6836 out_free_cpus_allowed:
6837 free_cpumask_var(cpus_allowed);
6838 out_put_task:
6839 put_task_struct(p);
6840 put_online_cpus();
6841 return retval;
6844 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6845 struct cpumask *new_mask)
6847 if (len < cpumask_size())
6848 cpumask_clear(new_mask);
6849 else if (len > cpumask_size())
6850 len = cpumask_size();
6852 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6856 * sys_sched_setaffinity - set the cpu affinity of a process
6857 * @pid: pid of the process
6858 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6859 * @user_mask_ptr: user-space pointer to the new cpu mask
6861 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6862 unsigned long __user *, user_mask_ptr)
6864 cpumask_var_t new_mask;
6865 int retval;
6867 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6868 return -ENOMEM;
6870 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6871 if (retval == 0)
6872 retval = sched_setaffinity(pid, new_mask);
6873 free_cpumask_var(new_mask);
6874 return retval;
6877 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6879 struct task_struct *p;
6880 unsigned long flags;
6881 struct rq *rq;
6882 int retval;
6884 get_online_cpus();
6885 rcu_read_lock();
6887 retval = -ESRCH;
6888 p = find_process_by_pid(pid);
6889 if (!p)
6890 goto out_unlock;
6892 retval = security_task_getscheduler(p);
6893 if (retval)
6894 goto out_unlock;
6896 rq = task_rq_lock(p, &flags);
6897 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6898 task_rq_unlock(rq, &flags);
6900 out_unlock:
6901 rcu_read_unlock();
6902 put_online_cpus();
6904 return retval;
6908 * sys_sched_getaffinity - get the cpu affinity of a process
6909 * @pid: pid of the process
6910 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6911 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6913 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6914 unsigned long __user *, user_mask_ptr)
6916 int ret;
6917 cpumask_var_t mask;
6919 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6920 return -EINVAL;
6921 if (len & (sizeof(unsigned long)-1))
6922 return -EINVAL;
6924 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6925 return -ENOMEM;
6927 ret = sched_getaffinity(pid, mask);
6928 if (ret == 0) {
6929 size_t retlen = min_t(size_t, len, cpumask_size());
6931 if (copy_to_user(user_mask_ptr, mask, retlen))
6932 ret = -EFAULT;
6933 else
6934 ret = retlen;
6936 free_cpumask_var(mask);
6938 return ret;
6942 * sys_sched_yield - yield the current processor to other threads.
6944 * This function yields the current CPU to other tasks. If there are no
6945 * other threads running on this CPU then this function will return.
6947 SYSCALL_DEFINE0(sched_yield)
6949 struct rq *rq = this_rq_lock();
6951 schedstat_inc(rq, yld_count);
6952 current->sched_class->yield_task(rq);
6955 * Since we are going to call schedule() anyway, there's
6956 * no need to preempt or enable interrupts:
6958 __release(rq->lock);
6959 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6960 _raw_spin_unlock(&rq->lock);
6961 preempt_enable_no_resched();
6963 schedule();
6965 return 0;
6968 static inline int should_resched(void)
6970 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6973 static void __cond_resched(void)
6975 add_preempt_count(PREEMPT_ACTIVE);
6976 schedule();
6977 sub_preempt_count(PREEMPT_ACTIVE);
6980 int __sched _cond_resched(void)
6982 if (should_resched()) {
6983 __cond_resched();
6984 return 1;
6986 return 0;
6988 EXPORT_SYMBOL(_cond_resched);
6991 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6992 * call schedule, and on return reacquire the lock.
6994 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6995 * operations here to prevent schedule() from being called twice (once via
6996 * spin_unlock(), once by hand).
6998 int __cond_resched_lock(spinlock_t *lock)
7000 int resched = should_resched();
7001 int ret = 0;
7003 lockdep_assert_held(lock);
7005 if (spin_needbreak(lock) || resched) {
7006 spin_unlock(lock);
7007 if (resched)
7008 __cond_resched();
7009 else
7010 cpu_relax();
7011 ret = 1;
7012 spin_lock(lock);
7014 return ret;
7016 EXPORT_SYMBOL(__cond_resched_lock);
7018 int __sched __cond_resched_softirq(void)
7020 BUG_ON(!in_softirq());
7022 if (should_resched()) {
7023 local_bh_enable();
7024 __cond_resched();
7025 local_bh_disable();
7026 return 1;
7028 return 0;
7030 EXPORT_SYMBOL(__cond_resched_softirq);
7033 * yield - yield the current processor to other threads.
7035 * This is a shortcut for kernel-space yielding - it marks the
7036 * thread runnable and calls sys_sched_yield().
7038 void __sched yield(void)
7040 set_current_state(TASK_RUNNING);
7041 sys_sched_yield();
7043 EXPORT_SYMBOL(yield);
7046 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7047 * that process accounting knows that this is a task in IO wait state.
7049 void __sched io_schedule(void)
7051 struct rq *rq = raw_rq();
7053 delayacct_blkio_start();
7054 atomic_inc(&rq->nr_iowait);
7055 current->in_iowait = 1;
7056 schedule();
7057 current->in_iowait = 0;
7058 atomic_dec(&rq->nr_iowait);
7059 delayacct_blkio_end();
7061 EXPORT_SYMBOL(io_schedule);
7063 long __sched io_schedule_timeout(long timeout)
7065 struct rq *rq = raw_rq();
7066 long ret;
7068 delayacct_blkio_start();
7069 atomic_inc(&rq->nr_iowait);
7070 current->in_iowait = 1;
7071 ret = schedule_timeout(timeout);
7072 current->in_iowait = 0;
7073 atomic_dec(&rq->nr_iowait);
7074 delayacct_blkio_end();
7075 return ret;
7079 * sys_sched_get_priority_max - return maximum RT priority.
7080 * @policy: scheduling class.
7082 * this syscall returns the maximum rt_priority that can be used
7083 * by a given scheduling class.
7085 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
7087 int ret = -EINVAL;
7089 switch (policy) {
7090 case SCHED_FIFO:
7091 case SCHED_RR:
7092 ret = MAX_USER_RT_PRIO-1;
7093 break;
7094 case SCHED_NORMAL:
7095 case SCHED_BATCH:
7096 case SCHED_IDLE:
7097 ret = 0;
7098 break;
7100 return ret;
7104 * sys_sched_get_priority_min - return minimum RT priority.
7105 * @policy: scheduling class.
7107 * this syscall returns the minimum rt_priority that can be used
7108 * by a given scheduling class.
7110 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
7112 int ret = -EINVAL;
7114 switch (policy) {
7115 case SCHED_FIFO:
7116 case SCHED_RR:
7117 ret = 1;
7118 break;
7119 case SCHED_NORMAL:
7120 case SCHED_BATCH:
7121 case SCHED_IDLE:
7122 ret = 0;
7124 return ret;
7128 * sys_sched_rr_get_interval - return the default timeslice of a process.
7129 * @pid: pid of the process.
7130 * @interval: userspace pointer to the timeslice value.
7132 * this syscall writes the default timeslice value of a given process
7133 * into the user-space timespec buffer. A value of '0' means infinity.
7135 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
7136 struct timespec __user *, interval)
7138 struct task_struct *p;
7139 unsigned int time_slice;
7140 unsigned long flags;
7141 struct rq *rq;
7142 int retval;
7143 struct timespec t;
7145 if (pid < 0)
7146 return -EINVAL;
7148 retval = -ESRCH;
7149 rcu_read_lock();
7150 p = find_process_by_pid(pid);
7151 if (!p)
7152 goto out_unlock;
7154 retval = security_task_getscheduler(p);
7155 if (retval)
7156 goto out_unlock;
7158 rq = task_rq_lock(p, &flags);
7159 time_slice = p->sched_class->get_rr_interval(rq, p);
7160 task_rq_unlock(rq, &flags);
7162 rcu_read_unlock();
7163 jiffies_to_timespec(time_slice, &t);
7164 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
7165 return retval;
7167 out_unlock:
7168 rcu_read_unlock();
7169 return retval;
7172 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
7174 void sched_show_task(struct task_struct *p)
7176 unsigned long free = 0;
7177 unsigned state;
7179 state = p->state ? __ffs(p->state) + 1 : 0;
7180 printk(KERN_INFO "%-13.13s %c", p->comm,
7181 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
7182 #if BITS_PER_LONG == 32
7183 if (state == TASK_RUNNING)
7184 printk(KERN_CONT " running ");
7185 else
7186 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
7187 #else
7188 if (state == TASK_RUNNING)
7189 printk(KERN_CONT " running task ");
7190 else
7191 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
7192 #endif
7193 #ifdef CONFIG_DEBUG_STACK_USAGE
7194 free = stack_not_used(p);
7195 #endif
7196 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
7197 task_pid_nr(p), task_pid_nr(p->real_parent),
7198 (unsigned long)task_thread_info(p)->flags);
7200 show_stack(p, NULL);
7203 void show_state_filter(unsigned long state_filter)
7205 struct task_struct *g, *p;
7207 #if BITS_PER_LONG == 32
7208 printk(KERN_INFO
7209 " task PC stack pid father\n");
7210 #else
7211 printk(KERN_INFO
7212 " task PC stack pid father\n");
7213 #endif
7214 read_lock(&tasklist_lock);
7215 do_each_thread(g, p) {
7217 * reset the NMI-timeout, listing all files on a slow
7218 * console might take alot of time:
7220 touch_nmi_watchdog();
7221 if (!state_filter || (p->state & state_filter))
7222 sched_show_task(p);
7223 } while_each_thread(g, p);
7225 touch_all_softlockup_watchdogs();
7227 #ifdef CONFIG_SCHED_DEBUG
7228 sysrq_sched_debug_show();
7229 #endif
7230 read_unlock(&tasklist_lock);
7232 * Only show locks if all tasks are dumped:
7234 if (state_filter == -1)
7235 debug_show_all_locks();
7238 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7240 idle->sched_class = &idle_sched_class;
7244 * init_idle - set up an idle thread for a given CPU
7245 * @idle: task in question
7246 * @cpu: cpu the idle task belongs to
7248 * NOTE: this function does not set the idle thread's NEED_RESCHED
7249 * flag, to make booting more robust.
7251 void __cpuinit init_idle(struct task_struct *idle, int cpu)
7253 struct rq *rq = cpu_rq(cpu);
7254 unsigned long flags;
7256 spin_lock_irqsave(&rq->lock, flags);
7258 __sched_fork(idle);
7259 idle->state = TASK_RUNNING;
7260 idle->se.exec_start = sched_clock();
7262 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7264 * We're having a chicken and egg problem, even though we are
7265 * holding rq->lock, the cpu isn't yet set to this cpu so the
7266 * lockdep check in task_group() will fail.
7268 * Similar case to sched_fork(). / Alternatively we could
7269 * use task_rq_lock() here and obtain the other rq->lock.
7271 * Silence PROVE_RCU
7273 rcu_read_lock();
7274 __set_task_cpu(idle, cpu);
7275 rcu_read_unlock();
7277 rq->curr = rq->idle = idle;
7278 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7279 idle->oncpu = 1;
7280 #endif
7281 spin_unlock_irqrestore(&rq->lock, flags);
7283 /* Set the preempt count _outside_ the spinlocks! */
7284 #if defined(CONFIG_PREEMPT)
7285 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7286 #else
7287 task_thread_info(idle)->preempt_count = 0;
7288 #endif
7290 * The idle tasks have their own, simple scheduling class:
7292 idle->sched_class = &idle_sched_class;
7293 ftrace_graph_init_task(idle);
7297 * In a system that switches off the HZ timer nohz_cpu_mask
7298 * indicates which cpus entered this state. This is used
7299 * in the rcu update to wait only for active cpus. For system
7300 * which do not switch off the HZ timer nohz_cpu_mask should
7301 * always be CPU_BITS_NONE.
7303 cpumask_var_t nohz_cpu_mask;
7306 * Increase the granularity value when there are more CPUs,
7307 * because with more CPUs the 'effective latency' as visible
7308 * to users decreases. But the relationship is not linear,
7309 * so pick a second-best guess by going with the log2 of the
7310 * number of CPUs.
7312 * This idea comes from the SD scheduler of Con Kolivas:
7314 static void update_sysctl(void)
7316 unsigned int cpus = min(num_online_cpus(), 8U);
7317 unsigned int factor = 1 + ilog2(cpus);
7319 #define SET_SYSCTL(name) \
7320 (sysctl_##name = (factor) * normalized_sysctl_##name)
7321 SET_SYSCTL(sched_min_granularity);
7322 SET_SYSCTL(sched_latency);
7323 SET_SYSCTL(sched_wakeup_granularity);
7324 SET_SYSCTL(sched_shares_ratelimit);
7325 #undef SET_SYSCTL
7328 static inline void sched_init_granularity(void)
7330 update_sysctl();
7333 #ifdef CONFIG_SMP
7335 * This is how migration works:
7337 * 1) we queue a struct migration_req structure in the source CPU's
7338 * runqueue and wake up that CPU's migration thread.
7339 * 2) we down() the locked semaphore => thread blocks.
7340 * 3) migration thread wakes up (implicitly it forces the migrated
7341 * thread off the CPU)
7342 * 4) it gets the migration request and checks whether the migrated
7343 * task is still in the wrong runqueue.
7344 * 5) if it's in the wrong runqueue then the migration thread removes
7345 * it and puts it into the right queue.
7346 * 6) migration thread up()s the semaphore.
7347 * 7) we wake up and the migration is done.
7351 * Change a given task's CPU affinity. Migrate the thread to a
7352 * proper CPU and schedule it away if the CPU it's executing on
7353 * is removed from the allowed bitmask.
7355 * NOTE: the caller must have a valid reference to the task, the
7356 * task must not exit() & deallocate itself prematurely. The
7357 * call is not atomic; no spinlocks may be held.
7359 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7361 struct migration_req req;
7362 unsigned long flags;
7363 struct rq *rq;
7364 int ret = 0;
7367 * Serialize against TASK_WAKING so that ttwu() and wunt() can
7368 * drop the rq->lock and still rely on ->cpus_allowed.
7370 again:
7371 while (task_is_waking(p))
7372 cpu_relax();
7373 rq = task_rq_lock(p, &flags);
7374 if (task_is_waking(p)) {
7375 task_rq_unlock(rq, &flags);
7376 goto again;
7379 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7380 ret = -EINVAL;
7381 goto out;
7384 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7385 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7386 ret = -EINVAL;
7387 goto out;
7390 if (p->sched_class->set_cpus_allowed)
7391 p->sched_class->set_cpus_allowed(p, new_mask);
7392 else {
7393 cpumask_copy(&p->cpus_allowed, new_mask);
7394 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7397 /* Can the task run on the task's current CPU? If so, we're done */
7398 if (cpumask_test_cpu(task_cpu(p), new_mask))
7399 goto out;
7401 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7402 /* Need help from migration thread: drop lock and wait. */
7403 struct task_struct *mt = rq->migration_thread;
7405 get_task_struct(mt);
7406 task_rq_unlock(rq, &flags);
7407 wake_up_process(mt);
7408 put_task_struct(mt);
7409 wait_for_completion(&req.done);
7410 tlb_migrate_finish(p->mm);
7411 return 0;
7413 out:
7414 task_rq_unlock(rq, &flags);
7416 return ret;
7418 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7421 * Move (not current) task off this cpu, onto dest cpu. We're doing
7422 * this because either it can't run here any more (set_cpus_allowed()
7423 * away from this CPU, or CPU going down), or because we're
7424 * attempting to rebalance this task on exec (sched_exec).
7426 * So we race with normal scheduler movements, but that's OK, as long
7427 * as the task is no longer on this CPU.
7429 * Returns non-zero if task was successfully migrated.
7431 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7433 struct rq *rq_dest, *rq_src;
7434 int ret = 0;
7436 if (unlikely(!cpu_active(dest_cpu)))
7437 return ret;
7439 rq_src = cpu_rq(src_cpu);
7440 rq_dest = cpu_rq(dest_cpu);
7442 double_rq_lock(rq_src, rq_dest);
7443 /* Already moved. */
7444 if (task_cpu(p) != src_cpu)
7445 goto done;
7446 /* Affinity changed (again). */
7447 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7448 goto fail;
7451 * If we're not on a rq, the next wake-up will ensure we're
7452 * placed properly.
7454 if (p->se.on_rq) {
7455 deactivate_task(rq_src, p, 0);
7456 set_task_cpu(p, dest_cpu);
7457 activate_task(rq_dest, p, 0);
7458 check_preempt_curr(rq_dest, p, 0);
7460 done:
7461 ret = 1;
7462 fail:
7463 double_rq_unlock(rq_src, rq_dest);
7464 return ret;
7467 #define RCU_MIGRATION_IDLE 0
7468 #define RCU_MIGRATION_NEED_QS 1
7469 #define RCU_MIGRATION_GOT_QS 2
7470 #define RCU_MIGRATION_MUST_SYNC 3
7473 * migration_thread - this is a highprio system thread that performs
7474 * thread migration by bumping thread off CPU then 'pushing' onto
7475 * another runqueue.
7477 static int migration_thread(void *data)
7479 int badcpu;
7480 int cpu = (long)data;
7481 struct rq *rq;
7483 rq = cpu_rq(cpu);
7484 BUG_ON(rq->migration_thread != current);
7486 set_current_state(TASK_INTERRUPTIBLE);
7487 while (!kthread_should_stop()) {
7488 struct migration_req *req;
7489 struct list_head *head;
7491 spin_lock_irq(&rq->lock);
7493 if (cpu_is_offline(cpu)) {
7494 spin_unlock_irq(&rq->lock);
7495 break;
7498 if (rq->active_balance) {
7499 active_load_balance(rq, cpu);
7500 rq->active_balance = 0;
7503 head = &rq->migration_queue;
7505 if (list_empty(head)) {
7506 spin_unlock_irq(&rq->lock);
7507 schedule();
7508 set_current_state(TASK_INTERRUPTIBLE);
7509 continue;
7511 req = list_entry(head->next, struct migration_req, list);
7512 list_del_init(head->next);
7514 if (req->task != NULL) {
7515 spin_unlock(&rq->lock);
7516 __migrate_task(req->task, cpu, req->dest_cpu);
7517 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7518 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7519 spin_unlock(&rq->lock);
7520 } else {
7521 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7522 spin_unlock(&rq->lock);
7523 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7525 local_irq_enable();
7527 complete(&req->done);
7529 __set_current_state(TASK_RUNNING);
7531 return 0;
7534 #ifdef CONFIG_HOTPLUG_CPU
7536 * Figure out where task on dead CPU should go, use force if necessary.
7538 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7540 struct rq *rq = cpu_rq(dead_cpu);
7541 int needs_cpu, uninitialized_var(dest_cpu);
7542 unsigned long flags;
7544 local_irq_save(flags);
7546 spin_lock(&rq->lock);
7547 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
7548 if (needs_cpu)
7549 dest_cpu = select_fallback_rq(dead_cpu, p);
7550 spin_unlock(&rq->lock);
7552 * It can only fail if we race with set_cpus_allowed(),
7553 * in the racer should migrate the task anyway.
7555 if (needs_cpu)
7556 __migrate_task(p, dead_cpu, dest_cpu);
7557 local_irq_restore(flags);
7561 * While a dead CPU has no uninterruptible tasks queued at this point,
7562 * it might still have a nonzero ->nr_uninterruptible counter, because
7563 * for performance reasons the counter is not stricly tracking tasks to
7564 * their home CPUs. So we just add the counter to another CPU's counter,
7565 * to keep the global sum constant after CPU-down:
7567 static void migrate_nr_uninterruptible(struct rq *rq_src)
7569 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7570 unsigned long flags;
7572 local_irq_save(flags);
7573 double_rq_lock(rq_src, rq_dest);
7574 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7575 rq_src->nr_uninterruptible = 0;
7576 double_rq_unlock(rq_src, rq_dest);
7577 local_irq_restore(flags);
7580 /* Run through task list and migrate tasks from the dead cpu. */
7581 static void migrate_live_tasks(int src_cpu)
7583 struct task_struct *p, *t;
7585 read_lock(&tasklist_lock);
7587 do_each_thread(t, p) {
7588 if (p == current)
7589 continue;
7591 if (task_cpu(p) == src_cpu)
7592 move_task_off_dead_cpu(src_cpu, p);
7593 } while_each_thread(t, p);
7595 read_unlock(&tasklist_lock);
7599 * Schedules idle task to be the next runnable task on current CPU.
7600 * It does so by boosting its priority to highest possible.
7601 * Used by CPU offline code.
7603 void sched_idle_next(void)
7605 int this_cpu = smp_processor_id();
7606 struct rq *rq = cpu_rq(this_cpu);
7607 struct task_struct *p = rq->idle;
7608 unsigned long flags;
7610 /* cpu has to be offline */
7611 BUG_ON(cpu_online(this_cpu));
7614 * Strictly not necessary since rest of the CPUs are stopped by now
7615 * and interrupts disabled on the current cpu.
7617 spin_lock_irqsave(&rq->lock, flags);
7619 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7621 update_rq_clock(rq);
7622 activate_task(rq, p, 0);
7624 spin_unlock_irqrestore(&rq->lock, flags);
7628 * Ensures that the idle task is using init_mm right before its cpu goes
7629 * offline.
7631 void idle_task_exit(void)
7633 struct mm_struct *mm = current->active_mm;
7635 BUG_ON(cpu_online(smp_processor_id()));
7637 if (mm != &init_mm)
7638 switch_mm(mm, &init_mm, current);
7639 mmdrop(mm);
7642 /* called under rq->lock with disabled interrupts */
7643 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7645 struct rq *rq = cpu_rq(dead_cpu);
7647 /* Must be exiting, otherwise would be on tasklist. */
7648 BUG_ON(!p->exit_state);
7650 /* Cannot have done final schedule yet: would have vanished. */
7651 BUG_ON(p->state == TASK_DEAD);
7653 get_task_struct(p);
7656 * Drop lock around migration; if someone else moves it,
7657 * that's OK. No task can be added to this CPU, so iteration is
7658 * fine.
7660 spin_unlock_irq(&rq->lock);
7661 move_task_off_dead_cpu(dead_cpu, p);
7662 spin_lock_irq(&rq->lock);
7664 put_task_struct(p);
7667 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7668 static void migrate_dead_tasks(unsigned int dead_cpu)
7670 struct rq *rq = cpu_rq(dead_cpu);
7671 struct task_struct *next;
7673 for ( ; ; ) {
7674 if (!rq->nr_running)
7675 break;
7676 update_rq_clock(rq);
7677 next = pick_next_task(rq);
7678 if (!next)
7679 break;
7680 next->sched_class->put_prev_task(rq, next);
7681 migrate_dead(dead_cpu, next);
7687 * remove the tasks which were accounted by rq from calc_load_tasks.
7689 static void calc_global_load_remove(struct rq *rq)
7691 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7692 rq->calc_load_active = 0;
7694 #endif /* CONFIG_HOTPLUG_CPU */
7696 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7698 static struct ctl_table sd_ctl_dir[] = {
7700 .procname = "sched_domain",
7701 .mode = 0555,
7703 {0, },
7706 static struct ctl_table sd_ctl_root[] = {
7708 .ctl_name = CTL_KERN,
7709 .procname = "kernel",
7710 .mode = 0555,
7711 .child = sd_ctl_dir,
7713 {0, },
7716 static struct ctl_table *sd_alloc_ctl_entry(int n)
7718 struct ctl_table *entry =
7719 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7721 return entry;
7724 static void sd_free_ctl_entry(struct ctl_table **tablep)
7726 struct ctl_table *entry;
7729 * In the intermediate directories, both the child directory and
7730 * procname are dynamically allocated and could fail but the mode
7731 * will always be set. In the lowest directory the names are
7732 * static strings and all have proc handlers.
7734 for (entry = *tablep; entry->mode; entry++) {
7735 if (entry->child)
7736 sd_free_ctl_entry(&entry->child);
7737 if (entry->proc_handler == NULL)
7738 kfree(entry->procname);
7741 kfree(*tablep);
7742 *tablep = NULL;
7745 static void
7746 set_table_entry(struct ctl_table *entry,
7747 const char *procname, void *data, int maxlen,
7748 mode_t mode, proc_handler *proc_handler)
7750 entry->procname = procname;
7751 entry->data = data;
7752 entry->maxlen = maxlen;
7753 entry->mode = mode;
7754 entry->proc_handler = proc_handler;
7757 static struct ctl_table *
7758 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7760 struct ctl_table *table = sd_alloc_ctl_entry(13);
7762 if (table == NULL)
7763 return NULL;
7765 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7766 sizeof(long), 0644, proc_doulongvec_minmax);
7767 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7768 sizeof(long), 0644, proc_doulongvec_minmax);
7769 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7770 sizeof(int), 0644, proc_dointvec_minmax);
7771 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7772 sizeof(int), 0644, proc_dointvec_minmax);
7773 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7774 sizeof(int), 0644, proc_dointvec_minmax);
7775 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7776 sizeof(int), 0644, proc_dointvec_minmax);
7777 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7778 sizeof(int), 0644, proc_dointvec_minmax);
7779 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7780 sizeof(int), 0644, proc_dointvec_minmax);
7781 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7782 sizeof(int), 0644, proc_dointvec_minmax);
7783 set_table_entry(&table[9], "cache_nice_tries",
7784 &sd->cache_nice_tries,
7785 sizeof(int), 0644, proc_dointvec_minmax);
7786 set_table_entry(&table[10], "flags", &sd->flags,
7787 sizeof(int), 0644, proc_dointvec_minmax);
7788 set_table_entry(&table[11], "name", sd->name,
7789 CORENAME_MAX_SIZE, 0444, proc_dostring);
7790 /* &table[12] is terminator */
7792 return table;
7795 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7797 struct ctl_table *entry, *table;
7798 struct sched_domain *sd;
7799 int domain_num = 0, i;
7800 char buf[32];
7802 for_each_domain(cpu, sd)
7803 domain_num++;
7804 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7805 if (table == NULL)
7806 return NULL;
7808 i = 0;
7809 for_each_domain(cpu, sd) {
7810 snprintf(buf, 32, "domain%d", i);
7811 entry->procname = kstrdup(buf, GFP_KERNEL);
7812 entry->mode = 0555;
7813 entry->child = sd_alloc_ctl_domain_table(sd);
7814 entry++;
7815 i++;
7817 return table;
7820 static struct ctl_table_header *sd_sysctl_header;
7821 static void register_sched_domain_sysctl(void)
7823 int i, cpu_num = num_possible_cpus();
7824 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7825 char buf[32];
7827 WARN_ON(sd_ctl_dir[0].child);
7828 sd_ctl_dir[0].child = entry;
7830 if (entry == NULL)
7831 return;
7833 for_each_possible_cpu(i) {
7834 snprintf(buf, 32, "cpu%d", i);
7835 entry->procname = kstrdup(buf, GFP_KERNEL);
7836 entry->mode = 0555;
7837 entry->child = sd_alloc_ctl_cpu_table(i);
7838 entry++;
7841 WARN_ON(sd_sysctl_header);
7842 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7845 /* may be called multiple times per register */
7846 static void unregister_sched_domain_sysctl(void)
7848 if (sd_sysctl_header)
7849 unregister_sysctl_table(sd_sysctl_header);
7850 sd_sysctl_header = NULL;
7851 if (sd_ctl_dir[0].child)
7852 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7854 #else
7855 static void register_sched_domain_sysctl(void)
7858 static void unregister_sched_domain_sysctl(void)
7861 #endif
7863 static void set_rq_online(struct rq *rq)
7865 if (!rq->online) {
7866 const struct sched_class *class;
7868 cpumask_set_cpu(rq->cpu, rq->rd->online);
7869 rq->online = 1;
7871 for_each_class(class) {
7872 if (class->rq_online)
7873 class->rq_online(rq);
7878 static void set_rq_offline(struct rq *rq)
7880 if (rq->online) {
7881 const struct sched_class *class;
7883 for_each_class(class) {
7884 if (class->rq_offline)
7885 class->rq_offline(rq);
7888 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7889 rq->online = 0;
7894 * migration_call - callback that gets triggered when a CPU is added.
7895 * Here we can start up the necessary migration thread for the new CPU.
7897 static int __cpuinit
7898 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7900 struct task_struct *p;
7901 int cpu = (long)hcpu;
7902 unsigned long flags;
7903 struct rq *rq;
7905 switch (action & ~CPU_TASKS_FROZEN) {
7907 case CPU_UP_PREPARE:
7908 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7909 if (IS_ERR(p))
7910 return NOTIFY_BAD;
7911 kthread_bind(p, cpu);
7912 /* Must be high prio: stop_machine expects to yield to it. */
7913 rq = task_rq_lock(p, &flags);
7914 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7915 task_rq_unlock(rq, &flags);
7916 get_task_struct(p);
7917 cpu_rq(cpu)->migration_thread = p;
7918 rq->calc_load_update = calc_load_update;
7919 break;
7921 case CPU_ONLINE:
7922 /* Strictly unnecessary, as first user will wake it. */
7923 wake_up_process(cpu_rq(cpu)->migration_thread);
7925 /* Update our root-domain */
7926 rq = cpu_rq(cpu);
7927 spin_lock_irqsave(&rq->lock, flags);
7928 if (rq->rd) {
7929 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7931 set_rq_online(rq);
7933 spin_unlock_irqrestore(&rq->lock, flags);
7934 break;
7936 #ifdef CONFIG_HOTPLUG_CPU
7937 case CPU_UP_CANCELED:
7938 if (!cpu_rq(cpu)->migration_thread)
7939 break;
7940 /* Unbind it from offline cpu so it can run. Fall thru. */
7941 kthread_bind(cpu_rq(cpu)->migration_thread,
7942 cpumask_any(cpu_online_mask));
7943 kthread_stop(cpu_rq(cpu)->migration_thread);
7944 put_task_struct(cpu_rq(cpu)->migration_thread);
7945 cpu_rq(cpu)->migration_thread = NULL;
7946 break;
7948 case CPU_POST_DEAD:
7950 * Bring the migration thread down in CPU_POST_DEAD event,
7951 * since the timers should have got migrated by now and thus
7952 * we should not see a deadlock between trying to kill the
7953 * migration thread and the sched_rt_period_timer.
7955 rq = cpu_rq(cpu);
7956 kthread_stop(rq->migration_thread);
7957 put_task_struct(rq->migration_thread);
7958 rq->migration_thread = NULL;
7959 break;
7961 case CPU_DEAD:
7962 migrate_live_tasks(cpu);
7963 rq = cpu_rq(cpu);
7964 /* Idle task back to normal (off runqueue, low prio) */
7965 spin_lock_irq(&rq->lock);
7966 update_rq_clock(rq);
7967 deactivate_task(rq, rq->idle, 0);
7968 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7969 rq->idle->sched_class = &idle_sched_class;
7970 migrate_dead_tasks(cpu);
7971 spin_unlock_irq(&rq->lock);
7972 migrate_nr_uninterruptible(rq);
7973 BUG_ON(rq->nr_running != 0);
7974 calc_global_load_remove(rq);
7976 * No need to migrate the tasks: it was best-effort if
7977 * they didn't take sched_hotcpu_mutex. Just wake up
7978 * the requestors.
7980 spin_lock_irq(&rq->lock);
7981 while (!list_empty(&rq->migration_queue)) {
7982 struct migration_req *req;
7984 req = list_entry(rq->migration_queue.next,
7985 struct migration_req, list);
7986 list_del_init(&req->list);
7987 spin_unlock_irq(&rq->lock);
7988 complete(&req->done);
7989 spin_lock_irq(&rq->lock);
7991 spin_unlock_irq(&rq->lock);
7992 break;
7994 case CPU_DYING:
7995 /* Update our root-domain */
7996 rq = cpu_rq(cpu);
7997 spin_lock_irqsave(&rq->lock, flags);
7998 if (rq->rd) {
7999 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8000 set_rq_offline(rq);
8002 spin_unlock_irqrestore(&rq->lock, flags);
8003 break;
8004 #endif
8006 return NOTIFY_OK;
8010 * Register at high priority so that task migration (migrate_all_tasks)
8011 * happens before everything else. This has to be lower priority than
8012 * the notifier in the perf_event subsystem, though.
8014 static struct notifier_block __cpuinitdata migration_notifier = {
8015 .notifier_call = migration_call,
8016 .priority = 10
8019 static int __init migration_init(void)
8021 void *cpu = (void *)(long)smp_processor_id();
8022 int err;
8024 /* Start one for the boot CPU: */
8025 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
8026 BUG_ON(err == NOTIFY_BAD);
8027 migration_call(&migration_notifier, CPU_ONLINE, cpu);
8028 register_cpu_notifier(&migration_notifier);
8030 return 0;
8032 early_initcall(migration_init);
8033 #endif
8035 #ifdef CONFIG_SMP
8037 #ifdef CONFIG_SCHED_DEBUG
8039 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
8040 struct cpumask *groupmask)
8042 struct sched_group *group = sd->groups;
8043 char str[256];
8045 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
8046 cpumask_clear(groupmask);
8048 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
8050 if (!(sd->flags & SD_LOAD_BALANCE)) {
8051 printk("does not load-balance\n");
8052 if (sd->parent)
8053 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
8054 " has parent");
8055 return -1;
8058 printk(KERN_CONT "span %s level %s\n", str, sd->name);
8060 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
8061 printk(KERN_ERR "ERROR: domain->span does not contain "
8062 "CPU%d\n", cpu);
8064 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
8065 printk(KERN_ERR "ERROR: domain->groups does not contain"
8066 " CPU%d\n", cpu);
8069 printk(KERN_DEBUG "%*s groups:", level + 1, "");
8070 do {
8071 if (!group) {
8072 printk("\n");
8073 printk(KERN_ERR "ERROR: group is NULL\n");
8074 break;
8077 if (!group->cpu_power) {
8078 printk(KERN_CONT "\n");
8079 printk(KERN_ERR "ERROR: domain->cpu_power not "
8080 "set\n");
8081 break;
8084 if (!cpumask_weight(sched_group_cpus(group))) {
8085 printk(KERN_CONT "\n");
8086 printk(KERN_ERR "ERROR: empty group\n");
8087 break;
8090 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
8091 printk(KERN_CONT "\n");
8092 printk(KERN_ERR "ERROR: repeated CPUs\n");
8093 break;
8096 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
8098 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
8100 printk(KERN_CONT " %s", str);
8101 if (group->cpu_power != SCHED_LOAD_SCALE) {
8102 printk(KERN_CONT " (cpu_power = %d)",
8103 group->cpu_power);
8106 group = group->next;
8107 } while (group != sd->groups);
8108 printk(KERN_CONT "\n");
8110 if (!cpumask_equal(sched_domain_span(sd), groupmask))
8111 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
8113 if (sd->parent &&
8114 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
8115 printk(KERN_ERR "ERROR: parent span is not a superset "
8116 "of domain->span\n");
8117 return 0;
8120 static void sched_domain_debug(struct sched_domain *sd, int cpu)
8122 cpumask_var_t groupmask;
8123 int level = 0;
8125 if (!sd) {
8126 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
8127 return;
8130 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
8132 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
8133 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
8134 return;
8137 for (;;) {
8138 if (sched_domain_debug_one(sd, cpu, level, groupmask))
8139 break;
8140 level++;
8141 sd = sd->parent;
8142 if (!sd)
8143 break;
8145 free_cpumask_var(groupmask);
8147 #else /* !CONFIG_SCHED_DEBUG */
8148 # define sched_domain_debug(sd, cpu) do { } while (0)
8149 #endif /* CONFIG_SCHED_DEBUG */
8151 static int sd_degenerate(struct sched_domain *sd)
8153 if (cpumask_weight(sched_domain_span(sd)) == 1)
8154 return 1;
8156 /* Following flags need at least 2 groups */
8157 if (sd->flags & (SD_LOAD_BALANCE |
8158 SD_BALANCE_NEWIDLE |
8159 SD_BALANCE_FORK |
8160 SD_BALANCE_EXEC |
8161 SD_SHARE_CPUPOWER |
8162 SD_SHARE_PKG_RESOURCES)) {
8163 if (sd->groups != sd->groups->next)
8164 return 0;
8167 /* Following flags don't use groups */
8168 if (sd->flags & (SD_WAKE_AFFINE))
8169 return 0;
8171 return 1;
8174 static int
8175 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
8177 unsigned long cflags = sd->flags, pflags = parent->flags;
8179 if (sd_degenerate(parent))
8180 return 1;
8182 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
8183 return 0;
8185 /* Flags needing groups don't count if only 1 group in parent */
8186 if (parent->groups == parent->groups->next) {
8187 pflags &= ~(SD_LOAD_BALANCE |
8188 SD_BALANCE_NEWIDLE |
8189 SD_BALANCE_FORK |
8190 SD_BALANCE_EXEC |
8191 SD_SHARE_CPUPOWER |
8192 SD_SHARE_PKG_RESOURCES);
8193 if (nr_node_ids == 1)
8194 pflags &= ~SD_SERIALIZE;
8196 if (~cflags & pflags)
8197 return 0;
8199 return 1;
8202 static void free_rootdomain(struct root_domain *rd)
8204 synchronize_sched();
8206 cpupri_cleanup(&rd->cpupri);
8208 free_cpumask_var(rd->rto_mask);
8209 free_cpumask_var(rd->online);
8210 free_cpumask_var(rd->span);
8211 kfree(rd);
8214 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8216 struct root_domain *old_rd = NULL;
8217 unsigned long flags;
8219 spin_lock_irqsave(&rq->lock, flags);
8221 if (rq->rd) {
8222 old_rd = rq->rd;
8224 if (cpumask_test_cpu(rq->cpu, old_rd->online))
8225 set_rq_offline(rq);
8227 cpumask_clear_cpu(rq->cpu, old_rd->span);
8230 * If we dont want to free the old_rt yet then
8231 * set old_rd to NULL to skip the freeing later
8232 * in this function:
8234 if (!atomic_dec_and_test(&old_rd->refcount))
8235 old_rd = NULL;
8238 atomic_inc(&rd->refcount);
8239 rq->rd = rd;
8241 cpumask_set_cpu(rq->cpu, rd->span);
8242 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8243 set_rq_online(rq);
8245 spin_unlock_irqrestore(&rq->lock, flags);
8247 if (old_rd)
8248 free_rootdomain(old_rd);
8251 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8253 gfp_t gfp = GFP_KERNEL;
8255 memset(rd, 0, sizeof(*rd));
8257 if (bootmem)
8258 gfp = GFP_NOWAIT;
8260 if (!alloc_cpumask_var(&rd->span, gfp))
8261 goto out;
8262 if (!alloc_cpumask_var(&rd->online, gfp))
8263 goto free_span;
8264 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8265 goto free_online;
8267 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8268 goto free_rto_mask;
8269 return 0;
8271 free_rto_mask:
8272 free_cpumask_var(rd->rto_mask);
8273 free_online:
8274 free_cpumask_var(rd->online);
8275 free_span:
8276 free_cpumask_var(rd->span);
8277 out:
8278 return -ENOMEM;
8281 static void init_defrootdomain(void)
8283 init_rootdomain(&def_root_domain, true);
8285 atomic_set(&def_root_domain.refcount, 1);
8288 static struct root_domain *alloc_rootdomain(void)
8290 struct root_domain *rd;
8292 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8293 if (!rd)
8294 return NULL;
8296 if (init_rootdomain(rd, false) != 0) {
8297 kfree(rd);
8298 return NULL;
8301 return rd;
8305 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8306 * hold the hotplug lock.
8308 static void
8309 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8311 struct rq *rq = cpu_rq(cpu);
8312 struct sched_domain *tmp;
8314 for (tmp = sd; tmp; tmp = tmp->parent)
8315 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
8317 /* Remove the sched domains which do not contribute to scheduling. */
8318 for (tmp = sd; tmp; ) {
8319 struct sched_domain *parent = tmp->parent;
8320 if (!parent)
8321 break;
8323 if (sd_parent_degenerate(tmp, parent)) {
8324 tmp->parent = parent->parent;
8325 if (parent->parent)
8326 parent->parent->child = tmp;
8327 } else
8328 tmp = tmp->parent;
8331 if (sd && sd_degenerate(sd)) {
8332 sd = sd->parent;
8333 if (sd)
8334 sd->child = NULL;
8337 sched_domain_debug(sd, cpu);
8339 rq_attach_root(rq, rd);
8340 rcu_assign_pointer(rq->sd, sd);
8343 /* cpus with isolated domains */
8344 static cpumask_var_t cpu_isolated_map;
8346 /* Setup the mask of cpus configured for isolated domains */
8347 static int __init isolated_cpu_setup(char *str)
8349 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8350 cpulist_parse(str, cpu_isolated_map);
8351 return 1;
8354 __setup("isolcpus=", isolated_cpu_setup);
8357 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8358 * to a function which identifies what group(along with sched group) a CPU
8359 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8360 * (due to the fact that we keep track of groups covered with a struct cpumask).
8362 * init_sched_build_groups will build a circular linked list of the groups
8363 * covered by the given span, and will set each group's ->cpumask correctly,
8364 * and ->cpu_power to 0.
8366 static void
8367 init_sched_build_groups(const struct cpumask *span,
8368 const struct cpumask *cpu_map,
8369 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8370 struct sched_group **sg,
8371 struct cpumask *tmpmask),
8372 struct cpumask *covered, struct cpumask *tmpmask)
8374 struct sched_group *first = NULL, *last = NULL;
8375 int i;
8377 cpumask_clear(covered);
8379 for_each_cpu(i, span) {
8380 struct sched_group *sg;
8381 int group = group_fn(i, cpu_map, &sg, tmpmask);
8382 int j;
8384 if (cpumask_test_cpu(i, covered))
8385 continue;
8387 cpumask_clear(sched_group_cpus(sg));
8388 sg->cpu_power = 0;
8390 for_each_cpu(j, span) {
8391 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8392 continue;
8394 cpumask_set_cpu(j, covered);
8395 cpumask_set_cpu(j, sched_group_cpus(sg));
8397 if (!first)
8398 first = sg;
8399 if (last)
8400 last->next = sg;
8401 last = sg;
8403 last->next = first;
8406 #define SD_NODES_PER_DOMAIN 16
8408 #ifdef CONFIG_NUMA
8411 * find_next_best_node - find the next node to include in a sched_domain
8412 * @node: node whose sched_domain we're building
8413 * @used_nodes: nodes already in the sched_domain
8415 * Find the next node to include in a given scheduling domain. Simply
8416 * finds the closest node not already in the @used_nodes map.
8418 * Should use nodemask_t.
8420 static int find_next_best_node(int node, nodemask_t *used_nodes)
8422 int i, n, val, min_val, best_node = 0;
8424 min_val = INT_MAX;
8426 for (i = 0; i < nr_node_ids; i++) {
8427 /* Start at @node */
8428 n = (node + i) % nr_node_ids;
8430 if (!nr_cpus_node(n))
8431 continue;
8433 /* Skip already used nodes */
8434 if (node_isset(n, *used_nodes))
8435 continue;
8437 /* Simple min distance search */
8438 val = node_distance(node, n);
8440 if (val < min_val) {
8441 min_val = val;
8442 best_node = n;
8446 node_set(best_node, *used_nodes);
8447 return best_node;
8451 * sched_domain_node_span - get a cpumask for a node's sched_domain
8452 * @node: node whose cpumask we're constructing
8453 * @span: resulting cpumask
8455 * Given a node, construct a good cpumask for its sched_domain to span. It
8456 * should be one that prevents unnecessary balancing, but also spreads tasks
8457 * out optimally.
8459 static void sched_domain_node_span(int node, struct cpumask *span)
8461 nodemask_t used_nodes;
8462 int i;
8464 cpumask_clear(span);
8465 nodes_clear(used_nodes);
8467 cpumask_or(span, span, cpumask_of_node(node));
8468 node_set(node, used_nodes);
8470 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8471 int next_node = find_next_best_node(node, &used_nodes);
8473 cpumask_or(span, span, cpumask_of_node(next_node));
8476 #endif /* CONFIG_NUMA */
8478 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8481 * The cpus mask in sched_group and sched_domain hangs off the end.
8483 * ( See the the comments in include/linux/sched.h:struct sched_group
8484 * and struct sched_domain. )
8486 struct static_sched_group {
8487 struct sched_group sg;
8488 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8491 struct static_sched_domain {
8492 struct sched_domain sd;
8493 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8496 struct s_data {
8497 #ifdef CONFIG_NUMA
8498 int sd_allnodes;
8499 cpumask_var_t domainspan;
8500 cpumask_var_t covered;
8501 cpumask_var_t notcovered;
8502 #endif
8503 cpumask_var_t nodemask;
8504 cpumask_var_t this_sibling_map;
8505 cpumask_var_t this_core_map;
8506 cpumask_var_t send_covered;
8507 cpumask_var_t tmpmask;
8508 struct sched_group **sched_group_nodes;
8509 struct root_domain *rd;
8512 enum s_alloc {
8513 sa_sched_groups = 0,
8514 sa_rootdomain,
8515 sa_tmpmask,
8516 sa_send_covered,
8517 sa_this_core_map,
8518 sa_this_sibling_map,
8519 sa_nodemask,
8520 sa_sched_group_nodes,
8521 #ifdef CONFIG_NUMA
8522 sa_notcovered,
8523 sa_covered,
8524 sa_domainspan,
8525 #endif
8526 sa_none,
8530 * SMT sched-domains:
8532 #ifdef CONFIG_SCHED_SMT
8533 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8534 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8536 static int
8537 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8538 struct sched_group **sg, struct cpumask *unused)
8540 if (sg)
8541 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8542 return cpu;
8544 #endif /* CONFIG_SCHED_SMT */
8547 * multi-core sched-domains:
8549 #ifdef CONFIG_SCHED_MC
8550 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8551 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8552 #endif /* CONFIG_SCHED_MC */
8554 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8555 static int
8556 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8557 struct sched_group **sg, struct cpumask *mask)
8559 int group;
8561 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8562 group = cpumask_first(mask);
8563 if (sg)
8564 *sg = &per_cpu(sched_group_core, group).sg;
8565 return group;
8567 #elif defined(CONFIG_SCHED_MC)
8568 static int
8569 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8570 struct sched_group **sg, struct cpumask *unused)
8572 if (sg)
8573 *sg = &per_cpu(sched_group_core, cpu).sg;
8574 return cpu;
8576 #endif
8578 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8579 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8581 static int
8582 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8583 struct sched_group **sg, struct cpumask *mask)
8585 int group;
8586 #ifdef CONFIG_SCHED_MC
8587 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8588 group = cpumask_first(mask);
8589 #elif defined(CONFIG_SCHED_SMT)
8590 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8591 group = cpumask_first(mask);
8592 #else
8593 group = cpu;
8594 #endif
8595 if (sg)
8596 *sg = &per_cpu(sched_group_phys, group).sg;
8597 return group;
8600 #ifdef CONFIG_NUMA
8602 * The init_sched_build_groups can't handle what we want to do with node
8603 * groups, so roll our own. Now each node has its own list of groups which
8604 * gets dynamically allocated.
8606 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8607 static struct sched_group ***sched_group_nodes_bycpu;
8609 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8610 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8612 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8613 struct sched_group **sg,
8614 struct cpumask *nodemask)
8616 int group;
8618 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8619 group = cpumask_first(nodemask);
8621 if (sg)
8622 *sg = &per_cpu(sched_group_allnodes, group).sg;
8623 return group;
8626 static void init_numa_sched_groups_power(struct sched_group *group_head)
8628 struct sched_group *sg = group_head;
8629 int j;
8631 if (!sg)
8632 return;
8633 do {
8634 for_each_cpu(j, sched_group_cpus(sg)) {
8635 struct sched_domain *sd;
8637 sd = &per_cpu(phys_domains, j).sd;
8638 if (j != group_first_cpu(sd->groups)) {
8640 * Only add "power" once for each
8641 * physical package.
8643 continue;
8646 sg->cpu_power += sd->groups->cpu_power;
8648 sg = sg->next;
8649 } while (sg != group_head);
8652 static int build_numa_sched_groups(struct s_data *d,
8653 const struct cpumask *cpu_map, int num)
8655 struct sched_domain *sd;
8656 struct sched_group *sg, *prev;
8657 int n, j;
8659 cpumask_clear(d->covered);
8660 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8661 if (cpumask_empty(d->nodemask)) {
8662 d->sched_group_nodes[num] = NULL;
8663 goto out;
8666 sched_domain_node_span(num, d->domainspan);
8667 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8669 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8670 GFP_KERNEL, num);
8671 if (!sg) {
8672 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8673 num);
8674 return -ENOMEM;
8676 d->sched_group_nodes[num] = sg;
8678 for_each_cpu(j, d->nodemask) {
8679 sd = &per_cpu(node_domains, j).sd;
8680 sd->groups = sg;
8683 sg->cpu_power = 0;
8684 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8685 sg->next = sg;
8686 cpumask_or(d->covered, d->covered, d->nodemask);
8688 prev = sg;
8689 for (j = 0; j < nr_node_ids; j++) {
8690 n = (num + j) % nr_node_ids;
8691 cpumask_complement(d->notcovered, d->covered);
8692 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8693 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8694 if (cpumask_empty(d->tmpmask))
8695 break;
8696 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8697 if (cpumask_empty(d->tmpmask))
8698 continue;
8699 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8700 GFP_KERNEL, num);
8701 if (!sg) {
8702 printk(KERN_WARNING
8703 "Can not alloc domain group for node %d\n", j);
8704 return -ENOMEM;
8706 sg->cpu_power = 0;
8707 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8708 sg->next = prev->next;
8709 cpumask_or(d->covered, d->covered, d->tmpmask);
8710 prev->next = sg;
8711 prev = sg;
8713 out:
8714 return 0;
8716 #endif /* CONFIG_NUMA */
8718 #ifdef CONFIG_NUMA
8719 /* Free memory allocated for various sched_group structures */
8720 static void free_sched_groups(const struct cpumask *cpu_map,
8721 struct cpumask *nodemask)
8723 int cpu, i;
8725 for_each_cpu(cpu, cpu_map) {
8726 struct sched_group **sched_group_nodes
8727 = sched_group_nodes_bycpu[cpu];
8729 if (!sched_group_nodes)
8730 continue;
8732 for (i = 0; i < nr_node_ids; i++) {
8733 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8735 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8736 if (cpumask_empty(nodemask))
8737 continue;
8739 if (sg == NULL)
8740 continue;
8741 sg = sg->next;
8742 next_sg:
8743 oldsg = sg;
8744 sg = sg->next;
8745 kfree(oldsg);
8746 if (oldsg != sched_group_nodes[i])
8747 goto next_sg;
8749 kfree(sched_group_nodes);
8750 sched_group_nodes_bycpu[cpu] = NULL;
8753 #else /* !CONFIG_NUMA */
8754 static void free_sched_groups(const struct cpumask *cpu_map,
8755 struct cpumask *nodemask)
8758 #endif /* CONFIG_NUMA */
8761 * Initialize sched groups cpu_power.
8763 * cpu_power indicates the capacity of sched group, which is used while
8764 * distributing the load between different sched groups in a sched domain.
8765 * Typically cpu_power for all the groups in a sched domain will be same unless
8766 * there are asymmetries in the topology. If there are asymmetries, group
8767 * having more cpu_power will pickup more load compared to the group having
8768 * less cpu_power.
8770 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8772 struct sched_domain *child;
8773 struct sched_group *group;
8774 long power;
8775 int weight;
8777 WARN_ON(!sd || !sd->groups);
8779 if (cpu != group_first_cpu(sd->groups))
8780 return;
8782 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
8784 child = sd->child;
8786 sd->groups->cpu_power = 0;
8788 if (!child) {
8789 power = SCHED_LOAD_SCALE;
8790 weight = cpumask_weight(sched_domain_span(sd));
8792 * SMT siblings share the power of a single core.
8793 * Usually multiple threads get a better yield out of
8794 * that one core than a single thread would have,
8795 * reflect that in sd->smt_gain.
8797 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8798 power *= sd->smt_gain;
8799 power /= weight;
8800 power >>= SCHED_LOAD_SHIFT;
8802 sd->groups->cpu_power += power;
8803 return;
8807 * Add cpu_power of each child group to this groups cpu_power.
8809 group = child->groups;
8810 do {
8811 sd->groups->cpu_power += group->cpu_power;
8812 group = group->next;
8813 } while (group != child->groups);
8817 * Initializers for schedule domains
8818 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8821 #ifdef CONFIG_SCHED_DEBUG
8822 # define SD_INIT_NAME(sd, type) sd->name = #type
8823 #else
8824 # define SD_INIT_NAME(sd, type) do { } while (0)
8825 #endif
8827 #define SD_INIT(sd, type) sd_init_##type(sd)
8829 #define SD_INIT_FUNC(type) \
8830 static noinline void sd_init_##type(struct sched_domain *sd) \
8832 memset(sd, 0, sizeof(*sd)); \
8833 *sd = SD_##type##_INIT; \
8834 sd->level = SD_LV_##type; \
8835 SD_INIT_NAME(sd, type); \
8838 SD_INIT_FUNC(CPU)
8839 #ifdef CONFIG_NUMA
8840 SD_INIT_FUNC(ALLNODES)
8841 SD_INIT_FUNC(NODE)
8842 #endif
8843 #ifdef CONFIG_SCHED_SMT
8844 SD_INIT_FUNC(SIBLING)
8845 #endif
8846 #ifdef CONFIG_SCHED_MC
8847 SD_INIT_FUNC(MC)
8848 #endif
8850 static int default_relax_domain_level = -1;
8852 static int __init setup_relax_domain_level(char *str)
8854 unsigned long val;
8856 val = simple_strtoul(str, NULL, 0);
8857 if (val < SD_LV_MAX)
8858 default_relax_domain_level = val;
8860 return 1;
8862 __setup("relax_domain_level=", setup_relax_domain_level);
8864 static void set_domain_attribute(struct sched_domain *sd,
8865 struct sched_domain_attr *attr)
8867 int request;
8869 if (!attr || attr->relax_domain_level < 0) {
8870 if (default_relax_domain_level < 0)
8871 return;
8872 else
8873 request = default_relax_domain_level;
8874 } else
8875 request = attr->relax_domain_level;
8876 if (request < sd->level) {
8877 /* turn off idle balance on this domain */
8878 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8879 } else {
8880 /* turn on idle balance on this domain */
8881 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8885 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8886 const struct cpumask *cpu_map)
8888 switch (what) {
8889 case sa_sched_groups:
8890 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8891 d->sched_group_nodes = NULL;
8892 case sa_rootdomain:
8893 free_rootdomain(d->rd); /* fall through */
8894 case sa_tmpmask:
8895 free_cpumask_var(d->tmpmask); /* fall through */
8896 case sa_send_covered:
8897 free_cpumask_var(d->send_covered); /* fall through */
8898 case sa_this_core_map:
8899 free_cpumask_var(d->this_core_map); /* fall through */
8900 case sa_this_sibling_map:
8901 free_cpumask_var(d->this_sibling_map); /* fall through */
8902 case sa_nodemask:
8903 free_cpumask_var(d->nodemask); /* fall through */
8904 case sa_sched_group_nodes:
8905 #ifdef CONFIG_NUMA
8906 kfree(d->sched_group_nodes); /* fall through */
8907 case sa_notcovered:
8908 free_cpumask_var(d->notcovered); /* fall through */
8909 case sa_covered:
8910 free_cpumask_var(d->covered); /* fall through */
8911 case sa_domainspan:
8912 free_cpumask_var(d->domainspan); /* fall through */
8913 #endif
8914 case sa_none:
8915 break;
8919 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8920 const struct cpumask *cpu_map)
8922 #ifdef CONFIG_NUMA
8923 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8924 return sa_none;
8925 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8926 return sa_domainspan;
8927 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8928 return sa_covered;
8929 /* Allocate the per-node list of sched groups */
8930 d->sched_group_nodes = kcalloc(nr_node_ids,
8931 sizeof(struct sched_group *), GFP_KERNEL);
8932 if (!d->sched_group_nodes) {
8933 printk(KERN_WARNING "Can not alloc sched group node list\n");
8934 return sa_notcovered;
8936 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8937 #endif
8938 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8939 return sa_sched_group_nodes;
8940 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8941 return sa_nodemask;
8942 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8943 return sa_this_sibling_map;
8944 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8945 return sa_this_core_map;
8946 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8947 return sa_send_covered;
8948 d->rd = alloc_rootdomain();
8949 if (!d->rd) {
8950 printk(KERN_WARNING "Cannot alloc root domain\n");
8951 return sa_tmpmask;
8953 return sa_rootdomain;
8956 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8957 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8959 struct sched_domain *sd = NULL;
8960 #ifdef CONFIG_NUMA
8961 struct sched_domain *parent;
8963 d->sd_allnodes = 0;
8964 if (cpumask_weight(cpu_map) >
8965 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8966 sd = &per_cpu(allnodes_domains, i).sd;
8967 SD_INIT(sd, ALLNODES);
8968 set_domain_attribute(sd, attr);
8969 cpumask_copy(sched_domain_span(sd), cpu_map);
8970 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8971 d->sd_allnodes = 1;
8973 parent = sd;
8975 sd = &per_cpu(node_domains, i).sd;
8976 SD_INIT(sd, NODE);
8977 set_domain_attribute(sd, attr);
8978 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8979 sd->parent = parent;
8980 if (parent)
8981 parent->child = sd;
8982 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8983 #endif
8984 return sd;
8987 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8988 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8989 struct sched_domain *parent, int i)
8991 struct sched_domain *sd;
8992 sd = &per_cpu(phys_domains, i).sd;
8993 SD_INIT(sd, CPU);
8994 set_domain_attribute(sd, attr);
8995 cpumask_copy(sched_domain_span(sd), d->nodemask);
8996 sd->parent = parent;
8997 if (parent)
8998 parent->child = sd;
8999 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
9000 return sd;
9003 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
9004 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
9005 struct sched_domain *parent, int i)
9007 struct sched_domain *sd = parent;
9008 #ifdef CONFIG_SCHED_MC
9009 sd = &per_cpu(core_domains, i).sd;
9010 SD_INIT(sd, MC);
9011 set_domain_attribute(sd, attr);
9012 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
9013 sd->parent = parent;
9014 parent->child = sd;
9015 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
9016 #endif
9017 return sd;
9020 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
9021 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
9022 struct sched_domain *parent, int i)
9024 struct sched_domain *sd = parent;
9025 #ifdef CONFIG_SCHED_SMT
9026 sd = &per_cpu(cpu_domains, i).sd;
9027 SD_INIT(sd, SIBLING);
9028 set_domain_attribute(sd, attr);
9029 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
9030 sd->parent = parent;
9031 parent->child = sd;
9032 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
9033 #endif
9034 return sd;
9037 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
9038 const struct cpumask *cpu_map, int cpu)
9040 switch (l) {
9041 #ifdef CONFIG_SCHED_SMT
9042 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
9043 cpumask_and(d->this_sibling_map, cpu_map,
9044 topology_thread_cpumask(cpu));
9045 if (cpu == cpumask_first(d->this_sibling_map))
9046 init_sched_build_groups(d->this_sibling_map, cpu_map,
9047 &cpu_to_cpu_group,
9048 d->send_covered, d->tmpmask);
9049 break;
9050 #endif
9051 #ifdef CONFIG_SCHED_MC
9052 case SD_LV_MC: /* set up multi-core groups */
9053 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
9054 if (cpu == cpumask_first(d->this_core_map))
9055 init_sched_build_groups(d->this_core_map, cpu_map,
9056 &cpu_to_core_group,
9057 d->send_covered, d->tmpmask);
9058 break;
9059 #endif
9060 case SD_LV_CPU: /* set up physical groups */
9061 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
9062 if (!cpumask_empty(d->nodemask))
9063 init_sched_build_groups(d->nodemask, cpu_map,
9064 &cpu_to_phys_group,
9065 d->send_covered, d->tmpmask);
9066 break;
9067 #ifdef CONFIG_NUMA
9068 case SD_LV_ALLNODES:
9069 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
9070 d->send_covered, d->tmpmask);
9071 break;
9072 #endif
9073 default:
9074 break;
9079 * Build sched domains for a given set of cpus and attach the sched domains
9080 * to the individual cpus
9082 static int __build_sched_domains(const struct cpumask *cpu_map,
9083 struct sched_domain_attr *attr)
9085 enum s_alloc alloc_state = sa_none;
9086 struct s_data d;
9087 struct sched_domain *sd;
9088 int i;
9089 #ifdef CONFIG_NUMA
9090 d.sd_allnodes = 0;
9091 #endif
9093 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
9094 if (alloc_state != sa_rootdomain)
9095 goto error;
9096 alloc_state = sa_sched_groups;
9099 * Set up domains for cpus specified by the cpu_map.
9101 for_each_cpu(i, cpu_map) {
9102 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
9103 cpu_map);
9105 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
9106 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
9107 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
9108 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
9111 for_each_cpu(i, cpu_map) {
9112 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
9113 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
9116 /* Set up physical groups */
9117 for (i = 0; i < nr_node_ids; i++)
9118 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9120 #ifdef CONFIG_NUMA
9121 /* Set up node groups */
9122 if (d.sd_allnodes)
9123 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9125 for (i = 0; i < nr_node_ids; i++)
9126 if (build_numa_sched_groups(&d, cpu_map, i))
9127 goto error;
9128 #endif
9130 /* Calculate CPU power for physical packages and nodes */
9131 #ifdef CONFIG_SCHED_SMT
9132 for_each_cpu(i, cpu_map) {
9133 sd = &per_cpu(cpu_domains, i).sd;
9134 init_sched_groups_power(i, sd);
9136 #endif
9137 #ifdef CONFIG_SCHED_MC
9138 for_each_cpu(i, cpu_map) {
9139 sd = &per_cpu(core_domains, i).sd;
9140 init_sched_groups_power(i, sd);
9142 #endif
9144 for_each_cpu(i, cpu_map) {
9145 sd = &per_cpu(phys_domains, i).sd;
9146 init_sched_groups_power(i, sd);
9149 #ifdef CONFIG_NUMA
9150 for (i = 0; i < nr_node_ids; i++)
9151 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9153 if (d.sd_allnodes) {
9154 struct sched_group *sg;
9156 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
9157 d.tmpmask);
9158 init_numa_sched_groups_power(sg);
9160 #endif
9162 /* Attach the domains */
9163 for_each_cpu(i, cpu_map) {
9164 #ifdef CONFIG_SCHED_SMT
9165 sd = &per_cpu(cpu_domains, i).sd;
9166 #elif defined(CONFIG_SCHED_MC)
9167 sd = &per_cpu(core_domains, i).sd;
9168 #else
9169 sd = &per_cpu(phys_domains, i).sd;
9170 #endif
9171 cpu_attach_domain(sd, d.rd, i);
9174 d.sched_group_nodes = NULL; /* don't free this we still need it */
9175 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
9176 return 0;
9178 error:
9179 __free_domain_allocs(&d, alloc_state, cpu_map);
9180 return -ENOMEM;
9183 static int build_sched_domains(const struct cpumask *cpu_map)
9185 return __build_sched_domains(cpu_map, NULL);
9188 static struct cpumask *doms_cur; /* current sched domains */
9189 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
9190 static struct sched_domain_attr *dattr_cur;
9191 /* attribues of custom domains in 'doms_cur' */
9194 * Special case: If a kmalloc of a doms_cur partition (array of
9195 * cpumask) fails, then fallback to a single sched domain,
9196 * as determined by the single cpumask fallback_doms.
9198 static cpumask_var_t fallback_doms;
9201 * arch_update_cpu_topology lets virtualized architectures update the
9202 * cpu core maps. It is supposed to return 1 if the topology changed
9203 * or 0 if it stayed the same.
9205 int __attribute__((weak)) arch_update_cpu_topology(void)
9207 return 0;
9211 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9212 * For now this just excludes isolated cpus, but could be used to
9213 * exclude other special cases in the future.
9215 static int arch_init_sched_domains(const struct cpumask *cpu_map)
9217 int err;
9219 arch_update_cpu_topology();
9220 ndoms_cur = 1;
9221 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
9222 if (!doms_cur)
9223 doms_cur = fallback_doms;
9224 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
9225 dattr_cur = NULL;
9226 err = build_sched_domains(doms_cur);
9227 register_sched_domain_sysctl();
9229 return err;
9232 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9233 struct cpumask *tmpmask)
9235 free_sched_groups(cpu_map, tmpmask);
9239 * Detach sched domains from a group of cpus specified in cpu_map
9240 * These cpus will now be attached to the NULL domain
9242 static void detach_destroy_domains(const struct cpumask *cpu_map)
9244 /* Save because hotplug lock held. */
9245 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9246 int i;
9248 for_each_cpu(i, cpu_map)
9249 cpu_attach_domain(NULL, &def_root_domain, i);
9250 synchronize_sched();
9251 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9254 /* handle null as "default" */
9255 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9256 struct sched_domain_attr *new, int idx_new)
9258 struct sched_domain_attr tmp;
9260 /* fast path */
9261 if (!new && !cur)
9262 return 1;
9264 tmp = SD_ATTR_INIT;
9265 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9266 new ? (new + idx_new) : &tmp,
9267 sizeof(struct sched_domain_attr));
9271 * Partition sched domains as specified by the 'ndoms_new'
9272 * cpumasks in the array doms_new[] of cpumasks. This compares
9273 * doms_new[] to the current sched domain partitioning, doms_cur[].
9274 * It destroys each deleted domain and builds each new domain.
9276 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
9277 * The masks don't intersect (don't overlap.) We should setup one
9278 * sched domain for each mask. CPUs not in any of the cpumasks will
9279 * not be load balanced. If the same cpumask appears both in the
9280 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9281 * it as it is.
9283 * The passed in 'doms_new' should be kmalloc'd. This routine takes
9284 * ownership of it and will kfree it when done with it. If the caller
9285 * failed the kmalloc call, then it can pass in doms_new == NULL &&
9286 * ndoms_new == 1, and partition_sched_domains() will fallback to
9287 * the single partition 'fallback_doms', it also forces the domains
9288 * to be rebuilt.
9290 * If doms_new == NULL it will be replaced with cpu_online_mask.
9291 * ndoms_new == 0 is a special case for destroying existing domains,
9292 * and it will not create the default domain.
9294 * Call with hotplug lock held
9296 /* FIXME: Change to struct cpumask *doms_new[] */
9297 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9298 struct sched_domain_attr *dattr_new)
9300 int i, j, n;
9301 int new_topology;
9303 mutex_lock(&sched_domains_mutex);
9305 /* always unregister in case we don't destroy any domains */
9306 unregister_sched_domain_sysctl();
9308 /* Let architecture update cpu core mappings. */
9309 new_topology = arch_update_cpu_topology();
9311 n = doms_new ? ndoms_new : 0;
9313 /* Destroy deleted domains */
9314 for (i = 0; i < ndoms_cur; i++) {
9315 for (j = 0; j < n && !new_topology; j++) {
9316 if (cpumask_equal(&doms_cur[i], &doms_new[j])
9317 && dattrs_equal(dattr_cur, i, dattr_new, j))
9318 goto match1;
9320 /* no match - a current sched domain not in new doms_new[] */
9321 detach_destroy_domains(doms_cur + i);
9322 match1:
9326 if (doms_new == NULL) {
9327 ndoms_cur = 0;
9328 doms_new = fallback_doms;
9329 cpumask_andnot(&doms_new[0], cpu_active_mask, cpu_isolated_map);
9330 WARN_ON_ONCE(dattr_new);
9333 /* Build new domains */
9334 for (i = 0; i < ndoms_new; i++) {
9335 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9336 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9337 && dattrs_equal(dattr_new, i, dattr_cur, j))
9338 goto match2;
9340 /* no match - add a new doms_new */
9341 __build_sched_domains(doms_new + i,
9342 dattr_new ? dattr_new + i : NULL);
9343 match2:
9347 /* Remember the new sched domains */
9348 if (doms_cur != fallback_doms)
9349 kfree(doms_cur);
9350 kfree(dattr_cur); /* kfree(NULL) is safe */
9351 doms_cur = doms_new;
9352 dattr_cur = dattr_new;
9353 ndoms_cur = ndoms_new;
9355 register_sched_domain_sysctl();
9357 mutex_unlock(&sched_domains_mutex);
9360 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9361 static void arch_reinit_sched_domains(void)
9363 get_online_cpus();
9365 /* Destroy domains first to force the rebuild */
9366 partition_sched_domains(0, NULL, NULL);
9368 rebuild_sched_domains();
9369 put_online_cpus();
9372 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9374 unsigned int level = 0;
9376 if (sscanf(buf, "%u", &level) != 1)
9377 return -EINVAL;
9380 * level is always be positive so don't check for
9381 * level < POWERSAVINGS_BALANCE_NONE which is 0
9382 * What happens on 0 or 1 byte write,
9383 * need to check for count as well?
9386 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9387 return -EINVAL;
9389 if (smt)
9390 sched_smt_power_savings = level;
9391 else
9392 sched_mc_power_savings = level;
9394 arch_reinit_sched_domains();
9396 return count;
9399 #ifdef CONFIG_SCHED_MC
9400 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9401 char *page)
9403 return sprintf(page, "%u\n", sched_mc_power_savings);
9405 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9406 const char *buf, size_t count)
9408 return sched_power_savings_store(buf, count, 0);
9410 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9411 sched_mc_power_savings_show,
9412 sched_mc_power_savings_store);
9413 #endif
9415 #ifdef CONFIG_SCHED_SMT
9416 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9417 char *page)
9419 return sprintf(page, "%u\n", sched_smt_power_savings);
9421 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9422 const char *buf, size_t count)
9424 return sched_power_savings_store(buf, count, 1);
9426 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9427 sched_smt_power_savings_show,
9428 sched_smt_power_savings_store);
9429 #endif
9431 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9433 int err = 0;
9435 #ifdef CONFIG_SCHED_SMT
9436 if (smt_capable())
9437 err = sysfs_create_file(&cls->kset.kobj,
9438 &attr_sched_smt_power_savings.attr);
9439 #endif
9440 #ifdef CONFIG_SCHED_MC
9441 if (!err && mc_capable())
9442 err = sysfs_create_file(&cls->kset.kobj,
9443 &attr_sched_mc_power_savings.attr);
9444 #endif
9445 return err;
9447 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9449 #ifndef CONFIG_CPUSETS
9451 * Add online and remove offline CPUs from the scheduler domains.
9452 * When cpusets are enabled they take over this function.
9454 static int update_sched_domains(struct notifier_block *nfb,
9455 unsigned long action, void *hcpu)
9457 switch (action) {
9458 case CPU_ONLINE:
9459 case CPU_ONLINE_FROZEN:
9460 case CPU_DOWN_PREPARE:
9461 case CPU_DOWN_PREPARE_FROZEN:
9462 case CPU_DOWN_FAILED:
9463 case CPU_DOWN_FAILED_FROZEN:
9464 partition_sched_domains(1, NULL, NULL);
9465 return NOTIFY_OK;
9467 default:
9468 return NOTIFY_DONE;
9471 #endif
9473 static int update_runtime(struct notifier_block *nfb,
9474 unsigned long action, void *hcpu)
9476 int cpu = (int)(long)hcpu;
9478 switch (action) {
9479 case CPU_DOWN_PREPARE:
9480 case CPU_DOWN_PREPARE_FROZEN:
9481 disable_runtime(cpu_rq(cpu));
9482 return NOTIFY_OK;
9484 case CPU_DOWN_FAILED:
9485 case CPU_DOWN_FAILED_FROZEN:
9486 case CPU_ONLINE:
9487 case CPU_ONLINE_FROZEN:
9488 enable_runtime(cpu_rq(cpu));
9489 return NOTIFY_OK;
9491 default:
9492 return NOTIFY_DONE;
9496 void __init sched_init_smp(void)
9498 cpumask_var_t non_isolated_cpus;
9500 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9501 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9503 #if defined(CONFIG_NUMA)
9504 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9505 GFP_KERNEL);
9506 BUG_ON(sched_group_nodes_bycpu == NULL);
9507 #endif
9508 get_online_cpus();
9509 mutex_lock(&sched_domains_mutex);
9510 arch_init_sched_domains(cpu_active_mask);
9511 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9512 if (cpumask_empty(non_isolated_cpus))
9513 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9514 mutex_unlock(&sched_domains_mutex);
9515 put_online_cpus();
9517 #ifndef CONFIG_CPUSETS
9518 /* XXX: Theoretical race here - CPU may be hotplugged now */
9519 hotcpu_notifier(update_sched_domains, 0);
9520 #endif
9522 /* RT runtime code needs to handle some hotplug events */
9523 hotcpu_notifier(update_runtime, 0);
9525 init_hrtick();
9527 /* Move init over to a non-isolated CPU */
9528 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9529 BUG();
9530 sched_init_granularity();
9531 free_cpumask_var(non_isolated_cpus);
9533 init_sched_rt_class();
9535 #else
9536 void __init sched_init_smp(void)
9538 sched_init_granularity();
9540 #endif /* CONFIG_SMP */
9542 const_debug unsigned int sysctl_timer_migration = 1;
9544 int in_sched_functions(unsigned long addr)
9546 return in_lock_functions(addr) ||
9547 (addr >= (unsigned long)__sched_text_start
9548 && addr < (unsigned long)__sched_text_end);
9551 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9553 cfs_rq->tasks_timeline = RB_ROOT;
9554 INIT_LIST_HEAD(&cfs_rq->tasks);
9555 #ifdef CONFIG_FAIR_GROUP_SCHED
9556 cfs_rq->rq = rq;
9557 #endif
9558 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9561 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9563 struct rt_prio_array *array;
9564 int i;
9566 array = &rt_rq->active;
9567 for (i = 0; i < MAX_RT_PRIO; i++) {
9568 INIT_LIST_HEAD(array->queue + i);
9569 __clear_bit(i, array->bitmap);
9571 /* delimiter for bitsearch: */
9572 __set_bit(MAX_RT_PRIO, array->bitmap);
9574 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9575 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9576 #ifdef CONFIG_SMP
9577 rt_rq->highest_prio.next = MAX_RT_PRIO;
9578 #endif
9579 #endif
9580 #ifdef CONFIG_SMP
9581 rt_rq->rt_nr_migratory = 0;
9582 rt_rq->overloaded = 0;
9583 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9584 #endif
9586 rt_rq->rt_time = 0;
9587 rt_rq->rt_throttled = 0;
9588 rt_rq->rt_runtime = 0;
9589 spin_lock_init(&rt_rq->rt_runtime_lock);
9591 #ifdef CONFIG_RT_GROUP_SCHED
9592 rt_rq->rt_nr_boosted = 0;
9593 rt_rq->rq = rq;
9594 #endif
9597 #ifdef CONFIG_FAIR_GROUP_SCHED
9598 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9599 struct sched_entity *se, int cpu, int add,
9600 struct sched_entity *parent)
9602 struct rq *rq = cpu_rq(cpu);
9603 tg->cfs_rq[cpu] = cfs_rq;
9604 init_cfs_rq(cfs_rq, rq);
9605 cfs_rq->tg = tg;
9606 if (add)
9607 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9609 tg->se[cpu] = se;
9610 /* se could be NULL for init_task_group */
9611 if (!se)
9612 return;
9614 if (!parent)
9615 se->cfs_rq = &rq->cfs;
9616 else
9617 se->cfs_rq = parent->my_q;
9619 se->my_q = cfs_rq;
9620 se->load.weight = tg->shares;
9621 se->load.inv_weight = 0;
9622 se->parent = parent;
9624 #endif
9626 #ifdef CONFIG_RT_GROUP_SCHED
9627 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9628 struct sched_rt_entity *rt_se, int cpu, int add,
9629 struct sched_rt_entity *parent)
9631 struct rq *rq = cpu_rq(cpu);
9633 tg->rt_rq[cpu] = rt_rq;
9634 init_rt_rq(rt_rq, rq);
9635 rt_rq->tg = tg;
9636 rt_rq->rt_se = rt_se;
9637 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9638 if (add)
9639 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9641 tg->rt_se[cpu] = rt_se;
9642 if (!rt_se)
9643 return;
9645 if (!parent)
9646 rt_se->rt_rq = &rq->rt;
9647 else
9648 rt_se->rt_rq = parent->my_q;
9650 rt_se->my_q = rt_rq;
9651 rt_se->parent = parent;
9652 INIT_LIST_HEAD(&rt_se->run_list);
9654 #endif
9656 void __init sched_init(void)
9658 int i, j;
9659 unsigned long alloc_size = 0, ptr;
9661 #ifdef CONFIG_FAIR_GROUP_SCHED
9662 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9663 #endif
9664 #ifdef CONFIG_RT_GROUP_SCHED
9665 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9666 #endif
9667 #ifdef CONFIG_CPUMASK_OFFSTACK
9668 alloc_size += num_possible_cpus() * cpumask_size();
9669 #endif
9671 * As sched_init() is called before page_alloc is setup,
9672 * we use alloc_bootmem().
9674 if (alloc_size) {
9675 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9677 #ifdef CONFIG_FAIR_GROUP_SCHED
9678 init_task_group.se = (struct sched_entity **)ptr;
9679 ptr += nr_cpu_ids * sizeof(void **);
9681 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9682 ptr += nr_cpu_ids * sizeof(void **);
9684 #endif /* CONFIG_FAIR_GROUP_SCHED */
9685 #ifdef CONFIG_RT_GROUP_SCHED
9686 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9687 ptr += nr_cpu_ids * sizeof(void **);
9689 init_task_group.rt_rq = (struct rt_rq **)ptr;
9690 ptr += nr_cpu_ids * sizeof(void **);
9692 #endif /* CONFIG_RT_GROUP_SCHED */
9693 #ifdef CONFIG_CPUMASK_OFFSTACK
9694 for_each_possible_cpu(i) {
9695 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9696 ptr += cpumask_size();
9698 #endif /* CONFIG_CPUMASK_OFFSTACK */
9701 #ifdef CONFIG_SMP
9702 init_defrootdomain();
9703 #endif
9705 init_rt_bandwidth(&def_rt_bandwidth,
9706 global_rt_period(), global_rt_runtime());
9708 #ifdef CONFIG_RT_GROUP_SCHED
9709 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9710 global_rt_period(), global_rt_runtime());
9711 #endif /* CONFIG_RT_GROUP_SCHED */
9713 #ifdef CONFIG_CGROUP_SCHED
9714 list_add(&init_task_group.list, &task_groups);
9715 INIT_LIST_HEAD(&init_task_group.children);
9717 #endif /* CONFIG_CGROUP_SCHED */
9719 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9720 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9721 __alignof__(unsigned long));
9722 #endif
9723 for_each_possible_cpu(i) {
9724 struct rq *rq;
9726 rq = cpu_rq(i);
9727 spin_lock_init(&rq->lock);
9728 rq->nr_running = 0;
9729 rq->calc_load_active = 0;
9730 rq->calc_load_update = jiffies + LOAD_FREQ;
9731 init_cfs_rq(&rq->cfs, rq);
9732 init_rt_rq(&rq->rt, rq);
9733 #ifdef CONFIG_FAIR_GROUP_SCHED
9734 init_task_group.shares = init_task_group_load;
9735 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9736 #ifdef CONFIG_CGROUP_SCHED
9738 * How much cpu bandwidth does init_task_group get?
9740 * In case of task-groups formed thr' the cgroup filesystem, it
9741 * gets 100% of the cpu resources in the system. This overall
9742 * system cpu resource is divided among the tasks of
9743 * init_task_group and its child task-groups in a fair manner,
9744 * based on each entity's (task or task-group's) weight
9745 * (se->load.weight).
9747 * In other words, if init_task_group has 10 tasks of weight
9748 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9749 * then A0's share of the cpu resource is:
9751 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9753 * We achieve this by letting init_task_group's tasks sit
9754 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9756 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9757 #endif
9758 #endif /* CONFIG_FAIR_GROUP_SCHED */
9760 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9761 #ifdef CONFIG_RT_GROUP_SCHED
9762 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9763 #ifdef CONFIG_CGROUP_SCHED
9764 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9765 #elif defined CONFIG_USER_SCHED
9766 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9767 init_tg_rt_entry(&init_task_group,
9768 &per_cpu(init_rt_rq, i),
9769 &per_cpu(init_sched_rt_entity, i), i, 1,
9770 root_task_group.rt_se[i]);
9771 #endif
9772 #endif
9774 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9775 rq->cpu_load[j] = 0;
9776 #ifdef CONFIG_SMP
9777 rq->sd = NULL;
9778 rq->rd = NULL;
9779 rq->cpu_power = SCHED_LOAD_SCALE;
9780 rq->post_schedule = 0;
9781 rq->active_balance = 0;
9782 rq->next_balance = jiffies;
9783 rq->push_cpu = 0;
9784 rq->cpu = i;
9785 rq->online = 0;
9786 rq->migration_thread = NULL;
9787 rq->idle_stamp = 0;
9788 rq->avg_idle = 2*sysctl_sched_migration_cost;
9789 INIT_LIST_HEAD(&rq->migration_queue);
9790 rq_attach_root(rq, &def_root_domain);
9791 #endif
9792 init_rq_hrtick(rq);
9793 atomic_set(&rq->nr_iowait, 0);
9796 set_load_weight(&init_task);
9798 #ifdef CONFIG_PREEMPT_NOTIFIERS
9799 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9800 #endif
9802 #ifdef CONFIG_SMP
9803 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9804 #endif
9806 #ifdef CONFIG_RT_MUTEXES
9807 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9808 #endif
9811 * The boot idle thread does lazy MMU switching as well:
9813 atomic_inc(&init_mm.mm_count);
9814 enter_lazy_tlb(&init_mm, current);
9817 * Make us the idle thread. Technically, schedule() should not be
9818 * called from this thread, however somewhere below it might be,
9819 * but because we are the idle thread, we just pick up running again
9820 * when this runqueue becomes "idle".
9822 init_idle(current, smp_processor_id());
9824 calc_load_update = jiffies + LOAD_FREQ;
9827 * During early bootup we pretend to be a normal task:
9829 current->sched_class = &fair_sched_class;
9831 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9832 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9833 #ifdef CONFIG_SMP
9834 #ifdef CONFIG_NO_HZ
9835 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9836 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9837 #endif
9838 /* May be allocated at isolcpus cmdline parse time */
9839 if (cpu_isolated_map == NULL)
9840 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9841 #endif /* SMP */
9843 perf_event_init();
9845 scheduler_running = 1;
9848 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9849 static inline int preempt_count_equals(int preempt_offset)
9851 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9853 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9856 void __might_sleep(char *file, int line, int preempt_offset)
9858 #ifdef in_atomic
9859 static unsigned long prev_jiffy; /* ratelimiting */
9861 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9862 system_state != SYSTEM_RUNNING || oops_in_progress)
9863 return;
9864 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9865 return;
9866 prev_jiffy = jiffies;
9868 printk(KERN_ERR
9869 "BUG: sleeping function called from invalid context at %s:%d\n",
9870 file, line);
9871 printk(KERN_ERR
9872 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9873 in_atomic(), irqs_disabled(),
9874 current->pid, current->comm);
9876 debug_show_held_locks(current);
9877 if (irqs_disabled())
9878 print_irqtrace_events(current);
9879 dump_stack();
9880 #endif
9882 EXPORT_SYMBOL(__might_sleep);
9883 #endif
9885 #ifdef CONFIG_MAGIC_SYSRQ
9886 static void normalize_task(struct rq *rq, struct task_struct *p)
9888 int on_rq;
9890 update_rq_clock(rq);
9891 on_rq = p->se.on_rq;
9892 if (on_rq)
9893 deactivate_task(rq, p, 0);
9894 __setscheduler(rq, p, SCHED_NORMAL, 0);
9895 if (on_rq) {
9896 activate_task(rq, p, 0);
9897 resched_task(rq->curr);
9901 void normalize_rt_tasks(void)
9903 struct task_struct *g, *p;
9904 unsigned long flags;
9905 struct rq *rq;
9907 read_lock_irqsave(&tasklist_lock, flags);
9908 do_each_thread(g, p) {
9910 * Only normalize user tasks:
9912 if (!p->mm)
9913 continue;
9915 p->se.exec_start = 0;
9916 #ifdef CONFIG_SCHEDSTATS
9917 p->se.wait_start = 0;
9918 p->se.sleep_start = 0;
9919 p->se.block_start = 0;
9920 #endif
9922 if (!rt_task(p)) {
9924 * Renice negative nice level userspace
9925 * tasks back to 0:
9927 if (TASK_NICE(p) < 0 && p->mm)
9928 set_user_nice(p, 0);
9929 continue;
9932 spin_lock(&p->pi_lock);
9933 rq = __task_rq_lock(p);
9935 normalize_task(rq, p);
9937 __task_rq_unlock(rq);
9938 spin_unlock(&p->pi_lock);
9939 } while_each_thread(g, p);
9941 read_unlock_irqrestore(&tasklist_lock, flags);
9944 #endif /* CONFIG_MAGIC_SYSRQ */
9946 #ifdef CONFIG_IA64
9948 * These functions are only useful for the IA64 MCA handling.
9950 * They can only be called when the whole system has been
9951 * stopped - every CPU needs to be quiescent, and no scheduling
9952 * activity can take place. Using them for anything else would
9953 * be a serious bug, and as a result, they aren't even visible
9954 * under any other configuration.
9958 * curr_task - return the current task for a given cpu.
9959 * @cpu: the processor in question.
9961 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9963 struct task_struct *curr_task(int cpu)
9965 return cpu_curr(cpu);
9969 * set_curr_task - set the current task for a given cpu.
9970 * @cpu: the processor in question.
9971 * @p: the task pointer to set.
9973 * Description: This function must only be used when non-maskable interrupts
9974 * are serviced on a separate stack. It allows the architecture to switch the
9975 * notion of the current task on a cpu in a non-blocking manner. This function
9976 * must be called with all CPU's synchronized, and interrupts disabled, the
9977 * and caller must save the original value of the current task (see
9978 * curr_task() above) and restore that value before reenabling interrupts and
9979 * re-starting the system.
9981 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9983 void set_curr_task(int cpu, struct task_struct *p)
9985 cpu_curr(cpu) = p;
9988 #endif
9990 #ifdef CONFIG_FAIR_GROUP_SCHED
9991 static void free_fair_sched_group(struct task_group *tg)
9993 int i;
9995 for_each_possible_cpu(i) {
9996 if (tg->cfs_rq)
9997 kfree(tg->cfs_rq[i]);
9998 if (tg->se)
9999 kfree(tg->se[i]);
10002 kfree(tg->cfs_rq);
10003 kfree(tg->se);
10006 static
10007 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10009 struct cfs_rq *cfs_rq;
10010 struct sched_entity *se;
10011 struct rq *rq;
10012 int i;
10014 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
10015 if (!tg->cfs_rq)
10016 goto err;
10017 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
10018 if (!tg->se)
10019 goto err;
10021 tg->shares = NICE_0_LOAD;
10023 for_each_possible_cpu(i) {
10024 rq = cpu_rq(i);
10026 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10027 GFP_KERNEL, cpu_to_node(i));
10028 if (!cfs_rq)
10029 goto err;
10031 se = kzalloc_node(sizeof(struct sched_entity),
10032 GFP_KERNEL, cpu_to_node(i));
10033 if (!se)
10034 goto err;
10036 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
10039 return 1;
10041 err:
10042 return 0;
10045 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
10047 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
10048 &cpu_rq(cpu)->leaf_cfs_rq_list);
10051 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
10053 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
10055 #else /* !CONFG_FAIR_GROUP_SCHED */
10056 static inline void free_fair_sched_group(struct task_group *tg)
10060 static inline
10061 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10063 return 1;
10066 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
10070 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
10073 #endif /* CONFIG_FAIR_GROUP_SCHED */
10075 #ifdef CONFIG_RT_GROUP_SCHED
10076 static void free_rt_sched_group(struct task_group *tg)
10078 int i;
10080 destroy_rt_bandwidth(&tg->rt_bandwidth);
10082 for_each_possible_cpu(i) {
10083 if (tg->rt_rq)
10084 kfree(tg->rt_rq[i]);
10085 if (tg->rt_se)
10086 kfree(tg->rt_se[i]);
10089 kfree(tg->rt_rq);
10090 kfree(tg->rt_se);
10093 static
10094 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
10096 struct rt_rq *rt_rq;
10097 struct sched_rt_entity *rt_se;
10098 struct rq *rq;
10099 int i;
10101 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
10102 if (!tg->rt_rq)
10103 goto err;
10104 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
10105 if (!tg->rt_se)
10106 goto err;
10108 init_rt_bandwidth(&tg->rt_bandwidth,
10109 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
10111 for_each_possible_cpu(i) {
10112 rq = cpu_rq(i);
10114 rt_rq = kzalloc_node(sizeof(struct rt_rq),
10115 GFP_KERNEL, cpu_to_node(i));
10116 if (!rt_rq)
10117 goto err;
10119 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
10120 GFP_KERNEL, cpu_to_node(i));
10121 if (!rt_se)
10122 goto err;
10124 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
10127 return 1;
10129 err:
10130 return 0;
10133 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10135 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
10136 &cpu_rq(cpu)->leaf_rt_rq_list);
10139 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10141 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
10143 #else /* !CONFIG_RT_GROUP_SCHED */
10144 static inline void free_rt_sched_group(struct task_group *tg)
10148 static inline
10149 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
10151 return 1;
10154 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10158 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10161 #endif /* CONFIG_RT_GROUP_SCHED */
10163 #ifdef CONFIG_CGROUP_SCHED
10164 static void free_sched_group(struct task_group *tg)
10166 free_fair_sched_group(tg);
10167 free_rt_sched_group(tg);
10168 kfree(tg);
10171 /* allocate runqueue etc for a new task group */
10172 struct task_group *sched_create_group(struct task_group *parent)
10174 struct task_group *tg;
10175 unsigned long flags;
10176 int i;
10178 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10179 if (!tg)
10180 return ERR_PTR(-ENOMEM);
10182 if (!alloc_fair_sched_group(tg, parent))
10183 goto err;
10185 if (!alloc_rt_sched_group(tg, parent))
10186 goto err;
10188 spin_lock_irqsave(&task_group_lock, flags);
10189 for_each_possible_cpu(i) {
10190 register_fair_sched_group(tg, i);
10191 register_rt_sched_group(tg, i);
10193 list_add_rcu(&tg->list, &task_groups);
10195 WARN_ON(!parent); /* root should already exist */
10197 tg->parent = parent;
10198 INIT_LIST_HEAD(&tg->children);
10199 list_add_rcu(&tg->siblings, &parent->children);
10200 spin_unlock_irqrestore(&task_group_lock, flags);
10202 return tg;
10204 err:
10205 free_sched_group(tg);
10206 return ERR_PTR(-ENOMEM);
10209 /* rcu callback to free various structures associated with a task group */
10210 static void free_sched_group_rcu(struct rcu_head *rhp)
10212 /* now it should be safe to free those cfs_rqs */
10213 free_sched_group(container_of(rhp, struct task_group, rcu));
10216 /* Destroy runqueue etc associated with a task group */
10217 void sched_destroy_group(struct task_group *tg)
10219 unsigned long flags;
10220 int i;
10222 spin_lock_irqsave(&task_group_lock, flags);
10223 for_each_possible_cpu(i) {
10224 unregister_fair_sched_group(tg, i);
10225 unregister_rt_sched_group(tg, i);
10227 list_del_rcu(&tg->list);
10228 list_del_rcu(&tg->siblings);
10229 spin_unlock_irqrestore(&task_group_lock, flags);
10231 /* wait for possible concurrent references to cfs_rqs complete */
10232 call_rcu(&tg->rcu, free_sched_group_rcu);
10235 /* change task's runqueue when it moves between groups.
10236 * The caller of this function should have put the task in its new group
10237 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10238 * reflect its new group.
10240 void sched_move_task(struct task_struct *tsk)
10242 int on_rq, running;
10243 unsigned long flags;
10244 struct rq *rq;
10246 rq = task_rq_lock(tsk, &flags);
10248 update_rq_clock(rq);
10250 running = task_current(rq, tsk);
10251 on_rq = tsk->se.on_rq;
10253 if (on_rq)
10254 dequeue_task(rq, tsk, 0);
10255 if (unlikely(running))
10256 tsk->sched_class->put_prev_task(rq, tsk);
10258 #ifdef CONFIG_FAIR_GROUP_SCHED
10259 if (tsk->sched_class->task_move_group)
10260 tsk->sched_class->task_move_group(tsk, on_rq);
10261 else
10262 #endif
10263 set_task_rq(tsk, task_cpu(tsk));
10265 if (unlikely(running))
10266 tsk->sched_class->set_curr_task(rq);
10267 if (on_rq)
10268 enqueue_task(rq, tsk, 0, false);
10270 task_rq_unlock(rq, &flags);
10272 #endif /* CONFIG_CGROUP_SCHED */
10274 #ifdef CONFIG_FAIR_GROUP_SCHED
10275 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10277 struct cfs_rq *cfs_rq = se->cfs_rq;
10278 int on_rq;
10280 on_rq = se->on_rq;
10281 if (on_rq)
10282 dequeue_entity(cfs_rq, se, 0);
10284 se->load.weight = shares;
10285 se->load.inv_weight = 0;
10287 if (on_rq)
10288 enqueue_entity(cfs_rq, se, 0);
10291 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10293 struct cfs_rq *cfs_rq = se->cfs_rq;
10294 struct rq *rq = cfs_rq->rq;
10295 unsigned long flags;
10297 spin_lock_irqsave(&rq->lock, flags);
10298 __set_se_shares(se, shares);
10299 spin_unlock_irqrestore(&rq->lock, flags);
10302 static DEFINE_MUTEX(shares_mutex);
10304 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10306 int i;
10307 unsigned long flags;
10310 * We can't change the weight of the root cgroup.
10312 if (!tg->se[0])
10313 return -EINVAL;
10315 if (shares < MIN_SHARES)
10316 shares = MIN_SHARES;
10317 else if (shares > MAX_SHARES)
10318 shares = MAX_SHARES;
10320 mutex_lock(&shares_mutex);
10321 if (tg->shares == shares)
10322 goto done;
10324 spin_lock_irqsave(&task_group_lock, flags);
10325 for_each_possible_cpu(i)
10326 unregister_fair_sched_group(tg, i);
10327 list_del_rcu(&tg->siblings);
10328 spin_unlock_irqrestore(&task_group_lock, flags);
10330 /* wait for any ongoing reference to this group to finish */
10331 synchronize_sched();
10334 * Now we are free to modify the group's share on each cpu
10335 * w/o tripping rebalance_share or load_balance_fair.
10337 tg->shares = shares;
10338 for_each_possible_cpu(i) {
10340 * force a rebalance
10342 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10343 set_se_shares(tg->se[i], shares);
10347 * Enable load balance activity on this group, by inserting it back on
10348 * each cpu's rq->leaf_cfs_rq_list.
10350 spin_lock_irqsave(&task_group_lock, flags);
10351 for_each_possible_cpu(i)
10352 register_fair_sched_group(tg, i);
10353 list_add_rcu(&tg->siblings, &tg->parent->children);
10354 spin_unlock_irqrestore(&task_group_lock, flags);
10355 done:
10356 mutex_unlock(&shares_mutex);
10357 return 0;
10360 unsigned long sched_group_shares(struct task_group *tg)
10362 return tg->shares;
10364 #endif
10366 #ifdef CONFIG_RT_GROUP_SCHED
10368 * Ensure that the real time constraints are schedulable.
10370 static DEFINE_MUTEX(rt_constraints_mutex);
10372 static unsigned long to_ratio(u64 period, u64 runtime)
10374 if (runtime == RUNTIME_INF)
10375 return 1ULL << 20;
10377 return div64_u64(runtime << 20, period);
10380 /* Must be called with tasklist_lock held */
10381 static inline int tg_has_rt_tasks(struct task_group *tg)
10383 struct task_struct *g, *p;
10385 do_each_thread(g, p) {
10386 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10387 return 1;
10388 } while_each_thread(g, p);
10390 return 0;
10393 struct rt_schedulable_data {
10394 struct task_group *tg;
10395 u64 rt_period;
10396 u64 rt_runtime;
10399 static int tg_schedulable(struct task_group *tg, void *data)
10401 struct rt_schedulable_data *d = data;
10402 struct task_group *child;
10403 unsigned long total, sum = 0;
10404 u64 period, runtime;
10406 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10407 runtime = tg->rt_bandwidth.rt_runtime;
10409 if (tg == d->tg) {
10410 period = d->rt_period;
10411 runtime = d->rt_runtime;
10415 * Cannot have more runtime than the period.
10417 if (runtime > period && runtime != RUNTIME_INF)
10418 return -EINVAL;
10421 * Ensure we don't starve existing RT tasks.
10423 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10424 return -EBUSY;
10426 total = to_ratio(period, runtime);
10429 * Nobody can have more than the global setting allows.
10431 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10432 return -EINVAL;
10435 * The sum of our children's runtime should not exceed our own.
10437 list_for_each_entry_rcu(child, &tg->children, siblings) {
10438 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10439 runtime = child->rt_bandwidth.rt_runtime;
10441 if (child == d->tg) {
10442 period = d->rt_period;
10443 runtime = d->rt_runtime;
10446 sum += to_ratio(period, runtime);
10449 if (sum > total)
10450 return -EINVAL;
10452 return 0;
10455 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10457 struct rt_schedulable_data data = {
10458 .tg = tg,
10459 .rt_period = period,
10460 .rt_runtime = runtime,
10463 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10466 static int tg_set_bandwidth(struct task_group *tg,
10467 u64 rt_period, u64 rt_runtime)
10469 int i, err = 0;
10471 mutex_lock(&rt_constraints_mutex);
10472 read_lock(&tasklist_lock);
10473 err = __rt_schedulable(tg, rt_period, rt_runtime);
10474 if (err)
10475 goto unlock;
10477 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10478 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10479 tg->rt_bandwidth.rt_runtime = rt_runtime;
10481 for_each_possible_cpu(i) {
10482 struct rt_rq *rt_rq = tg->rt_rq[i];
10484 spin_lock(&rt_rq->rt_runtime_lock);
10485 rt_rq->rt_runtime = rt_runtime;
10486 spin_unlock(&rt_rq->rt_runtime_lock);
10488 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10489 unlock:
10490 read_unlock(&tasklist_lock);
10491 mutex_unlock(&rt_constraints_mutex);
10493 return err;
10496 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10498 u64 rt_runtime, rt_period;
10500 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10501 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10502 if (rt_runtime_us < 0)
10503 rt_runtime = RUNTIME_INF;
10505 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10508 long sched_group_rt_runtime(struct task_group *tg)
10510 u64 rt_runtime_us;
10512 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10513 return -1;
10515 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10516 do_div(rt_runtime_us, NSEC_PER_USEC);
10517 return rt_runtime_us;
10520 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10522 u64 rt_runtime, rt_period;
10524 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10525 rt_runtime = tg->rt_bandwidth.rt_runtime;
10527 if (rt_period == 0)
10528 return -EINVAL;
10530 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10533 long sched_group_rt_period(struct task_group *tg)
10535 u64 rt_period_us;
10537 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10538 do_div(rt_period_us, NSEC_PER_USEC);
10539 return rt_period_us;
10542 static int sched_rt_global_constraints(void)
10544 u64 runtime, period;
10545 int ret = 0;
10547 if (sysctl_sched_rt_period <= 0)
10548 return -EINVAL;
10550 runtime = global_rt_runtime();
10551 period = global_rt_period();
10554 * Sanity check on the sysctl variables.
10556 if (runtime > period && runtime != RUNTIME_INF)
10557 return -EINVAL;
10559 mutex_lock(&rt_constraints_mutex);
10560 read_lock(&tasklist_lock);
10561 ret = __rt_schedulable(NULL, 0, 0);
10562 read_unlock(&tasklist_lock);
10563 mutex_unlock(&rt_constraints_mutex);
10565 return ret;
10568 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10570 /* Don't accept realtime tasks when there is no way for them to run */
10571 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10572 return 0;
10574 return 1;
10577 #else /* !CONFIG_RT_GROUP_SCHED */
10578 static int sched_rt_global_constraints(void)
10580 unsigned long flags;
10581 int i;
10583 if (sysctl_sched_rt_period <= 0)
10584 return -EINVAL;
10587 * There's always some RT tasks in the root group
10588 * -- migration, kstopmachine etc..
10590 if (sysctl_sched_rt_runtime == 0)
10591 return -EBUSY;
10593 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10594 for_each_possible_cpu(i) {
10595 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10597 spin_lock(&rt_rq->rt_runtime_lock);
10598 rt_rq->rt_runtime = global_rt_runtime();
10599 spin_unlock(&rt_rq->rt_runtime_lock);
10601 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10603 return 0;
10605 #endif /* CONFIG_RT_GROUP_SCHED */
10607 int sched_rt_handler(struct ctl_table *table, int write,
10608 void __user *buffer, size_t *lenp,
10609 loff_t *ppos)
10611 int ret;
10612 int old_period, old_runtime;
10613 static DEFINE_MUTEX(mutex);
10615 mutex_lock(&mutex);
10616 old_period = sysctl_sched_rt_period;
10617 old_runtime = sysctl_sched_rt_runtime;
10619 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10621 if (!ret && write) {
10622 ret = sched_rt_global_constraints();
10623 if (ret) {
10624 sysctl_sched_rt_period = old_period;
10625 sysctl_sched_rt_runtime = old_runtime;
10626 } else {
10627 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10628 def_rt_bandwidth.rt_period =
10629 ns_to_ktime(global_rt_period());
10632 mutex_unlock(&mutex);
10634 return ret;
10637 #ifdef CONFIG_CGROUP_SCHED
10639 /* return corresponding task_group object of a cgroup */
10640 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10642 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10643 struct task_group, css);
10646 static struct cgroup_subsys_state *
10647 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10649 struct task_group *tg, *parent;
10651 if (!cgrp->parent) {
10652 /* This is early initialization for the top cgroup */
10653 return &init_task_group.css;
10656 parent = cgroup_tg(cgrp->parent);
10657 tg = sched_create_group(parent);
10658 if (IS_ERR(tg))
10659 return ERR_PTR(-ENOMEM);
10661 return &tg->css;
10664 static void
10665 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10667 struct task_group *tg = cgroup_tg(cgrp);
10669 sched_destroy_group(tg);
10672 static int
10673 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10675 #ifdef CONFIG_RT_GROUP_SCHED
10676 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10677 return -EINVAL;
10678 #else
10679 /* We don't support RT-tasks being in separate groups */
10680 if (tsk->sched_class != &fair_sched_class)
10681 return -EINVAL;
10682 #endif
10683 return 0;
10686 static int
10687 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10688 struct task_struct *tsk, bool threadgroup)
10690 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10691 if (retval)
10692 return retval;
10693 if (threadgroup) {
10694 struct task_struct *c;
10695 rcu_read_lock();
10696 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10697 retval = cpu_cgroup_can_attach_task(cgrp, c);
10698 if (retval) {
10699 rcu_read_unlock();
10700 return retval;
10703 rcu_read_unlock();
10705 return 0;
10708 static void
10709 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10710 struct cgroup *old_cont, struct task_struct *tsk,
10711 bool threadgroup)
10713 sched_move_task(tsk);
10714 if (threadgroup) {
10715 struct task_struct *c;
10716 rcu_read_lock();
10717 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10718 sched_move_task(c);
10720 rcu_read_unlock();
10724 #ifdef CONFIG_FAIR_GROUP_SCHED
10725 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10726 u64 shareval)
10728 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10731 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10733 struct task_group *tg = cgroup_tg(cgrp);
10735 return (u64) tg->shares;
10737 #endif /* CONFIG_FAIR_GROUP_SCHED */
10739 #ifdef CONFIG_RT_GROUP_SCHED
10740 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10741 s64 val)
10743 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10746 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10748 return sched_group_rt_runtime(cgroup_tg(cgrp));
10751 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10752 u64 rt_period_us)
10754 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10757 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10759 return sched_group_rt_period(cgroup_tg(cgrp));
10761 #endif /* CONFIG_RT_GROUP_SCHED */
10763 static struct cftype cpu_files[] = {
10764 #ifdef CONFIG_FAIR_GROUP_SCHED
10766 .name = "shares",
10767 .read_u64 = cpu_shares_read_u64,
10768 .write_u64 = cpu_shares_write_u64,
10770 #endif
10771 #ifdef CONFIG_RT_GROUP_SCHED
10773 .name = "rt_runtime_us",
10774 .read_s64 = cpu_rt_runtime_read,
10775 .write_s64 = cpu_rt_runtime_write,
10778 .name = "rt_period_us",
10779 .read_u64 = cpu_rt_period_read_uint,
10780 .write_u64 = cpu_rt_period_write_uint,
10782 #endif
10785 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10787 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10790 struct cgroup_subsys cpu_cgroup_subsys = {
10791 .name = "cpu",
10792 .create = cpu_cgroup_create,
10793 .destroy = cpu_cgroup_destroy,
10794 .can_attach = cpu_cgroup_can_attach,
10795 .attach = cpu_cgroup_attach,
10796 .populate = cpu_cgroup_populate,
10797 .subsys_id = cpu_cgroup_subsys_id,
10798 .early_init = 1,
10801 #endif /* CONFIG_CGROUP_SCHED */
10803 #ifdef CONFIG_CGROUP_CPUACCT
10806 * CPU accounting code for task groups.
10808 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10809 * (balbir@in.ibm.com).
10812 /* track cpu usage of a group of tasks and its child groups */
10813 struct cpuacct {
10814 struct cgroup_subsys_state css;
10815 /* cpuusage holds pointer to a u64-type object on every cpu */
10816 u64 *cpuusage;
10817 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10818 struct cpuacct *parent;
10821 struct cgroup_subsys cpuacct_subsys;
10823 /* return cpu accounting group corresponding to this container */
10824 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10826 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10827 struct cpuacct, css);
10830 /* return cpu accounting group to which this task belongs */
10831 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10833 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10834 struct cpuacct, css);
10837 /* create a new cpu accounting group */
10838 static struct cgroup_subsys_state *cpuacct_create(
10839 struct cgroup_subsys *ss, struct cgroup *cgrp)
10841 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10842 int i;
10844 if (!ca)
10845 goto out;
10847 ca->cpuusage = alloc_percpu(u64);
10848 if (!ca->cpuusage)
10849 goto out_free_ca;
10851 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10852 if (percpu_counter_init(&ca->cpustat[i], 0))
10853 goto out_free_counters;
10855 if (cgrp->parent)
10856 ca->parent = cgroup_ca(cgrp->parent);
10858 return &ca->css;
10860 out_free_counters:
10861 while (--i >= 0)
10862 percpu_counter_destroy(&ca->cpustat[i]);
10863 free_percpu(ca->cpuusage);
10864 out_free_ca:
10865 kfree(ca);
10866 out:
10867 return ERR_PTR(-ENOMEM);
10870 /* destroy an existing cpu accounting group */
10871 static void
10872 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10874 struct cpuacct *ca = cgroup_ca(cgrp);
10875 int i;
10877 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10878 percpu_counter_destroy(&ca->cpustat[i]);
10879 free_percpu(ca->cpuusage);
10880 kfree(ca);
10883 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10885 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10886 u64 data;
10888 #ifndef CONFIG_64BIT
10890 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10892 spin_lock_irq(&cpu_rq(cpu)->lock);
10893 data = *cpuusage;
10894 spin_unlock_irq(&cpu_rq(cpu)->lock);
10895 #else
10896 data = *cpuusage;
10897 #endif
10899 return data;
10902 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10904 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10906 #ifndef CONFIG_64BIT
10908 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10910 spin_lock_irq(&cpu_rq(cpu)->lock);
10911 *cpuusage = val;
10912 spin_unlock_irq(&cpu_rq(cpu)->lock);
10913 #else
10914 *cpuusage = val;
10915 #endif
10918 /* return total cpu usage (in nanoseconds) of a group */
10919 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10921 struct cpuacct *ca = cgroup_ca(cgrp);
10922 u64 totalcpuusage = 0;
10923 int i;
10925 for_each_present_cpu(i)
10926 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10928 return totalcpuusage;
10931 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10932 u64 reset)
10934 struct cpuacct *ca = cgroup_ca(cgrp);
10935 int err = 0;
10936 int i;
10938 if (reset) {
10939 err = -EINVAL;
10940 goto out;
10943 for_each_present_cpu(i)
10944 cpuacct_cpuusage_write(ca, i, 0);
10946 out:
10947 return err;
10950 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10951 struct seq_file *m)
10953 struct cpuacct *ca = cgroup_ca(cgroup);
10954 u64 percpu;
10955 int i;
10957 for_each_present_cpu(i) {
10958 percpu = cpuacct_cpuusage_read(ca, i);
10959 seq_printf(m, "%llu ", (unsigned long long) percpu);
10961 seq_printf(m, "\n");
10962 return 0;
10965 static const char *cpuacct_stat_desc[] = {
10966 [CPUACCT_STAT_USER] = "user",
10967 [CPUACCT_STAT_SYSTEM] = "system",
10970 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10971 struct cgroup_map_cb *cb)
10973 struct cpuacct *ca = cgroup_ca(cgrp);
10974 int i;
10976 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10977 s64 val = percpu_counter_read(&ca->cpustat[i]);
10978 val = cputime64_to_clock_t(val);
10979 cb->fill(cb, cpuacct_stat_desc[i], val);
10981 return 0;
10984 static struct cftype files[] = {
10986 .name = "usage",
10987 .read_u64 = cpuusage_read,
10988 .write_u64 = cpuusage_write,
10991 .name = "usage_percpu",
10992 .read_seq_string = cpuacct_percpu_seq_read,
10995 .name = "stat",
10996 .read_map = cpuacct_stats_show,
11000 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
11002 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
11006 * charge this task's execution time to its accounting group.
11008 * called with rq->lock held.
11010 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
11012 struct cpuacct *ca;
11013 int cpu;
11015 if (unlikely(!cpuacct_subsys.active))
11016 return;
11018 cpu = task_cpu(tsk);
11020 rcu_read_lock();
11022 ca = task_ca(tsk);
11024 for (; ca; ca = ca->parent) {
11025 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
11026 *cpuusage += cputime;
11029 rcu_read_unlock();
11033 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
11034 * in cputime_t units. As a result, cpuacct_update_stats calls
11035 * percpu_counter_add with values large enough to always overflow the
11036 * per cpu batch limit causing bad SMP scalability.
11038 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
11039 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
11040 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
11042 #ifdef CONFIG_SMP
11043 #define CPUACCT_BATCH \
11044 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
11045 #else
11046 #define CPUACCT_BATCH 0
11047 #endif
11050 * Charge the system/user time to the task's accounting group.
11052 static void cpuacct_update_stats(struct task_struct *tsk,
11053 enum cpuacct_stat_index idx, cputime_t val)
11055 struct cpuacct *ca;
11056 int batch = CPUACCT_BATCH;
11058 if (unlikely(!cpuacct_subsys.active))
11059 return;
11061 rcu_read_lock();
11062 ca = task_ca(tsk);
11064 do {
11065 __percpu_counter_add(&ca->cpustat[idx], val, batch);
11066 ca = ca->parent;
11067 } while (ca);
11068 rcu_read_unlock();
11071 struct cgroup_subsys cpuacct_subsys = {
11072 .name = "cpuacct",
11073 .create = cpuacct_create,
11074 .destroy = cpuacct_destroy,
11075 .populate = cpuacct_populate,
11076 .subsys_id = cpuacct_subsys_id,
11078 #endif /* CONFIG_CGROUP_CPUACCT */
11080 #ifndef CONFIG_SMP
11082 int rcu_expedited_torture_stats(char *page)
11084 return 0;
11086 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
11088 void synchronize_sched_expedited(void)
11091 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11093 #else /* #ifndef CONFIG_SMP */
11095 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
11096 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
11098 #define RCU_EXPEDITED_STATE_POST -2
11099 #define RCU_EXPEDITED_STATE_IDLE -1
11101 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11103 int rcu_expedited_torture_stats(char *page)
11105 int cnt = 0;
11106 int cpu;
11108 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
11109 for_each_online_cpu(cpu) {
11110 cnt += sprintf(&page[cnt], " %d:%d",
11111 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
11113 cnt += sprintf(&page[cnt], "\n");
11114 return cnt;
11116 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
11118 static long synchronize_sched_expedited_count;
11121 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
11122 * approach to force grace period to end quickly. This consumes
11123 * significant time on all CPUs, and is thus not recommended for
11124 * any sort of common-case code.
11126 * Note that it is illegal to call this function while holding any
11127 * lock that is acquired by a CPU-hotplug notifier. Failing to
11128 * observe this restriction will result in deadlock.
11130 void synchronize_sched_expedited(void)
11132 int cpu;
11133 unsigned long flags;
11134 bool need_full_sync = 0;
11135 struct rq *rq;
11136 struct migration_req *req;
11137 long snap;
11138 int trycount = 0;
11140 smp_mb(); /* ensure prior mod happens before capturing snap. */
11141 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
11142 get_online_cpus();
11143 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
11144 put_online_cpus();
11145 if (trycount++ < 10)
11146 udelay(trycount * num_online_cpus());
11147 else {
11148 synchronize_sched();
11149 return;
11151 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
11152 smp_mb(); /* ensure test happens before caller kfree */
11153 return;
11155 get_online_cpus();
11157 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
11158 for_each_online_cpu(cpu) {
11159 rq = cpu_rq(cpu);
11160 req = &per_cpu(rcu_migration_req, cpu);
11161 init_completion(&req->done);
11162 req->task = NULL;
11163 req->dest_cpu = RCU_MIGRATION_NEED_QS;
11164 spin_lock_irqsave(&rq->lock, flags);
11165 list_add(&req->list, &rq->migration_queue);
11166 spin_unlock_irqrestore(&rq->lock, flags);
11167 wake_up_process(rq->migration_thread);
11169 for_each_online_cpu(cpu) {
11170 rcu_expedited_state = cpu;
11171 req = &per_cpu(rcu_migration_req, cpu);
11172 rq = cpu_rq(cpu);
11173 wait_for_completion(&req->done);
11174 spin_lock_irqsave(&rq->lock, flags);
11175 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11176 need_full_sync = 1;
11177 req->dest_cpu = RCU_MIGRATION_IDLE;
11178 spin_unlock_irqrestore(&rq->lock, flags);
11180 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11181 mutex_unlock(&rcu_sched_expedited_mutex);
11182 put_online_cpus();
11183 if (need_full_sync)
11184 synchronize_sched();
11186 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11188 #endif /* #else #ifndef CONFIG_SMP */