2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly
= IPDEFTTL
;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl
);
86 static int ip_fragment(struct sock
*sk
, struct sk_buff
*skb
,
88 int (*output
)(struct sock
*, struct sk_buff
*));
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr
*iph
)
94 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
96 EXPORT_SYMBOL(ip_send_check
);
98 static int __ip_local_out_sk(struct sock
*sk
, struct sk_buff
*skb
)
100 struct iphdr
*iph
= ip_hdr(skb
);
102 iph
->tot_len
= htons(skb
->len
);
104 return nf_hook(NFPROTO_IPV4
, NF_INET_LOCAL_OUT
, sk
, skb
, NULL
,
105 skb_dst(skb
)->dev
, dst_output_sk
);
108 int __ip_local_out(struct sk_buff
*skb
)
110 return __ip_local_out_sk(skb
->sk
, skb
);
113 int ip_local_out_sk(struct sock
*sk
, struct sk_buff
*skb
)
117 err
= __ip_local_out(skb
);
118 if (likely(err
== 1))
119 err
= dst_output_sk(sk
, skb
);
123 EXPORT_SYMBOL_GPL(ip_local_out_sk
);
125 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
127 int ttl
= inet
->uc_ttl
;
130 ttl
= ip4_dst_hoplimit(dst
);
135 * Add an ip header to a skbuff and send it out.
138 int ip_build_and_send_pkt(struct sk_buff
*skb
, struct sock
*sk
,
139 __be32 saddr
, __be32 daddr
, struct ip_options_rcu
*opt
)
141 struct inet_sock
*inet
= inet_sk(sk
);
142 struct rtable
*rt
= skb_rtable(skb
);
145 /* Build the IP header. */
146 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->opt
.optlen
: 0));
147 skb_reset_network_header(skb
);
151 iph
->tos
= inet
->tos
;
152 if (ip_dont_fragment(sk
, &rt
->dst
))
153 iph
->frag_off
= htons(IP_DF
);
156 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
157 iph
->daddr
= (opt
&& opt
->opt
.srr
? opt
->opt
.faddr
: daddr
);
159 iph
->protocol
= sk
->sk_protocol
;
160 ip_select_ident(sock_net(sk
), skb
, sk
);
162 if (opt
&& opt
->opt
.optlen
) {
163 iph
->ihl
+= opt
->opt
.optlen
>>2;
164 ip_options_build(skb
, &opt
->opt
, daddr
, rt
, 0);
167 skb
->priority
= sk
->sk_priority
;
168 skb
->mark
= sk
->sk_mark
;
171 return ip_local_out(skb
);
173 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
175 static int ip_finish_output2(struct sock
*sk
, struct sk_buff
*skb
)
177 struct dst_entry
*dst
= skb_dst(skb
);
178 struct rtable
*rt
= (struct rtable
*)dst
;
179 struct net_device
*dev
= dst
->dev
;
180 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
181 struct neighbour
*neigh
;
184 if (rt
->rt_type
== RTN_MULTICAST
) {
185 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTMCAST
, skb
->len
);
186 } else if (rt
->rt_type
== RTN_BROADCAST
)
187 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTBCAST
, skb
->len
);
189 /* Be paranoid, rather than too clever. */
190 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
191 struct sk_buff
*skb2
;
193 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
199 skb_set_owner_w(skb2
, skb
->sk
);
205 nexthop
= (__force u32
) rt_nexthop(rt
, ip_hdr(skb
)->daddr
);
206 neigh
= __ipv4_neigh_lookup_noref(dev
, nexthop
);
207 if (unlikely(!neigh
))
208 neigh
= __neigh_create(&arp_tbl
, &nexthop
, dev
, false);
209 if (!IS_ERR(neigh
)) {
210 int res
= dst_neigh_output(dst
, neigh
, skb
);
212 rcu_read_unlock_bh();
215 rcu_read_unlock_bh();
217 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
223 static int ip_finish_output_gso(struct sock
*sk
, struct sk_buff
*skb
,
226 netdev_features_t features
;
227 struct sk_buff
*segs
;
230 /* common case: locally created skb or seglen is <= mtu */
231 if (((IPCB(skb
)->flags
& IPSKB_FORWARDED
) == 0) ||
232 skb_gso_network_seglen(skb
) <= mtu
)
233 return ip_finish_output2(sk
, skb
);
235 /* Slowpath - GSO segment length is exceeding the dst MTU.
237 * This can happen in two cases:
238 * 1) TCP GRO packet, DF bit not set
239 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
240 * from host network stack.
242 features
= netif_skb_features(skb
);
243 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
244 if (IS_ERR_OR_NULL(segs
)) {
252 struct sk_buff
*nskb
= segs
->next
;
256 err
= ip_fragment(sk
, segs
, mtu
, ip_finish_output2
);
266 static int ip_finish_output(struct sock
*sk
, struct sk_buff
*skb
)
270 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
271 /* Policy lookup after SNAT yielded a new policy */
272 if (skb_dst(skb
)->xfrm
) {
273 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
274 return dst_output_sk(sk
, skb
);
277 mtu
= ip_skb_dst_mtu(skb
);
279 return ip_finish_output_gso(sk
, skb
, mtu
);
281 if (skb
->len
> mtu
|| (IPCB(skb
)->flags
& IPSKB_FRAG_PMTU
))
282 return ip_fragment(sk
, skb
, mtu
, ip_finish_output2
);
284 return ip_finish_output2(sk
, skb
);
287 int ip_mc_output(struct sock
*sk
, struct sk_buff
*skb
)
289 struct rtable
*rt
= skb_rtable(skb
);
290 struct net_device
*dev
= rt
->dst
.dev
;
293 * If the indicated interface is up and running, send the packet.
295 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
298 skb
->protocol
= htons(ETH_P_IP
);
301 * Multicasts are looped back for other local users
304 if (rt
->rt_flags
&RTCF_MULTICAST
) {
306 #ifdef CONFIG_IP_MROUTE
307 /* Small optimization: do not loopback not local frames,
308 which returned after forwarding; they will be dropped
309 by ip_mr_input in any case.
310 Note, that local frames are looped back to be delivered
313 This check is duplicated in ip_mr_input at the moment.
316 ((rt
->rt_flags
& RTCF_LOCAL
) ||
317 !(IPCB(skb
)->flags
& IPSKB_FORWARDED
))
320 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
322 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
323 sk
, newskb
, NULL
, newskb
->dev
,
327 /* Multicasts with ttl 0 must not go beyond the host */
329 if (ip_hdr(skb
)->ttl
== 0) {
335 if (rt
->rt_flags
&RTCF_BROADCAST
) {
336 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
338 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, sk
, newskb
,
339 NULL
, newskb
->dev
, dev_loopback_xmit
);
342 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, sk
, skb
, NULL
,
343 skb
->dev
, ip_finish_output
,
344 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
347 int ip_output(struct sock
*sk
, struct sk_buff
*skb
)
349 struct net_device
*dev
= skb_dst(skb
)->dev
;
351 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
354 skb
->protocol
= htons(ETH_P_IP
);
356 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, sk
, skb
,
359 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
363 * copy saddr and daddr, possibly using 64bit load/stores
365 * iph->saddr = fl4->saddr;
366 * iph->daddr = fl4->daddr;
368 static void ip_copy_addrs(struct iphdr
*iph
, const struct flowi4
*fl4
)
370 BUILD_BUG_ON(offsetof(typeof(*fl4
), daddr
) !=
371 offsetof(typeof(*fl4
), saddr
) + sizeof(fl4
->saddr
));
372 memcpy(&iph
->saddr
, &fl4
->saddr
,
373 sizeof(fl4
->saddr
) + sizeof(fl4
->daddr
));
376 /* Note: skb->sk can be different from sk, in case of tunnels */
377 int ip_queue_xmit(struct sock
*sk
, struct sk_buff
*skb
, struct flowi
*fl
)
379 struct inet_sock
*inet
= inet_sk(sk
);
380 struct ip_options_rcu
*inet_opt
;
386 /* Skip all of this if the packet is already routed,
387 * f.e. by something like SCTP.
390 inet_opt
= rcu_dereference(inet
->inet_opt
);
392 rt
= skb_rtable(skb
);
396 /* Make sure we can route this packet. */
397 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
401 /* Use correct destination address if we have options. */
402 daddr
= inet
->inet_daddr
;
403 if (inet_opt
&& inet_opt
->opt
.srr
)
404 daddr
= inet_opt
->opt
.faddr
;
406 /* If this fails, retransmit mechanism of transport layer will
407 * keep trying until route appears or the connection times
410 rt
= ip_route_output_ports(sock_net(sk
), fl4
, sk
,
411 daddr
, inet
->inet_saddr
,
416 sk
->sk_bound_dev_if
);
419 sk_setup_caps(sk
, &rt
->dst
);
421 skb_dst_set_noref(skb
, &rt
->dst
);
424 if (inet_opt
&& inet_opt
->opt
.is_strictroute
&& rt
->rt_uses_gateway
)
427 /* OK, we know where to send it, allocate and build IP header. */
428 skb_push(skb
, sizeof(struct iphdr
) + (inet_opt
? inet_opt
->opt
.optlen
: 0));
429 skb_reset_network_header(skb
);
431 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
432 if (ip_dont_fragment(sk
, &rt
->dst
) && !skb
->ignore_df
)
433 iph
->frag_off
= htons(IP_DF
);
436 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
437 iph
->protocol
= sk
->sk_protocol
;
438 ip_copy_addrs(iph
, fl4
);
440 /* Transport layer set skb->h.foo itself. */
442 if (inet_opt
&& inet_opt
->opt
.optlen
) {
443 iph
->ihl
+= inet_opt
->opt
.optlen
>> 2;
444 ip_options_build(skb
, &inet_opt
->opt
, inet
->inet_daddr
, rt
, 0);
447 ip_select_ident_segs(sock_net(sk
), skb
, sk
,
448 skb_shinfo(skb
)->gso_segs
?: 1);
450 /* TODO : should we use skb->sk here instead of sk ? */
451 skb
->priority
= sk
->sk_priority
;
452 skb
->mark
= sk
->sk_mark
;
454 res
= ip_local_out(skb
);
460 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
462 return -EHOSTUNREACH
;
464 EXPORT_SYMBOL(ip_queue_xmit
);
466 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
468 to
->pkt_type
= from
->pkt_type
;
469 to
->priority
= from
->priority
;
470 to
->protocol
= from
->protocol
;
472 skb_dst_copy(to
, from
);
474 to
->mark
= from
->mark
;
476 /* Copy the flags to each fragment. */
477 IPCB(to
)->flags
= IPCB(from
)->flags
;
479 #ifdef CONFIG_NET_SCHED
480 to
->tc_index
= from
->tc_index
;
483 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
484 to
->ipvs_property
= from
->ipvs_property
;
486 skb_copy_secmark(to
, from
);
489 static int ip_fragment(struct sock
*sk
, struct sk_buff
*skb
,
491 int (*output
)(struct sock
*, struct sk_buff
*))
493 struct iphdr
*iph
= ip_hdr(skb
);
495 if ((iph
->frag_off
& htons(IP_DF
)) == 0)
496 return ip_do_fragment(sk
, skb
, output
);
498 if (unlikely(!skb
->ignore_df
||
499 (IPCB(skb
)->frag_max_size
&&
500 IPCB(skb
)->frag_max_size
> mtu
))) {
501 struct rtable
*rt
= skb_rtable(skb
);
502 struct net_device
*dev
= rt
->dst
.dev
;
504 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
505 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
511 return ip_do_fragment(sk
, skb
, output
);
515 * This IP datagram is too large to be sent in one piece. Break it up into
516 * smaller pieces (each of size equal to IP header plus
517 * a block of the data of the original IP data part) that will yet fit in a
518 * single device frame, and queue such a frame for sending.
521 int ip_do_fragment(struct sock
*sk
, struct sk_buff
*skb
,
522 int (*output
)(struct sock
*, struct sk_buff
*))
526 struct net_device
*dev
;
527 struct sk_buff
*skb2
;
528 unsigned int mtu
, hlen
, left
, len
, ll_rs
;
530 __be16 not_last_frag
;
531 struct rtable
*rt
= skb_rtable(skb
);
537 * Point into the IP datagram header.
542 mtu
= ip_skb_dst_mtu(skb
);
543 if (IPCB(skb
)->frag_max_size
&& IPCB(skb
)->frag_max_size
< mtu
)
544 mtu
= IPCB(skb
)->frag_max_size
;
547 * Setup starting values.
551 mtu
= mtu
- hlen
; /* Size of data space */
552 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
554 /* When frag_list is given, use it. First, check its validity:
555 * some transformers could create wrong frag_list or break existing
556 * one, it is not prohibited. In this case fall back to copying.
558 * LATER: this step can be merged to real generation of fragments,
559 * we can switch to copy when see the first bad fragment.
561 if (skb_has_frag_list(skb
)) {
562 struct sk_buff
*frag
, *frag2
;
563 int first_len
= skb_pagelen(skb
);
565 if (first_len
- hlen
> mtu
||
566 ((first_len
- hlen
) & 7) ||
567 ip_is_fragment(iph
) ||
571 skb_walk_frags(skb
, frag
) {
572 /* Correct geometry. */
573 if (frag
->len
> mtu
||
574 ((frag
->len
& 7) && frag
->next
) ||
575 skb_headroom(frag
) < hlen
)
576 goto slow_path_clean
;
578 /* Partially cloned skb? */
579 if (skb_shared(frag
))
580 goto slow_path_clean
;
585 frag
->destructor
= sock_wfree
;
587 skb
->truesize
-= frag
->truesize
;
590 /* Everything is OK. Generate! */
594 frag
= skb_shinfo(skb
)->frag_list
;
595 skb_frag_list_init(skb
);
596 skb
->data_len
= first_len
- skb_headlen(skb
);
597 skb
->len
= first_len
;
598 iph
->tot_len
= htons(first_len
);
599 iph
->frag_off
= htons(IP_MF
);
603 /* Prepare header of the next frame,
604 * before previous one went down. */
606 frag
->ip_summed
= CHECKSUM_NONE
;
607 skb_reset_transport_header(frag
);
608 __skb_push(frag
, hlen
);
609 skb_reset_network_header(frag
);
610 memcpy(skb_network_header(frag
), iph
, hlen
);
612 iph
->tot_len
= htons(frag
->len
);
613 ip_copy_metadata(frag
, skb
);
615 ip_options_fragment(frag
);
616 offset
+= skb
->len
- hlen
;
617 iph
->frag_off
= htons(offset
>>3);
619 iph
->frag_off
|= htons(IP_MF
);
620 /* Ready, complete checksum */
624 err
= output(sk
, skb
);
627 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
637 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
646 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
650 skb_walk_frags(skb
, frag2
) {
654 frag2
->destructor
= NULL
;
655 skb
->truesize
+= frag2
->truesize
;
660 /* for offloaded checksums cleanup checksum before fragmentation */
661 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) && skb_checksum_help(skb
))
665 left
= skb
->len
- hlen
; /* Space per frame */
666 ptr
= hlen
; /* Where to start from */
668 ll_rs
= LL_RESERVED_SPACE(rt
->dst
.dev
);
671 * Fragment the datagram.
674 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
675 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
678 * Keep copying data until we run out.
683 /* IF: it doesn't fit, use 'mtu' - the data space left */
686 /* IF: we are not sending up to and including the packet end
687 then align the next start on an eight byte boundary */
692 /* Allocate buffer */
693 skb2
= alloc_skb(len
+ hlen
+ ll_rs
, GFP_ATOMIC
);
700 * Set up data on packet
703 ip_copy_metadata(skb2
, skb
);
704 skb_reserve(skb2
, ll_rs
);
705 skb_put(skb2
, len
+ hlen
);
706 skb_reset_network_header(skb2
);
707 skb2
->transport_header
= skb2
->network_header
+ hlen
;
710 * Charge the memory for the fragment to any owner
715 skb_set_owner_w(skb2
, skb
->sk
);
718 * Copy the packet header into the new buffer.
721 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
724 * Copy a block of the IP datagram.
726 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
731 * Fill in the new header fields.
734 iph
->frag_off
= htons((offset
>> 3));
736 if (IPCB(skb
)->flags
& IPSKB_FRAG_PMTU
)
737 iph
->frag_off
|= htons(IP_DF
);
739 /* ANK: dirty, but effective trick. Upgrade options only if
740 * the segment to be fragmented was THE FIRST (otherwise,
741 * options are already fixed) and make it ONCE
742 * on the initial skb, so that all the following fragments
743 * will inherit fixed options.
746 ip_options_fragment(skb
);
749 * Added AC : If we are fragmenting a fragment that's not the
750 * last fragment then keep MF on each bit
752 if (left
> 0 || not_last_frag
)
753 iph
->frag_off
|= htons(IP_MF
);
758 * Put this fragment into the sending queue.
760 iph
->tot_len
= htons(len
+ hlen
);
764 err
= output(sk
, skb2
);
768 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
771 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
776 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
779 EXPORT_SYMBOL(ip_do_fragment
);
782 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
784 struct msghdr
*msg
= from
;
786 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
787 if (copy_from_iter(to
, len
, &msg
->msg_iter
) != len
)
791 if (csum_and_copy_from_iter(to
, len
, &csum
, &msg
->msg_iter
) != len
)
793 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
797 EXPORT_SYMBOL(ip_generic_getfrag
);
800 csum_page(struct page
*page
, int offset
, int copy
)
805 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
810 static inline int ip_ufo_append_data(struct sock
*sk
,
811 struct sk_buff_head
*queue
,
812 int getfrag(void *from
, char *to
, int offset
, int len
,
813 int odd
, struct sk_buff
*skb
),
814 void *from
, int length
, int hh_len
, int fragheaderlen
,
815 int transhdrlen
, int maxfraglen
, unsigned int flags
)
820 /* There is support for UDP fragmentation offload by network
821 * device, so create one single skb packet containing complete
824 skb
= skb_peek_tail(queue
);
826 skb
= sock_alloc_send_skb(sk
,
827 hh_len
+ fragheaderlen
+ transhdrlen
+ 20,
828 (flags
& MSG_DONTWAIT
), &err
);
833 /* reserve space for Hardware header */
834 skb_reserve(skb
, hh_len
);
836 /* create space for UDP/IP header */
837 skb_put(skb
, fragheaderlen
+ transhdrlen
);
839 /* initialize network header pointer */
840 skb_reset_network_header(skb
);
842 /* initialize protocol header pointer */
843 skb
->transport_header
= skb
->network_header
+ fragheaderlen
;
847 __skb_queue_tail(queue
, skb
);
848 } else if (skb_is_gso(skb
)) {
852 skb
->ip_summed
= CHECKSUM_PARTIAL
;
853 /* specify the length of each IP datagram fragment */
854 skb_shinfo(skb
)->gso_size
= maxfraglen
- fragheaderlen
;
855 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
858 return skb_append_datato_frags(sk
, skb
, getfrag
, from
,
859 (length
- transhdrlen
));
862 static int __ip_append_data(struct sock
*sk
,
864 struct sk_buff_head
*queue
,
865 struct inet_cork
*cork
,
866 struct page_frag
*pfrag
,
867 int getfrag(void *from
, char *to
, int offset
,
868 int len
, int odd
, struct sk_buff
*skb
),
869 void *from
, int length
, int transhdrlen
,
872 struct inet_sock
*inet
= inet_sk(sk
);
875 struct ip_options
*opt
= cork
->opt
;
882 unsigned int maxfraglen
, fragheaderlen
, maxnonfragsize
;
883 int csummode
= CHECKSUM_NONE
;
884 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
887 skb
= skb_peek_tail(queue
);
889 exthdrlen
= !skb
? rt
->dst
.header_len
: 0;
890 mtu
= cork
->fragsize
;
891 if (cork
->tx_flags
& SKBTX_ANY_SW_TSTAMP
&&
892 sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)
893 tskey
= sk
->sk_tskey
++;
895 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
897 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
898 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
899 maxnonfragsize
= ip_sk_ignore_df(sk
) ? 0xFFFF : mtu
;
901 if (cork
->length
+ length
> maxnonfragsize
- fragheaderlen
) {
902 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
903 mtu
- (opt
? opt
->optlen
: 0));
908 * transhdrlen > 0 means that this is the first fragment and we wish
909 * it won't be fragmented in the future.
912 length
+ fragheaderlen
<= mtu
&&
913 rt
->dst
.dev
->features
& NETIF_F_V4_CSUM
&&
915 csummode
= CHECKSUM_PARTIAL
;
917 cork
->length
+= length
;
918 if (((length
> mtu
) || (skb
&& skb_is_gso(skb
))) &&
919 (sk
->sk_protocol
== IPPROTO_UDP
) &&
920 (rt
->dst
.dev
->features
& NETIF_F_UFO
) && !rt
->dst
.header_len
&&
921 (sk
->sk_type
== SOCK_DGRAM
)) {
922 err
= ip_ufo_append_data(sk
, queue
, getfrag
, from
, length
,
923 hh_len
, fragheaderlen
, transhdrlen
,
930 /* So, what's going on in the loop below?
932 * We use calculated fragment length to generate chained skb,
933 * each of segments is IP fragment ready for sending to network after
934 * adding appropriate IP header.
941 /* Check if the remaining data fits into current packet. */
942 copy
= mtu
- skb
->len
;
944 copy
= maxfraglen
- skb
->len
;
947 unsigned int datalen
;
948 unsigned int fraglen
;
949 unsigned int fraggap
;
950 unsigned int alloclen
;
951 struct sk_buff
*skb_prev
;
955 fraggap
= skb_prev
->len
- maxfraglen
;
960 * If remaining data exceeds the mtu,
961 * we know we need more fragment(s).
963 datalen
= length
+ fraggap
;
964 if (datalen
> mtu
- fragheaderlen
)
965 datalen
= maxfraglen
- fragheaderlen
;
966 fraglen
= datalen
+ fragheaderlen
;
968 if ((flags
& MSG_MORE
) &&
969 !(rt
->dst
.dev
->features
&NETIF_F_SG
))
974 alloclen
+= exthdrlen
;
976 /* The last fragment gets additional space at tail.
977 * Note, with MSG_MORE we overallocate on fragments,
978 * because we have no idea what fragment will be
981 if (datalen
== length
+ fraggap
)
982 alloclen
+= rt
->dst
.trailer_len
;
985 skb
= sock_alloc_send_skb(sk
,
986 alloclen
+ hh_len
+ 15,
987 (flags
& MSG_DONTWAIT
), &err
);
990 if (atomic_read(&sk
->sk_wmem_alloc
) <=
992 skb
= sock_wmalloc(sk
,
993 alloclen
+ hh_len
+ 15, 1,
1002 * Fill in the control structures
1004 skb
->ip_summed
= csummode
;
1006 skb_reserve(skb
, hh_len
);
1008 /* only the initial fragment is time stamped */
1009 skb_shinfo(skb
)->tx_flags
= cork
->tx_flags
;
1011 skb_shinfo(skb
)->tskey
= tskey
;
1015 * Find where to start putting bytes.
1017 data
= skb_put(skb
, fraglen
+ exthdrlen
);
1018 skb_set_network_header(skb
, exthdrlen
);
1019 skb
->transport_header
= (skb
->network_header
+
1021 data
+= fragheaderlen
+ exthdrlen
;
1024 skb
->csum
= skb_copy_and_csum_bits(
1025 skb_prev
, maxfraglen
,
1026 data
+ transhdrlen
, fraggap
, 0);
1027 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1030 pskb_trim_unique(skb_prev
, maxfraglen
);
1033 copy
= datalen
- transhdrlen
- fraggap
;
1034 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
1041 length
-= datalen
- fraggap
;
1044 csummode
= CHECKSUM_NONE
;
1047 * Put the packet on the pending queue.
1049 __skb_queue_tail(queue
, skb
);
1056 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
)) {
1060 if (getfrag(from
, skb_put(skb
, copy
),
1061 offset
, copy
, off
, skb
) < 0) {
1062 __skb_trim(skb
, off
);
1067 int i
= skb_shinfo(skb
)->nr_frags
;
1070 if (!sk_page_frag_refill(sk
, pfrag
))
1073 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1076 if (i
== MAX_SKB_FRAGS
)
1079 __skb_fill_page_desc(skb
, i
, pfrag
->page
,
1081 skb_shinfo(skb
)->nr_frags
= ++i
;
1082 get_page(pfrag
->page
);
1084 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1086 page_address(pfrag
->page
) + pfrag
->offset
,
1087 offset
, copy
, skb
->len
, skb
) < 0)
1090 pfrag
->offset
+= copy
;
1091 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1093 skb
->data_len
+= copy
;
1094 skb
->truesize
+= copy
;
1095 atomic_add(copy
, &sk
->sk_wmem_alloc
);
1106 cork
->length
-= length
;
1107 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1111 static int ip_setup_cork(struct sock
*sk
, struct inet_cork
*cork
,
1112 struct ipcm_cookie
*ipc
, struct rtable
**rtp
)
1114 struct ip_options_rcu
*opt
;
1118 * setup for corking.
1123 cork
->opt
= kmalloc(sizeof(struct ip_options
) + 40,
1125 if (unlikely(!cork
->opt
))
1128 memcpy(cork
->opt
, &opt
->opt
, sizeof(struct ip_options
) + opt
->opt
.optlen
);
1129 cork
->flags
|= IPCORK_OPT
;
1130 cork
->addr
= ipc
->addr
;
1136 * We steal reference to this route, caller should not release it
1139 cork
->fragsize
= ip_sk_use_pmtu(sk
) ?
1140 dst_mtu(&rt
->dst
) : rt
->dst
.dev
->mtu
;
1141 cork
->dst
= &rt
->dst
;
1143 cork
->ttl
= ipc
->ttl
;
1144 cork
->tos
= ipc
->tos
;
1145 cork
->priority
= ipc
->priority
;
1146 cork
->tx_flags
= ipc
->tx_flags
;
1152 * ip_append_data() and ip_append_page() can make one large IP datagram
1153 * from many pieces of data. Each pieces will be holded on the socket
1154 * until ip_push_pending_frames() is called. Each piece can be a page
1157 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1158 * this interface potentially.
1160 * LATER: length must be adjusted by pad at tail, when it is required.
1162 int ip_append_data(struct sock
*sk
, struct flowi4
*fl4
,
1163 int getfrag(void *from
, char *to
, int offset
, int len
,
1164 int odd
, struct sk_buff
*skb
),
1165 void *from
, int length
, int transhdrlen
,
1166 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1169 struct inet_sock
*inet
= inet_sk(sk
);
1172 if (flags
&MSG_PROBE
)
1175 if (skb_queue_empty(&sk
->sk_write_queue
)) {
1176 err
= ip_setup_cork(sk
, &inet
->cork
.base
, ipc
, rtp
);
1183 return __ip_append_data(sk
, fl4
, &sk
->sk_write_queue
, &inet
->cork
.base
,
1184 sk_page_frag(sk
), getfrag
,
1185 from
, length
, transhdrlen
, flags
);
1188 ssize_t
ip_append_page(struct sock
*sk
, struct flowi4
*fl4
, struct page
*page
,
1189 int offset
, size_t size
, int flags
)
1191 struct inet_sock
*inet
= inet_sk(sk
);
1192 struct sk_buff
*skb
;
1194 struct ip_options
*opt
= NULL
;
1195 struct inet_cork
*cork
;
1200 unsigned int maxfraglen
, fragheaderlen
, fraggap
, maxnonfragsize
;
1205 if (flags
&MSG_PROBE
)
1208 if (skb_queue_empty(&sk
->sk_write_queue
))
1211 cork
= &inet
->cork
.base
;
1212 rt
= (struct rtable
*)cork
->dst
;
1213 if (cork
->flags
& IPCORK_OPT
)
1216 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
))
1219 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
1220 mtu
= cork
->fragsize
;
1222 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1223 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1224 maxnonfragsize
= ip_sk_ignore_df(sk
) ? 0xFFFF : mtu
;
1226 if (cork
->length
+ size
> maxnonfragsize
- fragheaderlen
) {
1227 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
1228 mtu
- (opt
? opt
->optlen
: 0));
1232 skb
= skb_peek_tail(&sk
->sk_write_queue
);
1236 cork
->length
+= size
;
1237 if ((size
+ skb
->len
> mtu
) &&
1238 (sk
->sk_protocol
== IPPROTO_UDP
) &&
1239 (rt
->dst
.dev
->features
& NETIF_F_UFO
)) {
1240 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
1241 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
1245 if (skb_is_gso(skb
)) {
1249 /* Check if the remaining data fits into current packet. */
1250 len
= mtu
- skb
->len
;
1252 len
= maxfraglen
- skb
->len
;
1255 struct sk_buff
*skb_prev
;
1259 fraggap
= skb_prev
->len
- maxfraglen
;
1261 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1262 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1263 if (unlikely(!skb
)) {
1269 * Fill in the control structures
1271 skb
->ip_summed
= CHECKSUM_NONE
;
1273 skb_reserve(skb
, hh_len
);
1276 * Find where to start putting bytes.
1278 skb_put(skb
, fragheaderlen
+ fraggap
);
1279 skb_reset_network_header(skb
);
1280 skb
->transport_header
= (skb
->network_header
+
1283 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1285 skb_transport_header(skb
),
1287 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1289 pskb_trim_unique(skb_prev
, maxfraglen
);
1293 * Put the packet on the pending queue.
1295 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1302 if (skb_append_pagefrags(skb
, page
, offset
, len
)) {
1307 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1309 csum
= csum_page(page
, offset
, len
);
1310 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1314 skb
->data_len
+= len
;
1315 skb
->truesize
+= len
;
1316 atomic_add(len
, &sk
->sk_wmem_alloc
);
1323 cork
->length
-= size
;
1324 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1328 static void ip_cork_release(struct inet_cork
*cork
)
1330 cork
->flags
&= ~IPCORK_OPT
;
1333 dst_release(cork
->dst
);
1338 * Combined all pending IP fragments on the socket as one IP datagram
1339 * and push them out.
1341 struct sk_buff
*__ip_make_skb(struct sock
*sk
,
1343 struct sk_buff_head
*queue
,
1344 struct inet_cork
*cork
)
1346 struct sk_buff
*skb
, *tmp_skb
;
1347 struct sk_buff
**tail_skb
;
1348 struct inet_sock
*inet
= inet_sk(sk
);
1349 struct net
*net
= sock_net(sk
);
1350 struct ip_options
*opt
= NULL
;
1351 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
1356 skb
= __skb_dequeue(queue
);
1359 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1361 /* move skb->data to ip header from ext header */
1362 if (skb
->data
< skb_network_header(skb
))
1363 __skb_pull(skb
, skb_network_offset(skb
));
1364 while ((tmp_skb
= __skb_dequeue(queue
)) != NULL
) {
1365 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1366 *tail_skb
= tmp_skb
;
1367 tail_skb
= &(tmp_skb
->next
);
1368 skb
->len
+= tmp_skb
->len
;
1369 skb
->data_len
+= tmp_skb
->len
;
1370 skb
->truesize
+= tmp_skb
->truesize
;
1371 tmp_skb
->destructor
= NULL
;
1375 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1376 * to fragment the frame generated here. No matter, what transforms
1377 * how transforms change size of the packet, it will come out.
1379 skb
->ignore_df
= ip_sk_ignore_df(sk
);
1381 /* DF bit is set when we want to see DF on outgoing frames.
1382 * If ignore_df is set too, we still allow to fragment this frame
1384 if (inet
->pmtudisc
== IP_PMTUDISC_DO
||
1385 inet
->pmtudisc
== IP_PMTUDISC_PROBE
||
1386 (skb
->len
<= dst_mtu(&rt
->dst
) &&
1387 ip_dont_fragment(sk
, &rt
->dst
)))
1390 if (cork
->flags
& IPCORK_OPT
)
1395 else if (rt
->rt_type
== RTN_MULTICAST
)
1398 ttl
= ip_select_ttl(inet
, &rt
->dst
);
1403 iph
->tos
= (cork
->tos
!= -1) ? cork
->tos
: inet
->tos
;
1406 iph
->protocol
= sk
->sk_protocol
;
1407 ip_copy_addrs(iph
, fl4
);
1408 ip_select_ident(net
, skb
, sk
);
1411 iph
->ihl
+= opt
->optlen
>>2;
1412 ip_options_build(skb
, opt
, cork
->addr
, rt
, 0);
1415 skb
->priority
= (cork
->tos
!= -1) ? cork
->priority
: sk
->sk_priority
;
1416 skb
->mark
= sk
->sk_mark
;
1418 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1422 skb_dst_set(skb
, &rt
->dst
);
1424 if (iph
->protocol
== IPPROTO_ICMP
)
1425 icmp_out_count(net
, ((struct icmphdr
*)
1426 skb_transport_header(skb
))->type
);
1428 ip_cork_release(cork
);
1433 int ip_send_skb(struct net
*net
, struct sk_buff
*skb
)
1437 err
= ip_local_out(skb
);
1440 err
= net_xmit_errno(err
);
1442 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1448 int ip_push_pending_frames(struct sock
*sk
, struct flowi4
*fl4
)
1450 struct sk_buff
*skb
;
1452 skb
= ip_finish_skb(sk
, fl4
);
1456 /* Netfilter gets whole the not fragmented skb. */
1457 return ip_send_skb(sock_net(sk
), skb
);
1461 * Throw away all pending data on the socket.
1463 static void __ip_flush_pending_frames(struct sock
*sk
,
1464 struct sk_buff_head
*queue
,
1465 struct inet_cork
*cork
)
1467 struct sk_buff
*skb
;
1469 while ((skb
= __skb_dequeue_tail(queue
)) != NULL
)
1472 ip_cork_release(cork
);
1475 void ip_flush_pending_frames(struct sock
*sk
)
1477 __ip_flush_pending_frames(sk
, &sk
->sk_write_queue
, &inet_sk(sk
)->cork
.base
);
1480 struct sk_buff
*ip_make_skb(struct sock
*sk
,
1482 int getfrag(void *from
, char *to
, int offset
,
1483 int len
, int odd
, struct sk_buff
*skb
),
1484 void *from
, int length
, int transhdrlen
,
1485 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1488 struct inet_cork cork
;
1489 struct sk_buff_head queue
;
1492 if (flags
& MSG_PROBE
)
1495 __skb_queue_head_init(&queue
);
1500 err
= ip_setup_cork(sk
, &cork
, ipc
, rtp
);
1502 return ERR_PTR(err
);
1504 err
= __ip_append_data(sk
, fl4
, &queue
, &cork
,
1505 ¤t
->task_frag
, getfrag
,
1506 from
, length
, transhdrlen
, flags
);
1508 __ip_flush_pending_frames(sk
, &queue
, &cork
);
1509 return ERR_PTR(err
);
1512 return __ip_make_skb(sk
, fl4
, &queue
, &cork
);
1516 * Fetch data from kernel space and fill in checksum if needed.
1518 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1519 int len
, int odd
, struct sk_buff
*skb
)
1523 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1524 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1529 * Generic function to send a packet as reply to another packet.
1530 * Used to send some TCP resets/acks so far.
1532 void ip_send_unicast_reply(struct sock
*sk
, struct sk_buff
*skb
,
1533 const struct ip_options
*sopt
,
1534 __be32 daddr
, __be32 saddr
,
1535 const struct ip_reply_arg
*arg
,
1538 struct ip_options_data replyopts
;
1539 struct ipcm_cookie ipc
;
1541 struct rtable
*rt
= skb_rtable(skb
);
1542 struct net
*net
= sock_net(sk
);
1543 struct sk_buff
*nskb
;
1547 if (__ip_options_echo(&replyopts
.opt
.opt
, skb
, sopt
))
1556 if (replyopts
.opt
.opt
.optlen
) {
1557 ipc
.opt
= &replyopts
.opt
;
1559 if (replyopts
.opt
.opt
.srr
)
1560 daddr
= replyopts
.opt
.opt
.faddr
;
1563 oif
= arg
->bound_dev_if
;
1564 if (!oif
&& netif_index_is_vrf(net
, skb
->skb_iif
))
1567 flowi4_init_output(&fl4
, oif
,
1568 IP4_REPLY_MARK(net
, skb
->mark
),
1570 RT_SCOPE_UNIVERSE
, ip_hdr(skb
)->protocol
,
1571 ip_reply_arg_flowi_flags(arg
),
1573 tcp_hdr(skb
)->source
, tcp_hdr(skb
)->dest
);
1574 security_skb_classify_flow(skb
, flowi4_to_flowi(&fl4
));
1575 rt
= ip_route_output_key(net
, &fl4
);
1579 inet_sk(sk
)->tos
= arg
->tos
;
1581 sk
->sk_priority
= skb
->priority
;
1582 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1583 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1584 sk
->sk_sndbuf
= sysctl_wmem_default
;
1585 err
= ip_append_data(sk
, &fl4
, ip_reply_glue_bits
, arg
->iov
->iov_base
,
1586 len
, 0, &ipc
, &rt
, MSG_DONTWAIT
);
1587 if (unlikely(err
)) {
1588 ip_flush_pending_frames(sk
);
1592 nskb
= skb_peek(&sk
->sk_write_queue
);
1594 if (arg
->csumoffset
>= 0)
1595 *((__sum16
*)skb_transport_header(nskb
) +
1596 arg
->csumoffset
) = csum_fold(csum_add(nskb
->csum
,
1598 nskb
->ip_summed
= CHECKSUM_NONE
;
1599 skb_set_queue_mapping(nskb
, skb_get_queue_mapping(skb
));
1600 ip_push_pending_frames(sk
, &fl4
);
1606 void __init
ip_init(void)
1611 #if defined(CONFIG_IP_MULTICAST)