asus-laptop: Do not call HWRS on init
[linux/fpc-iii.git] / mm / memory.c
blob4f2add1b2acf055c05b4fb23d0a2c5ba6eabcccc
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
138 task->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
165 long val = 0;
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val = atomic_long_read(&mm->rss_stat.count[member]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 __sync_task_rss_stat(task, mm);
185 #else /* SPLIT_RSS_COUNTING */
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct *task)
194 #endif /* SPLIT_RSS_COUNTING */
196 #ifdef HAVE_GENERIC_MMU_GATHER
198 static int tlb_next_batch(struct mmu_gather *tlb)
200 struct mmu_gather_batch *batch;
202 batch = tlb->active;
203 if (batch->next) {
204 tlb->active = batch->next;
205 return 1;
208 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
209 return 0;
211 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
212 if (!batch)
213 return 0;
215 tlb->batch_count++;
216 batch->next = NULL;
217 batch->nr = 0;
218 batch->max = MAX_GATHER_BATCH;
220 tlb->active->next = batch;
221 tlb->active = batch;
223 return 1;
226 /* tlb_gather_mmu
227 * Called to initialize an (on-stack) mmu_gather structure for page-table
228 * tear-down from @mm. The @fullmm argument is used when @mm is without
229 * users and we're going to destroy the full address space (exit/execve).
231 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
233 tlb->mm = mm;
235 tlb->fullmm = fullmm;
236 tlb->need_flush = 0;
237 tlb->fast_mode = (num_possible_cpus() == 1);
238 tlb->local.next = NULL;
239 tlb->local.nr = 0;
240 tlb->local.max = ARRAY_SIZE(tlb->__pages);
241 tlb->active = &tlb->local;
242 tlb->batch_count = 0;
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245 tlb->batch = NULL;
246 #endif
249 void tlb_flush_mmu(struct mmu_gather *tlb)
251 struct mmu_gather_batch *batch;
253 if (!tlb->need_flush)
254 return;
255 tlb->need_flush = 0;
256 tlb_flush(tlb);
257 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
258 tlb_table_flush(tlb);
259 #endif
261 if (tlb_fast_mode(tlb))
262 return;
264 for (batch = &tlb->local; batch; batch = batch->next) {
265 free_pages_and_swap_cache(batch->pages, batch->nr);
266 batch->nr = 0;
268 tlb->active = &tlb->local;
271 /* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
275 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
277 struct mmu_gather_batch *batch, *next;
279 tlb_flush_mmu(tlb);
281 /* keep the page table cache within bounds */
282 check_pgt_cache();
284 for (batch = tlb->local.next; batch; batch = next) {
285 next = batch->next;
286 free_pages((unsigned long)batch, 0);
288 tlb->local.next = NULL;
291 /* __tlb_remove_page
292 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293 * handling the additional races in SMP caused by other CPUs caching valid
294 * mappings in their TLBs. Returns the number of free page slots left.
295 * When out of page slots we must call tlb_flush_mmu().
297 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
299 struct mmu_gather_batch *batch;
301 tlb->need_flush = 1;
303 if (tlb_fast_mode(tlb)) {
304 free_page_and_swap_cache(page);
305 return 1; /* avoid calling tlb_flush_mmu() */
308 batch = tlb->active;
309 batch->pages[batch->nr++] = page;
310 if (batch->nr == batch->max) {
311 if (!tlb_next_batch(tlb))
312 return 0;
313 batch = tlb->active;
315 VM_BUG_ON(batch->nr > batch->max);
317 return batch->max - batch->nr;
320 #endif /* HAVE_GENERIC_MMU_GATHER */
322 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
325 * See the comment near struct mmu_table_batch.
328 static void tlb_remove_table_smp_sync(void *arg)
330 /* Simply deliver the interrupt */
333 static void tlb_remove_table_one(void *table)
336 * This isn't an RCU grace period and hence the page-tables cannot be
337 * assumed to be actually RCU-freed.
339 * It is however sufficient for software page-table walkers that rely on
340 * IRQ disabling. See the comment near struct mmu_table_batch.
342 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
343 __tlb_remove_table(table);
346 static void tlb_remove_table_rcu(struct rcu_head *head)
348 struct mmu_table_batch *batch;
349 int i;
351 batch = container_of(head, struct mmu_table_batch, rcu);
353 for (i = 0; i < batch->nr; i++)
354 __tlb_remove_table(batch->tables[i]);
356 free_page((unsigned long)batch);
359 void tlb_table_flush(struct mmu_gather *tlb)
361 struct mmu_table_batch **batch = &tlb->batch;
363 if (*batch) {
364 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
365 *batch = NULL;
369 void tlb_remove_table(struct mmu_gather *tlb, void *table)
371 struct mmu_table_batch **batch = &tlb->batch;
373 tlb->need_flush = 1;
376 * When there's less then two users of this mm there cannot be a
377 * concurrent page-table walk.
379 if (atomic_read(&tlb->mm->mm_users) < 2) {
380 __tlb_remove_table(table);
381 return;
384 if (*batch == NULL) {
385 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
386 if (*batch == NULL) {
387 tlb_remove_table_one(table);
388 return;
390 (*batch)->nr = 0;
392 (*batch)->tables[(*batch)->nr++] = table;
393 if ((*batch)->nr == MAX_TABLE_BATCH)
394 tlb_table_flush(tlb);
397 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
400 * If a p?d_bad entry is found while walking page tables, report
401 * the error, before resetting entry to p?d_none. Usually (but
402 * very seldom) called out from the p?d_none_or_clear_bad macros.
405 void pgd_clear_bad(pgd_t *pgd)
407 pgd_ERROR(*pgd);
408 pgd_clear(pgd);
411 void pud_clear_bad(pud_t *pud)
413 pud_ERROR(*pud);
414 pud_clear(pud);
417 void pmd_clear_bad(pmd_t *pmd)
419 pmd_ERROR(*pmd);
420 pmd_clear(pmd);
424 * Note: this doesn't free the actual pages themselves. That
425 * has been handled earlier when unmapping all the memory regions.
427 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
428 unsigned long addr)
430 pgtable_t token = pmd_pgtable(*pmd);
431 pmd_clear(pmd);
432 pte_free_tlb(tlb, token, addr);
433 tlb->mm->nr_ptes--;
436 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
437 unsigned long addr, unsigned long end,
438 unsigned long floor, unsigned long ceiling)
440 pmd_t *pmd;
441 unsigned long next;
442 unsigned long start;
444 start = addr;
445 pmd = pmd_offset(pud, addr);
446 do {
447 next = pmd_addr_end(addr, end);
448 if (pmd_none_or_clear_bad(pmd))
449 continue;
450 free_pte_range(tlb, pmd, addr);
451 } while (pmd++, addr = next, addr != end);
453 start &= PUD_MASK;
454 if (start < floor)
455 return;
456 if (ceiling) {
457 ceiling &= PUD_MASK;
458 if (!ceiling)
459 return;
461 if (end - 1 > ceiling - 1)
462 return;
464 pmd = pmd_offset(pud, start);
465 pud_clear(pud);
466 pmd_free_tlb(tlb, pmd, start);
469 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
470 unsigned long addr, unsigned long end,
471 unsigned long floor, unsigned long ceiling)
473 pud_t *pud;
474 unsigned long next;
475 unsigned long start;
477 start = addr;
478 pud = pud_offset(pgd, addr);
479 do {
480 next = pud_addr_end(addr, end);
481 if (pud_none_or_clear_bad(pud))
482 continue;
483 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
484 } while (pud++, addr = next, addr != end);
486 start &= PGDIR_MASK;
487 if (start < floor)
488 return;
489 if (ceiling) {
490 ceiling &= PGDIR_MASK;
491 if (!ceiling)
492 return;
494 if (end - 1 > ceiling - 1)
495 return;
497 pud = pud_offset(pgd, start);
498 pgd_clear(pgd);
499 pud_free_tlb(tlb, pud, start);
503 * This function frees user-level page tables of a process.
505 * Must be called with pagetable lock held.
507 void free_pgd_range(struct mmu_gather *tlb,
508 unsigned long addr, unsigned long end,
509 unsigned long floor, unsigned long ceiling)
511 pgd_t *pgd;
512 unsigned long next;
515 * The next few lines have given us lots of grief...
517 * Why are we testing PMD* at this top level? Because often
518 * there will be no work to do at all, and we'd prefer not to
519 * go all the way down to the bottom just to discover that.
521 * Why all these "- 1"s? Because 0 represents both the bottom
522 * of the address space and the top of it (using -1 for the
523 * top wouldn't help much: the masks would do the wrong thing).
524 * The rule is that addr 0 and floor 0 refer to the bottom of
525 * the address space, but end 0 and ceiling 0 refer to the top
526 * Comparisons need to use "end - 1" and "ceiling - 1" (though
527 * that end 0 case should be mythical).
529 * Wherever addr is brought up or ceiling brought down, we must
530 * be careful to reject "the opposite 0" before it confuses the
531 * subsequent tests. But what about where end is brought down
532 * by PMD_SIZE below? no, end can't go down to 0 there.
534 * Whereas we round start (addr) and ceiling down, by different
535 * masks at different levels, in order to test whether a table
536 * now has no other vmas using it, so can be freed, we don't
537 * bother to round floor or end up - the tests don't need that.
540 addr &= PMD_MASK;
541 if (addr < floor) {
542 addr += PMD_SIZE;
543 if (!addr)
544 return;
546 if (ceiling) {
547 ceiling &= PMD_MASK;
548 if (!ceiling)
549 return;
551 if (end - 1 > ceiling - 1)
552 end -= PMD_SIZE;
553 if (addr > end - 1)
554 return;
556 pgd = pgd_offset(tlb->mm, addr);
557 do {
558 next = pgd_addr_end(addr, end);
559 if (pgd_none_or_clear_bad(pgd))
560 continue;
561 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
562 } while (pgd++, addr = next, addr != end);
565 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
566 unsigned long floor, unsigned long ceiling)
568 while (vma) {
569 struct vm_area_struct *next = vma->vm_next;
570 unsigned long addr = vma->vm_start;
573 * Hide vma from rmap and truncate_pagecache before freeing
574 * pgtables
576 unlink_anon_vmas(vma);
577 unlink_file_vma(vma);
579 if (is_vm_hugetlb_page(vma)) {
580 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
581 floor, next? next->vm_start: ceiling);
582 } else {
584 * Optimization: gather nearby vmas into one call down
586 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
587 && !is_vm_hugetlb_page(next)) {
588 vma = next;
589 next = vma->vm_next;
590 unlink_anon_vmas(vma);
591 unlink_file_vma(vma);
593 free_pgd_range(tlb, addr, vma->vm_end,
594 floor, next? next->vm_start: ceiling);
596 vma = next;
600 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
601 pmd_t *pmd, unsigned long address)
603 pgtable_t new = pte_alloc_one(mm, address);
604 int wait_split_huge_page;
605 if (!new)
606 return -ENOMEM;
609 * Ensure all pte setup (eg. pte page lock and page clearing) are
610 * visible before the pte is made visible to other CPUs by being
611 * put into page tables.
613 * The other side of the story is the pointer chasing in the page
614 * table walking code (when walking the page table without locking;
615 * ie. most of the time). Fortunately, these data accesses consist
616 * of a chain of data-dependent loads, meaning most CPUs (alpha
617 * being the notable exception) will already guarantee loads are
618 * seen in-order. See the alpha page table accessors for the
619 * smp_read_barrier_depends() barriers in page table walking code.
621 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
623 spin_lock(&mm->page_table_lock);
624 wait_split_huge_page = 0;
625 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
626 mm->nr_ptes++;
627 pmd_populate(mm, pmd, new);
628 new = NULL;
629 } else if (unlikely(pmd_trans_splitting(*pmd)))
630 wait_split_huge_page = 1;
631 spin_unlock(&mm->page_table_lock);
632 if (new)
633 pte_free(mm, new);
634 if (wait_split_huge_page)
635 wait_split_huge_page(vma->anon_vma, pmd);
636 return 0;
639 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
641 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
642 if (!new)
643 return -ENOMEM;
645 smp_wmb(); /* See comment in __pte_alloc */
647 spin_lock(&init_mm.page_table_lock);
648 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
649 pmd_populate_kernel(&init_mm, pmd, new);
650 new = NULL;
651 } else
652 VM_BUG_ON(pmd_trans_splitting(*pmd));
653 spin_unlock(&init_mm.page_table_lock);
654 if (new)
655 pte_free_kernel(&init_mm, new);
656 return 0;
659 static inline void init_rss_vec(int *rss)
661 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
664 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
666 int i;
668 if (current->mm == mm)
669 sync_mm_rss(current, mm);
670 for (i = 0; i < NR_MM_COUNTERS; i++)
671 if (rss[i])
672 add_mm_counter(mm, i, rss[i]);
676 * This function is called to print an error when a bad pte
677 * is found. For example, we might have a PFN-mapped pte in
678 * a region that doesn't allow it.
680 * The calling function must still handle the error.
682 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
683 pte_t pte, struct page *page)
685 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
686 pud_t *pud = pud_offset(pgd, addr);
687 pmd_t *pmd = pmd_offset(pud, addr);
688 struct address_space *mapping;
689 pgoff_t index;
690 static unsigned long resume;
691 static unsigned long nr_shown;
692 static unsigned long nr_unshown;
695 * Allow a burst of 60 reports, then keep quiet for that minute;
696 * or allow a steady drip of one report per second.
698 if (nr_shown == 60) {
699 if (time_before(jiffies, resume)) {
700 nr_unshown++;
701 return;
703 if (nr_unshown) {
704 printk(KERN_ALERT
705 "BUG: Bad page map: %lu messages suppressed\n",
706 nr_unshown);
707 nr_unshown = 0;
709 nr_shown = 0;
711 if (nr_shown++ == 0)
712 resume = jiffies + 60 * HZ;
714 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
715 index = linear_page_index(vma, addr);
717 printk(KERN_ALERT
718 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
719 current->comm,
720 (long long)pte_val(pte), (long long)pmd_val(*pmd));
721 if (page)
722 dump_page(page);
723 printk(KERN_ALERT
724 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
725 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
727 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
729 if (vma->vm_ops)
730 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
731 (unsigned long)vma->vm_ops->fault);
732 if (vma->vm_file && vma->vm_file->f_op)
733 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
734 (unsigned long)vma->vm_file->f_op->mmap);
735 dump_stack();
736 add_taint(TAINT_BAD_PAGE);
739 static inline int is_cow_mapping(vm_flags_t flags)
741 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
744 #ifndef is_zero_pfn
745 static inline int is_zero_pfn(unsigned long pfn)
747 return pfn == zero_pfn;
749 #endif
751 #ifndef my_zero_pfn
752 static inline unsigned long my_zero_pfn(unsigned long addr)
754 return zero_pfn;
756 #endif
759 * vm_normal_page -- This function gets the "struct page" associated with a pte.
761 * "Special" mappings do not wish to be associated with a "struct page" (either
762 * it doesn't exist, or it exists but they don't want to touch it). In this
763 * case, NULL is returned here. "Normal" mappings do have a struct page.
765 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
766 * pte bit, in which case this function is trivial. Secondly, an architecture
767 * may not have a spare pte bit, which requires a more complicated scheme,
768 * described below.
770 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
771 * special mapping (even if there are underlying and valid "struct pages").
772 * COWed pages of a VM_PFNMAP are always normal.
774 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
775 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
776 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
777 * mapping will always honor the rule
779 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
781 * And for normal mappings this is false.
783 * This restricts such mappings to be a linear translation from virtual address
784 * to pfn. To get around this restriction, we allow arbitrary mappings so long
785 * as the vma is not a COW mapping; in that case, we know that all ptes are
786 * special (because none can have been COWed).
789 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
791 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
792 * page" backing, however the difference is that _all_ pages with a struct
793 * page (that is, those where pfn_valid is true) are refcounted and considered
794 * normal pages by the VM. The disadvantage is that pages are refcounted
795 * (which can be slower and simply not an option for some PFNMAP users). The
796 * advantage is that we don't have to follow the strict linearity rule of
797 * PFNMAP mappings in order to support COWable mappings.
800 #ifdef __HAVE_ARCH_PTE_SPECIAL
801 # define HAVE_PTE_SPECIAL 1
802 #else
803 # define HAVE_PTE_SPECIAL 0
804 #endif
805 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
806 pte_t pte)
808 unsigned long pfn = pte_pfn(pte);
810 if (HAVE_PTE_SPECIAL) {
811 if (likely(!pte_special(pte)))
812 goto check_pfn;
813 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
814 return NULL;
815 if (!is_zero_pfn(pfn))
816 print_bad_pte(vma, addr, pte, NULL);
817 return NULL;
820 /* !HAVE_PTE_SPECIAL case follows: */
822 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
823 if (vma->vm_flags & VM_MIXEDMAP) {
824 if (!pfn_valid(pfn))
825 return NULL;
826 goto out;
827 } else {
828 unsigned long off;
829 off = (addr - vma->vm_start) >> PAGE_SHIFT;
830 if (pfn == vma->vm_pgoff + off)
831 return NULL;
832 if (!is_cow_mapping(vma->vm_flags))
833 return NULL;
837 if (is_zero_pfn(pfn))
838 return NULL;
839 check_pfn:
840 if (unlikely(pfn > highest_memmap_pfn)) {
841 print_bad_pte(vma, addr, pte, NULL);
842 return NULL;
846 * NOTE! We still have PageReserved() pages in the page tables.
847 * eg. VDSO mappings can cause them to exist.
849 out:
850 return pfn_to_page(pfn);
854 * copy one vm_area from one task to the other. Assumes the page tables
855 * already present in the new task to be cleared in the whole range
856 * covered by this vma.
859 static inline unsigned long
860 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
861 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
862 unsigned long addr, int *rss)
864 unsigned long vm_flags = vma->vm_flags;
865 pte_t pte = *src_pte;
866 struct page *page;
868 /* pte contains position in swap or file, so copy. */
869 if (unlikely(!pte_present(pte))) {
870 if (!pte_file(pte)) {
871 swp_entry_t entry = pte_to_swp_entry(pte);
873 if (swap_duplicate(entry) < 0)
874 return entry.val;
876 /* make sure dst_mm is on swapoff's mmlist. */
877 if (unlikely(list_empty(&dst_mm->mmlist))) {
878 spin_lock(&mmlist_lock);
879 if (list_empty(&dst_mm->mmlist))
880 list_add(&dst_mm->mmlist,
881 &src_mm->mmlist);
882 spin_unlock(&mmlist_lock);
884 if (likely(!non_swap_entry(entry)))
885 rss[MM_SWAPENTS]++;
886 else if (is_write_migration_entry(entry) &&
887 is_cow_mapping(vm_flags)) {
889 * COW mappings require pages in both parent
890 * and child to be set to read.
892 make_migration_entry_read(&entry);
893 pte = swp_entry_to_pte(entry);
894 set_pte_at(src_mm, addr, src_pte, pte);
897 goto out_set_pte;
901 * If it's a COW mapping, write protect it both
902 * in the parent and the child
904 if (is_cow_mapping(vm_flags)) {
905 ptep_set_wrprotect(src_mm, addr, src_pte);
906 pte = pte_wrprotect(pte);
910 * If it's a shared mapping, mark it clean in
911 * the child
913 if (vm_flags & VM_SHARED)
914 pte = pte_mkclean(pte);
915 pte = pte_mkold(pte);
917 page = vm_normal_page(vma, addr, pte);
918 if (page) {
919 get_page(page);
920 page_dup_rmap(page);
921 if (PageAnon(page))
922 rss[MM_ANONPAGES]++;
923 else
924 rss[MM_FILEPAGES]++;
927 out_set_pte:
928 set_pte_at(dst_mm, addr, dst_pte, pte);
929 return 0;
932 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
933 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
934 unsigned long addr, unsigned long end)
936 pte_t *orig_src_pte, *orig_dst_pte;
937 pte_t *src_pte, *dst_pte;
938 spinlock_t *src_ptl, *dst_ptl;
939 int progress = 0;
940 int rss[NR_MM_COUNTERS];
941 swp_entry_t entry = (swp_entry_t){0};
943 again:
944 init_rss_vec(rss);
946 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
947 if (!dst_pte)
948 return -ENOMEM;
949 src_pte = pte_offset_map(src_pmd, addr);
950 src_ptl = pte_lockptr(src_mm, src_pmd);
951 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
952 orig_src_pte = src_pte;
953 orig_dst_pte = dst_pte;
954 arch_enter_lazy_mmu_mode();
956 do {
958 * We are holding two locks at this point - either of them
959 * could generate latencies in another task on another CPU.
961 if (progress >= 32) {
962 progress = 0;
963 if (need_resched() ||
964 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
965 break;
967 if (pte_none(*src_pte)) {
968 progress++;
969 continue;
971 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
972 vma, addr, rss);
973 if (entry.val)
974 break;
975 progress += 8;
976 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
978 arch_leave_lazy_mmu_mode();
979 spin_unlock(src_ptl);
980 pte_unmap(orig_src_pte);
981 add_mm_rss_vec(dst_mm, rss);
982 pte_unmap_unlock(orig_dst_pte, dst_ptl);
983 cond_resched();
985 if (entry.val) {
986 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
987 return -ENOMEM;
988 progress = 0;
990 if (addr != end)
991 goto again;
992 return 0;
995 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
996 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
997 unsigned long addr, unsigned long end)
999 pmd_t *src_pmd, *dst_pmd;
1000 unsigned long next;
1002 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1003 if (!dst_pmd)
1004 return -ENOMEM;
1005 src_pmd = pmd_offset(src_pud, addr);
1006 do {
1007 next = pmd_addr_end(addr, end);
1008 if (pmd_trans_huge(*src_pmd)) {
1009 int err;
1010 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1011 err = copy_huge_pmd(dst_mm, src_mm,
1012 dst_pmd, src_pmd, addr, vma);
1013 if (err == -ENOMEM)
1014 return -ENOMEM;
1015 if (!err)
1016 continue;
1017 /* fall through */
1019 if (pmd_none_or_clear_bad(src_pmd))
1020 continue;
1021 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1022 vma, addr, next))
1023 return -ENOMEM;
1024 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1025 return 0;
1028 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1029 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1030 unsigned long addr, unsigned long end)
1032 pud_t *src_pud, *dst_pud;
1033 unsigned long next;
1035 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1036 if (!dst_pud)
1037 return -ENOMEM;
1038 src_pud = pud_offset(src_pgd, addr);
1039 do {
1040 next = pud_addr_end(addr, end);
1041 if (pud_none_or_clear_bad(src_pud))
1042 continue;
1043 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1044 vma, addr, next))
1045 return -ENOMEM;
1046 } while (dst_pud++, src_pud++, addr = next, addr != end);
1047 return 0;
1050 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1051 struct vm_area_struct *vma)
1053 pgd_t *src_pgd, *dst_pgd;
1054 unsigned long next;
1055 unsigned long addr = vma->vm_start;
1056 unsigned long end = vma->vm_end;
1057 int ret;
1060 * Don't copy ptes where a page fault will fill them correctly.
1061 * Fork becomes much lighter when there are big shared or private
1062 * readonly mappings. The tradeoff is that copy_page_range is more
1063 * efficient than faulting.
1065 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1066 if (!vma->anon_vma)
1067 return 0;
1070 if (is_vm_hugetlb_page(vma))
1071 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1073 if (unlikely(is_pfn_mapping(vma))) {
1075 * We do not free on error cases below as remove_vma
1076 * gets called on error from higher level routine
1078 ret = track_pfn_vma_copy(vma);
1079 if (ret)
1080 return ret;
1084 * We need to invalidate the secondary MMU mappings only when
1085 * there could be a permission downgrade on the ptes of the
1086 * parent mm. And a permission downgrade will only happen if
1087 * is_cow_mapping() returns true.
1089 if (is_cow_mapping(vma->vm_flags))
1090 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1092 ret = 0;
1093 dst_pgd = pgd_offset(dst_mm, addr);
1094 src_pgd = pgd_offset(src_mm, addr);
1095 do {
1096 next = pgd_addr_end(addr, end);
1097 if (pgd_none_or_clear_bad(src_pgd))
1098 continue;
1099 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1100 vma, addr, next))) {
1101 ret = -ENOMEM;
1102 break;
1104 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1106 if (is_cow_mapping(vma->vm_flags))
1107 mmu_notifier_invalidate_range_end(src_mm,
1108 vma->vm_start, end);
1109 return ret;
1112 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1113 struct vm_area_struct *vma, pmd_t *pmd,
1114 unsigned long addr, unsigned long end,
1115 struct zap_details *details)
1117 struct mm_struct *mm = tlb->mm;
1118 int force_flush = 0;
1119 int rss[NR_MM_COUNTERS];
1120 spinlock_t *ptl;
1121 pte_t *start_pte;
1122 pte_t *pte;
1124 again:
1125 init_rss_vec(rss);
1126 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1127 pte = start_pte;
1128 arch_enter_lazy_mmu_mode();
1129 do {
1130 pte_t ptent = *pte;
1131 if (pte_none(ptent)) {
1132 continue;
1135 if (pte_present(ptent)) {
1136 struct page *page;
1138 page = vm_normal_page(vma, addr, ptent);
1139 if (unlikely(details) && page) {
1141 * unmap_shared_mapping_pages() wants to
1142 * invalidate cache without truncating:
1143 * unmap shared but keep private pages.
1145 if (details->check_mapping &&
1146 details->check_mapping != page->mapping)
1147 continue;
1149 * Each page->index must be checked when
1150 * invalidating or truncating nonlinear.
1152 if (details->nonlinear_vma &&
1153 (page->index < details->first_index ||
1154 page->index > details->last_index))
1155 continue;
1157 ptent = ptep_get_and_clear_full(mm, addr, pte,
1158 tlb->fullmm);
1159 tlb_remove_tlb_entry(tlb, pte, addr);
1160 if (unlikely(!page))
1161 continue;
1162 if (unlikely(details) && details->nonlinear_vma
1163 && linear_page_index(details->nonlinear_vma,
1164 addr) != page->index)
1165 set_pte_at(mm, addr, pte,
1166 pgoff_to_pte(page->index));
1167 if (PageAnon(page))
1168 rss[MM_ANONPAGES]--;
1169 else {
1170 if (pte_dirty(ptent))
1171 set_page_dirty(page);
1172 if (pte_young(ptent) &&
1173 likely(!VM_SequentialReadHint(vma)))
1174 mark_page_accessed(page);
1175 rss[MM_FILEPAGES]--;
1177 page_remove_rmap(page);
1178 if (unlikely(page_mapcount(page) < 0))
1179 print_bad_pte(vma, addr, ptent, page);
1180 force_flush = !__tlb_remove_page(tlb, page);
1181 if (force_flush)
1182 break;
1183 continue;
1186 * If details->check_mapping, we leave swap entries;
1187 * if details->nonlinear_vma, we leave file entries.
1189 if (unlikely(details))
1190 continue;
1191 if (pte_file(ptent)) {
1192 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1193 print_bad_pte(vma, addr, ptent, NULL);
1194 } else {
1195 swp_entry_t entry = pte_to_swp_entry(ptent);
1197 if (!non_swap_entry(entry))
1198 rss[MM_SWAPENTS]--;
1199 if (unlikely(!free_swap_and_cache(entry)))
1200 print_bad_pte(vma, addr, ptent, NULL);
1202 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1203 } while (pte++, addr += PAGE_SIZE, addr != end);
1205 add_mm_rss_vec(mm, rss);
1206 arch_leave_lazy_mmu_mode();
1207 pte_unmap_unlock(start_pte, ptl);
1210 * mmu_gather ran out of room to batch pages, we break out of
1211 * the PTE lock to avoid doing the potential expensive TLB invalidate
1212 * and page-free while holding it.
1214 if (force_flush) {
1215 force_flush = 0;
1216 tlb_flush_mmu(tlb);
1217 if (addr != end)
1218 goto again;
1221 return addr;
1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225 struct vm_area_struct *vma, pud_t *pud,
1226 unsigned long addr, unsigned long end,
1227 struct zap_details *details)
1229 pmd_t *pmd;
1230 unsigned long next;
1232 pmd = pmd_offset(pud, addr);
1233 do {
1234 next = pmd_addr_end(addr, end);
1235 if (pmd_trans_huge(*pmd)) {
1236 if (next - addr != HPAGE_PMD_SIZE) {
1237 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1238 split_huge_page_pmd(vma->vm_mm, pmd);
1239 } else if (zap_huge_pmd(tlb, vma, pmd))
1240 goto next;
1241 /* fall through */
1244 * Here there can be other concurrent MADV_DONTNEED or
1245 * trans huge page faults running, and if the pmd is
1246 * none or trans huge it can change under us. This is
1247 * because MADV_DONTNEED holds the mmap_sem in read
1248 * mode.
1250 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1251 goto next;
1252 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1253 next:
1254 cond_resched();
1255 } while (pmd++, addr = next, addr != end);
1257 return addr;
1260 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1261 struct vm_area_struct *vma, pgd_t *pgd,
1262 unsigned long addr, unsigned long end,
1263 struct zap_details *details)
1265 pud_t *pud;
1266 unsigned long next;
1268 pud = pud_offset(pgd, addr);
1269 do {
1270 next = pud_addr_end(addr, end);
1271 if (pud_none_or_clear_bad(pud))
1272 continue;
1273 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1274 } while (pud++, addr = next, addr != end);
1276 return addr;
1279 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1280 struct vm_area_struct *vma,
1281 unsigned long addr, unsigned long end,
1282 struct zap_details *details)
1284 pgd_t *pgd;
1285 unsigned long next;
1287 if (details && !details->check_mapping && !details->nonlinear_vma)
1288 details = NULL;
1290 BUG_ON(addr >= end);
1291 mem_cgroup_uncharge_start();
1292 tlb_start_vma(tlb, vma);
1293 pgd = pgd_offset(vma->vm_mm, addr);
1294 do {
1295 next = pgd_addr_end(addr, end);
1296 if (pgd_none_or_clear_bad(pgd))
1297 continue;
1298 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1299 } while (pgd++, addr = next, addr != end);
1300 tlb_end_vma(tlb, vma);
1301 mem_cgroup_uncharge_end();
1303 return addr;
1307 * unmap_vmas - unmap a range of memory covered by a list of vma's
1308 * @tlb: address of the caller's struct mmu_gather
1309 * @vma: the starting vma
1310 * @start_addr: virtual address at which to start unmapping
1311 * @end_addr: virtual address at which to end unmapping
1312 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1313 * @details: details of nonlinear truncation or shared cache invalidation
1315 * Returns the end address of the unmapping (restart addr if interrupted).
1317 * Unmap all pages in the vma list.
1319 * Only addresses between `start' and `end' will be unmapped.
1321 * The VMA list must be sorted in ascending virtual address order.
1323 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1324 * range after unmap_vmas() returns. So the only responsibility here is to
1325 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1326 * drops the lock and schedules.
1328 unsigned long unmap_vmas(struct mmu_gather *tlb,
1329 struct vm_area_struct *vma, unsigned long start_addr,
1330 unsigned long end_addr, unsigned long *nr_accounted,
1331 struct zap_details *details)
1333 unsigned long start = start_addr;
1334 struct mm_struct *mm = vma->vm_mm;
1336 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1337 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1338 unsigned long end;
1340 start = max(vma->vm_start, start_addr);
1341 if (start >= vma->vm_end)
1342 continue;
1343 end = min(vma->vm_end, end_addr);
1344 if (end <= vma->vm_start)
1345 continue;
1347 if (vma->vm_flags & VM_ACCOUNT)
1348 *nr_accounted += (end - start) >> PAGE_SHIFT;
1350 if (unlikely(is_pfn_mapping(vma)))
1351 untrack_pfn_vma(vma, 0, 0);
1353 while (start != end) {
1354 if (unlikely(is_vm_hugetlb_page(vma))) {
1356 * It is undesirable to test vma->vm_file as it
1357 * should be non-null for valid hugetlb area.
1358 * However, vm_file will be NULL in the error
1359 * cleanup path of do_mmap_pgoff. When
1360 * hugetlbfs ->mmap method fails,
1361 * do_mmap_pgoff() nullifies vma->vm_file
1362 * before calling this function to clean up.
1363 * Since no pte has actually been setup, it is
1364 * safe to do nothing in this case.
1366 if (vma->vm_file) {
1367 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1368 __unmap_hugepage_range_final(vma, start, end, NULL);
1369 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1372 start = end;
1373 } else
1374 start = unmap_page_range(tlb, vma, start, end, details);
1378 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1379 return start; /* which is now the end (or restart) address */
1383 * zap_page_range - remove user pages in a given range
1384 * @vma: vm_area_struct holding the applicable pages
1385 * @address: starting address of pages to zap
1386 * @size: number of bytes to zap
1387 * @details: details of nonlinear truncation or shared cache invalidation
1389 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1390 unsigned long size, struct zap_details *details)
1392 struct mm_struct *mm = vma->vm_mm;
1393 struct mmu_gather tlb;
1394 unsigned long end = address + size;
1395 unsigned long nr_accounted = 0;
1397 lru_add_drain();
1398 tlb_gather_mmu(&tlb, mm, 0);
1399 update_hiwater_rss(mm);
1400 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1401 tlb_finish_mmu(&tlb, address, end);
1402 return end;
1406 * zap_vma_ptes - remove ptes mapping the vma
1407 * @vma: vm_area_struct holding ptes to be zapped
1408 * @address: starting address of pages to zap
1409 * @size: number of bytes to zap
1411 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1413 * The entire address range must be fully contained within the vma.
1415 * Returns 0 if successful.
1417 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1418 unsigned long size)
1420 if (address < vma->vm_start || address + size > vma->vm_end ||
1421 !(vma->vm_flags & VM_PFNMAP))
1422 return -1;
1423 zap_page_range(vma, address, size, NULL);
1424 return 0;
1426 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1429 * follow_page - look up a page descriptor from a user-virtual address
1430 * @vma: vm_area_struct mapping @address
1431 * @address: virtual address to look up
1432 * @flags: flags modifying lookup behaviour
1434 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1436 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1437 * an error pointer if there is a mapping to something not represented
1438 * by a page descriptor (see also vm_normal_page()).
1440 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1441 unsigned int flags)
1443 pgd_t *pgd;
1444 pud_t *pud;
1445 pmd_t *pmd;
1446 pte_t *ptep, pte;
1447 spinlock_t *ptl;
1448 struct page *page;
1449 struct mm_struct *mm = vma->vm_mm;
1451 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1452 if (!IS_ERR(page)) {
1453 BUG_ON(flags & FOLL_GET);
1454 goto out;
1457 page = NULL;
1458 pgd = pgd_offset(mm, address);
1459 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1460 goto no_page_table;
1462 pud = pud_offset(pgd, address);
1463 if (pud_none(*pud))
1464 goto no_page_table;
1465 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1466 BUG_ON(flags & FOLL_GET);
1467 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1468 goto out;
1470 if (unlikely(pud_bad(*pud)))
1471 goto no_page_table;
1473 pmd = pmd_offset(pud, address);
1474 if (pmd_none(*pmd))
1475 goto no_page_table;
1476 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1477 BUG_ON(flags & FOLL_GET);
1478 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1479 goto out;
1481 if (pmd_trans_huge(*pmd)) {
1482 if (flags & FOLL_SPLIT) {
1483 split_huge_page_pmd(mm, pmd);
1484 goto split_fallthrough;
1486 spin_lock(&mm->page_table_lock);
1487 if (likely(pmd_trans_huge(*pmd))) {
1488 if (unlikely(pmd_trans_splitting(*pmd))) {
1489 spin_unlock(&mm->page_table_lock);
1490 wait_split_huge_page(vma->anon_vma, pmd);
1491 } else {
1492 page = follow_trans_huge_pmd(mm, address,
1493 pmd, flags);
1494 spin_unlock(&mm->page_table_lock);
1495 goto out;
1497 } else
1498 spin_unlock(&mm->page_table_lock);
1499 /* fall through */
1501 split_fallthrough:
1502 if (unlikely(pmd_bad(*pmd)))
1503 goto no_page_table;
1505 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1507 pte = *ptep;
1508 if (!pte_present(pte))
1509 goto no_page;
1510 if ((flags & FOLL_WRITE) && !pte_write(pte))
1511 goto unlock;
1513 page = vm_normal_page(vma, address, pte);
1514 if (unlikely(!page)) {
1515 if ((flags & FOLL_DUMP) ||
1516 !is_zero_pfn(pte_pfn(pte)))
1517 goto bad_page;
1518 page = pte_page(pte);
1521 if (flags & FOLL_GET)
1522 get_page_foll(page);
1523 if (flags & FOLL_TOUCH) {
1524 if ((flags & FOLL_WRITE) &&
1525 !pte_dirty(pte) && !PageDirty(page))
1526 set_page_dirty(page);
1528 * pte_mkyoung() would be more correct here, but atomic care
1529 * is needed to avoid losing the dirty bit: it is easier to use
1530 * mark_page_accessed().
1532 mark_page_accessed(page);
1534 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1536 * The preliminary mapping check is mainly to avoid the
1537 * pointless overhead of lock_page on the ZERO_PAGE
1538 * which might bounce very badly if there is contention.
1540 * If the page is already locked, we don't need to
1541 * handle it now - vmscan will handle it later if and
1542 * when it attempts to reclaim the page.
1544 if (page->mapping && trylock_page(page)) {
1545 lru_add_drain(); /* push cached pages to LRU */
1547 * Because we lock page here and migration is
1548 * blocked by the pte's page reference, we need
1549 * only check for file-cache page truncation.
1551 if (page->mapping)
1552 mlock_vma_page(page);
1553 unlock_page(page);
1556 unlock:
1557 pte_unmap_unlock(ptep, ptl);
1558 out:
1559 return page;
1561 bad_page:
1562 pte_unmap_unlock(ptep, ptl);
1563 return ERR_PTR(-EFAULT);
1565 no_page:
1566 pte_unmap_unlock(ptep, ptl);
1567 if (!pte_none(pte))
1568 return page;
1570 no_page_table:
1572 * When core dumping an enormous anonymous area that nobody
1573 * has touched so far, we don't want to allocate unnecessary pages or
1574 * page tables. Return error instead of NULL to skip handle_mm_fault,
1575 * then get_dump_page() will return NULL to leave a hole in the dump.
1576 * But we can only make this optimization where a hole would surely
1577 * be zero-filled if handle_mm_fault() actually did handle it.
1579 if ((flags & FOLL_DUMP) &&
1580 (!vma->vm_ops || !vma->vm_ops->fault))
1581 return ERR_PTR(-EFAULT);
1582 return page;
1585 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1587 return stack_guard_page_start(vma, addr) ||
1588 stack_guard_page_end(vma, addr+PAGE_SIZE);
1592 * __get_user_pages() - pin user pages in memory
1593 * @tsk: task_struct of target task
1594 * @mm: mm_struct of target mm
1595 * @start: starting user address
1596 * @nr_pages: number of pages from start to pin
1597 * @gup_flags: flags modifying pin behaviour
1598 * @pages: array that receives pointers to the pages pinned.
1599 * Should be at least nr_pages long. Or NULL, if caller
1600 * only intends to ensure the pages are faulted in.
1601 * @vmas: array of pointers to vmas corresponding to each page.
1602 * Or NULL if the caller does not require them.
1603 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1605 * Returns number of pages pinned. This may be fewer than the number
1606 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1607 * were pinned, returns -errno. Each page returned must be released
1608 * with a put_page() call when it is finished with. vmas will only
1609 * remain valid while mmap_sem is held.
1611 * Must be called with mmap_sem held for read or write.
1613 * __get_user_pages walks a process's page tables and takes a reference to
1614 * each struct page that each user address corresponds to at a given
1615 * instant. That is, it takes the page that would be accessed if a user
1616 * thread accesses the given user virtual address at that instant.
1618 * This does not guarantee that the page exists in the user mappings when
1619 * __get_user_pages returns, and there may even be a completely different
1620 * page there in some cases (eg. if mmapped pagecache has been invalidated
1621 * and subsequently re faulted). However it does guarantee that the page
1622 * won't be freed completely. And mostly callers simply care that the page
1623 * contains data that was valid *at some point in time*. Typically, an IO
1624 * or similar operation cannot guarantee anything stronger anyway because
1625 * locks can't be held over the syscall boundary.
1627 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1628 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1629 * appropriate) must be called after the page is finished with, and
1630 * before put_page is called.
1632 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1633 * or mmap_sem contention, and if waiting is needed to pin all pages,
1634 * *@nonblocking will be set to 0.
1636 * In most cases, get_user_pages or get_user_pages_fast should be used
1637 * instead of __get_user_pages. __get_user_pages should be used only if
1638 * you need some special @gup_flags.
1640 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1641 unsigned long start, int nr_pages, unsigned int gup_flags,
1642 struct page **pages, struct vm_area_struct **vmas,
1643 int *nonblocking)
1645 int i;
1646 unsigned long vm_flags;
1648 if (nr_pages <= 0)
1649 return 0;
1651 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1654 * Require read or write permissions.
1655 * If FOLL_FORCE is set, we only require the "MAY" flags.
1657 vm_flags = (gup_flags & FOLL_WRITE) ?
1658 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1659 vm_flags &= (gup_flags & FOLL_FORCE) ?
1660 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1661 i = 0;
1663 do {
1664 struct vm_area_struct *vma;
1666 vma = find_extend_vma(mm, start);
1667 if (!vma && in_gate_area(mm, start)) {
1668 unsigned long pg = start & PAGE_MASK;
1669 pgd_t *pgd;
1670 pud_t *pud;
1671 pmd_t *pmd;
1672 pte_t *pte;
1674 /* user gate pages are read-only */
1675 if (gup_flags & FOLL_WRITE)
1676 return i ? : -EFAULT;
1677 if (pg > TASK_SIZE)
1678 pgd = pgd_offset_k(pg);
1679 else
1680 pgd = pgd_offset_gate(mm, pg);
1681 BUG_ON(pgd_none(*pgd));
1682 pud = pud_offset(pgd, pg);
1683 BUG_ON(pud_none(*pud));
1684 pmd = pmd_offset(pud, pg);
1685 if (pmd_none(*pmd))
1686 return i ? : -EFAULT;
1687 VM_BUG_ON(pmd_trans_huge(*pmd));
1688 pte = pte_offset_map(pmd, pg);
1689 if (pte_none(*pte)) {
1690 pte_unmap(pte);
1691 return i ? : -EFAULT;
1693 vma = get_gate_vma(mm);
1694 if (pages) {
1695 struct page *page;
1697 page = vm_normal_page(vma, start, *pte);
1698 if (!page) {
1699 if (!(gup_flags & FOLL_DUMP) &&
1700 is_zero_pfn(pte_pfn(*pte)))
1701 page = pte_page(*pte);
1702 else {
1703 pte_unmap(pte);
1704 return i ? : -EFAULT;
1707 pages[i] = page;
1708 get_page(page);
1710 pte_unmap(pte);
1711 goto next_page;
1714 if (!vma ||
1715 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1716 !(vm_flags & vma->vm_flags))
1717 return i ? : -EFAULT;
1719 if (is_vm_hugetlb_page(vma)) {
1720 i = follow_hugetlb_page(mm, vma, pages, vmas,
1721 &start, &nr_pages, i, gup_flags);
1722 continue;
1725 do {
1726 struct page *page;
1727 unsigned int foll_flags = gup_flags;
1730 * If we have a pending SIGKILL, don't keep faulting
1731 * pages and potentially allocating memory.
1733 if (unlikely(fatal_signal_pending(current)))
1734 return i ? i : -ERESTARTSYS;
1736 cond_resched();
1737 while (!(page = follow_page(vma, start, foll_flags))) {
1738 int ret;
1739 unsigned int fault_flags = 0;
1741 /* For mlock, just skip the stack guard page. */
1742 if (foll_flags & FOLL_MLOCK) {
1743 if (stack_guard_page(vma, start))
1744 goto next_page;
1746 if (foll_flags & FOLL_WRITE)
1747 fault_flags |= FAULT_FLAG_WRITE;
1748 if (nonblocking)
1749 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1750 if (foll_flags & FOLL_NOWAIT)
1751 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1753 ret = handle_mm_fault(mm, vma, start,
1754 fault_flags);
1756 if (ret & VM_FAULT_ERROR) {
1757 if (ret & VM_FAULT_OOM)
1758 return i ? i : -ENOMEM;
1759 if (ret & (VM_FAULT_HWPOISON |
1760 VM_FAULT_HWPOISON_LARGE)) {
1761 if (i)
1762 return i;
1763 else if (gup_flags & FOLL_HWPOISON)
1764 return -EHWPOISON;
1765 else
1766 return -EFAULT;
1768 if (ret & VM_FAULT_SIGBUS)
1769 return i ? i : -EFAULT;
1770 BUG();
1773 if (tsk) {
1774 if (ret & VM_FAULT_MAJOR)
1775 tsk->maj_flt++;
1776 else
1777 tsk->min_flt++;
1780 if (ret & VM_FAULT_RETRY) {
1781 if (nonblocking)
1782 *nonblocking = 0;
1783 return i;
1787 * The VM_FAULT_WRITE bit tells us that
1788 * do_wp_page has broken COW when necessary,
1789 * even if maybe_mkwrite decided not to set
1790 * pte_write. We can thus safely do subsequent
1791 * page lookups as if they were reads. But only
1792 * do so when looping for pte_write is futile:
1793 * in some cases userspace may also be wanting
1794 * to write to the gotten user page, which a
1795 * read fault here might prevent (a readonly
1796 * page might get reCOWed by userspace write).
1798 if ((ret & VM_FAULT_WRITE) &&
1799 !(vma->vm_flags & VM_WRITE))
1800 foll_flags &= ~FOLL_WRITE;
1802 cond_resched();
1804 if (IS_ERR(page))
1805 return i ? i : PTR_ERR(page);
1806 if (pages) {
1807 pages[i] = page;
1809 flush_anon_page(vma, page, start);
1810 flush_dcache_page(page);
1812 next_page:
1813 if (vmas)
1814 vmas[i] = vma;
1815 i++;
1816 start += PAGE_SIZE;
1817 nr_pages--;
1818 } while (nr_pages && start < vma->vm_end);
1819 } while (nr_pages);
1820 return i;
1822 EXPORT_SYMBOL(__get_user_pages);
1825 * fixup_user_fault() - manually resolve a user page fault
1826 * @tsk: the task_struct to use for page fault accounting, or
1827 * NULL if faults are not to be recorded.
1828 * @mm: mm_struct of target mm
1829 * @address: user address
1830 * @fault_flags:flags to pass down to handle_mm_fault()
1832 * This is meant to be called in the specific scenario where for locking reasons
1833 * we try to access user memory in atomic context (within a pagefault_disable()
1834 * section), this returns -EFAULT, and we want to resolve the user fault before
1835 * trying again.
1837 * Typically this is meant to be used by the futex code.
1839 * The main difference with get_user_pages() is that this function will
1840 * unconditionally call handle_mm_fault() which will in turn perform all the
1841 * necessary SW fixup of the dirty and young bits in the PTE, while
1842 * handle_mm_fault() only guarantees to update these in the struct page.
1844 * This is important for some architectures where those bits also gate the
1845 * access permission to the page because they are maintained in software. On
1846 * such architectures, gup() will not be enough to make a subsequent access
1847 * succeed.
1849 * This should be called with the mm_sem held for read.
1851 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1852 unsigned long address, unsigned int fault_flags)
1854 struct vm_area_struct *vma;
1855 int ret;
1857 vma = find_extend_vma(mm, address);
1858 if (!vma || address < vma->vm_start)
1859 return -EFAULT;
1861 ret = handle_mm_fault(mm, vma, address, fault_flags);
1862 if (ret & VM_FAULT_ERROR) {
1863 if (ret & VM_FAULT_OOM)
1864 return -ENOMEM;
1865 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1866 return -EHWPOISON;
1867 if (ret & VM_FAULT_SIGBUS)
1868 return -EFAULT;
1869 BUG();
1871 if (tsk) {
1872 if (ret & VM_FAULT_MAJOR)
1873 tsk->maj_flt++;
1874 else
1875 tsk->min_flt++;
1877 return 0;
1881 * get_user_pages() - pin user pages in memory
1882 * @tsk: the task_struct to use for page fault accounting, or
1883 * NULL if faults are not to be recorded.
1884 * @mm: mm_struct of target mm
1885 * @start: starting user address
1886 * @nr_pages: number of pages from start to pin
1887 * @write: whether pages will be written to by the caller
1888 * @force: whether to force write access even if user mapping is
1889 * readonly. This will result in the page being COWed even
1890 * in MAP_SHARED mappings. You do not want this.
1891 * @pages: array that receives pointers to the pages pinned.
1892 * Should be at least nr_pages long. Or NULL, if caller
1893 * only intends to ensure the pages are faulted in.
1894 * @vmas: array of pointers to vmas corresponding to each page.
1895 * Or NULL if the caller does not require them.
1897 * Returns number of pages pinned. This may be fewer than the number
1898 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1899 * were pinned, returns -errno. Each page returned must be released
1900 * with a put_page() call when it is finished with. vmas will only
1901 * remain valid while mmap_sem is held.
1903 * Must be called with mmap_sem held for read or write.
1905 * get_user_pages walks a process's page tables and takes a reference to
1906 * each struct page that each user address corresponds to at a given
1907 * instant. That is, it takes the page that would be accessed if a user
1908 * thread accesses the given user virtual address at that instant.
1910 * This does not guarantee that the page exists in the user mappings when
1911 * get_user_pages returns, and there may even be a completely different
1912 * page there in some cases (eg. if mmapped pagecache has been invalidated
1913 * and subsequently re faulted). However it does guarantee that the page
1914 * won't be freed completely. And mostly callers simply care that the page
1915 * contains data that was valid *at some point in time*. Typically, an IO
1916 * or similar operation cannot guarantee anything stronger anyway because
1917 * locks can't be held over the syscall boundary.
1919 * If write=0, the page must not be written to. If the page is written to,
1920 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1921 * after the page is finished with, and before put_page is called.
1923 * get_user_pages is typically used for fewer-copy IO operations, to get a
1924 * handle on the memory by some means other than accesses via the user virtual
1925 * addresses. The pages may be submitted for DMA to devices or accessed via
1926 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1927 * use the correct cache flushing APIs.
1929 * See also get_user_pages_fast, for performance critical applications.
1931 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1932 unsigned long start, int nr_pages, int write, int force,
1933 struct page **pages, struct vm_area_struct **vmas)
1935 int flags = FOLL_TOUCH;
1937 if (pages)
1938 flags |= FOLL_GET;
1939 if (write)
1940 flags |= FOLL_WRITE;
1941 if (force)
1942 flags |= FOLL_FORCE;
1944 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1945 NULL);
1947 EXPORT_SYMBOL(get_user_pages);
1950 * get_dump_page() - pin user page in memory while writing it to core dump
1951 * @addr: user address
1953 * Returns struct page pointer of user page pinned for dump,
1954 * to be freed afterwards by page_cache_release() or put_page().
1956 * Returns NULL on any kind of failure - a hole must then be inserted into
1957 * the corefile, to preserve alignment with its headers; and also returns
1958 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1959 * allowing a hole to be left in the corefile to save diskspace.
1961 * Called without mmap_sem, but after all other threads have been killed.
1963 #ifdef CONFIG_ELF_CORE
1964 struct page *get_dump_page(unsigned long addr)
1966 struct vm_area_struct *vma;
1967 struct page *page;
1969 if (__get_user_pages(current, current->mm, addr, 1,
1970 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1971 NULL) < 1)
1972 return NULL;
1973 flush_cache_page(vma, addr, page_to_pfn(page));
1974 return page;
1976 #endif /* CONFIG_ELF_CORE */
1978 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1979 spinlock_t **ptl)
1981 pgd_t * pgd = pgd_offset(mm, addr);
1982 pud_t * pud = pud_alloc(mm, pgd, addr);
1983 if (pud) {
1984 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1985 if (pmd) {
1986 VM_BUG_ON(pmd_trans_huge(*pmd));
1987 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1990 return NULL;
1994 * This is the old fallback for page remapping.
1996 * For historical reasons, it only allows reserved pages. Only
1997 * old drivers should use this, and they needed to mark their
1998 * pages reserved for the old functions anyway.
2000 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2001 struct page *page, pgprot_t prot)
2003 struct mm_struct *mm = vma->vm_mm;
2004 int retval;
2005 pte_t *pte;
2006 spinlock_t *ptl;
2008 retval = -EINVAL;
2009 if (PageAnon(page))
2010 goto out;
2011 retval = -ENOMEM;
2012 flush_dcache_page(page);
2013 pte = get_locked_pte(mm, addr, &ptl);
2014 if (!pte)
2015 goto out;
2016 retval = -EBUSY;
2017 if (!pte_none(*pte))
2018 goto out_unlock;
2020 /* Ok, finally just insert the thing.. */
2021 get_page(page);
2022 inc_mm_counter_fast(mm, MM_FILEPAGES);
2023 page_add_file_rmap(page);
2024 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2026 retval = 0;
2027 pte_unmap_unlock(pte, ptl);
2028 return retval;
2029 out_unlock:
2030 pte_unmap_unlock(pte, ptl);
2031 out:
2032 return retval;
2036 * vm_insert_page - insert single page into user vma
2037 * @vma: user vma to map to
2038 * @addr: target user address of this page
2039 * @page: source kernel page
2041 * This allows drivers to insert individual pages they've allocated
2042 * into a user vma.
2044 * The page has to be a nice clean _individual_ kernel allocation.
2045 * If you allocate a compound page, you need to have marked it as
2046 * such (__GFP_COMP), or manually just split the page up yourself
2047 * (see split_page()).
2049 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2050 * took an arbitrary page protection parameter. This doesn't allow
2051 * that. Your vma protection will have to be set up correctly, which
2052 * means that if you want a shared writable mapping, you'd better
2053 * ask for a shared writable mapping!
2055 * The page does not need to be reserved.
2057 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2058 struct page *page)
2060 if (addr < vma->vm_start || addr >= vma->vm_end)
2061 return -EFAULT;
2062 if (!page_count(page))
2063 return -EINVAL;
2064 vma->vm_flags |= VM_INSERTPAGE;
2065 return insert_page(vma, addr, page, vma->vm_page_prot);
2067 EXPORT_SYMBOL(vm_insert_page);
2069 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2070 unsigned long pfn, pgprot_t prot)
2072 struct mm_struct *mm = vma->vm_mm;
2073 int retval;
2074 pte_t *pte, entry;
2075 spinlock_t *ptl;
2077 retval = -ENOMEM;
2078 pte = get_locked_pte(mm, addr, &ptl);
2079 if (!pte)
2080 goto out;
2081 retval = -EBUSY;
2082 if (!pte_none(*pte))
2083 goto out_unlock;
2085 /* Ok, finally just insert the thing.. */
2086 entry = pte_mkspecial(pfn_pte(pfn, prot));
2087 set_pte_at(mm, addr, pte, entry);
2088 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2090 retval = 0;
2091 out_unlock:
2092 pte_unmap_unlock(pte, ptl);
2093 out:
2094 return retval;
2098 * vm_insert_pfn - insert single pfn into user vma
2099 * @vma: user vma to map to
2100 * @addr: target user address of this page
2101 * @pfn: source kernel pfn
2103 * Similar to vm_inert_page, this allows drivers to insert individual pages
2104 * they've allocated into a user vma. Same comments apply.
2106 * This function should only be called from a vm_ops->fault handler, and
2107 * in that case the handler should return NULL.
2109 * vma cannot be a COW mapping.
2111 * As this is called only for pages that do not currently exist, we
2112 * do not need to flush old virtual caches or the TLB.
2114 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2115 unsigned long pfn)
2117 int ret;
2118 pgprot_t pgprot = vma->vm_page_prot;
2120 * Technically, architectures with pte_special can avoid all these
2121 * restrictions (same for remap_pfn_range). However we would like
2122 * consistency in testing and feature parity among all, so we should
2123 * try to keep these invariants in place for everybody.
2125 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2126 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2127 (VM_PFNMAP|VM_MIXEDMAP));
2128 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2129 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2131 if (addr < vma->vm_start || addr >= vma->vm_end)
2132 return -EFAULT;
2133 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2134 return -EINVAL;
2136 ret = insert_pfn(vma, addr, pfn, pgprot);
2138 if (ret)
2139 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2141 return ret;
2143 EXPORT_SYMBOL(vm_insert_pfn);
2145 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2146 unsigned long pfn)
2148 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2150 if (addr < vma->vm_start || addr >= vma->vm_end)
2151 return -EFAULT;
2154 * If we don't have pte special, then we have to use the pfn_valid()
2155 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2156 * refcount the page if pfn_valid is true (hence insert_page rather
2157 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2158 * without pte special, it would there be refcounted as a normal page.
2160 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2161 struct page *page;
2163 page = pfn_to_page(pfn);
2164 return insert_page(vma, addr, page, vma->vm_page_prot);
2166 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2168 EXPORT_SYMBOL(vm_insert_mixed);
2171 * maps a range of physical memory into the requested pages. the old
2172 * mappings are removed. any references to nonexistent pages results
2173 * in null mappings (currently treated as "copy-on-access")
2175 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2176 unsigned long addr, unsigned long end,
2177 unsigned long pfn, pgprot_t prot)
2179 pte_t *pte;
2180 spinlock_t *ptl;
2182 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2183 if (!pte)
2184 return -ENOMEM;
2185 arch_enter_lazy_mmu_mode();
2186 do {
2187 BUG_ON(!pte_none(*pte));
2188 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2189 pfn++;
2190 } while (pte++, addr += PAGE_SIZE, addr != end);
2191 arch_leave_lazy_mmu_mode();
2192 pte_unmap_unlock(pte - 1, ptl);
2193 return 0;
2196 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2197 unsigned long addr, unsigned long end,
2198 unsigned long pfn, pgprot_t prot)
2200 pmd_t *pmd;
2201 unsigned long next;
2203 pfn -= addr >> PAGE_SHIFT;
2204 pmd = pmd_alloc(mm, pud, addr);
2205 if (!pmd)
2206 return -ENOMEM;
2207 VM_BUG_ON(pmd_trans_huge(*pmd));
2208 do {
2209 next = pmd_addr_end(addr, end);
2210 if (remap_pte_range(mm, pmd, addr, next,
2211 pfn + (addr >> PAGE_SHIFT), prot))
2212 return -ENOMEM;
2213 } while (pmd++, addr = next, addr != end);
2214 return 0;
2217 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2218 unsigned long addr, unsigned long end,
2219 unsigned long pfn, pgprot_t prot)
2221 pud_t *pud;
2222 unsigned long next;
2224 pfn -= addr >> PAGE_SHIFT;
2225 pud = pud_alloc(mm, pgd, addr);
2226 if (!pud)
2227 return -ENOMEM;
2228 do {
2229 next = pud_addr_end(addr, end);
2230 if (remap_pmd_range(mm, pud, addr, next,
2231 pfn + (addr >> PAGE_SHIFT), prot))
2232 return -ENOMEM;
2233 } while (pud++, addr = next, addr != end);
2234 return 0;
2238 * remap_pfn_range - remap kernel memory to userspace
2239 * @vma: user vma to map to
2240 * @addr: target user address to start at
2241 * @pfn: physical address of kernel memory
2242 * @size: size of map area
2243 * @prot: page protection flags for this mapping
2245 * Note: this is only safe if the mm semaphore is held when called.
2247 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2248 unsigned long pfn, unsigned long size, pgprot_t prot)
2250 pgd_t *pgd;
2251 unsigned long next;
2252 unsigned long end = addr + PAGE_ALIGN(size);
2253 struct mm_struct *mm = vma->vm_mm;
2254 int err;
2257 * Physically remapped pages are special. Tell the
2258 * rest of the world about it:
2259 * VM_IO tells people not to look at these pages
2260 * (accesses can have side effects).
2261 * VM_RESERVED is specified all over the place, because
2262 * in 2.4 it kept swapout's vma scan off this vma; but
2263 * in 2.6 the LRU scan won't even find its pages, so this
2264 * flag means no more than count its pages in reserved_vm,
2265 * and omit it from core dump, even when VM_IO turned off.
2266 * VM_PFNMAP tells the core MM that the base pages are just
2267 * raw PFN mappings, and do not have a "struct page" associated
2268 * with them.
2270 * There's a horrible special case to handle copy-on-write
2271 * behaviour that some programs depend on. We mark the "original"
2272 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2274 if (addr == vma->vm_start && end == vma->vm_end) {
2275 vma->vm_pgoff = pfn;
2276 vma->vm_flags |= VM_PFN_AT_MMAP;
2277 } else if (is_cow_mapping(vma->vm_flags))
2278 return -EINVAL;
2280 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2282 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2283 if (err) {
2285 * To indicate that track_pfn related cleanup is not
2286 * needed from higher level routine calling unmap_vmas
2288 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2289 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2290 return -EINVAL;
2293 BUG_ON(addr >= end);
2294 pfn -= addr >> PAGE_SHIFT;
2295 pgd = pgd_offset(mm, addr);
2296 flush_cache_range(vma, addr, end);
2297 do {
2298 next = pgd_addr_end(addr, end);
2299 err = remap_pud_range(mm, pgd, addr, next,
2300 pfn + (addr >> PAGE_SHIFT), prot);
2301 if (err)
2302 break;
2303 } while (pgd++, addr = next, addr != end);
2305 if (err)
2306 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2308 return err;
2310 EXPORT_SYMBOL(remap_pfn_range);
2312 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2313 unsigned long addr, unsigned long end,
2314 pte_fn_t fn, void *data)
2316 pte_t *pte;
2317 int err;
2318 pgtable_t token;
2319 spinlock_t *uninitialized_var(ptl);
2321 pte = (mm == &init_mm) ?
2322 pte_alloc_kernel(pmd, addr) :
2323 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2324 if (!pte)
2325 return -ENOMEM;
2327 BUG_ON(pmd_huge(*pmd));
2329 arch_enter_lazy_mmu_mode();
2331 token = pmd_pgtable(*pmd);
2333 do {
2334 err = fn(pte++, token, addr, data);
2335 if (err)
2336 break;
2337 } while (addr += PAGE_SIZE, addr != end);
2339 arch_leave_lazy_mmu_mode();
2341 if (mm != &init_mm)
2342 pte_unmap_unlock(pte-1, ptl);
2343 return err;
2346 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2347 unsigned long addr, unsigned long end,
2348 pte_fn_t fn, void *data)
2350 pmd_t *pmd;
2351 unsigned long next;
2352 int err;
2354 BUG_ON(pud_huge(*pud));
2356 pmd = pmd_alloc(mm, pud, addr);
2357 if (!pmd)
2358 return -ENOMEM;
2359 do {
2360 next = pmd_addr_end(addr, end);
2361 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2362 if (err)
2363 break;
2364 } while (pmd++, addr = next, addr != end);
2365 return err;
2368 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2369 unsigned long addr, unsigned long end,
2370 pte_fn_t fn, void *data)
2372 pud_t *pud;
2373 unsigned long next;
2374 int err;
2376 pud = pud_alloc(mm, pgd, addr);
2377 if (!pud)
2378 return -ENOMEM;
2379 do {
2380 next = pud_addr_end(addr, end);
2381 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2382 if (err)
2383 break;
2384 } while (pud++, addr = next, addr != end);
2385 return err;
2389 * Scan a region of virtual memory, filling in page tables as necessary
2390 * and calling a provided function on each leaf page table.
2392 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2393 unsigned long size, pte_fn_t fn, void *data)
2395 pgd_t *pgd;
2396 unsigned long next;
2397 unsigned long end = addr + size;
2398 int err;
2400 BUG_ON(addr >= end);
2401 pgd = pgd_offset(mm, addr);
2402 do {
2403 next = pgd_addr_end(addr, end);
2404 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2405 if (err)
2406 break;
2407 } while (pgd++, addr = next, addr != end);
2409 return err;
2411 EXPORT_SYMBOL_GPL(apply_to_page_range);
2414 * handle_pte_fault chooses page fault handler according to an entry
2415 * which was read non-atomically. Before making any commitment, on
2416 * those architectures or configurations (e.g. i386 with PAE) which
2417 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2418 * must check under lock before unmapping the pte and proceeding
2419 * (but do_wp_page is only called after already making such a check;
2420 * and do_anonymous_page can safely check later on).
2422 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2423 pte_t *page_table, pte_t orig_pte)
2425 int same = 1;
2426 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2427 if (sizeof(pte_t) > sizeof(unsigned long)) {
2428 spinlock_t *ptl = pte_lockptr(mm, pmd);
2429 spin_lock(ptl);
2430 same = pte_same(*page_table, orig_pte);
2431 spin_unlock(ptl);
2433 #endif
2434 pte_unmap(page_table);
2435 return same;
2438 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2441 * If the source page was a PFN mapping, we don't have
2442 * a "struct page" for it. We do a best-effort copy by
2443 * just copying from the original user address. If that
2444 * fails, we just zero-fill it. Live with it.
2446 if (unlikely(!src)) {
2447 void *kaddr = kmap_atomic(dst, KM_USER0);
2448 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2451 * This really shouldn't fail, because the page is there
2452 * in the page tables. But it might just be unreadable,
2453 * in which case we just give up and fill the result with
2454 * zeroes.
2456 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2457 clear_page(kaddr);
2458 kunmap_atomic(kaddr, KM_USER0);
2459 flush_dcache_page(dst);
2460 } else
2461 copy_user_highpage(dst, src, va, vma);
2465 * This routine handles present pages, when users try to write
2466 * to a shared page. It is done by copying the page to a new address
2467 * and decrementing the shared-page counter for the old page.
2469 * Note that this routine assumes that the protection checks have been
2470 * done by the caller (the low-level page fault routine in most cases).
2471 * Thus we can safely just mark it writable once we've done any necessary
2472 * COW.
2474 * We also mark the page dirty at this point even though the page will
2475 * change only once the write actually happens. This avoids a few races,
2476 * and potentially makes it more efficient.
2478 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2479 * but allow concurrent faults), with pte both mapped and locked.
2480 * We return with mmap_sem still held, but pte unmapped and unlocked.
2482 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2483 unsigned long address, pte_t *page_table, pmd_t *pmd,
2484 spinlock_t *ptl, pte_t orig_pte)
2485 __releases(ptl)
2487 struct page *old_page, *new_page;
2488 pte_t entry;
2489 int ret = 0;
2490 int page_mkwrite = 0;
2491 struct page *dirty_page = NULL;
2493 old_page = vm_normal_page(vma, address, orig_pte);
2494 if (!old_page) {
2496 * VM_MIXEDMAP !pfn_valid() case
2498 * We should not cow pages in a shared writeable mapping.
2499 * Just mark the pages writable as we can't do any dirty
2500 * accounting on raw pfn maps.
2502 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2503 (VM_WRITE|VM_SHARED))
2504 goto reuse;
2505 goto gotten;
2509 * Take out anonymous pages first, anonymous shared vmas are
2510 * not dirty accountable.
2512 if (PageAnon(old_page) && !PageKsm(old_page)) {
2513 if (!trylock_page(old_page)) {
2514 page_cache_get(old_page);
2515 pte_unmap_unlock(page_table, ptl);
2516 lock_page(old_page);
2517 page_table = pte_offset_map_lock(mm, pmd, address,
2518 &ptl);
2519 if (!pte_same(*page_table, orig_pte)) {
2520 unlock_page(old_page);
2521 goto unlock;
2523 page_cache_release(old_page);
2525 if (reuse_swap_page(old_page)) {
2527 * The page is all ours. Move it to our anon_vma so
2528 * the rmap code will not search our parent or siblings.
2529 * Protected against the rmap code by the page lock.
2531 page_move_anon_rmap(old_page, vma, address);
2532 unlock_page(old_page);
2533 goto reuse;
2535 unlock_page(old_page);
2536 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2537 (VM_WRITE|VM_SHARED))) {
2539 * Only catch write-faults on shared writable pages,
2540 * read-only shared pages can get COWed by
2541 * get_user_pages(.write=1, .force=1).
2543 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2544 struct vm_fault vmf;
2545 int tmp;
2547 vmf.virtual_address = (void __user *)(address &
2548 PAGE_MASK);
2549 vmf.pgoff = old_page->index;
2550 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2551 vmf.page = old_page;
2554 * Notify the address space that the page is about to
2555 * become writable so that it can prohibit this or wait
2556 * for the page to get into an appropriate state.
2558 * We do this without the lock held, so that it can
2559 * sleep if it needs to.
2561 page_cache_get(old_page);
2562 pte_unmap_unlock(page_table, ptl);
2564 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2565 if (unlikely(tmp &
2566 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2567 ret = tmp;
2568 goto unwritable_page;
2570 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2571 lock_page(old_page);
2572 if (!old_page->mapping) {
2573 ret = 0; /* retry the fault */
2574 unlock_page(old_page);
2575 goto unwritable_page;
2577 } else
2578 VM_BUG_ON(!PageLocked(old_page));
2581 * Since we dropped the lock we need to revalidate
2582 * the PTE as someone else may have changed it. If
2583 * they did, we just return, as we can count on the
2584 * MMU to tell us if they didn't also make it writable.
2586 page_table = pte_offset_map_lock(mm, pmd, address,
2587 &ptl);
2588 if (!pte_same(*page_table, orig_pte)) {
2589 unlock_page(old_page);
2590 goto unlock;
2593 page_mkwrite = 1;
2595 dirty_page = old_page;
2596 get_page(dirty_page);
2598 reuse:
2599 flush_cache_page(vma, address, pte_pfn(orig_pte));
2600 entry = pte_mkyoung(orig_pte);
2601 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2602 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2603 update_mmu_cache(vma, address, page_table);
2604 pte_unmap_unlock(page_table, ptl);
2605 ret |= VM_FAULT_WRITE;
2607 if (!dirty_page)
2608 return ret;
2611 * Yes, Virginia, this is actually required to prevent a race
2612 * with clear_page_dirty_for_io() from clearing the page dirty
2613 * bit after it clear all dirty ptes, but before a racing
2614 * do_wp_page installs a dirty pte.
2616 * __do_fault is protected similarly.
2618 if (!page_mkwrite) {
2619 wait_on_page_locked(dirty_page);
2620 set_page_dirty_balance(dirty_page, page_mkwrite);
2622 put_page(dirty_page);
2623 if (page_mkwrite) {
2624 struct address_space *mapping = dirty_page->mapping;
2626 set_page_dirty(dirty_page);
2627 unlock_page(dirty_page);
2628 page_cache_release(dirty_page);
2629 if (mapping) {
2631 * Some device drivers do not set page.mapping
2632 * but still dirty their pages
2634 balance_dirty_pages_ratelimited(mapping);
2638 /* file_update_time outside page_lock */
2639 if (vma->vm_file)
2640 file_update_time(vma->vm_file);
2642 return ret;
2646 * Ok, we need to copy. Oh, well..
2648 page_cache_get(old_page);
2649 gotten:
2650 pte_unmap_unlock(page_table, ptl);
2652 if (unlikely(anon_vma_prepare(vma)))
2653 goto oom;
2655 if (is_zero_pfn(pte_pfn(orig_pte))) {
2656 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2657 if (!new_page)
2658 goto oom;
2659 } else {
2660 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2661 if (!new_page)
2662 goto oom;
2663 cow_user_page(new_page, old_page, address, vma);
2665 __SetPageUptodate(new_page);
2667 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2668 goto oom_free_new;
2671 * Re-check the pte - we dropped the lock
2673 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2674 if (likely(pte_same(*page_table, orig_pte))) {
2675 if (old_page) {
2676 if (!PageAnon(old_page)) {
2677 dec_mm_counter_fast(mm, MM_FILEPAGES);
2678 inc_mm_counter_fast(mm, MM_ANONPAGES);
2680 } else
2681 inc_mm_counter_fast(mm, MM_ANONPAGES);
2682 flush_cache_page(vma, address, pte_pfn(orig_pte));
2683 entry = mk_pte(new_page, vma->vm_page_prot);
2684 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2686 * Clear the pte entry and flush it first, before updating the
2687 * pte with the new entry. This will avoid a race condition
2688 * seen in the presence of one thread doing SMC and another
2689 * thread doing COW.
2691 ptep_clear_flush(vma, address, page_table);
2692 page_add_new_anon_rmap(new_page, vma, address);
2694 * We call the notify macro here because, when using secondary
2695 * mmu page tables (such as kvm shadow page tables), we want the
2696 * new page to be mapped directly into the secondary page table.
2698 set_pte_at_notify(mm, address, page_table, entry);
2699 update_mmu_cache(vma, address, page_table);
2700 if (old_page) {
2702 * Only after switching the pte to the new page may
2703 * we remove the mapcount here. Otherwise another
2704 * process may come and find the rmap count decremented
2705 * before the pte is switched to the new page, and
2706 * "reuse" the old page writing into it while our pte
2707 * here still points into it and can be read by other
2708 * threads.
2710 * The critical issue is to order this
2711 * page_remove_rmap with the ptp_clear_flush above.
2712 * Those stores are ordered by (if nothing else,)
2713 * the barrier present in the atomic_add_negative
2714 * in page_remove_rmap.
2716 * Then the TLB flush in ptep_clear_flush ensures that
2717 * no process can access the old page before the
2718 * decremented mapcount is visible. And the old page
2719 * cannot be reused until after the decremented
2720 * mapcount is visible. So transitively, TLBs to
2721 * old page will be flushed before it can be reused.
2723 page_remove_rmap(old_page);
2726 /* Free the old page.. */
2727 new_page = old_page;
2728 ret |= VM_FAULT_WRITE;
2729 } else
2730 mem_cgroup_uncharge_page(new_page);
2732 if (new_page)
2733 page_cache_release(new_page);
2734 unlock:
2735 pte_unmap_unlock(page_table, ptl);
2736 if (old_page) {
2738 * Don't let another task, with possibly unlocked vma,
2739 * keep the mlocked page.
2741 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2742 lock_page(old_page); /* LRU manipulation */
2743 munlock_vma_page(old_page);
2744 unlock_page(old_page);
2746 page_cache_release(old_page);
2748 return ret;
2749 oom_free_new:
2750 page_cache_release(new_page);
2751 oom:
2752 if (old_page) {
2753 if (page_mkwrite) {
2754 unlock_page(old_page);
2755 page_cache_release(old_page);
2757 page_cache_release(old_page);
2759 return VM_FAULT_OOM;
2761 unwritable_page:
2762 page_cache_release(old_page);
2763 return ret;
2766 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2767 unsigned long start_addr, unsigned long end_addr,
2768 struct zap_details *details)
2770 zap_page_range(vma, start_addr, end_addr - start_addr, details);
2773 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2774 struct zap_details *details)
2776 struct vm_area_struct *vma;
2777 struct prio_tree_iter iter;
2778 pgoff_t vba, vea, zba, zea;
2780 vma_prio_tree_foreach(vma, &iter, root,
2781 details->first_index, details->last_index) {
2783 vba = vma->vm_pgoff;
2784 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2785 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2786 zba = details->first_index;
2787 if (zba < vba)
2788 zba = vba;
2789 zea = details->last_index;
2790 if (zea > vea)
2791 zea = vea;
2793 unmap_mapping_range_vma(vma,
2794 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2795 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2796 details);
2800 static inline void unmap_mapping_range_list(struct list_head *head,
2801 struct zap_details *details)
2803 struct vm_area_struct *vma;
2806 * In nonlinear VMAs there is no correspondence between virtual address
2807 * offset and file offset. So we must perform an exhaustive search
2808 * across *all* the pages in each nonlinear VMA, not just the pages
2809 * whose virtual address lies outside the file truncation point.
2811 list_for_each_entry(vma, head, shared.vm_set.list) {
2812 details->nonlinear_vma = vma;
2813 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2818 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2819 * @mapping: the address space containing mmaps to be unmapped.
2820 * @holebegin: byte in first page to unmap, relative to the start of
2821 * the underlying file. This will be rounded down to a PAGE_SIZE
2822 * boundary. Note that this is different from truncate_pagecache(), which
2823 * must keep the partial page. In contrast, we must get rid of
2824 * partial pages.
2825 * @holelen: size of prospective hole in bytes. This will be rounded
2826 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2827 * end of the file.
2828 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2829 * but 0 when invalidating pagecache, don't throw away private data.
2831 void unmap_mapping_range(struct address_space *mapping,
2832 loff_t const holebegin, loff_t const holelen, int even_cows)
2834 struct zap_details details;
2835 pgoff_t hba = holebegin >> PAGE_SHIFT;
2836 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2838 /* Check for overflow. */
2839 if (sizeof(holelen) > sizeof(hlen)) {
2840 long long holeend =
2841 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2842 if (holeend & ~(long long)ULONG_MAX)
2843 hlen = ULONG_MAX - hba + 1;
2846 details.check_mapping = even_cows? NULL: mapping;
2847 details.nonlinear_vma = NULL;
2848 details.first_index = hba;
2849 details.last_index = hba + hlen - 1;
2850 if (details.last_index < details.first_index)
2851 details.last_index = ULONG_MAX;
2854 mutex_lock(&mapping->i_mmap_mutex);
2855 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2856 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2857 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2858 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2859 mutex_unlock(&mapping->i_mmap_mutex);
2861 EXPORT_SYMBOL(unmap_mapping_range);
2864 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2865 * but allow concurrent faults), and pte mapped but not yet locked.
2866 * We return with mmap_sem still held, but pte unmapped and unlocked.
2868 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2869 unsigned long address, pte_t *page_table, pmd_t *pmd,
2870 unsigned int flags, pte_t orig_pte)
2872 spinlock_t *ptl;
2873 struct page *page, *swapcache = NULL;
2874 swp_entry_t entry;
2875 pte_t pte;
2876 int locked;
2877 struct mem_cgroup *ptr;
2878 int exclusive = 0;
2879 int ret = 0;
2881 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2882 goto out;
2884 entry = pte_to_swp_entry(orig_pte);
2885 if (unlikely(non_swap_entry(entry))) {
2886 if (is_migration_entry(entry)) {
2887 migration_entry_wait(mm, pmd, address);
2888 } else if (is_hwpoison_entry(entry)) {
2889 ret = VM_FAULT_HWPOISON;
2890 } else {
2891 print_bad_pte(vma, address, orig_pte, NULL);
2892 ret = VM_FAULT_SIGBUS;
2894 goto out;
2896 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2897 page = lookup_swap_cache(entry);
2898 if (!page) {
2899 grab_swap_token(mm); /* Contend for token _before_ read-in */
2900 page = swapin_readahead(entry,
2901 GFP_HIGHUSER_MOVABLE, vma, address);
2902 if (!page) {
2904 * Back out if somebody else faulted in this pte
2905 * while we released the pte lock.
2907 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2908 if (likely(pte_same(*page_table, orig_pte)))
2909 ret = VM_FAULT_OOM;
2910 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2911 goto unlock;
2914 /* Had to read the page from swap area: Major fault */
2915 ret = VM_FAULT_MAJOR;
2916 count_vm_event(PGMAJFAULT);
2917 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2918 } else if (PageHWPoison(page)) {
2920 * hwpoisoned dirty swapcache pages are kept for killing
2921 * owner processes (which may be unknown at hwpoison time)
2923 ret = VM_FAULT_HWPOISON;
2924 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2925 goto out_release;
2928 locked = lock_page_or_retry(page, mm, flags);
2929 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2930 if (!locked) {
2931 ret |= VM_FAULT_RETRY;
2932 goto out_release;
2936 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2937 * release the swapcache from under us. The page pin, and pte_same
2938 * test below, are not enough to exclude that. Even if it is still
2939 * swapcache, we need to check that the page's swap has not changed.
2941 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2942 goto out_page;
2944 if (ksm_might_need_to_copy(page, vma, address)) {
2945 swapcache = page;
2946 page = ksm_does_need_to_copy(page, vma, address);
2948 if (unlikely(!page)) {
2949 ret = VM_FAULT_OOM;
2950 page = swapcache;
2951 swapcache = NULL;
2952 goto out_page;
2956 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2957 ret = VM_FAULT_OOM;
2958 goto out_page;
2962 * Back out if somebody else already faulted in this pte.
2964 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2965 if (unlikely(!pte_same(*page_table, orig_pte)))
2966 goto out_nomap;
2968 if (unlikely(!PageUptodate(page))) {
2969 ret = VM_FAULT_SIGBUS;
2970 goto out_nomap;
2974 * The page isn't present yet, go ahead with the fault.
2976 * Be careful about the sequence of operations here.
2977 * To get its accounting right, reuse_swap_page() must be called
2978 * while the page is counted on swap but not yet in mapcount i.e.
2979 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2980 * must be called after the swap_free(), or it will never succeed.
2981 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2982 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2983 * in page->private. In this case, a record in swap_cgroup is silently
2984 * discarded at swap_free().
2987 inc_mm_counter_fast(mm, MM_ANONPAGES);
2988 dec_mm_counter_fast(mm, MM_SWAPENTS);
2989 pte = mk_pte(page, vma->vm_page_prot);
2990 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2991 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2992 flags &= ~FAULT_FLAG_WRITE;
2993 ret |= VM_FAULT_WRITE;
2994 exclusive = 1;
2996 flush_icache_page(vma, page);
2997 set_pte_at(mm, address, page_table, pte);
2998 do_page_add_anon_rmap(page, vma, address, exclusive);
2999 /* It's better to call commit-charge after rmap is established */
3000 mem_cgroup_commit_charge_swapin(page, ptr);
3002 swap_free(entry);
3003 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3004 try_to_free_swap(page);
3005 unlock_page(page);
3006 if (swapcache) {
3008 * Hold the lock to avoid the swap entry to be reused
3009 * until we take the PT lock for the pte_same() check
3010 * (to avoid false positives from pte_same). For
3011 * further safety release the lock after the swap_free
3012 * so that the swap count won't change under a
3013 * parallel locked swapcache.
3015 unlock_page(swapcache);
3016 page_cache_release(swapcache);
3019 if (flags & FAULT_FLAG_WRITE) {
3020 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3021 if (ret & VM_FAULT_ERROR)
3022 ret &= VM_FAULT_ERROR;
3023 goto out;
3026 /* No need to invalidate - it was non-present before */
3027 update_mmu_cache(vma, address, page_table);
3028 unlock:
3029 pte_unmap_unlock(page_table, ptl);
3030 out:
3031 return ret;
3032 out_nomap:
3033 mem_cgroup_cancel_charge_swapin(ptr);
3034 pte_unmap_unlock(page_table, ptl);
3035 out_page:
3036 unlock_page(page);
3037 out_release:
3038 page_cache_release(page);
3039 if (swapcache) {
3040 unlock_page(swapcache);
3041 page_cache_release(swapcache);
3043 return ret;
3047 * This is like a special single-page "expand_{down|up}wards()",
3048 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3049 * doesn't hit another vma.
3051 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3053 address &= PAGE_MASK;
3054 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3055 struct vm_area_struct *prev = vma->vm_prev;
3058 * Is there a mapping abutting this one below?
3060 * That's only ok if it's the same stack mapping
3061 * that has gotten split..
3063 if (prev && prev->vm_end == address)
3064 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3066 expand_downwards(vma, address - PAGE_SIZE);
3068 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3069 struct vm_area_struct *next = vma->vm_next;
3071 /* As VM_GROWSDOWN but s/below/above/ */
3072 if (next && next->vm_start == address + PAGE_SIZE)
3073 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3075 expand_upwards(vma, address + PAGE_SIZE);
3077 return 0;
3081 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3082 * but allow concurrent faults), and pte mapped but not yet locked.
3083 * We return with mmap_sem still held, but pte unmapped and unlocked.
3085 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3086 unsigned long address, pte_t *page_table, pmd_t *pmd,
3087 unsigned int flags)
3089 struct page *page;
3090 spinlock_t *ptl;
3091 pte_t entry;
3093 pte_unmap(page_table);
3095 /* Check if we need to add a guard page to the stack */
3096 if (check_stack_guard_page(vma, address) < 0)
3097 return VM_FAULT_SIGBUS;
3099 /* Use the zero-page for reads */
3100 if (!(flags & FAULT_FLAG_WRITE)) {
3101 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3102 vma->vm_page_prot));
3103 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3104 if (!pte_none(*page_table))
3105 goto unlock;
3106 goto setpte;
3109 /* Allocate our own private page. */
3110 if (unlikely(anon_vma_prepare(vma)))
3111 goto oom;
3112 page = alloc_zeroed_user_highpage_movable(vma, address);
3113 if (!page)
3114 goto oom;
3115 __SetPageUptodate(page);
3117 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3118 goto oom_free_page;
3120 entry = mk_pte(page, vma->vm_page_prot);
3121 if (vma->vm_flags & VM_WRITE)
3122 entry = pte_mkwrite(pte_mkdirty(entry));
3124 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3125 if (!pte_none(*page_table))
3126 goto release;
3128 inc_mm_counter_fast(mm, MM_ANONPAGES);
3129 page_add_new_anon_rmap(page, vma, address);
3130 setpte:
3131 set_pte_at(mm, address, page_table, entry);
3133 /* No need to invalidate - it was non-present before */
3134 update_mmu_cache(vma, address, page_table);
3135 unlock:
3136 pte_unmap_unlock(page_table, ptl);
3137 return 0;
3138 release:
3139 mem_cgroup_uncharge_page(page);
3140 page_cache_release(page);
3141 goto unlock;
3142 oom_free_page:
3143 page_cache_release(page);
3144 oom:
3145 return VM_FAULT_OOM;
3149 * __do_fault() tries to create a new page mapping. It aggressively
3150 * tries to share with existing pages, but makes a separate copy if
3151 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3152 * the next page fault.
3154 * As this is called only for pages that do not currently exist, we
3155 * do not need to flush old virtual caches or the TLB.
3157 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3158 * but allow concurrent faults), and pte neither mapped nor locked.
3159 * We return with mmap_sem still held, but pte unmapped and unlocked.
3161 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3162 unsigned long address, pmd_t *pmd,
3163 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3165 pte_t *page_table;
3166 spinlock_t *ptl;
3167 struct page *page;
3168 struct page *cow_page;
3169 pte_t entry;
3170 int anon = 0;
3171 struct page *dirty_page = NULL;
3172 struct vm_fault vmf;
3173 int ret;
3174 int page_mkwrite = 0;
3177 * If we do COW later, allocate page befor taking lock_page()
3178 * on the file cache page. This will reduce lock holding time.
3180 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3182 if (unlikely(anon_vma_prepare(vma)))
3183 return VM_FAULT_OOM;
3185 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3186 if (!cow_page)
3187 return VM_FAULT_OOM;
3189 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3190 page_cache_release(cow_page);
3191 return VM_FAULT_OOM;
3193 } else
3194 cow_page = NULL;
3196 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3197 vmf.pgoff = pgoff;
3198 vmf.flags = flags;
3199 vmf.page = NULL;
3201 ret = vma->vm_ops->fault(vma, &vmf);
3202 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3203 VM_FAULT_RETRY)))
3204 goto uncharge_out;
3206 if (unlikely(PageHWPoison(vmf.page))) {
3207 if (ret & VM_FAULT_LOCKED)
3208 unlock_page(vmf.page);
3209 ret = VM_FAULT_HWPOISON;
3210 goto uncharge_out;
3214 * For consistency in subsequent calls, make the faulted page always
3215 * locked.
3217 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3218 lock_page(vmf.page);
3219 else
3220 VM_BUG_ON(!PageLocked(vmf.page));
3223 * Should we do an early C-O-W break?
3225 page = vmf.page;
3226 if (flags & FAULT_FLAG_WRITE) {
3227 if (!(vma->vm_flags & VM_SHARED)) {
3228 page = cow_page;
3229 anon = 1;
3230 copy_user_highpage(page, vmf.page, address, vma);
3231 __SetPageUptodate(page);
3232 } else {
3234 * If the page will be shareable, see if the backing
3235 * address space wants to know that the page is about
3236 * to become writable
3238 if (vma->vm_ops->page_mkwrite) {
3239 int tmp;
3241 unlock_page(page);
3242 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3243 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3244 if (unlikely(tmp &
3245 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3246 ret = tmp;
3247 goto unwritable_page;
3249 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3250 lock_page(page);
3251 if (!page->mapping) {
3252 ret = 0; /* retry the fault */
3253 unlock_page(page);
3254 goto unwritable_page;
3256 } else
3257 VM_BUG_ON(!PageLocked(page));
3258 page_mkwrite = 1;
3264 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3267 * This silly early PAGE_DIRTY setting removes a race
3268 * due to the bad i386 page protection. But it's valid
3269 * for other architectures too.
3271 * Note that if FAULT_FLAG_WRITE is set, we either now have
3272 * an exclusive copy of the page, or this is a shared mapping,
3273 * so we can make it writable and dirty to avoid having to
3274 * handle that later.
3276 /* Only go through if we didn't race with anybody else... */
3277 if (likely(pte_same(*page_table, orig_pte))) {
3278 flush_icache_page(vma, page);
3279 entry = mk_pte(page, vma->vm_page_prot);
3280 if (flags & FAULT_FLAG_WRITE)
3281 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3282 if (anon) {
3283 inc_mm_counter_fast(mm, MM_ANONPAGES);
3284 page_add_new_anon_rmap(page, vma, address);
3285 } else {
3286 inc_mm_counter_fast(mm, MM_FILEPAGES);
3287 page_add_file_rmap(page);
3288 if (flags & FAULT_FLAG_WRITE) {
3289 dirty_page = page;
3290 get_page(dirty_page);
3293 set_pte_at(mm, address, page_table, entry);
3295 /* no need to invalidate: a not-present page won't be cached */
3296 update_mmu_cache(vma, address, page_table);
3297 } else {
3298 if (cow_page)
3299 mem_cgroup_uncharge_page(cow_page);
3300 if (anon)
3301 page_cache_release(page);
3302 else
3303 anon = 1; /* no anon but release faulted_page */
3306 pte_unmap_unlock(page_table, ptl);
3308 if (dirty_page) {
3309 struct address_space *mapping = page->mapping;
3311 if (set_page_dirty(dirty_page))
3312 page_mkwrite = 1;
3313 unlock_page(dirty_page);
3314 put_page(dirty_page);
3315 if (page_mkwrite && mapping) {
3317 * Some device drivers do not set page.mapping but still
3318 * dirty their pages
3320 balance_dirty_pages_ratelimited(mapping);
3323 /* file_update_time outside page_lock */
3324 if (vma->vm_file)
3325 file_update_time(vma->vm_file);
3326 } else {
3327 unlock_page(vmf.page);
3328 if (anon)
3329 page_cache_release(vmf.page);
3332 return ret;
3334 unwritable_page:
3335 page_cache_release(page);
3336 return ret;
3337 uncharge_out:
3338 /* fs's fault handler get error */
3339 if (cow_page) {
3340 mem_cgroup_uncharge_page(cow_page);
3341 page_cache_release(cow_page);
3343 return ret;
3346 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3347 unsigned long address, pte_t *page_table, pmd_t *pmd,
3348 unsigned int flags, pte_t orig_pte)
3350 pgoff_t pgoff = (((address & PAGE_MASK)
3351 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3353 pte_unmap(page_table);
3354 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3358 * Fault of a previously existing named mapping. Repopulate the pte
3359 * from the encoded file_pte if possible. This enables swappable
3360 * nonlinear vmas.
3362 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3363 * but allow concurrent faults), and pte mapped but not yet locked.
3364 * We return with mmap_sem still held, but pte unmapped and unlocked.
3366 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3367 unsigned long address, pte_t *page_table, pmd_t *pmd,
3368 unsigned int flags, pte_t orig_pte)
3370 pgoff_t pgoff;
3372 flags |= FAULT_FLAG_NONLINEAR;
3374 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3375 return 0;
3377 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3379 * Page table corrupted: show pte and kill process.
3381 print_bad_pte(vma, address, orig_pte, NULL);
3382 return VM_FAULT_SIGBUS;
3385 pgoff = pte_to_pgoff(orig_pte);
3386 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3390 * These routines also need to handle stuff like marking pages dirty
3391 * and/or accessed for architectures that don't do it in hardware (most
3392 * RISC architectures). The early dirtying is also good on the i386.
3394 * There is also a hook called "update_mmu_cache()" that architectures
3395 * with external mmu caches can use to update those (ie the Sparc or
3396 * PowerPC hashed page tables that act as extended TLBs).
3398 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3399 * but allow concurrent faults), and pte mapped but not yet locked.
3400 * We return with mmap_sem still held, but pte unmapped and unlocked.
3402 int handle_pte_fault(struct mm_struct *mm,
3403 struct vm_area_struct *vma, unsigned long address,
3404 pte_t *pte, pmd_t *pmd, unsigned int flags)
3406 pte_t entry;
3407 spinlock_t *ptl;
3409 entry = *pte;
3410 if (!pte_present(entry)) {
3411 if (pte_none(entry)) {
3412 if (vma->vm_ops) {
3413 if (likely(vma->vm_ops->fault))
3414 return do_linear_fault(mm, vma, address,
3415 pte, pmd, flags, entry);
3417 return do_anonymous_page(mm, vma, address,
3418 pte, pmd, flags);
3420 if (pte_file(entry))
3421 return do_nonlinear_fault(mm, vma, address,
3422 pte, pmd, flags, entry);
3423 return do_swap_page(mm, vma, address,
3424 pte, pmd, flags, entry);
3427 ptl = pte_lockptr(mm, pmd);
3428 spin_lock(ptl);
3429 if (unlikely(!pte_same(*pte, entry)))
3430 goto unlock;
3431 if (flags & FAULT_FLAG_WRITE) {
3432 if (!pte_write(entry))
3433 return do_wp_page(mm, vma, address,
3434 pte, pmd, ptl, entry);
3435 entry = pte_mkdirty(entry);
3437 entry = pte_mkyoung(entry);
3438 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3439 update_mmu_cache(vma, address, pte);
3440 } else {
3442 * This is needed only for protection faults but the arch code
3443 * is not yet telling us if this is a protection fault or not.
3444 * This still avoids useless tlb flushes for .text page faults
3445 * with threads.
3447 if (flags & FAULT_FLAG_WRITE)
3448 flush_tlb_fix_spurious_fault(vma, address);
3450 unlock:
3451 pte_unmap_unlock(pte, ptl);
3452 return 0;
3456 * By the time we get here, we already hold the mm semaphore
3458 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3459 unsigned long address, unsigned int flags)
3461 pgd_t *pgd;
3462 pud_t *pud;
3463 pmd_t *pmd;
3464 pte_t *pte;
3466 __set_current_state(TASK_RUNNING);
3468 count_vm_event(PGFAULT);
3469 mem_cgroup_count_vm_event(mm, PGFAULT);
3471 /* do counter updates before entering really critical section. */
3472 check_sync_rss_stat(current);
3474 if (unlikely(is_vm_hugetlb_page(vma)))
3475 return hugetlb_fault(mm, vma, address, flags);
3477 retry:
3478 pgd = pgd_offset(mm, address);
3479 pud = pud_alloc(mm, pgd, address);
3480 if (!pud)
3481 return VM_FAULT_OOM;
3482 pmd = pmd_alloc(mm, pud, address);
3483 if (!pmd)
3484 return VM_FAULT_OOM;
3485 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3486 if (!vma->vm_ops)
3487 return do_huge_pmd_anonymous_page(mm, vma, address,
3488 pmd, flags);
3489 } else {
3490 pmd_t orig_pmd = *pmd;
3491 int ret;
3493 barrier();
3494 if (pmd_trans_huge(orig_pmd)) {
3495 if (flags & FAULT_FLAG_WRITE &&
3496 !pmd_write(orig_pmd) &&
3497 !pmd_trans_splitting(orig_pmd)) {
3498 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3499 orig_pmd);
3501 * If COW results in an oom, the huge pmd will
3502 * have been split, so retry the fault on the
3503 * pte for a smaller charge.
3505 if (unlikely(ret & VM_FAULT_OOM))
3506 goto retry;
3507 return ret;
3509 return 0;
3514 * Use __pte_alloc instead of pte_alloc_map, because we can't
3515 * run pte_offset_map on the pmd, if an huge pmd could
3516 * materialize from under us from a different thread.
3518 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3519 return VM_FAULT_OOM;
3520 /* if an huge pmd materialized from under us just retry later */
3521 if (unlikely(pmd_trans_huge(*pmd)))
3522 return 0;
3524 * A regular pmd is established and it can't morph into a huge pmd
3525 * from under us anymore at this point because we hold the mmap_sem
3526 * read mode and khugepaged takes it in write mode. So now it's
3527 * safe to run pte_offset_map().
3529 pte = pte_offset_map(pmd, address);
3531 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3534 #ifndef __PAGETABLE_PUD_FOLDED
3536 * Allocate page upper directory.
3537 * We've already handled the fast-path in-line.
3539 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3541 pud_t *new = pud_alloc_one(mm, address);
3542 if (!new)
3543 return -ENOMEM;
3545 smp_wmb(); /* See comment in __pte_alloc */
3547 spin_lock(&mm->page_table_lock);
3548 if (pgd_present(*pgd)) /* Another has populated it */
3549 pud_free(mm, new);
3550 else
3551 pgd_populate(mm, pgd, new);
3552 spin_unlock(&mm->page_table_lock);
3553 return 0;
3555 #endif /* __PAGETABLE_PUD_FOLDED */
3557 #ifndef __PAGETABLE_PMD_FOLDED
3559 * Allocate page middle directory.
3560 * We've already handled the fast-path in-line.
3562 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3564 pmd_t *new = pmd_alloc_one(mm, address);
3565 if (!new)
3566 return -ENOMEM;
3568 smp_wmb(); /* See comment in __pte_alloc */
3570 spin_lock(&mm->page_table_lock);
3571 #ifndef __ARCH_HAS_4LEVEL_HACK
3572 if (pud_present(*pud)) /* Another has populated it */
3573 pmd_free(mm, new);
3574 else
3575 pud_populate(mm, pud, new);
3576 #else
3577 if (pgd_present(*pud)) /* Another has populated it */
3578 pmd_free(mm, new);
3579 else
3580 pgd_populate(mm, pud, new);
3581 #endif /* __ARCH_HAS_4LEVEL_HACK */
3582 spin_unlock(&mm->page_table_lock);
3583 return 0;
3585 #endif /* __PAGETABLE_PMD_FOLDED */
3587 int make_pages_present(unsigned long addr, unsigned long end)
3589 int ret, len, write;
3590 struct vm_area_struct * vma;
3592 vma = find_vma(current->mm, addr);
3593 if (!vma)
3594 return -ENOMEM;
3596 * We want to touch writable mappings with a write fault in order
3597 * to break COW, except for shared mappings because these don't COW
3598 * and we would not want to dirty them for nothing.
3600 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3601 BUG_ON(addr >= end);
3602 BUG_ON(end > vma->vm_end);
3603 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3604 ret = get_user_pages(current, current->mm, addr,
3605 len, write, 0, NULL, NULL);
3606 if (ret < 0)
3607 return ret;
3608 return ret == len ? 0 : -EFAULT;
3611 #if !defined(__HAVE_ARCH_GATE_AREA)
3613 #if defined(AT_SYSINFO_EHDR)
3614 static struct vm_area_struct gate_vma;
3616 static int __init gate_vma_init(void)
3618 gate_vma.vm_mm = NULL;
3619 gate_vma.vm_start = FIXADDR_USER_START;
3620 gate_vma.vm_end = FIXADDR_USER_END;
3621 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3622 gate_vma.vm_page_prot = __P101;
3624 * Make sure the vDSO gets into every core dump.
3625 * Dumping its contents makes post-mortem fully interpretable later
3626 * without matching up the same kernel and hardware config to see
3627 * what PC values meant.
3629 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3630 return 0;
3632 __initcall(gate_vma_init);
3633 #endif
3635 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3637 #ifdef AT_SYSINFO_EHDR
3638 return &gate_vma;
3639 #else
3640 return NULL;
3641 #endif
3644 int in_gate_area_no_mm(unsigned long addr)
3646 #ifdef AT_SYSINFO_EHDR
3647 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3648 return 1;
3649 #endif
3650 return 0;
3653 #endif /* __HAVE_ARCH_GATE_AREA */
3655 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3656 pte_t **ptepp, spinlock_t **ptlp)
3658 pgd_t *pgd;
3659 pud_t *pud;
3660 pmd_t *pmd;
3661 pte_t *ptep;
3663 pgd = pgd_offset(mm, address);
3664 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3665 goto out;
3667 pud = pud_offset(pgd, address);
3668 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3669 goto out;
3671 pmd = pmd_offset(pud, address);
3672 VM_BUG_ON(pmd_trans_huge(*pmd));
3673 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3674 goto out;
3676 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3677 if (pmd_huge(*pmd))
3678 goto out;
3680 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3681 if (!ptep)
3682 goto out;
3683 if (!pte_present(*ptep))
3684 goto unlock;
3685 *ptepp = ptep;
3686 return 0;
3687 unlock:
3688 pte_unmap_unlock(ptep, *ptlp);
3689 out:
3690 return -EINVAL;
3693 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3694 pte_t **ptepp, spinlock_t **ptlp)
3696 int res;
3698 /* (void) is needed to make gcc happy */
3699 (void) __cond_lock(*ptlp,
3700 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3701 return res;
3705 * follow_pfn - look up PFN at a user virtual address
3706 * @vma: memory mapping
3707 * @address: user virtual address
3708 * @pfn: location to store found PFN
3710 * Only IO mappings and raw PFN mappings are allowed.
3712 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3714 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3715 unsigned long *pfn)
3717 int ret = -EINVAL;
3718 spinlock_t *ptl;
3719 pte_t *ptep;
3721 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3722 return ret;
3724 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3725 if (ret)
3726 return ret;
3727 *pfn = pte_pfn(*ptep);
3728 pte_unmap_unlock(ptep, ptl);
3729 return 0;
3731 EXPORT_SYMBOL(follow_pfn);
3733 #ifdef CONFIG_HAVE_IOREMAP_PROT
3734 int follow_phys(struct vm_area_struct *vma,
3735 unsigned long address, unsigned int flags,
3736 unsigned long *prot, resource_size_t *phys)
3738 int ret = -EINVAL;
3739 pte_t *ptep, pte;
3740 spinlock_t *ptl;
3742 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3743 goto out;
3745 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3746 goto out;
3747 pte = *ptep;
3749 if ((flags & FOLL_WRITE) && !pte_write(pte))
3750 goto unlock;
3752 *prot = pgprot_val(pte_pgprot(pte));
3753 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3755 ret = 0;
3756 unlock:
3757 pte_unmap_unlock(ptep, ptl);
3758 out:
3759 return ret;
3762 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3763 void *buf, int len, int write)
3765 resource_size_t phys_addr;
3766 unsigned long prot = 0;
3767 void __iomem *maddr;
3768 int offset = addr & (PAGE_SIZE-1);
3770 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3771 return -EINVAL;
3773 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3774 if (write)
3775 memcpy_toio(maddr + offset, buf, len);
3776 else
3777 memcpy_fromio(buf, maddr + offset, len);
3778 iounmap(maddr);
3780 return len;
3782 #endif
3785 * Access another process' address space as given in mm. If non-NULL, use the
3786 * given task for page fault accounting.
3788 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3789 unsigned long addr, void *buf, int len, int write)
3791 struct vm_area_struct *vma;
3792 void *old_buf = buf;
3794 down_read(&mm->mmap_sem);
3795 /* ignore errors, just check how much was successfully transferred */
3796 while (len) {
3797 int bytes, ret, offset;
3798 void *maddr;
3799 struct page *page = NULL;
3801 ret = get_user_pages(tsk, mm, addr, 1,
3802 write, 1, &page, &vma);
3803 if (ret <= 0) {
3805 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3806 * we can access using slightly different code.
3808 #ifdef CONFIG_HAVE_IOREMAP_PROT
3809 vma = find_vma(mm, addr);
3810 if (!vma || vma->vm_start > addr)
3811 break;
3812 if (vma->vm_ops && vma->vm_ops->access)
3813 ret = vma->vm_ops->access(vma, addr, buf,
3814 len, write);
3815 if (ret <= 0)
3816 #endif
3817 break;
3818 bytes = ret;
3819 } else {
3820 bytes = len;
3821 offset = addr & (PAGE_SIZE-1);
3822 if (bytes > PAGE_SIZE-offset)
3823 bytes = PAGE_SIZE-offset;
3825 maddr = kmap(page);
3826 if (write) {
3827 copy_to_user_page(vma, page, addr,
3828 maddr + offset, buf, bytes);
3829 set_page_dirty_lock(page);
3830 } else {
3831 copy_from_user_page(vma, page, addr,
3832 buf, maddr + offset, bytes);
3834 kunmap(page);
3835 page_cache_release(page);
3837 len -= bytes;
3838 buf += bytes;
3839 addr += bytes;
3841 up_read(&mm->mmap_sem);
3843 return buf - old_buf;
3847 * access_remote_vm - access another process' address space
3848 * @mm: the mm_struct of the target address space
3849 * @addr: start address to access
3850 * @buf: source or destination buffer
3851 * @len: number of bytes to transfer
3852 * @write: whether the access is a write
3854 * The caller must hold a reference on @mm.
3856 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3857 void *buf, int len, int write)
3859 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3863 * Access another process' address space.
3864 * Source/target buffer must be kernel space,
3865 * Do not walk the page table directly, use get_user_pages
3867 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3868 void *buf, int len, int write)
3870 struct mm_struct *mm;
3871 int ret;
3873 mm = get_task_mm(tsk);
3874 if (!mm)
3875 return 0;
3877 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3878 mmput(mm);
3880 return ret;
3884 * Print the name of a VMA.
3886 void print_vma_addr(char *prefix, unsigned long ip)
3888 struct mm_struct *mm = current->mm;
3889 struct vm_area_struct *vma;
3892 * Do not print if we are in atomic
3893 * contexts (in exception stacks, etc.):
3895 if (preempt_count())
3896 return;
3898 down_read(&mm->mmap_sem);
3899 vma = find_vma(mm, ip);
3900 if (vma && vma->vm_file) {
3901 struct file *f = vma->vm_file;
3902 char *buf = (char *)__get_free_page(GFP_KERNEL);
3903 if (buf) {
3904 char *p, *s;
3906 p = d_path(&f->f_path, buf, PAGE_SIZE);
3907 if (IS_ERR(p))
3908 p = "?";
3909 s = strrchr(p, '/');
3910 if (s)
3911 p = s+1;
3912 printk("%s%s[%lx+%lx]", prefix, p,
3913 vma->vm_start,
3914 vma->vm_end - vma->vm_start);
3915 free_page((unsigned long)buf);
3918 up_read(&current->mm->mmap_sem);
3921 #ifdef CONFIG_PROVE_LOCKING
3922 void might_fault(void)
3925 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3926 * holding the mmap_sem, this is safe because kernel memory doesn't
3927 * get paged out, therefore we'll never actually fault, and the
3928 * below annotations will generate false positives.
3930 if (segment_eq(get_fs(), KERNEL_DS))
3931 return;
3933 might_sleep();
3935 * it would be nicer only to annotate paths which are not under
3936 * pagefault_disable, however that requires a larger audit and
3937 * providing helpers like get_user_atomic.
3939 if (!in_atomic() && current->mm)
3940 might_lock_read(&current->mm->mmap_sem);
3942 EXPORT_SYMBOL(might_fault);
3943 #endif
3945 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3946 static void clear_gigantic_page(struct page *page,
3947 unsigned long addr,
3948 unsigned int pages_per_huge_page)
3950 int i;
3951 struct page *p = page;
3953 might_sleep();
3954 for (i = 0; i < pages_per_huge_page;
3955 i++, p = mem_map_next(p, page, i)) {
3956 cond_resched();
3957 clear_user_highpage(p, addr + i * PAGE_SIZE);
3960 void clear_huge_page(struct page *page,
3961 unsigned long addr, unsigned int pages_per_huge_page)
3963 int i;
3965 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3966 clear_gigantic_page(page, addr, pages_per_huge_page);
3967 return;
3970 might_sleep();
3971 for (i = 0; i < pages_per_huge_page; i++) {
3972 cond_resched();
3973 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3977 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3978 unsigned long addr,
3979 struct vm_area_struct *vma,
3980 unsigned int pages_per_huge_page)
3982 int i;
3983 struct page *dst_base = dst;
3984 struct page *src_base = src;
3986 for (i = 0; i < pages_per_huge_page; ) {
3987 cond_resched();
3988 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3990 i++;
3991 dst = mem_map_next(dst, dst_base, i);
3992 src = mem_map_next(src, src_base, i);
3996 void copy_user_huge_page(struct page *dst, struct page *src,
3997 unsigned long addr, struct vm_area_struct *vma,
3998 unsigned int pages_per_huge_page)
4000 int i;
4002 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4003 copy_user_gigantic_page(dst, src, addr, vma,
4004 pages_per_huge_page);
4005 return;
4008 might_sleep();
4009 for (i = 0; i < pages_per_huge_page; i++) {
4010 cond_resched();
4011 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4014 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */