4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr
;
75 EXPORT_SYMBOL(max_mapnr
);
76 EXPORT_SYMBOL(mem_map
);
79 unsigned long num_physpages
;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
89 EXPORT_SYMBOL(num_physpages
);
90 EXPORT_SYMBOL(high_memory
);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly
=
99 #ifdef CONFIG_COMPAT_BRK
105 static int __init
disable_randmaps(char *s
)
107 randomize_va_space
= 0;
110 __setup("norandmaps", disable_randmaps
);
112 unsigned long zero_pfn __read_mostly
;
113 unsigned long highest_memmap_pfn __read_mostly
;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init
init_zero_pfn(void)
120 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
123 core_initcall(init_zero_pfn
);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct
*task
, struct mm_struct
*mm
)
132 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
133 if (task
->rss_stat
.count
[i
]) {
134 add_mm_counter(mm
, i
, task
->rss_stat
.count
[i
]);
135 task
->rss_stat
.count
[i
] = 0;
138 task
->rss_stat
.events
= 0;
141 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
143 struct task_struct
*task
= current
;
145 if (likely(task
->mm
== mm
))
146 task
->rss_stat
.count
[member
] += val
;
148 add_mm_counter(mm
, member
, val
);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct
*task
)
157 if (unlikely(task
!= current
))
159 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
160 __sync_task_rss_stat(task
, task
->mm
);
163 unsigned long get_mm_counter(struct mm_struct
*mm
, int member
)
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val
= atomic_long_read(&mm
->rss_stat
.count
[member
]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
178 return (unsigned long)val
;
181 void sync_mm_rss(struct task_struct
*task
, struct mm_struct
*mm
)
183 __sync_task_rss_stat(task
, mm
);
185 #else /* SPLIT_RSS_COUNTING */
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct
*task
)
194 #endif /* SPLIT_RSS_COUNTING */
196 #ifdef HAVE_GENERIC_MMU_GATHER
198 static int tlb_next_batch(struct mmu_gather
*tlb
)
200 struct mmu_gather_batch
*batch
;
204 tlb
->active
= batch
->next
;
208 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
211 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
218 batch
->max
= MAX_GATHER_BATCH
;
220 tlb
->active
->next
= batch
;
227 * Called to initialize an (on-stack) mmu_gather structure for page-table
228 * tear-down from @mm. The @fullmm argument is used when @mm is without
229 * users and we're going to destroy the full address space (exit/execve).
231 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, bool fullmm
)
235 tlb
->fullmm
= fullmm
;
237 tlb
->fast_mode
= (num_possible_cpus() == 1);
238 tlb
->local
.next
= NULL
;
240 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
241 tlb
->active
= &tlb
->local
;
242 tlb
->batch_count
= 0;
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 void tlb_flush_mmu(struct mmu_gather
*tlb
)
251 struct mmu_gather_batch
*batch
;
253 if (!tlb
->need_flush
)
257 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
258 tlb_table_flush(tlb
);
261 if (tlb_fast_mode(tlb
))
264 for (batch
= &tlb
->local
; batch
; batch
= batch
->next
) {
265 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
268 tlb
->active
= &tlb
->local
;
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
275 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
277 struct mmu_gather_batch
*batch
, *next
;
281 /* keep the page table cache within bounds */
284 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
286 free_pages((unsigned long)batch
, 0);
288 tlb
->local
.next
= NULL
;
292 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293 * handling the additional races in SMP caused by other CPUs caching valid
294 * mappings in their TLBs. Returns the number of free page slots left.
295 * When out of page slots we must call tlb_flush_mmu().
297 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
299 struct mmu_gather_batch
*batch
;
303 if (tlb_fast_mode(tlb
)) {
304 free_page_and_swap_cache(page
);
305 return 1; /* avoid calling tlb_flush_mmu() */
309 batch
->pages
[batch
->nr
++] = page
;
310 if (batch
->nr
== batch
->max
) {
311 if (!tlb_next_batch(tlb
))
315 VM_BUG_ON(batch
->nr
> batch
->max
);
317 return batch
->max
- batch
->nr
;
320 #endif /* HAVE_GENERIC_MMU_GATHER */
322 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
325 * See the comment near struct mmu_table_batch.
328 static void tlb_remove_table_smp_sync(void *arg
)
330 /* Simply deliver the interrupt */
333 static void tlb_remove_table_one(void *table
)
336 * This isn't an RCU grace period and hence the page-tables cannot be
337 * assumed to be actually RCU-freed.
339 * It is however sufficient for software page-table walkers that rely on
340 * IRQ disabling. See the comment near struct mmu_table_batch.
342 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
343 __tlb_remove_table(table
);
346 static void tlb_remove_table_rcu(struct rcu_head
*head
)
348 struct mmu_table_batch
*batch
;
351 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
353 for (i
= 0; i
< batch
->nr
; i
++)
354 __tlb_remove_table(batch
->tables
[i
]);
356 free_page((unsigned long)batch
);
359 void tlb_table_flush(struct mmu_gather
*tlb
)
361 struct mmu_table_batch
**batch
= &tlb
->batch
;
364 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
369 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
371 struct mmu_table_batch
**batch
= &tlb
->batch
;
376 * When there's less then two users of this mm there cannot be a
377 * concurrent page-table walk.
379 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
380 __tlb_remove_table(table
);
384 if (*batch
== NULL
) {
385 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
386 if (*batch
== NULL
) {
387 tlb_remove_table_one(table
);
392 (*batch
)->tables
[(*batch
)->nr
++] = table
;
393 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
394 tlb_table_flush(tlb
);
397 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
400 * If a p?d_bad entry is found while walking page tables, report
401 * the error, before resetting entry to p?d_none. Usually (but
402 * very seldom) called out from the p?d_none_or_clear_bad macros.
405 void pgd_clear_bad(pgd_t
*pgd
)
411 void pud_clear_bad(pud_t
*pud
)
417 void pmd_clear_bad(pmd_t
*pmd
)
424 * Note: this doesn't free the actual pages themselves. That
425 * has been handled earlier when unmapping all the memory regions.
427 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
430 pgtable_t token
= pmd_pgtable(*pmd
);
432 pte_free_tlb(tlb
, token
, addr
);
436 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
437 unsigned long addr
, unsigned long end
,
438 unsigned long floor
, unsigned long ceiling
)
445 pmd
= pmd_offset(pud
, addr
);
447 next
= pmd_addr_end(addr
, end
);
448 if (pmd_none_or_clear_bad(pmd
))
450 free_pte_range(tlb
, pmd
, addr
);
451 } while (pmd
++, addr
= next
, addr
!= end
);
461 if (end
- 1 > ceiling
- 1)
464 pmd
= pmd_offset(pud
, start
);
466 pmd_free_tlb(tlb
, pmd
, start
);
469 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
470 unsigned long addr
, unsigned long end
,
471 unsigned long floor
, unsigned long ceiling
)
478 pud
= pud_offset(pgd
, addr
);
480 next
= pud_addr_end(addr
, end
);
481 if (pud_none_or_clear_bad(pud
))
483 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
484 } while (pud
++, addr
= next
, addr
!= end
);
490 ceiling
&= PGDIR_MASK
;
494 if (end
- 1 > ceiling
- 1)
497 pud
= pud_offset(pgd
, start
);
499 pud_free_tlb(tlb
, pud
, start
);
503 * This function frees user-level page tables of a process.
505 * Must be called with pagetable lock held.
507 void free_pgd_range(struct mmu_gather
*tlb
,
508 unsigned long addr
, unsigned long end
,
509 unsigned long floor
, unsigned long ceiling
)
515 * The next few lines have given us lots of grief...
517 * Why are we testing PMD* at this top level? Because often
518 * there will be no work to do at all, and we'd prefer not to
519 * go all the way down to the bottom just to discover that.
521 * Why all these "- 1"s? Because 0 represents both the bottom
522 * of the address space and the top of it (using -1 for the
523 * top wouldn't help much: the masks would do the wrong thing).
524 * The rule is that addr 0 and floor 0 refer to the bottom of
525 * the address space, but end 0 and ceiling 0 refer to the top
526 * Comparisons need to use "end - 1" and "ceiling - 1" (though
527 * that end 0 case should be mythical).
529 * Wherever addr is brought up or ceiling brought down, we must
530 * be careful to reject "the opposite 0" before it confuses the
531 * subsequent tests. But what about where end is brought down
532 * by PMD_SIZE below? no, end can't go down to 0 there.
534 * Whereas we round start (addr) and ceiling down, by different
535 * masks at different levels, in order to test whether a table
536 * now has no other vmas using it, so can be freed, we don't
537 * bother to round floor or end up - the tests don't need that.
551 if (end
- 1 > ceiling
- 1)
556 pgd
= pgd_offset(tlb
->mm
, addr
);
558 next
= pgd_addr_end(addr
, end
);
559 if (pgd_none_or_clear_bad(pgd
))
561 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
562 } while (pgd
++, addr
= next
, addr
!= end
);
565 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
566 unsigned long floor
, unsigned long ceiling
)
569 struct vm_area_struct
*next
= vma
->vm_next
;
570 unsigned long addr
= vma
->vm_start
;
573 * Hide vma from rmap and truncate_pagecache before freeing
576 unlink_anon_vmas(vma
);
577 unlink_file_vma(vma
);
579 if (is_vm_hugetlb_page(vma
)) {
580 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
581 floor
, next
? next
->vm_start
: ceiling
);
584 * Optimization: gather nearby vmas into one call down
586 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
587 && !is_vm_hugetlb_page(next
)) {
590 unlink_anon_vmas(vma
);
591 unlink_file_vma(vma
);
593 free_pgd_range(tlb
, addr
, vma
->vm_end
,
594 floor
, next
? next
->vm_start
: ceiling
);
600 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
601 pmd_t
*pmd
, unsigned long address
)
603 pgtable_t
new = pte_alloc_one(mm
, address
);
604 int wait_split_huge_page
;
609 * Ensure all pte setup (eg. pte page lock and page clearing) are
610 * visible before the pte is made visible to other CPUs by being
611 * put into page tables.
613 * The other side of the story is the pointer chasing in the page
614 * table walking code (when walking the page table without locking;
615 * ie. most of the time). Fortunately, these data accesses consist
616 * of a chain of data-dependent loads, meaning most CPUs (alpha
617 * being the notable exception) will already guarantee loads are
618 * seen in-order. See the alpha page table accessors for the
619 * smp_read_barrier_depends() barriers in page table walking code.
621 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
623 spin_lock(&mm
->page_table_lock
);
624 wait_split_huge_page
= 0;
625 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
627 pmd_populate(mm
, pmd
, new);
629 } else if (unlikely(pmd_trans_splitting(*pmd
)))
630 wait_split_huge_page
= 1;
631 spin_unlock(&mm
->page_table_lock
);
634 if (wait_split_huge_page
)
635 wait_split_huge_page(vma
->anon_vma
, pmd
);
639 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
641 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
645 smp_wmb(); /* See comment in __pte_alloc */
647 spin_lock(&init_mm
.page_table_lock
);
648 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
649 pmd_populate_kernel(&init_mm
, pmd
, new);
652 VM_BUG_ON(pmd_trans_splitting(*pmd
));
653 spin_unlock(&init_mm
.page_table_lock
);
655 pte_free_kernel(&init_mm
, new);
659 static inline void init_rss_vec(int *rss
)
661 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
664 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
668 if (current
->mm
== mm
)
669 sync_mm_rss(current
, mm
);
670 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
672 add_mm_counter(mm
, i
, rss
[i
]);
676 * This function is called to print an error when a bad pte
677 * is found. For example, we might have a PFN-mapped pte in
678 * a region that doesn't allow it.
680 * The calling function must still handle the error.
682 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
683 pte_t pte
, struct page
*page
)
685 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
686 pud_t
*pud
= pud_offset(pgd
, addr
);
687 pmd_t
*pmd
= pmd_offset(pud
, addr
);
688 struct address_space
*mapping
;
690 static unsigned long resume
;
691 static unsigned long nr_shown
;
692 static unsigned long nr_unshown
;
695 * Allow a burst of 60 reports, then keep quiet for that minute;
696 * or allow a steady drip of one report per second.
698 if (nr_shown
== 60) {
699 if (time_before(jiffies
, resume
)) {
705 "BUG: Bad page map: %lu messages suppressed\n",
712 resume
= jiffies
+ 60 * HZ
;
714 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
715 index
= linear_page_index(vma
, addr
);
718 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
720 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
724 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
725 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
727 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
730 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
731 (unsigned long)vma
->vm_ops
->fault
);
732 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
733 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
734 (unsigned long)vma
->vm_file
->f_op
->mmap
);
736 add_taint(TAINT_BAD_PAGE
);
739 static inline int is_cow_mapping(vm_flags_t flags
)
741 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
745 static inline int is_zero_pfn(unsigned long pfn
)
747 return pfn
== zero_pfn
;
752 static inline unsigned long my_zero_pfn(unsigned long addr
)
759 * vm_normal_page -- This function gets the "struct page" associated with a pte.
761 * "Special" mappings do not wish to be associated with a "struct page" (either
762 * it doesn't exist, or it exists but they don't want to touch it). In this
763 * case, NULL is returned here. "Normal" mappings do have a struct page.
765 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
766 * pte bit, in which case this function is trivial. Secondly, an architecture
767 * may not have a spare pte bit, which requires a more complicated scheme,
770 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
771 * special mapping (even if there are underlying and valid "struct pages").
772 * COWed pages of a VM_PFNMAP are always normal.
774 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
775 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
776 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
777 * mapping will always honor the rule
779 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
781 * And for normal mappings this is false.
783 * This restricts such mappings to be a linear translation from virtual address
784 * to pfn. To get around this restriction, we allow arbitrary mappings so long
785 * as the vma is not a COW mapping; in that case, we know that all ptes are
786 * special (because none can have been COWed).
789 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
791 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
792 * page" backing, however the difference is that _all_ pages with a struct
793 * page (that is, those where pfn_valid is true) are refcounted and considered
794 * normal pages by the VM. The disadvantage is that pages are refcounted
795 * (which can be slower and simply not an option for some PFNMAP users). The
796 * advantage is that we don't have to follow the strict linearity rule of
797 * PFNMAP mappings in order to support COWable mappings.
800 #ifdef __HAVE_ARCH_PTE_SPECIAL
801 # define HAVE_PTE_SPECIAL 1
803 # define HAVE_PTE_SPECIAL 0
805 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
808 unsigned long pfn
= pte_pfn(pte
);
810 if (HAVE_PTE_SPECIAL
) {
811 if (likely(!pte_special(pte
)))
813 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
815 if (!is_zero_pfn(pfn
))
816 print_bad_pte(vma
, addr
, pte
, NULL
);
820 /* !HAVE_PTE_SPECIAL case follows: */
822 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
823 if (vma
->vm_flags
& VM_MIXEDMAP
) {
829 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
830 if (pfn
== vma
->vm_pgoff
+ off
)
832 if (!is_cow_mapping(vma
->vm_flags
))
837 if (is_zero_pfn(pfn
))
840 if (unlikely(pfn
> highest_memmap_pfn
)) {
841 print_bad_pte(vma
, addr
, pte
, NULL
);
846 * NOTE! We still have PageReserved() pages in the page tables.
847 * eg. VDSO mappings can cause them to exist.
850 return pfn_to_page(pfn
);
854 * copy one vm_area from one task to the other. Assumes the page tables
855 * already present in the new task to be cleared in the whole range
856 * covered by this vma.
859 static inline unsigned long
860 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
861 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
862 unsigned long addr
, int *rss
)
864 unsigned long vm_flags
= vma
->vm_flags
;
865 pte_t pte
= *src_pte
;
868 /* pte contains position in swap or file, so copy. */
869 if (unlikely(!pte_present(pte
))) {
870 if (!pte_file(pte
)) {
871 swp_entry_t entry
= pte_to_swp_entry(pte
);
873 if (swap_duplicate(entry
) < 0)
876 /* make sure dst_mm is on swapoff's mmlist. */
877 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
878 spin_lock(&mmlist_lock
);
879 if (list_empty(&dst_mm
->mmlist
))
880 list_add(&dst_mm
->mmlist
,
882 spin_unlock(&mmlist_lock
);
884 if (likely(!non_swap_entry(entry
)))
886 else if (is_write_migration_entry(entry
) &&
887 is_cow_mapping(vm_flags
)) {
889 * COW mappings require pages in both parent
890 * and child to be set to read.
892 make_migration_entry_read(&entry
);
893 pte
= swp_entry_to_pte(entry
);
894 set_pte_at(src_mm
, addr
, src_pte
, pte
);
901 * If it's a COW mapping, write protect it both
902 * in the parent and the child
904 if (is_cow_mapping(vm_flags
)) {
905 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
906 pte
= pte_wrprotect(pte
);
910 * If it's a shared mapping, mark it clean in
913 if (vm_flags
& VM_SHARED
)
914 pte
= pte_mkclean(pte
);
915 pte
= pte_mkold(pte
);
917 page
= vm_normal_page(vma
, addr
, pte
);
928 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
932 int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
933 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
934 unsigned long addr
, unsigned long end
)
936 pte_t
*orig_src_pte
, *orig_dst_pte
;
937 pte_t
*src_pte
, *dst_pte
;
938 spinlock_t
*src_ptl
, *dst_ptl
;
940 int rss
[NR_MM_COUNTERS
];
941 swp_entry_t entry
= (swp_entry_t
){0};
946 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
949 src_pte
= pte_offset_map(src_pmd
, addr
);
950 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
951 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
952 orig_src_pte
= src_pte
;
953 orig_dst_pte
= dst_pte
;
954 arch_enter_lazy_mmu_mode();
958 * We are holding two locks at this point - either of them
959 * could generate latencies in another task on another CPU.
961 if (progress
>= 32) {
963 if (need_resched() ||
964 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
967 if (pte_none(*src_pte
)) {
971 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
976 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
978 arch_leave_lazy_mmu_mode();
979 spin_unlock(src_ptl
);
980 pte_unmap(orig_src_pte
);
981 add_mm_rss_vec(dst_mm
, rss
);
982 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
986 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
995 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
996 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
997 unsigned long addr
, unsigned long end
)
999 pmd_t
*src_pmd
, *dst_pmd
;
1002 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
1005 src_pmd
= pmd_offset(src_pud
, addr
);
1007 next
= pmd_addr_end(addr
, end
);
1008 if (pmd_trans_huge(*src_pmd
)) {
1010 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
1011 err
= copy_huge_pmd(dst_mm
, src_mm
,
1012 dst_pmd
, src_pmd
, addr
, vma
);
1019 if (pmd_none_or_clear_bad(src_pmd
))
1021 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1024 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1028 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1029 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1030 unsigned long addr
, unsigned long end
)
1032 pud_t
*src_pud
, *dst_pud
;
1035 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
1038 src_pud
= pud_offset(src_pgd
, addr
);
1040 next
= pud_addr_end(addr
, end
);
1041 if (pud_none_or_clear_bad(src_pud
))
1043 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1046 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1050 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1051 struct vm_area_struct
*vma
)
1053 pgd_t
*src_pgd
, *dst_pgd
;
1055 unsigned long addr
= vma
->vm_start
;
1056 unsigned long end
= vma
->vm_end
;
1060 * Don't copy ptes where a page fault will fill them correctly.
1061 * Fork becomes much lighter when there are big shared or private
1062 * readonly mappings. The tradeoff is that copy_page_range is more
1063 * efficient than faulting.
1065 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
1070 if (is_vm_hugetlb_page(vma
))
1071 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1073 if (unlikely(is_pfn_mapping(vma
))) {
1075 * We do not free on error cases below as remove_vma
1076 * gets called on error from higher level routine
1078 ret
= track_pfn_vma_copy(vma
);
1084 * We need to invalidate the secondary MMU mappings only when
1085 * there could be a permission downgrade on the ptes of the
1086 * parent mm. And a permission downgrade will only happen if
1087 * is_cow_mapping() returns true.
1089 if (is_cow_mapping(vma
->vm_flags
))
1090 mmu_notifier_invalidate_range_start(src_mm
, addr
, end
);
1093 dst_pgd
= pgd_offset(dst_mm
, addr
);
1094 src_pgd
= pgd_offset(src_mm
, addr
);
1096 next
= pgd_addr_end(addr
, end
);
1097 if (pgd_none_or_clear_bad(src_pgd
))
1099 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1100 vma
, addr
, next
))) {
1104 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1106 if (is_cow_mapping(vma
->vm_flags
))
1107 mmu_notifier_invalidate_range_end(src_mm
,
1108 vma
->vm_start
, end
);
1112 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1113 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1114 unsigned long addr
, unsigned long end
,
1115 struct zap_details
*details
)
1117 struct mm_struct
*mm
= tlb
->mm
;
1118 int force_flush
= 0;
1119 int rss
[NR_MM_COUNTERS
];
1126 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1128 arch_enter_lazy_mmu_mode();
1131 if (pte_none(ptent
)) {
1135 if (pte_present(ptent
)) {
1138 page
= vm_normal_page(vma
, addr
, ptent
);
1139 if (unlikely(details
) && page
) {
1141 * unmap_shared_mapping_pages() wants to
1142 * invalidate cache without truncating:
1143 * unmap shared but keep private pages.
1145 if (details
->check_mapping
&&
1146 details
->check_mapping
!= page
->mapping
)
1149 * Each page->index must be checked when
1150 * invalidating or truncating nonlinear.
1152 if (details
->nonlinear_vma
&&
1153 (page
->index
< details
->first_index
||
1154 page
->index
> details
->last_index
))
1157 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1159 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1160 if (unlikely(!page
))
1162 if (unlikely(details
) && details
->nonlinear_vma
1163 && linear_page_index(details
->nonlinear_vma
,
1164 addr
) != page
->index
)
1165 set_pte_at(mm
, addr
, pte
,
1166 pgoff_to_pte(page
->index
));
1168 rss
[MM_ANONPAGES
]--;
1170 if (pte_dirty(ptent
))
1171 set_page_dirty(page
);
1172 if (pte_young(ptent
) &&
1173 likely(!VM_SequentialReadHint(vma
)))
1174 mark_page_accessed(page
);
1175 rss
[MM_FILEPAGES
]--;
1177 page_remove_rmap(page
);
1178 if (unlikely(page_mapcount(page
) < 0))
1179 print_bad_pte(vma
, addr
, ptent
, page
);
1180 force_flush
= !__tlb_remove_page(tlb
, page
);
1186 * If details->check_mapping, we leave swap entries;
1187 * if details->nonlinear_vma, we leave file entries.
1189 if (unlikely(details
))
1191 if (pte_file(ptent
)) {
1192 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
1193 print_bad_pte(vma
, addr
, ptent
, NULL
);
1195 swp_entry_t entry
= pte_to_swp_entry(ptent
);
1197 if (!non_swap_entry(entry
))
1199 if (unlikely(!free_swap_and_cache(entry
)))
1200 print_bad_pte(vma
, addr
, ptent
, NULL
);
1202 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1203 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1205 add_mm_rss_vec(mm
, rss
);
1206 arch_leave_lazy_mmu_mode();
1207 pte_unmap_unlock(start_pte
, ptl
);
1210 * mmu_gather ran out of room to batch pages, we break out of
1211 * the PTE lock to avoid doing the potential expensive TLB invalidate
1212 * and page-free while holding it.
1224 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1225 struct vm_area_struct
*vma
, pud_t
*pud
,
1226 unsigned long addr
, unsigned long end
,
1227 struct zap_details
*details
)
1232 pmd
= pmd_offset(pud
, addr
);
1234 next
= pmd_addr_end(addr
, end
);
1235 if (pmd_trans_huge(*pmd
)) {
1236 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1237 VM_BUG_ON(!rwsem_is_locked(&tlb
->mm
->mmap_sem
));
1238 split_huge_page_pmd(vma
->vm_mm
, pmd
);
1239 } else if (zap_huge_pmd(tlb
, vma
, pmd
))
1244 * Here there can be other concurrent MADV_DONTNEED or
1245 * trans huge page faults running, and if the pmd is
1246 * none or trans huge it can change under us. This is
1247 * because MADV_DONTNEED holds the mmap_sem in read
1250 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1252 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1255 } while (pmd
++, addr
= next
, addr
!= end
);
1260 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1261 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1262 unsigned long addr
, unsigned long end
,
1263 struct zap_details
*details
)
1268 pud
= pud_offset(pgd
, addr
);
1270 next
= pud_addr_end(addr
, end
);
1271 if (pud_none_or_clear_bad(pud
))
1273 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1274 } while (pud
++, addr
= next
, addr
!= end
);
1279 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
1280 struct vm_area_struct
*vma
,
1281 unsigned long addr
, unsigned long end
,
1282 struct zap_details
*details
)
1287 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1290 BUG_ON(addr
>= end
);
1291 mem_cgroup_uncharge_start();
1292 tlb_start_vma(tlb
, vma
);
1293 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1295 next
= pgd_addr_end(addr
, end
);
1296 if (pgd_none_or_clear_bad(pgd
))
1298 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1299 } while (pgd
++, addr
= next
, addr
!= end
);
1300 tlb_end_vma(tlb
, vma
);
1301 mem_cgroup_uncharge_end();
1307 * unmap_vmas - unmap a range of memory covered by a list of vma's
1308 * @tlb: address of the caller's struct mmu_gather
1309 * @vma: the starting vma
1310 * @start_addr: virtual address at which to start unmapping
1311 * @end_addr: virtual address at which to end unmapping
1312 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1313 * @details: details of nonlinear truncation or shared cache invalidation
1315 * Returns the end address of the unmapping (restart addr if interrupted).
1317 * Unmap all pages in the vma list.
1319 * Only addresses between `start' and `end' will be unmapped.
1321 * The VMA list must be sorted in ascending virtual address order.
1323 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1324 * range after unmap_vmas() returns. So the only responsibility here is to
1325 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1326 * drops the lock and schedules.
1328 unsigned long unmap_vmas(struct mmu_gather
*tlb
,
1329 struct vm_area_struct
*vma
, unsigned long start_addr
,
1330 unsigned long end_addr
, unsigned long *nr_accounted
,
1331 struct zap_details
*details
)
1333 unsigned long start
= start_addr
;
1334 struct mm_struct
*mm
= vma
->vm_mm
;
1336 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1337 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
1340 start
= max(vma
->vm_start
, start_addr
);
1341 if (start
>= vma
->vm_end
)
1343 end
= min(vma
->vm_end
, end_addr
);
1344 if (end
<= vma
->vm_start
)
1347 if (vma
->vm_flags
& VM_ACCOUNT
)
1348 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
1350 if (unlikely(is_pfn_mapping(vma
)))
1351 untrack_pfn_vma(vma
, 0, 0);
1353 while (start
!= end
) {
1354 if (unlikely(is_vm_hugetlb_page(vma
))) {
1356 * It is undesirable to test vma->vm_file as it
1357 * should be non-null for valid hugetlb area.
1358 * However, vm_file will be NULL in the error
1359 * cleanup path of do_mmap_pgoff. When
1360 * hugetlbfs ->mmap method fails,
1361 * do_mmap_pgoff() nullifies vma->vm_file
1362 * before calling this function to clean up.
1363 * Since no pte has actually been setup, it is
1364 * safe to do nothing in this case.
1367 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1368 __unmap_hugepage_range_final(vma
, start
, end
, NULL
);
1369 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1374 start
= unmap_page_range(tlb
, vma
, start
, end
, details
);
1378 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1379 return start
; /* which is now the end (or restart) address */
1383 * zap_page_range - remove user pages in a given range
1384 * @vma: vm_area_struct holding the applicable pages
1385 * @address: starting address of pages to zap
1386 * @size: number of bytes to zap
1387 * @details: details of nonlinear truncation or shared cache invalidation
1389 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
1390 unsigned long size
, struct zap_details
*details
)
1392 struct mm_struct
*mm
= vma
->vm_mm
;
1393 struct mmu_gather tlb
;
1394 unsigned long end
= address
+ size
;
1395 unsigned long nr_accounted
= 0;
1398 tlb_gather_mmu(&tlb
, mm
, 0);
1399 update_hiwater_rss(mm
);
1400 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
1401 tlb_finish_mmu(&tlb
, address
, end
);
1406 * zap_vma_ptes - remove ptes mapping the vma
1407 * @vma: vm_area_struct holding ptes to be zapped
1408 * @address: starting address of pages to zap
1409 * @size: number of bytes to zap
1411 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1413 * The entire address range must be fully contained within the vma.
1415 * Returns 0 if successful.
1417 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1420 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1421 !(vma
->vm_flags
& VM_PFNMAP
))
1423 zap_page_range(vma
, address
, size
, NULL
);
1426 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1429 * follow_page - look up a page descriptor from a user-virtual address
1430 * @vma: vm_area_struct mapping @address
1431 * @address: virtual address to look up
1432 * @flags: flags modifying lookup behaviour
1434 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1436 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1437 * an error pointer if there is a mapping to something not represented
1438 * by a page descriptor (see also vm_normal_page()).
1440 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1449 struct mm_struct
*mm
= vma
->vm_mm
;
1451 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1452 if (!IS_ERR(page
)) {
1453 BUG_ON(flags
& FOLL_GET
);
1458 pgd
= pgd_offset(mm
, address
);
1459 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1462 pud
= pud_offset(pgd
, address
);
1465 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
1466 BUG_ON(flags
& FOLL_GET
);
1467 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1470 if (unlikely(pud_bad(*pud
)))
1473 pmd
= pmd_offset(pud
, address
);
1476 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
1477 BUG_ON(flags
& FOLL_GET
);
1478 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1481 if (pmd_trans_huge(*pmd
)) {
1482 if (flags
& FOLL_SPLIT
) {
1483 split_huge_page_pmd(mm
, pmd
);
1484 goto split_fallthrough
;
1486 spin_lock(&mm
->page_table_lock
);
1487 if (likely(pmd_trans_huge(*pmd
))) {
1488 if (unlikely(pmd_trans_splitting(*pmd
))) {
1489 spin_unlock(&mm
->page_table_lock
);
1490 wait_split_huge_page(vma
->anon_vma
, pmd
);
1492 page
= follow_trans_huge_pmd(mm
, address
,
1494 spin_unlock(&mm
->page_table_lock
);
1498 spin_unlock(&mm
->page_table_lock
);
1502 if (unlikely(pmd_bad(*pmd
)))
1505 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1508 if (!pte_present(pte
))
1510 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1513 page
= vm_normal_page(vma
, address
, pte
);
1514 if (unlikely(!page
)) {
1515 if ((flags
& FOLL_DUMP
) ||
1516 !is_zero_pfn(pte_pfn(pte
)))
1518 page
= pte_page(pte
);
1521 if (flags
& FOLL_GET
)
1522 get_page_foll(page
);
1523 if (flags
& FOLL_TOUCH
) {
1524 if ((flags
& FOLL_WRITE
) &&
1525 !pte_dirty(pte
) && !PageDirty(page
))
1526 set_page_dirty(page
);
1528 * pte_mkyoung() would be more correct here, but atomic care
1529 * is needed to avoid losing the dirty bit: it is easier to use
1530 * mark_page_accessed().
1532 mark_page_accessed(page
);
1534 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1536 * The preliminary mapping check is mainly to avoid the
1537 * pointless overhead of lock_page on the ZERO_PAGE
1538 * which might bounce very badly if there is contention.
1540 * If the page is already locked, we don't need to
1541 * handle it now - vmscan will handle it later if and
1542 * when it attempts to reclaim the page.
1544 if (page
->mapping
&& trylock_page(page
)) {
1545 lru_add_drain(); /* push cached pages to LRU */
1547 * Because we lock page here and migration is
1548 * blocked by the pte's page reference, we need
1549 * only check for file-cache page truncation.
1552 mlock_vma_page(page
);
1557 pte_unmap_unlock(ptep
, ptl
);
1562 pte_unmap_unlock(ptep
, ptl
);
1563 return ERR_PTR(-EFAULT
);
1566 pte_unmap_unlock(ptep
, ptl
);
1572 * When core dumping an enormous anonymous area that nobody
1573 * has touched so far, we don't want to allocate unnecessary pages or
1574 * page tables. Return error instead of NULL to skip handle_mm_fault,
1575 * then get_dump_page() will return NULL to leave a hole in the dump.
1576 * But we can only make this optimization where a hole would surely
1577 * be zero-filled if handle_mm_fault() actually did handle it.
1579 if ((flags
& FOLL_DUMP
) &&
1580 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1581 return ERR_PTR(-EFAULT
);
1585 static inline int stack_guard_page(struct vm_area_struct
*vma
, unsigned long addr
)
1587 return stack_guard_page_start(vma
, addr
) ||
1588 stack_guard_page_end(vma
, addr
+PAGE_SIZE
);
1592 * __get_user_pages() - pin user pages in memory
1593 * @tsk: task_struct of target task
1594 * @mm: mm_struct of target mm
1595 * @start: starting user address
1596 * @nr_pages: number of pages from start to pin
1597 * @gup_flags: flags modifying pin behaviour
1598 * @pages: array that receives pointers to the pages pinned.
1599 * Should be at least nr_pages long. Or NULL, if caller
1600 * only intends to ensure the pages are faulted in.
1601 * @vmas: array of pointers to vmas corresponding to each page.
1602 * Or NULL if the caller does not require them.
1603 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1605 * Returns number of pages pinned. This may be fewer than the number
1606 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1607 * were pinned, returns -errno. Each page returned must be released
1608 * with a put_page() call when it is finished with. vmas will only
1609 * remain valid while mmap_sem is held.
1611 * Must be called with mmap_sem held for read or write.
1613 * __get_user_pages walks a process's page tables and takes a reference to
1614 * each struct page that each user address corresponds to at a given
1615 * instant. That is, it takes the page that would be accessed if a user
1616 * thread accesses the given user virtual address at that instant.
1618 * This does not guarantee that the page exists in the user mappings when
1619 * __get_user_pages returns, and there may even be a completely different
1620 * page there in some cases (eg. if mmapped pagecache has been invalidated
1621 * and subsequently re faulted). However it does guarantee that the page
1622 * won't be freed completely. And mostly callers simply care that the page
1623 * contains data that was valid *at some point in time*. Typically, an IO
1624 * or similar operation cannot guarantee anything stronger anyway because
1625 * locks can't be held over the syscall boundary.
1627 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1628 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1629 * appropriate) must be called after the page is finished with, and
1630 * before put_page is called.
1632 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1633 * or mmap_sem contention, and if waiting is needed to pin all pages,
1634 * *@nonblocking will be set to 0.
1636 * In most cases, get_user_pages or get_user_pages_fast should be used
1637 * instead of __get_user_pages. __get_user_pages should be used only if
1638 * you need some special @gup_flags.
1640 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1641 unsigned long start
, int nr_pages
, unsigned int gup_flags
,
1642 struct page
**pages
, struct vm_area_struct
**vmas
,
1646 unsigned long vm_flags
;
1651 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1654 * Require read or write permissions.
1655 * If FOLL_FORCE is set, we only require the "MAY" flags.
1657 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1658 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1659 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1660 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1664 struct vm_area_struct
*vma
;
1666 vma
= find_extend_vma(mm
, start
);
1667 if (!vma
&& in_gate_area(mm
, start
)) {
1668 unsigned long pg
= start
& PAGE_MASK
;
1674 /* user gate pages are read-only */
1675 if (gup_flags
& FOLL_WRITE
)
1676 return i
? : -EFAULT
;
1678 pgd
= pgd_offset_k(pg
);
1680 pgd
= pgd_offset_gate(mm
, pg
);
1681 BUG_ON(pgd_none(*pgd
));
1682 pud
= pud_offset(pgd
, pg
);
1683 BUG_ON(pud_none(*pud
));
1684 pmd
= pmd_offset(pud
, pg
);
1686 return i
? : -EFAULT
;
1687 VM_BUG_ON(pmd_trans_huge(*pmd
));
1688 pte
= pte_offset_map(pmd
, pg
);
1689 if (pte_none(*pte
)) {
1691 return i
? : -EFAULT
;
1693 vma
= get_gate_vma(mm
);
1697 page
= vm_normal_page(vma
, start
, *pte
);
1699 if (!(gup_flags
& FOLL_DUMP
) &&
1700 is_zero_pfn(pte_pfn(*pte
)))
1701 page
= pte_page(*pte
);
1704 return i
? : -EFAULT
;
1715 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1716 !(vm_flags
& vma
->vm_flags
))
1717 return i
? : -EFAULT
;
1719 if (is_vm_hugetlb_page(vma
)) {
1720 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1721 &start
, &nr_pages
, i
, gup_flags
);
1727 unsigned int foll_flags
= gup_flags
;
1730 * If we have a pending SIGKILL, don't keep faulting
1731 * pages and potentially allocating memory.
1733 if (unlikely(fatal_signal_pending(current
)))
1734 return i
? i
: -ERESTARTSYS
;
1737 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1739 unsigned int fault_flags
= 0;
1741 /* For mlock, just skip the stack guard page. */
1742 if (foll_flags
& FOLL_MLOCK
) {
1743 if (stack_guard_page(vma
, start
))
1746 if (foll_flags
& FOLL_WRITE
)
1747 fault_flags
|= FAULT_FLAG_WRITE
;
1749 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
1750 if (foll_flags
& FOLL_NOWAIT
)
1751 fault_flags
|= (FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
);
1753 ret
= handle_mm_fault(mm
, vma
, start
,
1756 if (ret
& VM_FAULT_ERROR
) {
1757 if (ret
& VM_FAULT_OOM
)
1758 return i
? i
: -ENOMEM
;
1759 if (ret
& (VM_FAULT_HWPOISON
|
1760 VM_FAULT_HWPOISON_LARGE
)) {
1763 else if (gup_flags
& FOLL_HWPOISON
)
1768 if (ret
& VM_FAULT_SIGBUS
)
1769 return i
? i
: -EFAULT
;
1774 if (ret
& VM_FAULT_MAJOR
)
1780 if (ret
& VM_FAULT_RETRY
) {
1787 * The VM_FAULT_WRITE bit tells us that
1788 * do_wp_page has broken COW when necessary,
1789 * even if maybe_mkwrite decided not to set
1790 * pte_write. We can thus safely do subsequent
1791 * page lookups as if they were reads. But only
1792 * do so when looping for pte_write is futile:
1793 * in some cases userspace may also be wanting
1794 * to write to the gotten user page, which a
1795 * read fault here might prevent (a readonly
1796 * page might get reCOWed by userspace write).
1798 if ((ret
& VM_FAULT_WRITE
) &&
1799 !(vma
->vm_flags
& VM_WRITE
))
1800 foll_flags
&= ~FOLL_WRITE
;
1805 return i
? i
: PTR_ERR(page
);
1809 flush_anon_page(vma
, page
, start
);
1810 flush_dcache_page(page
);
1818 } while (nr_pages
&& start
< vma
->vm_end
);
1822 EXPORT_SYMBOL(__get_user_pages
);
1825 * fixup_user_fault() - manually resolve a user page fault
1826 * @tsk: the task_struct to use for page fault accounting, or
1827 * NULL if faults are not to be recorded.
1828 * @mm: mm_struct of target mm
1829 * @address: user address
1830 * @fault_flags:flags to pass down to handle_mm_fault()
1832 * This is meant to be called in the specific scenario where for locking reasons
1833 * we try to access user memory in atomic context (within a pagefault_disable()
1834 * section), this returns -EFAULT, and we want to resolve the user fault before
1837 * Typically this is meant to be used by the futex code.
1839 * The main difference with get_user_pages() is that this function will
1840 * unconditionally call handle_mm_fault() which will in turn perform all the
1841 * necessary SW fixup of the dirty and young bits in the PTE, while
1842 * handle_mm_fault() only guarantees to update these in the struct page.
1844 * This is important for some architectures where those bits also gate the
1845 * access permission to the page because they are maintained in software. On
1846 * such architectures, gup() will not be enough to make a subsequent access
1849 * This should be called with the mm_sem held for read.
1851 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
1852 unsigned long address
, unsigned int fault_flags
)
1854 struct vm_area_struct
*vma
;
1857 vma
= find_extend_vma(mm
, address
);
1858 if (!vma
|| address
< vma
->vm_start
)
1861 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
1862 if (ret
& VM_FAULT_ERROR
) {
1863 if (ret
& VM_FAULT_OOM
)
1865 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
1867 if (ret
& VM_FAULT_SIGBUS
)
1872 if (ret
& VM_FAULT_MAJOR
)
1881 * get_user_pages() - pin user pages in memory
1882 * @tsk: the task_struct to use for page fault accounting, or
1883 * NULL if faults are not to be recorded.
1884 * @mm: mm_struct of target mm
1885 * @start: starting user address
1886 * @nr_pages: number of pages from start to pin
1887 * @write: whether pages will be written to by the caller
1888 * @force: whether to force write access even if user mapping is
1889 * readonly. This will result in the page being COWed even
1890 * in MAP_SHARED mappings. You do not want this.
1891 * @pages: array that receives pointers to the pages pinned.
1892 * Should be at least nr_pages long. Or NULL, if caller
1893 * only intends to ensure the pages are faulted in.
1894 * @vmas: array of pointers to vmas corresponding to each page.
1895 * Or NULL if the caller does not require them.
1897 * Returns number of pages pinned. This may be fewer than the number
1898 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1899 * were pinned, returns -errno. Each page returned must be released
1900 * with a put_page() call when it is finished with. vmas will only
1901 * remain valid while mmap_sem is held.
1903 * Must be called with mmap_sem held for read or write.
1905 * get_user_pages walks a process's page tables and takes a reference to
1906 * each struct page that each user address corresponds to at a given
1907 * instant. That is, it takes the page that would be accessed if a user
1908 * thread accesses the given user virtual address at that instant.
1910 * This does not guarantee that the page exists in the user mappings when
1911 * get_user_pages returns, and there may even be a completely different
1912 * page there in some cases (eg. if mmapped pagecache has been invalidated
1913 * and subsequently re faulted). However it does guarantee that the page
1914 * won't be freed completely. And mostly callers simply care that the page
1915 * contains data that was valid *at some point in time*. Typically, an IO
1916 * or similar operation cannot guarantee anything stronger anyway because
1917 * locks can't be held over the syscall boundary.
1919 * If write=0, the page must not be written to. If the page is written to,
1920 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1921 * after the page is finished with, and before put_page is called.
1923 * get_user_pages is typically used for fewer-copy IO operations, to get a
1924 * handle on the memory by some means other than accesses via the user virtual
1925 * addresses. The pages may be submitted for DMA to devices or accessed via
1926 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1927 * use the correct cache flushing APIs.
1929 * See also get_user_pages_fast, for performance critical applications.
1931 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1932 unsigned long start
, int nr_pages
, int write
, int force
,
1933 struct page
**pages
, struct vm_area_struct
**vmas
)
1935 int flags
= FOLL_TOUCH
;
1940 flags
|= FOLL_WRITE
;
1942 flags
|= FOLL_FORCE
;
1944 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
1947 EXPORT_SYMBOL(get_user_pages
);
1950 * get_dump_page() - pin user page in memory while writing it to core dump
1951 * @addr: user address
1953 * Returns struct page pointer of user page pinned for dump,
1954 * to be freed afterwards by page_cache_release() or put_page().
1956 * Returns NULL on any kind of failure - a hole must then be inserted into
1957 * the corefile, to preserve alignment with its headers; and also returns
1958 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1959 * allowing a hole to be left in the corefile to save diskspace.
1961 * Called without mmap_sem, but after all other threads have been killed.
1963 #ifdef CONFIG_ELF_CORE
1964 struct page
*get_dump_page(unsigned long addr
)
1966 struct vm_area_struct
*vma
;
1969 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1970 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
1973 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1976 #endif /* CONFIG_ELF_CORE */
1978 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1981 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1982 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1984 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1986 VM_BUG_ON(pmd_trans_huge(*pmd
));
1987 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1994 * This is the old fallback for page remapping.
1996 * For historical reasons, it only allows reserved pages. Only
1997 * old drivers should use this, and they needed to mark their
1998 * pages reserved for the old functions anyway.
2000 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2001 struct page
*page
, pgprot_t prot
)
2003 struct mm_struct
*mm
= vma
->vm_mm
;
2012 flush_dcache_page(page
);
2013 pte
= get_locked_pte(mm
, addr
, &ptl
);
2017 if (!pte_none(*pte
))
2020 /* Ok, finally just insert the thing.. */
2022 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
2023 page_add_file_rmap(page
);
2024 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
2027 pte_unmap_unlock(pte
, ptl
);
2030 pte_unmap_unlock(pte
, ptl
);
2036 * vm_insert_page - insert single page into user vma
2037 * @vma: user vma to map to
2038 * @addr: target user address of this page
2039 * @page: source kernel page
2041 * This allows drivers to insert individual pages they've allocated
2044 * The page has to be a nice clean _individual_ kernel allocation.
2045 * If you allocate a compound page, you need to have marked it as
2046 * such (__GFP_COMP), or manually just split the page up yourself
2047 * (see split_page()).
2049 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2050 * took an arbitrary page protection parameter. This doesn't allow
2051 * that. Your vma protection will have to be set up correctly, which
2052 * means that if you want a shared writable mapping, you'd better
2053 * ask for a shared writable mapping!
2055 * The page does not need to be reserved.
2057 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2060 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2062 if (!page_count(page
))
2064 vma
->vm_flags
|= VM_INSERTPAGE
;
2065 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2067 EXPORT_SYMBOL(vm_insert_page
);
2069 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2070 unsigned long pfn
, pgprot_t prot
)
2072 struct mm_struct
*mm
= vma
->vm_mm
;
2078 pte
= get_locked_pte(mm
, addr
, &ptl
);
2082 if (!pte_none(*pte
))
2085 /* Ok, finally just insert the thing.. */
2086 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
2087 set_pte_at(mm
, addr
, pte
, entry
);
2088 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
2092 pte_unmap_unlock(pte
, ptl
);
2098 * vm_insert_pfn - insert single pfn into user vma
2099 * @vma: user vma to map to
2100 * @addr: target user address of this page
2101 * @pfn: source kernel pfn
2103 * Similar to vm_inert_page, this allows drivers to insert individual pages
2104 * they've allocated into a user vma. Same comments apply.
2106 * This function should only be called from a vm_ops->fault handler, and
2107 * in that case the handler should return NULL.
2109 * vma cannot be a COW mapping.
2111 * As this is called only for pages that do not currently exist, we
2112 * do not need to flush old virtual caches or the TLB.
2114 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2118 pgprot_t pgprot
= vma
->vm_page_prot
;
2120 * Technically, architectures with pte_special can avoid all these
2121 * restrictions (same for remap_pfn_range). However we would like
2122 * consistency in testing and feature parity among all, so we should
2123 * try to keep these invariants in place for everybody.
2125 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
2126 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
2127 (VM_PFNMAP
|VM_MIXEDMAP
));
2128 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
2129 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
2131 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2133 if (track_pfn_vma_new(vma
, &pgprot
, pfn
, PAGE_SIZE
))
2136 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
2139 untrack_pfn_vma(vma
, pfn
, PAGE_SIZE
);
2143 EXPORT_SYMBOL(vm_insert_pfn
);
2145 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
2148 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
2150 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2154 * If we don't have pte special, then we have to use the pfn_valid()
2155 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2156 * refcount the page if pfn_valid is true (hence insert_page rather
2157 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2158 * without pte special, it would there be refcounted as a normal page.
2160 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
2163 page
= pfn_to_page(pfn
);
2164 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2166 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
2168 EXPORT_SYMBOL(vm_insert_mixed
);
2171 * maps a range of physical memory into the requested pages. the old
2172 * mappings are removed. any references to nonexistent pages results
2173 * in null mappings (currently treated as "copy-on-access")
2175 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2176 unsigned long addr
, unsigned long end
,
2177 unsigned long pfn
, pgprot_t prot
)
2182 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2185 arch_enter_lazy_mmu_mode();
2187 BUG_ON(!pte_none(*pte
));
2188 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2190 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2191 arch_leave_lazy_mmu_mode();
2192 pte_unmap_unlock(pte
- 1, ptl
);
2196 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2197 unsigned long addr
, unsigned long end
,
2198 unsigned long pfn
, pgprot_t prot
)
2203 pfn
-= addr
>> PAGE_SHIFT
;
2204 pmd
= pmd_alloc(mm
, pud
, addr
);
2207 VM_BUG_ON(pmd_trans_huge(*pmd
));
2209 next
= pmd_addr_end(addr
, end
);
2210 if (remap_pte_range(mm
, pmd
, addr
, next
,
2211 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2213 } while (pmd
++, addr
= next
, addr
!= end
);
2217 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2218 unsigned long addr
, unsigned long end
,
2219 unsigned long pfn
, pgprot_t prot
)
2224 pfn
-= addr
>> PAGE_SHIFT
;
2225 pud
= pud_alloc(mm
, pgd
, addr
);
2229 next
= pud_addr_end(addr
, end
);
2230 if (remap_pmd_range(mm
, pud
, addr
, next
,
2231 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2233 } while (pud
++, addr
= next
, addr
!= end
);
2238 * remap_pfn_range - remap kernel memory to userspace
2239 * @vma: user vma to map to
2240 * @addr: target user address to start at
2241 * @pfn: physical address of kernel memory
2242 * @size: size of map area
2243 * @prot: page protection flags for this mapping
2245 * Note: this is only safe if the mm semaphore is held when called.
2247 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2248 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2252 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2253 struct mm_struct
*mm
= vma
->vm_mm
;
2257 * Physically remapped pages are special. Tell the
2258 * rest of the world about it:
2259 * VM_IO tells people not to look at these pages
2260 * (accesses can have side effects).
2261 * VM_RESERVED is specified all over the place, because
2262 * in 2.4 it kept swapout's vma scan off this vma; but
2263 * in 2.6 the LRU scan won't even find its pages, so this
2264 * flag means no more than count its pages in reserved_vm,
2265 * and omit it from core dump, even when VM_IO turned off.
2266 * VM_PFNMAP tells the core MM that the base pages are just
2267 * raw PFN mappings, and do not have a "struct page" associated
2270 * There's a horrible special case to handle copy-on-write
2271 * behaviour that some programs depend on. We mark the "original"
2272 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2274 if (addr
== vma
->vm_start
&& end
== vma
->vm_end
) {
2275 vma
->vm_pgoff
= pfn
;
2276 vma
->vm_flags
|= VM_PFN_AT_MMAP
;
2277 } else if (is_cow_mapping(vma
->vm_flags
))
2280 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
2282 err
= track_pfn_vma_new(vma
, &prot
, pfn
, PAGE_ALIGN(size
));
2285 * To indicate that track_pfn related cleanup is not
2286 * needed from higher level routine calling unmap_vmas
2288 vma
->vm_flags
&= ~(VM_IO
| VM_RESERVED
| VM_PFNMAP
);
2289 vma
->vm_flags
&= ~VM_PFN_AT_MMAP
;
2293 BUG_ON(addr
>= end
);
2294 pfn
-= addr
>> PAGE_SHIFT
;
2295 pgd
= pgd_offset(mm
, addr
);
2296 flush_cache_range(vma
, addr
, end
);
2298 next
= pgd_addr_end(addr
, end
);
2299 err
= remap_pud_range(mm
, pgd
, addr
, next
,
2300 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2303 } while (pgd
++, addr
= next
, addr
!= end
);
2306 untrack_pfn_vma(vma
, pfn
, PAGE_ALIGN(size
));
2310 EXPORT_SYMBOL(remap_pfn_range
);
2312 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2313 unsigned long addr
, unsigned long end
,
2314 pte_fn_t fn
, void *data
)
2319 spinlock_t
*uninitialized_var(ptl
);
2321 pte
= (mm
== &init_mm
) ?
2322 pte_alloc_kernel(pmd
, addr
) :
2323 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2327 BUG_ON(pmd_huge(*pmd
));
2329 arch_enter_lazy_mmu_mode();
2331 token
= pmd_pgtable(*pmd
);
2334 err
= fn(pte
++, token
, addr
, data
);
2337 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2339 arch_leave_lazy_mmu_mode();
2342 pte_unmap_unlock(pte
-1, ptl
);
2346 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2347 unsigned long addr
, unsigned long end
,
2348 pte_fn_t fn
, void *data
)
2354 BUG_ON(pud_huge(*pud
));
2356 pmd
= pmd_alloc(mm
, pud
, addr
);
2360 next
= pmd_addr_end(addr
, end
);
2361 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2364 } while (pmd
++, addr
= next
, addr
!= end
);
2368 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2369 unsigned long addr
, unsigned long end
,
2370 pte_fn_t fn
, void *data
)
2376 pud
= pud_alloc(mm
, pgd
, addr
);
2380 next
= pud_addr_end(addr
, end
);
2381 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2384 } while (pud
++, addr
= next
, addr
!= end
);
2389 * Scan a region of virtual memory, filling in page tables as necessary
2390 * and calling a provided function on each leaf page table.
2392 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2393 unsigned long size
, pte_fn_t fn
, void *data
)
2397 unsigned long end
= addr
+ size
;
2400 BUG_ON(addr
>= end
);
2401 pgd
= pgd_offset(mm
, addr
);
2403 next
= pgd_addr_end(addr
, end
);
2404 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
2407 } while (pgd
++, addr
= next
, addr
!= end
);
2411 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2414 * handle_pte_fault chooses page fault handler according to an entry
2415 * which was read non-atomically. Before making any commitment, on
2416 * those architectures or configurations (e.g. i386 with PAE) which
2417 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2418 * must check under lock before unmapping the pte and proceeding
2419 * (but do_wp_page is only called after already making such a check;
2420 * and do_anonymous_page can safely check later on).
2422 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2423 pte_t
*page_table
, pte_t orig_pte
)
2426 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2427 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2428 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2430 same
= pte_same(*page_table
, orig_pte
);
2434 pte_unmap(page_table
);
2438 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2441 * If the source page was a PFN mapping, we don't have
2442 * a "struct page" for it. We do a best-effort copy by
2443 * just copying from the original user address. If that
2444 * fails, we just zero-fill it. Live with it.
2446 if (unlikely(!src
)) {
2447 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
2448 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2451 * This really shouldn't fail, because the page is there
2452 * in the page tables. But it might just be unreadable,
2453 * in which case we just give up and fill the result with
2456 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2458 kunmap_atomic(kaddr
, KM_USER0
);
2459 flush_dcache_page(dst
);
2461 copy_user_highpage(dst
, src
, va
, vma
);
2465 * This routine handles present pages, when users try to write
2466 * to a shared page. It is done by copying the page to a new address
2467 * and decrementing the shared-page counter for the old page.
2469 * Note that this routine assumes that the protection checks have been
2470 * done by the caller (the low-level page fault routine in most cases).
2471 * Thus we can safely just mark it writable once we've done any necessary
2474 * We also mark the page dirty at this point even though the page will
2475 * change only once the write actually happens. This avoids a few races,
2476 * and potentially makes it more efficient.
2478 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2479 * but allow concurrent faults), with pte both mapped and locked.
2480 * We return with mmap_sem still held, but pte unmapped and unlocked.
2482 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2483 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2484 spinlock_t
*ptl
, pte_t orig_pte
)
2487 struct page
*old_page
, *new_page
;
2490 int page_mkwrite
= 0;
2491 struct page
*dirty_page
= NULL
;
2493 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2496 * VM_MIXEDMAP !pfn_valid() case
2498 * We should not cow pages in a shared writeable mapping.
2499 * Just mark the pages writable as we can't do any dirty
2500 * accounting on raw pfn maps.
2502 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2503 (VM_WRITE
|VM_SHARED
))
2509 * Take out anonymous pages first, anonymous shared vmas are
2510 * not dirty accountable.
2512 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2513 if (!trylock_page(old_page
)) {
2514 page_cache_get(old_page
);
2515 pte_unmap_unlock(page_table
, ptl
);
2516 lock_page(old_page
);
2517 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2519 if (!pte_same(*page_table
, orig_pte
)) {
2520 unlock_page(old_page
);
2523 page_cache_release(old_page
);
2525 if (reuse_swap_page(old_page
)) {
2527 * The page is all ours. Move it to our anon_vma so
2528 * the rmap code will not search our parent or siblings.
2529 * Protected against the rmap code by the page lock.
2531 page_move_anon_rmap(old_page
, vma
, address
);
2532 unlock_page(old_page
);
2535 unlock_page(old_page
);
2536 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2537 (VM_WRITE
|VM_SHARED
))) {
2539 * Only catch write-faults on shared writable pages,
2540 * read-only shared pages can get COWed by
2541 * get_user_pages(.write=1, .force=1).
2543 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2544 struct vm_fault vmf
;
2547 vmf
.virtual_address
= (void __user
*)(address
&
2549 vmf
.pgoff
= old_page
->index
;
2550 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2551 vmf
.page
= old_page
;
2554 * Notify the address space that the page is about to
2555 * become writable so that it can prohibit this or wait
2556 * for the page to get into an appropriate state.
2558 * We do this without the lock held, so that it can
2559 * sleep if it needs to.
2561 page_cache_get(old_page
);
2562 pte_unmap_unlock(page_table
, ptl
);
2564 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2566 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2568 goto unwritable_page
;
2570 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2571 lock_page(old_page
);
2572 if (!old_page
->mapping
) {
2573 ret
= 0; /* retry the fault */
2574 unlock_page(old_page
);
2575 goto unwritable_page
;
2578 VM_BUG_ON(!PageLocked(old_page
));
2581 * Since we dropped the lock we need to revalidate
2582 * the PTE as someone else may have changed it. If
2583 * they did, we just return, as we can count on the
2584 * MMU to tell us if they didn't also make it writable.
2586 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2588 if (!pte_same(*page_table
, orig_pte
)) {
2589 unlock_page(old_page
);
2595 dirty_page
= old_page
;
2596 get_page(dirty_page
);
2599 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2600 entry
= pte_mkyoung(orig_pte
);
2601 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2602 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2603 update_mmu_cache(vma
, address
, page_table
);
2604 pte_unmap_unlock(page_table
, ptl
);
2605 ret
|= VM_FAULT_WRITE
;
2611 * Yes, Virginia, this is actually required to prevent a race
2612 * with clear_page_dirty_for_io() from clearing the page dirty
2613 * bit after it clear all dirty ptes, but before a racing
2614 * do_wp_page installs a dirty pte.
2616 * __do_fault is protected similarly.
2618 if (!page_mkwrite
) {
2619 wait_on_page_locked(dirty_page
);
2620 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2622 put_page(dirty_page
);
2624 struct address_space
*mapping
= dirty_page
->mapping
;
2626 set_page_dirty(dirty_page
);
2627 unlock_page(dirty_page
);
2628 page_cache_release(dirty_page
);
2631 * Some device drivers do not set page.mapping
2632 * but still dirty their pages
2634 balance_dirty_pages_ratelimited(mapping
);
2638 /* file_update_time outside page_lock */
2640 file_update_time(vma
->vm_file
);
2646 * Ok, we need to copy. Oh, well..
2648 page_cache_get(old_page
);
2650 pte_unmap_unlock(page_table
, ptl
);
2652 if (unlikely(anon_vma_prepare(vma
)))
2655 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2656 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2660 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2663 cow_user_page(new_page
, old_page
, address
, vma
);
2665 __SetPageUptodate(new_page
);
2667 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2671 * Re-check the pte - we dropped the lock
2673 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2674 if (likely(pte_same(*page_table
, orig_pte
))) {
2676 if (!PageAnon(old_page
)) {
2677 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2678 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2681 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2682 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2683 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2684 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2686 * Clear the pte entry and flush it first, before updating the
2687 * pte with the new entry. This will avoid a race condition
2688 * seen in the presence of one thread doing SMC and another
2691 ptep_clear_flush(vma
, address
, page_table
);
2692 page_add_new_anon_rmap(new_page
, vma
, address
);
2694 * We call the notify macro here because, when using secondary
2695 * mmu page tables (such as kvm shadow page tables), we want the
2696 * new page to be mapped directly into the secondary page table.
2698 set_pte_at_notify(mm
, address
, page_table
, entry
);
2699 update_mmu_cache(vma
, address
, page_table
);
2702 * Only after switching the pte to the new page may
2703 * we remove the mapcount here. Otherwise another
2704 * process may come and find the rmap count decremented
2705 * before the pte is switched to the new page, and
2706 * "reuse" the old page writing into it while our pte
2707 * here still points into it and can be read by other
2710 * The critical issue is to order this
2711 * page_remove_rmap with the ptp_clear_flush above.
2712 * Those stores are ordered by (if nothing else,)
2713 * the barrier present in the atomic_add_negative
2714 * in page_remove_rmap.
2716 * Then the TLB flush in ptep_clear_flush ensures that
2717 * no process can access the old page before the
2718 * decremented mapcount is visible. And the old page
2719 * cannot be reused until after the decremented
2720 * mapcount is visible. So transitively, TLBs to
2721 * old page will be flushed before it can be reused.
2723 page_remove_rmap(old_page
);
2726 /* Free the old page.. */
2727 new_page
= old_page
;
2728 ret
|= VM_FAULT_WRITE
;
2730 mem_cgroup_uncharge_page(new_page
);
2733 page_cache_release(new_page
);
2735 pte_unmap_unlock(page_table
, ptl
);
2738 * Don't let another task, with possibly unlocked vma,
2739 * keep the mlocked page.
2741 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2742 lock_page(old_page
); /* LRU manipulation */
2743 munlock_vma_page(old_page
);
2744 unlock_page(old_page
);
2746 page_cache_release(old_page
);
2750 page_cache_release(new_page
);
2754 unlock_page(old_page
);
2755 page_cache_release(old_page
);
2757 page_cache_release(old_page
);
2759 return VM_FAULT_OOM
;
2762 page_cache_release(old_page
);
2766 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2767 unsigned long start_addr
, unsigned long end_addr
,
2768 struct zap_details
*details
)
2770 zap_page_range(vma
, start_addr
, end_addr
- start_addr
, details
);
2773 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
2774 struct zap_details
*details
)
2776 struct vm_area_struct
*vma
;
2777 struct prio_tree_iter iter
;
2778 pgoff_t vba
, vea
, zba
, zea
;
2780 vma_prio_tree_foreach(vma
, &iter
, root
,
2781 details
->first_index
, details
->last_index
) {
2783 vba
= vma
->vm_pgoff
;
2784 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2785 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2786 zba
= details
->first_index
;
2789 zea
= details
->last_index
;
2793 unmap_mapping_range_vma(vma
,
2794 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2795 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2800 static inline void unmap_mapping_range_list(struct list_head
*head
,
2801 struct zap_details
*details
)
2803 struct vm_area_struct
*vma
;
2806 * In nonlinear VMAs there is no correspondence between virtual address
2807 * offset and file offset. So we must perform an exhaustive search
2808 * across *all* the pages in each nonlinear VMA, not just the pages
2809 * whose virtual address lies outside the file truncation point.
2811 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2812 details
->nonlinear_vma
= vma
;
2813 unmap_mapping_range_vma(vma
, vma
->vm_start
, vma
->vm_end
, details
);
2818 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2819 * @mapping: the address space containing mmaps to be unmapped.
2820 * @holebegin: byte in first page to unmap, relative to the start of
2821 * the underlying file. This will be rounded down to a PAGE_SIZE
2822 * boundary. Note that this is different from truncate_pagecache(), which
2823 * must keep the partial page. In contrast, we must get rid of
2825 * @holelen: size of prospective hole in bytes. This will be rounded
2826 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2828 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2829 * but 0 when invalidating pagecache, don't throw away private data.
2831 void unmap_mapping_range(struct address_space
*mapping
,
2832 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2834 struct zap_details details
;
2835 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2836 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2838 /* Check for overflow. */
2839 if (sizeof(holelen
) > sizeof(hlen
)) {
2841 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2842 if (holeend
& ~(long long)ULONG_MAX
)
2843 hlen
= ULONG_MAX
- hba
+ 1;
2846 details
.check_mapping
= even_cows
? NULL
: mapping
;
2847 details
.nonlinear_vma
= NULL
;
2848 details
.first_index
= hba
;
2849 details
.last_index
= hba
+ hlen
- 1;
2850 if (details
.last_index
< details
.first_index
)
2851 details
.last_index
= ULONG_MAX
;
2854 mutex_lock(&mapping
->i_mmap_mutex
);
2855 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2856 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2857 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2858 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2859 mutex_unlock(&mapping
->i_mmap_mutex
);
2861 EXPORT_SYMBOL(unmap_mapping_range
);
2864 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2865 * but allow concurrent faults), and pte mapped but not yet locked.
2866 * We return with mmap_sem still held, but pte unmapped and unlocked.
2868 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2869 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2870 unsigned int flags
, pte_t orig_pte
)
2873 struct page
*page
, *swapcache
= NULL
;
2877 struct mem_cgroup
*ptr
;
2881 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2884 entry
= pte_to_swp_entry(orig_pte
);
2885 if (unlikely(non_swap_entry(entry
))) {
2886 if (is_migration_entry(entry
)) {
2887 migration_entry_wait(mm
, pmd
, address
);
2888 } else if (is_hwpoison_entry(entry
)) {
2889 ret
= VM_FAULT_HWPOISON
;
2891 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2892 ret
= VM_FAULT_SIGBUS
;
2896 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2897 page
= lookup_swap_cache(entry
);
2899 grab_swap_token(mm
); /* Contend for token _before_ read-in */
2900 page
= swapin_readahead(entry
,
2901 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2904 * Back out if somebody else faulted in this pte
2905 * while we released the pte lock.
2907 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2908 if (likely(pte_same(*page_table
, orig_pte
)))
2910 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2914 /* Had to read the page from swap area: Major fault */
2915 ret
= VM_FAULT_MAJOR
;
2916 count_vm_event(PGMAJFAULT
);
2917 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
2918 } else if (PageHWPoison(page
)) {
2920 * hwpoisoned dirty swapcache pages are kept for killing
2921 * owner processes (which may be unknown at hwpoison time)
2923 ret
= VM_FAULT_HWPOISON
;
2924 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2928 locked
= lock_page_or_retry(page
, mm
, flags
);
2929 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2931 ret
|= VM_FAULT_RETRY
;
2936 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2937 * release the swapcache from under us. The page pin, and pte_same
2938 * test below, are not enough to exclude that. Even if it is still
2939 * swapcache, we need to check that the page's swap has not changed.
2941 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2944 if (ksm_might_need_to_copy(page
, vma
, address
)) {
2946 page
= ksm_does_need_to_copy(page
, vma
, address
);
2948 if (unlikely(!page
)) {
2956 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
2962 * Back out if somebody else already faulted in this pte.
2964 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2965 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2968 if (unlikely(!PageUptodate(page
))) {
2969 ret
= VM_FAULT_SIGBUS
;
2974 * The page isn't present yet, go ahead with the fault.
2976 * Be careful about the sequence of operations here.
2977 * To get its accounting right, reuse_swap_page() must be called
2978 * while the page is counted on swap but not yet in mapcount i.e.
2979 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2980 * must be called after the swap_free(), or it will never succeed.
2981 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2982 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2983 * in page->private. In this case, a record in swap_cgroup is silently
2984 * discarded at swap_free().
2987 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2988 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
2989 pte
= mk_pte(page
, vma
->vm_page_prot
);
2990 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2991 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2992 flags
&= ~FAULT_FLAG_WRITE
;
2993 ret
|= VM_FAULT_WRITE
;
2996 flush_icache_page(vma
, page
);
2997 set_pte_at(mm
, address
, page_table
, pte
);
2998 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
2999 /* It's better to call commit-charge after rmap is established */
3000 mem_cgroup_commit_charge_swapin(page
, ptr
);
3003 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3004 try_to_free_swap(page
);
3008 * Hold the lock to avoid the swap entry to be reused
3009 * until we take the PT lock for the pte_same() check
3010 * (to avoid false positives from pte_same). For
3011 * further safety release the lock after the swap_free
3012 * so that the swap count won't change under a
3013 * parallel locked swapcache.
3015 unlock_page(swapcache
);
3016 page_cache_release(swapcache
);
3019 if (flags
& FAULT_FLAG_WRITE
) {
3020 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
3021 if (ret
& VM_FAULT_ERROR
)
3022 ret
&= VM_FAULT_ERROR
;
3026 /* No need to invalidate - it was non-present before */
3027 update_mmu_cache(vma
, address
, page_table
);
3029 pte_unmap_unlock(page_table
, ptl
);
3033 mem_cgroup_cancel_charge_swapin(ptr
);
3034 pte_unmap_unlock(page_table
, ptl
);
3038 page_cache_release(page
);
3040 unlock_page(swapcache
);
3041 page_cache_release(swapcache
);
3047 * This is like a special single-page "expand_{down|up}wards()",
3048 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3049 * doesn't hit another vma.
3051 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
3053 address
&= PAGE_MASK
;
3054 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
3055 struct vm_area_struct
*prev
= vma
->vm_prev
;
3058 * Is there a mapping abutting this one below?
3060 * That's only ok if it's the same stack mapping
3061 * that has gotten split..
3063 if (prev
&& prev
->vm_end
== address
)
3064 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
3066 expand_downwards(vma
, address
- PAGE_SIZE
);
3068 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
3069 struct vm_area_struct
*next
= vma
->vm_next
;
3071 /* As VM_GROWSDOWN but s/below/above/ */
3072 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
3073 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
3075 expand_upwards(vma
, address
+ PAGE_SIZE
);
3081 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3082 * but allow concurrent faults), and pte mapped but not yet locked.
3083 * We return with mmap_sem still held, but pte unmapped and unlocked.
3085 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3086 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3093 pte_unmap(page_table
);
3095 /* Check if we need to add a guard page to the stack */
3096 if (check_stack_guard_page(vma
, address
) < 0)
3097 return VM_FAULT_SIGBUS
;
3099 /* Use the zero-page for reads */
3100 if (!(flags
& FAULT_FLAG_WRITE
)) {
3101 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
3102 vma
->vm_page_prot
));
3103 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3104 if (!pte_none(*page_table
))
3109 /* Allocate our own private page. */
3110 if (unlikely(anon_vma_prepare(vma
)))
3112 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
3115 __SetPageUptodate(page
);
3117 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
3120 entry
= mk_pte(page
, vma
->vm_page_prot
);
3121 if (vma
->vm_flags
& VM_WRITE
)
3122 entry
= pte_mkwrite(pte_mkdirty(entry
));
3124 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3125 if (!pte_none(*page_table
))
3128 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3129 page_add_new_anon_rmap(page
, vma
, address
);
3131 set_pte_at(mm
, address
, page_table
, entry
);
3133 /* No need to invalidate - it was non-present before */
3134 update_mmu_cache(vma
, address
, page_table
);
3136 pte_unmap_unlock(page_table
, ptl
);
3139 mem_cgroup_uncharge_page(page
);
3140 page_cache_release(page
);
3143 page_cache_release(page
);
3145 return VM_FAULT_OOM
;
3149 * __do_fault() tries to create a new page mapping. It aggressively
3150 * tries to share with existing pages, but makes a separate copy if
3151 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3152 * the next page fault.
3154 * As this is called only for pages that do not currently exist, we
3155 * do not need to flush old virtual caches or the TLB.
3157 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3158 * but allow concurrent faults), and pte neither mapped nor locked.
3159 * We return with mmap_sem still held, but pte unmapped and unlocked.
3161 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3162 unsigned long address
, pmd_t
*pmd
,
3163 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3168 struct page
*cow_page
;
3171 struct page
*dirty_page
= NULL
;
3172 struct vm_fault vmf
;
3174 int page_mkwrite
= 0;
3177 * If we do COW later, allocate page befor taking lock_page()
3178 * on the file cache page. This will reduce lock holding time.
3180 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3182 if (unlikely(anon_vma_prepare(vma
)))
3183 return VM_FAULT_OOM
;
3185 cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
3187 return VM_FAULT_OOM
;
3189 if (mem_cgroup_newpage_charge(cow_page
, mm
, GFP_KERNEL
)) {
3190 page_cache_release(cow_page
);
3191 return VM_FAULT_OOM
;
3196 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
3201 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
3202 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3206 if (unlikely(PageHWPoison(vmf
.page
))) {
3207 if (ret
& VM_FAULT_LOCKED
)
3208 unlock_page(vmf
.page
);
3209 ret
= VM_FAULT_HWPOISON
;
3214 * For consistency in subsequent calls, make the faulted page always
3217 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3218 lock_page(vmf
.page
);
3220 VM_BUG_ON(!PageLocked(vmf
.page
));
3223 * Should we do an early C-O-W break?
3226 if (flags
& FAULT_FLAG_WRITE
) {
3227 if (!(vma
->vm_flags
& VM_SHARED
)) {
3230 copy_user_highpage(page
, vmf
.page
, address
, vma
);
3231 __SetPageUptodate(page
);
3234 * If the page will be shareable, see if the backing
3235 * address space wants to know that the page is about
3236 * to become writable
3238 if (vma
->vm_ops
->page_mkwrite
) {
3242 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
3243 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
3245 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
3247 goto unwritable_page
;
3249 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
3251 if (!page
->mapping
) {
3252 ret
= 0; /* retry the fault */
3254 goto unwritable_page
;
3257 VM_BUG_ON(!PageLocked(page
));
3264 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3267 * This silly early PAGE_DIRTY setting removes a race
3268 * due to the bad i386 page protection. But it's valid
3269 * for other architectures too.
3271 * Note that if FAULT_FLAG_WRITE is set, we either now have
3272 * an exclusive copy of the page, or this is a shared mapping,
3273 * so we can make it writable and dirty to avoid having to
3274 * handle that later.
3276 /* Only go through if we didn't race with anybody else... */
3277 if (likely(pte_same(*page_table
, orig_pte
))) {
3278 flush_icache_page(vma
, page
);
3279 entry
= mk_pte(page
, vma
->vm_page_prot
);
3280 if (flags
& FAULT_FLAG_WRITE
)
3281 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3283 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3284 page_add_new_anon_rmap(page
, vma
, address
);
3286 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
3287 page_add_file_rmap(page
);
3288 if (flags
& FAULT_FLAG_WRITE
) {
3290 get_page(dirty_page
);
3293 set_pte_at(mm
, address
, page_table
, entry
);
3295 /* no need to invalidate: a not-present page won't be cached */
3296 update_mmu_cache(vma
, address
, page_table
);
3299 mem_cgroup_uncharge_page(cow_page
);
3301 page_cache_release(page
);
3303 anon
= 1; /* no anon but release faulted_page */
3306 pte_unmap_unlock(page_table
, ptl
);
3309 struct address_space
*mapping
= page
->mapping
;
3311 if (set_page_dirty(dirty_page
))
3313 unlock_page(dirty_page
);
3314 put_page(dirty_page
);
3315 if (page_mkwrite
&& mapping
) {
3317 * Some device drivers do not set page.mapping but still
3320 balance_dirty_pages_ratelimited(mapping
);
3323 /* file_update_time outside page_lock */
3325 file_update_time(vma
->vm_file
);
3327 unlock_page(vmf
.page
);
3329 page_cache_release(vmf
.page
);
3335 page_cache_release(page
);
3338 /* fs's fault handler get error */
3340 mem_cgroup_uncharge_page(cow_page
);
3341 page_cache_release(cow_page
);
3346 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3347 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3348 unsigned int flags
, pte_t orig_pte
)
3350 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3351 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3353 pte_unmap(page_table
);
3354 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3358 * Fault of a previously existing named mapping. Repopulate the pte
3359 * from the encoded file_pte if possible. This enables swappable
3362 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3363 * but allow concurrent faults), and pte mapped but not yet locked.
3364 * We return with mmap_sem still held, but pte unmapped and unlocked.
3366 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3367 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3368 unsigned int flags
, pte_t orig_pte
)
3372 flags
|= FAULT_FLAG_NONLINEAR
;
3374 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3377 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3379 * Page table corrupted: show pte and kill process.
3381 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3382 return VM_FAULT_SIGBUS
;
3385 pgoff
= pte_to_pgoff(orig_pte
);
3386 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3390 * These routines also need to handle stuff like marking pages dirty
3391 * and/or accessed for architectures that don't do it in hardware (most
3392 * RISC architectures). The early dirtying is also good on the i386.
3394 * There is also a hook called "update_mmu_cache()" that architectures
3395 * with external mmu caches can use to update those (ie the Sparc or
3396 * PowerPC hashed page tables that act as extended TLBs).
3398 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3399 * but allow concurrent faults), and pte mapped but not yet locked.
3400 * We return with mmap_sem still held, but pte unmapped and unlocked.
3402 int handle_pte_fault(struct mm_struct
*mm
,
3403 struct vm_area_struct
*vma
, unsigned long address
,
3404 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3410 if (!pte_present(entry
)) {
3411 if (pte_none(entry
)) {
3413 if (likely(vma
->vm_ops
->fault
))
3414 return do_linear_fault(mm
, vma
, address
,
3415 pte
, pmd
, flags
, entry
);
3417 return do_anonymous_page(mm
, vma
, address
,
3420 if (pte_file(entry
))
3421 return do_nonlinear_fault(mm
, vma
, address
,
3422 pte
, pmd
, flags
, entry
);
3423 return do_swap_page(mm
, vma
, address
,
3424 pte
, pmd
, flags
, entry
);
3427 ptl
= pte_lockptr(mm
, pmd
);
3429 if (unlikely(!pte_same(*pte
, entry
)))
3431 if (flags
& FAULT_FLAG_WRITE
) {
3432 if (!pte_write(entry
))
3433 return do_wp_page(mm
, vma
, address
,
3434 pte
, pmd
, ptl
, entry
);
3435 entry
= pte_mkdirty(entry
);
3437 entry
= pte_mkyoung(entry
);
3438 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3439 update_mmu_cache(vma
, address
, pte
);
3442 * This is needed only for protection faults but the arch code
3443 * is not yet telling us if this is a protection fault or not.
3444 * This still avoids useless tlb flushes for .text page faults
3447 if (flags
& FAULT_FLAG_WRITE
)
3448 flush_tlb_fix_spurious_fault(vma
, address
);
3451 pte_unmap_unlock(pte
, ptl
);
3456 * By the time we get here, we already hold the mm semaphore
3458 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3459 unsigned long address
, unsigned int flags
)
3466 __set_current_state(TASK_RUNNING
);
3468 count_vm_event(PGFAULT
);
3469 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3471 /* do counter updates before entering really critical section. */
3472 check_sync_rss_stat(current
);
3474 if (unlikely(is_vm_hugetlb_page(vma
)))
3475 return hugetlb_fault(mm
, vma
, address
, flags
);
3478 pgd
= pgd_offset(mm
, address
);
3479 pud
= pud_alloc(mm
, pgd
, address
);
3481 return VM_FAULT_OOM
;
3482 pmd
= pmd_alloc(mm
, pud
, address
);
3484 return VM_FAULT_OOM
;
3485 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3487 return do_huge_pmd_anonymous_page(mm
, vma
, address
,
3490 pmd_t orig_pmd
= *pmd
;
3494 if (pmd_trans_huge(orig_pmd
)) {
3495 if (flags
& FAULT_FLAG_WRITE
&&
3496 !pmd_write(orig_pmd
) &&
3497 !pmd_trans_splitting(orig_pmd
)) {
3498 ret
= do_huge_pmd_wp_page(mm
, vma
, address
, pmd
,
3501 * If COW results in an oom, the huge pmd will
3502 * have been split, so retry the fault on the
3503 * pte for a smaller charge.
3505 if (unlikely(ret
& VM_FAULT_OOM
))
3514 * Use __pte_alloc instead of pte_alloc_map, because we can't
3515 * run pte_offset_map on the pmd, if an huge pmd could
3516 * materialize from under us from a different thread.
3518 if (unlikely(pmd_none(*pmd
)) && __pte_alloc(mm
, vma
, pmd
, address
))
3519 return VM_FAULT_OOM
;
3520 /* if an huge pmd materialized from under us just retry later */
3521 if (unlikely(pmd_trans_huge(*pmd
)))
3524 * A regular pmd is established and it can't morph into a huge pmd
3525 * from under us anymore at this point because we hold the mmap_sem
3526 * read mode and khugepaged takes it in write mode. So now it's
3527 * safe to run pte_offset_map().
3529 pte
= pte_offset_map(pmd
, address
);
3531 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3534 #ifndef __PAGETABLE_PUD_FOLDED
3536 * Allocate page upper directory.
3537 * We've already handled the fast-path in-line.
3539 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3541 pud_t
*new = pud_alloc_one(mm
, address
);
3545 smp_wmb(); /* See comment in __pte_alloc */
3547 spin_lock(&mm
->page_table_lock
);
3548 if (pgd_present(*pgd
)) /* Another has populated it */
3551 pgd_populate(mm
, pgd
, new);
3552 spin_unlock(&mm
->page_table_lock
);
3555 #endif /* __PAGETABLE_PUD_FOLDED */
3557 #ifndef __PAGETABLE_PMD_FOLDED
3559 * Allocate page middle directory.
3560 * We've already handled the fast-path in-line.
3562 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3564 pmd_t
*new = pmd_alloc_one(mm
, address
);
3568 smp_wmb(); /* See comment in __pte_alloc */
3570 spin_lock(&mm
->page_table_lock
);
3571 #ifndef __ARCH_HAS_4LEVEL_HACK
3572 if (pud_present(*pud
)) /* Another has populated it */
3575 pud_populate(mm
, pud
, new);
3577 if (pgd_present(*pud
)) /* Another has populated it */
3580 pgd_populate(mm
, pud
, new);
3581 #endif /* __ARCH_HAS_4LEVEL_HACK */
3582 spin_unlock(&mm
->page_table_lock
);
3585 #endif /* __PAGETABLE_PMD_FOLDED */
3587 int make_pages_present(unsigned long addr
, unsigned long end
)
3589 int ret
, len
, write
;
3590 struct vm_area_struct
* vma
;
3592 vma
= find_vma(current
->mm
, addr
);
3596 * We want to touch writable mappings with a write fault in order
3597 * to break COW, except for shared mappings because these don't COW
3598 * and we would not want to dirty them for nothing.
3600 write
= (vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
;
3601 BUG_ON(addr
>= end
);
3602 BUG_ON(end
> vma
->vm_end
);
3603 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
3604 ret
= get_user_pages(current
, current
->mm
, addr
,
3605 len
, write
, 0, NULL
, NULL
);
3608 return ret
== len
? 0 : -EFAULT
;
3611 #if !defined(__HAVE_ARCH_GATE_AREA)
3613 #if defined(AT_SYSINFO_EHDR)
3614 static struct vm_area_struct gate_vma
;
3616 static int __init
gate_vma_init(void)
3618 gate_vma
.vm_mm
= NULL
;
3619 gate_vma
.vm_start
= FIXADDR_USER_START
;
3620 gate_vma
.vm_end
= FIXADDR_USER_END
;
3621 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3622 gate_vma
.vm_page_prot
= __P101
;
3624 * Make sure the vDSO gets into every core dump.
3625 * Dumping its contents makes post-mortem fully interpretable later
3626 * without matching up the same kernel and hardware config to see
3627 * what PC values meant.
3629 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
3632 __initcall(gate_vma_init
);
3635 struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
)
3637 #ifdef AT_SYSINFO_EHDR
3644 int in_gate_area_no_mm(unsigned long addr
)
3646 #ifdef AT_SYSINFO_EHDR
3647 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3653 #endif /* __HAVE_ARCH_GATE_AREA */
3655 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3656 pte_t
**ptepp
, spinlock_t
**ptlp
)
3663 pgd
= pgd_offset(mm
, address
);
3664 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3667 pud
= pud_offset(pgd
, address
);
3668 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3671 pmd
= pmd_offset(pud
, address
);
3672 VM_BUG_ON(pmd_trans_huge(*pmd
));
3673 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3676 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3680 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3683 if (!pte_present(*ptep
))
3688 pte_unmap_unlock(ptep
, *ptlp
);
3693 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3694 pte_t
**ptepp
, spinlock_t
**ptlp
)
3698 /* (void) is needed to make gcc happy */
3699 (void) __cond_lock(*ptlp
,
3700 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3705 * follow_pfn - look up PFN at a user virtual address
3706 * @vma: memory mapping
3707 * @address: user virtual address
3708 * @pfn: location to store found PFN
3710 * Only IO mappings and raw PFN mappings are allowed.
3712 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3714 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3721 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3724 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3727 *pfn
= pte_pfn(*ptep
);
3728 pte_unmap_unlock(ptep
, ptl
);
3731 EXPORT_SYMBOL(follow_pfn
);
3733 #ifdef CONFIG_HAVE_IOREMAP_PROT
3734 int follow_phys(struct vm_area_struct
*vma
,
3735 unsigned long address
, unsigned int flags
,
3736 unsigned long *prot
, resource_size_t
*phys
)
3742 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3745 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3749 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3752 *prot
= pgprot_val(pte_pgprot(pte
));
3753 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3757 pte_unmap_unlock(ptep
, ptl
);
3762 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3763 void *buf
, int len
, int write
)
3765 resource_size_t phys_addr
;
3766 unsigned long prot
= 0;
3767 void __iomem
*maddr
;
3768 int offset
= addr
& (PAGE_SIZE
-1);
3770 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3773 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3775 memcpy_toio(maddr
+ offset
, buf
, len
);
3777 memcpy_fromio(buf
, maddr
+ offset
, len
);
3785 * Access another process' address space as given in mm. If non-NULL, use the
3786 * given task for page fault accounting.
3788 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3789 unsigned long addr
, void *buf
, int len
, int write
)
3791 struct vm_area_struct
*vma
;
3792 void *old_buf
= buf
;
3794 down_read(&mm
->mmap_sem
);
3795 /* ignore errors, just check how much was successfully transferred */
3797 int bytes
, ret
, offset
;
3799 struct page
*page
= NULL
;
3801 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3802 write
, 1, &page
, &vma
);
3805 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3806 * we can access using slightly different code.
3808 #ifdef CONFIG_HAVE_IOREMAP_PROT
3809 vma
= find_vma(mm
, addr
);
3810 if (!vma
|| vma
->vm_start
> addr
)
3812 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3813 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3821 offset
= addr
& (PAGE_SIZE
-1);
3822 if (bytes
> PAGE_SIZE
-offset
)
3823 bytes
= PAGE_SIZE
-offset
;
3827 copy_to_user_page(vma
, page
, addr
,
3828 maddr
+ offset
, buf
, bytes
);
3829 set_page_dirty_lock(page
);
3831 copy_from_user_page(vma
, page
, addr
,
3832 buf
, maddr
+ offset
, bytes
);
3835 page_cache_release(page
);
3841 up_read(&mm
->mmap_sem
);
3843 return buf
- old_buf
;
3847 * access_remote_vm - access another process' address space
3848 * @mm: the mm_struct of the target address space
3849 * @addr: start address to access
3850 * @buf: source or destination buffer
3851 * @len: number of bytes to transfer
3852 * @write: whether the access is a write
3854 * The caller must hold a reference on @mm.
3856 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
3857 void *buf
, int len
, int write
)
3859 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
3863 * Access another process' address space.
3864 * Source/target buffer must be kernel space,
3865 * Do not walk the page table directly, use get_user_pages
3867 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
3868 void *buf
, int len
, int write
)
3870 struct mm_struct
*mm
;
3873 mm
= get_task_mm(tsk
);
3877 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
3884 * Print the name of a VMA.
3886 void print_vma_addr(char *prefix
, unsigned long ip
)
3888 struct mm_struct
*mm
= current
->mm
;
3889 struct vm_area_struct
*vma
;
3892 * Do not print if we are in atomic
3893 * contexts (in exception stacks, etc.):
3895 if (preempt_count())
3898 down_read(&mm
->mmap_sem
);
3899 vma
= find_vma(mm
, ip
);
3900 if (vma
&& vma
->vm_file
) {
3901 struct file
*f
= vma
->vm_file
;
3902 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3906 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3909 s
= strrchr(p
, '/');
3912 printk("%s%s[%lx+%lx]", prefix
, p
,
3914 vma
->vm_end
- vma
->vm_start
);
3915 free_page((unsigned long)buf
);
3918 up_read(¤t
->mm
->mmap_sem
);
3921 #ifdef CONFIG_PROVE_LOCKING
3922 void might_fault(void)
3925 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3926 * holding the mmap_sem, this is safe because kernel memory doesn't
3927 * get paged out, therefore we'll never actually fault, and the
3928 * below annotations will generate false positives.
3930 if (segment_eq(get_fs(), KERNEL_DS
))
3935 * it would be nicer only to annotate paths which are not under
3936 * pagefault_disable, however that requires a larger audit and
3937 * providing helpers like get_user_atomic.
3939 if (!in_atomic() && current
->mm
)
3940 might_lock_read(¤t
->mm
->mmap_sem
);
3942 EXPORT_SYMBOL(might_fault
);
3945 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3946 static void clear_gigantic_page(struct page
*page
,
3948 unsigned int pages_per_huge_page
)
3951 struct page
*p
= page
;
3954 for (i
= 0; i
< pages_per_huge_page
;
3955 i
++, p
= mem_map_next(p
, page
, i
)) {
3957 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
3960 void clear_huge_page(struct page
*page
,
3961 unsigned long addr
, unsigned int pages_per_huge_page
)
3965 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3966 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
3971 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3973 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
3977 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
3979 struct vm_area_struct
*vma
,
3980 unsigned int pages_per_huge_page
)
3983 struct page
*dst_base
= dst
;
3984 struct page
*src_base
= src
;
3986 for (i
= 0; i
< pages_per_huge_page
; ) {
3988 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
3991 dst
= mem_map_next(dst
, dst_base
, i
);
3992 src
= mem_map_next(src
, src_base
, i
);
3996 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
3997 unsigned long addr
, struct vm_area_struct
*vma
,
3998 unsigned int pages_per_huge_page
)
4002 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4003 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4004 pages_per_huge_page
);
4009 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4011 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4014 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */