1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2002, Linus Torvalds.
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
35 * 4MB minimal write chunk size
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
40 * Passed into wb_writeback(), essentially a subset of writeback_control
42 struct wb_writeback_work
{
44 struct super_block
*sb
;
45 unsigned long *older_than_this
;
46 enum writeback_sync_modes sync_mode
;
47 unsigned int tagged_writepages
:1;
48 unsigned int for_kupdate
:1;
49 unsigned int range_cyclic
:1;
50 unsigned int for_background
:1;
51 unsigned int for_sync
:1; /* sync(2) WB_SYNC_ALL writeback */
52 unsigned int auto_free
:1; /* free on completion */
53 enum wb_reason reason
; /* why was writeback initiated? */
55 struct list_head list
; /* pending work list */
56 struct wb_completion
*done
; /* set if the caller waits */
60 * If an inode is constantly having its pages dirtied, but then the
61 * updates stop dirtytime_expire_interval seconds in the past, it's
62 * possible for the worst case time between when an inode has its
63 * timestamps updated and when they finally get written out to be two
64 * dirtytime_expire_intervals. We set the default to 12 hours (in
65 * seconds), which means most of the time inodes will have their
66 * timestamps written to disk after 12 hours, but in the worst case a
67 * few inodes might not their timestamps updated for 24 hours.
69 unsigned int dirtytime_expire_interval
= 12 * 60 * 60;
71 static inline struct inode
*wb_inode(struct list_head
*head
)
73 return list_entry(head
, struct inode
, i_io_list
);
77 * Include the creation of the trace points after defining the
78 * wb_writeback_work structure and inline functions so that the definition
79 * remains local to this file.
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/writeback.h>
84 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage
);
86 static bool wb_io_lists_populated(struct bdi_writeback
*wb
)
88 if (wb_has_dirty_io(wb
)) {
91 set_bit(WB_has_dirty_io
, &wb
->state
);
92 WARN_ON_ONCE(!wb
->avg_write_bandwidth
);
93 atomic_long_add(wb
->avg_write_bandwidth
,
94 &wb
->bdi
->tot_write_bandwidth
);
99 static void wb_io_lists_depopulated(struct bdi_writeback
*wb
)
101 if (wb_has_dirty_io(wb
) && list_empty(&wb
->b_dirty
) &&
102 list_empty(&wb
->b_io
) && list_empty(&wb
->b_more_io
)) {
103 clear_bit(WB_has_dirty_io
, &wb
->state
);
104 WARN_ON_ONCE(atomic_long_sub_return(wb
->avg_write_bandwidth
,
105 &wb
->bdi
->tot_write_bandwidth
) < 0);
110 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
111 * @inode: inode to be moved
112 * @wb: target bdi_writeback
113 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
115 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
116 * Returns %true if @inode is the first occupant of the !dirty_time IO
117 * lists; otherwise, %false.
119 static bool inode_io_list_move_locked(struct inode
*inode
,
120 struct bdi_writeback
*wb
,
121 struct list_head
*head
)
123 assert_spin_locked(&wb
->list_lock
);
125 list_move(&inode
->i_io_list
, head
);
127 /* dirty_time doesn't count as dirty_io until expiration */
128 if (head
!= &wb
->b_dirty_time
)
129 return wb_io_lists_populated(wb
);
131 wb_io_lists_depopulated(wb
);
136 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
137 * @inode: inode to be removed
138 * @wb: bdi_writeback @inode is being removed from
140 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
141 * clear %WB_has_dirty_io if all are empty afterwards.
143 static void inode_io_list_del_locked(struct inode
*inode
,
144 struct bdi_writeback
*wb
)
146 assert_spin_locked(&wb
->list_lock
);
148 list_del_init(&inode
->i_io_list
);
149 wb_io_lists_depopulated(wb
);
152 static void wb_wakeup(struct bdi_writeback
*wb
)
154 spin_lock_bh(&wb
->work_lock
);
155 if (test_bit(WB_registered
, &wb
->state
))
156 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
157 spin_unlock_bh(&wb
->work_lock
);
160 static void finish_writeback_work(struct bdi_writeback
*wb
,
161 struct wb_writeback_work
*work
)
163 struct wb_completion
*done
= work
->done
;
168 wait_queue_head_t
*waitq
= done
->waitq
;
170 /* @done can't be accessed after the following dec */
171 if (atomic_dec_and_test(&done
->cnt
))
176 static void wb_queue_work(struct bdi_writeback
*wb
,
177 struct wb_writeback_work
*work
)
179 trace_writeback_queue(wb
, work
);
182 atomic_inc(&work
->done
->cnt
);
184 spin_lock_bh(&wb
->work_lock
);
186 if (test_bit(WB_registered
, &wb
->state
)) {
187 list_add_tail(&work
->list
, &wb
->work_list
);
188 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
190 finish_writeback_work(wb
, work
);
192 spin_unlock_bh(&wb
->work_lock
);
196 * wb_wait_for_completion - wait for completion of bdi_writeback_works
197 * @done: target wb_completion
199 * Wait for one or more work items issued to @bdi with their ->done field
200 * set to @done, which should have been initialized with
201 * DEFINE_WB_COMPLETION(). This function returns after all such work items
202 * are completed. Work items which are waited upon aren't freed
203 * automatically on completion.
205 void wb_wait_for_completion(struct wb_completion
*done
)
207 atomic_dec(&done
->cnt
); /* put down the initial count */
208 wait_event(*done
->waitq
, !atomic_read(&done
->cnt
));
211 #ifdef CONFIG_CGROUP_WRITEBACK
214 * Parameters for foreign inode detection, see wbc_detach_inode() to see
217 * These paramters are inherently heuristical as the detection target
218 * itself is fuzzy. All we want to do is detaching an inode from the
219 * current owner if it's being written to by some other cgroups too much.
221 * The current cgroup writeback is built on the assumption that multiple
222 * cgroups writing to the same inode concurrently is very rare and a mode
223 * of operation which isn't well supported. As such, the goal is not
224 * taking too long when a different cgroup takes over an inode while
225 * avoiding too aggressive flip-flops from occasional foreign writes.
227 * We record, very roughly, 2s worth of IO time history and if more than
228 * half of that is foreign, trigger the switch. The recording is quantized
229 * to 16 slots. To avoid tiny writes from swinging the decision too much,
230 * writes smaller than 1/8 of avg size are ignored.
232 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
233 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
234 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
235 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
237 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
238 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
239 /* each slot's duration is 2s / 16 */
240 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
241 /* if foreign slots >= 8, switch */
242 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
243 /* one round can affect upto 5 slots */
244 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
246 static atomic_t isw_nr_in_flight
= ATOMIC_INIT(0);
247 static struct workqueue_struct
*isw_wq
;
249 void __inode_attach_wb(struct inode
*inode
, struct page
*page
)
251 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
252 struct bdi_writeback
*wb
= NULL
;
254 if (inode_cgwb_enabled(inode
)) {
255 struct cgroup_subsys_state
*memcg_css
;
258 memcg_css
= mem_cgroup_css_from_page(page
);
259 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
261 /* must pin memcg_css, see wb_get_create() */
262 memcg_css
= task_get_css(current
, memory_cgrp_id
);
263 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
272 * There may be multiple instances of this function racing to
273 * update the same inode. Use cmpxchg() to tell the winner.
275 if (unlikely(cmpxchg(&inode
->i_wb
, NULL
, wb
)))
278 EXPORT_SYMBOL_GPL(__inode_attach_wb
);
281 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
282 * @inode: inode of interest with i_lock held
284 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
285 * held on entry and is released on return. The returned wb is guaranteed
286 * to stay @inode's associated wb until its list_lock is released.
288 static struct bdi_writeback
*
289 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
290 __releases(&inode
->i_lock
)
291 __acquires(&wb
->list_lock
)
294 struct bdi_writeback
*wb
= inode_to_wb(inode
);
297 * inode_to_wb() association is protected by both
298 * @inode->i_lock and @wb->list_lock but list_lock nests
299 * outside i_lock. Drop i_lock and verify that the
300 * association hasn't changed after acquiring list_lock.
303 spin_unlock(&inode
->i_lock
);
304 spin_lock(&wb
->list_lock
);
306 /* i_wb may have changed inbetween, can't use inode_to_wb() */
307 if (likely(wb
== inode
->i_wb
)) {
308 wb_put(wb
); /* @inode already has ref */
312 spin_unlock(&wb
->list_lock
);
315 spin_lock(&inode
->i_lock
);
320 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
321 * @inode: inode of interest
323 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
326 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
327 __acquires(&wb
->list_lock
)
329 spin_lock(&inode
->i_lock
);
330 return locked_inode_to_wb_and_lock_list(inode
);
333 struct inode_switch_wbs_context
{
335 struct bdi_writeback
*new_wb
;
337 struct rcu_head rcu_head
;
338 struct work_struct work
;
341 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info
*bdi
)
343 down_write(&bdi
->wb_switch_rwsem
);
346 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info
*bdi
)
348 up_write(&bdi
->wb_switch_rwsem
);
351 static void inode_switch_wbs_work_fn(struct work_struct
*work
)
353 struct inode_switch_wbs_context
*isw
=
354 container_of(work
, struct inode_switch_wbs_context
, work
);
355 struct inode
*inode
= isw
->inode
;
356 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
357 struct address_space
*mapping
= inode
->i_mapping
;
358 struct bdi_writeback
*old_wb
= inode
->i_wb
;
359 struct bdi_writeback
*new_wb
= isw
->new_wb
;
360 XA_STATE(xas
, &mapping
->i_pages
, 0);
362 bool switched
= false;
365 * If @inode switches cgwb membership while sync_inodes_sb() is
366 * being issued, sync_inodes_sb() might miss it. Synchronize.
368 down_read(&bdi
->wb_switch_rwsem
);
371 * By the time control reaches here, RCU grace period has passed
372 * since I_WB_SWITCH assertion and all wb stat update transactions
373 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
374 * synchronizing against the i_pages lock.
376 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
377 * gives us exclusion against all wb related operations on @inode
378 * including IO list manipulations and stat updates.
380 if (old_wb
< new_wb
) {
381 spin_lock(&old_wb
->list_lock
);
382 spin_lock_nested(&new_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
384 spin_lock(&new_wb
->list_lock
);
385 spin_lock_nested(&old_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
387 spin_lock(&inode
->i_lock
);
388 xa_lock_irq(&mapping
->i_pages
);
391 * Once I_FREEING is visible under i_lock, the eviction path owns
392 * the inode and we shouldn't modify ->i_io_list.
394 if (unlikely(inode
->i_state
& I_FREEING
))
397 trace_inode_switch_wbs(inode
, old_wb
, new_wb
);
400 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
401 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
402 * pages actually under writeback.
404 xas_for_each_marked(&xas
, page
, ULONG_MAX
, PAGECACHE_TAG_DIRTY
) {
405 if (PageDirty(page
)) {
406 dec_wb_stat(old_wb
, WB_RECLAIMABLE
);
407 inc_wb_stat(new_wb
, WB_RECLAIMABLE
);
412 xas_for_each_marked(&xas
, page
, ULONG_MAX
, PAGECACHE_TAG_WRITEBACK
) {
413 WARN_ON_ONCE(!PageWriteback(page
));
414 dec_wb_stat(old_wb
, WB_WRITEBACK
);
415 inc_wb_stat(new_wb
, WB_WRITEBACK
);
421 * Transfer to @new_wb's IO list if necessary. The specific list
422 * @inode was on is ignored and the inode is put on ->b_dirty which
423 * is always correct including from ->b_dirty_time. The transfer
424 * preserves @inode->dirtied_when ordering.
426 if (!list_empty(&inode
->i_io_list
)) {
429 inode_io_list_del_locked(inode
, old_wb
);
430 inode
->i_wb
= new_wb
;
431 list_for_each_entry(pos
, &new_wb
->b_dirty
, i_io_list
)
432 if (time_after_eq(inode
->dirtied_when
,
435 inode_io_list_move_locked(inode
, new_wb
, pos
->i_io_list
.prev
);
437 inode
->i_wb
= new_wb
;
440 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441 inode
->i_wb_frn_winner
= 0;
442 inode
->i_wb_frn_avg_time
= 0;
443 inode
->i_wb_frn_history
= 0;
447 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448 * ensures that the new wb is visible if they see !I_WB_SWITCH.
450 smp_store_release(&inode
->i_state
, inode
->i_state
& ~I_WB_SWITCH
);
452 xa_unlock_irq(&mapping
->i_pages
);
453 spin_unlock(&inode
->i_lock
);
454 spin_unlock(&new_wb
->list_lock
);
455 spin_unlock(&old_wb
->list_lock
);
457 up_read(&bdi
->wb_switch_rwsem
);
468 atomic_dec(&isw_nr_in_flight
);
471 static void inode_switch_wbs_rcu_fn(struct rcu_head
*rcu_head
)
473 struct inode_switch_wbs_context
*isw
= container_of(rcu_head
,
474 struct inode_switch_wbs_context
, rcu_head
);
476 /* needs to grab bh-unsafe locks, bounce to work item */
477 INIT_WORK(&isw
->work
, inode_switch_wbs_work_fn
);
478 queue_work(isw_wq
, &isw
->work
);
482 * inode_switch_wbs - change the wb association of an inode
483 * @inode: target inode
484 * @new_wb_id: ID of the new wb
486 * Switch @inode's wb association to the wb identified by @new_wb_id. The
487 * switching is performed asynchronously and may fail silently.
489 static void inode_switch_wbs(struct inode
*inode
, int new_wb_id
)
491 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
492 struct cgroup_subsys_state
*memcg_css
;
493 struct inode_switch_wbs_context
*isw
;
495 /* noop if seems to be already in progress */
496 if (inode
->i_state
& I_WB_SWITCH
)
499 /* avoid queueing a new switch if too many are already in flight */
500 if (atomic_read(&isw_nr_in_flight
) > WB_FRN_MAX_IN_FLIGHT
)
503 isw
= kzalloc(sizeof(*isw
), GFP_ATOMIC
);
507 /* find and pin the new wb */
509 memcg_css
= css_from_id(new_wb_id
, &memory_cgrp_subsys
);
511 isw
->new_wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
516 /* while holding I_WB_SWITCH, no one else can update the association */
517 spin_lock(&inode
->i_lock
);
518 if (!(inode
->i_sb
->s_flags
& SB_ACTIVE
) ||
519 inode
->i_state
& (I_WB_SWITCH
| I_FREEING
) ||
520 inode_to_wb(inode
) == isw
->new_wb
) {
521 spin_unlock(&inode
->i_lock
);
524 inode
->i_state
|= I_WB_SWITCH
;
526 spin_unlock(&inode
->i_lock
);
531 * In addition to synchronizing among switchers, I_WB_SWITCH tells
532 * the RCU protected stat update paths to grab the i_page
533 * lock so that stat transfer can synchronize against them.
534 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
536 call_rcu(&isw
->rcu_head
, inode_switch_wbs_rcu_fn
);
538 atomic_inc(&isw_nr_in_flight
);
548 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
549 * @wbc: writeback_control of interest
550 * @inode: target inode
552 * @inode is locked and about to be written back under the control of @wbc.
553 * Record @inode's writeback context into @wbc and unlock the i_lock. On
554 * writeback completion, wbc_detach_inode() should be called. This is used
555 * to track the cgroup writeback context.
557 void wbc_attach_and_unlock_inode(struct writeback_control
*wbc
,
560 if (!inode_cgwb_enabled(inode
)) {
561 spin_unlock(&inode
->i_lock
);
565 wbc
->wb
= inode_to_wb(inode
);
568 wbc
->wb_id
= wbc
->wb
->memcg_css
->id
;
569 wbc
->wb_lcand_id
= inode
->i_wb_frn_winner
;
570 wbc
->wb_tcand_id
= 0;
572 wbc
->wb_lcand_bytes
= 0;
573 wbc
->wb_tcand_bytes
= 0;
576 spin_unlock(&inode
->i_lock
);
579 * A dying wb indicates that either the blkcg associated with the
580 * memcg changed or the associated memcg is dying. In the first
581 * case, a replacement wb should already be available and we should
582 * refresh the wb immediately. In the second case, trying to
583 * refresh will keep failing.
585 if (unlikely(wb_dying(wbc
->wb
) && !css_is_dying(wbc
->wb
->memcg_css
)))
586 inode_switch_wbs(inode
, wbc
->wb_id
);
588 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode
);
591 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
592 * @wbc: writeback_control of the just finished writeback
594 * To be called after a writeback attempt of an inode finishes and undoes
595 * wbc_attach_and_unlock_inode(). Can be called under any context.
597 * As concurrent write sharing of an inode is expected to be very rare and
598 * memcg only tracks page ownership on first-use basis severely confining
599 * the usefulness of such sharing, cgroup writeback tracks ownership
600 * per-inode. While the support for concurrent write sharing of an inode
601 * is deemed unnecessary, an inode being written to by different cgroups at
602 * different points in time is a lot more common, and, more importantly,
603 * charging only by first-use can too readily lead to grossly incorrect
604 * behaviors (single foreign page can lead to gigabytes of writeback to be
605 * incorrectly attributed).
607 * To resolve this issue, cgroup writeback detects the majority dirtier of
608 * an inode and transfers the ownership to it. To avoid unnnecessary
609 * oscillation, the detection mechanism keeps track of history and gives
610 * out the switch verdict only if the foreign usage pattern is stable over
611 * a certain amount of time and/or writeback attempts.
613 * On each writeback attempt, @wbc tries to detect the majority writer
614 * using Boyer-Moore majority vote algorithm. In addition to the byte
615 * count from the majority voting, it also counts the bytes written for the
616 * current wb and the last round's winner wb (max of last round's current
617 * wb, the winner from two rounds ago, and the last round's majority
618 * candidate). Keeping track of the historical winner helps the algorithm
619 * to semi-reliably detect the most active writer even when it's not the
622 * Once the winner of the round is determined, whether the winner is
623 * foreign or not and how much IO time the round consumed is recorded in
624 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
625 * over a certain threshold, the switch verdict is given.
627 void wbc_detach_inode(struct writeback_control
*wbc
)
629 struct bdi_writeback
*wb
= wbc
->wb
;
630 struct inode
*inode
= wbc
->inode
;
631 unsigned long avg_time
, max_bytes
, max_time
;
638 history
= inode
->i_wb_frn_history
;
639 avg_time
= inode
->i_wb_frn_avg_time
;
641 /* pick the winner of this round */
642 if (wbc
->wb_bytes
>= wbc
->wb_lcand_bytes
&&
643 wbc
->wb_bytes
>= wbc
->wb_tcand_bytes
) {
645 max_bytes
= wbc
->wb_bytes
;
646 } else if (wbc
->wb_lcand_bytes
>= wbc
->wb_tcand_bytes
) {
647 max_id
= wbc
->wb_lcand_id
;
648 max_bytes
= wbc
->wb_lcand_bytes
;
650 max_id
= wbc
->wb_tcand_id
;
651 max_bytes
= wbc
->wb_tcand_bytes
;
655 * Calculate the amount of IO time the winner consumed and fold it
656 * into the running average kept per inode. If the consumed IO
657 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
658 * deciding whether to switch or not. This is to prevent one-off
659 * small dirtiers from skewing the verdict.
661 max_time
= DIV_ROUND_UP((max_bytes
>> PAGE_SHIFT
) << WB_FRN_TIME_SHIFT
,
662 wb
->avg_write_bandwidth
);
664 avg_time
+= (max_time
>> WB_FRN_TIME_AVG_SHIFT
) -
665 (avg_time
>> WB_FRN_TIME_AVG_SHIFT
);
667 avg_time
= max_time
; /* immediate catch up on first run */
669 if (max_time
>= avg_time
/ WB_FRN_TIME_CUT_DIV
) {
673 * The switch verdict is reached if foreign wb's consume
674 * more than a certain proportion of IO time in a
675 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
676 * history mask where each bit represents one sixteenth of
677 * the period. Determine the number of slots to shift into
678 * history from @max_time.
680 slots
= min(DIV_ROUND_UP(max_time
, WB_FRN_HIST_UNIT
),
681 (unsigned long)WB_FRN_HIST_MAX_SLOTS
);
683 if (wbc
->wb_id
!= max_id
)
684 history
|= (1U << slots
) - 1;
687 trace_inode_foreign_history(inode
, wbc
, history
);
690 * Switch if the current wb isn't the consistent winner.
691 * If there are multiple closely competing dirtiers, the
692 * inode may switch across them repeatedly over time, which
693 * is okay. The main goal is avoiding keeping an inode on
694 * the wrong wb for an extended period of time.
696 if (hweight32(history
) > WB_FRN_HIST_THR_SLOTS
)
697 inode_switch_wbs(inode
, max_id
);
701 * Multiple instances of this function may race to update the
702 * following fields but we don't mind occassional inaccuracies.
704 inode
->i_wb_frn_winner
= max_id
;
705 inode
->i_wb_frn_avg_time
= min(avg_time
, (unsigned long)U16_MAX
);
706 inode
->i_wb_frn_history
= history
;
711 EXPORT_SYMBOL_GPL(wbc_detach_inode
);
714 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
715 * @wbc: writeback_control of the writeback in progress
716 * @page: page being written out
717 * @bytes: number of bytes being written out
719 * @bytes from @page are about to written out during the writeback
720 * controlled by @wbc. Keep the book for foreign inode detection. See
721 * wbc_detach_inode().
723 void wbc_account_cgroup_owner(struct writeback_control
*wbc
, struct page
*page
,
726 struct cgroup_subsys_state
*css
;
730 * pageout() path doesn't attach @wbc to the inode being written
731 * out. This is intentional as we don't want the function to block
732 * behind a slow cgroup. Ultimately, we want pageout() to kick off
733 * regular writeback instead of writing things out itself.
735 if (!wbc
->wb
|| wbc
->no_cgroup_owner
)
738 css
= mem_cgroup_css_from_page(page
);
739 /* dead cgroups shouldn't contribute to inode ownership arbitration */
740 if (!(css
->flags
& CSS_ONLINE
))
745 if (id
== wbc
->wb_id
) {
746 wbc
->wb_bytes
+= bytes
;
750 if (id
== wbc
->wb_lcand_id
)
751 wbc
->wb_lcand_bytes
+= bytes
;
753 /* Boyer-Moore majority vote algorithm */
754 if (!wbc
->wb_tcand_bytes
)
755 wbc
->wb_tcand_id
= id
;
756 if (id
== wbc
->wb_tcand_id
)
757 wbc
->wb_tcand_bytes
+= bytes
;
759 wbc
->wb_tcand_bytes
-= min(bytes
, wbc
->wb_tcand_bytes
);
761 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner
);
764 * inode_congested - test whether an inode is congested
765 * @inode: inode to test for congestion (may be NULL)
766 * @cong_bits: mask of WB_[a]sync_congested bits to test
768 * Tests whether @inode is congested. @cong_bits is the mask of congestion
769 * bits to test and the return value is the mask of set bits.
771 * If cgroup writeback is enabled for @inode, the congestion state is
772 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
773 * associated with @inode is congested; otherwise, the root wb's congestion
776 * @inode is allowed to be NULL as this function is often called on
777 * mapping->host which is NULL for the swapper space.
779 int inode_congested(struct inode
*inode
, int cong_bits
)
782 * Once set, ->i_wb never becomes NULL while the inode is alive.
783 * Start transaction iff ->i_wb is visible.
785 if (inode
&& inode_to_wb_is_valid(inode
)) {
786 struct bdi_writeback
*wb
;
787 struct wb_lock_cookie lock_cookie
= {};
790 wb
= unlocked_inode_to_wb_begin(inode
, &lock_cookie
);
791 congested
= wb_congested(wb
, cong_bits
);
792 unlocked_inode_to_wb_end(inode
, &lock_cookie
);
796 return wb_congested(&inode_to_bdi(inode
)->wb
, cong_bits
);
798 EXPORT_SYMBOL_GPL(inode_congested
);
801 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
802 * @wb: target bdi_writeback to split @nr_pages to
803 * @nr_pages: number of pages to write for the whole bdi
805 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
806 * relation to the total write bandwidth of all wb's w/ dirty inodes on
809 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
811 unsigned long this_bw
= wb
->avg_write_bandwidth
;
812 unsigned long tot_bw
= atomic_long_read(&wb
->bdi
->tot_write_bandwidth
);
814 if (nr_pages
== LONG_MAX
)
818 * This may be called on clean wb's and proportional distribution
819 * may not make sense, just use the original @nr_pages in those
820 * cases. In general, we wanna err on the side of writing more.
822 if (!tot_bw
|| this_bw
>= tot_bw
)
825 return DIV_ROUND_UP_ULL((u64
)nr_pages
* this_bw
, tot_bw
);
829 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
830 * @bdi: target backing_dev_info
831 * @base_work: wb_writeback_work to issue
832 * @skip_if_busy: skip wb's which already have writeback in progress
834 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
835 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
836 * distributed to the busy wbs according to each wb's proportion in the
837 * total active write bandwidth of @bdi.
839 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
840 struct wb_writeback_work
*base_work
,
843 struct bdi_writeback
*last_wb
= NULL
;
844 struct bdi_writeback
*wb
= list_entry(&bdi
->wb_list
,
845 struct bdi_writeback
, bdi_node
);
850 list_for_each_entry_continue_rcu(wb
, &bdi
->wb_list
, bdi_node
) {
851 DEFINE_WB_COMPLETION(fallback_work_done
, bdi
);
852 struct wb_writeback_work fallback_work
;
853 struct wb_writeback_work
*work
;
861 /* SYNC_ALL writes out I_DIRTY_TIME too */
862 if (!wb_has_dirty_io(wb
) &&
863 (base_work
->sync_mode
== WB_SYNC_NONE
||
864 list_empty(&wb
->b_dirty_time
)))
866 if (skip_if_busy
&& writeback_in_progress(wb
))
869 nr_pages
= wb_split_bdi_pages(wb
, base_work
->nr_pages
);
871 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
874 work
->nr_pages
= nr_pages
;
876 wb_queue_work(wb
, work
);
880 /* alloc failed, execute synchronously using on-stack fallback */
881 work
= &fallback_work
;
883 work
->nr_pages
= nr_pages
;
885 work
->done
= &fallback_work_done
;
887 wb_queue_work(wb
, work
);
890 * Pin @wb so that it stays on @bdi->wb_list. This allows
891 * continuing iteration from @wb after dropping and
892 * regrabbing rcu read lock.
898 wb_wait_for_completion(&fallback_work_done
);
908 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
909 * @bdi_id: target bdi id
910 * @memcg_id: target memcg css id
911 * @nr: number of pages to write, 0 for best-effort dirty flushing
912 * @reason: reason why some writeback work initiated
913 * @done: target wb_completion
915 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
916 * with the specified parameters.
918 int cgroup_writeback_by_id(u64 bdi_id
, int memcg_id
, unsigned long nr
,
919 enum wb_reason reason
, struct wb_completion
*done
)
921 struct backing_dev_info
*bdi
;
922 struct cgroup_subsys_state
*memcg_css
;
923 struct bdi_writeback
*wb
;
924 struct wb_writeback_work
*work
;
927 /* lookup bdi and memcg */
928 bdi
= bdi_get_by_id(bdi_id
);
933 memcg_css
= css_from_id(memcg_id
, &memory_cgrp_subsys
);
934 if (memcg_css
&& !css_tryget(memcg_css
))
943 * And find the associated wb. If the wb isn't there already
944 * there's nothing to flush, don't create one.
946 wb
= wb_get_lookup(bdi
, memcg_css
);
953 * If @nr is zero, the caller is attempting to write out most of
954 * the currently dirty pages. Let's take the current dirty page
955 * count and inflate it by 25% which should be large enough to
956 * flush out most dirty pages while avoiding getting livelocked by
957 * concurrent dirtiers.
960 unsigned long filepages
, headroom
, dirty
, writeback
;
962 mem_cgroup_wb_stats(wb
, &filepages
, &headroom
, &dirty
,
967 /* issue the writeback work */
968 work
= kzalloc(sizeof(*work
), GFP_NOWAIT
| __GFP_NOWARN
);
971 work
->sync_mode
= WB_SYNC_NONE
;
972 work
->range_cyclic
= 1;
973 work
->reason
= reason
;
976 wb_queue_work(wb
, work
);
991 * cgroup_writeback_umount - flush inode wb switches for umount
993 * This function is called when a super_block is about to be destroyed and
994 * flushes in-flight inode wb switches. An inode wb switch goes through
995 * RCU and then workqueue, so the two need to be flushed in order to ensure
996 * that all previously scheduled switches are finished. As wb switches are
997 * rare occurrences and synchronize_rcu() can take a while, perform
998 * flushing iff wb switches are in flight.
1000 void cgroup_writeback_umount(void)
1002 if (atomic_read(&isw_nr_in_flight
)) {
1004 * Use rcu_barrier() to wait for all pending callbacks to
1005 * ensure that all in-flight wb switches are in the workqueue.
1008 flush_workqueue(isw_wq
);
1012 static int __init
cgroup_writeback_init(void)
1014 isw_wq
= alloc_workqueue("inode_switch_wbs", 0, 0);
1019 fs_initcall(cgroup_writeback_init
);
1021 #else /* CONFIG_CGROUP_WRITEBACK */
1023 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info
*bdi
) { }
1024 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info
*bdi
) { }
1026 static struct bdi_writeback
*
1027 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
1028 __releases(&inode
->i_lock
)
1029 __acquires(&wb
->list_lock
)
1031 struct bdi_writeback
*wb
= inode_to_wb(inode
);
1033 spin_unlock(&inode
->i_lock
);
1034 spin_lock(&wb
->list_lock
);
1038 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
1039 __acquires(&wb
->list_lock
)
1041 struct bdi_writeback
*wb
= inode_to_wb(inode
);
1043 spin_lock(&wb
->list_lock
);
1047 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
1052 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
1053 struct wb_writeback_work
*base_work
,
1058 if (!skip_if_busy
|| !writeback_in_progress(&bdi
->wb
)) {
1059 base_work
->auto_free
= 0;
1060 wb_queue_work(&bdi
->wb
, base_work
);
1064 #endif /* CONFIG_CGROUP_WRITEBACK */
1067 * Add in the number of potentially dirty inodes, because each inode
1068 * write can dirty pagecache in the underlying blockdev.
1070 static unsigned long get_nr_dirty_pages(void)
1072 return global_node_page_state(NR_FILE_DIRTY
) +
1073 global_node_page_state(NR_UNSTABLE_NFS
) +
1074 get_nr_dirty_inodes();
1077 static void wb_start_writeback(struct bdi_writeback
*wb
, enum wb_reason reason
)
1079 if (!wb_has_dirty_io(wb
))
1083 * All callers of this function want to start writeback of all
1084 * dirty pages. Places like vmscan can call this at a very
1085 * high frequency, causing pointless allocations of tons of
1086 * work items and keeping the flusher threads busy retrieving
1087 * that work. Ensure that we only allow one of them pending and
1088 * inflight at the time.
1090 if (test_bit(WB_start_all
, &wb
->state
) ||
1091 test_and_set_bit(WB_start_all
, &wb
->state
))
1094 wb
->start_all_reason
= reason
;
1099 * wb_start_background_writeback - start background writeback
1100 * @wb: bdi_writback to write from
1103 * This makes sure WB_SYNC_NONE background writeback happens. When
1104 * this function returns, it is only guaranteed that for given wb
1105 * some IO is happening if we are over background dirty threshold.
1106 * Caller need not hold sb s_umount semaphore.
1108 void wb_start_background_writeback(struct bdi_writeback
*wb
)
1111 * We just wake up the flusher thread. It will perform background
1112 * writeback as soon as there is no other work to do.
1114 trace_writeback_wake_background(wb
);
1119 * Remove the inode from the writeback list it is on.
1121 void inode_io_list_del(struct inode
*inode
)
1123 struct bdi_writeback
*wb
;
1125 wb
= inode_to_wb_and_lock_list(inode
);
1126 inode_io_list_del_locked(inode
, wb
);
1127 spin_unlock(&wb
->list_lock
);
1131 * mark an inode as under writeback on the sb
1133 void sb_mark_inode_writeback(struct inode
*inode
)
1135 struct super_block
*sb
= inode
->i_sb
;
1136 unsigned long flags
;
1138 if (list_empty(&inode
->i_wb_list
)) {
1139 spin_lock_irqsave(&sb
->s_inode_wblist_lock
, flags
);
1140 if (list_empty(&inode
->i_wb_list
)) {
1141 list_add_tail(&inode
->i_wb_list
, &sb
->s_inodes_wb
);
1142 trace_sb_mark_inode_writeback(inode
);
1144 spin_unlock_irqrestore(&sb
->s_inode_wblist_lock
, flags
);
1149 * clear an inode as under writeback on the sb
1151 void sb_clear_inode_writeback(struct inode
*inode
)
1153 struct super_block
*sb
= inode
->i_sb
;
1154 unsigned long flags
;
1156 if (!list_empty(&inode
->i_wb_list
)) {
1157 spin_lock_irqsave(&sb
->s_inode_wblist_lock
, flags
);
1158 if (!list_empty(&inode
->i_wb_list
)) {
1159 list_del_init(&inode
->i_wb_list
);
1160 trace_sb_clear_inode_writeback(inode
);
1162 spin_unlock_irqrestore(&sb
->s_inode_wblist_lock
, flags
);
1167 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1168 * furthest end of its superblock's dirty-inode list.
1170 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1171 * already the most-recently-dirtied inode on the b_dirty list. If that is
1172 * the case then the inode must have been redirtied while it was being written
1173 * out and we don't reset its dirtied_when.
1175 static void redirty_tail(struct inode
*inode
, struct bdi_writeback
*wb
)
1177 if (!list_empty(&wb
->b_dirty
)) {
1180 tail
= wb_inode(wb
->b_dirty
.next
);
1181 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
1182 inode
->dirtied_when
= jiffies
;
1184 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty
);
1188 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1190 static void requeue_io(struct inode
*inode
, struct bdi_writeback
*wb
)
1192 inode_io_list_move_locked(inode
, wb
, &wb
->b_more_io
);
1195 static void inode_sync_complete(struct inode
*inode
)
1197 inode
->i_state
&= ~I_SYNC
;
1198 /* If inode is clean an unused, put it into LRU now... */
1199 inode_add_lru(inode
);
1200 /* Waiters must see I_SYNC cleared before being woken up */
1202 wake_up_bit(&inode
->i_state
, __I_SYNC
);
1205 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
1207 bool ret
= time_after(inode
->dirtied_when
, t
);
1208 #ifndef CONFIG_64BIT
1210 * For inodes being constantly redirtied, dirtied_when can get stuck.
1211 * It _appears_ to be in the future, but is actually in distant past.
1212 * This test is necessary to prevent such wrapped-around relative times
1213 * from permanently stopping the whole bdi writeback.
1215 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
1220 #define EXPIRE_DIRTY_ATIME 0x0001
1223 * Move expired (dirtied before work->older_than_this) dirty inodes from
1224 * @delaying_queue to @dispatch_queue.
1226 static int move_expired_inodes(struct list_head
*delaying_queue
,
1227 struct list_head
*dispatch_queue
,
1229 struct wb_writeback_work
*work
)
1231 unsigned long *older_than_this
= NULL
;
1232 unsigned long expire_time
;
1234 struct list_head
*pos
, *node
;
1235 struct super_block
*sb
= NULL
;
1236 struct inode
*inode
;
1240 if ((flags
& EXPIRE_DIRTY_ATIME
) == 0)
1241 older_than_this
= work
->older_than_this
;
1242 else if (!work
->for_sync
) {
1243 expire_time
= jiffies
- (dirtytime_expire_interval
* HZ
);
1244 older_than_this
= &expire_time
;
1246 while (!list_empty(delaying_queue
)) {
1247 inode
= wb_inode(delaying_queue
->prev
);
1248 if (older_than_this
&&
1249 inode_dirtied_after(inode
, *older_than_this
))
1251 list_move(&inode
->i_io_list
, &tmp
);
1253 if (flags
& EXPIRE_DIRTY_ATIME
)
1254 set_bit(__I_DIRTY_TIME_EXPIRED
, &inode
->i_state
);
1255 if (sb_is_blkdev_sb(inode
->i_sb
))
1257 if (sb
&& sb
!= inode
->i_sb
)
1262 /* just one sb in list, splice to dispatch_queue and we're done */
1264 list_splice(&tmp
, dispatch_queue
);
1268 /* Move inodes from one superblock together */
1269 while (!list_empty(&tmp
)) {
1270 sb
= wb_inode(tmp
.prev
)->i_sb
;
1271 list_for_each_prev_safe(pos
, node
, &tmp
) {
1272 inode
= wb_inode(pos
);
1273 if (inode
->i_sb
== sb
)
1274 list_move(&inode
->i_io_list
, dispatch_queue
);
1282 * Queue all expired dirty inodes for io, eldest first.
1284 * newly dirtied b_dirty b_io b_more_io
1285 * =============> gf edc BA
1287 * newly dirtied b_dirty b_io b_more_io
1288 * =============> g fBAedc
1290 * +--> dequeue for IO
1292 static void queue_io(struct bdi_writeback
*wb
, struct wb_writeback_work
*work
)
1296 assert_spin_locked(&wb
->list_lock
);
1297 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
1298 moved
= move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, 0, work
);
1299 moved
+= move_expired_inodes(&wb
->b_dirty_time
, &wb
->b_io
,
1300 EXPIRE_DIRTY_ATIME
, work
);
1302 wb_io_lists_populated(wb
);
1303 trace_writeback_queue_io(wb
, work
, moved
);
1306 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1310 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
)) {
1311 trace_writeback_write_inode_start(inode
, wbc
);
1312 ret
= inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
1313 trace_writeback_write_inode(inode
, wbc
);
1320 * Wait for writeback on an inode to complete. Called with i_lock held.
1321 * Caller must make sure inode cannot go away when we drop i_lock.
1323 static void __inode_wait_for_writeback(struct inode
*inode
)
1324 __releases(inode
->i_lock
)
1325 __acquires(inode
->i_lock
)
1327 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
1328 wait_queue_head_t
*wqh
;
1330 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1331 while (inode
->i_state
& I_SYNC
) {
1332 spin_unlock(&inode
->i_lock
);
1333 __wait_on_bit(wqh
, &wq
, bit_wait
,
1334 TASK_UNINTERRUPTIBLE
);
1335 spin_lock(&inode
->i_lock
);
1340 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1342 void inode_wait_for_writeback(struct inode
*inode
)
1344 spin_lock(&inode
->i_lock
);
1345 __inode_wait_for_writeback(inode
);
1346 spin_unlock(&inode
->i_lock
);
1350 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1351 * held and drops it. It is aimed for callers not holding any inode reference
1352 * so once i_lock is dropped, inode can go away.
1354 static void inode_sleep_on_writeback(struct inode
*inode
)
1355 __releases(inode
->i_lock
)
1358 wait_queue_head_t
*wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1361 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
1362 sleep
= inode
->i_state
& I_SYNC
;
1363 spin_unlock(&inode
->i_lock
);
1366 finish_wait(wqh
, &wait
);
1370 * Find proper writeback list for the inode depending on its current state and
1371 * possibly also change of its state while we were doing writeback. Here we
1372 * handle things such as livelock prevention or fairness of writeback among
1373 * inodes. This function can be called only by flusher thread - noone else
1374 * processes all inodes in writeback lists and requeueing inodes behind flusher
1375 * thread's back can have unexpected consequences.
1377 static void requeue_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
1378 struct writeback_control
*wbc
)
1380 if (inode
->i_state
& I_FREEING
)
1384 * Sync livelock prevention. Each inode is tagged and synced in one
1385 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1386 * the dirty time to prevent enqueue and sync it again.
1388 if ((inode
->i_state
& I_DIRTY
) &&
1389 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
1390 inode
->dirtied_when
= jiffies
;
1392 if (wbc
->pages_skipped
) {
1394 * writeback is not making progress due to locked
1395 * buffers. Skip this inode for now.
1397 redirty_tail(inode
, wb
);
1401 if (mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
1403 * We didn't write back all the pages. nfs_writepages()
1404 * sometimes bales out without doing anything.
1406 if (wbc
->nr_to_write
<= 0) {
1407 /* Slice used up. Queue for next turn. */
1408 requeue_io(inode
, wb
);
1411 * Writeback blocked by something other than
1412 * congestion. Delay the inode for some time to
1413 * avoid spinning on the CPU (100% iowait)
1414 * retrying writeback of the dirty page/inode
1415 * that cannot be performed immediately.
1417 redirty_tail(inode
, wb
);
1419 } else if (inode
->i_state
& I_DIRTY
) {
1421 * Filesystems can dirty the inode during writeback operations,
1422 * such as delayed allocation during submission or metadata
1423 * updates after data IO completion.
1425 redirty_tail(inode
, wb
);
1426 } else if (inode
->i_state
& I_DIRTY_TIME
) {
1427 inode
->dirtied_when
= jiffies
;
1428 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty_time
);
1430 /* The inode is clean. Remove from writeback lists. */
1431 inode_io_list_del_locked(inode
, wb
);
1436 * Write out an inode and its dirty pages. Do not update the writeback list
1437 * linkage. That is left to the caller. The caller is also responsible for
1438 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1441 __writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1443 struct address_space
*mapping
= inode
->i_mapping
;
1444 long nr_to_write
= wbc
->nr_to_write
;
1448 WARN_ON(!(inode
->i_state
& I_SYNC
));
1450 trace_writeback_single_inode_start(inode
, wbc
, nr_to_write
);
1452 ret
= do_writepages(mapping
, wbc
);
1455 * Make sure to wait on the data before writing out the metadata.
1456 * This is important for filesystems that modify metadata on data
1457 * I/O completion. We don't do it for sync(2) writeback because it has a
1458 * separate, external IO completion path and ->sync_fs for guaranteeing
1459 * inode metadata is written back correctly.
1461 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
) {
1462 int err
= filemap_fdatawait(mapping
);
1468 * Some filesystems may redirty the inode during the writeback
1469 * due to delalloc, clear dirty metadata flags right before
1472 spin_lock(&inode
->i_lock
);
1474 dirty
= inode
->i_state
& I_DIRTY
;
1475 if (inode
->i_state
& I_DIRTY_TIME
) {
1476 if ((dirty
& I_DIRTY_INODE
) ||
1477 wbc
->sync_mode
== WB_SYNC_ALL
||
1478 unlikely(inode
->i_state
& I_DIRTY_TIME_EXPIRED
) ||
1479 unlikely(time_after(jiffies
,
1480 (inode
->dirtied_time_when
+
1481 dirtytime_expire_interval
* HZ
)))) {
1482 dirty
|= I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
;
1483 trace_writeback_lazytime(inode
);
1486 inode
->i_state
&= ~I_DIRTY_TIME_EXPIRED
;
1487 inode
->i_state
&= ~dirty
;
1490 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1491 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1492 * either they see the I_DIRTY bits cleared or we see the dirtied
1495 * I_DIRTY_PAGES is always cleared together above even if @mapping
1496 * still has dirty pages. The flag is reinstated after smp_mb() if
1497 * necessary. This guarantees that either __mark_inode_dirty()
1498 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1502 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
1503 inode
->i_state
|= I_DIRTY_PAGES
;
1505 spin_unlock(&inode
->i_lock
);
1507 if (dirty
& I_DIRTY_TIME
)
1508 mark_inode_dirty_sync(inode
);
1509 /* Don't write the inode if only I_DIRTY_PAGES was set */
1510 if (dirty
& ~I_DIRTY_PAGES
) {
1511 int err
= write_inode(inode
, wbc
);
1515 trace_writeback_single_inode(inode
, wbc
, nr_to_write
);
1520 * Write out an inode's dirty pages. Either the caller has an active reference
1521 * on the inode or the inode has I_WILL_FREE set.
1523 * This function is designed to be called for writing back one inode which
1524 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1525 * and does more profound writeback list handling in writeback_sb_inodes().
1527 static int writeback_single_inode(struct inode
*inode
,
1528 struct writeback_control
*wbc
)
1530 struct bdi_writeback
*wb
;
1533 spin_lock(&inode
->i_lock
);
1534 if (!atomic_read(&inode
->i_count
))
1535 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
1537 WARN_ON(inode
->i_state
& I_WILL_FREE
);
1539 if (inode
->i_state
& I_SYNC
) {
1540 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
1543 * It's a data-integrity sync. We must wait. Since callers hold
1544 * inode reference or inode has I_WILL_FREE set, it cannot go
1547 __inode_wait_for_writeback(inode
);
1549 WARN_ON(inode
->i_state
& I_SYNC
);
1551 * Skip inode if it is clean and we have no outstanding writeback in
1552 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1553 * function since flusher thread may be doing for example sync in
1554 * parallel and if we move the inode, it could get skipped. So here we
1555 * make sure inode is on some writeback list and leave it there unless
1556 * we have completely cleaned the inode.
1558 if (!(inode
->i_state
& I_DIRTY_ALL
) &&
1559 (wbc
->sync_mode
!= WB_SYNC_ALL
||
1560 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_WRITEBACK
)))
1562 inode
->i_state
|= I_SYNC
;
1563 wbc_attach_and_unlock_inode(wbc
, inode
);
1565 ret
= __writeback_single_inode(inode
, wbc
);
1567 wbc_detach_inode(wbc
);
1569 wb
= inode_to_wb_and_lock_list(inode
);
1570 spin_lock(&inode
->i_lock
);
1572 * If inode is clean, remove it from writeback lists. Otherwise don't
1573 * touch it. See comment above for explanation.
1575 if (!(inode
->i_state
& I_DIRTY_ALL
))
1576 inode_io_list_del_locked(inode
, wb
);
1577 spin_unlock(&wb
->list_lock
);
1578 inode_sync_complete(inode
);
1580 spin_unlock(&inode
->i_lock
);
1584 static long writeback_chunk_size(struct bdi_writeback
*wb
,
1585 struct wb_writeback_work
*work
)
1590 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1591 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1592 * here avoids calling into writeback_inodes_wb() more than once.
1594 * The intended call sequence for WB_SYNC_ALL writeback is:
1597 * writeback_sb_inodes() <== called only once
1598 * write_cache_pages() <== called once for each inode
1599 * (quickly) tag currently dirty pages
1600 * (maybe slowly) sync all tagged pages
1602 if (work
->sync_mode
== WB_SYNC_ALL
|| work
->tagged_writepages
)
1605 pages
= min(wb
->avg_write_bandwidth
/ 2,
1606 global_wb_domain
.dirty_limit
/ DIRTY_SCOPE
);
1607 pages
= min(pages
, work
->nr_pages
);
1608 pages
= round_down(pages
+ MIN_WRITEBACK_PAGES
,
1609 MIN_WRITEBACK_PAGES
);
1616 * Write a portion of b_io inodes which belong to @sb.
1618 * Return the number of pages and/or inodes written.
1620 * NOTE! This is called with wb->list_lock held, and will
1621 * unlock and relock that for each inode it ends up doing
1624 static long writeback_sb_inodes(struct super_block
*sb
,
1625 struct bdi_writeback
*wb
,
1626 struct wb_writeback_work
*work
)
1628 struct writeback_control wbc
= {
1629 .sync_mode
= work
->sync_mode
,
1630 .tagged_writepages
= work
->tagged_writepages
,
1631 .for_kupdate
= work
->for_kupdate
,
1632 .for_background
= work
->for_background
,
1633 .for_sync
= work
->for_sync
,
1634 .range_cyclic
= work
->range_cyclic
,
1636 .range_end
= LLONG_MAX
,
1638 unsigned long start_time
= jiffies
;
1640 long wrote
= 0; /* count both pages and inodes */
1642 while (!list_empty(&wb
->b_io
)) {
1643 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1644 struct bdi_writeback
*tmp_wb
;
1646 if (inode
->i_sb
!= sb
) {
1649 * We only want to write back data for this
1650 * superblock, move all inodes not belonging
1651 * to it back onto the dirty list.
1653 redirty_tail(inode
, wb
);
1658 * The inode belongs to a different superblock.
1659 * Bounce back to the caller to unpin this and
1660 * pin the next superblock.
1666 * Don't bother with new inodes or inodes being freed, first
1667 * kind does not need periodic writeout yet, and for the latter
1668 * kind writeout is handled by the freer.
1670 spin_lock(&inode
->i_lock
);
1671 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
1672 spin_unlock(&inode
->i_lock
);
1673 redirty_tail(inode
, wb
);
1676 if ((inode
->i_state
& I_SYNC
) && wbc
.sync_mode
!= WB_SYNC_ALL
) {
1678 * If this inode is locked for writeback and we are not
1679 * doing writeback-for-data-integrity, move it to
1680 * b_more_io so that writeback can proceed with the
1681 * other inodes on s_io.
1683 * We'll have another go at writing back this inode
1684 * when we completed a full scan of b_io.
1686 spin_unlock(&inode
->i_lock
);
1687 requeue_io(inode
, wb
);
1688 trace_writeback_sb_inodes_requeue(inode
);
1691 spin_unlock(&wb
->list_lock
);
1694 * We already requeued the inode if it had I_SYNC set and we
1695 * are doing WB_SYNC_NONE writeback. So this catches only the
1698 if (inode
->i_state
& I_SYNC
) {
1699 /* Wait for I_SYNC. This function drops i_lock... */
1700 inode_sleep_on_writeback(inode
);
1701 /* Inode may be gone, start again */
1702 spin_lock(&wb
->list_lock
);
1705 inode
->i_state
|= I_SYNC
;
1706 wbc_attach_and_unlock_inode(&wbc
, inode
);
1708 write_chunk
= writeback_chunk_size(wb
, work
);
1709 wbc
.nr_to_write
= write_chunk
;
1710 wbc
.pages_skipped
= 0;
1713 * We use I_SYNC to pin the inode in memory. While it is set
1714 * evict_inode() will wait so the inode cannot be freed.
1716 __writeback_single_inode(inode
, &wbc
);
1718 wbc_detach_inode(&wbc
);
1719 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
1720 wrote
+= write_chunk
- wbc
.nr_to_write
;
1722 if (need_resched()) {
1724 * We're trying to balance between building up a nice
1725 * long list of IOs to improve our merge rate, and
1726 * getting those IOs out quickly for anyone throttling
1727 * in balance_dirty_pages(). cond_resched() doesn't
1728 * unplug, so get our IOs out the door before we
1731 blk_flush_plug(current
);
1736 * Requeue @inode if still dirty. Be careful as @inode may
1737 * have been switched to another wb in the meantime.
1739 tmp_wb
= inode_to_wb_and_lock_list(inode
);
1740 spin_lock(&inode
->i_lock
);
1741 if (!(inode
->i_state
& I_DIRTY_ALL
))
1743 requeue_inode(inode
, tmp_wb
, &wbc
);
1744 inode_sync_complete(inode
);
1745 spin_unlock(&inode
->i_lock
);
1747 if (unlikely(tmp_wb
!= wb
)) {
1748 spin_unlock(&tmp_wb
->list_lock
);
1749 spin_lock(&wb
->list_lock
);
1753 * bail out to wb_writeback() often enough to check
1754 * background threshold and other termination conditions.
1757 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1759 if (work
->nr_pages
<= 0)
1766 static long __writeback_inodes_wb(struct bdi_writeback
*wb
,
1767 struct wb_writeback_work
*work
)
1769 unsigned long start_time
= jiffies
;
1772 while (!list_empty(&wb
->b_io
)) {
1773 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1774 struct super_block
*sb
= inode
->i_sb
;
1776 if (!trylock_super(sb
)) {
1778 * trylock_super() may fail consistently due to
1779 * s_umount being grabbed by someone else. Don't use
1780 * requeue_io() to avoid busy retrying the inode/sb.
1782 redirty_tail(inode
, wb
);
1785 wrote
+= writeback_sb_inodes(sb
, wb
, work
);
1786 up_read(&sb
->s_umount
);
1788 /* refer to the same tests at the end of writeback_sb_inodes */
1790 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1792 if (work
->nr_pages
<= 0)
1796 /* Leave any unwritten inodes on b_io */
1800 static long writeback_inodes_wb(struct bdi_writeback
*wb
, long nr_pages
,
1801 enum wb_reason reason
)
1803 struct wb_writeback_work work
= {
1804 .nr_pages
= nr_pages
,
1805 .sync_mode
= WB_SYNC_NONE
,
1809 struct blk_plug plug
;
1811 blk_start_plug(&plug
);
1812 spin_lock(&wb
->list_lock
);
1813 if (list_empty(&wb
->b_io
))
1814 queue_io(wb
, &work
);
1815 __writeback_inodes_wb(wb
, &work
);
1816 spin_unlock(&wb
->list_lock
);
1817 blk_finish_plug(&plug
);
1819 return nr_pages
- work
.nr_pages
;
1823 * Explicit flushing or periodic writeback of "old" data.
1825 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1826 * dirtying-time in the inode's address_space. So this periodic writeback code
1827 * just walks the superblock inode list, writing back any inodes which are
1828 * older than a specific point in time.
1830 * Try to run once per dirty_writeback_interval. But if a writeback event
1831 * takes longer than a dirty_writeback_interval interval, then leave a
1834 * older_than_this takes precedence over nr_to_write. So we'll only write back
1835 * all dirty pages if they are all attached to "old" mappings.
1837 static long wb_writeback(struct bdi_writeback
*wb
,
1838 struct wb_writeback_work
*work
)
1840 unsigned long wb_start
= jiffies
;
1841 long nr_pages
= work
->nr_pages
;
1842 unsigned long oldest_jif
;
1843 struct inode
*inode
;
1845 struct blk_plug plug
;
1847 oldest_jif
= jiffies
;
1848 work
->older_than_this
= &oldest_jif
;
1850 blk_start_plug(&plug
);
1851 spin_lock(&wb
->list_lock
);
1854 * Stop writeback when nr_pages has been consumed
1856 if (work
->nr_pages
<= 0)
1860 * Background writeout and kupdate-style writeback may
1861 * run forever. Stop them if there is other work to do
1862 * so that e.g. sync can proceed. They'll be restarted
1863 * after the other works are all done.
1865 if ((work
->for_background
|| work
->for_kupdate
) &&
1866 !list_empty(&wb
->work_list
))
1870 * For background writeout, stop when we are below the
1871 * background dirty threshold
1873 if (work
->for_background
&& !wb_over_bg_thresh(wb
))
1877 * Kupdate and background works are special and we want to
1878 * include all inodes that need writing. Livelock avoidance is
1879 * handled by these works yielding to any other work so we are
1882 if (work
->for_kupdate
) {
1883 oldest_jif
= jiffies
-
1884 msecs_to_jiffies(dirty_expire_interval
* 10);
1885 } else if (work
->for_background
)
1886 oldest_jif
= jiffies
;
1888 trace_writeback_start(wb
, work
);
1889 if (list_empty(&wb
->b_io
))
1892 progress
= writeback_sb_inodes(work
->sb
, wb
, work
);
1894 progress
= __writeback_inodes_wb(wb
, work
);
1895 trace_writeback_written(wb
, work
);
1897 wb_update_bandwidth(wb
, wb_start
);
1900 * Did we write something? Try for more
1902 * Dirty inodes are moved to b_io for writeback in batches.
1903 * The completion of the current batch does not necessarily
1904 * mean the overall work is done. So we keep looping as long
1905 * as made some progress on cleaning pages or inodes.
1910 * No more inodes for IO, bail
1912 if (list_empty(&wb
->b_more_io
))
1915 * Nothing written. Wait for some inode to
1916 * become available for writeback. Otherwise
1917 * we'll just busyloop.
1919 trace_writeback_wait(wb
, work
);
1920 inode
= wb_inode(wb
->b_more_io
.prev
);
1921 spin_lock(&inode
->i_lock
);
1922 spin_unlock(&wb
->list_lock
);
1923 /* This function drops i_lock... */
1924 inode_sleep_on_writeback(inode
);
1925 spin_lock(&wb
->list_lock
);
1927 spin_unlock(&wb
->list_lock
);
1928 blk_finish_plug(&plug
);
1930 return nr_pages
- work
->nr_pages
;
1934 * Return the next wb_writeback_work struct that hasn't been processed yet.
1936 static struct wb_writeback_work
*get_next_work_item(struct bdi_writeback
*wb
)
1938 struct wb_writeback_work
*work
= NULL
;
1940 spin_lock_bh(&wb
->work_lock
);
1941 if (!list_empty(&wb
->work_list
)) {
1942 work
= list_entry(wb
->work_list
.next
,
1943 struct wb_writeback_work
, list
);
1944 list_del_init(&work
->list
);
1946 spin_unlock_bh(&wb
->work_lock
);
1950 static long wb_check_background_flush(struct bdi_writeback
*wb
)
1952 if (wb_over_bg_thresh(wb
)) {
1954 struct wb_writeback_work work
= {
1955 .nr_pages
= LONG_MAX
,
1956 .sync_mode
= WB_SYNC_NONE
,
1957 .for_background
= 1,
1959 .reason
= WB_REASON_BACKGROUND
,
1962 return wb_writeback(wb
, &work
);
1968 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
1970 unsigned long expired
;
1974 * When set to zero, disable periodic writeback
1976 if (!dirty_writeback_interval
)
1979 expired
= wb
->last_old_flush
+
1980 msecs_to_jiffies(dirty_writeback_interval
* 10);
1981 if (time_before(jiffies
, expired
))
1984 wb
->last_old_flush
= jiffies
;
1985 nr_pages
= get_nr_dirty_pages();
1988 struct wb_writeback_work work
= {
1989 .nr_pages
= nr_pages
,
1990 .sync_mode
= WB_SYNC_NONE
,
1993 .reason
= WB_REASON_PERIODIC
,
1996 return wb_writeback(wb
, &work
);
2002 static long wb_check_start_all(struct bdi_writeback
*wb
)
2006 if (!test_bit(WB_start_all
, &wb
->state
))
2009 nr_pages
= get_nr_dirty_pages();
2011 struct wb_writeback_work work
= {
2012 .nr_pages
= wb_split_bdi_pages(wb
, nr_pages
),
2013 .sync_mode
= WB_SYNC_NONE
,
2015 .reason
= wb
->start_all_reason
,
2018 nr_pages
= wb_writeback(wb
, &work
);
2021 clear_bit(WB_start_all
, &wb
->state
);
2027 * Retrieve work items and do the writeback they describe
2029 static long wb_do_writeback(struct bdi_writeback
*wb
)
2031 struct wb_writeback_work
*work
;
2034 set_bit(WB_writeback_running
, &wb
->state
);
2035 while ((work
= get_next_work_item(wb
)) != NULL
) {
2036 trace_writeback_exec(wb
, work
);
2037 wrote
+= wb_writeback(wb
, work
);
2038 finish_writeback_work(wb
, work
);
2042 * Check for a flush-everything request
2044 wrote
+= wb_check_start_all(wb
);
2047 * Check for periodic writeback, kupdated() style
2049 wrote
+= wb_check_old_data_flush(wb
);
2050 wrote
+= wb_check_background_flush(wb
);
2051 clear_bit(WB_writeback_running
, &wb
->state
);
2057 * Handle writeback of dirty data for the device backed by this bdi. Also
2058 * reschedules periodically and does kupdated style flushing.
2060 void wb_workfn(struct work_struct
*work
)
2062 struct bdi_writeback
*wb
= container_of(to_delayed_work(work
),
2063 struct bdi_writeback
, dwork
);
2066 set_worker_desc("flush-%s", bdi_dev_name(wb
->bdi
));
2067 current
->flags
|= PF_SWAPWRITE
;
2069 if (likely(!current_is_workqueue_rescuer() ||
2070 !test_bit(WB_registered
, &wb
->state
))) {
2072 * The normal path. Keep writing back @wb until its
2073 * work_list is empty. Note that this path is also taken
2074 * if @wb is shutting down even when we're running off the
2075 * rescuer as work_list needs to be drained.
2078 pages_written
= wb_do_writeback(wb
);
2079 trace_writeback_pages_written(pages_written
);
2080 } while (!list_empty(&wb
->work_list
));
2083 * bdi_wq can't get enough workers and we're running off
2084 * the emergency worker. Don't hog it. Hopefully, 1024 is
2085 * enough for efficient IO.
2087 pages_written
= writeback_inodes_wb(wb
, 1024,
2088 WB_REASON_FORKER_THREAD
);
2089 trace_writeback_pages_written(pages_written
);
2092 if (!list_empty(&wb
->work_list
))
2094 else if (wb_has_dirty_io(wb
) && dirty_writeback_interval
)
2095 wb_wakeup_delayed(wb
);
2097 current
->flags
&= ~PF_SWAPWRITE
;
2101 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2102 * write back the whole world.
2104 static void __wakeup_flusher_threads_bdi(struct backing_dev_info
*bdi
,
2105 enum wb_reason reason
)
2107 struct bdi_writeback
*wb
;
2109 if (!bdi_has_dirty_io(bdi
))
2112 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
2113 wb_start_writeback(wb
, reason
);
2116 void wakeup_flusher_threads_bdi(struct backing_dev_info
*bdi
,
2117 enum wb_reason reason
)
2120 __wakeup_flusher_threads_bdi(bdi
, reason
);
2125 * Wakeup the flusher threads to start writeback of all currently dirty pages
2127 void wakeup_flusher_threads(enum wb_reason reason
)
2129 struct backing_dev_info
*bdi
;
2132 * If we are expecting writeback progress we must submit plugged IO.
2134 if (blk_needs_flush_plug(current
))
2135 blk_schedule_flush_plug(current
);
2138 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
2139 __wakeup_flusher_threads_bdi(bdi
, reason
);
2144 * Wake up bdi's periodically to make sure dirtytime inodes gets
2145 * written back periodically. We deliberately do *not* check the
2146 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2147 * kernel to be constantly waking up once there are any dirtytime
2148 * inodes on the system. So instead we define a separate delayed work
2149 * function which gets called much more rarely. (By default, only
2150 * once every 12 hours.)
2152 * If there is any other write activity going on in the file system,
2153 * this function won't be necessary. But if the only thing that has
2154 * happened on the file system is a dirtytime inode caused by an atime
2155 * update, we need this infrastructure below to make sure that inode
2156 * eventually gets pushed out to disk.
2158 static void wakeup_dirtytime_writeback(struct work_struct
*w
);
2159 static DECLARE_DELAYED_WORK(dirtytime_work
, wakeup_dirtytime_writeback
);
2161 static void wakeup_dirtytime_writeback(struct work_struct
*w
)
2163 struct backing_dev_info
*bdi
;
2166 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
2167 struct bdi_writeback
*wb
;
2169 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
2170 if (!list_empty(&wb
->b_dirty_time
))
2174 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
2177 static int __init
start_dirtytime_writeback(void)
2179 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
2182 __initcall(start_dirtytime_writeback
);
2184 int dirtytime_interval_handler(struct ctl_table
*table
, int write
,
2185 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2189 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
2190 if (ret
== 0 && write
)
2191 mod_delayed_work(system_wq
, &dirtytime_work
, 0);
2195 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
2197 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
2198 struct dentry
*dentry
;
2199 const char *name
= "?";
2201 dentry
= d_find_alias(inode
);
2203 spin_lock(&dentry
->d_lock
);
2204 name
= (const char *) dentry
->d_name
.name
;
2207 "%s(%d): dirtied inode %lu (%s) on %s\n",
2208 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
2209 name
, inode
->i_sb
->s_id
);
2211 spin_unlock(&dentry
->d_lock
);
2218 * __mark_inode_dirty - internal function
2220 * @inode: inode to mark
2221 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2223 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2224 * mark_inode_dirty_sync.
2226 * Put the inode on the super block's dirty list.
2228 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2229 * dirty list only if it is hashed or if it refers to a blockdev.
2230 * If it was not hashed, it will never be added to the dirty list
2231 * even if it is later hashed, as it will have been marked dirty already.
2233 * In short, make sure you hash any inodes _before_ you start marking
2236 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2237 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2238 * the kernel-internal blockdev inode represents the dirtying time of the
2239 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2240 * page->mapping->host, so the page-dirtying time is recorded in the internal
2243 void __mark_inode_dirty(struct inode
*inode
, int flags
)
2245 struct super_block
*sb
= inode
->i_sb
;
2248 trace_writeback_mark_inode_dirty(inode
, flags
);
2251 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2252 * dirty the inode itself
2254 if (flags
& (I_DIRTY_INODE
| I_DIRTY_TIME
)) {
2255 trace_writeback_dirty_inode_start(inode
, flags
);
2257 if (sb
->s_op
->dirty_inode
)
2258 sb
->s_op
->dirty_inode(inode
, flags
);
2260 trace_writeback_dirty_inode(inode
, flags
);
2262 if (flags
& I_DIRTY_INODE
)
2263 flags
&= ~I_DIRTY_TIME
;
2264 dirtytime
= flags
& I_DIRTY_TIME
;
2267 * Paired with smp_mb() in __writeback_single_inode() for the
2268 * following lockless i_state test. See there for details.
2272 if (((inode
->i_state
& flags
) == flags
) ||
2273 (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
)))
2276 if (unlikely(block_dump
))
2277 block_dump___mark_inode_dirty(inode
);
2279 spin_lock(&inode
->i_lock
);
2280 if (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
))
2281 goto out_unlock_inode
;
2282 if ((inode
->i_state
& flags
) != flags
) {
2283 const int was_dirty
= inode
->i_state
& I_DIRTY
;
2285 inode_attach_wb(inode
, NULL
);
2287 if (flags
& I_DIRTY_INODE
)
2288 inode
->i_state
&= ~I_DIRTY_TIME
;
2289 inode
->i_state
|= flags
;
2292 * If the inode is being synced, just update its dirty state.
2293 * The unlocker will place the inode on the appropriate
2294 * superblock list, based upon its state.
2296 if (inode
->i_state
& I_SYNC
)
2297 goto out_unlock_inode
;
2300 * Only add valid (hashed) inodes to the superblock's
2301 * dirty list. Add blockdev inodes as well.
2303 if (!S_ISBLK(inode
->i_mode
)) {
2304 if (inode_unhashed(inode
))
2305 goto out_unlock_inode
;
2307 if (inode
->i_state
& I_FREEING
)
2308 goto out_unlock_inode
;
2311 * If the inode was already on b_dirty/b_io/b_more_io, don't
2312 * reposition it (that would break b_dirty time-ordering).
2315 struct bdi_writeback
*wb
;
2316 struct list_head
*dirty_list
;
2317 bool wakeup_bdi
= false;
2319 wb
= locked_inode_to_wb_and_lock_list(inode
);
2321 WARN(bdi_cap_writeback_dirty(wb
->bdi
) &&
2322 !test_bit(WB_registered
, &wb
->state
),
2323 "bdi-%s not registered\n", wb
->bdi
->name
);
2325 inode
->dirtied_when
= jiffies
;
2327 inode
->dirtied_time_when
= jiffies
;
2329 if (inode
->i_state
& I_DIRTY
)
2330 dirty_list
= &wb
->b_dirty
;
2332 dirty_list
= &wb
->b_dirty_time
;
2334 wakeup_bdi
= inode_io_list_move_locked(inode
, wb
,
2337 spin_unlock(&wb
->list_lock
);
2338 trace_writeback_dirty_inode_enqueue(inode
);
2341 * If this is the first dirty inode for this bdi,
2342 * we have to wake-up the corresponding bdi thread
2343 * to make sure background write-back happens
2346 if (bdi_cap_writeback_dirty(wb
->bdi
) && wakeup_bdi
)
2347 wb_wakeup_delayed(wb
);
2352 spin_unlock(&inode
->i_lock
);
2354 EXPORT_SYMBOL(__mark_inode_dirty
);
2357 * The @s_sync_lock is used to serialise concurrent sync operations
2358 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2359 * Concurrent callers will block on the s_sync_lock rather than doing contending
2360 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2361 * has been issued up to the time this function is enter is guaranteed to be
2362 * completed by the time we have gained the lock and waited for all IO that is
2363 * in progress regardless of the order callers are granted the lock.
2365 static void wait_sb_inodes(struct super_block
*sb
)
2367 LIST_HEAD(sync_list
);
2370 * We need to be protected against the filesystem going from
2371 * r/o to r/w or vice versa.
2373 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2375 mutex_lock(&sb
->s_sync_lock
);
2378 * Splice the writeback list onto a temporary list to avoid waiting on
2379 * inodes that have started writeback after this point.
2381 * Use rcu_read_lock() to keep the inodes around until we have a
2382 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2383 * the local list because inodes can be dropped from either by writeback
2387 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2388 list_splice_init(&sb
->s_inodes_wb
, &sync_list
);
2391 * Data integrity sync. Must wait for all pages under writeback, because
2392 * there may have been pages dirtied before our sync call, but which had
2393 * writeout started before we write it out. In which case, the inode
2394 * may not be on the dirty list, but we still have to wait for that
2397 while (!list_empty(&sync_list
)) {
2398 struct inode
*inode
= list_first_entry(&sync_list
, struct inode
,
2400 struct address_space
*mapping
= inode
->i_mapping
;
2403 * Move each inode back to the wb list before we drop the lock
2404 * to preserve consistency between i_wb_list and the mapping
2405 * writeback tag. Writeback completion is responsible to remove
2406 * the inode from either list once the writeback tag is cleared.
2408 list_move_tail(&inode
->i_wb_list
, &sb
->s_inodes_wb
);
2411 * The mapping can appear untagged while still on-list since we
2412 * do not have the mapping lock. Skip it here, wb completion
2415 if (!mapping_tagged(mapping
, PAGECACHE_TAG_WRITEBACK
))
2418 spin_unlock_irq(&sb
->s_inode_wblist_lock
);
2420 spin_lock(&inode
->i_lock
);
2421 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) {
2422 spin_unlock(&inode
->i_lock
);
2424 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2428 spin_unlock(&inode
->i_lock
);
2432 * We keep the error status of individual mapping so that
2433 * applications can catch the writeback error using fsync(2).
2434 * See filemap_fdatawait_keep_errors() for details.
2436 filemap_fdatawait_keep_errors(mapping
);
2443 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2445 spin_unlock_irq(&sb
->s_inode_wblist_lock
);
2447 mutex_unlock(&sb
->s_sync_lock
);
2450 static void __writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2451 enum wb_reason reason
, bool skip_if_busy
)
2453 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2454 DEFINE_WB_COMPLETION(done
, bdi
);
2455 struct wb_writeback_work work
= {
2457 .sync_mode
= WB_SYNC_NONE
,
2458 .tagged_writepages
= 1,
2464 if (!bdi_has_dirty_io(bdi
) || bdi
== &noop_backing_dev_info
)
2466 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2468 bdi_split_work_to_wbs(sb
->s_bdi
, &work
, skip_if_busy
);
2469 wb_wait_for_completion(&done
);
2473 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2474 * @sb: the superblock
2475 * @nr: the number of pages to write
2476 * @reason: reason why some writeback work initiated
2478 * Start writeback on some inodes on this super_block. No guarantees are made
2479 * on how many (if any) will be written, and this function does not wait
2480 * for IO completion of submitted IO.
2482 void writeback_inodes_sb_nr(struct super_block
*sb
,
2484 enum wb_reason reason
)
2486 __writeback_inodes_sb_nr(sb
, nr
, reason
, false);
2488 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
2491 * writeback_inodes_sb - writeback dirty inodes from given super_block
2492 * @sb: the superblock
2493 * @reason: reason why some writeback work was initiated
2495 * Start writeback on some inodes on this super_block. No guarantees are made
2496 * on how many (if any) will be written, and this function does not wait
2497 * for IO completion of submitted IO.
2499 void writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2501 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2503 EXPORT_SYMBOL(writeback_inodes_sb
);
2506 * try_to_writeback_inodes_sb - try to start writeback if none underway
2507 * @sb: the superblock
2508 * @reason: reason why some writeback work was initiated
2510 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2512 void try_to_writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2514 if (!down_read_trylock(&sb
->s_umount
))
2517 __writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
, true);
2518 up_read(&sb
->s_umount
);
2520 EXPORT_SYMBOL(try_to_writeback_inodes_sb
);
2523 * sync_inodes_sb - sync sb inode pages
2524 * @sb: the superblock
2526 * This function writes and waits on any dirty inode belonging to this
2529 void sync_inodes_sb(struct super_block
*sb
)
2531 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2532 DEFINE_WB_COMPLETION(done
, bdi
);
2533 struct wb_writeback_work work
= {
2535 .sync_mode
= WB_SYNC_ALL
,
2536 .nr_pages
= LONG_MAX
,
2539 .reason
= WB_REASON_SYNC
,
2544 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2545 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2546 * bdi_has_dirty() need to be written out too.
2548 if (bdi
== &noop_backing_dev_info
)
2550 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2552 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2553 bdi_down_write_wb_switch_rwsem(bdi
);
2554 bdi_split_work_to_wbs(bdi
, &work
, false);
2555 wb_wait_for_completion(&done
);
2556 bdi_up_write_wb_switch_rwsem(bdi
);
2560 EXPORT_SYMBOL(sync_inodes_sb
);
2563 * write_inode_now - write an inode to disk
2564 * @inode: inode to write to disk
2565 * @sync: whether the write should be synchronous or not
2567 * This function commits an inode to disk immediately if it is dirty. This is
2568 * primarily needed by knfsd.
2570 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2572 int write_inode_now(struct inode
*inode
, int sync
)
2574 struct writeback_control wbc
= {
2575 .nr_to_write
= LONG_MAX
,
2576 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2578 .range_end
= LLONG_MAX
,
2581 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
2582 wbc
.nr_to_write
= 0;
2585 return writeback_single_inode(inode
, &wbc
);
2587 EXPORT_SYMBOL(write_inode_now
);
2590 * sync_inode - write an inode and its pages to disk.
2591 * @inode: the inode to sync
2592 * @wbc: controls the writeback mode
2594 * sync_inode() will write an inode and its pages to disk. It will also
2595 * correctly update the inode on its superblock's dirty inode lists and will
2596 * update inode->i_state.
2598 * The caller must have a ref on the inode.
2600 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
2602 return writeback_single_inode(inode
, wbc
);
2604 EXPORT_SYMBOL(sync_inode
);
2607 * sync_inode_metadata - write an inode to disk
2608 * @inode: the inode to sync
2609 * @wait: wait for I/O to complete.
2611 * Write an inode to disk and adjust its dirty state after completion.
2613 * Note: only writes the actual inode, no associated data or other metadata.
2615 int sync_inode_metadata(struct inode
*inode
, int wait
)
2617 struct writeback_control wbc
= {
2618 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2619 .nr_to_write
= 0, /* metadata-only */
2622 return sync_inode(inode
, &wbc
);
2624 EXPORT_SYMBOL(sync_inode_metadata
);