CRISv32: add unreachable() to BUG()
[linux/fpc-iii.git] / drivers / ata / libata-sff.c
blobcdf6215a9a22beb93ede75a702797e12c5ad4870
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
42 #include "libata.h"
44 static struct workqueue_struct *ata_sff_wq;
46 const struct ata_port_operations ata_sff_port_ops = {
47 .inherits = &ata_base_port_ops,
49 .qc_prep = ata_noop_qc_prep,
50 .qc_issue = ata_sff_qc_issue,
51 .qc_fill_rtf = ata_sff_qc_fill_rtf,
53 .freeze = ata_sff_freeze,
54 .thaw = ata_sff_thaw,
55 .prereset = ata_sff_prereset,
56 .softreset = ata_sff_softreset,
57 .hardreset = sata_sff_hardreset,
58 .postreset = ata_sff_postreset,
59 .error_handler = ata_sff_error_handler,
61 .sff_dev_select = ata_sff_dev_select,
62 .sff_check_status = ata_sff_check_status,
63 .sff_tf_load = ata_sff_tf_load,
64 .sff_tf_read = ata_sff_tf_read,
65 .sff_exec_command = ata_sff_exec_command,
66 .sff_data_xfer = ata_sff_data_xfer,
67 .sff_drain_fifo = ata_sff_drain_fifo,
69 .lost_interrupt = ata_sff_lost_interrupt,
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
73 /**
74 * ata_sff_check_status - Read device status reg & clear interrupt
75 * @ap: port where the device is
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
79 * from this device
81 * LOCKING:
82 * Inherited from caller.
84 u8 ata_sff_check_status(struct ata_port *ap)
86 return ioread8(ap->ioaddr.status_addr);
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
90 /**
91 * ata_sff_altstatus - Read device alternate status reg
92 * @ap: port where the device is
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
100 * LOCKING:
101 * Inherited from caller.
103 static u8 ata_sff_altstatus(struct ata_port *ap)
105 if (ap->ops->sff_check_altstatus)
106 return ap->ops->sff_check_altstatus(ap);
108 return ioread8(ap->ioaddr.altstatus_addr);
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
120 * LOCKING:
121 * Inherited from caller.
123 static u8 ata_sff_irq_status(struct ata_port *ap)
125 u8 status;
127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 status = ata_sff_altstatus(ap);
129 /* Not us: We are busy */
130 if (status & ATA_BUSY)
131 return status;
133 /* Clear INTRQ latch */
134 status = ap->ops->sff_check_status(ap);
135 return status;
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
142 * CAUTION:
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
146 * LOCKING:
147 * Inherited from caller.
150 static void ata_sff_sync(struct ata_port *ap)
152 if (ap->ops->sff_check_altstatus)
153 ap->ops->sff_check_altstatus(ap);
154 else if (ap->ioaddr.altstatus_addr)
155 ioread8(ap->ioaddr.altstatus_addr);
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
162 * CAUTION:
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
166 * LOCKING:
167 * Inherited from caller.
170 void ata_sff_pause(struct ata_port *ap)
172 ata_sff_sync(ap);
173 ndelay(400);
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
185 void ata_sff_dma_pause(struct ata_port *ap)
187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap);
191 return;
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
195 corruption. */
196 BUG();
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
202 * @ap: port containing status register to be polled
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
209 * LOCKING:
210 * Kernel thread context (may sleep).
212 * RETURNS:
213 * 0 on success, -errno otherwise.
215 int ata_sff_busy_sleep(struct ata_port *ap,
216 unsigned long tmout_pat, unsigned long tmout)
218 unsigned long timer_start, timeout;
219 u8 status;
221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 timer_start = jiffies;
223 timeout = ata_deadline(timer_start, tmout_pat);
224 while (status != 0xff && (status & ATA_BUSY) &&
225 time_before(jiffies, timeout)) {
226 ata_msleep(ap, 50);
227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
230 if (status != 0xff && (status & ATA_BUSY))
231 ata_port_warn(ap,
232 "port is slow to respond, please be patient (Status 0x%x)\n",
233 status);
235 timeout = ata_deadline(timer_start, tmout);
236 while (status != 0xff && (status & ATA_BUSY) &&
237 time_before(jiffies, timeout)) {
238 ata_msleep(ap, 50);
239 status = ap->ops->sff_check_status(ap);
242 if (status == 0xff)
243 return -ENODEV;
245 if (status & ATA_BUSY) {
246 ata_port_err(ap,
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout, 1000), status);
249 return -EBUSY;
252 return 0;
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
256 static int ata_sff_check_ready(struct ata_link *link)
258 u8 status = link->ap->ops->sff_check_status(link->ap);
260 return ata_check_ready(status);
264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
265 * @link: SFF link to wait ready status for
266 * @deadline: deadline jiffies for the operation
268 * Sleep until ATA Status register bit BSY clears, or timeout
269 * occurs.
271 * LOCKING:
272 * Kernel thread context (may sleep).
274 * RETURNS:
275 * 0 on success, -errno otherwise.
277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
279 return ata_wait_ready(link, deadline, ata_sff_check_ready);
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
288 * Writes ATA taskfile device control register.
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
293 * LOCKING:
294 * Inherited from caller.
296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
298 if (ap->ops->sff_set_devctl)
299 ap->ops->sff_set_devctl(ap, ctl);
300 else
301 iowrite8(ctl, ap->ioaddr.ctl_addr);
305 * ata_sff_dev_select - Select device 0/1 on ATA bus
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
313 * May be used as the dev_select() entry in ata_port_operations.
315 * LOCKING:
316 * caller.
318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
320 u8 tmp;
322 if (device == 0)
323 tmp = ATA_DEVICE_OBS;
324 else
325 tmp = ATA_DEVICE_OBS | ATA_DEV1;
327 iowrite8(tmp, ap->ioaddr.device_addr);
328 ata_sff_pause(ap); /* needed; also flushes, for mmio */
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
341 * ATA channel.
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
347 * LOCKING:
348 * caller.
350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 unsigned int wait, unsigned int can_sleep)
353 if (ata_msg_probe(ap))
354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 device, wait);
357 if (wait)
358 ata_wait_idle(ap);
360 ap->ops->sff_dev_select(ap, device);
362 if (wait) {
363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 ata_msleep(ap, 150);
365 ata_wait_idle(ap);
370 * ata_sff_irq_on - Enable interrupts on a port.
371 * @ap: Port on which interrupts are enabled.
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
379 * LOCKING:
380 * Inherited from caller.
382 void ata_sff_irq_on(struct ata_port *ap)
384 struct ata_ioports *ioaddr = &ap->ioaddr;
386 if (ap->ops->sff_irq_on) {
387 ap->ops->sff_irq_on(ap);
388 return;
391 ap->ctl &= ~ATA_NIEN;
392 ap->last_ctl = ap->ctl;
394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 ata_sff_set_devctl(ap, ap->ctl);
396 ata_wait_idle(ap);
398 if (ap->ops->sff_irq_clear)
399 ap->ops->sff_irq_clear(ap);
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
404 * ata_sff_tf_load - send taskfile registers to host controller
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
408 * Outputs ATA taskfile to standard ATA host controller.
410 * LOCKING:
411 * Inherited from caller.
413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
415 struct ata_ioports *ioaddr = &ap->ioaddr;
416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
418 if (tf->ctl != ap->last_ctl) {
419 if (ioaddr->ctl_addr)
420 iowrite8(tf->ctl, ioaddr->ctl_addr);
421 ap->last_ctl = tf->ctl;
422 ata_wait_idle(ap);
425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 WARN_ON_ONCE(!ioaddr->ctl_addr);
427 iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 tf->hob_feature,
434 tf->hob_nsect,
435 tf->hob_lbal,
436 tf->hob_lbam,
437 tf->hob_lbah);
440 if (is_addr) {
441 iowrite8(tf->feature, ioaddr->feature_addr);
442 iowrite8(tf->nsect, ioaddr->nsect_addr);
443 iowrite8(tf->lbal, ioaddr->lbal_addr);
444 iowrite8(tf->lbam, ioaddr->lbam_addr);
445 iowrite8(tf->lbah, ioaddr->lbah_addr);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 tf->feature,
448 tf->nsect,
449 tf->lbal,
450 tf->lbam,
451 tf->lbah);
454 if (tf->flags & ATA_TFLAG_DEVICE) {
455 iowrite8(tf->device, ioaddr->device_addr);
456 VPRINTK("device 0x%X\n", tf->device);
459 ata_wait_idle(ap);
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
473 * LOCKING:
474 * Inherited from caller.
476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
478 struct ata_ioports *ioaddr = &ap->ioaddr;
480 tf->command = ata_sff_check_status(ap);
481 tf->feature = ioread8(ioaddr->error_addr);
482 tf->nsect = ioread8(ioaddr->nsect_addr);
483 tf->lbal = ioread8(ioaddr->lbal_addr);
484 tf->lbam = ioread8(ioaddr->lbam_addr);
485 tf->lbah = ioread8(ioaddr->lbah_addr);
486 tf->device = ioread8(ioaddr->device_addr);
488 if (tf->flags & ATA_TFLAG_LBA48) {
489 if (likely(ioaddr->ctl_addr)) {
490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 tf->hob_feature = ioread8(ioaddr->error_addr);
492 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 iowrite8(tf->ctl, ioaddr->ctl_addr);
497 ap->last_ctl = tf->ctl;
498 } else
499 WARN_ON_ONCE(1);
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
505 * ata_sff_exec_command - issue ATA command to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
512 * LOCKING:
513 * spin_lock_irqsave(host lock)
515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
519 iowrite8(tf->command, ap->ioaddr.command_addr);
520 ata_sff_pause(ap);
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
531 * other threads.
533 * LOCKING:
534 * spin_lock_irqsave(host lock)
536 static inline void ata_tf_to_host(struct ata_port *ap,
537 const struct ata_taskfile *tf)
539 ap->ops->sff_tf_load(ap, tf);
540 ap->ops->sff_exec_command(ap, tf);
544 * ata_sff_data_xfer - Transfer data by PIO
545 * @dev: device to target
546 * @buf: data buffer
547 * @buflen: buffer length
548 * @rw: read/write
550 * Transfer data from/to the device data register by PIO.
552 * LOCKING:
553 * Inherited from caller.
555 * RETURNS:
556 * Bytes consumed.
558 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
559 unsigned int buflen, int rw)
561 struct ata_port *ap = dev->link->ap;
562 void __iomem *data_addr = ap->ioaddr.data_addr;
563 unsigned int words = buflen >> 1;
565 /* Transfer multiple of 2 bytes */
566 if (rw == READ)
567 ioread16_rep(data_addr, buf, words);
568 else
569 iowrite16_rep(data_addr, buf, words);
571 /* Transfer trailing byte, if any. */
572 if (unlikely(buflen & 0x01)) {
573 unsigned char pad[2] = { };
575 /* Point buf to the tail of buffer */
576 buf += buflen - 1;
579 * Use io*16_rep() accessors here as well to avoid pointlessly
580 * swapping bytes to and from on the big endian machines...
582 if (rw == READ) {
583 ioread16_rep(data_addr, pad, 1);
584 *buf = pad[0];
585 } else {
586 pad[0] = *buf;
587 iowrite16_rep(data_addr, pad, 1);
589 words++;
592 return words << 1;
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
597 * ata_sff_data_xfer32 - Transfer data by PIO
598 * @dev: device to target
599 * @buf: data buffer
600 * @buflen: buffer length
601 * @rw: read/write
603 * Transfer data from/to the device data register by PIO using 32bit
604 * I/O operations.
606 * LOCKING:
607 * Inherited from caller.
609 * RETURNS:
610 * Bytes consumed.
613 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
614 unsigned int buflen, int rw)
616 struct ata_port *ap = dev->link->ap;
617 void __iomem *data_addr = ap->ioaddr.data_addr;
618 unsigned int words = buflen >> 2;
619 int slop = buflen & 3;
621 if (!(ap->pflags & ATA_PFLAG_PIO32))
622 return ata_sff_data_xfer(dev, buf, buflen, rw);
624 /* Transfer multiple of 4 bytes */
625 if (rw == READ)
626 ioread32_rep(data_addr, buf, words);
627 else
628 iowrite32_rep(data_addr, buf, words);
630 /* Transfer trailing bytes, if any */
631 if (unlikely(slop)) {
632 unsigned char pad[4] = { };
634 /* Point buf to the tail of buffer */
635 buf += buflen - slop;
638 * Use io*_rep() accessors here as well to avoid pointlessly
639 * swapping bytes to and from on the big endian machines...
641 if (rw == READ) {
642 if (slop < 3)
643 ioread16_rep(data_addr, pad, 1);
644 else
645 ioread32_rep(data_addr, pad, 1);
646 memcpy(buf, pad, slop);
647 } else {
648 memcpy(pad, buf, slop);
649 if (slop < 3)
650 iowrite16_rep(data_addr, pad, 1);
651 else
652 iowrite32_rep(data_addr, pad, 1);
655 return (buflen + 1) & ~1;
657 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
660 * ata_sff_data_xfer_noirq - Transfer data by PIO
661 * @dev: device to target
662 * @buf: data buffer
663 * @buflen: buffer length
664 * @rw: read/write
666 * Transfer data from/to the device data register by PIO. Do the
667 * transfer with interrupts disabled.
669 * LOCKING:
670 * Inherited from caller.
672 * RETURNS:
673 * Bytes consumed.
675 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
676 unsigned int buflen, int rw)
678 unsigned long flags;
679 unsigned int consumed;
681 local_irq_save(flags);
682 consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
683 local_irq_restore(flags);
685 return consumed;
687 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
690 * ata_pio_sector - Transfer a sector of data.
691 * @qc: Command on going
693 * Transfer qc->sect_size bytes of data from/to the ATA device.
695 * LOCKING:
696 * Inherited from caller.
698 static void ata_pio_sector(struct ata_queued_cmd *qc)
700 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
701 struct ata_port *ap = qc->ap;
702 struct page *page;
703 unsigned int offset;
704 unsigned char *buf;
706 if (qc->curbytes == qc->nbytes - qc->sect_size)
707 ap->hsm_task_state = HSM_ST_LAST;
709 page = sg_page(qc->cursg);
710 offset = qc->cursg->offset + qc->cursg_ofs;
712 /* get the current page and offset */
713 page = nth_page(page, (offset >> PAGE_SHIFT));
714 offset %= PAGE_SIZE;
716 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
718 if (PageHighMem(page)) {
719 unsigned long flags;
721 /* FIXME: use a bounce buffer */
722 local_irq_save(flags);
723 buf = kmap_atomic(page);
725 /* do the actual data transfer */
726 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
727 do_write);
729 kunmap_atomic(buf);
730 local_irq_restore(flags);
731 } else {
732 buf = page_address(page);
733 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
734 do_write);
737 if (!do_write && !PageSlab(page))
738 flush_dcache_page(page);
740 qc->curbytes += qc->sect_size;
741 qc->cursg_ofs += qc->sect_size;
743 if (qc->cursg_ofs == qc->cursg->length) {
744 qc->cursg = sg_next(qc->cursg);
745 qc->cursg_ofs = 0;
750 * ata_pio_sectors - Transfer one or many sectors.
751 * @qc: Command on going
753 * Transfer one or many sectors of data from/to the
754 * ATA device for the DRQ request.
756 * LOCKING:
757 * Inherited from caller.
759 static void ata_pio_sectors(struct ata_queued_cmd *qc)
761 if (is_multi_taskfile(&qc->tf)) {
762 /* READ/WRITE MULTIPLE */
763 unsigned int nsect;
765 WARN_ON_ONCE(qc->dev->multi_count == 0);
767 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
768 qc->dev->multi_count);
769 while (nsect--)
770 ata_pio_sector(qc);
771 } else
772 ata_pio_sector(qc);
774 ata_sff_sync(qc->ap); /* flush */
778 * atapi_send_cdb - Write CDB bytes to hardware
779 * @ap: Port to which ATAPI device is attached.
780 * @qc: Taskfile currently active
782 * When device has indicated its readiness to accept
783 * a CDB, this function is called. Send the CDB.
785 * LOCKING:
786 * caller.
788 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
790 /* send SCSI cdb */
791 DPRINTK("send cdb\n");
792 WARN_ON_ONCE(qc->dev->cdb_len < 12);
794 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
795 ata_sff_sync(ap);
796 /* FIXME: If the CDB is for DMA do we need to do the transition delay
797 or is bmdma_start guaranteed to do it ? */
798 switch (qc->tf.protocol) {
799 case ATAPI_PROT_PIO:
800 ap->hsm_task_state = HSM_ST;
801 break;
802 case ATAPI_PROT_NODATA:
803 ap->hsm_task_state = HSM_ST_LAST;
804 break;
805 #ifdef CONFIG_ATA_BMDMA
806 case ATAPI_PROT_DMA:
807 ap->hsm_task_state = HSM_ST_LAST;
808 /* initiate bmdma */
809 ap->ops->bmdma_start(qc);
810 break;
811 #endif /* CONFIG_ATA_BMDMA */
812 default:
813 BUG();
818 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
819 * @qc: Command on going
820 * @bytes: number of bytes
822 * Transfer Transfer data from/to the ATAPI device.
824 * LOCKING:
825 * Inherited from caller.
828 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
830 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
831 struct ata_port *ap = qc->ap;
832 struct ata_device *dev = qc->dev;
833 struct ata_eh_info *ehi = &dev->link->eh_info;
834 struct scatterlist *sg;
835 struct page *page;
836 unsigned char *buf;
837 unsigned int offset, count, consumed;
839 next_sg:
840 sg = qc->cursg;
841 if (unlikely(!sg)) {
842 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
843 "buf=%u cur=%u bytes=%u",
844 qc->nbytes, qc->curbytes, bytes);
845 return -1;
848 page = sg_page(sg);
849 offset = sg->offset + qc->cursg_ofs;
851 /* get the current page and offset */
852 page = nth_page(page, (offset >> PAGE_SHIFT));
853 offset %= PAGE_SIZE;
855 /* don't overrun current sg */
856 count = min(sg->length - qc->cursg_ofs, bytes);
858 /* don't cross page boundaries */
859 count = min(count, (unsigned int)PAGE_SIZE - offset);
861 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
863 if (PageHighMem(page)) {
864 unsigned long flags;
866 /* FIXME: use bounce buffer */
867 local_irq_save(flags);
868 buf = kmap_atomic(page);
870 /* do the actual data transfer */
871 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
872 count, rw);
874 kunmap_atomic(buf);
875 local_irq_restore(flags);
876 } else {
877 buf = page_address(page);
878 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
879 count, rw);
882 bytes -= min(bytes, consumed);
883 qc->curbytes += count;
884 qc->cursg_ofs += count;
886 if (qc->cursg_ofs == sg->length) {
887 qc->cursg = sg_next(qc->cursg);
888 qc->cursg_ofs = 0;
892 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
893 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
894 * check correctly as it doesn't know if it is the last request being
895 * made. Somebody should implement a proper sanity check.
897 if (bytes)
898 goto next_sg;
899 return 0;
903 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
904 * @qc: Command on going
906 * Transfer Transfer data from/to the ATAPI device.
908 * LOCKING:
909 * Inherited from caller.
911 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
913 struct ata_port *ap = qc->ap;
914 struct ata_device *dev = qc->dev;
915 struct ata_eh_info *ehi = &dev->link->eh_info;
916 unsigned int ireason, bc_lo, bc_hi, bytes;
917 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
919 /* Abuse qc->result_tf for temp storage of intermediate TF
920 * here to save some kernel stack usage.
921 * For normal completion, qc->result_tf is not relevant. For
922 * error, qc->result_tf is later overwritten by ata_qc_complete().
923 * So, the correctness of qc->result_tf is not affected.
925 ap->ops->sff_tf_read(ap, &qc->result_tf);
926 ireason = qc->result_tf.nsect;
927 bc_lo = qc->result_tf.lbam;
928 bc_hi = qc->result_tf.lbah;
929 bytes = (bc_hi << 8) | bc_lo;
931 /* shall be cleared to zero, indicating xfer of data */
932 if (unlikely(ireason & ATAPI_COD))
933 goto atapi_check;
935 /* make sure transfer direction matches expected */
936 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
937 if (unlikely(do_write != i_write))
938 goto atapi_check;
940 if (unlikely(!bytes))
941 goto atapi_check;
943 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
945 if (unlikely(__atapi_pio_bytes(qc, bytes)))
946 goto err_out;
947 ata_sff_sync(ap); /* flush */
949 return;
951 atapi_check:
952 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
953 ireason, bytes);
954 err_out:
955 qc->err_mask |= AC_ERR_HSM;
956 ap->hsm_task_state = HSM_ST_ERR;
960 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
961 * @ap: the target ata_port
962 * @qc: qc on going
964 * RETURNS:
965 * 1 if ok in workqueue, 0 otherwise.
967 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
968 struct ata_queued_cmd *qc)
970 if (qc->tf.flags & ATA_TFLAG_POLLING)
971 return 1;
973 if (ap->hsm_task_state == HSM_ST_FIRST) {
974 if (qc->tf.protocol == ATA_PROT_PIO &&
975 (qc->tf.flags & ATA_TFLAG_WRITE))
976 return 1;
978 if (ata_is_atapi(qc->tf.protocol) &&
979 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
980 return 1;
983 return 0;
987 * ata_hsm_qc_complete - finish a qc running on standard HSM
988 * @qc: Command to complete
989 * @in_wq: 1 if called from workqueue, 0 otherwise
991 * Finish @qc which is running on standard HSM.
993 * LOCKING:
994 * If @in_wq is zero, spin_lock_irqsave(host lock).
995 * Otherwise, none on entry and grabs host lock.
997 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
999 struct ata_port *ap = qc->ap;
1000 unsigned long flags;
1002 if (ap->ops->error_handler) {
1003 if (in_wq) {
1004 spin_lock_irqsave(ap->lock, flags);
1006 /* EH might have kicked in while host lock is
1007 * released.
1009 qc = ata_qc_from_tag(ap, qc->tag);
1010 if (qc) {
1011 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1012 ata_sff_irq_on(ap);
1013 ata_qc_complete(qc);
1014 } else
1015 ata_port_freeze(ap);
1018 spin_unlock_irqrestore(ap->lock, flags);
1019 } else {
1020 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1021 ata_qc_complete(qc);
1022 else
1023 ata_port_freeze(ap);
1025 } else {
1026 if (in_wq) {
1027 spin_lock_irqsave(ap->lock, flags);
1028 ata_sff_irq_on(ap);
1029 ata_qc_complete(qc);
1030 spin_unlock_irqrestore(ap->lock, flags);
1031 } else
1032 ata_qc_complete(qc);
1037 * ata_sff_hsm_move - move the HSM to the next state.
1038 * @ap: the target ata_port
1039 * @qc: qc on going
1040 * @status: current device status
1041 * @in_wq: 1 if called from workqueue, 0 otherwise
1043 * RETURNS:
1044 * 1 when poll next status needed, 0 otherwise.
1046 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1047 u8 status, int in_wq)
1049 struct ata_link *link = qc->dev->link;
1050 struct ata_eh_info *ehi = &link->eh_info;
1051 unsigned long flags = 0;
1052 int poll_next;
1054 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1056 /* Make sure ata_sff_qc_issue() does not throw things
1057 * like DMA polling into the workqueue. Notice that
1058 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1060 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1062 fsm_start:
1063 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1064 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1066 switch (ap->hsm_task_state) {
1067 case HSM_ST_FIRST:
1068 /* Send first data block or PACKET CDB */
1070 /* If polling, we will stay in the work queue after
1071 * sending the data. Otherwise, interrupt handler
1072 * takes over after sending the data.
1074 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1076 /* check device status */
1077 if (unlikely((status & ATA_DRQ) == 0)) {
1078 /* handle BSY=0, DRQ=0 as error */
1079 if (likely(status & (ATA_ERR | ATA_DF)))
1080 /* device stops HSM for abort/error */
1081 qc->err_mask |= AC_ERR_DEV;
1082 else {
1083 /* HSM violation. Let EH handle this */
1084 ata_ehi_push_desc(ehi,
1085 "ST_FIRST: !(DRQ|ERR|DF)");
1086 qc->err_mask |= AC_ERR_HSM;
1089 ap->hsm_task_state = HSM_ST_ERR;
1090 goto fsm_start;
1093 /* Device should not ask for data transfer (DRQ=1)
1094 * when it finds something wrong.
1095 * We ignore DRQ here and stop the HSM by
1096 * changing hsm_task_state to HSM_ST_ERR and
1097 * let the EH abort the command or reset the device.
1099 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1100 /* Some ATAPI tape drives forget to clear the ERR bit
1101 * when doing the next command (mostly request sense).
1102 * We ignore ERR here to workaround and proceed sending
1103 * the CDB.
1105 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1106 ata_ehi_push_desc(ehi, "ST_FIRST: "
1107 "DRQ=1 with device error, "
1108 "dev_stat 0x%X", status);
1109 qc->err_mask |= AC_ERR_HSM;
1110 ap->hsm_task_state = HSM_ST_ERR;
1111 goto fsm_start;
1115 /* Send the CDB (atapi) or the first data block (ata pio out).
1116 * During the state transition, interrupt handler shouldn't
1117 * be invoked before the data transfer is complete and
1118 * hsm_task_state is changed. Hence, the following locking.
1120 if (in_wq)
1121 spin_lock_irqsave(ap->lock, flags);
1123 if (qc->tf.protocol == ATA_PROT_PIO) {
1124 /* PIO data out protocol.
1125 * send first data block.
1128 /* ata_pio_sectors() might change the state
1129 * to HSM_ST_LAST. so, the state is changed here
1130 * before ata_pio_sectors().
1132 ap->hsm_task_state = HSM_ST;
1133 ata_pio_sectors(qc);
1134 } else
1135 /* send CDB */
1136 atapi_send_cdb(ap, qc);
1138 if (in_wq)
1139 spin_unlock_irqrestore(ap->lock, flags);
1141 /* if polling, ata_sff_pio_task() handles the rest.
1142 * otherwise, interrupt handler takes over from here.
1144 break;
1146 case HSM_ST:
1147 /* complete command or read/write the data register */
1148 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1149 /* ATAPI PIO protocol */
1150 if ((status & ATA_DRQ) == 0) {
1151 /* No more data to transfer or device error.
1152 * Device error will be tagged in HSM_ST_LAST.
1154 ap->hsm_task_state = HSM_ST_LAST;
1155 goto fsm_start;
1158 /* Device should not ask for data transfer (DRQ=1)
1159 * when it finds something wrong.
1160 * We ignore DRQ here and stop the HSM by
1161 * changing hsm_task_state to HSM_ST_ERR and
1162 * let the EH abort the command or reset the device.
1164 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1165 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1166 "DRQ=1 with device error, "
1167 "dev_stat 0x%X", status);
1168 qc->err_mask |= AC_ERR_HSM;
1169 ap->hsm_task_state = HSM_ST_ERR;
1170 goto fsm_start;
1173 atapi_pio_bytes(qc);
1175 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1176 /* bad ireason reported by device */
1177 goto fsm_start;
1179 } else {
1180 /* ATA PIO protocol */
1181 if (unlikely((status & ATA_DRQ) == 0)) {
1182 /* handle BSY=0, DRQ=0 as error */
1183 if (likely(status & (ATA_ERR | ATA_DF))) {
1184 /* device stops HSM for abort/error */
1185 qc->err_mask |= AC_ERR_DEV;
1187 /* If diagnostic failed and this is
1188 * IDENTIFY, it's likely a phantom
1189 * device. Mark hint.
1191 if (qc->dev->horkage &
1192 ATA_HORKAGE_DIAGNOSTIC)
1193 qc->err_mask |=
1194 AC_ERR_NODEV_HINT;
1195 } else {
1196 /* HSM violation. Let EH handle this.
1197 * Phantom devices also trigger this
1198 * condition. Mark hint.
1200 ata_ehi_push_desc(ehi, "ST-ATA: "
1201 "DRQ=0 without device error, "
1202 "dev_stat 0x%X", status);
1203 qc->err_mask |= AC_ERR_HSM |
1204 AC_ERR_NODEV_HINT;
1207 ap->hsm_task_state = HSM_ST_ERR;
1208 goto fsm_start;
1211 /* For PIO reads, some devices may ask for
1212 * data transfer (DRQ=1) alone with ERR=1.
1213 * We respect DRQ here and transfer one
1214 * block of junk data before changing the
1215 * hsm_task_state to HSM_ST_ERR.
1217 * For PIO writes, ERR=1 DRQ=1 doesn't make
1218 * sense since the data block has been
1219 * transferred to the device.
1221 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1222 /* data might be corrputed */
1223 qc->err_mask |= AC_ERR_DEV;
1225 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1226 ata_pio_sectors(qc);
1227 status = ata_wait_idle(ap);
1230 if (status & (ATA_BUSY | ATA_DRQ)) {
1231 ata_ehi_push_desc(ehi, "ST-ATA: "
1232 "BUSY|DRQ persists on ERR|DF, "
1233 "dev_stat 0x%X", status);
1234 qc->err_mask |= AC_ERR_HSM;
1237 /* There are oddball controllers with
1238 * status register stuck at 0x7f and
1239 * lbal/m/h at zero which makes it
1240 * pass all other presence detection
1241 * mechanisms we have. Set NODEV_HINT
1242 * for it. Kernel bz#7241.
1244 if (status == 0x7f)
1245 qc->err_mask |= AC_ERR_NODEV_HINT;
1247 /* ata_pio_sectors() might change the
1248 * state to HSM_ST_LAST. so, the state
1249 * is changed after ata_pio_sectors().
1251 ap->hsm_task_state = HSM_ST_ERR;
1252 goto fsm_start;
1255 ata_pio_sectors(qc);
1257 if (ap->hsm_task_state == HSM_ST_LAST &&
1258 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1259 /* all data read */
1260 status = ata_wait_idle(ap);
1261 goto fsm_start;
1265 poll_next = 1;
1266 break;
1268 case HSM_ST_LAST:
1269 if (unlikely(!ata_ok(status))) {
1270 qc->err_mask |= __ac_err_mask(status);
1271 ap->hsm_task_state = HSM_ST_ERR;
1272 goto fsm_start;
1275 /* no more data to transfer */
1276 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1277 ap->print_id, qc->dev->devno, status);
1279 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1281 ap->hsm_task_state = HSM_ST_IDLE;
1283 /* complete taskfile transaction */
1284 ata_hsm_qc_complete(qc, in_wq);
1286 poll_next = 0;
1287 break;
1289 case HSM_ST_ERR:
1290 ap->hsm_task_state = HSM_ST_IDLE;
1292 /* complete taskfile transaction */
1293 ata_hsm_qc_complete(qc, in_wq);
1295 poll_next = 0;
1296 break;
1297 default:
1298 poll_next = 0;
1299 BUG();
1302 return poll_next;
1304 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1306 void ata_sff_queue_work(struct work_struct *work)
1308 queue_work(ata_sff_wq, work);
1310 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1312 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1314 queue_delayed_work(ata_sff_wq, dwork, delay);
1316 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1318 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1320 struct ata_port *ap = link->ap;
1322 WARN_ON((ap->sff_pio_task_link != NULL) &&
1323 (ap->sff_pio_task_link != link));
1324 ap->sff_pio_task_link = link;
1326 /* may fail if ata_sff_flush_pio_task() in progress */
1327 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1329 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1331 void ata_sff_flush_pio_task(struct ata_port *ap)
1333 DPRINTK("ENTER\n");
1335 cancel_delayed_work_sync(&ap->sff_pio_task);
1338 * We wanna reset the HSM state to IDLE. If we do so without
1339 * grabbing the port lock, critical sections protected by it which
1340 * expect the HSM state to stay stable may get surprised. For
1341 * example, we may set IDLE in between the time
1342 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1343 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1345 spin_lock_irq(ap->lock);
1346 ap->hsm_task_state = HSM_ST_IDLE;
1347 spin_unlock_irq(ap->lock);
1349 ap->sff_pio_task_link = NULL;
1351 if (ata_msg_ctl(ap))
1352 ata_port_dbg(ap, "%s: EXIT\n", __func__);
1355 static void ata_sff_pio_task(struct work_struct *work)
1357 struct ata_port *ap =
1358 container_of(work, struct ata_port, sff_pio_task.work);
1359 struct ata_link *link = ap->sff_pio_task_link;
1360 struct ata_queued_cmd *qc;
1361 u8 status;
1362 int poll_next;
1364 BUG_ON(ap->sff_pio_task_link == NULL);
1365 /* qc can be NULL if timeout occurred */
1366 qc = ata_qc_from_tag(ap, link->active_tag);
1367 if (!qc) {
1368 ap->sff_pio_task_link = NULL;
1369 return;
1372 fsm_start:
1373 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1376 * This is purely heuristic. This is a fast path.
1377 * Sometimes when we enter, BSY will be cleared in
1378 * a chk-status or two. If not, the drive is probably seeking
1379 * or something. Snooze for a couple msecs, then
1380 * chk-status again. If still busy, queue delayed work.
1382 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1383 if (status & ATA_BUSY) {
1384 ata_msleep(ap, 2);
1385 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1386 if (status & ATA_BUSY) {
1387 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1388 return;
1393 * hsm_move() may trigger another command to be processed.
1394 * clean the link beforehand.
1396 ap->sff_pio_task_link = NULL;
1397 /* move the HSM */
1398 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1400 /* another command or interrupt handler
1401 * may be running at this point.
1403 if (poll_next)
1404 goto fsm_start;
1408 * ata_sff_qc_issue - issue taskfile to a SFF controller
1409 * @qc: command to issue to device
1411 * This function issues a PIO or NODATA command to a SFF
1412 * controller.
1414 * LOCKING:
1415 * spin_lock_irqsave(host lock)
1417 * RETURNS:
1418 * Zero on success, AC_ERR_* mask on failure
1420 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1422 struct ata_port *ap = qc->ap;
1423 struct ata_link *link = qc->dev->link;
1425 /* Use polling pio if the LLD doesn't handle
1426 * interrupt driven pio and atapi CDB interrupt.
1428 if (ap->flags & ATA_FLAG_PIO_POLLING)
1429 qc->tf.flags |= ATA_TFLAG_POLLING;
1431 /* select the device */
1432 ata_dev_select(ap, qc->dev->devno, 1, 0);
1434 /* start the command */
1435 switch (qc->tf.protocol) {
1436 case ATA_PROT_NODATA:
1437 if (qc->tf.flags & ATA_TFLAG_POLLING)
1438 ata_qc_set_polling(qc);
1440 ata_tf_to_host(ap, &qc->tf);
1441 ap->hsm_task_state = HSM_ST_LAST;
1443 if (qc->tf.flags & ATA_TFLAG_POLLING)
1444 ata_sff_queue_pio_task(link, 0);
1446 break;
1448 case ATA_PROT_PIO:
1449 if (qc->tf.flags & ATA_TFLAG_POLLING)
1450 ata_qc_set_polling(qc);
1452 ata_tf_to_host(ap, &qc->tf);
1454 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1455 /* PIO data out protocol */
1456 ap->hsm_task_state = HSM_ST_FIRST;
1457 ata_sff_queue_pio_task(link, 0);
1459 /* always send first data block using the
1460 * ata_sff_pio_task() codepath.
1462 } else {
1463 /* PIO data in protocol */
1464 ap->hsm_task_state = HSM_ST;
1466 if (qc->tf.flags & ATA_TFLAG_POLLING)
1467 ata_sff_queue_pio_task(link, 0);
1469 /* if polling, ata_sff_pio_task() handles the
1470 * rest. otherwise, interrupt handler takes
1471 * over from here.
1475 break;
1477 case ATAPI_PROT_PIO:
1478 case ATAPI_PROT_NODATA:
1479 if (qc->tf.flags & ATA_TFLAG_POLLING)
1480 ata_qc_set_polling(qc);
1482 ata_tf_to_host(ap, &qc->tf);
1484 ap->hsm_task_state = HSM_ST_FIRST;
1486 /* send cdb by polling if no cdb interrupt */
1487 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1488 (qc->tf.flags & ATA_TFLAG_POLLING))
1489 ata_sff_queue_pio_task(link, 0);
1490 break;
1492 default:
1493 WARN_ON_ONCE(1);
1494 return AC_ERR_SYSTEM;
1497 return 0;
1499 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1502 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1503 * @qc: qc to fill result TF for
1505 * @qc is finished and result TF needs to be filled. Fill it
1506 * using ->sff_tf_read.
1508 * LOCKING:
1509 * spin_lock_irqsave(host lock)
1511 * RETURNS:
1512 * true indicating that result TF is successfully filled.
1514 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1516 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1517 return true;
1519 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1521 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1523 ap->stats.idle_irq++;
1525 #ifdef ATA_IRQ_TRAP
1526 if ((ap->stats.idle_irq % 1000) == 0) {
1527 ap->ops->sff_check_status(ap);
1528 if (ap->ops->sff_irq_clear)
1529 ap->ops->sff_irq_clear(ap);
1530 ata_port_warn(ap, "irq trap\n");
1531 return 1;
1533 #endif
1534 return 0; /* irq not handled */
1537 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1538 struct ata_queued_cmd *qc,
1539 bool hsmv_on_idle)
1541 u8 status;
1543 VPRINTK("ata%u: protocol %d task_state %d\n",
1544 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1546 /* Check whether we are expecting interrupt in this state */
1547 switch (ap->hsm_task_state) {
1548 case HSM_ST_FIRST:
1549 /* Some pre-ATAPI-4 devices assert INTRQ
1550 * at this state when ready to receive CDB.
1553 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1554 * The flag was turned on only for atapi devices. No
1555 * need to check ata_is_atapi(qc->tf.protocol) again.
1557 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1558 return ata_sff_idle_irq(ap);
1559 break;
1560 case HSM_ST_IDLE:
1561 return ata_sff_idle_irq(ap);
1562 default:
1563 break;
1566 /* check main status, clearing INTRQ if needed */
1567 status = ata_sff_irq_status(ap);
1568 if (status & ATA_BUSY) {
1569 if (hsmv_on_idle) {
1570 /* BMDMA engine is already stopped, we're screwed */
1571 qc->err_mask |= AC_ERR_HSM;
1572 ap->hsm_task_state = HSM_ST_ERR;
1573 } else
1574 return ata_sff_idle_irq(ap);
1577 /* clear irq events */
1578 if (ap->ops->sff_irq_clear)
1579 ap->ops->sff_irq_clear(ap);
1581 ata_sff_hsm_move(ap, qc, status, 0);
1583 return 1; /* irq handled */
1587 * ata_sff_port_intr - Handle SFF port interrupt
1588 * @ap: Port on which interrupt arrived (possibly...)
1589 * @qc: Taskfile currently active in engine
1591 * Handle port interrupt for given queued command.
1593 * LOCKING:
1594 * spin_lock_irqsave(host lock)
1596 * RETURNS:
1597 * One if interrupt was handled, zero if not (shared irq).
1599 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1601 return __ata_sff_port_intr(ap, qc, false);
1603 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1605 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1606 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1608 struct ata_host *host = dev_instance;
1609 bool retried = false;
1610 unsigned int i;
1611 unsigned int handled, idle, polling;
1612 unsigned long flags;
1614 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1615 spin_lock_irqsave(&host->lock, flags);
1617 retry:
1618 handled = idle = polling = 0;
1619 for (i = 0; i < host->n_ports; i++) {
1620 struct ata_port *ap = host->ports[i];
1621 struct ata_queued_cmd *qc;
1623 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1624 if (qc) {
1625 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1626 handled |= port_intr(ap, qc);
1627 else
1628 polling |= 1 << i;
1629 } else
1630 idle |= 1 << i;
1634 * If no port was expecting IRQ but the controller is actually
1635 * asserting IRQ line, nobody cared will ensue. Check IRQ
1636 * pending status if available and clear spurious IRQ.
1638 if (!handled && !retried) {
1639 bool retry = false;
1641 for (i = 0; i < host->n_ports; i++) {
1642 struct ata_port *ap = host->ports[i];
1644 if (polling & (1 << i))
1645 continue;
1647 if (!ap->ops->sff_irq_check ||
1648 !ap->ops->sff_irq_check(ap))
1649 continue;
1651 if (idle & (1 << i)) {
1652 ap->ops->sff_check_status(ap);
1653 if (ap->ops->sff_irq_clear)
1654 ap->ops->sff_irq_clear(ap);
1655 } else {
1656 /* clear INTRQ and check if BUSY cleared */
1657 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1658 retry |= true;
1660 * With command in flight, we can't do
1661 * sff_irq_clear() w/o racing with completion.
1666 if (retry) {
1667 retried = true;
1668 goto retry;
1672 spin_unlock_irqrestore(&host->lock, flags);
1674 return IRQ_RETVAL(handled);
1678 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1679 * @irq: irq line (unused)
1680 * @dev_instance: pointer to our ata_host information structure
1682 * Default interrupt handler for PCI IDE devices. Calls
1683 * ata_sff_port_intr() for each port that is not disabled.
1685 * LOCKING:
1686 * Obtains host lock during operation.
1688 * RETURNS:
1689 * IRQ_NONE or IRQ_HANDLED.
1691 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1693 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1695 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1698 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1699 * @ap: port that appears to have timed out
1701 * Called from the libata error handlers when the core code suspects
1702 * an interrupt has been lost. If it has complete anything we can and
1703 * then return. Interface must support altstatus for this faster
1704 * recovery to occur.
1706 * Locking:
1707 * Caller holds host lock
1710 void ata_sff_lost_interrupt(struct ata_port *ap)
1712 u8 status;
1713 struct ata_queued_cmd *qc;
1715 /* Only one outstanding command per SFF channel */
1716 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1717 /* We cannot lose an interrupt on a non-existent or polled command */
1718 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1719 return;
1720 /* See if the controller thinks it is still busy - if so the command
1721 isn't a lost IRQ but is still in progress */
1722 status = ata_sff_altstatus(ap);
1723 if (status & ATA_BUSY)
1724 return;
1726 /* There was a command running, we are no longer busy and we have
1727 no interrupt. */
1728 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1729 status);
1730 /* Run the host interrupt logic as if the interrupt had not been
1731 lost */
1732 ata_sff_port_intr(ap, qc);
1734 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1737 * ata_sff_freeze - Freeze SFF controller port
1738 * @ap: port to freeze
1740 * Freeze SFF controller port.
1742 * LOCKING:
1743 * Inherited from caller.
1745 void ata_sff_freeze(struct ata_port *ap)
1747 ap->ctl |= ATA_NIEN;
1748 ap->last_ctl = ap->ctl;
1750 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1751 ata_sff_set_devctl(ap, ap->ctl);
1753 /* Under certain circumstances, some controllers raise IRQ on
1754 * ATA_NIEN manipulation. Also, many controllers fail to mask
1755 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1757 ap->ops->sff_check_status(ap);
1759 if (ap->ops->sff_irq_clear)
1760 ap->ops->sff_irq_clear(ap);
1762 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1765 * ata_sff_thaw - Thaw SFF controller port
1766 * @ap: port to thaw
1768 * Thaw SFF controller port.
1770 * LOCKING:
1771 * Inherited from caller.
1773 void ata_sff_thaw(struct ata_port *ap)
1775 /* clear & re-enable interrupts */
1776 ap->ops->sff_check_status(ap);
1777 if (ap->ops->sff_irq_clear)
1778 ap->ops->sff_irq_clear(ap);
1779 ata_sff_irq_on(ap);
1781 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1784 * ata_sff_prereset - prepare SFF link for reset
1785 * @link: SFF link to be reset
1786 * @deadline: deadline jiffies for the operation
1788 * SFF link @link is about to be reset. Initialize it. It first
1789 * calls ata_std_prereset() and wait for !BSY if the port is
1790 * being softreset.
1792 * LOCKING:
1793 * Kernel thread context (may sleep)
1795 * RETURNS:
1796 * 0 on success, -errno otherwise.
1798 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1800 struct ata_eh_context *ehc = &link->eh_context;
1801 int rc;
1803 rc = ata_std_prereset(link, deadline);
1804 if (rc)
1805 return rc;
1807 /* if we're about to do hardreset, nothing more to do */
1808 if (ehc->i.action & ATA_EH_HARDRESET)
1809 return 0;
1811 /* wait for !BSY if we don't know that no device is attached */
1812 if (!ata_link_offline(link)) {
1813 rc = ata_sff_wait_ready(link, deadline);
1814 if (rc && rc != -ENODEV) {
1815 ata_link_warn(link,
1816 "device not ready (errno=%d), forcing hardreset\n",
1817 rc);
1818 ehc->i.action |= ATA_EH_HARDRESET;
1822 return 0;
1824 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1827 * ata_devchk - PATA device presence detection
1828 * @ap: ATA channel to examine
1829 * @device: Device to examine (starting at zero)
1831 * This technique was originally described in
1832 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1833 * later found its way into the ATA/ATAPI spec.
1835 * Write a pattern to the ATA shadow registers,
1836 * and if a device is present, it will respond by
1837 * correctly storing and echoing back the
1838 * ATA shadow register contents.
1840 * LOCKING:
1841 * caller.
1843 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1845 struct ata_ioports *ioaddr = &ap->ioaddr;
1846 u8 nsect, lbal;
1848 ap->ops->sff_dev_select(ap, device);
1850 iowrite8(0x55, ioaddr->nsect_addr);
1851 iowrite8(0xaa, ioaddr->lbal_addr);
1853 iowrite8(0xaa, ioaddr->nsect_addr);
1854 iowrite8(0x55, ioaddr->lbal_addr);
1856 iowrite8(0x55, ioaddr->nsect_addr);
1857 iowrite8(0xaa, ioaddr->lbal_addr);
1859 nsect = ioread8(ioaddr->nsect_addr);
1860 lbal = ioread8(ioaddr->lbal_addr);
1862 if ((nsect == 0x55) && (lbal == 0xaa))
1863 return 1; /* we found a device */
1865 return 0; /* nothing found */
1869 * ata_sff_dev_classify - Parse returned ATA device signature
1870 * @dev: ATA device to classify (starting at zero)
1871 * @present: device seems present
1872 * @r_err: Value of error register on completion
1874 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1875 * an ATA/ATAPI-defined set of values is placed in the ATA
1876 * shadow registers, indicating the results of device detection
1877 * and diagnostics.
1879 * Select the ATA device, and read the values from the ATA shadow
1880 * registers. Then parse according to the Error register value,
1881 * and the spec-defined values examined by ata_dev_classify().
1883 * LOCKING:
1884 * caller.
1886 * RETURNS:
1887 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1889 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1890 u8 *r_err)
1892 struct ata_port *ap = dev->link->ap;
1893 struct ata_taskfile tf;
1894 unsigned int class;
1895 u8 err;
1897 ap->ops->sff_dev_select(ap, dev->devno);
1899 memset(&tf, 0, sizeof(tf));
1901 ap->ops->sff_tf_read(ap, &tf);
1902 err = tf.feature;
1903 if (r_err)
1904 *r_err = err;
1906 /* see if device passed diags: continue and warn later */
1907 if (err == 0)
1908 /* diagnostic fail : do nothing _YET_ */
1909 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1910 else if (err == 1)
1911 /* do nothing */ ;
1912 else if ((dev->devno == 0) && (err == 0x81))
1913 /* do nothing */ ;
1914 else
1915 return ATA_DEV_NONE;
1917 /* determine if device is ATA or ATAPI */
1918 class = ata_dev_classify(&tf);
1920 if (class == ATA_DEV_UNKNOWN) {
1921 /* If the device failed diagnostic, it's likely to
1922 * have reported incorrect device signature too.
1923 * Assume ATA device if the device seems present but
1924 * device signature is invalid with diagnostic
1925 * failure.
1927 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1928 class = ATA_DEV_ATA;
1929 else
1930 class = ATA_DEV_NONE;
1931 } else if ((class == ATA_DEV_ATA) &&
1932 (ap->ops->sff_check_status(ap) == 0))
1933 class = ATA_DEV_NONE;
1935 return class;
1937 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1940 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1941 * @link: SFF link which is just reset
1942 * @devmask: mask of present devices
1943 * @deadline: deadline jiffies for the operation
1945 * Wait devices attached to SFF @link to become ready after
1946 * reset. It contains preceding 150ms wait to avoid accessing TF
1947 * status register too early.
1949 * LOCKING:
1950 * Kernel thread context (may sleep).
1952 * RETURNS:
1953 * 0 on success, -ENODEV if some or all of devices in @devmask
1954 * don't seem to exist. -errno on other errors.
1956 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1957 unsigned long deadline)
1959 struct ata_port *ap = link->ap;
1960 struct ata_ioports *ioaddr = &ap->ioaddr;
1961 unsigned int dev0 = devmask & (1 << 0);
1962 unsigned int dev1 = devmask & (1 << 1);
1963 int rc, ret = 0;
1965 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1967 /* always check readiness of the master device */
1968 rc = ata_sff_wait_ready(link, deadline);
1969 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1970 * and TF status is 0xff, bail out on it too.
1972 if (rc)
1973 return rc;
1975 /* if device 1 was found in ata_devchk, wait for register
1976 * access briefly, then wait for BSY to clear.
1978 if (dev1) {
1979 int i;
1981 ap->ops->sff_dev_select(ap, 1);
1983 /* Wait for register access. Some ATAPI devices fail
1984 * to set nsect/lbal after reset, so don't waste too
1985 * much time on it. We're gonna wait for !BSY anyway.
1987 for (i = 0; i < 2; i++) {
1988 u8 nsect, lbal;
1990 nsect = ioread8(ioaddr->nsect_addr);
1991 lbal = ioread8(ioaddr->lbal_addr);
1992 if ((nsect == 1) && (lbal == 1))
1993 break;
1994 ata_msleep(ap, 50); /* give drive a breather */
1997 rc = ata_sff_wait_ready(link, deadline);
1998 if (rc) {
1999 if (rc != -ENODEV)
2000 return rc;
2001 ret = rc;
2005 /* is all this really necessary? */
2006 ap->ops->sff_dev_select(ap, 0);
2007 if (dev1)
2008 ap->ops->sff_dev_select(ap, 1);
2009 if (dev0)
2010 ap->ops->sff_dev_select(ap, 0);
2012 return ret;
2014 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2016 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2017 unsigned long deadline)
2019 struct ata_ioports *ioaddr = &ap->ioaddr;
2021 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2023 if (ap->ioaddr.ctl_addr) {
2024 /* software reset. causes dev0 to be selected */
2025 iowrite8(ap->ctl, ioaddr->ctl_addr);
2026 udelay(20); /* FIXME: flush */
2027 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2028 udelay(20); /* FIXME: flush */
2029 iowrite8(ap->ctl, ioaddr->ctl_addr);
2030 ap->last_ctl = ap->ctl;
2033 /* wait the port to become ready */
2034 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2038 * ata_sff_softreset - reset host port via ATA SRST
2039 * @link: ATA link to reset
2040 * @classes: resulting classes of attached devices
2041 * @deadline: deadline jiffies for the operation
2043 * Reset host port using ATA SRST.
2045 * LOCKING:
2046 * Kernel thread context (may sleep)
2048 * RETURNS:
2049 * 0 on success, -errno otherwise.
2051 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2052 unsigned long deadline)
2054 struct ata_port *ap = link->ap;
2055 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2056 unsigned int devmask = 0;
2057 int rc;
2058 u8 err;
2060 DPRINTK("ENTER\n");
2062 /* determine if device 0/1 are present */
2063 if (ata_devchk(ap, 0))
2064 devmask |= (1 << 0);
2065 if (slave_possible && ata_devchk(ap, 1))
2066 devmask |= (1 << 1);
2068 /* select device 0 again */
2069 ap->ops->sff_dev_select(ap, 0);
2071 /* issue bus reset */
2072 DPRINTK("about to softreset, devmask=%x\n", devmask);
2073 rc = ata_bus_softreset(ap, devmask, deadline);
2074 /* if link is occupied, -ENODEV too is an error */
2075 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2076 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2077 return rc;
2080 /* determine by signature whether we have ATA or ATAPI devices */
2081 classes[0] = ata_sff_dev_classify(&link->device[0],
2082 devmask & (1 << 0), &err);
2083 if (slave_possible && err != 0x81)
2084 classes[1] = ata_sff_dev_classify(&link->device[1],
2085 devmask & (1 << 1), &err);
2087 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2088 return 0;
2090 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2093 * sata_sff_hardreset - reset host port via SATA phy reset
2094 * @link: link to reset
2095 * @class: resulting class of attached device
2096 * @deadline: deadline jiffies for the operation
2098 * SATA phy-reset host port using DET bits of SControl register,
2099 * wait for !BSY and classify the attached device.
2101 * LOCKING:
2102 * Kernel thread context (may sleep)
2104 * RETURNS:
2105 * 0 on success, -errno otherwise.
2107 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2108 unsigned long deadline)
2110 struct ata_eh_context *ehc = &link->eh_context;
2111 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2112 bool online;
2113 int rc;
2115 rc = sata_link_hardreset(link, timing, deadline, &online,
2116 ata_sff_check_ready);
2117 if (online)
2118 *class = ata_sff_dev_classify(link->device, 1, NULL);
2120 DPRINTK("EXIT, class=%u\n", *class);
2121 return rc;
2123 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2126 * ata_sff_postreset - SFF postreset callback
2127 * @link: the target SFF ata_link
2128 * @classes: classes of attached devices
2130 * This function is invoked after a successful reset. It first
2131 * calls ata_std_postreset() and performs SFF specific postreset
2132 * processing.
2134 * LOCKING:
2135 * Kernel thread context (may sleep)
2137 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2139 struct ata_port *ap = link->ap;
2141 ata_std_postreset(link, classes);
2143 /* is double-select really necessary? */
2144 if (classes[0] != ATA_DEV_NONE)
2145 ap->ops->sff_dev_select(ap, 1);
2146 if (classes[1] != ATA_DEV_NONE)
2147 ap->ops->sff_dev_select(ap, 0);
2149 /* bail out if no device is present */
2150 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2151 DPRINTK("EXIT, no device\n");
2152 return;
2155 /* set up device control */
2156 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2157 ata_sff_set_devctl(ap, ap->ctl);
2158 ap->last_ctl = ap->ctl;
2161 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2164 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2165 * @qc: command
2167 * Drain the FIFO and device of any stuck data following a command
2168 * failing to complete. In some cases this is necessary before a
2169 * reset will recover the device.
2173 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2175 int count;
2176 struct ata_port *ap;
2178 /* We only need to flush incoming data when a command was running */
2179 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2180 return;
2182 ap = qc->ap;
2183 /* Drain up to 64K of data before we give up this recovery method */
2184 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2185 && count < 65536; count += 2)
2186 ioread16(ap->ioaddr.data_addr);
2188 /* Can become DEBUG later */
2189 if (count)
2190 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2193 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2196 * ata_sff_error_handler - Stock error handler for SFF controller
2197 * @ap: port to handle error for
2199 * Stock error handler for SFF controller. It can handle both
2200 * PATA and SATA controllers. Many controllers should be able to
2201 * use this EH as-is or with some added handling before and
2202 * after.
2204 * LOCKING:
2205 * Kernel thread context (may sleep)
2207 void ata_sff_error_handler(struct ata_port *ap)
2209 ata_reset_fn_t softreset = ap->ops->softreset;
2210 ata_reset_fn_t hardreset = ap->ops->hardreset;
2211 struct ata_queued_cmd *qc;
2212 unsigned long flags;
2214 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2215 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2216 qc = NULL;
2218 spin_lock_irqsave(ap->lock, flags);
2221 * We *MUST* do FIFO draining before we issue a reset as
2222 * several devices helpfully clear their internal state and
2223 * will lock solid if we touch the data port post reset. Pass
2224 * qc in case anyone wants to do different PIO/DMA recovery or
2225 * has per command fixups
2227 if (ap->ops->sff_drain_fifo)
2228 ap->ops->sff_drain_fifo(qc);
2230 spin_unlock_irqrestore(ap->lock, flags);
2232 /* ignore built-in hardresets if SCR access is not available */
2233 if ((hardreset == sata_std_hardreset ||
2234 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2235 hardreset = NULL;
2237 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2238 ap->ops->postreset);
2240 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2243 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2244 * @ioaddr: IO address structure to be initialized
2246 * Utility function which initializes data_addr, error_addr,
2247 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2248 * device_addr, status_addr, and command_addr to standard offsets
2249 * relative to cmd_addr.
2251 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2253 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2255 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2256 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2257 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2258 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2259 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2260 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2261 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2262 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2263 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2264 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2266 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2268 #ifdef CONFIG_PCI
2270 static int ata_resources_present(struct pci_dev *pdev, int port)
2272 int i;
2274 /* Check the PCI resources for this channel are enabled */
2275 port = port * 2;
2276 for (i = 0; i < 2; i++) {
2277 if (pci_resource_start(pdev, port + i) == 0 ||
2278 pci_resource_len(pdev, port + i) == 0)
2279 return 0;
2281 return 1;
2285 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2286 * @host: target ATA host
2288 * Acquire native PCI ATA resources for @host and initialize the
2289 * first two ports of @host accordingly. Ports marked dummy are
2290 * skipped and allocation failure makes the port dummy.
2292 * Note that native PCI resources are valid even for legacy hosts
2293 * as we fix up pdev resources array early in boot, so this
2294 * function can be used for both native and legacy SFF hosts.
2296 * LOCKING:
2297 * Inherited from calling layer (may sleep).
2299 * RETURNS:
2300 * 0 if at least one port is initialized, -ENODEV if no port is
2301 * available.
2303 int ata_pci_sff_init_host(struct ata_host *host)
2305 struct device *gdev = host->dev;
2306 struct pci_dev *pdev = to_pci_dev(gdev);
2307 unsigned int mask = 0;
2308 int i, rc;
2310 /* request, iomap BARs and init port addresses accordingly */
2311 for (i = 0; i < 2; i++) {
2312 struct ata_port *ap = host->ports[i];
2313 int base = i * 2;
2314 void __iomem * const *iomap;
2316 if (ata_port_is_dummy(ap))
2317 continue;
2319 /* Discard disabled ports. Some controllers show
2320 * their unused channels this way. Disabled ports are
2321 * made dummy.
2323 if (!ata_resources_present(pdev, i)) {
2324 ap->ops = &ata_dummy_port_ops;
2325 continue;
2328 rc = pcim_iomap_regions(pdev, 0x3 << base,
2329 dev_driver_string(gdev));
2330 if (rc) {
2331 dev_warn(gdev,
2332 "failed to request/iomap BARs for port %d (errno=%d)\n",
2333 i, rc);
2334 if (rc == -EBUSY)
2335 pcim_pin_device(pdev);
2336 ap->ops = &ata_dummy_port_ops;
2337 continue;
2339 host->iomap = iomap = pcim_iomap_table(pdev);
2341 ap->ioaddr.cmd_addr = iomap[base];
2342 ap->ioaddr.altstatus_addr =
2343 ap->ioaddr.ctl_addr = (void __iomem *)
2344 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2345 ata_sff_std_ports(&ap->ioaddr);
2347 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2348 (unsigned long long)pci_resource_start(pdev, base),
2349 (unsigned long long)pci_resource_start(pdev, base + 1));
2351 mask |= 1 << i;
2354 if (!mask) {
2355 dev_err(gdev, "no available native port\n");
2356 return -ENODEV;
2359 return 0;
2361 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2364 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2365 * @pdev: target PCI device
2366 * @ppi: array of port_info, must be enough for two ports
2367 * @r_host: out argument for the initialized ATA host
2369 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2370 * all PCI resources and initialize it accordingly in one go.
2372 * LOCKING:
2373 * Inherited from calling layer (may sleep).
2375 * RETURNS:
2376 * 0 on success, -errno otherwise.
2378 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2379 const struct ata_port_info * const *ppi,
2380 struct ata_host **r_host)
2382 struct ata_host *host;
2383 int rc;
2385 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2386 return -ENOMEM;
2388 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2389 if (!host) {
2390 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2391 rc = -ENOMEM;
2392 goto err_out;
2395 rc = ata_pci_sff_init_host(host);
2396 if (rc)
2397 goto err_out;
2399 devres_remove_group(&pdev->dev, NULL);
2400 *r_host = host;
2401 return 0;
2403 err_out:
2404 devres_release_group(&pdev->dev, NULL);
2405 return rc;
2407 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2410 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2411 * @host: target SFF ATA host
2412 * @irq_handler: irq_handler used when requesting IRQ(s)
2413 * @sht: scsi_host_template to use when registering the host
2415 * This is the counterpart of ata_host_activate() for SFF ATA
2416 * hosts. This separate helper is necessary because SFF hosts
2417 * use two separate interrupts in legacy mode.
2419 * LOCKING:
2420 * Inherited from calling layer (may sleep).
2422 * RETURNS:
2423 * 0 on success, -errno otherwise.
2425 int ata_pci_sff_activate_host(struct ata_host *host,
2426 irq_handler_t irq_handler,
2427 struct scsi_host_template *sht)
2429 struct device *dev = host->dev;
2430 struct pci_dev *pdev = to_pci_dev(dev);
2431 const char *drv_name = dev_driver_string(host->dev);
2432 int legacy_mode = 0, rc;
2434 rc = ata_host_start(host);
2435 if (rc)
2436 return rc;
2438 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2439 u8 tmp8, mask;
2441 /* TODO: What if one channel is in native mode ... */
2442 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2443 mask = (1 << 2) | (1 << 0);
2444 if ((tmp8 & mask) != mask)
2445 legacy_mode = 1;
2448 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2449 return -ENOMEM;
2451 if (!legacy_mode && pdev->irq) {
2452 int i;
2454 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2455 IRQF_SHARED, drv_name, host);
2456 if (rc)
2457 goto out;
2459 for (i = 0; i < 2; i++) {
2460 if (ata_port_is_dummy(host->ports[i]))
2461 continue;
2462 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2464 } else if (legacy_mode) {
2465 if (!ata_port_is_dummy(host->ports[0])) {
2466 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2467 irq_handler, IRQF_SHARED,
2468 drv_name, host);
2469 if (rc)
2470 goto out;
2472 ata_port_desc(host->ports[0], "irq %d",
2473 ATA_PRIMARY_IRQ(pdev));
2476 if (!ata_port_is_dummy(host->ports[1])) {
2477 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2478 irq_handler, IRQF_SHARED,
2479 drv_name, host);
2480 if (rc)
2481 goto out;
2483 ata_port_desc(host->ports[1], "irq %d",
2484 ATA_SECONDARY_IRQ(pdev));
2488 rc = ata_host_register(host, sht);
2489 out:
2490 if (rc == 0)
2491 devres_remove_group(dev, NULL);
2492 else
2493 devres_release_group(dev, NULL);
2495 return rc;
2497 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2499 static const struct ata_port_info *ata_sff_find_valid_pi(
2500 const struct ata_port_info * const *ppi)
2502 int i;
2504 /* look up the first valid port_info */
2505 for (i = 0; i < 2 && ppi[i]; i++)
2506 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2507 return ppi[i];
2509 return NULL;
2512 static int ata_pci_init_one(struct pci_dev *pdev,
2513 const struct ata_port_info * const *ppi,
2514 struct scsi_host_template *sht, void *host_priv,
2515 int hflags, bool bmdma)
2517 struct device *dev = &pdev->dev;
2518 const struct ata_port_info *pi;
2519 struct ata_host *host = NULL;
2520 int rc;
2522 DPRINTK("ENTER\n");
2524 pi = ata_sff_find_valid_pi(ppi);
2525 if (!pi) {
2526 dev_err(&pdev->dev, "no valid port_info specified\n");
2527 return -EINVAL;
2530 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2531 return -ENOMEM;
2533 rc = pcim_enable_device(pdev);
2534 if (rc)
2535 goto out;
2537 #ifdef CONFIG_ATA_BMDMA
2538 if (bmdma)
2539 /* prepare and activate BMDMA host */
2540 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2541 else
2542 #endif
2543 /* prepare and activate SFF host */
2544 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2545 if (rc)
2546 goto out;
2547 host->private_data = host_priv;
2548 host->flags |= hflags;
2550 #ifdef CONFIG_ATA_BMDMA
2551 if (bmdma) {
2552 pci_set_master(pdev);
2553 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2554 } else
2555 #endif
2556 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2557 out:
2558 if (rc == 0)
2559 devres_remove_group(&pdev->dev, NULL);
2560 else
2561 devres_release_group(&pdev->dev, NULL);
2563 return rc;
2567 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2568 * @pdev: Controller to be initialized
2569 * @ppi: array of port_info, must be enough for two ports
2570 * @sht: scsi_host_template to use when registering the host
2571 * @host_priv: host private_data
2572 * @hflag: host flags
2574 * This is a helper function which can be called from a driver's
2575 * xxx_init_one() probe function if the hardware uses traditional
2576 * IDE taskfile registers and is PIO only.
2578 * ASSUMPTION:
2579 * Nobody makes a single channel controller that appears solely as
2580 * the secondary legacy port on PCI.
2582 * LOCKING:
2583 * Inherited from PCI layer (may sleep).
2585 * RETURNS:
2586 * Zero on success, negative on errno-based value on error.
2588 int ata_pci_sff_init_one(struct pci_dev *pdev,
2589 const struct ata_port_info * const *ppi,
2590 struct scsi_host_template *sht, void *host_priv, int hflag)
2592 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2594 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2596 #endif /* CONFIG_PCI */
2599 * BMDMA support
2602 #ifdef CONFIG_ATA_BMDMA
2604 const struct ata_port_operations ata_bmdma_port_ops = {
2605 .inherits = &ata_sff_port_ops,
2607 .error_handler = ata_bmdma_error_handler,
2608 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2610 .qc_prep = ata_bmdma_qc_prep,
2611 .qc_issue = ata_bmdma_qc_issue,
2613 .sff_irq_clear = ata_bmdma_irq_clear,
2614 .bmdma_setup = ata_bmdma_setup,
2615 .bmdma_start = ata_bmdma_start,
2616 .bmdma_stop = ata_bmdma_stop,
2617 .bmdma_status = ata_bmdma_status,
2619 .port_start = ata_bmdma_port_start,
2621 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2623 const struct ata_port_operations ata_bmdma32_port_ops = {
2624 .inherits = &ata_bmdma_port_ops,
2626 .sff_data_xfer = ata_sff_data_xfer32,
2627 .port_start = ata_bmdma_port_start32,
2629 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2632 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2633 * @qc: Metadata associated with taskfile to be transferred
2635 * Fill PCI IDE PRD (scatter-gather) table with segments
2636 * associated with the current disk command.
2638 * LOCKING:
2639 * spin_lock_irqsave(host lock)
2642 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2644 struct ata_port *ap = qc->ap;
2645 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2646 struct scatterlist *sg;
2647 unsigned int si, pi;
2649 pi = 0;
2650 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2651 u32 addr, offset;
2652 u32 sg_len, len;
2654 /* determine if physical DMA addr spans 64K boundary.
2655 * Note h/w doesn't support 64-bit, so we unconditionally
2656 * truncate dma_addr_t to u32.
2658 addr = (u32) sg_dma_address(sg);
2659 sg_len = sg_dma_len(sg);
2661 while (sg_len) {
2662 offset = addr & 0xffff;
2663 len = sg_len;
2664 if ((offset + sg_len) > 0x10000)
2665 len = 0x10000 - offset;
2667 prd[pi].addr = cpu_to_le32(addr);
2668 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2669 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2671 pi++;
2672 sg_len -= len;
2673 addr += len;
2677 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2681 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2682 * @qc: Metadata associated with taskfile to be transferred
2684 * Fill PCI IDE PRD (scatter-gather) table with segments
2685 * associated with the current disk command. Perform the fill
2686 * so that we avoid writing any length 64K records for
2687 * controllers that don't follow the spec.
2689 * LOCKING:
2690 * spin_lock_irqsave(host lock)
2693 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2695 struct ata_port *ap = qc->ap;
2696 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2697 struct scatterlist *sg;
2698 unsigned int si, pi;
2700 pi = 0;
2701 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2702 u32 addr, offset;
2703 u32 sg_len, len, blen;
2705 /* determine if physical DMA addr spans 64K boundary.
2706 * Note h/w doesn't support 64-bit, so we unconditionally
2707 * truncate dma_addr_t to u32.
2709 addr = (u32) sg_dma_address(sg);
2710 sg_len = sg_dma_len(sg);
2712 while (sg_len) {
2713 offset = addr & 0xffff;
2714 len = sg_len;
2715 if ((offset + sg_len) > 0x10000)
2716 len = 0x10000 - offset;
2718 blen = len & 0xffff;
2719 prd[pi].addr = cpu_to_le32(addr);
2720 if (blen == 0) {
2721 /* Some PATA chipsets like the CS5530 can't
2722 cope with 0x0000 meaning 64K as the spec
2723 says */
2724 prd[pi].flags_len = cpu_to_le32(0x8000);
2725 blen = 0x8000;
2726 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2728 prd[pi].flags_len = cpu_to_le32(blen);
2729 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2731 pi++;
2732 sg_len -= len;
2733 addr += len;
2737 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2741 * ata_bmdma_qc_prep - Prepare taskfile for submission
2742 * @qc: Metadata associated with taskfile to be prepared
2744 * Prepare ATA taskfile for submission.
2746 * LOCKING:
2747 * spin_lock_irqsave(host lock)
2749 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2751 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2752 return;
2754 ata_bmdma_fill_sg(qc);
2756 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2759 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2760 * @qc: Metadata associated with taskfile to be prepared
2762 * Prepare ATA taskfile for submission.
2764 * LOCKING:
2765 * spin_lock_irqsave(host lock)
2767 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2769 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2770 return;
2772 ata_bmdma_fill_sg_dumb(qc);
2774 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2777 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2778 * @qc: command to issue to device
2780 * This function issues a PIO, NODATA or DMA command to a
2781 * SFF/BMDMA controller. PIO and NODATA are handled by
2782 * ata_sff_qc_issue().
2784 * LOCKING:
2785 * spin_lock_irqsave(host lock)
2787 * RETURNS:
2788 * Zero on success, AC_ERR_* mask on failure
2790 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2792 struct ata_port *ap = qc->ap;
2793 struct ata_link *link = qc->dev->link;
2795 /* defer PIO handling to sff_qc_issue */
2796 if (!ata_is_dma(qc->tf.protocol))
2797 return ata_sff_qc_issue(qc);
2799 /* select the device */
2800 ata_dev_select(ap, qc->dev->devno, 1, 0);
2802 /* start the command */
2803 switch (qc->tf.protocol) {
2804 case ATA_PROT_DMA:
2805 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2807 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2808 ap->ops->bmdma_setup(qc); /* set up bmdma */
2809 ap->ops->bmdma_start(qc); /* initiate bmdma */
2810 ap->hsm_task_state = HSM_ST_LAST;
2811 break;
2813 case ATAPI_PROT_DMA:
2814 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2816 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2817 ap->ops->bmdma_setup(qc); /* set up bmdma */
2818 ap->hsm_task_state = HSM_ST_FIRST;
2820 /* send cdb by polling if no cdb interrupt */
2821 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2822 ata_sff_queue_pio_task(link, 0);
2823 break;
2825 default:
2826 WARN_ON(1);
2827 return AC_ERR_SYSTEM;
2830 return 0;
2832 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2835 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2836 * @ap: Port on which interrupt arrived (possibly...)
2837 * @qc: Taskfile currently active in engine
2839 * Handle port interrupt for given queued command.
2841 * LOCKING:
2842 * spin_lock_irqsave(host lock)
2844 * RETURNS:
2845 * One if interrupt was handled, zero if not (shared irq).
2847 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2849 struct ata_eh_info *ehi = &ap->link.eh_info;
2850 u8 host_stat = 0;
2851 bool bmdma_stopped = false;
2852 unsigned int handled;
2854 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2855 /* check status of DMA engine */
2856 host_stat = ap->ops->bmdma_status(ap);
2857 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2859 /* if it's not our irq... */
2860 if (!(host_stat & ATA_DMA_INTR))
2861 return ata_sff_idle_irq(ap);
2863 /* before we do anything else, clear DMA-Start bit */
2864 ap->ops->bmdma_stop(qc);
2865 bmdma_stopped = true;
2867 if (unlikely(host_stat & ATA_DMA_ERR)) {
2868 /* error when transferring data to/from memory */
2869 qc->err_mask |= AC_ERR_HOST_BUS;
2870 ap->hsm_task_state = HSM_ST_ERR;
2874 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2876 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2877 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2879 return handled;
2881 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2884 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2885 * @irq: irq line (unused)
2886 * @dev_instance: pointer to our ata_host information structure
2888 * Default interrupt handler for PCI IDE devices. Calls
2889 * ata_bmdma_port_intr() for each port that is not disabled.
2891 * LOCKING:
2892 * Obtains host lock during operation.
2894 * RETURNS:
2895 * IRQ_NONE or IRQ_HANDLED.
2897 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2899 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2901 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2904 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2905 * @ap: port to handle error for
2907 * Stock error handler for BMDMA controller. It can handle both
2908 * PATA and SATA controllers. Most BMDMA controllers should be
2909 * able to use this EH as-is or with some added handling before
2910 * and after.
2912 * LOCKING:
2913 * Kernel thread context (may sleep)
2915 void ata_bmdma_error_handler(struct ata_port *ap)
2917 struct ata_queued_cmd *qc;
2918 unsigned long flags;
2919 bool thaw = false;
2921 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2922 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2923 qc = NULL;
2925 /* reset PIO HSM and stop DMA engine */
2926 spin_lock_irqsave(ap->lock, flags);
2928 if (qc && ata_is_dma(qc->tf.protocol)) {
2929 u8 host_stat;
2931 host_stat = ap->ops->bmdma_status(ap);
2933 /* BMDMA controllers indicate host bus error by
2934 * setting DMA_ERR bit and timing out. As it wasn't
2935 * really a timeout event, adjust error mask and
2936 * cancel frozen state.
2938 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2939 qc->err_mask = AC_ERR_HOST_BUS;
2940 thaw = true;
2943 ap->ops->bmdma_stop(qc);
2945 /* if we're gonna thaw, make sure IRQ is clear */
2946 if (thaw) {
2947 ap->ops->sff_check_status(ap);
2948 if (ap->ops->sff_irq_clear)
2949 ap->ops->sff_irq_clear(ap);
2953 spin_unlock_irqrestore(ap->lock, flags);
2955 if (thaw)
2956 ata_eh_thaw_port(ap);
2958 ata_sff_error_handler(ap);
2960 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2963 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2964 * @qc: internal command to clean up
2966 * LOCKING:
2967 * Kernel thread context (may sleep)
2969 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2971 struct ata_port *ap = qc->ap;
2972 unsigned long flags;
2974 if (ata_is_dma(qc->tf.protocol)) {
2975 spin_lock_irqsave(ap->lock, flags);
2976 ap->ops->bmdma_stop(qc);
2977 spin_unlock_irqrestore(ap->lock, flags);
2980 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2983 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2984 * @ap: Port associated with this ATA transaction.
2986 * Clear interrupt and error flags in DMA status register.
2988 * May be used as the irq_clear() entry in ata_port_operations.
2990 * LOCKING:
2991 * spin_lock_irqsave(host lock)
2993 void ata_bmdma_irq_clear(struct ata_port *ap)
2995 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2997 if (!mmio)
2998 return;
3000 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
3002 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
3005 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3006 * @qc: Info associated with this ATA transaction.
3008 * LOCKING:
3009 * spin_lock_irqsave(host lock)
3011 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3013 struct ata_port *ap = qc->ap;
3014 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3015 u8 dmactl;
3017 /* load PRD table addr. */
3018 mb(); /* make sure PRD table writes are visible to controller */
3019 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3021 /* specify data direction, triple-check start bit is clear */
3022 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3023 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3024 if (!rw)
3025 dmactl |= ATA_DMA_WR;
3026 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3028 /* issue r/w command */
3029 ap->ops->sff_exec_command(ap, &qc->tf);
3031 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3034 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3035 * @qc: Info associated with this ATA transaction.
3037 * LOCKING:
3038 * spin_lock_irqsave(host lock)
3040 void ata_bmdma_start(struct ata_queued_cmd *qc)
3042 struct ata_port *ap = qc->ap;
3043 u8 dmactl;
3045 /* start host DMA transaction */
3046 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3047 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3049 /* Strictly, one may wish to issue an ioread8() here, to
3050 * flush the mmio write. However, control also passes
3051 * to the hardware at this point, and it will interrupt
3052 * us when we are to resume control. So, in effect,
3053 * we don't care when the mmio write flushes.
3054 * Further, a read of the DMA status register _immediately_
3055 * following the write may not be what certain flaky hardware
3056 * is expected, so I think it is best to not add a readb()
3057 * without first all the MMIO ATA cards/mobos.
3058 * Or maybe I'm just being paranoid.
3060 * FIXME: The posting of this write means I/O starts are
3061 * unnecessarily delayed for MMIO
3064 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3067 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3068 * @qc: Command we are ending DMA for
3070 * Clears the ATA_DMA_START flag in the dma control register
3072 * May be used as the bmdma_stop() entry in ata_port_operations.
3074 * LOCKING:
3075 * spin_lock_irqsave(host lock)
3077 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3079 struct ata_port *ap = qc->ap;
3080 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3082 /* clear start/stop bit */
3083 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3084 mmio + ATA_DMA_CMD);
3086 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3087 ata_sff_dma_pause(ap);
3089 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3092 * ata_bmdma_status - Read PCI IDE BMDMA status
3093 * @ap: Port associated with this ATA transaction.
3095 * Read and return BMDMA status register.
3097 * May be used as the bmdma_status() entry in ata_port_operations.
3099 * LOCKING:
3100 * spin_lock_irqsave(host lock)
3102 u8 ata_bmdma_status(struct ata_port *ap)
3104 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3106 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3110 * ata_bmdma_port_start - Set port up for bmdma.
3111 * @ap: Port to initialize
3113 * Called just after data structures for each port are
3114 * initialized. Allocates space for PRD table.
3116 * May be used as the port_start() entry in ata_port_operations.
3118 * LOCKING:
3119 * Inherited from caller.
3121 int ata_bmdma_port_start(struct ata_port *ap)
3123 if (ap->mwdma_mask || ap->udma_mask) {
3124 ap->bmdma_prd =
3125 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3126 &ap->bmdma_prd_dma, GFP_KERNEL);
3127 if (!ap->bmdma_prd)
3128 return -ENOMEM;
3131 return 0;
3133 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3136 * ata_bmdma_port_start32 - Set port up for dma.
3137 * @ap: Port to initialize
3139 * Called just after data structures for each port are
3140 * initialized. Enables 32bit PIO and allocates space for PRD
3141 * table.
3143 * May be used as the port_start() entry in ata_port_operations for
3144 * devices that are capable of 32bit PIO.
3146 * LOCKING:
3147 * Inherited from caller.
3149 int ata_bmdma_port_start32(struct ata_port *ap)
3151 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3152 return ata_bmdma_port_start(ap);
3154 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3156 #ifdef CONFIG_PCI
3159 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3160 * @pdev: PCI device
3162 * Some PCI ATA devices report simplex mode but in fact can be told to
3163 * enter non simplex mode. This implements the necessary logic to
3164 * perform the task on such devices. Calling it on other devices will
3165 * have -undefined- behaviour.
3167 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3169 unsigned long bmdma = pci_resource_start(pdev, 4);
3170 u8 simplex;
3172 if (bmdma == 0)
3173 return -ENOENT;
3175 simplex = inb(bmdma + 0x02);
3176 outb(simplex & 0x60, bmdma + 0x02);
3177 simplex = inb(bmdma + 0x02);
3178 if (simplex & 0x80)
3179 return -EOPNOTSUPP;
3180 return 0;
3182 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3184 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3186 int i;
3188 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3190 for (i = 0; i < 2; i++) {
3191 host->ports[i]->mwdma_mask = 0;
3192 host->ports[i]->udma_mask = 0;
3197 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3198 * @host: target ATA host
3200 * Acquire PCI BMDMA resources and initialize @host accordingly.
3202 * LOCKING:
3203 * Inherited from calling layer (may sleep).
3205 void ata_pci_bmdma_init(struct ata_host *host)
3207 struct device *gdev = host->dev;
3208 struct pci_dev *pdev = to_pci_dev(gdev);
3209 int i, rc;
3211 /* No BAR4 allocation: No DMA */
3212 if (pci_resource_start(pdev, 4) == 0) {
3213 ata_bmdma_nodma(host, "BAR4 is zero");
3214 return;
3218 * Some controllers require BMDMA region to be initialized
3219 * even if DMA is not in use to clear IRQ status via
3220 * ->sff_irq_clear method. Try to initialize bmdma_addr
3221 * regardless of dma masks.
3223 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3224 if (rc)
3225 ata_bmdma_nodma(host, "failed to set dma mask");
3226 if (!rc) {
3227 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3228 if (rc)
3229 ata_bmdma_nodma(host,
3230 "failed to set consistent dma mask");
3233 /* request and iomap DMA region */
3234 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3235 if (rc) {
3236 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3237 return;
3239 host->iomap = pcim_iomap_table(pdev);
3241 for (i = 0; i < 2; i++) {
3242 struct ata_port *ap = host->ports[i];
3243 void __iomem *bmdma = host->iomap[4] + 8 * i;
3245 if (ata_port_is_dummy(ap))
3246 continue;
3248 ap->ioaddr.bmdma_addr = bmdma;
3249 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3250 (ioread8(bmdma + 2) & 0x80))
3251 host->flags |= ATA_HOST_SIMPLEX;
3253 ata_port_desc(ap, "bmdma 0x%llx",
3254 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3257 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3260 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3261 * @pdev: target PCI device
3262 * @ppi: array of port_info, must be enough for two ports
3263 * @r_host: out argument for the initialized ATA host
3265 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3266 * resources and initialize it accordingly in one go.
3268 * LOCKING:
3269 * Inherited from calling layer (may sleep).
3271 * RETURNS:
3272 * 0 on success, -errno otherwise.
3274 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3275 const struct ata_port_info * const * ppi,
3276 struct ata_host **r_host)
3278 int rc;
3280 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3281 if (rc)
3282 return rc;
3284 ata_pci_bmdma_init(*r_host);
3285 return 0;
3287 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3290 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3291 * @pdev: Controller to be initialized
3292 * @ppi: array of port_info, must be enough for two ports
3293 * @sht: scsi_host_template to use when registering the host
3294 * @host_priv: host private_data
3295 * @hflags: host flags
3297 * This function is similar to ata_pci_sff_init_one() but also
3298 * takes care of BMDMA initialization.
3300 * LOCKING:
3301 * Inherited from PCI layer (may sleep).
3303 * RETURNS:
3304 * Zero on success, negative on errno-based value on error.
3306 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3307 const struct ata_port_info * const * ppi,
3308 struct scsi_host_template *sht, void *host_priv,
3309 int hflags)
3311 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3313 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3315 #endif /* CONFIG_PCI */
3316 #endif /* CONFIG_ATA_BMDMA */
3319 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3320 * @ap: Port to initialize
3322 * Called on port allocation to initialize SFF/BMDMA specific
3323 * fields.
3325 * LOCKING:
3326 * None.
3328 void ata_sff_port_init(struct ata_port *ap)
3330 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3331 ap->ctl = ATA_DEVCTL_OBS;
3332 ap->last_ctl = 0xFF;
3335 int __init ata_sff_init(void)
3337 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3338 if (!ata_sff_wq)
3339 return -ENOMEM;
3341 return 0;
3344 void ata_sff_exit(void)
3346 destroy_workqueue(ata_sff_wq);