1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
38 #include <asm/pgalloc.h>
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly
=
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
60 static struct shrinker deferred_split_shrinker
;
62 static atomic_t huge_zero_refcount
;
63 struct page
*huge_zero_page __read_mostly
;
65 bool transparent_hugepage_enabled(struct vm_area_struct
*vma
)
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr
= (vma
->vm_end
& HPAGE_PMD_MASK
) - HPAGE_PMD_SIZE
;
70 if (!transhuge_vma_suitable(vma
, addr
))
72 if (vma_is_anonymous(vma
))
73 return __transparent_hugepage_enabled(vma
);
74 if (vma_is_shmem(vma
))
75 return shmem_huge_enabled(vma
);
80 static struct page
*get_huge_zero_page(void)
82 struct page
*zero_page
;
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
85 return READ_ONCE(huge_zero_page
);
87 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
93 count_vm_event(THP_ZERO_PAGE_ALLOC
);
95 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
97 __free_pages(zero_page
, compound_order(zero_page
));
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount
, 2);
104 return READ_ONCE(huge_zero_page
);
107 static void put_huge_zero_page(void)
110 * Counter should never go to zero here. Only shrinker can put
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
116 struct page
*mm_get_huge_zero_page(struct mm_struct
*mm
)
118 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
119 return READ_ONCE(huge_zero_page
);
121 if (!get_huge_zero_page())
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
125 put_huge_zero_page();
127 return READ_ONCE(huge_zero_page
);
130 void mm_put_huge_zero_page(struct mm_struct
*mm
)
132 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
133 put_huge_zero_page();
136 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
137 struct shrink_control
*sc
)
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
144 struct shrink_control
*sc
)
146 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
147 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
148 BUG_ON(zero_page
== NULL
);
149 __free_pages(zero_page
, compound_order(zero_page
));
156 static struct shrinker huge_zero_page_shrinker
= {
157 .count_objects
= shrink_huge_zero_page_count
,
158 .scan_objects
= shrink_huge_zero_page_scan
,
159 .seeks
= DEFAULT_SEEKS
,
163 static ssize_t
enabled_show(struct kobject
*kobj
,
164 struct kobj_attribute
*attr
, char *buf
)
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
))
167 return sprintf(buf
, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
169 return sprintf(buf
, "always [madvise] never\n");
171 return sprintf(buf
, "always madvise [never]\n");
174 static ssize_t
enabled_store(struct kobject
*kobj
,
175 struct kobj_attribute
*attr
,
176 const char *buf
, size_t count
)
180 if (sysfs_streq(buf
, "always")) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
183 } else if (sysfs_streq(buf
, "madvise")) {
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
186 } else if (sysfs_streq(buf
, "never")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
193 int err
= start_stop_khugepaged();
199 static struct kobj_attribute enabled_attr
=
200 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
202 ssize_t
single_hugepage_flag_show(struct kobject
*kobj
,
203 struct kobj_attribute
*attr
, char *buf
,
204 enum transparent_hugepage_flag flag
)
206 return sprintf(buf
, "%d\n",
207 !!test_bit(flag
, &transparent_hugepage_flags
));
210 ssize_t
single_hugepage_flag_store(struct kobject
*kobj
,
211 struct kobj_attribute
*attr
,
212 const char *buf
, size_t count
,
213 enum transparent_hugepage_flag flag
)
218 ret
= kstrtoul(buf
, 10, &value
);
225 set_bit(flag
, &transparent_hugepage_flags
);
227 clear_bit(flag
, &transparent_hugepage_flags
);
232 static ssize_t
defrag_show(struct kobject
*kobj
,
233 struct kobj_attribute
*attr
, char *buf
)
235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
236 return sprintf(buf
, "[always] defer defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
238 return sprintf(buf
, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
240 return sprintf(buf
, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
242 return sprintf(buf
, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf
, "always defer defer+madvise madvise [never]\n");
246 static ssize_t
defrag_store(struct kobject
*kobj
,
247 struct kobj_attribute
*attr
,
248 const char *buf
, size_t count
)
250 if (sysfs_streq(buf
, "always")) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
255 } else if (sysfs_streq(buf
, "defer+madvise")) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
260 } else if (sysfs_streq(buf
, "defer")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
265 } else if (sysfs_streq(buf
, "madvise")) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
270 } else if (sysfs_streq(buf
, "never")) {
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
280 static struct kobj_attribute defrag_attr
=
281 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
283 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
284 struct kobj_attribute
*attr
, char *buf
)
286 return single_hugepage_flag_show(kobj
, attr
, buf
,
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
289 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
290 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
292 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
295 static struct kobj_attribute use_zero_page_attr
=
296 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
298 static ssize_t
hpage_pmd_size_show(struct kobject
*kobj
,
299 struct kobj_attribute
*attr
, char *buf
)
301 return sprintf(buf
, "%lu\n", HPAGE_PMD_SIZE
);
303 static struct kobj_attribute hpage_pmd_size_attr
=
304 __ATTR_RO(hpage_pmd_size
);
306 #ifdef CONFIG_DEBUG_VM
307 static ssize_t
debug_cow_show(struct kobject
*kobj
,
308 struct kobj_attribute
*attr
, char *buf
)
310 return single_hugepage_flag_show(kobj
, attr
, buf
,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
313 static ssize_t
debug_cow_store(struct kobject
*kobj
,
314 struct kobj_attribute
*attr
,
315 const char *buf
, size_t count
)
317 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
320 static struct kobj_attribute debug_cow_attr
=
321 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
322 #endif /* CONFIG_DEBUG_VM */
324 static struct attribute
*hugepage_attr
[] = {
327 &use_zero_page_attr
.attr
,
328 &hpage_pmd_size_attr
.attr
,
329 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
330 &shmem_enabled_attr
.attr
,
332 #ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr
.attr
,
338 static const struct attribute_group hugepage_attr_group
= {
339 .attrs
= hugepage_attr
,
342 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
346 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
347 if (unlikely(!*hugepage_kobj
)) {
348 pr_err("failed to create transparent hugepage kobject\n");
352 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
354 pr_err("failed to register transparent hugepage group\n");
358 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
360 pr_err("failed to register transparent hugepage group\n");
361 goto remove_hp_group
;
367 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
369 kobject_put(*hugepage_kobj
);
373 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
375 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
376 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
377 kobject_put(hugepage_kobj
);
380 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
385 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
388 #endif /* CONFIG_SYSFS */
390 static int __init
hugepage_init(void)
393 struct kobject
*hugepage_kobj
;
395 if (!has_transparent_hugepage()) {
396 transparent_hugepage_flags
= 0;
401 * hugepages can't be allocated by the buddy allocator
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
>= MAX_ORDER
);
405 * we use page->mapping and page->index in second tail page
406 * as list_head: assuming THP order >= 2
408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
< 2);
410 err
= hugepage_init_sysfs(&hugepage_kobj
);
414 err
= khugepaged_init();
418 err
= register_shrinker(&huge_zero_page_shrinker
);
420 goto err_hzp_shrinker
;
421 err
= register_shrinker(&deferred_split_shrinker
);
423 goto err_split_shrinker
;
426 * By default disable transparent hugepages on smaller systems,
427 * where the extra memory used could hurt more than TLB overhead
428 * is likely to save. The admin can still enable it through /sys.
430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT
))) {
431 transparent_hugepage_flags
= 0;
435 err
= start_stop_khugepaged();
441 unregister_shrinker(&deferred_split_shrinker
);
443 unregister_shrinker(&huge_zero_page_shrinker
);
445 khugepaged_destroy();
447 hugepage_exit_sysfs(hugepage_kobj
);
451 subsys_initcall(hugepage_init
);
453 static int __init
setup_transparent_hugepage(char *str
)
458 if (!strcmp(str
, "always")) {
459 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
460 &transparent_hugepage_flags
);
461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
462 &transparent_hugepage_flags
);
464 } else if (!strcmp(str
, "madvise")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
466 &transparent_hugepage_flags
);
467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
468 &transparent_hugepage_flags
);
470 } else if (!strcmp(str
, "never")) {
471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
472 &transparent_hugepage_flags
);
473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
474 &transparent_hugepage_flags
);
479 pr_warn("transparent_hugepage= cannot parse, ignored\n");
482 __setup("transparent_hugepage=", setup_transparent_hugepage
);
484 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
486 if (likely(vma
->vm_flags
& VM_WRITE
))
487 pmd
= pmd_mkwrite(pmd
);
492 static inline struct deferred_split
*get_deferred_split_queue(struct page
*page
)
494 struct mem_cgroup
*memcg
= compound_head(page
)->mem_cgroup
;
495 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
498 return &memcg
->deferred_split_queue
;
500 return &pgdat
->deferred_split_queue
;
503 static inline struct deferred_split
*get_deferred_split_queue(struct page
*page
)
505 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
507 return &pgdat
->deferred_split_queue
;
511 void prep_transhuge_page(struct page
*page
)
514 * we use page->mapping and page->indexlru in second tail page
515 * as list_head: assuming THP order >= 2
518 INIT_LIST_HEAD(page_deferred_list(page
));
519 set_compound_page_dtor(page
, TRANSHUGE_PAGE_DTOR
);
522 bool is_transparent_hugepage(struct page
*page
)
524 if (!PageCompound(page
))
527 page
= compound_head(page
);
528 return is_huge_zero_page(page
) ||
529 page
[1].compound_dtor
== TRANSHUGE_PAGE_DTOR
;
531 EXPORT_SYMBOL_GPL(is_transparent_hugepage
);
533 static unsigned long __thp_get_unmapped_area(struct file
*filp
,
534 unsigned long addr
, unsigned long len
,
535 loff_t off
, unsigned long flags
, unsigned long size
)
537 loff_t off_end
= off
+ len
;
538 loff_t off_align
= round_up(off
, size
);
539 unsigned long len_pad
, ret
;
541 if (off_end
<= off_align
|| (off_end
- off_align
) < size
)
544 len_pad
= len
+ size
;
545 if (len_pad
< len
|| (off
+ len_pad
) < off
)
548 ret
= current
->mm
->get_unmapped_area(filp
, addr
, len_pad
,
549 off
>> PAGE_SHIFT
, flags
);
552 * The failure might be due to length padding. The caller will retry
553 * without the padding.
555 if (IS_ERR_VALUE(ret
))
559 * Do not try to align to THP boundary if allocation at the address
565 ret
+= (off
- ret
) & (size
- 1);
569 unsigned long thp_get_unmapped_area(struct file
*filp
, unsigned long addr
,
570 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
573 loff_t off
= (loff_t
)pgoff
<< PAGE_SHIFT
;
575 if (!IS_DAX(filp
->f_mapping
->host
) || !IS_ENABLED(CONFIG_FS_DAX_PMD
))
578 ret
= __thp_get_unmapped_area(filp
, addr
, len
, off
, flags
, PMD_SIZE
);
582 return current
->mm
->get_unmapped_area(filp
, addr
, len
, pgoff
, flags
);
584 EXPORT_SYMBOL_GPL(thp_get_unmapped_area
);
586 static vm_fault_t
__do_huge_pmd_anonymous_page(struct vm_fault
*vmf
,
587 struct page
*page
, gfp_t gfp
)
589 struct vm_area_struct
*vma
= vmf
->vma
;
590 struct mem_cgroup
*memcg
;
592 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
595 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
597 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, gfp
, &memcg
, true)) {
599 count_vm_event(THP_FAULT_FALLBACK
);
600 return VM_FAULT_FALLBACK
;
603 pgtable
= pte_alloc_one(vma
->vm_mm
);
604 if (unlikely(!pgtable
)) {
609 clear_huge_page(page
, vmf
->address
, HPAGE_PMD_NR
);
611 * The memory barrier inside __SetPageUptodate makes sure that
612 * clear_huge_page writes become visible before the set_pmd_at()
615 __SetPageUptodate(page
);
617 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
618 if (unlikely(!pmd_none(*vmf
->pmd
))) {
623 ret
= check_stable_address_space(vma
->vm_mm
);
627 /* Deliver the page fault to userland */
628 if (userfaultfd_missing(vma
)) {
631 spin_unlock(vmf
->ptl
);
632 mem_cgroup_cancel_charge(page
, memcg
, true);
634 pte_free(vma
->vm_mm
, pgtable
);
635 ret2
= handle_userfault(vmf
, VM_UFFD_MISSING
);
636 VM_BUG_ON(ret2
& VM_FAULT_FALLBACK
);
640 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
641 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
642 page_add_new_anon_rmap(page
, vma
, haddr
, true);
643 mem_cgroup_commit_charge(page
, memcg
, false, true);
644 lru_cache_add_active_or_unevictable(page
, vma
);
645 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, pgtable
);
646 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
647 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
648 mm_inc_nr_ptes(vma
->vm_mm
);
649 spin_unlock(vmf
->ptl
);
650 count_vm_event(THP_FAULT_ALLOC
);
651 count_memcg_events(memcg
, THP_FAULT_ALLOC
, 1);
656 spin_unlock(vmf
->ptl
);
659 pte_free(vma
->vm_mm
, pgtable
);
660 mem_cgroup_cancel_charge(page
, memcg
, true);
667 * always: directly stall for all thp allocations
668 * defer: wake kswapd and fail if not immediately available
669 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
670 * fail if not immediately available
671 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
673 * never: never stall for any thp allocation
675 static inline gfp_t
alloc_hugepage_direct_gfpmask(struct vm_area_struct
*vma
)
677 const bool vma_madvised
= !!(vma
->vm_flags
& VM_HUGEPAGE
);
679 /* Always do synchronous compaction */
680 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
681 return GFP_TRANSHUGE
| (vma_madvised
? 0 : __GFP_NORETRY
);
683 /* Kick kcompactd and fail quickly */
684 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
685 return GFP_TRANSHUGE_LIGHT
| __GFP_KSWAPD_RECLAIM
;
687 /* Synchronous compaction if madvised, otherwise kick kcompactd */
688 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
689 return GFP_TRANSHUGE_LIGHT
|
690 (vma_madvised
? __GFP_DIRECT_RECLAIM
:
691 __GFP_KSWAPD_RECLAIM
);
693 /* Only do synchronous compaction if madvised */
694 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
695 return GFP_TRANSHUGE_LIGHT
|
696 (vma_madvised
? __GFP_DIRECT_RECLAIM
: 0);
698 return GFP_TRANSHUGE_LIGHT
;
701 /* Caller must hold page table lock. */
702 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
703 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
704 struct page
*zero_page
)
709 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
710 entry
= pmd_mkhuge(entry
);
712 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
713 set_pmd_at(mm
, haddr
, pmd
, entry
);
718 vm_fault_t
do_huge_pmd_anonymous_page(struct vm_fault
*vmf
)
720 struct vm_area_struct
*vma
= vmf
->vma
;
723 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
725 if (!transhuge_vma_suitable(vma
, haddr
))
726 return VM_FAULT_FALLBACK
;
727 if (unlikely(anon_vma_prepare(vma
)))
729 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
731 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
732 !mm_forbids_zeropage(vma
->vm_mm
) &&
733 transparent_hugepage_use_zero_page()) {
735 struct page
*zero_page
;
738 pgtable
= pte_alloc_one(vma
->vm_mm
);
739 if (unlikely(!pgtable
))
741 zero_page
= mm_get_huge_zero_page(vma
->vm_mm
);
742 if (unlikely(!zero_page
)) {
743 pte_free(vma
->vm_mm
, pgtable
);
744 count_vm_event(THP_FAULT_FALLBACK
);
745 return VM_FAULT_FALLBACK
;
747 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
750 if (pmd_none(*vmf
->pmd
)) {
751 ret
= check_stable_address_space(vma
->vm_mm
);
753 spin_unlock(vmf
->ptl
);
754 } else if (userfaultfd_missing(vma
)) {
755 spin_unlock(vmf
->ptl
);
756 ret
= handle_userfault(vmf
, VM_UFFD_MISSING
);
757 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
759 set_huge_zero_page(pgtable
, vma
->vm_mm
, vma
,
760 haddr
, vmf
->pmd
, zero_page
);
761 spin_unlock(vmf
->ptl
);
765 spin_unlock(vmf
->ptl
);
767 pte_free(vma
->vm_mm
, pgtable
);
770 gfp
= alloc_hugepage_direct_gfpmask(vma
);
771 page
= alloc_hugepage_vma(gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
772 if (unlikely(!page
)) {
773 count_vm_event(THP_FAULT_FALLBACK
);
774 return VM_FAULT_FALLBACK
;
776 prep_transhuge_page(page
);
777 return __do_huge_pmd_anonymous_page(vmf
, page
, gfp
);
780 static void insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
781 pmd_t
*pmd
, pfn_t pfn
, pgprot_t prot
, bool write
,
784 struct mm_struct
*mm
= vma
->vm_mm
;
788 ptl
= pmd_lock(mm
, pmd
);
789 if (!pmd_none(*pmd
)) {
791 if (pmd_pfn(*pmd
) != pfn_t_to_pfn(pfn
)) {
792 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd
));
795 entry
= pmd_mkyoung(*pmd
);
796 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
797 if (pmdp_set_access_flags(vma
, addr
, pmd
, entry
, 1))
798 update_mmu_cache_pmd(vma
, addr
, pmd
);
804 entry
= pmd_mkhuge(pfn_t_pmd(pfn
, prot
));
805 if (pfn_t_devmap(pfn
))
806 entry
= pmd_mkdevmap(entry
);
808 entry
= pmd_mkyoung(pmd_mkdirty(entry
));
809 entry
= maybe_pmd_mkwrite(entry
, vma
);
813 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
818 set_pmd_at(mm
, addr
, pmd
, entry
);
819 update_mmu_cache_pmd(vma
, addr
, pmd
);
824 pte_free(mm
, pgtable
);
827 vm_fault_t
vmf_insert_pfn_pmd(struct vm_fault
*vmf
, pfn_t pfn
, bool write
)
829 unsigned long addr
= vmf
->address
& PMD_MASK
;
830 struct vm_area_struct
*vma
= vmf
->vma
;
831 pgprot_t pgprot
= vma
->vm_page_prot
;
832 pgtable_t pgtable
= NULL
;
835 * If we had pmd_special, we could avoid all these restrictions,
836 * but we need to be consistent with PTEs and architectures that
837 * can't support a 'special' bit.
839 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
841 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
842 (VM_PFNMAP
|VM_MIXEDMAP
));
843 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
845 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
846 return VM_FAULT_SIGBUS
;
848 if (arch_needs_pgtable_deposit()) {
849 pgtable
= pte_alloc_one(vma
->vm_mm
);
854 track_pfn_insert(vma
, &pgprot
, pfn
);
856 insert_pfn_pmd(vma
, addr
, vmf
->pmd
, pfn
, pgprot
, write
, pgtable
);
857 return VM_FAULT_NOPAGE
;
859 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd
);
861 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
862 static pud_t
maybe_pud_mkwrite(pud_t pud
, struct vm_area_struct
*vma
)
864 if (likely(vma
->vm_flags
& VM_WRITE
))
865 pud
= pud_mkwrite(pud
);
869 static void insert_pfn_pud(struct vm_area_struct
*vma
, unsigned long addr
,
870 pud_t
*pud
, pfn_t pfn
, pgprot_t prot
, bool write
)
872 struct mm_struct
*mm
= vma
->vm_mm
;
876 ptl
= pud_lock(mm
, pud
);
877 if (!pud_none(*pud
)) {
879 if (pud_pfn(*pud
) != pfn_t_to_pfn(pfn
)) {
880 WARN_ON_ONCE(!is_huge_zero_pud(*pud
));
883 entry
= pud_mkyoung(*pud
);
884 entry
= maybe_pud_mkwrite(pud_mkdirty(entry
), vma
);
885 if (pudp_set_access_flags(vma
, addr
, pud
, entry
, 1))
886 update_mmu_cache_pud(vma
, addr
, pud
);
891 entry
= pud_mkhuge(pfn_t_pud(pfn
, prot
));
892 if (pfn_t_devmap(pfn
))
893 entry
= pud_mkdevmap(entry
);
895 entry
= pud_mkyoung(pud_mkdirty(entry
));
896 entry
= maybe_pud_mkwrite(entry
, vma
);
898 set_pud_at(mm
, addr
, pud
, entry
);
899 update_mmu_cache_pud(vma
, addr
, pud
);
905 vm_fault_t
vmf_insert_pfn_pud(struct vm_fault
*vmf
, pfn_t pfn
, bool write
)
907 unsigned long addr
= vmf
->address
& PUD_MASK
;
908 struct vm_area_struct
*vma
= vmf
->vma
;
909 pgprot_t pgprot
= vma
->vm_page_prot
;
912 * If we had pud_special, we could avoid all these restrictions,
913 * but we need to be consistent with PTEs and architectures that
914 * can't support a 'special' bit.
916 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
918 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
919 (VM_PFNMAP
|VM_MIXEDMAP
));
920 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
922 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
923 return VM_FAULT_SIGBUS
;
925 track_pfn_insert(vma
, &pgprot
, pfn
);
927 insert_pfn_pud(vma
, addr
, vmf
->pud
, pfn
, pgprot
, write
);
928 return VM_FAULT_NOPAGE
;
930 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud
);
931 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
933 static void touch_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
934 pmd_t
*pmd
, int flags
)
938 _pmd
= pmd_mkyoung(*pmd
);
939 if (flags
& FOLL_WRITE
)
940 _pmd
= pmd_mkdirty(_pmd
);
941 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
942 pmd
, _pmd
, flags
& FOLL_WRITE
))
943 update_mmu_cache_pmd(vma
, addr
, pmd
);
946 struct page
*follow_devmap_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
947 pmd_t
*pmd
, int flags
, struct dev_pagemap
**pgmap
)
949 unsigned long pfn
= pmd_pfn(*pmd
);
950 struct mm_struct
*mm
= vma
->vm_mm
;
953 assert_spin_locked(pmd_lockptr(mm
, pmd
));
956 * When we COW a devmap PMD entry, we split it into PTEs, so we should
957 * not be in this function with `flags & FOLL_COW` set.
959 WARN_ONCE(flags
& FOLL_COW
, "mm: In follow_devmap_pmd with FOLL_COW set");
961 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
964 if (pmd_present(*pmd
) && pmd_devmap(*pmd
))
969 if (flags
& FOLL_TOUCH
)
970 touch_pmd(vma
, addr
, pmd
, flags
);
973 * device mapped pages can only be returned if the
974 * caller will manage the page reference count.
976 if (!(flags
& FOLL_GET
))
977 return ERR_PTR(-EEXIST
);
979 pfn
+= (addr
& ~PMD_MASK
) >> PAGE_SHIFT
;
980 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
982 return ERR_PTR(-EFAULT
);
983 page
= pfn_to_page(pfn
);
989 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
990 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
991 struct vm_area_struct
*vma
)
993 spinlock_t
*dst_ptl
, *src_ptl
;
994 struct page
*src_page
;
996 pgtable_t pgtable
= NULL
;
999 /* Skip if can be re-fill on fault */
1000 if (!vma_is_anonymous(vma
))
1003 pgtable
= pte_alloc_one(dst_mm
);
1004 if (unlikely(!pgtable
))
1007 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
1008 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
1009 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1014 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1015 if (unlikely(is_swap_pmd(pmd
))) {
1016 swp_entry_t entry
= pmd_to_swp_entry(pmd
);
1018 VM_BUG_ON(!is_pmd_migration_entry(pmd
));
1019 if (is_write_migration_entry(entry
)) {
1020 make_migration_entry_read(&entry
);
1021 pmd
= swp_entry_to_pmd(entry
);
1022 if (pmd_swp_soft_dirty(*src_pmd
))
1023 pmd
= pmd_swp_mksoft_dirty(pmd
);
1024 set_pmd_at(src_mm
, addr
, src_pmd
, pmd
);
1026 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1027 mm_inc_nr_ptes(dst_mm
);
1028 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
1029 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1035 if (unlikely(!pmd_trans_huge(pmd
))) {
1036 pte_free(dst_mm
, pgtable
);
1040 * When page table lock is held, the huge zero pmd should not be
1041 * under splitting since we don't split the page itself, only pmd to
1044 if (is_huge_zero_pmd(pmd
)) {
1045 struct page
*zero_page
;
1047 * get_huge_zero_page() will never allocate a new page here,
1048 * since we already have a zero page to copy. It just takes a
1051 zero_page
= mm_get_huge_zero_page(dst_mm
);
1052 set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
1058 src_page
= pmd_page(pmd
);
1059 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
1061 page_dup_rmap(src_page
, true);
1062 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1063 mm_inc_nr_ptes(dst_mm
);
1064 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
1066 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
1067 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
1068 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1072 spin_unlock(src_ptl
);
1073 spin_unlock(dst_ptl
);
1078 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1079 static void touch_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1080 pud_t
*pud
, int flags
)
1084 _pud
= pud_mkyoung(*pud
);
1085 if (flags
& FOLL_WRITE
)
1086 _pud
= pud_mkdirty(_pud
);
1087 if (pudp_set_access_flags(vma
, addr
& HPAGE_PUD_MASK
,
1088 pud
, _pud
, flags
& FOLL_WRITE
))
1089 update_mmu_cache_pud(vma
, addr
, pud
);
1092 struct page
*follow_devmap_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1093 pud_t
*pud
, int flags
, struct dev_pagemap
**pgmap
)
1095 unsigned long pfn
= pud_pfn(*pud
);
1096 struct mm_struct
*mm
= vma
->vm_mm
;
1099 assert_spin_locked(pud_lockptr(mm
, pud
));
1101 if (flags
& FOLL_WRITE
&& !pud_write(*pud
))
1104 if (pud_present(*pud
) && pud_devmap(*pud
))
1109 if (flags
& FOLL_TOUCH
)
1110 touch_pud(vma
, addr
, pud
, flags
);
1113 * device mapped pages can only be returned if the
1114 * caller will manage the page reference count.
1116 if (!(flags
& FOLL_GET
))
1117 return ERR_PTR(-EEXIST
);
1119 pfn
+= (addr
& ~PUD_MASK
) >> PAGE_SHIFT
;
1120 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
1122 return ERR_PTR(-EFAULT
);
1123 page
= pfn_to_page(pfn
);
1129 int copy_huge_pud(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1130 pud_t
*dst_pud
, pud_t
*src_pud
, unsigned long addr
,
1131 struct vm_area_struct
*vma
)
1133 spinlock_t
*dst_ptl
, *src_ptl
;
1137 dst_ptl
= pud_lock(dst_mm
, dst_pud
);
1138 src_ptl
= pud_lockptr(src_mm
, src_pud
);
1139 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1143 if (unlikely(!pud_trans_huge(pud
) && !pud_devmap(pud
)))
1147 * When page table lock is held, the huge zero pud should not be
1148 * under splitting since we don't split the page itself, only pud to
1151 if (is_huge_zero_pud(pud
)) {
1152 /* No huge zero pud yet */
1155 pudp_set_wrprotect(src_mm
, addr
, src_pud
);
1156 pud
= pud_mkold(pud_wrprotect(pud
));
1157 set_pud_at(dst_mm
, addr
, dst_pud
, pud
);
1161 spin_unlock(src_ptl
);
1162 spin_unlock(dst_ptl
);
1166 void huge_pud_set_accessed(struct vm_fault
*vmf
, pud_t orig_pud
)
1169 unsigned long haddr
;
1170 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1172 vmf
->ptl
= pud_lock(vmf
->vma
->vm_mm
, vmf
->pud
);
1173 if (unlikely(!pud_same(*vmf
->pud
, orig_pud
)))
1176 entry
= pud_mkyoung(orig_pud
);
1178 entry
= pud_mkdirty(entry
);
1179 haddr
= vmf
->address
& HPAGE_PUD_MASK
;
1180 if (pudp_set_access_flags(vmf
->vma
, haddr
, vmf
->pud
, entry
, write
))
1181 update_mmu_cache_pud(vmf
->vma
, vmf
->address
, vmf
->pud
);
1184 spin_unlock(vmf
->ptl
);
1186 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1188 void huge_pmd_set_accessed(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1191 unsigned long haddr
;
1192 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1194 vmf
->ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1195 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1198 entry
= pmd_mkyoung(orig_pmd
);
1200 entry
= pmd_mkdirty(entry
);
1201 haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1202 if (pmdp_set_access_flags(vmf
->vma
, haddr
, vmf
->pmd
, entry
, write
))
1203 update_mmu_cache_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
);
1206 spin_unlock(vmf
->ptl
);
1209 static vm_fault_t
do_huge_pmd_wp_page_fallback(struct vm_fault
*vmf
,
1210 pmd_t orig_pmd
, struct page
*page
)
1212 struct vm_area_struct
*vma
= vmf
->vma
;
1213 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1214 struct mem_cgroup
*memcg
;
1219 struct page
**pages
;
1220 struct mmu_notifier_range range
;
1222 pages
= kmalloc_array(HPAGE_PMD_NR
, sizeof(struct page
*),
1224 if (unlikely(!pages
)) {
1225 ret
|= VM_FAULT_OOM
;
1229 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1230 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
, vma
,
1231 vmf
->address
, page_to_nid(page
));
1232 if (unlikely(!pages
[i
] ||
1233 mem_cgroup_try_charge_delay(pages
[i
], vma
->vm_mm
,
1234 GFP_KERNEL
, &memcg
, false))) {
1238 memcg
= (void *)page_private(pages
[i
]);
1239 set_page_private(pages
[i
], 0);
1240 mem_cgroup_cancel_charge(pages
[i
], memcg
,
1245 ret
|= VM_FAULT_OOM
;
1248 set_page_private(pages
[i
], (unsigned long)memcg
);
1251 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1252 copy_user_highpage(pages
[i
], page
+ i
,
1253 haddr
+ PAGE_SIZE
* i
, vma
);
1254 __SetPageUptodate(pages
[i
]);
1258 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1259 haddr
, haddr
+ HPAGE_PMD_SIZE
);
1260 mmu_notifier_invalidate_range_start(&range
);
1262 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1263 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1264 goto out_free_pages
;
1265 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1268 * Leave pmd empty until pte is filled note we must notify here as
1269 * concurrent CPU thread might write to new page before the call to
1270 * mmu_notifier_invalidate_range_end() happens which can lead to a
1271 * device seeing memory write in different order than CPU.
1273 * See Documentation/vm/mmu_notifier.rst
1275 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1277 pgtable
= pgtable_trans_huge_withdraw(vma
->vm_mm
, vmf
->pmd
);
1278 pmd_populate(vma
->vm_mm
, &_pmd
, pgtable
);
1280 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1282 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
1283 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1284 memcg
= (void *)page_private(pages
[i
]);
1285 set_page_private(pages
[i
], 0);
1286 page_add_new_anon_rmap(pages
[i
], vmf
->vma
, haddr
, false);
1287 mem_cgroup_commit_charge(pages
[i
], memcg
, false, false);
1288 lru_cache_add_active_or_unevictable(pages
[i
], vma
);
1289 vmf
->pte
= pte_offset_map(&_pmd
, haddr
);
1290 VM_BUG_ON(!pte_none(*vmf
->pte
));
1291 set_pte_at(vma
->vm_mm
, haddr
, vmf
->pte
, entry
);
1292 pte_unmap(vmf
->pte
);
1296 smp_wmb(); /* make pte visible before pmd */
1297 pmd_populate(vma
->vm_mm
, vmf
->pmd
, pgtable
);
1298 page_remove_rmap(page
, true);
1299 spin_unlock(vmf
->ptl
);
1302 * No need to double call mmu_notifier->invalidate_range() callback as
1303 * the above pmdp_huge_clear_flush_notify() did already call it.
1305 mmu_notifier_invalidate_range_only_end(&range
);
1307 ret
|= VM_FAULT_WRITE
;
1314 spin_unlock(vmf
->ptl
);
1315 mmu_notifier_invalidate_range_end(&range
);
1316 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1317 memcg
= (void *)page_private(pages
[i
]);
1318 set_page_private(pages
[i
], 0);
1319 mem_cgroup_cancel_charge(pages
[i
], memcg
, false);
1326 vm_fault_t
do_huge_pmd_wp_page(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1328 struct vm_area_struct
*vma
= vmf
->vma
;
1329 struct page
*page
= NULL
, *new_page
;
1330 struct mem_cgroup
*memcg
;
1331 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1332 struct mmu_notifier_range range
;
1333 gfp_t huge_gfp
; /* for allocation and charge */
1336 vmf
->ptl
= pmd_lockptr(vma
->vm_mm
, vmf
->pmd
);
1337 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
1338 if (is_huge_zero_pmd(orig_pmd
))
1340 spin_lock(vmf
->ptl
);
1341 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1344 page
= pmd_page(orig_pmd
);
1345 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1347 * We can only reuse the page if nobody else maps the huge page or it's
1350 if (!trylock_page(page
)) {
1352 spin_unlock(vmf
->ptl
);
1354 spin_lock(vmf
->ptl
);
1355 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1362 if (reuse_swap_page(page
, NULL
)) {
1364 entry
= pmd_mkyoung(orig_pmd
);
1365 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1366 if (pmdp_set_access_flags(vma
, haddr
, vmf
->pmd
, entry
, 1))
1367 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1368 ret
|= VM_FAULT_WRITE
;
1374 spin_unlock(vmf
->ptl
);
1376 if (__transparent_hugepage_enabled(vma
) &&
1377 !transparent_hugepage_debug_cow()) {
1378 huge_gfp
= alloc_hugepage_direct_gfpmask(vma
);
1379 new_page
= alloc_hugepage_vma(huge_gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
1383 if (likely(new_page
)) {
1384 prep_transhuge_page(new_page
);
1387 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1388 ret
|= VM_FAULT_FALLBACK
;
1390 ret
= do_huge_pmd_wp_page_fallback(vmf
, orig_pmd
, page
);
1391 if (ret
& VM_FAULT_OOM
) {
1392 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1393 ret
|= VM_FAULT_FALLBACK
;
1397 count_vm_event(THP_FAULT_FALLBACK
);
1401 if (unlikely(mem_cgroup_try_charge_delay(new_page
, vma
->vm_mm
,
1402 huge_gfp
, &memcg
, true))) {
1404 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1407 ret
|= VM_FAULT_FALLBACK
;
1408 count_vm_event(THP_FAULT_FALLBACK
);
1412 count_vm_event(THP_FAULT_ALLOC
);
1413 count_memcg_events(memcg
, THP_FAULT_ALLOC
, 1);
1416 clear_huge_page(new_page
, vmf
->address
, HPAGE_PMD_NR
);
1418 copy_user_huge_page(new_page
, page
, vmf
->address
,
1420 __SetPageUptodate(new_page
);
1422 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1423 haddr
, haddr
+ HPAGE_PMD_SIZE
);
1424 mmu_notifier_invalidate_range_start(&range
);
1426 spin_lock(vmf
->ptl
);
1429 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1430 spin_unlock(vmf
->ptl
);
1431 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1436 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1437 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1438 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1439 page_add_new_anon_rmap(new_page
, vma
, haddr
, true);
1440 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1441 lru_cache_add_active_or_unevictable(new_page
, vma
);
1442 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
1443 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1445 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1447 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1448 page_remove_rmap(page
, true);
1451 ret
|= VM_FAULT_WRITE
;
1453 spin_unlock(vmf
->ptl
);
1456 * No need to double call mmu_notifier->invalidate_range() callback as
1457 * the above pmdp_huge_clear_flush_notify() did already call it.
1459 mmu_notifier_invalidate_range_only_end(&range
);
1463 spin_unlock(vmf
->ptl
);
1468 * FOLL_FORCE can write to even unwritable pmd's, but only
1469 * after we've gone through a COW cycle and they are dirty.
1471 static inline bool can_follow_write_pmd(pmd_t pmd
, unsigned int flags
)
1473 return pmd_write(pmd
) ||
1474 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pmd_dirty(pmd
));
1477 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1482 struct mm_struct
*mm
= vma
->vm_mm
;
1483 struct page
*page
= NULL
;
1485 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1487 if (flags
& FOLL_WRITE
&& !can_follow_write_pmd(*pmd
, flags
))
1490 /* Avoid dumping huge zero page */
1491 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1492 return ERR_PTR(-EFAULT
);
1494 /* Full NUMA hinting faults to serialise migration in fault paths */
1495 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
1498 page
= pmd_page(*pmd
);
1499 VM_BUG_ON_PAGE(!PageHead(page
) && !is_zone_device_page(page
), page
);
1500 if (flags
& FOLL_TOUCH
)
1501 touch_pmd(vma
, addr
, pmd
, flags
);
1502 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1504 * We don't mlock() pte-mapped THPs. This way we can avoid
1505 * leaking mlocked pages into non-VM_LOCKED VMAs.
1509 * In most cases the pmd is the only mapping of the page as we
1510 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1511 * writable private mappings in populate_vma_page_range().
1513 * The only scenario when we have the page shared here is if we
1514 * mlocking read-only mapping shared over fork(). We skip
1515 * mlocking such pages.
1519 * We can expect PageDoubleMap() to be stable under page lock:
1520 * for file pages we set it in page_add_file_rmap(), which
1521 * requires page to be locked.
1524 if (PageAnon(page
) && compound_mapcount(page
) != 1)
1526 if (PageDoubleMap(page
) || !page
->mapping
)
1528 if (!trylock_page(page
))
1531 if (page
->mapping
&& !PageDoubleMap(page
))
1532 mlock_vma_page(page
);
1536 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1537 VM_BUG_ON_PAGE(!PageCompound(page
) && !is_zone_device_page(page
), page
);
1538 if (flags
& FOLL_GET
)
1545 /* NUMA hinting page fault entry point for trans huge pmds */
1546 vm_fault_t
do_huge_pmd_numa_page(struct vm_fault
*vmf
, pmd_t pmd
)
1548 struct vm_area_struct
*vma
= vmf
->vma
;
1549 struct anon_vma
*anon_vma
= NULL
;
1551 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1552 int page_nid
= NUMA_NO_NODE
, this_nid
= numa_node_id();
1553 int target_nid
, last_cpupid
= -1;
1555 bool migrated
= false;
1559 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1560 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
)))
1564 * If there are potential migrations, wait for completion and retry
1565 * without disrupting NUMA hinting information. Do not relock and
1566 * check_same as the page may no longer be mapped.
1568 if (unlikely(pmd_trans_migrating(*vmf
->pmd
))) {
1569 page
= pmd_page(*vmf
->pmd
);
1570 if (!get_page_unless_zero(page
))
1572 spin_unlock(vmf
->ptl
);
1573 put_and_wait_on_page_locked(page
);
1577 page
= pmd_page(pmd
);
1578 BUG_ON(is_huge_zero_page(page
));
1579 page_nid
= page_to_nid(page
);
1580 last_cpupid
= page_cpupid_last(page
);
1581 count_vm_numa_event(NUMA_HINT_FAULTS
);
1582 if (page_nid
== this_nid
) {
1583 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1584 flags
|= TNF_FAULT_LOCAL
;
1587 /* See similar comment in do_numa_page for explanation */
1588 if (!pmd_savedwrite(pmd
))
1589 flags
|= TNF_NO_GROUP
;
1592 * Acquire the page lock to serialise THP migrations but avoid dropping
1593 * page_table_lock if at all possible
1595 page_locked
= trylock_page(page
);
1596 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1597 if (target_nid
== NUMA_NO_NODE
) {
1598 /* If the page was locked, there are no parallel migrations */
1603 /* Migration could have started since the pmd_trans_migrating check */
1605 page_nid
= NUMA_NO_NODE
;
1606 if (!get_page_unless_zero(page
))
1608 spin_unlock(vmf
->ptl
);
1609 put_and_wait_on_page_locked(page
);
1614 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1615 * to serialises splits
1618 spin_unlock(vmf
->ptl
);
1619 anon_vma
= page_lock_anon_vma_read(page
);
1621 /* Confirm the PMD did not change while page_table_lock was released */
1622 spin_lock(vmf
->ptl
);
1623 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
))) {
1626 page_nid
= NUMA_NO_NODE
;
1630 /* Bail if we fail to protect against THP splits for any reason */
1631 if (unlikely(!anon_vma
)) {
1633 page_nid
= NUMA_NO_NODE
;
1638 * Since we took the NUMA fault, we must have observed the !accessible
1639 * bit. Make sure all other CPUs agree with that, to avoid them
1640 * modifying the page we're about to migrate.
1642 * Must be done under PTL such that we'll observe the relevant
1643 * inc_tlb_flush_pending().
1645 * We are not sure a pending tlb flush here is for a huge page
1646 * mapping or not. Hence use the tlb range variant
1648 if (mm_tlb_flush_pending(vma
->vm_mm
)) {
1649 flush_tlb_range(vma
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1651 * change_huge_pmd() released the pmd lock before
1652 * invalidating the secondary MMUs sharing the primary
1653 * MMU pagetables (with ->invalidate_range()). The
1654 * mmu_notifier_invalidate_range_end() (which
1655 * internally calls ->invalidate_range()) in
1656 * change_pmd_range() will run after us, so we can't
1657 * rely on it here and we need an explicit invalidate.
1659 mmu_notifier_invalidate_range(vma
->vm_mm
, haddr
,
1660 haddr
+ HPAGE_PMD_SIZE
);
1664 * Migrate the THP to the requested node, returns with page unlocked
1665 * and access rights restored.
1667 spin_unlock(vmf
->ptl
);
1669 migrated
= migrate_misplaced_transhuge_page(vma
->vm_mm
, vma
,
1670 vmf
->pmd
, pmd
, vmf
->address
, page
, target_nid
);
1672 flags
|= TNF_MIGRATED
;
1673 page_nid
= target_nid
;
1675 flags
|= TNF_MIGRATE_FAIL
;
1679 BUG_ON(!PageLocked(page
));
1680 was_writable
= pmd_savedwrite(pmd
);
1681 pmd
= pmd_modify(pmd
, vma
->vm_page_prot
);
1682 pmd
= pmd_mkyoung(pmd
);
1684 pmd
= pmd_mkwrite(pmd
);
1685 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, pmd
);
1686 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1689 spin_unlock(vmf
->ptl
);
1693 page_unlock_anon_vma_read(anon_vma
);
1695 if (page_nid
!= NUMA_NO_NODE
)
1696 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
,
1703 * Return true if we do MADV_FREE successfully on entire pmd page.
1704 * Otherwise, return false.
1706 bool madvise_free_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1707 pmd_t
*pmd
, unsigned long addr
, unsigned long next
)
1712 struct mm_struct
*mm
= tlb
->mm
;
1715 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
1717 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1722 if (is_huge_zero_pmd(orig_pmd
))
1725 if (unlikely(!pmd_present(orig_pmd
))) {
1726 VM_BUG_ON(thp_migration_supported() &&
1727 !is_pmd_migration_entry(orig_pmd
));
1731 page
= pmd_page(orig_pmd
);
1733 * If other processes are mapping this page, we couldn't discard
1734 * the page unless they all do MADV_FREE so let's skip the page.
1736 if (page_mapcount(page
) != 1)
1739 if (!trylock_page(page
))
1743 * If user want to discard part-pages of THP, split it so MADV_FREE
1744 * will deactivate only them.
1746 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1749 split_huge_page(page
);
1755 if (PageDirty(page
))
1756 ClearPageDirty(page
);
1759 if (pmd_young(orig_pmd
) || pmd_dirty(orig_pmd
)) {
1760 pmdp_invalidate(vma
, addr
, pmd
);
1761 orig_pmd
= pmd_mkold(orig_pmd
);
1762 orig_pmd
= pmd_mkclean(orig_pmd
);
1764 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
1765 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1768 mark_page_lazyfree(page
);
1776 static inline void zap_deposited_table(struct mm_struct
*mm
, pmd_t
*pmd
)
1780 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1781 pte_free(mm
, pgtable
);
1785 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1786 pmd_t
*pmd
, unsigned long addr
)
1791 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
1793 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1797 * For architectures like ppc64 we look at deposited pgtable
1798 * when calling pmdp_huge_get_and_clear. So do the
1799 * pgtable_trans_huge_withdraw after finishing pmdp related
1802 orig_pmd
= pmdp_huge_get_and_clear_full(tlb
->mm
, addr
, pmd
,
1804 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1805 if (vma_is_dax(vma
)) {
1806 if (arch_needs_pgtable_deposit())
1807 zap_deposited_table(tlb
->mm
, pmd
);
1809 if (is_huge_zero_pmd(orig_pmd
))
1810 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1811 } else if (is_huge_zero_pmd(orig_pmd
)) {
1812 zap_deposited_table(tlb
->mm
, pmd
);
1814 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1816 struct page
*page
= NULL
;
1817 int flush_needed
= 1;
1819 if (pmd_present(orig_pmd
)) {
1820 page
= pmd_page(orig_pmd
);
1821 page_remove_rmap(page
, true);
1822 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1823 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1824 } else if (thp_migration_supported()) {
1827 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd
));
1828 entry
= pmd_to_swp_entry(orig_pmd
);
1829 page
= pfn_to_page(swp_offset(entry
));
1832 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1834 if (PageAnon(page
)) {
1835 zap_deposited_table(tlb
->mm
, pmd
);
1836 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1838 if (arch_needs_pgtable_deposit())
1839 zap_deposited_table(tlb
->mm
, pmd
);
1840 add_mm_counter(tlb
->mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
1845 tlb_remove_page_size(tlb
, page
, HPAGE_PMD_SIZE
);
1850 #ifndef pmd_move_must_withdraw
1851 static inline int pmd_move_must_withdraw(spinlock_t
*new_pmd_ptl
,
1852 spinlock_t
*old_pmd_ptl
,
1853 struct vm_area_struct
*vma
)
1856 * With split pmd lock we also need to move preallocated
1857 * PTE page table if new_pmd is on different PMD page table.
1859 * We also don't deposit and withdraw tables for file pages.
1861 return (new_pmd_ptl
!= old_pmd_ptl
) && vma_is_anonymous(vma
);
1865 static pmd_t
move_soft_dirty_pmd(pmd_t pmd
)
1867 #ifdef CONFIG_MEM_SOFT_DIRTY
1868 if (unlikely(is_pmd_migration_entry(pmd
)))
1869 pmd
= pmd_swp_mksoft_dirty(pmd
);
1870 else if (pmd_present(pmd
))
1871 pmd
= pmd_mksoft_dirty(pmd
);
1876 bool move_huge_pmd(struct vm_area_struct
*vma
, unsigned long old_addr
,
1877 unsigned long new_addr
, unsigned long old_end
,
1878 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1880 spinlock_t
*old_ptl
, *new_ptl
;
1882 struct mm_struct
*mm
= vma
->vm_mm
;
1883 bool force_flush
= false;
1885 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1886 (new_addr
& ~HPAGE_PMD_MASK
) ||
1887 old_end
- old_addr
< HPAGE_PMD_SIZE
)
1891 * The destination pmd shouldn't be established, free_pgtables()
1892 * should have release it.
1894 if (WARN_ON(!pmd_none(*new_pmd
))) {
1895 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1900 * We don't have to worry about the ordering of src and dst
1901 * ptlocks because exclusive mmap_sem prevents deadlock.
1903 old_ptl
= __pmd_trans_huge_lock(old_pmd
, vma
);
1905 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1906 if (new_ptl
!= old_ptl
)
1907 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1908 pmd
= pmdp_huge_get_and_clear(mm
, old_addr
, old_pmd
);
1909 if (pmd_present(pmd
))
1911 VM_BUG_ON(!pmd_none(*new_pmd
));
1913 if (pmd_move_must_withdraw(new_ptl
, old_ptl
, vma
)) {
1915 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1916 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1918 pmd
= move_soft_dirty_pmd(pmd
);
1919 set_pmd_at(mm
, new_addr
, new_pmd
, pmd
);
1921 flush_tlb_range(vma
, old_addr
, old_addr
+ PMD_SIZE
);
1922 if (new_ptl
!= old_ptl
)
1923 spin_unlock(new_ptl
);
1924 spin_unlock(old_ptl
);
1932 * - 0 if PMD could not be locked
1933 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1934 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1936 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1937 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1939 struct mm_struct
*mm
= vma
->vm_mm
;
1942 bool preserve_write
;
1945 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1949 preserve_write
= prot_numa
&& pmd_write(*pmd
);
1952 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1953 if (is_swap_pmd(*pmd
)) {
1954 swp_entry_t entry
= pmd_to_swp_entry(*pmd
);
1956 VM_BUG_ON(!is_pmd_migration_entry(*pmd
));
1957 if (is_write_migration_entry(entry
)) {
1960 * A protection check is difficult so
1961 * just be safe and disable write
1963 make_migration_entry_read(&entry
);
1964 newpmd
= swp_entry_to_pmd(entry
);
1965 if (pmd_swp_soft_dirty(*pmd
))
1966 newpmd
= pmd_swp_mksoft_dirty(newpmd
);
1967 set_pmd_at(mm
, addr
, pmd
, newpmd
);
1974 * Avoid trapping faults against the zero page. The read-only
1975 * data is likely to be read-cached on the local CPU and
1976 * local/remote hits to the zero page are not interesting.
1978 if (prot_numa
&& is_huge_zero_pmd(*pmd
))
1981 if (prot_numa
&& pmd_protnone(*pmd
))
1985 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1986 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1987 * which is also under down_read(mmap_sem):
1990 * change_huge_pmd(prot_numa=1)
1991 * pmdp_huge_get_and_clear_notify()
1992 * madvise_dontneed()
1994 * pmd_trans_huge(*pmd) == 0 (without ptl)
1997 * // pmd is re-established
1999 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2000 * which may break userspace.
2002 * pmdp_invalidate() is required to make sure we don't miss
2003 * dirty/young flags set by hardware.
2005 entry
= pmdp_invalidate(vma
, addr
, pmd
);
2007 entry
= pmd_modify(entry
, newprot
);
2009 entry
= pmd_mk_savedwrite(entry
);
2011 set_pmd_at(mm
, addr
, pmd
, entry
);
2012 BUG_ON(vma_is_anonymous(vma
) && !preserve_write
&& pmd_write(entry
));
2019 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2021 * Note that if it returns page table lock pointer, this routine returns without
2022 * unlocking page table lock. So callers must unlock it.
2024 spinlock_t
*__pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
2027 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
2028 if (likely(is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) ||
2036 * Returns true if a given pud maps a thp, false otherwise.
2038 * Note that if it returns true, this routine returns without unlocking page
2039 * table lock. So callers must unlock it.
2041 spinlock_t
*__pud_trans_huge_lock(pud_t
*pud
, struct vm_area_struct
*vma
)
2045 ptl
= pud_lock(vma
->vm_mm
, pud
);
2046 if (likely(pud_trans_huge(*pud
) || pud_devmap(*pud
)))
2052 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2053 int zap_huge_pud(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2054 pud_t
*pud
, unsigned long addr
)
2058 ptl
= __pud_trans_huge_lock(pud
, vma
);
2062 * For architectures like ppc64 we look at deposited pgtable
2063 * when calling pudp_huge_get_and_clear. So do the
2064 * pgtable_trans_huge_withdraw after finishing pudp related
2067 pudp_huge_get_and_clear_full(tlb
->mm
, addr
, pud
, tlb
->fullmm
);
2068 tlb_remove_pud_tlb_entry(tlb
, pud
, addr
);
2069 if (vma_is_dax(vma
)) {
2071 /* No zero page support yet */
2073 /* No support for anonymous PUD pages yet */
2079 static void __split_huge_pud_locked(struct vm_area_struct
*vma
, pud_t
*pud
,
2080 unsigned long haddr
)
2082 VM_BUG_ON(haddr
& ~HPAGE_PUD_MASK
);
2083 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2084 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PUD_SIZE
, vma
);
2085 VM_BUG_ON(!pud_trans_huge(*pud
) && !pud_devmap(*pud
));
2087 count_vm_event(THP_SPLIT_PUD
);
2089 pudp_huge_clear_flush_notify(vma
, haddr
, pud
);
2092 void __split_huge_pud(struct vm_area_struct
*vma
, pud_t
*pud
,
2093 unsigned long address
)
2096 struct mmu_notifier_range range
;
2098 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
2099 address
& HPAGE_PUD_MASK
,
2100 (address
& HPAGE_PUD_MASK
) + HPAGE_PUD_SIZE
);
2101 mmu_notifier_invalidate_range_start(&range
);
2102 ptl
= pud_lock(vma
->vm_mm
, pud
);
2103 if (unlikely(!pud_trans_huge(*pud
) && !pud_devmap(*pud
)))
2105 __split_huge_pud_locked(vma
, pud
, range
.start
);
2110 * No need to double call mmu_notifier->invalidate_range() callback as
2111 * the above pudp_huge_clear_flush_notify() did already call it.
2113 mmu_notifier_invalidate_range_only_end(&range
);
2115 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2117 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
2118 unsigned long haddr
, pmd_t
*pmd
)
2120 struct mm_struct
*mm
= vma
->vm_mm
;
2126 * Leave pmd empty until pte is filled note that it is fine to delay
2127 * notification until mmu_notifier_invalidate_range_end() as we are
2128 * replacing a zero pmd write protected page with a zero pte write
2131 * See Documentation/vm/mmu_notifier.rst
2133 pmdp_huge_clear_flush(vma
, haddr
, pmd
);
2135 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2136 pmd_populate(mm
, &_pmd
, pgtable
);
2138 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2140 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2141 entry
= pte_mkspecial(entry
);
2142 pte
= pte_offset_map(&_pmd
, haddr
);
2143 VM_BUG_ON(!pte_none(*pte
));
2144 set_pte_at(mm
, haddr
, pte
, entry
);
2147 smp_wmb(); /* make pte visible before pmd */
2148 pmd_populate(mm
, pmd
, pgtable
);
2151 static void __split_huge_pmd_locked(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2152 unsigned long haddr
, bool freeze
)
2154 struct mm_struct
*mm
= vma
->vm_mm
;
2157 pmd_t old_pmd
, _pmd
;
2158 bool young
, write
, soft_dirty
, pmd_migration
= false;
2162 VM_BUG_ON(haddr
& ~HPAGE_PMD_MASK
);
2163 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2164 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
, vma
);
2165 VM_BUG_ON(!is_pmd_migration_entry(*pmd
) && !pmd_trans_huge(*pmd
)
2166 && !pmd_devmap(*pmd
));
2168 count_vm_event(THP_SPLIT_PMD
);
2170 if (!vma_is_anonymous(vma
)) {
2171 _pmd
= pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
2173 * We are going to unmap this huge page. So
2174 * just go ahead and zap it
2176 if (arch_needs_pgtable_deposit())
2177 zap_deposited_table(mm
, pmd
);
2178 if (vma_is_dax(vma
))
2180 page
= pmd_page(_pmd
);
2181 if (!PageDirty(page
) && pmd_dirty(_pmd
))
2182 set_page_dirty(page
);
2183 if (!PageReferenced(page
) && pmd_young(_pmd
))
2184 SetPageReferenced(page
);
2185 page_remove_rmap(page
, true);
2187 add_mm_counter(mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
2189 } else if (is_huge_zero_pmd(*pmd
)) {
2191 * FIXME: Do we want to invalidate secondary mmu by calling
2192 * mmu_notifier_invalidate_range() see comments below inside
2193 * __split_huge_pmd() ?
2195 * We are going from a zero huge page write protected to zero
2196 * small page also write protected so it does not seems useful
2197 * to invalidate secondary mmu at this time.
2199 return __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2203 * Up to this point the pmd is present and huge and userland has the
2204 * whole access to the hugepage during the split (which happens in
2205 * place). If we overwrite the pmd with the not-huge version pointing
2206 * to the pte here (which of course we could if all CPUs were bug
2207 * free), userland could trigger a small page size TLB miss on the
2208 * small sized TLB while the hugepage TLB entry is still established in
2209 * the huge TLB. Some CPU doesn't like that.
2210 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2211 * 383 on page 93. Intel should be safe but is also warns that it's
2212 * only safe if the permission and cache attributes of the two entries
2213 * loaded in the two TLB is identical (which should be the case here).
2214 * But it is generally safer to never allow small and huge TLB entries
2215 * for the same virtual address to be loaded simultaneously. So instead
2216 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2217 * current pmd notpresent (atomically because here the pmd_trans_huge
2218 * must remain set at all times on the pmd until the split is complete
2219 * for this pmd), then we flush the SMP TLB and finally we write the
2220 * non-huge version of the pmd entry with pmd_populate.
2222 old_pmd
= pmdp_invalidate(vma
, haddr
, pmd
);
2224 pmd_migration
= is_pmd_migration_entry(old_pmd
);
2225 if (unlikely(pmd_migration
)) {
2228 entry
= pmd_to_swp_entry(old_pmd
);
2229 page
= pfn_to_page(swp_offset(entry
));
2230 write
= is_write_migration_entry(entry
);
2232 soft_dirty
= pmd_swp_soft_dirty(old_pmd
);
2234 page
= pmd_page(old_pmd
);
2235 if (pmd_dirty(old_pmd
))
2237 write
= pmd_write(old_pmd
);
2238 young
= pmd_young(old_pmd
);
2239 soft_dirty
= pmd_soft_dirty(old_pmd
);
2241 VM_BUG_ON_PAGE(!page_count(page
), page
);
2242 page_ref_add(page
, HPAGE_PMD_NR
- 1);
2245 * Withdraw the table only after we mark the pmd entry invalid.
2246 * This's critical for some architectures (Power).
2248 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2249 pmd_populate(mm
, &_pmd
, pgtable
);
2251 for (i
= 0, addr
= haddr
; i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
) {
2254 * Note that NUMA hinting access restrictions are not
2255 * transferred to avoid any possibility of altering
2256 * permissions across VMAs.
2258 if (freeze
|| pmd_migration
) {
2259 swp_entry_t swp_entry
;
2260 swp_entry
= make_migration_entry(page
+ i
, write
);
2261 entry
= swp_entry_to_pte(swp_entry
);
2263 entry
= pte_swp_mksoft_dirty(entry
);
2265 entry
= mk_pte(page
+ i
, READ_ONCE(vma
->vm_page_prot
));
2266 entry
= maybe_mkwrite(entry
, vma
);
2268 entry
= pte_wrprotect(entry
);
2270 entry
= pte_mkold(entry
);
2272 entry
= pte_mksoft_dirty(entry
);
2274 pte
= pte_offset_map(&_pmd
, addr
);
2275 BUG_ON(!pte_none(*pte
));
2276 set_pte_at(mm
, addr
, pte
, entry
);
2277 atomic_inc(&page
[i
]._mapcount
);
2282 * Set PG_double_map before dropping compound_mapcount to avoid
2283 * false-negative page_mapped().
2285 if (compound_mapcount(page
) > 1 && !TestSetPageDoubleMap(page
)) {
2286 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2287 atomic_inc(&page
[i
]._mapcount
);
2290 if (atomic_add_negative(-1, compound_mapcount_ptr(page
))) {
2291 /* Last compound_mapcount is gone. */
2292 __dec_node_page_state(page
, NR_ANON_THPS
);
2293 if (TestClearPageDoubleMap(page
)) {
2294 /* No need in mapcount reference anymore */
2295 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2296 atomic_dec(&page
[i
]._mapcount
);
2300 smp_wmb(); /* make pte visible before pmd */
2301 pmd_populate(mm
, pmd
, pgtable
);
2304 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2305 page_remove_rmap(page
+ i
, false);
2311 void __split_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2312 unsigned long address
, bool freeze
, struct page
*page
)
2315 struct mmu_notifier_range range
;
2317 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
2318 address
& HPAGE_PMD_MASK
,
2319 (address
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
);
2320 mmu_notifier_invalidate_range_start(&range
);
2321 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
2324 * If caller asks to setup a migration entries, we need a page to check
2325 * pmd against. Otherwise we can end up replacing wrong page.
2327 VM_BUG_ON(freeze
&& !page
);
2328 if (page
&& page
!= pmd_page(*pmd
))
2331 if (pmd_trans_huge(*pmd
)) {
2332 page
= pmd_page(*pmd
);
2333 if (PageMlocked(page
))
2334 clear_page_mlock(page
);
2335 } else if (!(pmd_devmap(*pmd
) || is_pmd_migration_entry(*pmd
)))
2337 __split_huge_pmd_locked(vma
, pmd
, range
.start
, freeze
);
2341 * No need to double call mmu_notifier->invalidate_range() callback.
2342 * They are 3 cases to consider inside __split_huge_pmd_locked():
2343 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2344 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2345 * fault will trigger a flush_notify before pointing to a new page
2346 * (it is fine if the secondary mmu keeps pointing to the old zero
2347 * page in the meantime)
2348 * 3) Split a huge pmd into pte pointing to the same page. No need
2349 * to invalidate secondary tlb entry they are all still valid.
2350 * any further changes to individual pte will notify. So no need
2351 * to call mmu_notifier->invalidate_range()
2353 mmu_notifier_invalidate_range_only_end(&range
);
2356 void split_huge_pmd_address(struct vm_area_struct
*vma
, unsigned long address
,
2357 bool freeze
, struct page
*page
)
2364 pgd
= pgd_offset(vma
->vm_mm
, address
);
2365 if (!pgd_present(*pgd
))
2368 p4d
= p4d_offset(pgd
, address
);
2369 if (!p4d_present(*p4d
))
2372 pud
= pud_offset(p4d
, address
);
2373 if (!pud_present(*pud
))
2376 pmd
= pmd_offset(pud
, address
);
2378 __split_huge_pmd(vma
, pmd
, address
, freeze
, page
);
2381 void vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2382 unsigned long start
,
2387 * If the new start address isn't hpage aligned and it could
2388 * previously contain an hugepage: check if we need to split
2391 if (start
& ~HPAGE_PMD_MASK
&&
2392 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2393 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2394 split_huge_pmd_address(vma
, start
, false, NULL
);
2397 * If the new end address isn't hpage aligned and it could
2398 * previously contain an hugepage: check if we need to split
2401 if (end
& ~HPAGE_PMD_MASK
&&
2402 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2403 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2404 split_huge_pmd_address(vma
, end
, false, NULL
);
2407 * If we're also updating the vma->vm_next->vm_start, if the new
2408 * vm_next->vm_start isn't page aligned and it could previously
2409 * contain an hugepage: check if we need to split an huge pmd.
2411 if (adjust_next
> 0) {
2412 struct vm_area_struct
*next
= vma
->vm_next
;
2413 unsigned long nstart
= next
->vm_start
;
2414 nstart
+= adjust_next
<< PAGE_SHIFT
;
2415 if (nstart
& ~HPAGE_PMD_MASK
&&
2416 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2417 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2418 split_huge_pmd_address(next
, nstart
, false, NULL
);
2422 static void unmap_page(struct page
*page
)
2424 enum ttu_flags ttu_flags
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
|
2425 TTU_RMAP_LOCKED
| TTU_SPLIT_HUGE_PMD
;
2428 VM_BUG_ON_PAGE(!PageHead(page
), page
);
2431 ttu_flags
|= TTU_SPLIT_FREEZE
;
2433 unmap_success
= try_to_unmap(page
, ttu_flags
);
2434 VM_BUG_ON_PAGE(!unmap_success
, page
);
2437 static void remap_page(struct page
*page
)
2440 if (PageTransHuge(page
)) {
2441 remove_migration_ptes(page
, page
, true);
2443 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2444 remove_migration_ptes(page
+ i
, page
+ i
, true);
2448 static void __split_huge_page_tail(struct page
*head
, int tail
,
2449 struct lruvec
*lruvec
, struct list_head
*list
)
2451 struct page
*page_tail
= head
+ tail
;
2453 VM_BUG_ON_PAGE(atomic_read(&page_tail
->_mapcount
) != -1, page_tail
);
2456 * Clone page flags before unfreezing refcount.
2458 * After successful get_page_unless_zero() might follow flags change,
2459 * for exmaple lock_page() which set PG_waiters.
2461 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
2462 page_tail
->flags
|= (head
->flags
&
2463 ((1L << PG_referenced
) |
2464 (1L << PG_swapbacked
) |
2465 (1L << PG_swapcache
) |
2466 (1L << PG_mlocked
) |
2467 (1L << PG_uptodate
) |
2469 (1L << PG_workingset
) |
2471 (1L << PG_unevictable
) |
2474 /* ->mapping in first tail page is compound_mapcount */
2475 VM_BUG_ON_PAGE(tail
> 2 && page_tail
->mapping
!= TAIL_MAPPING
,
2477 page_tail
->mapping
= head
->mapping
;
2478 page_tail
->index
= head
->index
+ tail
;
2480 /* Page flags must be visible before we make the page non-compound. */
2484 * Clear PageTail before unfreezing page refcount.
2486 * After successful get_page_unless_zero() might follow put_page()
2487 * which needs correct compound_head().
2489 clear_compound_head(page_tail
);
2491 /* Finally unfreeze refcount. Additional reference from page cache. */
2492 page_ref_unfreeze(page_tail
, 1 + (!PageAnon(head
) ||
2493 PageSwapCache(head
)));
2495 if (page_is_young(head
))
2496 set_page_young(page_tail
);
2497 if (page_is_idle(head
))
2498 set_page_idle(page_tail
);
2500 page_cpupid_xchg_last(page_tail
, page_cpupid_last(head
));
2503 * always add to the tail because some iterators expect new
2504 * pages to show after the currently processed elements - e.g.
2507 lru_add_page_tail(head
, page_tail
, lruvec
, list
);
2510 static void __split_huge_page(struct page
*page
, struct list_head
*list
,
2511 pgoff_t end
, unsigned long flags
)
2513 struct page
*head
= compound_head(page
);
2514 pg_data_t
*pgdat
= page_pgdat(head
);
2515 struct lruvec
*lruvec
;
2516 struct address_space
*swap_cache
= NULL
;
2517 unsigned long offset
= 0;
2520 lruvec
= mem_cgroup_page_lruvec(head
, pgdat
);
2522 /* complete memcg works before add pages to LRU */
2523 mem_cgroup_split_huge_fixup(head
);
2525 if (PageAnon(head
) && PageSwapCache(head
)) {
2526 swp_entry_t entry
= { .val
= page_private(head
) };
2528 offset
= swp_offset(entry
);
2529 swap_cache
= swap_address_space(entry
);
2530 xa_lock(&swap_cache
->i_pages
);
2533 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
2534 __split_huge_page_tail(head
, i
, lruvec
, list
);
2535 /* Some pages can be beyond i_size: drop them from page cache */
2536 if (head
[i
].index
>= end
) {
2537 ClearPageDirty(head
+ i
);
2538 __delete_from_page_cache(head
+ i
, NULL
);
2539 if (IS_ENABLED(CONFIG_SHMEM
) && PageSwapBacked(head
))
2540 shmem_uncharge(head
->mapping
->host
, 1);
2542 } else if (!PageAnon(page
)) {
2543 __xa_store(&head
->mapping
->i_pages
, head
[i
].index
,
2545 } else if (swap_cache
) {
2546 __xa_store(&swap_cache
->i_pages
, offset
+ i
,
2551 ClearPageCompound(head
);
2553 split_page_owner(head
, HPAGE_PMD_ORDER
);
2555 /* See comment in __split_huge_page_tail() */
2556 if (PageAnon(head
)) {
2557 /* Additional pin to swap cache */
2558 if (PageSwapCache(head
)) {
2559 page_ref_add(head
, 2);
2560 xa_unlock(&swap_cache
->i_pages
);
2565 /* Additional pin to page cache */
2566 page_ref_add(head
, 2);
2567 xa_unlock(&head
->mapping
->i_pages
);
2570 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
2574 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2575 struct page
*subpage
= head
+ i
;
2576 if (subpage
== page
)
2578 unlock_page(subpage
);
2581 * Subpages may be freed if there wasn't any mapping
2582 * like if add_to_swap() is running on a lru page that
2583 * had its mapping zapped. And freeing these pages
2584 * requires taking the lru_lock so we do the put_page
2585 * of the tail pages after the split is complete.
2591 int total_mapcount(struct page
*page
)
2593 int i
, compound
, ret
;
2595 VM_BUG_ON_PAGE(PageTail(page
), page
);
2597 if (likely(!PageCompound(page
)))
2598 return atomic_read(&page
->_mapcount
) + 1;
2600 compound
= compound_mapcount(page
);
2604 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2605 ret
+= atomic_read(&page
[i
]._mapcount
) + 1;
2606 /* File pages has compound_mapcount included in _mapcount */
2607 if (!PageAnon(page
))
2608 return ret
- compound
* HPAGE_PMD_NR
;
2609 if (PageDoubleMap(page
))
2610 ret
-= HPAGE_PMD_NR
;
2615 * This calculates accurately how many mappings a transparent hugepage
2616 * has (unlike page_mapcount() which isn't fully accurate). This full
2617 * accuracy is primarily needed to know if copy-on-write faults can
2618 * reuse the page and change the mapping to read-write instead of
2619 * copying them. At the same time this returns the total_mapcount too.
2621 * The function returns the highest mapcount any one of the subpages
2622 * has. If the return value is one, even if different processes are
2623 * mapping different subpages of the transparent hugepage, they can
2624 * all reuse it, because each process is reusing a different subpage.
2626 * The total_mapcount is instead counting all virtual mappings of the
2627 * subpages. If the total_mapcount is equal to "one", it tells the
2628 * caller all mappings belong to the same "mm" and in turn the
2629 * anon_vma of the transparent hugepage can become the vma->anon_vma
2630 * local one as no other process may be mapping any of the subpages.
2632 * It would be more accurate to replace page_mapcount() with
2633 * page_trans_huge_mapcount(), however we only use
2634 * page_trans_huge_mapcount() in the copy-on-write faults where we
2635 * need full accuracy to avoid breaking page pinning, because
2636 * page_trans_huge_mapcount() is slower than page_mapcount().
2638 int page_trans_huge_mapcount(struct page
*page
, int *total_mapcount
)
2640 int i
, ret
, _total_mapcount
, mapcount
;
2642 /* hugetlbfs shouldn't call it */
2643 VM_BUG_ON_PAGE(PageHuge(page
), page
);
2645 if (likely(!PageTransCompound(page
))) {
2646 mapcount
= atomic_read(&page
->_mapcount
) + 1;
2648 *total_mapcount
= mapcount
;
2652 page
= compound_head(page
);
2654 _total_mapcount
= ret
= 0;
2655 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2656 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
2657 ret
= max(ret
, mapcount
);
2658 _total_mapcount
+= mapcount
;
2660 if (PageDoubleMap(page
)) {
2662 _total_mapcount
-= HPAGE_PMD_NR
;
2664 mapcount
= compound_mapcount(page
);
2666 _total_mapcount
+= mapcount
;
2668 *total_mapcount
= _total_mapcount
;
2672 /* Racy check whether the huge page can be split */
2673 bool can_split_huge_page(struct page
*page
, int *pextra_pins
)
2677 /* Additional pins from page cache */
2679 extra_pins
= PageSwapCache(page
) ? HPAGE_PMD_NR
: 0;
2681 extra_pins
= HPAGE_PMD_NR
;
2683 *pextra_pins
= extra_pins
;
2684 return total_mapcount(page
) == page_count(page
) - extra_pins
- 1;
2688 * This function splits huge page into normal pages. @page can point to any
2689 * subpage of huge page to split. Split doesn't change the position of @page.
2691 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2692 * The huge page must be locked.
2694 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2696 * Both head page and tail pages will inherit mapping, flags, and so on from
2699 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2700 * they are not mapped.
2702 * Returns 0 if the hugepage is split successfully.
2703 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2706 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
2708 struct page
*head
= compound_head(page
);
2709 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(head
));
2710 struct deferred_split
*ds_queue
= get_deferred_split_queue(head
);
2711 struct anon_vma
*anon_vma
= NULL
;
2712 struct address_space
*mapping
= NULL
;
2713 int count
, mapcount
, extra_pins
, ret
;
2715 unsigned long flags
;
2718 VM_BUG_ON_PAGE(is_huge_zero_page(head
), head
);
2719 VM_BUG_ON_PAGE(!PageLocked(head
), head
);
2720 VM_BUG_ON_PAGE(!PageCompound(head
), head
);
2722 if (PageWriteback(head
))
2725 if (PageAnon(head
)) {
2727 * The caller does not necessarily hold an mmap_sem that would
2728 * prevent the anon_vma disappearing so we first we take a
2729 * reference to it and then lock the anon_vma for write. This
2730 * is similar to page_lock_anon_vma_read except the write lock
2731 * is taken to serialise against parallel split or collapse
2734 anon_vma
= page_get_anon_vma(head
);
2741 anon_vma_lock_write(anon_vma
);
2743 mapping
= head
->mapping
;
2752 i_mmap_lock_read(mapping
);
2755 *__split_huge_page() may need to trim off pages beyond EOF:
2756 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2757 * which cannot be nested inside the page tree lock. So note
2758 * end now: i_size itself may be changed at any moment, but
2759 * head page lock is good enough to serialize the trimming.
2761 end
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2765 * Racy check if we can split the page, before unmap_page() will
2768 if (!can_split_huge_page(head
, &extra_pins
)) {
2773 mlocked
= PageMlocked(head
);
2775 VM_BUG_ON_PAGE(compound_mapcount(head
), head
);
2777 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2781 /* prevent PageLRU to go away from under us, and freeze lru stats */
2782 spin_lock_irqsave(&pgdata
->lru_lock
, flags
);
2785 XA_STATE(xas
, &mapping
->i_pages
, page_index(head
));
2788 * Check if the head page is present in page cache.
2789 * We assume all tail are present too, if head is there.
2791 xa_lock(&mapping
->i_pages
);
2792 if (xas_load(&xas
) != head
)
2796 /* Prevent deferred_split_scan() touching ->_refcount */
2797 spin_lock(&ds_queue
->split_queue_lock
);
2798 count
= page_count(head
);
2799 mapcount
= total_mapcount(head
);
2800 if (!mapcount
&& page_ref_freeze(head
, 1 + extra_pins
)) {
2801 if (!list_empty(page_deferred_list(head
))) {
2802 ds_queue
->split_queue_len
--;
2803 list_del(page_deferred_list(head
));
2805 spin_unlock(&ds_queue
->split_queue_lock
);
2807 if (PageSwapBacked(head
))
2808 __dec_node_page_state(head
, NR_SHMEM_THPS
);
2810 __dec_node_page_state(head
, NR_FILE_THPS
);
2813 __split_huge_page(page
, list
, end
, flags
);
2814 if (PageSwapCache(head
)) {
2815 swp_entry_t entry
= { .val
= page_private(head
) };
2817 ret
= split_swap_cluster(entry
);
2821 if (IS_ENABLED(CONFIG_DEBUG_VM
) && mapcount
) {
2822 pr_alert("total_mapcount: %u, page_count(): %u\n",
2825 dump_page(head
, NULL
);
2826 dump_page(page
, "total_mapcount(head) > 0");
2829 spin_unlock(&ds_queue
->split_queue_lock
);
2831 xa_unlock(&mapping
->i_pages
);
2832 spin_unlock_irqrestore(&pgdata
->lru_lock
, flags
);
2839 anon_vma_unlock_write(anon_vma
);
2840 put_anon_vma(anon_vma
);
2843 i_mmap_unlock_read(mapping
);
2845 count_vm_event(!ret
? THP_SPLIT_PAGE
: THP_SPLIT_PAGE_FAILED
);
2849 void free_transhuge_page(struct page
*page
)
2851 struct deferred_split
*ds_queue
= get_deferred_split_queue(page
);
2852 unsigned long flags
;
2854 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2855 if (!list_empty(page_deferred_list(page
))) {
2856 ds_queue
->split_queue_len
--;
2857 list_del(page_deferred_list(page
));
2859 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2860 free_compound_page(page
);
2863 void deferred_split_huge_page(struct page
*page
)
2865 struct deferred_split
*ds_queue
= get_deferred_split_queue(page
);
2867 struct mem_cgroup
*memcg
= compound_head(page
)->mem_cgroup
;
2869 unsigned long flags
;
2871 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
2874 * The try_to_unmap() in page reclaim path might reach here too,
2875 * this may cause a race condition to corrupt deferred split queue.
2876 * And, if page reclaim is already handling the same page, it is
2877 * unnecessary to handle it again in shrinker.
2879 * Check PageSwapCache to determine if the page is being
2880 * handled by page reclaim since THP swap would add the page into
2881 * swap cache before calling try_to_unmap().
2883 if (PageSwapCache(page
))
2886 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2887 if (list_empty(page_deferred_list(page
))) {
2888 count_vm_event(THP_DEFERRED_SPLIT_PAGE
);
2889 list_add_tail(page_deferred_list(page
), &ds_queue
->split_queue
);
2890 ds_queue
->split_queue_len
++;
2893 memcg_set_shrinker_bit(memcg
, page_to_nid(page
),
2894 deferred_split_shrinker
.id
);
2897 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2900 static unsigned long deferred_split_count(struct shrinker
*shrink
,
2901 struct shrink_control
*sc
)
2903 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2904 struct deferred_split
*ds_queue
= &pgdata
->deferred_split_queue
;
2908 ds_queue
= &sc
->memcg
->deferred_split_queue
;
2910 return READ_ONCE(ds_queue
->split_queue_len
);
2913 static unsigned long deferred_split_scan(struct shrinker
*shrink
,
2914 struct shrink_control
*sc
)
2916 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2917 struct deferred_split
*ds_queue
= &pgdata
->deferred_split_queue
;
2918 unsigned long flags
;
2919 LIST_HEAD(list
), *pos
, *next
;
2925 ds_queue
= &sc
->memcg
->deferred_split_queue
;
2928 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2929 /* Take pin on all head pages to avoid freeing them under us */
2930 list_for_each_safe(pos
, next
, &ds_queue
->split_queue
) {
2931 page
= list_entry((void *)pos
, struct page
, mapping
);
2932 page
= compound_head(page
);
2933 if (get_page_unless_zero(page
)) {
2934 list_move(page_deferred_list(page
), &list
);
2936 /* We lost race with put_compound_page() */
2937 list_del_init(page_deferred_list(page
));
2938 ds_queue
->split_queue_len
--;
2940 if (!--sc
->nr_to_scan
)
2943 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2945 list_for_each_safe(pos
, next
, &list
) {
2946 page
= list_entry((void *)pos
, struct page
, mapping
);
2947 if (!trylock_page(page
))
2949 /* split_huge_page() removes page from list on success */
2950 if (!split_huge_page(page
))
2957 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2958 list_splice_tail(&list
, &ds_queue
->split_queue
);
2959 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2962 * Stop shrinker if we didn't split any page, but the queue is empty.
2963 * This can happen if pages were freed under us.
2965 if (!split
&& list_empty(&ds_queue
->split_queue
))
2970 static struct shrinker deferred_split_shrinker
= {
2971 .count_objects
= deferred_split_count
,
2972 .scan_objects
= deferred_split_scan
,
2973 .seeks
= DEFAULT_SEEKS
,
2974 .flags
= SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
|
2978 #ifdef CONFIG_DEBUG_FS
2979 static int split_huge_pages_set(void *data
, u64 val
)
2983 unsigned long pfn
, max_zone_pfn
;
2984 unsigned long total
= 0, split
= 0;
2989 for_each_populated_zone(zone
) {
2990 max_zone_pfn
= zone_end_pfn(zone
);
2991 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++) {
2992 if (!pfn_valid(pfn
))
2995 page
= pfn_to_page(pfn
);
2996 if (!get_page_unless_zero(page
))
2999 if (zone
!= page_zone(page
))
3002 if (!PageHead(page
) || PageHuge(page
) || !PageLRU(page
))
3007 if (!split_huge_page(page
))
3015 pr_info("%lu of %lu THP split\n", split
, total
);
3019 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops
, NULL
, split_huge_pages_set
,
3022 static int __init
split_huge_pages_debugfs(void)
3024 debugfs_create_file("split_huge_pages", 0200, NULL
, NULL
,
3025 &split_huge_pages_fops
);
3028 late_initcall(split_huge_pages_debugfs
);
3031 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3032 void set_pmd_migration_entry(struct page_vma_mapped_walk
*pvmw
,
3035 struct vm_area_struct
*vma
= pvmw
->vma
;
3036 struct mm_struct
*mm
= vma
->vm_mm
;
3037 unsigned long address
= pvmw
->address
;
3042 if (!(pvmw
->pmd
&& !pvmw
->pte
))
3045 flush_cache_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
3046 pmdval
= *pvmw
->pmd
;
3047 pmdp_invalidate(vma
, address
, pvmw
->pmd
);
3048 if (pmd_dirty(pmdval
))
3049 set_page_dirty(page
);
3050 entry
= make_migration_entry(page
, pmd_write(pmdval
));
3051 pmdswp
= swp_entry_to_pmd(entry
);
3052 if (pmd_soft_dirty(pmdval
))
3053 pmdswp
= pmd_swp_mksoft_dirty(pmdswp
);
3054 set_pmd_at(mm
, address
, pvmw
->pmd
, pmdswp
);
3055 page_remove_rmap(page
, true);
3059 void remove_migration_pmd(struct page_vma_mapped_walk
*pvmw
, struct page
*new)
3061 struct vm_area_struct
*vma
= pvmw
->vma
;
3062 struct mm_struct
*mm
= vma
->vm_mm
;
3063 unsigned long address
= pvmw
->address
;
3064 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
3068 if (!(pvmw
->pmd
&& !pvmw
->pte
))
3071 entry
= pmd_to_swp_entry(*pvmw
->pmd
);
3073 pmde
= pmd_mkold(mk_huge_pmd(new, vma
->vm_page_prot
));
3074 if (pmd_swp_soft_dirty(*pvmw
->pmd
))
3075 pmde
= pmd_mksoft_dirty(pmde
);
3076 if (is_write_migration_entry(entry
))
3077 pmde
= maybe_pmd_mkwrite(pmde
, vma
);
3079 flush_cache_range(vma
, mmun_start
, mmun_start
+ HPAGE_PMD_SIZE
);
3081 page_add_anon_rmap(new, vma
, mmun_start
, true);
3083 page_add_file_rmap(new, true);
3084 set_pmd_at(mm
, mmun_start
, pvmw
->pmd
, pmde
);
3085 if ((vma
->vm_flags
& VM_LOCKED
) && !PageDoubleMap(new))
3086 mlock_vma_page(new);
3087 update_mmu_cache_pmd(vma
, address
, pvmw
->pmd
);