Linux 5.6-rc4
[linux/fpc-iii.git] / mm / huge_memory.c
blobb08b199f9a111004e5bfcb92fbdd9870368529a4
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 static struct shrinker deferred_split_shrinker;
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
77 return false;
80 static struct page *get_huge_zero_page(void)
82 struct page *zero_page;
83 retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 return READ_ONCE(huge_zero_page);
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 HPAGE_PMD_ORDER);
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 return NULL;
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
94 preempt_disable();
95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 preempt_enable();
97 __free_pages(zero_page, compound_order(zero_page));
98 goto retry;
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
104 return READ_ONCE(huge_zero_page);
107 static void put_huge_zero_page(void)
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
121 if (!get_huge_zero_page())
122 return NULL;
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
127 return READ_ONCE(huge_zero_page);
130 void mm_put_huge_zero_page(struct mm_struct *mm)
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
149 __free_pages(zero_page, compound_order(zero_page));
150 return HPAGE_PMD_NR;
153 return 0;
156 static struct shrinker huge_zero_page_shrinker = {
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
159 .seeks = DEFAULT_SEEKS,
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
174 static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
178 ssize_t ret = count;
180 if (sysfs_streq(buf, "always")) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 } else if (sysfs_streq(buf, "madvise")) {
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186 } else if (sysfs_streq(buf, "never")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
192 if (ret > 0) {
193 int err = start_stop_khugepaged();
194 if (err)
195 ret = err;
197 return ret;
199 static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
215 unsigned long value;
216 int ret;
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
224 if (value)
225 set_bit(flag, &transparent_hugepage_flags);
226 else
227 clear_bit(flag, &transparent_hugepage_flags);
229 return count;
232 static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
246 static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
250 if (sysfs_streq(buf, "always")) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 } else if (sysfs_streq(buf, "defer+madvise")) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 } else if (sysfs_streq(buf, "defer")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 } else if (sysfs_streq(buf, "madvise")) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 } else if (sysfs_streq(buf, "never")) {
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
278 return count;
280 static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
283 static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
286 return single_hugepage_flag_show(kobj, attr, buf,
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
289 static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
292 return single_hugepage_flag_store(kobj, attr, buf, count,
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
295 static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
303 static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
306 #ifdef CONFIG_DEBUG_VM
307 static ssize_t debug_cow_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf)
310 return single_hugepage_flag_show(kobj, attr, buf,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
313 static ssize_t debug_cow_store(struct kobject *kobj,
314 struct kobj_attribute *attr,
315 const char *buf, size_t count)
317 return single_hugepage_flag_store(kobj, attr, buf, count,
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
320 static struct kobj_attribute debug_cow_attr =
321 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
322 #endif /* CONFIG_DEBUG_VM */
324 static struct attribute *hugepage_attr[] = {
325 &enabled_attr.attr,
326 &defrag_attr.attr,
327 &use_zero_page_attr.attr,
328 &hpage_pmd_size_attr.attr,
329 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
330 &shmem_enabled_attr.attr,
331 #endif
332 #ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr.attr,
334 #endif
335 NULL,
338 static const struct attribute_group hugepage_attr_group = {
339 .attrs = hugepage_attr,
342 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
344 int err;
346 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
347 if (unlikely(!*hugepage_kobj)) {
348 pr_err("failed to create transparent hugepage kobject\n");
349 return -ENOMEM;
352 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
353 if (err) {
354 pr_err("failed to register transparent hugepage group\n");
355 goto delete_obj;
358 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
359 if (err) {
360 pr_err("failed to register transparent hugepage group\n");
361 goto remove_hp_group;
364 return 0;
366 remove_hp_group:
367 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
368 delete_obj:
369 kobject_put(*hugepage_kobj);
370 return err;
373 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
375 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
376 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
377 kobject_put(hugepage_kobj);
379 #else
380 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
382 return 0;
385 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
388 #endif /* CONFIG_SYSFS */
390 static int __init hugepage_init(void)
392 int err;
393 struct kobject *hugepage_kobj;
395 if (!has_transparent_hugepage()) {
396 transparent_hugepage_flags = 0;
397 return -EINVAL;
401 * hugepages can't be allocated by the buddy allocator
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
405 * we use page->mapping and page->index in second tail page
406 * as list_head: assuming THP order >= 2
408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
410 err = hugepage_init_sysfs(&hugepage_kobj);
411 if (err)
412 goto err_sysfs;
414 err = khugepaged_init();
415 if (err)
416 goto err_slab;
418 err = register_shrinker(&huge_zero_page_shrinker);
419 if (err)
420 goto err_hzp_shrinker;
421 err = register_shrinker(&deferred_split_shrinker);
422 if (err)
423 goto err_split_shrinker;
426 * By default disable transparent hugepages on smaller systems,
427 * where the extra memory used could hurt more than TLB overhead
428 * is likely to save. The admin can still enable it through /sys.
430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
431 transparent_hugepage_flags = 0;
432 return 0;
435 err = start_stop_khugepaged();
436 if (err)
437 goto err_khugepaged;
439 return 0;
440 err_khugepaged:
441 unregister_shrinker(&deferred_split_shrinker);
442 err_split_shrinker:
443 unregister_shrinker(&huge_zero_page_shrinker);
444 err_hzp_shrinker:
445 khugepaged_destroy();
446 err_slab:
447 hugepage_exit_sysfs(hugepage_kobj);
448 err_sysfs:
449 return err;
451 subsys_initcall(hugepage_init);
453 static int __init setup_transparent_hugepage(char *str)
455 int ret = 0;
456 if (!str)
457 goto out;
458 if (!strcmp(str, "always")) {
459 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 &transparent_hugepage_flags);
461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 &transparent_hugepage_flags);
463 ret = 1;
464 } else if (!strcmp(str, "madvise")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 &transparent_hugepage_flags);
467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 &transparent_hugepage_flags);
469 ret = 1;
470 } else if (!strcmp(str, "never")) {
471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
472 &transparent_hugepage_flags);
473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
474 &transparent_hugepage_flags);
475 ret = 1;
477 out:
478 if (!ret)
479 pr_warn("transparent_hugepage= cannot parse, ignored\n");
480 return ret;
482 __setup("transparent_hugepage=", setup_transparent_hugepage);
484 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
486 if (likely(vma->vm_flags & VM_WRITE))
487 pmd = pmd_mkwrite(pmd);
488 return pmd;
491 #ifdef CONFIG_MEMCG
492 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
494 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
495 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
497 if (memcg)
498 return &memcg->deferred_split_queue;
499 else
500 return &pgdat->deferred_split_queue;
502 #else
503 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
507 return &pgdat->deferred_split_queue;
509 #endif
511 void prep_transhuge_page(struct page *page)
514 * we use page->mapping and page->indexlru in second tail page
515 * as list_head: assuming THP order >= 2
518 INIT_LIST_HEAD(page_deferred_list(page));
519 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
522 bool is_transparent_hugepage(struct page *page)
524 if (!PageCompound(page))
525 return 0;
527 page = compound_head(page);
528 return is_huge_zero_page(page) ||
529 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
531 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
533 static unsigned long __thp_get_unmapped_area(struct file *filp,
534 unsigned long addr, unsigned long len,
535 loff_t off, unsigned long flags, unsigned long size)
537 loff_t off_end = off + len;
538 loff_t off_align = round_up(off, size);
539 unsigned long len_pad, ret;
541 if (off_end <= off_align || (off_end - off_align) < size)
542 return 0;
544 len_pad = len + size;
545 if (len_pad < len || (off + len_pad) < off)
546 return 0;
548 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
549 off >> PAGE_SHIFT, flags);
552 * The failure might be due to length padding. The caller will retry
553 * without the padding.
555 if (IS_ERR_VALUE(ret))
556 return 0;
559 * Do not try to align to THP boundary if allocation at the address
560 * hint succeeds.
562 if (ret == addr)
563 return addr;
565 ret += (off - ret) & (size - 1);
566 return ret;
569 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
570 unsigned long len, unsigned long pgoff, unsigned long flags)
572 unsigned long ret;
573 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
575 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
576 goto out;
578 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
579 if (ret)
580 return ret;
581 out:
582 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
584 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
586 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
587 struct page *page, gfp_t gfp)
589 struct vm_area_struct *vma = vmf->vma;
590 struct mem_cgroup *memcg;
591 pgtable_t pgtable;
592 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
593 vm_fault_t ret = 0;
595 VM_BUG_ON_PAGE(!PageCompound(page), page);
597 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
598 put_page(page);
599 count_vm_event(THP_FAULT_FALLBACK);
600 return VM_FAULT_FALLBACK;
603 pgtable = pte_alloc_one(vma->vm_mm);
604 if (unlikely(!pgtable)) {
605 ret = VM_FAULT_OOM;
606 goto release;
609 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
611 * The memory barrier inside __SetPageUptodate makes sure that
612 * clear_huge_page writes become visible before the set_pmd_at()
613 * write.
615 __SetPageUptodate(page);
617 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
618 if (unlikely(!pmd_none(*vmf->pmd))) {
619 goto unlock_release;
620 } else {
621 pmd_t entry;
623 ret = check_stable_address_space(vma->vm_mm);
624 if (ret)
625 goto unlock_release;
627 /* Deliver the page fault to userland */
628 if (userfaultfd_missing(vma)) {
629 vm_fault_t ret2;
631 spin_unlock(vmf->ptl);
632 mem_cgroup_cancel_charge(page, memcg, true);
633 put_page(page);
634 pte_free(vma->vm_mm, pgtable);
635 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
636 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
637 return ret2;
640 entry = mk_huge_pmd(page, vma->vm_page_prot);
641 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
642 page_add_new_anon_rmap(page, vma, haddr, true);
643 mem_cgroup_commit_charge(page, memcg, false, true);
644 lru_cache_add_active_or_unevictable(page, vma);
645 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
646 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
647 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
648 mm_inc_nr_ptes(vma->vm_mm);
649 spin_unlock(vmf->ptl);
650 count_vm_event(THP_FAULT_ALLOC);
651 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
654 return 0;
655 unlock_release:
656 spin_unlock(vmf->ptl);
657 release:
658 if (pgtable)
659 pte_free(vma->vm_mm, pgtable);
660 mem_cgroup_cancel_charge(page, memcg, true);
661 put_page(page);
662 return ret;
667 * always: directly stall for all thp allocations
668 * defer: wake kswapd and fail if not immediately available
669 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
670 * fail if not immediately available
671 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
672 * available
673 * never: never stall for any thp allocation
675 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
677 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
679 /* Always do synchronous compaction */
680 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
681 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
683 /* Kick kcompactd and fail quickly */
684 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
685 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
687 /* Synchronous compaction if madvised, otherwise kick kcompactd */
688 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
689 return GFP_TRANSHUGE_LIGHT |
690 (vma_madvised ? __GFP_DIRECT_RECLAIM :
691 __GFP_KSWAPD_RECLAIM);
693 /* Only do synchronous compaction if madvised */
694 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
695 return GFP_TRANSHUGE_LIGHT |
696 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
698 return GFP_TRANSHUGE_LIGHT;
701 /* Caller must hold page table lock. */
702 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
703 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
704 struct page *zero_page)
706 pmd_t entry;
707 if (!pmd_none(*pmd))
708 return false;
709 entry = mk_pmd(zero_page, vma->vm_page_prot);
710 entry = pmd_mkhuge(entry);
711 if (pgtable)
712 pgtable_trans_huge_deposit(mm, pmd, pgtable);
713 set_pmd_at(mm, haddr, pmd, entry);
714 mm_inc_nr_ptes(mm);
715 return true;
718 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
720 struct vm_area_struct *vma = vmf->vma;
721 gfp_t gfp;
722 struct page *page;
723 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
725 if (!transhuge_vma_suitable(vma, haddr))
726 return VM_FAULT_FALLBACK;
727 if (unlikely(anon_vma_prepare(vma)))
728 return VM_FAULT_OOM;
729 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
730 return VM_FAULT_OOM;
731 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
732 !mm_forbids_zeropage(vma->vm_mm) &&
733 transparent_hugepage_use_zero_page()) {
734 pgtable_t pgtable;
735 struct page *zero_page;
736 bool set;
737 vm_fault_t ret;
738 pgtable = pte_alloc_one(vma->vm_mm);
739 if (unlikely(!pgtable))
740 return VM_FAULT_OOM;
741 zero_page = mm_get_huge_zero_page(vma->vm_mm);
742 if (unlikely(!zero_page)) {
743 pte_free(vma->vm_mm, pgtable);
744 count_vm_event(THP_FAULT_FALLBACK);
745 return VM_FAULT_FALLBACK;
747 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
748 ret = 0;
749 set = false;
750 if (pmd_none(*vmf->pmd)) {
751 ret = check_stable_address_space(vma->vm_mm);
752 if (ret) {
753 spin_unlock(vmf->ptl);
754 } else if (userfaultfd_missing(vma)) {
755 spin_unlock(vmf->ptl);
756 ret = handle_userfault(vmf, VM_UFFD_MISSING);
757 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
758 } else {
759 set_huge_zero_page(pgtable, vma->vm_mm, vma,
760 haddr, vmf->pmd, zero_page);
761 spin_unlock(vmf->ptl);
762 set = true;
764 } else
765 spin_unlock(vmf->ptl);
766 if (!set)
767 pte_free(vma->vm_mm, pgtable);
768 return ret;
770 gfp = alloc_hugepage_direct_gfpmask(vma);
771 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
772 if (unlikely(!page)) {
773 count_vm_event(THP_FAULT_FALLBACK);
774 return VM_FAULT_FALLBACK;
776 prep_transhuge_page(page);
777 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
780 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
781 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
782 pgtable_t pgtable)
784 struct mm_struct *mm = vma->vm_mm;
785 pmd_t entry;
786 spinlock_t *ptl;
788 ptl = pmd_lock(mm, pmd);
789 if (!pmd_none(*pmd)) {
790 if (write) {
791 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
792 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
793 goto out_unlock;
795 entry = pmd_mkyoung(*pmd);
796 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
797 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
798 update_mmu_cache_pmd(vma, addr, pmd);
801 goto out_unlock;
804 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
805 if (pfn_t_devmap(pfn))
806 entry = pmd_mkdevmap(entry);
807 if (write) {
808 entry = pmd_mkyoung(pmd_mkdirty(entry));
809 entry = maybe_pmd_mkwrite(entry, vma);
812 if (pgtable) {
813 pgtable_trans_huge_deposit(mm, pmd, pgtable);
814 mm_inc_nr_ptes(mm);
815 pgtable = NULL;
818 set_pmd_at(mm, addr, pmd, entry);
819 update_mmu_cache_pmd(vma, addr, pmd);
821 out_unlock:
822 spin_unlock(ptl);
823 if (pgtable)
824 pte_free(mm, pgtable);
827 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
829 unsigned long addr = vmf->address & PMD_MASK;
830 struct vm_area_struct *vma = vmf->vma;
831 pgprot_t pgprot = vma->vm_page_prot;
832 pgtable_t pgtable = NULL;
835 * If we had pmd_special, we could avoid all these restrictions,
836 * but we need to be consistent with PTEs and architectures that
837 * can't support a 'special' bit.
839 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
840 !pfn_t_devmap(pfn));
841 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
842 (VM_PFNMAP|VM_MIXEDMAP));
843 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
845 if (addr < vma->vm_start || addr >= vma->vm_end)
846 return VM_FAULT_SIGBUS;
848 if (arch_needs_pgtable_deposit()) {
849 pgtable = pte_alloc_one(vma->vm_mm);
850 if (!pgtable)
851 return VM_FAULT_OOM;
854 track_pfn_insert(vma, &pgprot, pfn);
856 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
857 return VM_FAULT_NOPAGE;
859 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
861 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
862 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
864 if (likely(vma->vm_flags & VM_WRITE))
865 pud = pud_mkwrite(pud);
866 return pud;
869 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
870 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
872 struct mm_struct *mm = vma->vm_mm;
873 pud_t entry;
874 spinlock_t *ptl;
876 ptl = pud_lock(mm, pud);
877 if (!pud_none(*pud)) {
878 if (write) {
879 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
880 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
881 goto out_unlock;
883 entry = pud_mkyoung(*pud);
884 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
885 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
886 update_mmu_cache_pud(vma, addr, pud);
888 goto out_unlock;
891 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
892 if (pfn_t_devmap(pfn))
893 entry = pud_mkdevmap(entry);
894 if (write) {
895 entry = pud_mkyoung(pud_mkdirty(entry));
896 entry = maybe_pud_mkwrite(entry, vma);
898 set_pud_at(mm, addr, pud, entry);
899 update_mmu_cache_pud(vma, addr, pud);
901 out_unlock:
902 spin_unlock(ptl);
905 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
907 unsigned long addr = vmf->address & PUD_MASK;
908 struct vm_area_struct *vma = vmf->vma;
909 pgprot_t pgprot = vma->vm_page_prot;
912 * If we had pud_special, we could avoid all these restrictions,
913 * but we need to be consistent with PTEs and architectures that
914 * can't support a 'special' bit.
916 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
917 !pfn_t_devmap(pfn));
918 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
919 (VM_PFNMAP|VM_MIXEDMAP));
920 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
922 if (addr < vma->vm_start || addr >= vma->vm_end)
923 return VM_FAULT_SIGBUS;
925 track_pfn_insert(vma, &pgprot, pfn);
927 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
928 return VM_FAULT_NOPAGE;
930 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
931 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
933 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
934 pmd_t *pmd, int flags)
936 pmd_t _pmd;
938 _pmd = pmd_mkyoung(*pmd);
939 if (flags & FOLL_WRITE)
940 _pmd = pmd_mkdirty(_pmd);
941 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
942 pmd, _pmd, flags & FOLL_WRITE))
943 update_mmu_cache_pmd(vma, addr, pmd);
946 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
947 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
949 unsigned long pfn = pmd_pfn(*pmd);
950 struct mm_struct *mm = vma->vm_mm;
951 struct page *page;
953 assert_spin_locked(pmd_lockptr(mm, pmd));
956 * When we COW a devmap PMD entry, we split it into PTEs, so we should
957 * not be in this function with `flags & FOLL_COW` set.
959 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
961 if (flags & FOLL_WRITE && !pmd_write(*pmd))
962 return NULL;
964 if (pmd_present(*pmd) && pmd_devmap(*pmd))
965 /* pass */;
966 else
967 return NULL;
969 if (flags & FOLL_TOUCH)
970 touch_pmd(vma, addr, pmd, flags);
973 * device mapped pages can only be returned if the
974 * caller will manage the page reference count.
976 if (!(flags & FOLL_GET))
977 return ERR_PTR(-EEXIST);
979 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
980 *pgmap = get_dev_pagemap(pfn, *pgmap);
981 if (!*pgmap)
982 return ERR_PTR(-EFAULT);
983 page = pfn_to_page(pfn);
984 get_page(page);
986 return page;
989 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
990 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
991 struct vm_area_struct *vma)
993 spinlock_t *dst_ptl, *src_ptl;
994 struct page *src_page;
995 pmd_t pmd;
996 pgtable_t pgtable = NULL;
997 int ret = -ENOMEM;
999 /* Skip if can be re-fill on fault */
1000 if (!vma_is_anonymous(vma))
1001 return 0;
1003 pgtable = pte_alloc_one(dst_mm);
1004 if (unlikely(!pgtable))
1005 goto out;
1007 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1008 src_ptl = pmd_lockptr(src_mm, src_pmd);
1009 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1011 ret = -EAGAIN;
1012 pmd = *src_pmd;
1014 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1015 if (unlikely(is_swap_pmd(pmd))) {
1016 swp_entry_t entry = pmd_to_swp_entry(pmd);
1018 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1019 if (is_write_migration_entry(entry)) {
1020 make_migration_entry_read(&entry);
1021 pmd = swp_entry_to_pmd(entry);
1022 if (pmd_swp_soft_dirty(*src_pmd))
1023 pmd = pmd_swp_mksoft_dirty(pmd);
1024 set_pmd_at(src_mm, addr, src_pmd, pmd);
1026 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1027 mm_inc_nr_ptes(dst_mm);
1028 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1029 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1030 ret = 0;
1031 goto out_unlock;
1033 #endif
1035 if (unlikely(!pmd_trans_huge(pmd))) {
1036 pte_free(dst_mm, pgtable);
1037 goto out_unlock;
1040 * When page table lock is held, the huge zero pmd should not be
1041 * under splitting since we don't split the page itself, only pmd to
1042 * a page table.
1044 if (is_huge_zero_pmd(pmd)) {
1045 struct page *zero_page;
1047 * get_huge_zero_page() will never allocate a new page here,
1048 * since we already have a zero page to copy. It just takes a
1049 * reference.
1051 zero_page = mm_get_huge_zero_page(dst_mm);
1052 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1053 zero_page);
1054 ret = 0;
1055 goto out_unlock;
1058 src_page = pmd_page(pmd);
1059 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1060 get_page(src_page);
1061 page_dup_rmap(src_page, true);
1062 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1063 mm_inc_nr_ptes(dst_mm);
1064 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1066 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1067 pmd = pmd_mkold(pmd_wrprotect(pmd));
1068 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1070 ret = 0;
1071 out_unlock:
1072 spin_unlock(src_ptl);
1073 spin_unlock(dst_ptl);
1074 out:
1075 return ret;
1078 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1079 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1080 pud_t *pud, int flags)
1082 pud_t _pud;
1084 _pud = pud_mkyoung(*pud);
1085 if (flags & FOLL_WRITE)
1086 _pud = pud_mkdirty(_pud);
1087 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1088 pud, _pud, flags & FOLL_WRITE))
1089 update_mmu_cache_pud(vma, addr, pud);
1092 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1093 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1095 unsigned long pfn = pud_pfn(*pud);
1096 struct mm_struct *mm = vma->vm_mm;
1097 struct page *page;
1099 assert_spin_locked(pud_lockptr(mm, pud));
1101 if (flags & FOLL_WRITE && !pud_write(*pud))
1102 return NULL;
1104 if (pud_present(*pud) && pud_devmap(*pud))
1105 /* pass */;
1106 else
1107 return NULL;
1109 if (flags & FOLL_TOUCH)
1110 touch_pud(vma, addr, pud, flags);
1113 * device mapped pages can only be returned if the
1114 * caller will manage the page reference count.
1116 if (!(flags & FOLL_GET))
1117 return ERR_PTR(-EEXIST);
1119 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1120 *pgmap = get_dev_pagemap(pfn, *pgmap);
1121 if (!*pgmap)
1122 return ERR_PTR(-EFAULT);
1123 page = pfn_to_page(pfn);
1124 get_page(page);
1126 return page;
1129 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1130 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1131 struct vm_area_struct *vma)
1133 spinlock_t *dst_ptl, *src_ptl;
1134 pud_t pud;
1135 int ret;
1137 dst_ptl = pud_lock(dst_mm, dst_pud);
1138 src_ptl = pud_lockptr(src_mm, src_pud);
1139 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1141 ret = -EAGAIN;
1142 pud = *src_pud;
1143 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1144 goto out_unlock;
1147 * When page table lock is held, the huge zero pud should not be
1148 * under splitting since we don't split the page itself, only pud to
1149 * a page table.
1151 if (is_huge_zero_pud(pud)) {
1152 /* No huge zero pud yet */
1155 pudp_set_wrprotect(src_mm, addr, src_pud);
1156 pud = pud_mkold(pud_wrprotect(pud));
1157 set_pud_at(dst_mm, addr, dst_pud, pud);
1159 ret = 0;
1160 out_unlock:
1161 spin_unlock(src_ptl);
1162 spin_unlock(dst_ptl);
1163 return ret;
1166 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1168 pud_t entry;
1169 unsigned long haddr;
1170 bool write = vmf->flags & FAULT_FLAG_WRITE;
1172 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1173 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1174 goto unlock;
1176 entry = pud_mkyoung(orig_pud);
1177 if (write)
1178 entry = pud_mkdirty(entry);
1179 haddr = vmf->address & HPAGE_PUD_MASK;
1180 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1181 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1183 unlock:
1184 spin_unlock(vmf->ptl);
1186 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1188 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1190 pmd_t entry;
1191 unsigned long haddr;
1192 bool write = vmf->flags & FAULT_FLAG_WRITE;
1194 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1195 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1196 goto unlock;
1198 entry = pmd_mkyoung(orig_pmd);
1199 if (write)
1200 entry = pmd_mkdirty(entry);
1201 haddr = vmf->address & HPAGE_PMD_MASK;
1202 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1203 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1205 unlock:
1206 spin_unlock(vmf->ptl);
1209 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1210 pmd_t orig_pmd, struct page *page)
1212 struct vm_area_struct *vma = vmf->vma;
1213 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1214 struct mem_cgroup *memcg;
1215 pgtable_t pgtable;
1216 pmd_t _pmd;
1217 int i;
1218 vm_fault_t ret = 0;
1219 struct page **pages;
1220 struct mmu_notifier_range range;
1222 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1223 GFP_KERNEL);
1224 if (unlikely(!pages)) {
1225 ret |= VM_FAULT_OOM;
1226 goto out;
1229 for (i = 0; i < HPAGE_PMD_NR; i++) {
1230 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1231 vmf->address, page_to_nid(page));
1232 if (unlikely(!pages[i] ||
1233 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1234 GFP_KERNEL, &memcg, false))) {
1235 if (pages[i])
1236 put_page(pages[i]);
1237 while (--i >= 0) {
1238 memcg = (void *)page_private(pages[i]);
1239 set_page_private(pages[i], 0);
1240 mem_cgroup_cancel_charge(pages[i], memcg,
1241 false);
1242 put_page(pages[i]);
1244 kfree(pages);
1245 ret |= VM_FAULT_OOM;
1246 goto out;
1248 set_page_private(pages[i], (unsigned long)memcg);
1251 for (i = 0; i < HPAGE_PMD_NR; i++) {
1252 copy_user_highpage(pages[i], page + i,
1253 haddr + PAGE_SIZE * i, vma);
1254 __SetPageUptodate(pages[i]);
1255 cond_resched();
1258 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1259 haddr, haddr + HPAGE_PMD_SIZE);
1260 mmu_notifier_invalidate_range_start(&range);
1262 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1263 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1264 goto out_free_pages;
1265 VM_BUG_ON_PAGE(!PageHead(page), page);
1268 * Leave pmd empty until pte is filled note we must notify here as
1269 * concurrent CPU thread might write to new page before the call to
1270 * mmu_notifier_invalidate_range_end() happens which can lead to a
1271 * device seeing memory write in different order than CPU.
1273 * See Documentation/vm/mmu_notifier.rst
1275 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1277 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1278 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1280 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1281 pte_t entry;
1282 entry = mk_pte(pages[i], vma->vm_page_prot);
1283 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1284 memcg = (void *)page_private(pages[i]);
1285 set_page_private(pages[i], 0);
1286 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1287 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1288 lru_cache_add_active_or_unevictable(pages[i], vma);
1289 vmf->pte = pte_offset_map(&_pmd, haddr);
1290 VM_BUG_ON(!pte_none(*vmf->pte));
1291 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1292 pte_unmap(vmf->pte);
1294 kfree(pages);
1296 smp_wmb(); /* make pte visible before pmd */
1297 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1298 page_remove_rmap(page, true);
1299 spin_unlock(vmf->ptl);
1302 * No need to double call mmu_notifier->invalidate_range() callback as
1303 * the above pmdp_huge_clear_flush_notify() did already call it.
1305 mmu_notifier_invalidate_range_only_end(&range);
1307 ret |= VM_FAULT_WRITE;
1308 put_page(page);
1310 out:
1311 return ret;
1313 out_free_pages:
1314 spin_unlock(vmf->ptl);
1315 mmu_notifier_invalidate_range_end(&range);
1316 for (i = 0; i < HPAGE_PMD_NR; i++) {
1317 memcg = (void *)page_private(pages[i]);
1318 set_page_private(pages[i], 0);
1319 mem_cgroup_cancel_charge(pages[i], memcg, false);
1320 put_page(pages[i]);
1322 kfree(pages);
1323 goto out;
1326 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1328 struct vm_area_struct *vma = vmf->vma;
1329 struct page *page = NULL, *new_page;
1330 struct mem_cgroup *memcg;
1331 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1332 struct mmu_notifier_range range;
1333 gfp_t huge_gfp; /* for allocation and charge */
1334 vm_fault_t ret = 0;
1336 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1337 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1338 if (is_huge_zero_pmd(orig_pmd))
1339 goto alloc;
1340 spin_lock(vmf->ptl);
1341 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1342 goto out_unlock;
1344 page = pmd_page(orig_pmd);
1345 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1347 * We can only reuse the page if nobody else maps the huge page or it's
1348 * part.
1350 if (!trylock_page(page)) {
1351 get_page(page);
1352 spin_unlock(vmf->ptl);
1353 lock_page(page);
1354 spin_lock(vmf->ptl);
1355 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1356 unlock_page(page);
1357 put_page(page);
1358 goto out_unlock;
1360 put_page(page);
1362 if (reuse_swap_page(page, NULL)) {
1363 pmd_t entry;
1364 entry = pmd_mkyoung(orig_pmd);
1365 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1366 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1367 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1368 ret |= VM_FAULT_WRITE;
1369 unlock_page(page);
1370 goto out_unlock;
1372 unlock_page(page);
1373 get_page(page);
1374 spin_unlock(vmf->ptl);
1375 alloc:
1376 if (__transparent_hugepage_enabled(vma) &&
1377 !transparent_hugepage_debug_cow()) {
1378 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1379 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1380 } else
1381 new_page = NULL;
1383 if (likely(new_page)) {
1384 prep_transhuge_page(new_page);
1385 } else {
1386 if (!page) {
1387 split_huge_pmd(vma, vmf->pmd, vmf->address);
1388 ret |= VM_FAULT_FALLBACK;
1389 } else {
1390 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1391 if (ret & VM_FAULT_OOM) {
1392 split_huge_pmd(vma, vmf->pmd, vmf->address);
1393 ret |= VM_FAULT_FALLBACK;
1395 put_page(page);
1397 count_vm_event(THP_FAULT_FALLBACK);
1398 goto out;
1401 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1402 huge_gfp, &memcg, true))) {
1403 put_page(new_page);
1404 split_huge_pmd(vma, vmf->pmd, vmf->address);
1405 if (page)
1406 put_page(page);
1407 ret |= VM_FAULT_FALLBACK;
1408 count_vm_event(THP_FAULT_FALLBACK);
1409 goto out;
1412 count_vm_event(THP_FAULT_ALLOC);
1413 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1415 if (!page)
1416 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1417 else
1418 copy_user_huge_page(new_page, page, vmf->address,
1419 vma, HPAGE_PMD_NR);
1420 __SetPageUptodate(new_page);
1422 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1423 haddr, haddr + HPAGE_PMD_SIZE);
1424 mmu_notifier_invalidate_range_start(&range);
1426 spin_lock(vmf->ptl);
1427 if (page)
1428 put_page(page);
1429 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1430 spin_unlock(vmf->ptl);
1431 mem_cgroup_cancel_charge(new_page, memcg, true);
1432 put_page(new_page);
1433 goto out_mn;
1434 } else {
1435 pmd_t entry;
1436 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1437 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1438 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1439 page_add_new_anon_rmap(new_page, vma, haddr, true);
1440 mem_cgroup_commit_charge(new_page, memcg, false, true);
1441 lru_cache_add_active_or_unevictable(new_page, vma);
1442 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1443 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1444 if (!page) {
1445 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1446 } else {
1447 VM_BUG_ON_PAGE(!PageHead(page), page);
1448 page_remove_rmap(page, true);
1449 put_page(page);
1451 ret |= VM_FAULT_WRITE;
1453 spin_unlock(vmf->ptl);
1454 out_mn:
1456 * No need to double call mmu_notifier->invalidate_range() callback as
1457 * the above pmdp_huge_clear_flush_notify() did already call it.
1459 mmu_notifier_invalidate_range_only_end(&range);
1460 out:
1461 return ret;
1462 out_unlock:
1463 spin_unlock(vmf->ptl);
1464 return ret;
1468 * FOLL_FORCE can write to even unwritable pmd's, but only
1469 * after we've gone through a COW cycle and they are dirty.
1471 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1473 return pmd_write(pmd) ||
1474 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1477 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1478 unsigned long addr,
1479 pmd_t *pmd,
1480 unsigned int flags)
1482 struct mm_struct *mm = vma->vm_mm;
1483 struct page *page = NULL;
1485 assert_spin_locked(pmd_lockptr(mm, pmd));
1487 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1488 goto out;
1490 /* Avoid dumping huge zero page */
1491 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1492 return ERR_PTR(-EFAULT);
1494 /* Full NUMA hinting faults to serialise migration in fault paths */
1495 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1496 goto out;
1498 page = pmd_page(*pmd);
1499 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1500 if (flags & FOLL_TOUCH)
1501 touch_pmd(vma, addr, pmd, flags);
1502 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1504 * We don't mlock() pte-mapped THPs. This way we can avoid
1505 * leaking mlocked pages into non-VM_LOCKED VMAs.
1507 * For anon THP:
1509 * In most cases the pmd is the only mapping of the page as we
1510 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1511 * writable private mappings in populate_vma_page_range().
1513 * The only scenario when we have the page shared here is if we
1514 * mlocking read-only mapping shared over fork(). We skip
1515 * mlocking such pages.
1517 * For file THP:
1519 * We can expect PageDoubleMap() to be stable under page lock:
1520 * for file pages we set it in page_add_file_rmap(), which
1521 * requires page to be locked.
1524 if (PageAnon(page) && compound_mapcount(page) != 1)
1525 goto skip_mlock;
1526 if (PageDoubleMap(page) || !page->mapping)
1527 goto skip_mlock;
1528 if (!trylock_page(page))
1529 goto skip_mlock;
1530 lru_add_drain();
1531 if (page->mapping && !PageDoubleMap(page))
1532 mlock_vma_page(page);
1533 unlock_page(page);
1535 skip_mlock:
1536 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1537 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1538 if (flags & FOLL_GET)
1539 get_page(page);
1541 out:
1542 return page;
1545 /* NUMA hinting page fault entry point for trans huge pmds */
1546 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1548 struct vm_area_struct *vma = vmf->vma;
1549 struct anon_vma *anon_vma = NULL;
1550 struct page *page;
1551 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1552 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1553 int target_nid, last_cpupid = -1;
1554 bool page_locked;
1555 bool migrated = false;
1556 bool was_writable;
1557 int flags = 0;
1559 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1560 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1561 goto out_unlock;
1564 * If there are potential migrations, wait for completion and retry
1565 * without disrupting NUMA hinting information. Do not relock and
1566 * check_same as the page may no longer be mapped.
1568 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1569 page = pmd_page(*vmf->pmd);
1570 if (!get_page_unless_zero(page))
1571 goto out_unlock;
1572 spin_unlock(vmf->ptl);
1573 put_and_wait_on_page_locked(page);
1574 goto out;
1577 page = pmd_page(pmd);
1578 BUG_ON(is_huge_zero_page(page));
1579 page_nid = page_to_nid(page);
1580 last_cpupid = page_cpupid_last(page);
1581 count_vm_numa_event(NUMA_HINT_FAULTS);
1582 if (page_nid == this_nid) {
1583 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1584 flags |= TNF_FAULT_LOCAL;
1587 /* See similar comment in do_numa_page for explanation */
1588 if (!pmd_savedwrite(pmd))
1589 flags |= TNF_NO_GROUP;
1592 * Acquire the page lock to serialise THP migrations but avoid dropping
1593 * page_table_lock if at all possible
1595 page_locked = trylock_page(page);
1596 target_nid = mpol_misplaced(page, vma, haddr);
1597 if (target_nid == NUMA_NO_NODE) {
1598 /* If the page was locked, there are no parallel migrations */
1599 if (page_locked)
1600 goto clear_pmdnuma;
1603 /* Migration could have started since the pmd_trans_migrating check */
1604 if (!page_locked) {
1605 page_nid = NUMA_NO_NODE;
1606 if (!get_page_unless_zero(page))
1607 goto out_unlock;
1608 spin_unlock(vmf->ptl);
1609 put_and_wait_on_page_locked(page);
1610 goto out;
1614 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1615 * to serialises splits
1617 get_page(page);
1618 spin_unlock(vmf->ptl);
1619 anon_vma = page_lock_anon_vma_read(page);
1621 /* Confirm the PMD did not change while page_table_lock was released */
1622 spin_lock(vmf->ptl);
1623 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1624 unlock_page(page);
1625 put_page(page);
1626 page_nid = NUMA_NO_NODE;
1627 goto out_unlock;
1630 /* Bail if we fail to protect against THP splits for any reason */
1631 if (unlikely(!anon_vma)) {
1632 put_page(page);
1633 page_nid = NUMA_NO_NODE;
1634 goto clear_pmdnuma;
1638 * Since we took the NUMA fault, we must have observed the !accessible
1639 * bit. Make sure all other CPUs agree with that, to avoid them
1640 * modifying the page we're about to migrate.
1642 * Must be done under PTL such that we'll observe the relevant
1643 * inc_tlb_flush_pending().
1645 * We are not sure a pending tlb flush here is for a huge page
1646 * mapping or not. Hence use the tlb range variant
1648 if (mm_tlb_flush_pending(vma->vm_mm)) {
1649 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1651 * change_huge_pmd() released the pmd lock before
1652 * invalidating the secondary MMUs sharing the primary
1653 * MMU pagetables (with ->invalidate_range()). The
1654 * mmu_notifier_invalidate_range_end() (which
1655 * internally calls ->invalidate_range()) in
1656 * change_pmd_range() will run after us, so we can't
1657 * rely on it here and we need an explicit invalidate.
1659 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1660 haddr + HPAGE_PMD_SIZE);
1664 * Migrate the THP to the requested node, returns with page unlocked
1665 * and access rights restored.
1667 spin_unlock(vmf->ptl);
1669 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1670 vmf->pmd, pmd, vmf->address, page, target_nid);
1671 if (migrated) {
1672 flags |= TNF_MIGRATED;
1673 page_nid = target_nid;
1674 } else
1675 flags |= TNF_MIGRATE_FAIL;
1677 goto out;
1678 clear_pmdnuma:
1679 BUG_ON(!PageLocked(page));
1680 was_writable = pmd_savedwrite(pmd);
1681 pmd = pmd_modify(pmd, vma->vm_page_prot);
1682 pmd = pmd_mkyoung(pmd);
1683 if (was_writable)
1684 pmd = pmd_mkwrite(pmd);
1685 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1686 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1687 unlock_page(page);
1688 out_unlock:
1689 spin_unlock(vmf->ptl);
1691 out:
1692 if (anon_vma)
1693 page_unlock_anon_vma_read(anon_vma);
1695 if (page_nid != NUMA_NO_NODE)
1696 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1697 flags);
1699 return 0;
1703 * Return true if we do MADV_FREE successfully on entire pmd page.
1704 * Otherwise, return false.
1706 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1707 pmd_t *pmd, unsigned long addr, unsigned long next)
1709 spinlock_t *ptl;
1710 pmd_t orig_pmd;
1711 struct page *page;
1712 struct mm_struct *mm = tlb->mm;
1713 bool ret = false;
1715 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1717 ptl = pmd_trans_huge_lock(pmd, vma);
1718 if (!ptl)
1719 goto out_unlocked;
1721 orig_pmd = *pmd;
1722 if (is_huge_zero_pmd(orig_pmd))
1723 goto out;
1725 if (unlikely(!pmd_present(orig_pmd))) {
1726 VM_BUG_ON(thp_migration_supported() &&
1727 !is_pmd_migration_entry(orig_pmd));
1728 goto out;
1731 page = pmd_page(orig_pmd);
1733 * If other processes are mapping this page, we couldn't discard
1734 * the page unless they all do MADV_FREE so let's skip the page.
1736 if (page_mapcount(page) != 1)
1737 goto out;
1739 if (!trylock_page(page))
1740 goto out;
1743 * If user want to discard part-pages of THP, split it so MADV_FREE
1744 * will deactivate only them.
1746 if (next - addr != HPAGE_PMD_SIZE) {
1747 get_page(page);
1748 spin_unlock(ptl);
1749 split_huge_page(page);
1750 unlock_page(page);
1751 put_page(page);
1752 goto out_unlocked;
1755 if (PageDirty(page))
1756 ClearPageDirty(page);
1757 unlock_page(page);
1759 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1760 pmdp_invalidate(vma, addr, pmd);
1761 orig_pmd = pmd_mkold(orig_pmd);
1762 orig_pmd = pmd_mkclean(orig_pmd);
1764 set_pmd_at(mm, addr, pmd, orig_pmd);
1765 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1768 mark_page_lazyfree(page);
1769 ret = true;
1770 out:
1771 spin_unlock(ptl);
1772 out_unlocked:
1773 return ret;
1776 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1778 pgtable_t pgtable;
1780 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1781 pte_free(mm, pgtable);
1782 mm_dec_nr_ptes(mm);
1785 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1786 pmd_t *pmd, unsigned long addr)
1788 pmd_t orig_pmd;
1789 spinlock_t *ptl;
1791 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1793 ptl = __pmd_trans_huge_lock(pmd, vma);
1794 if (!ptl)
1795 return 0;
1797 * For architectures like ppc64 we look at deposited pgtable
1798 * when calling pmdp_huge_get_and_clear. So do the
1799 * pgtable_trans_huge_withdraw after finishing pmdp related
1800 * operations.
1802 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1803 tlb->fullmm);
1804 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1805 if (vma_is_dax(vma)) {
1806 if (arch_needs_pgtable_deposit())
1807 zap_deposited_table(tlb->mm, pmd);
1808 spin_unlock(ptl);
1809 if (is_huge_zero_pmd(orig_pmd))
1810 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1811 } else if (is_huge_zero_pmd(orig_pmd)) {
1812 zap_deposited_table(tlb->mm, pmd);
1813 spin_unlock(ptl);
1814 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1815 } else {
1816 struct page *page = NULL;
1817 int flush_needed = 1;
1819 if (pmd_present(orig_pmd)) {
1820 page = pmd_page(orig_pmd);
1821 page_remove_rmap(page, true);
1822 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1823 VM_BUG_ON_PAGE(!PageHead(page), page);
1824 } else if (thp_migration_supported()) {
1825 swp_entry_t entry;
1827 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1828 entry = pmd_to_swp_entry(orig_pmd);
1829 page = pfn_to_page(swp_offset(entry));
1830 flush_needed = 0;
1831 } else
1832 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1834 if (PageAnon(page)) {
1835 zap_deposited_table(tlb->mm, pmd);
1836 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1837 } else {
1838 if (arch_needs_pgtable_deposit())
1839 zap_deposited_table(tlb->mm, pmd);
1840 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1843 spin_unlock(ptl);
1844 if (flush_needed)
1845 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1847 return 1;
1850 #ifndef pmd_move_must_withdraw
1851 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1852 spinlock_t *old_pmd_ptl,
1853 struct vm_area_struct *vma)
1856 * With split pmd lock we also need to move preallocated
1857 * PTE page table if new_pmd is on different PMD page table.
1859 * We also don't deposit and withdraw tables for file pages.
1861 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1863 #endif
1865 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1867 #ifdef CONFIG_MEM_SOFT_DIRTY
1868 if (unlikely(is_pmd_migration_entry(pmd)))
1869 pmd = pmd_swp_mksoft_dirty(pmd);
1870 else if (pmd_present(pmd))
1871 pmd = pmd_mksoft_dirty(pmd);
1872 #endif
1873 return pmd;
1876 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1877 unsigned long new_addr, unsigned long old_end,
1878 pmd_t *old_pmd, pmd_t *new_pmd)
1880 spinlock_t *old_ptl, *new_ptl;
1881 pmd_t pmd;
1882 struct mm_struct *mm = vma->vm_mm;
1883 bool force_flush = false;
1885 if ((old_addr & ~HPAGE_PMD_MASK) ||
1886 (new_addr & ~HPAGE_PMD_MASK) ||
1887 old_end - old_addr < HPAGE_PMD_SIZE)
1888 return false;
1891 * The destination pmd shouldn't be established, free_pgtables()
1892 * should have release it.
1894 if (WARN_ON(!pmd_none(*new_pmd))) {
1895 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1896 return false;
1900 * We don't have to worry about the ordering of src and dst
1901 * ptlocks because exclusive mmap_sem prevents deadlock.
1903 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1904 if (old_ptl) {
1905 new_ptl = pmd_lockptr(mm, new_pmd);
1906 if (new_ptl != old_ptl)
1907 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1908 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1909 if (pmd_present(pmd))
1910 force_flush = true;
1911 VM_BUG_ON(!pmd_none(*new_pmd));
1913 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1914 pgtable_t pgtable;
1915 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1916 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1918 pmd = move_soft_dirty_pmd(pmd);
1919 set_pmd_at(mm, new_addr, new_pmd, pmd);
1920 if (force_flush)
1921 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1922 if (new_ptl != old_ptl)
1923 spin_unlock(new_ptl);
1924 spin_unlock(old_ptl);
1925 return true;
1927 return false;
1931 * Returns
1932 * - 0 if PMD could not be locked
1933 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1934 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1936 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1937 unsigned long addr, pgprot_t newprot, int prot_numa)
1939 struct mm_struct *mm = vma->vm_mm;
1940 spinlock_t *ptl;
1941 pmd_t entry;
1942 bool preserve_write;
1943 int ret;
1945 ptl = __pmd_trans_huge_lock(pmd, vma);
1946 if (!ptl)
1947 return 0;
1949 preserve_write = prot_numa && pmd_write(*pmd);
1950 ret = 1;
1952 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1953 if (is_swap_pmd(*pmd)) {
1954 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1956 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1957 if (is_write_migration_entry(entry)) {
1958 pmd_t newpmd;
1960 * A protection check is difficult so
1961 * just be safe and disable write
1963 make_migration_entry_read(&entry);
1964 newpmd = swp_entry_to_pmd(entry);
1965 if (pmd_swp_soft_dirty(*pmd))
1966 newpmd = pmd_swp_mksoft_dirty(newpmd);
1967 set_pmd_at(mm, addr, pmd, newpmd);
1969 goto unlock;
1971 #endif
1974 * Avoid trapping faults against the zero page. The read-only
1975 * data is likely to be read-cached on the local CPU and
1976 * local/remote hits to the zero page are not interesting.
1978 if (prot_numa && is_huge_zero_pmd(*pmd))
1979 goto unlock;
1981 if (prot_numa && pmd_protnone(*pmd))
1982 goto unlock;
1985 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1986 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1987 * which is also under down_read(mmap_sem):
1989 * CPU0: CPU1:
1990 * change_huge_pmd(prot_numa=1)
1991 * pmdp_huge_get_and_clear_notify()
1992 * madvise_dontneed()
1993 * zap_pmd_range()
1994 * pmd_trans_huge(*pmd) == 0 (without ptl)
1995 * // skip the pmd
1996 * set_pmd_at();
1997 * // pmd is re-established
1999 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2000 * which may break userspace.
2002 * pmdp_invalidate() is required to make sure we don't miss
2003 * dirty/young flags set by hardware.
2005 entry = pmdp_invalidate(vma, addr, pmd);
2007 entry = pmd_modify(entry, newprot);
2008 if (preserve_write)
2009 entry = pmd_mk_savedwrite(entry);
2010 ret = HPAGE_PMD_NR;
2011 set_pmd_at(mm, addr, pmd, entry);
2012 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2013 unlock:
2014 spin_unlock(ptl);
2015 return ret;
2019 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2021 * Note that if it returns page table lock pointer, this routine returns without
2022 * unlocking page table lock. So callers must unlock it.
2024 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2026 spinlock_t *ptl;
2027 ptl = pmd_lock(vma->vm_mm, pmd);
2028 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2029 pmd_devmap(*pmd)))
2030 return ptl;
2031 spin_unlock(ptl);
2032 return NULL;
2036 * Returns true if a given pud maps a thp, false otherwise.
2038 * Note that if it returns true, this routine returns without unlocking page
2039 * table lock. So callers must unlock it.
2041 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2043 spinlock_t *ptl;
2045 ptl = pud_lock(vma->vm_mm, pud);
2046 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2047 return ptl;
2048 spin_unlock(ptl);
2049 return NULL;
2052 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2053 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2054 pud_t *pud, unsigned long addr)
2056 spinlock_t *ptl;
2058 ptl = __pud_trans_huge_lock(pud, vma);
2059 if (!ptl)
2060 return 0;
2062 * For architectures like ppc64 we look at deposited pgtable
2063 * when calling pudp_huge_get_and_clear. So do the
2064 * pgtable_trans_huge_withdraw after finishing pudp related
2065 * operations.
2067 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2068 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2069 if (vma_is_dax(vma)) {
2070 spin_unlock(ptl);
2071 /* No zero page support yet */
2072 } else {
2073 /* No support for anonymous PUD pages yet */
2074 BUG();
2076 return 1;
2079 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2080 unsigned long haddr)
2082 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2083 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2084 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2085 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2087 count_vm_event(THP_SPLIT_PUD);
2089 pudp_huge_clear_flush_notify(vma, haddr, pud);
2092 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2093 unsigned long address)
2095 spinlock_t *ptl;
2096 struct mmu_notifier_range range;
2098 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2099 address & HPAGE_PUD_MASK,
2100 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2101 mmu_notifier_invalidate_range_start(&range);
2102 ptl = pud_lock(vma->vm_mm, pud);
2103 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2104 goto out;
2105 __split_huge_pud_locked(vma, pud, range.start);
2107 out:
2108 spin_unlock(ptl);
2110 * No need to double call mmu_notifier->invalidate_range() callback as
2111 * the above pudp_huge_clear_flush_notify() did already call it.
2113 mmu_notifier_invalidate_range_only_end(&range);
2115 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2117 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2118 unsigned long haddr, pmd_t *pmd)
2120 struct mm_struct *mm = vma->vm_mm;
2121 pgtable_t pgtable;
2122 pmd_t _pmd;
2123 int i;
2126 * Leave pmd empty until pte is filled note that it is fine to delay
2127 * notification until mmu_notifier_invalidate_range_end() as we are
2128 * replacing a zero pmd write protected page with a zero pte write
2129 * protected page.
2131 * See Documentation/vm/mmu_notifier.rst
2133 pmdp_huge_clear_flush(vma, haddr, pmd);
2135 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2136 pmd_populate(mm, &_pmd, pgtable);
2138 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2139 pte_t *pte, entry;
2140 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2141 entry = pte_mkspecial(entry);
2142 pte = pte_offset_map(&_pmd, haddr);
2143 VM_BUG_ON(!pte_none(*pte));
2144 set_pte_at(mm, haddr, pte, entry);
2145 pte_unmap(pte);
2147 smp_wmb(); /* make pte visible before pmd */
2148 pmd_populate(mm, pmd, pgtable);
2151 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2152 unsigned long haddr, bool freeze)
2154 struct mm_struct *mm = vma->vm_mm;
2155 struct page *page;
2156 pgtable_t pgtable;
2157 pmd_t old_pmd, _pmd;
2158 bool young, write, soft_dirty, pmd_migration = false;
2159 unsigned long addr;
2160 int i;
2162 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2163 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2164 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2165 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2166 && !pmd_devmap(*pmd));
2168 count_vm_event(THP_SPLIT_PMD);
2170 if (!vma_is_anonymous(vma)) {
2171 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2173 * We are going to unmap this huge page. So
2174 * just go ahead and zap it
2176 if (arch_needs_pgtable_deposit())
2177 zap_deposited_table(mm, pmd);
2178 if (vma_is_dax(vma))
2179 return;
2180 page = pmd_page(_pmd);
2181 if (!PageDirty(page) && pmd_dirty(_pmd))
2182 set_page_dirty(page);
2183 if (!PageReferenced(page) && pmd_young(_pmd))
2184 SetPageReferenced(page);
2185 page_remove_rmap(page, true);
2186 put_page(page);
2187 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2188 return;
2189 } else if (is_huge_zero_pmd(*pmd)) {
2191 * FIXME: Do we want to invalidate secondary mmu by calling
2192 * mmu_notifier_invalidate_range() see comments below inside
2193 * __split_huge_pmd() ?
2195 * We are going from a zero huge page write protected to zero
2196 * small page also write protected so it does not seems useful
2197 * to invalidate secondary mmu at this time.
2199 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2203 * Up to this point the pmd is present and huge and userland has the
2204 * whole access to the hugepage during the split (which happens in
2205 * place). If we overwrite the pmd with the not-huge version pointing
2206 * to the pte here (which of course we could if all CPUs were bug
2207 * free), userland could trigger a small page size TLB miss on the
2208 * small sized TLB while the hugepage TLB entry is still established in
2209 * the huge TLB. Some CPU doesn't like that.
2210 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2211 * 383 on page 93. Intel should be safe but is also warns that it's
2212 * only safe if the permission and cache attributes of the two entries
2213 * loaded in the two TLB is identical (which should be the case here).
2214 * But it is generally safer to never allow small and huge TLB entries
2215 * for the same virtual address to be loaded simultaneously. So instead
2216 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2217 * current pmd notpresent (atomically because here the pmd_trans_huge
2218 * must remain set at all times on the pmd until the split is complete
2219 * for this pmd), then we flush the SMP TLB and finally we write the
2220 * non-huge version of the pmd entry with pmd_populate.
2222 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2224 pmd_migration = is_pmd_migration_entry(old_pmd);
2225 if (unlikely(pmd_migration)) {
2226 swp_entry_t entry;
2228 entry = pmd_to_swp_entry(old_pmd);
2229 page = pfn_to_page(swp_offset(entry));
2230 write = is_write_migration_entry(entry);
2231 young = false;
2232 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2233 } else {
2234 page = pmd_page(old_pmd);
2235 if (pmd_dirty(old_pmd))
2236 SetPageDirty(page);
2237 write = pmd_write(old_pmd);
2238 young = pmd_young(old_pmd);
2239 soft_dirty = pmd_soft_dirty(old_pmd);
2241 VM_BUG_ON_PAGE(!page_count(page), page);
2242 page_ref_add(page, HPAGE_PMD_NR - 1);
2245 * Withdraw the table only after we mark the pmd entry invalid.
2246 * This's critical for some architectures (Power).
2248 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2249 pmd_populate(mm, &_pmd, pgtable);
2251 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2252 pte_t entry, *pte;
2254 * Note that NUMA hinting access restrictions are not
2255 * transferred to avoid any possibility of altering
2256 * permissions across VMAs.
2258 if (freeze || pmd_migration) {
2259 swp_entry_t swp_entry;
2260 swp_entry = make_migration_entry(page + i, write);
2261 entry = swp_entry_to_pte(swp_entry);
2262 if (soft_dirty)
2263 entry = pte_swp_mksoft_dirty(entry);
2264 } else {
2265 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2266 entry = maybe_mkwrite(entry, vma);
2267 if (!write)
2268 entry = pte_wrprotect(entry);
2269 if (!young)
2270 entry = pte_mkold(entry);
2271 if (soft_dirty)
2272 entry = pte_mksoft_dirty(entry);
2274 pte = pte_offset_map(&_pmd, addr);
2275 BUG_ON(!pte_none(*pte));
2276 set_pte_at(mm, addr, pte, entry);
2277 atomic_inc(&page[i]._mapcount);
2278 pte_unmap(pte);
2282 * Set PG_double_map before dropping compound_mapcount to avoid
2283 * false-negative page_mapped().
2285 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2286 for (i = 0; i < HPAGE_PMD_NR; i++)
2287 atomic_inc(&page[i]._mapcount);
2290 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2291 /* Last compound_mapcount is gone. */
2292 __dec_node_page_state(page, NR_ANON_THPS);
2293 if (TestClearPageDoubleMap(page)) {
2294 /* No need in mapcount reference anymore */
2295 for (i = 0; i < HPAGE_PMD_NR; i++)
2296 atomic_dec(&page[i]._mapcount);
2300 smp_wmb(); /* make pte visible before pmd */
2301 pmd_populate(mm, pmd, pgtable);
2303 if (freeze) {
2304 for (i = 0; i < HPAGE_PMD_NR; i++) {
2305 page_remove_rmap(page + i, false);
2306 put_page(page + i);
2311 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2312 unsigned long address, bool freeze, struct page *page)
2314 spinlock_t *ptl;
2315 struct mmu_notifier_range range;
2317 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2318 address & HPAGE_PMD_MASK,
2319 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2320 mmu_notifier_invalidate_range_start(&range);
2321 ptl = pmd_lock(vma->vm_mm, pmd);
2324 * If caller asks to setup a migration entries, we need a page to check
2325 * pmd against. Otherwise we can end up replacing wrong page.
2327 VM_BUG_ON(freeze && !page);
2328 if (page && page != pmd_page(*pmd))
2329 goto out;
2331 if (pmd_trans_huge(*pmd)) {
2332 page = pmd_page(*pmd);
2333 if (PageMlocked(page))
2334 clear_page_mlock(page);
2335 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2336 goto out;
2337 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2338 out:
2339 spin_unlock(ptl);
2341 * No need to double call mmu_notifier->invalidate_range() callback.
2342 * They are 3 cases to consider inside __split_huge_pmd_locked():
2343 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2344 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2345 * fault will trigger a flush_notify before pointing to a new page
2346 * (it is fine if the secondary mmu keeps pointing to the old zero
2347 * page in the meantime)
2348 * 3) Split a huge pmd into pte pointing to the same page. No need
2349 * to invalidate secondary tlb entry they are all still valid.
2350 * any further changes to individual pte will notify. So no need
2351 * to call mmu_notifier->invalidate_range()
2353 mmu_notifier_invalidate_range_only_end(&range);
2356 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2357 bool freeze, struct page *page)
2359 pgd_t *pgd;
2360 p4d_t *p4d;
2361 pud_t *pud;
2362 pmd_t *pmd;
2364 pgd = pgd_offset(vma->vm_mm, address);
2365 if (!pgd_present(*pgd))
2366 return;
2368 p4d = p4d_offset(pgd, address);
2369 if (!p4d_present(*p4d))
2370 return;
2372 pud = pud_offset(p4d, address);
2373 if (!pud_present(*pud))
2374 return;
2376 pmd = pmd_offset(pud, address);
2378 __split_huge_pmd(vma, pmd, address, freeze, page);
2381 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2382 unsigned long start,
2383 unsigned long end,
2384 long adjust_next)
2387 * If the new start address isn't hpage aligned and it could
2388 * previously contain an hugepage: check if we need to split
2389 * an huge pmd.
2391 if (start & ~HPAGE_PMD_MASK &&
2392 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2393 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2394 split_huge_pmd_address(vma, start, false, NULL);
2397 * If the new end address isn't hpage aligned and it could
2398 * previously contain an hugepage: check if we need to split
2399 * an huge pmd.
2401 if (end & ~HPAGE_PMD_MASK &&
2402 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2403 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2404 split_huge_pmd_address(vma, end, false, NULL);
2407 * If we're also updating the vma->vm_next->vm_start, if the new
2408 * vm_next->vm_start isn't page aligned and it could previously
2409 * contain an hugepage: check if we need to split an huge pmd.
2411 if (adjust_next > 0) {
2412 struct vm_area_struct *next = vma->vm_next;
2413 unsigned long nstart = next->vm_start;
2414 nstart += adjust_next << PAGE_SHIFT;
2415 if (nstart & ~HPAGE_PMD_MASK &&
2416 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2417 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2418 split_huge_pmd_address(next, nstart, false, NULL);
2422 static void unmap_page(struct page *page)
2424 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2425 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2426 bool unmap_success;
2428 VM_BUG_ON_PAGE(!PageHead(page), page);
2430 if (PageAnon(page))
2431 ttu_flags |= TTU_SPLIT_FREEZE;
2433 unmap_success = try_to_unmap(page, ttu_flags);
2434 VM_BUG_ON_PAGE(!unmap_success, page);
2437 static void remap_page(struct page *page)
2439 int i;
2440 if (PageTransHuge(page)) {
2441 remove_migration_ptes(page, page, true);
2442 } else {
2443 for (i = 0; i < HPAGE_PMD_NR; i++)
2444 remove_migration_ptes(page + i, page + i, true);
2448 static void __split_huge_page_tail(struct page *head, int tail,
2449 struct lruvec *lruvec, struct list_head *list)
2451 struct page *page_tail = head + tail;
2453 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2456 * Clone page flags before unfreezing refcount.
2458 * After successful get_page_unless_zero() might follow flags change,
2459 * for exmaple lock_page() which set PG_waiters.
2461 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2462 page_tail->flags |= (head->flags &
2463 ((1L << PG_referenced) |
2464 (1L << PG_swapbacked) |
2465 (1L << PG_swapcache) |
2466 (1L << PG_mlocked) |
2467 (1L << PG_uptodate) |
2468 (1L << PG_active) |
2469 (1L << PG_workingset) |
2470 (1L << PG_locked) |
2471 (1L << PG_unevictable) |
2472 (1L << PG_dirty)));
2474 /* ->mapping in first tail page is compound_mapcount */
2475 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2476 page_tail);
2477 page_tail->mapping = head->mapping;
2478 page_tail->index = head->index + tail;
2480 /* Page flags must be visible before we make the page non-compound. */
2481 smp_wmb();
2484 * Clear PageTail before unfreezing page refcount.
2486 * After successful get_page_unless_zero() might follow put_page()
2487 * which needs correct compound_head().
2489 clear_compound_head(page_tail);
2491 /* Finally unfreeze refcount. Additional reference from page cache. */
2492 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2493 PageSwapCache(head)));
2495 if (page_is_young(head))
2496 set_page_young(page_tail);
2497 if (page_is_idle(head))
2498 set_page_idle(page_tail);
2500 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2503 * always add to the tail because some iterators expect new
2504 * pages to show after the currently processed elements - e.g.
2505 * migrate_pages
2507 lru_add_page_tail(head, page_tail, lruvec, list);
2510 static void __split_huge_page(struct page *page, struct list_head *list,
2511 pgoff_t end, unsigned long flags)
2513 struct page *head = compound_head(page);
2514 pg_data_t *pgdat = page_pgdat(head);
2515 struct lruvec *lruvec;
2516 struct address_space *swap_cache = NULL;
2517 unsigned long offset = 0;
2518 int i;
2520 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2522 /* complete memcg works before add pages to LRU */
2523 mem_cgroup_split_huge_fixup(head);
2525 if (PageAnon(head) && PageSwapCache(head)) {
2526 swp_entry_t entry = { .val = page_private(head) };
2528 offset = swp_offset(entry);
2529 swap_cache = swap_address_space(entry);
2530 xa_lock(&swap_cache->i_pages);
2533 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2534 __split_huge_page_tail(head, i, lruvec, list);
2535 /* Some pages can be beyond i_size: drop them from page cache */
2536 if (head[i].index >= end) {
2537 ClearPageDirty(head + i);
2538 __delete_from_page_cache(head + i, NULL);
2539 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2540 shmem_uncharge(head->mapping->host, 1);
2541 put_page(head + i);
2542 } else if (!PageAnon(page)) {
2543 __xa_store(&head->mapping->i_pages, head[i].index,
2544 head + i, 0);
2545 } else if (swap_cache) {
2546 __xa_store(&swap_cache->i_pages, offset + i,
2547 head + i, 0);
2551 ClearPageCompound(head);
2553 split_page_owner(head, HPAGE_PMD_ORDER);
2555 /* See comment in __split_huge_page_tail() */
2556 if (PageAnon(head)) {
2557 /* Additional pin to swap cache */
2558 if (PageSwapCache(head)) {
2559 page_ref_add(head, 2);
2560 xa_unlock(&swap_cache->i_pages);
2561 } else {
2562 page_ref_inc(head);
2564 } else {
2565 /* Additional pin to page cache */
2566 page_ref_add(head, 2);
2567 xa_unlock(&head->mapping->i_pages);
2570 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2572 remap_page(head);
2574 for (i = 0; i < HPAGE_PMD_NR; i++) {
2575 struct page *subpage = head + i;
2576 if (subpage == page)
2577 continue;
2578 unlock_page(subpage);
2581 * Subpages may be freed if there wasn't any mapping
2582 * like if add_to_swap() is running on a lru page that
2583 * had its mapping zapped. And freeing these pages
2584 * requires taking the lru_lock so we do the put_page
2585 * of the tail pages after the split is complete.
2587 put_page(subpage);
2591 int total_mapcount(struct page *page)
2593 int i, compound, ret;
2595 VM_BUG_ON_PAGE(PageTail(page), page);
2597 if (likely(!PageCompound(page)))
2598 return atomic_read(&page->_mapcount) + 1;
2600 compound = compound_mapcount(page);
2601 if (PageHuge(page))
2602 return compound;
2603 ret = compound;
2604 for (i = 0; i < HPAGE_PMD_NR; i++)
2605 ret += atomic_read(&page[i]._mapcount) + 1;
2606 /* File pages has compound_mapcount included in _mapcount */
2607 if (!PageAnon(page))
2608 return ret - compound * HPAGE_PMD_NR;
2609 if (PageDoubleMap(page))
2610 ret -= HPAGE_PMD_NR;
2611 return ret;
2615 * This calculates accurately how many mappings a transparent hugepage
2616 * has (unlike page_mapcount() which isn't fully accurate). This full
2617 * accuracy is primarily needed to know if copy-on-write faults can
2618 * reuse the page and change the mapping to read-write instead of
2619 * copying them. At the same time this returns the total_mapcount too.
2621 * The function returns the highest mapcount any one of the subpages
2622 * has. If the return value is one, even if different processes are
2623 * mapping different subpages of the transparent hugepage, they can
2624 * all reuse it, because each process is reusing a different subpage.
2626 * The total_mapcount is instead counting all virtual mappings of the
2627 * subpages. If the total_mapcount is equal to "one", it tells the
2628 * caller all mappings belong to the same "mm" and in turn the
2629 * anon_vma of the transparent hugepage can become the vma->anon_vma
2630 * local one as no other process may be mapping any of the subpages.
2632 * It would be more accurate to replace page_mapcount() with
2633 * page_trans_huge_mapcount(), however we only use
2634 * page_trans_huge_mapcount() in the copy-on-write faults where we
2635 * need full accuracy to avoid breaking page pinning, because
2636 * page_trans_huge_mapcount() is slower than page_mapcount().
2638 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2640 int i, ret, _total_mapcount, mapcount;
2642 /* hugetlbfs shouldn't call it */
2643 VM_BUG_ON_PAGE(PageHuge(page), page);
2645 if (likely(!PageTransCompound(page))) {
2646 mapcount = atomic_read(&page->_mapcount) + 1;
2647 if (total_mapcount)
2648 *total_mapcount = mapcount;
2649 return mapcount;
2652 page = compound_head(page);
2654 _total_mapcount = ret = 0;
2655 for (i = 0; i < HPAGE_PMD_NR; i++) {
2656 mapcount = atomic_read(&page[i]._mapcount) + 1;
2657 ret = max(ret, mapcount);
2658 _total_mapcount += mapcount;
2660 if (PageDoubleMap(page)) {
2661 ret -= 1;
2662 _total_mapcount -= HPAGE_PMD_NR;
2664 mapcount = compound_mapcount(page);
2665 ret += mapcount;
2666 _total_mapcount += mapcount;
2667 if (total_mapcount)
2668 *total_mapcount = _total_mapcount;
2669 return ret;
2672 /* Racy check whether the huge page can be split */
2673 bool can_split_huge_page(struct page *page, int *pextra_pins)
2675 int extra_pins;
2677 /* Additional pins from page cache */
2678 if (PageAnon(page))
2679 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2680 else
2681 extra_pins = HPAGE_PMD_NR;
2682 if (pextra_pins)
2683 *pextra_pins = extra_pins;
2684 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2688 * This function splits huge page into normal pages. @page can point to any
2689 * subpage of huge page to split. Split doesn't change the position of @page.
2691 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2692 * The huge page must be locked.
2694 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2696 * Both head page and tail pages will inherit mapping, flags, and so on from
2697 * the hugepage.
2699 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2700 * they are not mapped.
2702 * Returns 0 if the hugepage is split successfully.
2703 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2704 * us.
2706 int split_huge_page_to_list(struct page *page, struct list_head *list)
2708 struct page *head = compound_head(page);
2709 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2710 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2711 struct anon_vma *anon_vma = NULL;
2712 struct address_space *mapping = NULL;
2713 int count, mapcount, extra_pins, ret;
2714 bool mlocked;
2715 unsigned long flags;
2716 pgoff_t end;
2718 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2719 VM_BUG_ON_PAGE(!PageLocked(head), head);
2720 VM_BUG_ON_PAGE(!PageCompound(head), head);
2722 if (PageWriteback(head))
2723 return -EBUSY;
2725 if (PageAnon(head)) {
2727 * The caller does not necessarily hold an mmap_sem that would
2728 * prevent the anon_vma disappearing so we first we take a
2729 * reference to it and then lock the anon_vma for write. This
2730 * is similar to page_lock_anon_vma_read except the write lock
2731 * is taken to serialise against parallel split or collapse
2732 * operations.
2734 anon_vma = page_get_anon_vma(head);
2735 if (!anon_vma) {
2736 ret = -EBUSY;
2737 goto out;
2739 end = -1;
2740 mapping = NULL;
2741 anon_vma_lock_write(anon_vma);
2742 } else {
2743 mapping = head->mapping;
2745 /* Truncated ? */
2746 if (!mapping) {
2747 ret = -EBUSY;
2748 goto out;
2751 anon_vma = NULL;
2752 i_mmap_lock_read(mapping);
2755 *__split_huge_page() may need to trim off pages beyond EOF:
2756 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2757 * which cannot be nested inside the page tree lock. So note
2758 * end now: i_size itself may be changed at any moment, but
2759 * head page lock is good enough to serialize the trimming.
2761 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2765 * Racy check if we can split the page, before unmap_page() will
2766 * split PMDs
2768 if (!can_split_huge_page(head, &extra_pins)) {
2769 ret = -EBUSY;
2770 goto out_unlock;
2773 mlocked = PageMlocked(head);
2774 unmap_page(head);
2775 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2777 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2778 if (mlocked)
2779 lru_add_drain();
2781 /* prevent PageLRU to go away from under us, and freeze lru stats */
2782 spin_lock_irqsave(&pgdata->lru_lock, flags);
2784 if (mapping) {
2785 XA_STATE(xas, &mapping->i_pages, page_index(head));
2788 * Check if the head page is present in page cache.
2789 * We assume all tail are present too, if head is there.
2791 xa_lock(&mapping->i_pages);
2792 if (xas_load(&xas) != head)
2793 goto fail;
2796 /* Prevent deferred_split_scan() touching ->_refcount */
2797 spin_lock(&ds_queue->split_queue_lock);
2798 count = page_count(head);
2799 mapcount = total_mapcount(head);
2800 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2801 if (!list_empty(page_deferred_list(head))) {
2802 ds_queue->split_queue_len--;
2803 list_del(page_deferred_list(head));
2805 spin_unlock(&ds_queue->split_queue_lock);
2806 if (mapping) {
2807 if (PageSwapBacked(head))
2808 __dec_node_page_state(head, NR_SHMEM_THPS);
2809 else
2810 __dec_node_page_state(head, NR_FILE_THPS);
2813 __split_huge_page(page, list, end, flags);
2814 if (PageSwapCache(head)) {
2815 swp_entry_t entry = { .val = page_private(head) };
2817 ret = split_swap_cluster(entry);
2818 } else
2819 ret = 0;
2820 } else {
2821 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2822 pr_alert("total_mapcount: %u, page_count(): %u\n",
2823 mapcount, count);
2824 if (PageTail(page))
2825 dump_page(head, NULL);
2826 dump_page(page, "total_mapcount(head) > 0");
2827 BUG();
2829 spin_unlock(&ds_queue->split_queue_lock);
2830 fail: if (mapping)
2831 xa_unlock(&mapping->i_pages);
2832 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2833 remap_page(head);
2834 ret = -EBUSY;
2837 out_unlock:
2838 if (anon_vma) {
2839 anon_vma_unlock_write(anon_vma);
2840 put_anon_vma(anon_vma);
2842 if (mapping)
2843 i_mmap_unlock_read(mapping);
2844 out:
2845 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2846 return ret;
2849 void free_transhuge_page(struct page *page)
2851 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2852 unsigned long flags;
2854 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2855 if (!list_empty(page_deferred_list(page))) {
2856 ds_queue->split_queue_len--;
2857 list_del(page_deferred_list(page));
2859 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2860 free_compound_page(page);
2863 void deferred_split_huge_page(struct page *page)
2865 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2866 #ifdef CONFIG_MEMCG
2867 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2868 #endif
2869 unsigned long flags;
2871 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2874 * The try_to_unmap() in page reclaim path might reach here too,
2875 * this may cause a race condition to corrupt deferred split queue.
2876 * And, if page reclaim is already handling the same page, it is
2877 * unnecessary to handle it again in shrinker.
2879 * Check PageSwapCache to determine if the page is being
2880 * handled by page reclaim since THP swap would add the page into
2881 * swap cache before calling try_to_unmap().
2883 if (PageSwapCache(page))
2884 return;
2886 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2887 if (list_empty(page_deferred_list(page))) {
2888 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2889 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2890 ds_queue->split_queue_len++;
2891 #ifdef CONFIG_MEMCG
2892 if (memcg)
2893 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2894 deferred_split_shrinker.id);
2895 #endif
2897 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2900 static unsigned long deferred_split_count(struct shrinker *shrink,
2901 struct shrink_control *sc)
2903 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2904 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2906 #ifdef CONFIG_MEMCG
2907 if (sc->memcg)
2908 ds_queue = &sc->memcg->deferred_split_queue;
2909 #endif
2910 return READ_ONCE(ds_queue->split_queue_len);
2913 static unsigned long deferred_split_scan(struct shrinker *shrink,
2914 struct shrink_control *sc)
2916 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2917 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2918 unsigned long flags;
2919 LIST_HEAD(list), *pos, *next;
2920 struct page *page;
2921 int split = 0;
2923 #ifdef CONFIG_MEMCG
2924 if (sc->memcg)
2925 ds_queue = &sc->memcg->deferred_split_queue;
2926 #endif
2928 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2929 /* Take pin on all head pages to avoid freeing them under us */
2930 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2931 page = list_entry((void *)pos, struct page, mapping);
2932 page = compound_head(page);
2933 if (get_page_unless_zero(page)) {
2934 list_move(page_deferred_list(page), &list);
2935 } else {
2936 /* We lost race with put_compound_page() */
2937 list_del_init(page_deferred_list(page));
2938 ds_queue->split_queue_len--;
2940 if (!--sc->nr_to_scan)
2941 break;
2943 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2945 list_for_each_safe(pos, next, &list) {
2946 page = list_entry((void *)pos, struct page, mapping);
2947 if (!trylock_page(page))
2948 goto next;
2949 /* split_huge_page() removes page from list on success */
2950 if (!split_huge_page(page))
2951 split++;
2952 unlock_page(page);
2953 next:
2954 put_page(page);
2957 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2958 list_splice_tail(&list, &ds_queue->split_queue);
2959 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2962 * Stop shrinker if we didn't split any page, but the queue is empty.
2963 * This can happen if pages were freed under us.
2965 if (!split && list_empty(&ds_queue->split_queue))
2966 return SHRINK_STOP;
2967 return split;
2970 static struct shrinker deferred_split_shrinker = {
2971 .count_objects = deferred_split_count,
2972 .scan_objects = deferred_split_scan,
2973 .seeks = DEFAULT_SEEKS,
2974 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2975 SHRINKER_NONSLAB,
2978 #ifdef CONFIG_DEBUG_FS
2979 static int split_huge_pages_set(void *data, u64 val)
2981 struct zone *zone;
2982 struct page *page;
2983 unsigned long pfn, max_zone_pfn;
2984 unsigned long total = 0, split = 0;
2986 if (val != 1)
2987 return -EINVAL;
2989 for_each_populated_zone(zone) {
2990 max_zone_pfn = zone_end_pfn(zone);
2991 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2992 if (!pfn_valid(pfn))
2993 continue;
2995 page = pfn_to_page(pfn);
2996 if (!get_page_unless_zero(page))
2997 continue;
2999 if (zone != page_zone(page))
3000 goto next;
3002 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3003 goto next;
3005 total++;
3006 lock_page(page);
3007 if (!split_huge_page(page))
3008 split++;
3009 unlock_page(page);
3010 next:
3011 put_page(page);
3015 pr_info("%lu of %lu THP split\n", split, total);
3017 return 0;
3019 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3020 "%llu\n");
3022 static int __init split_huge_pages_debugfs(void)
3024 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3025 &split_huge_pages_fops);
3026 return 0;
3028 late_initcall(split_huge_pages_debugfs);
3029 #endif
3031 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3032 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3033 struct page *page)
3035 struct vm_area_struct *vma = pvmw->vma;
3036 struct mm_struct *mm = vma->vm_mm;
3037 unsigned long address = pvmw->address;
3038 pmd_t pmdval;
3039 swp_entry_t entry;
3040 pmd_t pmdswp;
3042 if (!(pvmw->pmd && !pvmw->pte))
3043 return;
3045 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3046 pmdval = *pvmw->pmd;
3047 pmdp_invalidate(vma, address, pvmw->pmd);
3048 if (pmd_dirty(pmdval))
3049 set_page_dirty(page);
3050 entry = make_migration_entry(page, pmd_write(pmdval));
3051 pmdswp = swp_entry_to_pmd(entry);
3052 if (pmd_soft_dirty(pmdval))
3053 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3054 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3055 page_remove_rmap(page, true);
3056 put_page(page);
3059 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3061 struct vm_area_struct *vma = pvmw->vma;
3062 struct mm_struct *mm = vma->vm_mm;
3063 unsigned long address = pvmw->address;
3064 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3065 pmd_t pmde;
3066 swp_entry_t entry;
3068 if (!(pvmw->pmd && !pvmw->pte))
3069 return;
3071 entry = pmd_to_swp_entry(*pvmw->pmd);
3072 get_page(new);
3073 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3074 if (pmd_swp_soft_dirty(*pvmw->pmd))
3075 pmde = pmd_mksoft_dirty(pmde);
3076 if (is_write_migration_entry(entry))
3077 pmde = maybe_pmd_mkwrite(pmde, vma);
3079 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3080 if (PageAnon(new))
3081 page_add_anon_rmap(new, vma, mmun_start, true);
3082 else
3083 page_add_file_rmap(new, true);
3084 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3085 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3086 mlock_vma_page(new);
3087 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3089 #endif