Linux 5.6-rc4
[linux/fpc-iii.git] / mm / mmap.c
blobd681a20eb4ea9fc604caeedbc2b396083360462d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
5 * Written by obz.
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
56 #include "internal.h"
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags) (0)
60 #endif
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
76 static void unmap_region(struct mm_struct *mm,
77 struct vm_area_struct *vma, struct vm_area_struct *prev,
78 unsigned long start, unsigned long end);
80 /* description of effects of mapping type and prot in current implementation.
81 * this is due to the limited x86 page protection hardware. The expected
82 * behavior is in parens:
84 * map_type prot
85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (yes) yes w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (copy) copy w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
94 pgprot_t protection_map[16] __ro_after_init = {
95 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
99 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
100 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
102 return prot;
104 #endif
106 pgprot_t vm_get_page_prot(unsigned long vm_flags)
108 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
109 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
110 pgprot_val(arch_vm_get_page_prot(vm_flags)));
112 return arch_filter_pgprot(ret);
114 EXPORT_SYMBOL(vm_get_page_prot);
116 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
118 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
121 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
122 void vma_set_page_prot(struct vm_area_struct *vma)
124 unsigned long vm_flags = vma->vm_flags;
125 pgprot_t vm_page_prot;
127 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
128 if (vma_wants_writenotify(vma, vm_page_prot)) {
129 vm_flags &= ~VM_SHARED;
130 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
132 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
133 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 * Requires inode->i_mapping->i_mmap_rwsem
139 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
140 struct file *file, struct address_space *mapping)
142 if (vma->vm_flags & VM_DENYWRITE)
143 atomic_inc(&file_inode(file)->i_writecount);
144 if (vma->vm_flags & VM_SHARED)
145 mapping_unmap_writable(mapping);
147 flush_dcache_mmap_lock(mapping);
148 vma_interval_tree_remove(vma, &mapping->i_mmap);
149 flush_dcache_mmap_unlock(mapping);
153 * Unlink a file-based vm structure from its interval tree, to hide
154 * vma from rmap and vmtruncate before freeing its page tables.
156 void unlink_file_vma(struct vm_area_struct *vma)
158 struct file *file = vma->vm_file;
160 if (file) {
161 struct address_space *mapping = file->f_mapping;
162 i_mmap_lock_write(mapping);
163 __remove_shared_vm_struct(vma, file, mapping);
164 i_mmap_unlock_write(mapping);
169 * Close a vm structure and free it, returning the next.
171 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
173 struct vm_area_struct *next = vma->vm_next;
175 might_sleep();
176 if (vma->vm_ops && vma->vm_ops->close)
177 vma->vm_ops->close(vma);
178 if (vma->vm_file)
179 fput(vma->vm_file);
180 mpol_put(vma_policy(vma));
181 vm_area_free(vma);
182 return next;
185 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
186 struct list_head *uf);
187 SYSCALL_DEFINE1(brk, unsigned long, brk)
189 unsigned long retval;
190 unsigned long newbrk, oldbrk, origbrk;
191 struct mm_struct *mm = current->mm;
192 struct vm_area_struct *next;
193 unsigned long min_brk;
194 bool populate;
195 bool downgraded = false;
196 LIST_HEAD(uf);
198 if (down_write_killable(&mm->mmap_sem))
199 return -EINTR;
201 origbrk = mm->brk;
203 #ifdef CONFIG_COMPAT_BRK
205 * CONFIG_COMPAT_BRK can still be overridden by setting
206 * randomize_va_space to 2, which will still cause mm->start_brk
207 * to be arbitrarily shifted
209 if (current->brk_randomized)
210 min_brk = mm->start_brk;
211 else
212 min_brk = mm->end_data;
213 #else
214 min_brk = mm->start_brk;
215 #endif
216 if (brk < min_brk)
217 goto out;
220 * Check against rlimit here. If this check is done later after the test
221 * of oldbrk with newbrk then it can escape the test and let the data
222 * segment grow beyond its set limit the in case where the limit is
223 * not page aligned -Ram Gupta
225 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
226 mm->end_data, mm->start_data))
227 goto out;
229 newbrk = PAGE_ALIGN(brk);
230 oldbrk = PAGE_ALIGN(mm->brk);
231 if (oldbrk == newbrk) {
232 mm->brk = brk;
233 goto success;
237 * Always allow shrinking brk.
238 * __do_munmap() may downgrade mmap_sem to read.
240 if (brk <= mm->brk) {
241 int ret;
244 * mm->brk must to be protected by write mmap_sem so update it
245 * before downgrading mmap_sem. When __do_munmap() fails,
246 * mm->brk will be restored from origbrk.
248 mm->brk = brk;
249 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
250 if (ret < 0) {
251 mm->brk = origbrk;
252 goto out;
253 } else if (ret == 1) {
254 downgraded = true;
256 goto success;
259 /* Check against existing mmap mappings. */
260 next = find_vma(mm, oldbrk);
261 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
262 goto out;
264 /* Ok, looks good - let it rip. */
265 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
266 goto out;
267 mm->brk = brk;
269 success:
270 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
271 if (downgraded)
272 up_read(&mm->mmap_sem);
273 else
274 up_write(&mm->mmap_sem);
275 userfaultfd_unmap_complete(mm, &uf);
276 if (populate)
277 mm_populate(oldbrk, newbrk - oldbrk);
278 return brk;
280 out:
281 retval = origbrk;
282 up_write(&mm->mmap_sem);
283 return retval;
286 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
288 unsigned long gap, prev_end;
291 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
292 * allow two stack_guard_gaps between them here, and when choosing
293 * an unmapped area; whereas when expanding we only require one.
294 * That's a little inconsistent, but keeps the code here simpler.
296 gap = vm_start_gap(vma);
297 if (vma->vm_prev) {
298 prev_end = vm_end_gap(vma->vm_prev);
299 if (gap > prev_end)
300 gap -= prev_end;
301 else
302 gap = 0;
304 return gap;
307 #ifdef CONFIG_DEBUG_VM_RB
308 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
310 unsigned long max = vma_compute_gap(vma), subtree_gap;
311 if (vma->vm_rb.rb_left) {
312 subtree_gap = rb_entry(vma->vm_rb.rb_left,
313 struct vm_area_struct, vm_rb)->rb_subtree_gap;
314 if (subtree_gap > max)
315 max = subtree_gap;
317 if (vma->vm_rb.rb_right) {
318 subtree_gap = rb_entry(vma->vm_rb.rb_right,
319 struct vm_area_struct, vm_rb)->rb_subtree_gap;
320 if (subtree_gap > max)
321 max = subtree_gap;
323 return max;
326 static int browse_rb(struct mm_struct *mm)
328 struct rb_root *root = &mm->mm_rb;
329 int i = 0, j, bug = 0;
330 struct rb_node *nd, *pn = NULL;
331 unsigned long prev = 0, pend = 0;
333 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
334 struct vm_area_struct *vma;
335 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
336 if (vma->vm_start < prev) {
337 pr_emerg("vm_start %lx < prev %lx\n",
338 vma->vm_start, prev);
339 bug = 1;
341 if (vma->vm_start < pend) {
342 pr_emerg("vm_start %lx < pend %lx\n",
343 vma->vm_start, pend);
344 bug = 1;
346 if (vma->vm_start > vma->vm_end) {
347 pr_emerg("vm_start %lx > vm_end %lx\n",
348 vma->vm_start, vma->vm_end);
349 bug = 1;
351 spin_lock(&mm->page_table_lock);
352 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
353 pr_emerg("free gap %lx, correct %lx\n",
354 vma->rb_subtree_gap,
355 vma_compute_subtree_gap(vma));
356 bug = 1;
358 spin_unlock(&mm->page_table_lock);
359 i++;
360 pn = nd;
361 prev = vma->vm_start;
362 pend = vma->vm_end;
364 j = 0;
365 for (nd = pn; nd; nd = rb_prev(nd))
366 j++;
367 if (i != j) {
368 pr_emerg("backwards %d, forwards %d\n", j, i);
369 bug = 1;
371 return bug ? -1 : i;
374 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
376 struct rb_node *nd;
378 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
379 struct vm_area_struct *vma;
380 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
381 VM_BUG_ON_VMA(vma != ignore &&
382 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
383 vma);
387 static void validate_mm(struct mm_struct *mm)
389 int bug = 0;
390 int i = 0;
391 unsigned long highest_address = 0;
392 struct vm_area_struct *vma = mm->mmap;
394 while (vma) {
395 struct anon_vma *anon_vma = vma->anon_vma;
396 struct anon_vma_chain *avc;
398 if (anon_vma) {
399 anon_vma_lock_read(anon_vma);
400 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
401 anon_vma_interval_tree_verify(avc);
402 anon_vma_unlock_read(anon_vma);
405 highest_address = vm_end_gap(vma);
406 vma = vma->vm_next;
407 i++;
409 if (i != mm->map_count) {
410 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
411 bug = 1;
413 if (highest_address != mm->highest_vm_end) {
414 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
415 mm->highest_vm_end, highest_address);
416 bug = 1;
418 i = browse_rb(mm);
419 if (i != mm->map_count) {
420 if (i != -1)
421 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
422 bug = 1;
424 VM_BUG_ON_MM(bug, mm);
426 #else
427 #define validate_mm_rb(root, ignore) do { } while (0)
428 #define validate_mm(mm) do { } while (0)
429 #endif
431 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
432 struct vm_area_struct, vm_rb,
433 unsigned long, rb_subtree_gap, vma_compute_gap)
436 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
437 * vma->vm_prev->vm_end values changed, without modifying the vma's position
438 * in the rbtree.
440 static void vma_gap_update(struct vm_area_struct *vma)
443 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
444 * a callback function that does exactly what we want.
446 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
449 static inline void vma_rb_insert(struct vm_area_struct *vma,
450 struct rb_root *root)
452 /* All rb_subtree_gap values must be consistent prior to insertion */
453 validate_mm_rb(root, NULL);
455 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
458 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
461 * Note rb_erase_augmented is a fairly large inline function,
462 * so make sure we instantiate it only once with our desired
463 * augmented rbtree callbacks.
465 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
468 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
469 struct rb_root *root,
470 struct vm_area_struct *ignore)
473 * All rb_subtree_gap values must be consistent prior to erase,
474 * with the possible exception of the "next" vma being erased if
475 * next->vm_start was reduced.
477 validate_mm_rb(root, ignore);
479 __vma_rb_erase(vma, root);
482 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
483 struct rb_root *root)
486 * All rb_subtree_gap values must be consistent prior to erase,
487 * with the possible exception of the vma being erased.
489 validate_mm_rb(root, vma);
491 __vma_rb_erase(vma, root);
495 * vma has some anon_vma assigned, and is already inserted on that
496 * anon_vma's interval trees.
498 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
499 * vma must be removed from the anon_vma's interval trees using
500 * anon_vma_interval_tree_pre_update_vma().
502 * After the update, the vma will be reinserted using
503 * anon_vma_interval_tree_post_update_vma().
505 * The entire update must be protected by exclusive mmap_sem and by
506 * the root anon_vma's mutex.
508 static inline void
509 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
511 struct anon_vma_chain *avc;
513 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
514 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
517 static inline void
518 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
520 struct anon_vma_chain *avc;
522 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
523 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
526 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
527 unsigned long end, struct vm_area_struct **pprev,
528 struct rb_node ***rb_link, struct rb_node **rb_parent)
530 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
532 __rb_link = &mm->mm_rb.rb_node;
533 rb_prev = __rb_parent = NULL;
535 while (*__rb_link) {
536 struct vm_area_struct *vma_tmp;
538 __rb_parent = *__rb_link;
539 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
541 if (vma_tmp->vm_end > addr) {
542 /* Fail if an existing vma overlaps the area */
543 if (vma_tmp->vm_start < end)
544 return -ENOMEM;
545 __rb_link = &__rb_parent->rb_left;
546 } else {
547 rb_prev = __rb_parent;
548 __rb_link = &__rb_parent->rb_right;
552 *pprev = NULL;
553 if (rb_prev)
554 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
555 *rb_link = __rb_link;
556 *rb_parent = __rb_parent;
557 return 0;
560 static unsigned long count_vma_pages_range(struct mm_struct *mm,
561 unsigned long addr, unsigned long end)
563 unsigned long nr_pages = 0;
564 struct vm_area_struct *vma;
566 /* Find first overlaping mapping */
567 vma = find_vma_intersection(mm, addr, end);
568 if (!vma)
569 return 0;
571 nr_pages = (min(end, vma->vm_end) -
572 max(addr, vma->vm_start)) >> PAGE_SHIFT;
574 /* Iterate over the rest of the overlaps */
575 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
576 unsigned long overlap_len;
578 if (vma->vm_start > end)
579 break;
581 overlap_len = min(end, vma->vm_end) - vma->vm_start;
582 nr_pages += overlap_len >> PAGE_SHIFT;
585 return nr_pages;
588 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
589 struct rb_node **rb_link, struct rb_node *rb_parent)
591 /* Update tracking information for the gap following the new vma. */
592 if (vma->vm_next)
593 vma_gap_update(vma->vm_next);
594 else
595 mm->highest_vm_end = vm_end_gap(vma);
598 * vma->vm_prev wasn't known when we followed the rbtree to find the
599 * correct insertion point for that vma. As a result, we could not
600 * update the vma vm_rb parents rb_subtree_gap values on the way down.
601 * So, we first insert the vma with a zero rb_subtree_gap value
602 * (to be consistent with what we did on the way down), and then
603 * immediately update the gap to the correct value. Finally we
604 * rebalance the rbtree after all augmented values have been set.
606 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
607 vma->rb_subtree_gap = 0;
608 vma_gap_update(vma);
609 vma_rb_insert(vma, &mm->mm_rb);
612 static void __vma_link_file(struct vm_area_struct *vma)
614 struct file *file;
616 file = vma->vm_file;
617 if (file) {
618 struct address_space *mapping = file->f_mapping;
620 if (vma->vm_flags & VM_DENYWRITE)
621 atomic_dec(&file_inode(file)->i_writecount);
622 if (vma->vm_flags & VM_SHARED)
623 atomic_inc(&mapping->i_mmap_writable);
625 flush_dcache_mmap_lock(mapping);
626 vma_interval_tree_insert(vma, &mapping->i_mmap);
627 flush_dcache_mmap_unlock(mapping);
631 static void
632 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
633 struct vm_area_struct *prev, struct rb_node **rb_link,
634 struct rb_node *rb_parent)
636 __vma_link_list(mm, vma, prev);
637 __vma_link_rb(mm, vma, rb_link, rb_parent);
640 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
641 struct vm_area_struct *prev, struct rb_node **rb_link,
642 struct rb_node *rb_parent)
644 struct address_space *mapping = NULL;
646 if (vma->vm_file) {
647 mapping = vma->vm_file->f_mapping;
648 i_mmap_lock_write(mapping);
651 __vma_link(mm, vma, prev, rb_link, rb_parent);
652 __vma_link_file(vma);
654 if (mapping)
655 i_mmap_unlock_write(mapping);
657 mm->map_count++;
658 validate_mm(mm);
662 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
663 * mm's list and rbtree. It has already been inserted into the interval tree.
665 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
667 struct vm_area_struct *prev;
668 struct rb_node **rb_link, *rb_parent;
670 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
671 &prev, &rb_link, &rb_parent))
672 BUG();
673 __vma_link(mm, vma, prev, rb_link, rb_parent);
674 mm->map_count++;
677 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
678 struct vm_area_struct *vma,
679 struct vm_area_struct *ignore)
681 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
682 __vma_unlink_list(mm, vma);
683 /* Kill the cache */
684 vmacache_invalidate(mm);
688 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
689 * is already present in an i_mmap tree without adjusting the tree.
690 * The following helper function should be used when such adjustments
691 * are necessary. The "insert" vma (if any) is to be inserted
692 * before we drop the necessary locks.
694 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
695 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
696 struct vm_area_struct *expand)
698 struct mm_struct *mm = vma->vm_mm;
699 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
700 struct address_space *mapping = NULL;
701 struct rb_root_cached *root = NULL;
702 struct anon_vma *anon_vma = NULL;
703 struct file *file = vma->vm_file;
704 bool start_changed = false, end_changed = false;
705 long adjust_next = 0;
706 int remove_next = 0;
708 if (next && !insert) {
709 struct vm_area_struct *exporter = NULL, *importer = NULL;
711 if (end >= next->vm_end) {
713 * vma expands, overlapping all the next, and
714 * perhaps the one after too (mprotect case 6).
715 * The only other cases that gets here are
716 * case 1, case 7 and case 8.
718 if (next == expand) {
720 * The only case where we don't expand "vma"
721 * and we expand "next" instead is case 8.
723 VM_WARN_ON(end != next->vm_end);
725 * remove_next == 3 means we're
726 * removing "vma" and that to do so we
727 * swapped "vma" and "next".
729 remove_next = 3;
730 VM_WARN_ON(file != next->vm_file);
731 swap(vma, next);
732 } else {
733 VM_WARN_ON(expand != vma);
735 * case 1, 6, 7, remove_next == 2 is case 6,
736 * remove_next == 1 is case 1 or 7.
738 remove_next = 1 + (end > next->vm_end);
739 VM_WARN_ON(remove_next == 2 &&
740 end != next->vm_next->vm_end);
741 /* trim end to next, for case 6 first pass */
742 end = next->vm_end;
745 exporter = next;
746 importer = vma;
749 * If next doesn't have anon_vma, import from vma after
750 * next, if the vma overlaps with it.
752 if (remove_next == 2 && !next->anon_vma)
753 exporter = next->vm_next;
755 } else if (end > next->vm_start) {
757 * vma expands, overlapping part of the next:
758 * mprotect case 5 shifting the boundary up.
760 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
761 exporter = next;
762 importer = vma;
763 VM_WARN_ON(expand != importer);
764 } else if (end < vma->vm_end) {
766 * vma shrinks, and !insert tells it's not
767 * split_vma inserting another: so it must be
768 * mprotect case 4 shifting the boundary down.
770 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
771 exporter = vma;
772 importer = next;
773 VM_WARN_ON(expand != importer);
777 * Easily overlooked: when mprotect shifts the boundary,
778 * make sure the expanding vma has anon_vma set if the
779 * shrinking vma had, to cover any anon pages imported.
781 if (exporter && exporter->anon_vma && !importer->anon_vma) {
782 int error;
784 importer->anon_vma = exporter->anon_vma;
785 error = anon_vma_clone(importer, exporter);
786 if (error)
787 return error;
790 again:
791 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
793 if (file) {
794 mapping = file->f_mapping;
795 root = &mapping->i_mmap;
796 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
798 if (adjust_next)
799 uprobe_munmap(next, next->vm_start, next->vm_end);
801 i_mmap_lock_write(mapping);
802 if (insert) {
804 * Put into interval tree now, so instantiated pages
805 * are visible to arm/parisc __flush_dcache_page
806 * throughout; but we cannot insert into address
807 * space until vma start or end is updated.
809 __vma_link_file(insert);
813 anon_vma = vma->anon_vma;
814 if (!anon_vma && adjust_next)
815 anon_vma = next->anon_vma;
816 if (anon_vma) {
817 VM_WARN_ON(adjust_next && next->anon_vma &&
818 anon_vma != next->anon_vma);
819 anon_vma_lock_write(anon_vma);
820 anon_vma_interval_tree_pre_update_vma(vma);
821 if (adjust_next)
822 anon_vma_interval_tree_pre_update_vma(next);
825 if (root) {
826 flush_dcache_mmap_lock(mapping);
827 vma_interval_tree_remove(vma, root);
828 if (adjust_next)
829 vma_interval_tree_remove(next, root);
832 if (start != vma->vm_start) {
833 vma->vm_start = start;
834 start_changed = true;
836 if (end != vma->vm_end) {
837 vma->vm_end = end;
838 end_changed = true;
840 vma->vm_pgoff = pgoff;
841 if (adjust_next) {
842 next->vm_start += adjust_next << PAGE_SHIFT;
843 next->vm_pgoff += adjust_next;
846 if (root) {
847 if (adjust_next)
848 vma_interval_tree_insert(next, root);
849 vma_interval_tree_insert(vma, root);
850 flush_dcache_mmap_unlock(mapping);
853 if (remove_next) {
855 * vma_merge has merged next into vma, and needs
856 * us to remove next before dropping the locks.
858 if (remove_next != 3)
859 __vma_unlink_common(mm, next, next);
860 else
862 * vma is not before next if they've been
863 * swapped.
865 * pre-swap() next->vm_start was reduced so
866 * tell validate_mm_rb to ignore pre-swap()
867 * "next" (which is stored in post-swap()
868 * "vma").
870 __vma_unlink_common(mm, next, vma);
871 if (file)
872 __remove_shared_vm_struct(next, file, mapping);
873 } else if (insert) {
875 * split_vma has split insert from vma, and needs
876 * us to insert it before dropping the locks
877 * (it may either follow vma or precede it).
879 __insert_vm_struct(mm, insert);
880 } else {
881 if (start_changed)
882 vma_gap_update(vma);
883 if (end_changed) {
884 if (!next)
885 mm->highest_vm_end = vm_end_gap(vma);
886 else if (!adjust_next)
887 vma_gap_update(next);
891 if (anon_vma) {
892 anon_vma_interval_tree_post_update_vma(vma);
893 if (adjust_next)
894 anon_vma_interval_tree_post_update_vma(next);
895 anon_vma_unlock_write(anon_vma);
897 if (mapping)
898 i_mmap_unlock_write(mapping);
900 if (root) {
901 uprobe_mmap(vma);
903 if (adjust_next)
904 uprobe_mmap(next);
907 if (remove_next) {
908 if (file) {
909 uprobe_munmap(next, next->vm_start, next->vm_end);
910 fput(file);
912 if (next->anon_vma)
913 anon_vma_merge(vma, next);
914 mm->map_count--;
915 mpol_put(vma_policy(next));
916 vm_area_free(next);
918 * In mprotect's case 6 (see comments on vma_merge),
919 * we must remove another next too. It would clutter
920 * up the code too much to do both in one go.
922 if (remove_next != 3) {
924 * If "next" was removed and vma->vm_end was
925 * expanded (up) over it, in turn
926 * "next->vm_prev->vm_end" changed and the
927 * "vma->vm_next" gap must be updated.
929 next = vma->vm_next;
930 } else {
932 * For the scope of the comment "next" and
933 * "vma" considered pre-swap(): if "vma" was
934 * removed, next->vm_start was expanded (down)
935 * over it and the "next" gap must be updated.
936 * Because of the swap() the post-swap() "vma"
937 * actually points to pre-swap() "next"
938 * (post-swap() "next" as opposed is now a
939 * dangling pointer).
941 next = vma;
943 if (remove_next == 2) {
944 remove_next = 1;
945 end = next->vm_end;
946 goto again;
948 else if (next)
949 vma_gap_update(next);
950 else {
952 * If remove_next == 2 we obviously can't
953 * reach this path.
955 * If remove_next == 3 we can't reach this
956 * path because pre-swap() next is always not
957 * NULL. pre-swap() "next" is not being
958 * removed and its next->vm_end is not altered
959 * (and furthermore "end" already matches
960 * next->vm_end in remove_next == 3).
962 * We reach this only in the remove_next == 1
963 * case if the "next" vma that was removed was
964 * the highest vma of the mm. However in such
965 * case next->vm_end == "end" and the extended
966 * "vma" has vma->vm_end == next->vm_end so
967 * mm->highest_vm_end doesn't need any update
968 * in remove_next == 1 case.
970 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
973 if (insert && file)
974 uprobe_mmap(insert);
976 validate_mm(mm);
978 return 0;
982 * If the vma has a ->close operation then the driver probably needs to release
983 * per-vma resources, so we don't attempt to merge those.
985 static inline int is_mergeable_vma(struct vm_area_struct *vma,
986 struct file *file, unsigned long vm_flags,
987 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
990 * VM_SOFTDIRTY should not prevent from VMA merging, if we
991 * match the flags but dirty bit -- the caller should mark
992 * merged VMA as dirty. If dirty bit won't be excluded from
993 * comparison, we increase pressure on the memory system forcing
994 * the kernel to generate new VMAs when old one could be
995 * extended instead.
997 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
998 return 0;
999 if (vma->vm_file != file)
1000 return 0;
1001 if (vma->vm_ops && vma->vm_ops->close)
1002 return 0;
1003 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1004 return 0;
1005 return 1;
1008 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1009 struct anon_vma *anon_vma2,
1010 struct vm_area_struct *vma)
1013 * The list_is_singular() test is to avoid merging VMA cloned from
1014 * parents. This can improve scalability caused by anon_vma lock.
1016 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1017 list_is_singular(&vma->anon_vma_chain)))
1018 return 1;
1019 return anon_vma1 == anon_vma2;
1023 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1024 * in front of (at a lower virtual address and file offset than) the vma.
1026 * We cannot merge two vmas if they have differently assigned (non-NULL)
1027 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1029 * We don't check here for the merged mmap wrapping around the end of pagecache
1030 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1031 * wrap, nor mmaps which cover the final page at index -1UL.
1033 static int
1034 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1035 struct anon_vma *anon_vma, struct file *file,
1036 pgoff_t vm_pgoff,
1037 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1039 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1040 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1041 if (vma->vm_pgoff == vm_pgoff)
1042 return 1;
1044 return 0;
1048 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1049 * beyond (at a higher virtual address and file offset than) the vma.
1051 * We cannot merge two vmas if they have differently assigned (non-NULL)
1052 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1054 static int
1055 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1056 struct anon_vma *anon_vma, struct file *file,
1057 pgoff_t vm_pgoff,
1058 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1060 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1061 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1062 pgoff_t vm_pglen;
1063 vm_pglen = vma_pages(vma);
1064 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1065 return 1;
1067 return 0;
1071 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1072 * whether that can be merged with its predecessor or its successor.
1073 * Or both (it neatly fills a hole).
1075 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1076 * certain not to be mapped by the time vma_merge is called; but when
1077 * called for mprotect, it is certain to be already mapped (either at
1078 * an offset within prev, or at the start of next), and the flags of
1079 * this area are about to be changed to vm_flags - and the no-change
1080 * case has already been eliminated.
1082 * The following mprotect cases have to be considered, where AAAA is
1083 * the area passed down from mprotect_fixup, never extending beyond one
1084 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1086 * AAAA AAAA AAAA
1087 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1088 * cannot merge might become might become
1089 * PPNNNNNNNNNN PPPPPPPPPPNN
1090 * mmap, brk or case 4 below case 5 below
1091 * mremap move:
1092 * AAAA AAAA
1093 * PPPP NNNN PPPPNNNNXXXX
1094 * might become might become
1095 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1096 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1097 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1099 * It is important for case 8 that the vma NNNN overlapping the
1100 * region AAAA is never going to extended over XXXX. Instead XXXX must
1101 * be extended in region AAAA and NNNN must be removed. This way in
1102 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1103 * rmap_locks, the properties of the merged vma will be already
1104 * correct for the whole merged range. Some of those properties like
1105 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1106 * be correct for the whole merged range immediately after the
1107 * rmap_locks are released. Otherwise if XXXX would be removed and
1108 * NNNN would be extended over the XXXX range, remove_migration_ptes
1109 * or other rmap walkers (if working on addresses beyond the "end"
1110 * parameter) may establish ptes with the wrong permissions of NNNN
1111 * instead of the right permissions of XXXX.
1113 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1114 struct vm_area_struct *prev, unsigned long addr,
1115 unsigned long end, unsigned long vm_flags,
1116 struct anon_vma *anon_vma, struct file *file,
1117 pgoff_t pgoff, struct mempolicy *policy,
1118 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1120 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1121 struct vm_area_struct *area, *next;
1122 int err;
1125 * We later require that vma->vm_flags == vm_flags,
1126 * so this tests vma->vm_flags & VM_SPECIAL, too.
1128 if (vm_flags & VM_SPECIAL)
1129 return NULL;
1131 if (prev)
1132 next = prev->vm_next;
1133 else
1134 next = mm->mmap;
1135 area = next;
1136 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1137 next = next->vm_next;
1139 /* verify some invariant that must be enforced by the caller */
1140 VM_WARN_ON(prev && addr <= prev->vm_start);
1141 VM_WARN_ON(area && end > area->vm_end);
1142 VM_WARN_ON(addr >= end);
1145 * Can it merge with the predecessor?
1147 if (prev && prev->vm_end == addr &&
1148 mpol_equal(vma_policy(prev), policy) &&
1149 can_vma_merge_after(prev, vm_flags,
1150 anon_vma, file, pgoff,
1151 vm_userfaultfd_ctx)) {
1153 * OK, it can. Can we now merge in the successor as well?
1155 if (next && end == next->vm_start &&
1156 mpol_equal(policy, vma_policy(next)) &&
1157 can_vma_merge_before(next, vm_flags,
1158 anon_vma, file,
1159 pgoff+pglen,
1160 vm_userfaultfd_ctx) &&
1161 is_mergeable_anon_vma(prev->anon_vma,
1162 next->anon_vma, NULL)) {
1163 /* cases 1, 6 */
1164 err = __vma_adjust(prev, prev->vm_start,
1165 next->vm_end, prev->vm_pgoff, NULL,
1166 prev);
1167 } else /* cases 2, 5, 7 */
1168 err = __vma_adjust(prev, prev->vm_start,
1169 end, prev->vm_pgoff, NULL, prev);
1170 if (err)
1171 return NULL;
1172 khugepaged_enter_vma_merge(prev, vm_flags);
1173 return prev;
1177 * Can this new request be merged in front of next?
1179 if (next && end == next->vm_start &&
1180 mpol_equal(policy, vma_policy(next)) &&
1181 can_vma_merge_before(next, vm_flags,
1182 anon_vma, file, pgoff+pglen,
1183 vm_userfaultfd_ctx)) {
1184 if (prev && addr < prev->vm_end) /* case 4 */
1185 err = __vma_adjust(prev, prev->vm_start,
1186 addr, prev->vm_pgoff, NULL, next);
1187 else { /* cases 3, 8 */
1188 err = __vma_adjust(area, addr, next->vm_end,
1189 next->vm_pgoff - pglen, NULL, next);
1191 * In case 3 area is already equal to next and
1192 * this is a noop, but in case 8 "area" has
1193 * been removed and next was expanded over it.
1195 area = next;
1197 if (err)
1198 return NULL;
1199 khugepaged_enter_vma_merge(area, vm_flags);
1200 return area;
1203 return NULL;
1207 * Rough compatbility check to quickly see if it's even worth looking
1208 * at sharing an anon_vma.
1210 * They need to have the same vm_file, and the flags can only differ
1211 * in things that mprotect may change.
1213 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1214 * we can merge the two vma's. For example, we refuse to merge a vma if
1215 * there is a vm_ops->close() function, because that indicates that the
1216 * driver is doing some kind of reference counting. But that doesn't
1217 * really matter for the anon_vma sharing case.
1219 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1221 return a->vm_end == b->vm_start &&
1222 mpol_equal(vma_policy(a), vma_policy(b)) &&
1223 a->vm_file == b->vm_file &&
1224 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1225 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1229 * Do some basic sanity checking to see if we can re-use the anon_vma
1230 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1231 * the same as 'old', the other will be the new one that is trying
1232 * to share the anon_vma.
1234 * NOTE! This runs with mm_sem held for reading, so it is possible that
1235 * the anon_vma of 'old' is concurrently in the process of being set up
1236 * by another page fault trying to merge _that_. But that's ok: if it
1237 * is being set up, that automatically means that it will be a singleton
1238 * acceptable for merging, so we can do all of this optimistically. But
1239 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1241 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1242 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1243 * is to return an anon_vma that is "complex" due to having gone through
1244 * a fork).
1246 * We also make sure that the two vma's are compatible (adjacent,
1247 * and with the same memory policies). That's all stable, even with just
1248 * a read lock on the mm_sem.
1250 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1252 if (anon_vma_compatible(a, b)) {
1253 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1255 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1256 return anon_vma;
1258 return NULL;
1262 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1263 * neighbouring vmas for a suitable anon_vma, before it goes off
1264 * to allocate a new anon_vma. It checks because a repetitive
1265 * sequence of mprotects and faults may otherwise lead to distinct
1266 * anon_vmas being allocated, preventing vma merge in subsequent
1267 * mprotect.
1269 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1271 struct anon_vma *anon_vma = NULL;
1273 /* Try next first. */
1274 if (vma->vm_next) {
1275 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1276 if (anon_vma)
1277 return anon_vma;
1280 /* Try prev next. */
1281 if (vma->vm_prev)
1282 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1285 * We might reach here with anon_vma == NULL if we can't find
1286 * any reusable anon_vma.
1287 * There's no absolute need to look only at touching neighbours:
1288 * we could search further afield for "compatible" anon_vmas.
1289 * But it would probably just be a waste of time searching,
1290 * or lead to too many vmas hanging off the same anon_vma.
1291 * We're trying to allow mprotect remerging later on,
1292 * not trying to minimize memory used for anon_vmas.
1294 return anon_vma;
1298 * If a hint addr is less than mmap_min_addr change hint to be as
1299 * low as possible but still greater than mmap_min_addr
1301 static inline unsigned long round_hint_to_min(unsigned long hint)
1303 hint &= PAGE_MASK;
1304 if (((void *)hint != NULL) &&
1305 (hint < mmap_min_addr))
1306 return PAGE_ALIGN(mmap_min_addr);
1307 return hint;
1310 static inline int mlock_future_check(struct mm_struct *mm,
1311 unsigned long flags,
1312 unsigned long len)
1314 unsigned long locked, lock_limit;
1316 /* mlock MCL_FUTURE? */
1317 if (flags & VM_LOCKED) {
1318 locked = len >> PAGE_SHIFT;
1319 locked += mm->locked_vm;
1320 lock_limit = rlimit(RLIMIT_MEMLOCK);
1321 lock_limit >>= PAGE_SHIFT;
1322 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1323 return -EAGAIN;
1325 return 0;
1328 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1330 if (S_ISREG(inode->i_mode))
1331 return MAX_LFS_FILESIZE;
1333 if (S_ISBLK(inode->i_mode))
1334 return MAX_LFS_FILESIZE;
1336 if (S_ISSOCK(inode->i_mode))
1337 return MAX_LFS_FILESIZE;
1339 /* Special "we do even unsigned file positions" case */
1340 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1341 return 0;
1343 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1344 return ULONG_MAX;
1347 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1348 unsigned long pgoff, unsigned long len)
1350 u64 maxsize = file_mmap_size_max(file, inode);
1352 if (maxsize && len > maxsize)
1353 return false;
1354 maxsize -= len;
1355 if (pgoff > maxsize >> PAGE_SHIFT)
1356 return false;
1357 return true;
1361 * The caller must hold down_write(&current->mm->mmap_sem).
1363 unsigned long do_mmap(struct file *file, unsigned long addr,
1364 unsigned long len, unsigned long prot,
1365 unsigned long flags, vm_flags_t vm_flags,
1366 unsigned long pgoff, unsigned long *populate,
1367 struct list_head *uf)
1369 struct mm_struct *mm = current->mm;
1370 int pkey = 0;
1372 *populate = 0;
1374 if (!len)
1375 return -EINVAL;
1378 * Does the application expect PROT_READ to imply PROT_EXEC?
1380 * (the exception is when the underlying filesystem is noexec
1381 * mounted, in which case we dont add PROT_EXEC.)
1383 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1384 if (!(file && path_noexec(&file->f_path)))
1385 prot |= PROT_EXEC;
1387 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1388 if (flags & MAP_FIXED_NOREPLACE)
1389 flags |= MAP_FIXED;
1391 if (!(flags & MAP_FIXED))
1392 addr = round_hint_to_min(addr);
1394 /* Careful about overflows.. */
1395 len = PAGE_ALIGN(len);
1396 if (!len)
1397 return -ENOMEM;
1399 /* offset overflow? */
1400 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1401 return -EOVERFLOW;
1403 /* Too many mappings? */
1404 if (mm->map_count > sysctl_max_map_count)
1405 return -ENOMEM;
1407 /* Obtain the address to map to. we verify (or select) it and ensure
1408 * that it represents a valid section of the address space.
1410 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1411 if (IS_ERR_VALUE(addr))
1412 return addr;
1414 if (flags & MAP_FIXED_NOREPLACE) {
1415 struct vm_area_struct *vma = find_vma(mm, addr);
1417 if (vma && vma->vm_start < addr + len)
1418 return -EEXIST;
1421 if (prot == PROT_EXEC) {
1422 pkey = execute_only_pkey(mm);
1423 if (pkey < 0)
1424 pkey = 0;
1427 /* Do simple checking here so the lower-level routines won't have
1428 * to. we assume access permissions have been handled by the open
1429 * of the memory object, so we don't do any here.
1431 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1432 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1434 if (flags & MAP_LOCKED)
1435 if (!can_do_mlock())
1436 return -EPERM;
1438 if (mlock_future_check(mm, vm_flags, len))
1439 return -EAGAIN;
1441 if (file) {
1442 struct inode *inode = file_inode(file);
1443 unsigned long flags_mask;
1445 if (!file_mmap_ok(file, inode, pgoff, len))
1446 return -EOVERFLOW;
1448 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1450 switch (flags & MAP_TYPE) {
1451 case MAP_SHARED:
1453 * Force use of MAP_SHARED_VALIDATE with non-legacy
1454 * flags. E.g. MAP_SYNC is dangerous to use with
1455 * MAP_SHARED as you don't know which consistency model
1456 * you will get. We silently ignore unsupported flags
1457 * with MAP_SHARED to preserve backward compatibility.
1459 flags &= LEGACY_MAP_MASK;
1460 /* fall through */
1461 case MAP_SHARED_VALIDATE:
1462 if (flags & ~flags_mask)
1463 return -EOPNOTSUPP;
1464 if (prot & PROT_WRITE) {
1465 if (!(file->f_mode & FMODE_WRITE))
1466 return -EACCES;
1467 if (IS_SWAPFILE(file->f_mapping->host))
1468 return -ETXTBSY;
1472 * Make sure we don't allow writing to an append-only
1473 * file..
1475 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1476 return -EACCES;
1479 * Make sure there are no mandatory locks on the file.
1481 if (locks_verify_locked(file))
1482 return -EAGAIN;
1484 vm_flags |= VM_SHARED | VM_MAYSHARE;
1485 if (!(file->f_mode & FMODE_WRITE))
1486 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1488 /* fall through */
1489 case MAP_PRIVATE:
1490 if (!(file->f_mode & FMODE_READ))
1491 return -EACCES;
1492 if (path_noexec(&file->f_path)) {
1493 if (vm_flags & VM_EXEC)
1494 return -EPERM;
1495 vm_flags &= ~VM_MAYEXEC;
1498 if (!file->f_op->mmap)
1499 return -ENODEV;
1500 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1501 return -EINVAL;
1502 break;
1504 default:
1505 return -EINVAL;
1507 } else {
1508 switch (flags & MAP_TYPE) {
1509 case MAP_SHARED:
1510 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1511 return -EINVAL;
1513 * Ignore pgoff.
1515 pgoff = 0;
1516 vm_flags |= VM_SHARED | VM_MAYSHARE;
1517 break;
1518 case MAP_PRIVATE:
1520 * Set pgoff according to addr for anon_vma.
1522 pgoff = addr >> PAGE_SHIFT;
1523 break;
1524 default:
1525 return -EINVAL;
1530 * Set 'VM_NORESERVE' if we should not account for the
1531 * memory use of this mapping.
1533 if (flags & MAP_NORESERVE) {
1534 /* We honor MAP_NORESERVE if allowed to overcommit */
1535 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1536 vm_flags |= VM_NORESERVE;
1538 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1539 if (file && is_file_hugepages(file))
1540 vm_flags |= VM_NORESERVE;
1543 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1544 if (!IS_ERR_VALUE(addr) &&
1545 ((vm_flags & VM_LOCKED) ||
1546 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1547 *populate = len;
1548 return addr;
1551 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1552 unsigned long prot, unsigned long flags,
1553 unsigned long fd, unsigned long pgoff)
1555 struct file *file = NULL;
1556 unsigned long retval;
1558 if (!(flags & MAP_ANONYMOUS)) {
1559 audit_mmap_fd(fd, flags);
1560 file = fget(fd);
1561 if (!file)
1562 return -EBADF;
1563 if (is_file_hugepages(file))
1564 len = ALIGN(len, huge_page_size(hstate_file(file)));
1565 retval = -EINVAL;
1566 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1567 goto out_fput;
1568 } else if (flags & MAP_HUGETLB) {
1569 struct user_struct *user = NULL;
1570 struct hstate *hs;
1572 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1573 if (!hs)
1574 return -EINVAL;
1576 len = ALIGN(len, huge_page_size(hs));
1578 * VM_NORESERVE is used because the reservations will be
1579 * taken when vm_ops->mmap() is called
1580 * A dummy user value is used because we are not locking
1581 * memory so no accounting is necessary
1583 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1584 VM_NORESERVE,
1585 &user, HUGETLB_ANONHUGE_INODE,
1586 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1587 if (IS_ERR(file))
1588 return PTR_ERR(file);
1591 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1593 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1594 out_fput:
1595 if (file)
1596 fput(file);
1597 return retval;
1600 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1601 unsigned long, prot, unsigned long, flags,
1602 unsigned long, fd, unsigned long, pgoff)
1604 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1607 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1608 struct mmap_arg_struct {
1609 unsigned long addr;
1610 unsigned long len;
1611 unsigned long prot;
1612 unsigned long flags;
1613 unsigned long fd;
1614 unsigned long offset;
1617 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1619 struct mmap_arg_struct a;
1621 if (copy_from_user(&a, arg, sizeof(a)))
1622 return -EFAULT;
1623 if (offset_in_page(a.offset))
1624 return -EINVAL;
1626 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1627 a.offset >> PAGE_SHIFT);
1629 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1632 * Some shared mappings will want the pages marked read-only
1633 * to track write events. If so, we'll downgrade vm_page_prot
1634 * to the private version (using protection_map[] without the
1635 * VM_SHARED bit).
1637 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1639 vm_flags_t vm_flags = vma->vm_flags;
1640 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1642 /* If it was private or non-writable, the write bit is already clear */
1643 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1644 return 0;
1646 /* The backer wishes to know when pages are first written to? */
1647 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1648 return 1;
1650 /* The open routine did something to the protections that pgprot_modify
1651 * won't preserve? */
1652 if (pgprot_val(vm_page_prot) !=
1653 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1654 return 0;
1656 /* Do we need to track softdirty? */
1657 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1658 return 1;
1660 /* Specialty mapping? */
1661 if (vm_flags & VM_PFNMAP)
1662 return 0;
1664 /* Can the mapping track the dirty pages? */
1665 return vma->vm_file && vma->vm_file->f_mapping &&
1666 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1670 * We account for memory if it's a private writeable mapping,
1671 * not hugepages and VM_NORESERVE wasn't set.
1673 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1676 * hugetlb has its own accounting separate from the core VM
1677 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1679 if (file && is_file_hugepages(file))
1680 return 0;
1682 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1685 unsigned long mmap_region(struct file *file, unsigned long addr,
1686 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1687 struct list_head *uf)
1689 struct mm_struct *mm = current->mm;
1690 struct vm_area_struct *vma, *prev;
1691 int error;
1692 struct rb_node **rb_link, *rb_parent;
1693 unsigned long charged = 0;
1695 /* Check against address space limit. */
1696 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1697 unsigned long nr_pages;
1700 * MAP_FIXED may remove pages of mappings that intersects with
1701 * requested mapping. Account for the pages it would unmap.
1703 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1705 if (!may_expand_vm(mm, vm_flags,
1706 (len >> PAGE_SHIFT) - nr_pages))
1707 return -ENOMEM;
1710 /* Clear old maps */
1711 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1712 &rb_parent)) {
1713 if (do_munmap(mm, addr, len, uf))
1714 return -ENOMEM;
1718 * Private writable mapping: check memory availability
1720 if (accountable_mapping(file, vm_flags)) {
1721 charged = len >> PAGE_SHIFT;
1722 if (security_vm_enough_memory_mm(mm, charged))
1723 return -ENOMEM;
1724 vm_flags |= VM_ACCOUNT;
1728 * Can we just expand an old mapping?
1730 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1731 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1732 if (vma)
1733 goto out;
1736 * Determine the object being mapped and call the appropriate
1737 * specific mapper. the address has already been validated, but
1738 * not unmapped, but the maps are removed from the list.
1740 vma = vm_area_alloc(mm);
1741 if (!vma) {
1742 error = -ENOMEM;
1743 goto unacct_error;
1746 vma->vm_start = addr;
1747 vma->vm_end = addr + len;
1748 vma->vm_flags = vm_flags;
1749 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1750 vma->vm_pgoff = pgoff;
1752 if (file) {
1753 if (vm_flags & VM_DENYWRITE) {
1754 error = deny_write_access(file);
1755 if (error)
1756 goto free_vma;
1758 if (vm_flags & VM_SHARED) {
1759 error = mapping_map_writable(file->f_mapping);
1760 if (error)
1761 goto allow_write_and_free_vma;
1764 /* ->mmap() can change vma->vm_file, but must guarantee that
1765 * vma_link() below can deny write-access if VM_DENYWRITE is set
1766 * and map writably if VM_SHARED is set. This usually means the
1767 * new file must not have been exposed to user-space, yet.
1769 vma->vm_file = get_file(file);
1770 error = call_mmap(file, vma);
1771 if (error)
1772 goto unmap_and_free_vma;
1774 /* Can addr have changed??
1776 * Answer: Yes, several device drivers can do it in their
1777 * f_op->mmap method. -DaveM
1778 * Bug: If addr is changed, prev, rb_link, rb_parent should
1779 * be updated for vma_link()
1781 WARN_ON_ONCE(addr != vma->vm_start);
1783 addr = vma->vm_start;
1784 vm_flags = vma->vm_flags;
1785 } else if (vm_flags & VM_SHARED) {
1786 error = shmem_zero_setup(vma);
1787 if (error)
1788 goto free_vma;
1789 } else {
1790 vma_set_anonymous(vma);
1793 vma_link(mm, vma, prev, rb_link, rb_parent);
1794 /* Once vma denies write, undo our temporary denial count */
1795 if (file) {
1796 if (vm_flags & VM_SHARED)
1797 mapping_unmap_writable(file->f_mapping);
1798 if (vm_flags & VM_DENYWRITE)
1799 allow_write_access(file);
1801 file = vma->vm_file;
1802 out:
1803 perf_event_mmap(vma);
1805 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1806 if (vm_flags & VM_LOCKED) {
1807 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1808 is_vm_hugetlb_page(vma) ||
1809 vma == get_gate_vma(current->mm))
1810 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1811 else
1812 mm->locked_vm += (len >> PAGE_SHIFT);
1815 if (file)
1816 uprobe_mmap(vma);
1819 * New (or expanded) vma always get soft dirty status.
1820 * Otherwise user-space soft-dirty page tracker won't
1821 * be able to distinguish situation when vma area unmapped,
1822 * then new mapped in-place (which must be aimed as
1823 * a completely new data area).
1825 vma->vm_flags |= VM_SOFTDIRTY;
1827 vma_set_page_prot(vma);
1829 return addr;
1831 unmap_and_free_vma:
1832 vma->vm_file = NULL;
1833 fput(file);
1835 /* Undo any partial mapping done by a device driver. */
1836 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1837 charged = 0;
1838 if (vm_flags & VM_SHARED)
1839 mapping_unmap_writable(file->f_mapping);
1840 allow_write_and_free_vma:
1841 if (vm_flags & VM_DENYWRITE)
1842 allow_write_access(file);
1843 free_vma:
1844 vm_area_free(vma);
1845 unacct_error:
1846 if (charged)
1847 vm_unacct_memory(charged);
1848 return error;
1851 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1854 * We implement the search by looking for an rbtree node that
1855 * immediately follows a suitable gap. That is,
1856 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1857 * - gap_end = vma->vm_start >= info->low_limit + length;
1858 * - gap_end - gap_start >= length
1861 struct mm_struct *mm = current->mm;
1862 struct vm_area_struct *vma;
1863 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1865 /* Adjust search length to account for worst case alignment overhead */
1866 length = info->length + info->align_mask;
1867 if (length < info->length)
1868 return -ENOMEM;
1870 /* Adjust search limits by the desired length */
1871 if (info->high_limit < length)
1872 return -ENOMEM;
1873 high_limit = info->high_limit - length;
1875 if (info->low_limit > high_limit)
1876 return -ENOMEM;
1877 low_limit = info->low_limit + length;
1879 /* Check if rbtree root looks promising */
1880 if (RB_EMPTY_ROOT(&mm->mm_rb))
1881 goto check_highest;
1882 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1883 if (vma->rb_subtree_gap < length)
1884 goto check_highest;
1886 while (true) {
1887 /* Visit left subtree if it looks promising */
1888 gap_end = vm_start_gap(vma);
1889 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1890 struct vm_area_struct *left =
1891 rb_entry(vma->vm_rb.rb_left,
1892 struct vm_area_struct, vm_rb);
1893 if (left->rb_subtree_gap >= length) {
1894 vma = left;
1895 continue;
1899 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1900 check_current:
1901 /* Check if current node has a suitable gap */
1902 if (gap_start > high_limit)
1903 return -ENOMEM;
1904 if (gap_end >= low_limit &&
1905 gap_end > gap_start && gap_end - gap_start >= length)
1906 goto found;
1908 /* Visit right subtree if it looks promising */
1909 if (vma->vm_rb.rb_right) {
1910 struct vm_area_struct *right =
1911 rb_entry(vma->vm_rb.rb_right,
1912 struct vm_area_struct, vm_rb);
1913 if (right->rb_subtree_gap >= length) {
1914 vma = right;
1915 continue;
1919 /* Go back up the rbtree to find next candidate node */
1920 while (true) {
1921 struct rb_node *prev = &vma->vm_rb;
1922 if (!rb_parent(prev))
1923 goto check_highest;
1924 vma = rb_entry(rb_parent(prev),
1925 struct vm_area_struct, vm_rb);
1926 if (prev == vma->vm_rb.rb_left) {
1927 gap_start = vm_end_gap(vma->vm_prev);
1928 gap_end = vm_start_gap(vma);
1929 goto check_current;
1934 check_highest:
1935 /* Check highest gap, which does not precede any rbtree node */
1936 gap_start = mm->highest_vm_end;
1937 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1938 if (gap_start > high_limit)
1939 return -ENOMEM;
1941 found:
1942 /* We found a suitable gap. Clip it with the original low_limit. */
1943 if (gap_start < info->low_limit)
1944 gap_start = info->low_limit;
1946 /* Adjust gap address to the desired alignment */
1947 gap_start += (info->align_offset - gap_start) & info->align_mask;
1949 VM_BUG_ON(gap_start + info->length > info->high_limit);
1950 VM_BUG_ON(gap_start + info->length > gap_end);
1951 return gap_start;
1954 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1956 struct mm_struct *mm = current->mm;
1957 struct vm_area_struct *vma;
1958 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1960 /* Adjust search length to account for worst case alignment overhead */
1961 length = info->length + info->align_mask;
1962 if (length < info->length)
1963 return -ENOMEM;
1966 * Adjust search limits by the desired length.
1967 * See implementation comment at top of unmapped_area().
1969 gap_end = info->high_limit;
1970 if (gap_end < length)
1971 return -ENOMEM;
1972 high_limit = gap_end - length;
1974 if (info->low_limit > high_limit)
1975 return -ENOMEM;
1976 low_limit = info->low_limit + length;
1978 /* Check highest gap, which does not precede any rbtree node */
1979 gap_start = mm->highest_vm_end;
1980 if (gap_start <= high_limit)
1981 goto found_highest;
1983 /* Check if rbtree root looks promising */
1984 if (RB_EMPTY_ROOT(&mm->mm_rb))
1985 return -ENOMEM;
1986 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1987 if (vma->rb_subtree_gap < length)
1988 return -ENOMEM;
1990 while (true) {
1991 /* Visit right subtree if it looks promising */
1992 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1993 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1994 struct vm_area_struct *right =
1995 rb_entry(vma->vm_rb.rb_right,
1996 struct vm_area_struct, vm_rb);
1997 if (right->rb_subtree_gap >= length) {
1998 vma = right;
1999 continue;
2003 check_current:
2004 /* Check if current node has a suitable gap */
2005 gap_end = vm_start_gap(vma);
2006 if (gap_end < low_limit)
2007 return -ENOMEM;
2008 if (gap_start <= high_limit &&
2009 gap_end > gap_start && gap_end - gap_start >= length)
2010 goto found;
2012 /* Visit left subtree if it looks promising */
2013 if (vma->vm_rb.rb_left) {
2014 struct vm_area_struct *left =
2015 rb_entry(vma->vm_rb.rb_left,
2016 struct vm_area_struct, vm_rb);
2017 if (left->rb_subtree_gap >= length) {
2018 vma = left;
2019 continue;
2023 /* Go back up the rbtree to find next candidate node */
2024 while (true) {
2025 struct rb_node *prev = &vma->vm_rb;
2026 if (!rb_parent(prev))
2027 return -ENOMEM;
2028 vma = rb_entry(rb_parent(prev),
2029 struct vm_area_struct, vm_rb);
2030 if (prev == vma->vm_rb.rb_right) {
2031 gap_start = vma->vm_prev ?
2032 vm_end_gap(vma->vm_prev) : 0;
2033 goto check_current;
2038 found:
2039 /* We found a suitable gap. Clip it with the original high_limit. */
2040 if (gap_end > info->high_limit)
2041 gap_end = info->high_limit;
2043 found_highest:
2044 /* Compute highest gap address at the desired alignment */
2045 gap_end -= info->length;
2046 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2048 VM_BUG_ON(gap_end < info->low_limit);
2049 VM_BUG_ON(gap_end < gap_start);
2050 return gap_end;
2054 #ifndef arch_get_mmap_end
2055 #define arch_get_mmap_end(addr) (TASK_SIZE)
2056 #endif
2058 #ifndef arch_get_mmap_base
2059 #define arch_get_mmap_base(addr, base) (base)
2060 #endif
2062 /* Get an address range which is currently unmapped.
2063 * For shmat() with addr=0.
2065 * Ugly calling convention alert:
2066 * Return value with the low bits set means error value,
2067 * ie
2068 * if (ret & ~PAGE_MASK)
2069 * error = ret;
2071 * This function "knows" that -ENOMEM has the bits set.
2073 #ifndef HAVE_ARCH_UNMAPPED_AREA
2074 unsigned long
2075 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2076 unsigned long len, unsigned long pgoff, unsigned long flags)
2078 struct mm_struct *mm = current->mm;
2079 struct vm_area_struct *vma, *prev;
2080 struct vm_unmapped_area_info info;
2081 const unsigned long mmap_end = arch_get_mmap_end(addr);
2083 if (len > mmap_end - mmap_min_addr)
2084 return -ENOMEM;
2086 if (flags & MAP_FIXED)
2087 return addr;
2089 if (addr) {
2090 addr = PAGE_ALIGN(addr);
2091 vma = find_vma_prev(mm, addr, &prev);
2092 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2093 (!vma || addr + len <= vm_start_gap(vma)) &&
2094 (!prev || addr >= vm_end_gap(prev)))
2095 return addr;
2098 info.flags = 0;
2099 info.length = len;
2100 info.low_limit = mm->mmap_base;
2101 info.high_limit = mmap_end;
2102 info.align_mask = 0;
2103 return vm_unmapped_area(&info);
2105 #endif
2108 * This mmap-allocator allocates new areas top-down from below the
2109 * stack's low limit (the base):
2111 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2112 unsigned long
2113 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2114 unsigned long len, unsigned long pgoff,
2115 unsigned long flags)
2117 struct vm_area_struct *vma, *prev;
2118 struct mm_struct *mm = current->mm;
2119 struct vm_unmapped_area_info info;
2120 const unsigned long mmap_end = arch_get_mmap_end(addr);
2122 /* requested length too big for entire address space */
2123 if (len > mmap_end - mmap_min_addr)
2124 return -ENOMEM;
2126 if (flags & MAP_FIXED)
2127 return addr;
2129 /* requesting a specific address */
2130 if (addr) {
2131 addr = PAGE_ALIGN(addr);
2132 vma = find_vma_prev(mm, addr, &prev);
2133 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2134 (!vma || addr + len <= vm_start_gap(vma)) &&
2135 (!prev || addr >= vm_end_gap(prev)))
2136 return addr;
2139 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2140 info.length = len;
2141 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2142 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2143 info.align_mask = 0;
2144 addr = vm_unmapped_area(&info);
2147 * A failed mmap() very likely causes application failure,
2148 * so fall back to the bottom-up function here. This scenario
2149 * can happen with large stack limits and large mmap()
2150 * allocations.
2152 if (offset_in_page(addr)) {
2153 VM_BUG_ON(addr != -ENOMEM);
2154 info.flags = 0;
2155 info.low_limit = TASK_UNMAPPED_BASE;
2156 info.high_limit = mmap_end;
2157 addr = vm_unmapped_area(&info);
2160 return addr;
2162 #endif
2164 unsigned long
2165 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2166 unsigned long pgoff, unsigned long flags)
2168 unsigned long (*get_area)(struct file *, unsigned long,
2169 unsigned long, unsigned long, unsigned long);
2171 unsigned long error = arch_mmap_check(addr, len, flags);
2172 if (error)
2173 return error;
2175 /* Careful about overflows.. */
2176 if (len > TASK_SIZE)
2177 return -ENOMEM;
2179 get_area = current->mm->get_unmapped_area;
2180 if (file) {
2181 if (file->f_op->get_unmapped_area)
2182 get_area = file->f_op->get_unmapped_area;
2183 } else if (flags & MAP_SHARED) {
2185 * mmap_region() will call shmem_zero_setup() to create a file,
2186 * so use shmem's get_unmapped_area in case it can be huge.
2187 * do_mmap_pgoff() will clear pgoff, so match alignment.
2189 pgoff = 0;
2190 get_area = shmem_get_unmapped_area;
2193 addr = get_area(file, addr, len, pgoff, flags);
2194 if (IS_ERR_VALUE(addr))
2195 return addr;
2197 if (addr > TASK_SIZE - len)
2198 return -ENOMEM;
2199 if (offset_in_page(addr))
2200 return -EINVAL;
2202 error = security_mmap_addr(addr);
2203 return error ? error : addr;
2206 EXPORT_SYMBOL(get_unmapped_area);
2208 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2209 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2211 struct rb_node *rb_node;
2212 struct vm_area_struct *vma;
2214 /* Check the cache first. */
2215 vma = vmacache_find(mm, addr);
2216 if (likely(vma))
2217 return vma;
2219 rb_node = mm->mm_rb.rb_node;
2221 while (rb_node) {
2222 struct vm_area_struct *tmp;
2224 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2226 if (tmp->vm_end > addr) {
2227 vma = tmp;
2228 if (tmp->vm_start <= addr)
2229 break;
2230 rb_node = rb_node->rb_left;
2231 } else
2232 rb_node = rb_node->rb_right;
2235 if (vma)
2236 vmacache_update(addr, vma);
2237 return vma;
2240 EXPORT_SYMBOL(find_vma);
2243 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2245 struct vm_area_struct *
2246 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2247 struct vm_area_struct **pprev)
2249 struct vm_area_struct *vma;
2251 vma = find_vma(mm, addr);
2252 if (vma) {
2253 *pprev = vma->vm_prev;
2254 } else {
2255 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2257 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2259 return vma;
2263 * Verify that the stack growth is acceptable and
2264 * update accounting. This is shared with both the
2265 * grow-up and grow-down cases.
2267 static int acct_stack_growth(struct vm_area_struct *vma,
2268 unsigned long size, unsigned long grow)
2270 struct mm_struct *mm = vma->vm_mm;
2271 unsigned long new_start;
2273 /* address space limit tests */
2274 if (!may_expand_vm(mm, vma->vm_flags, grow))
2275 return -ENOMEM;
2277 /* Stack limit test */
2278 if (size > rlimit(RLIMIT_STACK))
2279 return -ENOMEM;
2281 /* mlock limit tests */
2282 if (vma->vm_flags & VM_LOCKED) {
2283 unsigned long locked;
2284 unsigned long limit;
2285 locked = mm->locked_vm + grow;
2286 limit = rlimit(RLIMIT_MEMLOCK);
2287 limit >>= PAGE_SHIFT;
2288 if (locked > limit && !capable(CAP_IPC_LOCK))
2289 return -ENOMEM;
2292 /* Check to ensure the stack will not grow into a hugetlb-only region */
2293 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2294 vma->vm_end - size;
2295 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2296 return -EFAULT;
2299 * Overcommit.. This must be the final test, as it will
2300 * update security statistics.
2302 if (security_vm_enough_memory_mm(mm, grow))
2303 return -ENOMEM;
2305 return 0;
2308 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2310 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2311 * vma is the last one with address > vma->vm_end. Have to extend vma.
2313 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2315 struct mm_struct *mm = vma->vm_mm;
2316 struct vm_area_struct *next;
2317 unsigned long gap_addr;
2318 int error = 0;
2320 if (!(vma->vm_flags & VM_GROWSUP))
2321 return -EFAULT;
2323 /* Guard against exceeding limits of the address space. */
2324 address &= PAGE_MASK;
2325 if (address >= (TASK_SIZE & PAGE_MASK))
2326 return -ENOMEM;
2327 address += PAGE_SIZE;
2329 /* Enforce stack_guard_gap */
2330 gap_addr = address + stack_guard_gap;
2332 /* Guard against overflow */
2333 if (gap_addr < address || gap_addr > TASK_SIZE)
2334 gap_addr = TASK_SIZE;
2336 next = vma->vm_next;
2337 if (next && next->vm_start < gap_addr &&
2338 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2339 if (!(next->vm_flags & VM_GROWSUP))
2340 return -ENOMEM;
2341 /* Check that both stack segments have the same anon_vma? */
2344 /* We must make sure the anon_vma is allocated. */
2345 if (unlikely(anon_vma_prepare(vma)))
2346 return -ENOMEM;
2349 * vma->vm_start/vm_end cannot change under us because the caller
2350 * is required to hold the mmap_sem in read mode. We need the
2351 * anon_vma lock to serialize against concurrent expand_stacks.
2353 anon_vma_lock_write(vma->anon_vma);
2355 /* Somebody else might have raced and expanded it already */
2356 if (address > vma->vm_end) {
2357 unsigned long size, grow;
2359 size = address - vma->vm_start;
2360 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2362 error = -ENOMEM;
2363 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2364 error = acct_stack_growth(vma, size, grow);
2365 if (!error) {
2367 * vma_gap_update() doesn't support concurrent
2368 * updates, but we only hold a shared mmap_sem
2369 * lock here, so we need to protect against
2370 * concurrent vma expansions.
2371 * anon_vma_lock_write() doesn't help here, as
2372 * we don't guarantee that all growable vmas
2373 * in a mm share the same root anon vma.
2374 * So, we reuse mm->page_table_lock to guard
2375 * against concurrent vma expansions.
2377 spin_lock(&mm->page_table_lock);
2378 if (vma->vm_flags & VM_LOCKED)
2379 mm->locked_vm += grow;
2380 vm_stat_account(mm, vma->vm_flags, grow);
2381 anon_vma_interval_tree_pre_update_vma(vma);
2382 vma->vm_end = address;
2383 anon_vma_interval_tree_post_update_vma(vma);
2384 if (vma->vm_next)
2385 vma_gap_update(vma->vm_next);
2386 else
2387 mm->highest_vm_end = vm_end_gap(vma);
2388 spin_unlock(&mm->page_table_lock);
2390 perf_event_mmap(vma);
2394 anon_vma_unlock_write(vma->anon_vma);
2395 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2396 validate_mm(mm);
2397 return error;
2399 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2402 * vma is the first one with address < vma->vm_start. Have to extend vma.
2404 int expand_downwards(struct vm_area_struct *vma,
2405 unsigned long address)
2407 struct mm_struct *mm = vma->vm_mm;
2408 struct vm_area_struct *prev;
2409 int error = 0;
2411 address &= PAGE_MASK;
2412 if (address < mmap_min_addr)
2413 return -EPERM;
2415 /* Enforce stack_guard_gap */
2416 prev = vma->vm_prev;
2417 /* Check that both stack segments have the same anon_vma? */
2418 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2419 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2420 if (address - prev->vm_end < stack_guard_gap)
2421 return -ENOMEM;
2424 /* We must make sure the anon_vma is allocated. */
2425 if (unlikely(anon_vma_prepare(vma)))
2426 return -ENOMEM;
2429 * vma->vm_start/vm_end cannot change under us because the caller
2430 * is required to hold the mmap_sem in read mode. We need the
2431 * anon_vma lock to serialize against concurrent expand_stacks.
2433 anon_vma_lock_write(vma->anon_vma);
2435 /* Somebody else might have raced and expanded it already */
2436 if (address < vma->vm_start) {
2437 unsigned long size, grow;
2439 size = vma->vm_end - address;
2440 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2442 error = -ENOMEM;
2443 if (grow <= vma->vm_pgoff) {
2444 error = acct_stack_growth(vma, size, grow);
2445 if (!error) {
2447 * vma_gap_update() doesn't support concurrent
2448 * updates, but we only hold a shared mmap_sem
2449 * lock here, so we need to protect against
2450 * concurrent vma expansions.
2451 * anon_vma_lock_write() doesn't help here, as
2452 * we don't guarantee that all growable vmas
2453 * in a mm share the same root anon vma.
2454 * So, we reuse mm->page_table_lock to guard
2455 * against concurrent vma expansions.
2457 spin_lock(&mm->page_table_lock);
2458 if (vma->vm_flags & VM_LOCKED)
2459 mm->locked_vm += grow;
2460 vm_stat_account(mm, vma->vm_flags, grow);
2461 anon_vma_interval_tree_pre_update_vma(vma);
2462 vma->vm_start = address;
2463 vma->vm_pgoff -= grow;
2464 anon_vma_interval_tree_post_update_vma(vma);
2465 vma_gap_update(vma);
2466 spin_unlock(&mm->page_table_lock);
2468 perf_event_mmap(vma);
2472 anon_vma_unlock_write(vma->anon_vma);
2473 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2474 validate_mm(mm);
2475 return error;
2478 /* enforced gap between the expanding stack and other mappings. */
2479 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2481 static int __init cmdline_parse_stack_guard_gap(char *p)
2483 unsigned long val;
2484 char *endptr;
2486 val = simple_strtoul(p, &endptr, 10);
2487 if (!*endptr)
2488 stack_guard_gap = val << PAGE_SHIFT;
2490 return 0;
2492 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2494 #ifdef CONFIG_STACK_GROWSUP
2495 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2497 return expand_upwards(vma, address);
2500 struct vm_area_struct *
2501 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2503 struct vm_area_struct *vma, *prev;
2505 addr &= PAGE_MASK;
2506 vma = find_vma_prev(mm, addr, &prev);
2507 if (vma && (vma->vm_start <= addr))
2508 return vma;
2509 /* don't alter vm_end if the coredump is running */
2510 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2511 return NULL;
2512 if (prev->vm_flags & VM_LOCKED)
2513 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2514 return prev;
2516 #else
2517 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2519 return expand_downwards(vma, address);
2522 struct vm_area_struct *
2523 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2525 struct vm_area_struct *vma;
2526 unsigned long start;
2528 addr &= PAGE_MASK;
2529 vma = find_vma(mm, addr);
2530 if (!vma)
2531 return NULL;
2532 if (vma->vm_start <= addr)
2533 return vma;
2534 if (!(vma->vm_flags & VM_GROWSDOWN))
2535 return NULL;
2536 /* don't alter vm_start if the coredump is running */
2537 if (!mmget_still_valid(mm))
2538 return NULL;
2539 start = vma->vm_start;
2540 if (expand_stack(vma, addr))
2541 return NULL;
2542 if (vma->vm_flags & VM_LOCKED)
2543 populate_vma_page_range(vma, addr, start, NULL);
2544 return vma;
2546 #endif
2548 EXPORT_SYMBOL_GPL(find_extend_vma);
2551 * Ok - we have the memory areas we should free on the vma list,
2552 * so release them, and do the vma updates.
2554 * Called with the mm semaphore held.
2556 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2558 unsigned long nr_accounted = 0;
2560 /* Update high watermark before we lower total_vm */
2561 update_hiwater_vm(mm);
2562 do {
2563 long nrpages = vma_pages(vma);
2565 if (vma->vm_flags & VM_ACCOUNT)
2566 nr_accounted += nrpages;
2567 vm_stat_account(mm, vma->vm_flags, -nrpages);
2568 vma = remove_vma(vma);
2569 } while (vma);
2570 vm_unacct_memory(nr_accounted);
2571 validate_mm(mm);
2575 * Get rid of page table information in the indicated region.
2577 * Called with the mm semaphore held.
2579 static void unmap_region(struct mm_struct *mm,
2580 struct vm_area_struct *vma, struct vm_area_struct *prev,
2581 unsigned long start, unsigned long end)
2583 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2584 struct mmu_gather tlb;
2586 lru_add_drain();
2587 tlb_gather_mmu(&tlb, mm, start, end);
2588 update_hiwater_rss(mm);
2589 unmap_vmas(&tlb, vma, start, end);
2590 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2591 next ? next->vm_start : USER_PGTABLES_CEILING);
2592 tlb_finish_mmu(&tlb, start, end);
2596 * Create a list of vma's touched by the unmap, removing them from the mm's
2597 * vma list as we go..
2599 static void
2600 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2601 struct vm_area_struct *prev, unsigned long end)
2603 struct vm_area_struct **insertion_point;
2604 struct vm_area_struct *tail_vma = NULL;
2606 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2607 vma->vm_prev = NULL;
2608 do {
2609 vma_rb_erase(vma, &mm->mm_rb);
2610 mm->map_count--;
2611 tail_vma = vma;
2612 vma = vma->vm_next;
2613 } while (vma && vma->vm_start < end);
2614 *insertion_point = vma;
2615 if (vma) {
2616 vma->vm_prev = prev;
2617 vma_gap_update(vma);
2618 } else
2619 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2620 tail_vma->vm_next = NULL;
2622 /* Kill the cache */
2623 vmacache_invalidate(mm);
2627 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2628 * has already been checked or doesn't make sense to fail.
2630 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2631 unsigned long addr, int new_below)
2633 struct vm_area_struct *new;
2634 int err;
2636 if (vma->vm_ops && vma->vm_ops->split) {
2637 err = vma->vm_ops->split(vma, addr);
2638 if (err)
2639 return err;
2642 new = vm_area_dup(vma);
2643 if (!new)
2644 return -ENOMEM;
2646 if (new_below)
2647 new->vm_end = addr;
2648 else {
2649 new->vm_start = addr;
2650 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2653 err = vma_dup_policy(vma, new);
2654 if (err)
2655 goto out_free_vma;
2657 err = anon_vma_clone(new, vma);
2658 if (err)
2659 goto out_free_mpol;
2661 if (new->vm_file)
2662 get_file(new->vm_file);
2664 if (new->vm_ops && new->vm_ops->open)
2665 new->vm_ops->open(new);
2667 if (new_below)
2668 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2669 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2670 else
2671 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2673 /* Success. */
2674 if (!err)
2675 return 0;
2677 /* Clean everything up if vma_adjust failed. */
2678 if (new->vm_ops && new->vm_ops->close)
2679 new->vm_ops->close(new);
2680 if (new->vm_file)
2681 fput(new->vm_file);
2682 unlink_anon_vmas(new);
2683 out_free_mpol:
2684 mpol_put(vma_policy(new));
2685 out_free_vma:
2686 vm_area_free(new);
2687 return err;
2691 * Split a vma into two pieces at address 'addr', a new vma is allocated
2692 * either for the first part or the tail.
2694 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2695 unsigned long addr, int new_below)
2697 if (mm->map_count >= sysctl_max_map_count)
2698 return -ENOMEM;
2700 return __split_vma(mm, vma, addr, new_below);
2703 /* Munmap is split into 2 main parts -- this part which finds
2704 * what needs doing, and the areas themselves, which do the
2705 * work. This now handles partial unmappings.
2706 * Jeremy Fitzhardinge <jeremy@goop.org>
2708 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2709 struct list_head *uf, bool downgrade)
2711 unsigned long end;
2712 struct vm_area_struct *vma, *prev, *last;
2714 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2715 return -EINVAL;
2717 len = PAGE_ALIGN(len);
2718 end = start + len;
2719 if (len == 0)
2720 return -EINVAL;
2723 * arch_unmap() might do unmaps itself. It must be called
2724 * and finish any rbtree manipulation before this code
2725 * runs and also starts to manipulate the rbtree.
2727 arch_unmap(mm, start, end);
2729 /* Find the first overlapping VMA */
2730 vma = find_vma(mm, start);
2731 if (!vma)
2732 return 0;
2733 prev = vma->vm_prev;
2734 /* we have start < vma->vm_end */
2736 /* if it doesn't overlap, we have nothing.. */
2737 if (vma->vm_start >= end)
2738 return 0;
2741 * If we need to split any vma, do it now to save pain later.
2743 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2744 * unmapped vm_area_struct will remain in use: so lower split_vma
2745 * places tmp vma above, and higher split_vma places tmp vma below.
2747 if (start > vma->vm_start) {
2748 int error;
2751 * Make sure that map_count on return from munmap() will
2752 * not exceed its limit; but let map_count go just above
2753 * its limit temporarily, to help free resources as expected.
2755 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2756 return -ENOMEM;
2758 error = __split_vma(mm, vma, start, 0);
2759 if (error)
2760 return error;
2761 prev = vma;
2764 /* Does it split the last one? */
2765 last = find_vma(mm, end);
2766 if (last && end > last->vm_start) {
2767 int error = __split_vma(mm, last, end, 1);
2768 if (error)
2769 return error;
2771 vma = prev ? prev->vm_next : mm->mmap;
2773 if (unlikely(uf)) {
2775 * If userfaultfd_unmap_prep returns an error the vmas
2776 * will remain splitted, but userland will get a
2777 * highly unexpected error anyway. This is no
2778 * different than the case where the first of the two
2779 * __split_vma fails, but we don't undo the first
2780 * split, despite we could. This is unlikely enough
2781 * failure that it's not worth optimizing it for.
2783 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2784 if (error)
2785 return error;
2789 * unlock any mlock()ed ranges before detaching vmas
2791 if (mm->locked_vm) {
2792 struct vm_area_struct *tmp = vma;
2793 while (tmp && tmp->vm_start < end) {
2794 if (tmp->vm_flags & VM_LOCKED) {
2795 mm->locked_vm -= vma_pages(tmp);
2796 munlock_vma_pages_all(tmp);
2799 tmp = tmp->vm_next;
2803 /* Detach vmas from rbtree */
2804 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2806 if (downgrade)
2807 downgrade_write(&mm->mmap_sem);
2809 unmap_region(mm, vma, prev, start, end);
2811 /* Fix up all other VM information */
2812 remove_vma_list(mm, vma);
2814 return downgrade ? 1 : 0;
2817 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2818 struct list_head *uf)
2820 return __do_munmap(mm, start, len, uf, false);
2823 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2825 int ret;
2826 struct mm_struct *mm = current->mm;
2827 LIST_HEAD(uf);
2829 if (down_write_killable(&mm->mmap_sem))
2830 return -EINTR;
2832 ret = __do_munmap(mm, start, len, &uf, downgrade);
2834 * Returning 1 indicates mmap_sem is downgraded.
2835 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2836 * it to 0 before return.
2838 if (ret == 1) {
2839 up_read(&mm->mmap_sem);
2840 ret = 0;
2841 } else
2842 up_write(&mm->mmap_sem);
2844 userfaultfd_unmap_complete(mm, &uf);
2845 return ret;
2848 int vm_munmap(unsigned long start, size_t len)
2850 return __vm_munmap(start, len, false);
2852 EXPORT_SYMBOL(vm_munmap);
2854 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2856 addr = untagged_addr(addr);
2857 profile_munmap(addr);
2858 return __vm_munmap(addr, len, true);
2863 * Emulation of deprecated remap_file_pages() syscall.
2865 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2866 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2869 struct mm_struct *mm = current->mm;
2870 struct vm_area_struct *vma;
2871 unsigned long populate = 0;
2872 unsigned long ret = -EINVAL;
2873 struct file *file;
2875 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2876 current->comm, current->pid);
2878 if (prot)
2879 return ret;
2880 start = start & PAGE_MASK;
2881 size = size & PAGE_MASK;
2883 if (start + size <= start)
2884 return ret;
2886 /* Does pgoff wrap? */
2887 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2888 return ret;
2890 if (down_write_killable(&mm->mmap_sem))
2891 return -EINTR;
2893 vma = find_vma(mm, start);
2895 if (!vma || !(vma->vm_flags & VM_SHARED))
2896 goto out;
2898 if (start < vma->vm_start)
2899 goto out;
2901 if (start + size > vma->vm_end) {
2902 struct vm_area_struct *next;
2904 for (next = vma->vm_next; next; next = next->vm_next) {
2905 /* hole between vmas ? */
2906 if (next->vm_start != next->vm_prev->vm_end)
2907 goto out;
2909 if (next->vm_file != vma->vm_file)
2910 goto out;
2912 if (next->vm_flags != vma->vm_flags)
2913 goto out;
2915 if (start + size <= next->vm_end)
2916 break;
2919 if (!next)
2920 goto out;
2923 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2924 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2925 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2927 flags &= MAP_NONBLOCK;
2928 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2929 if (vma->vm_flags & VM_LOCKED) {
2930 struct vm_area_struct *tmp;
2931 flags |= MAP_LOCKED;
2933 /* drop PG_Mlocked flag for over-mapped range */
2934 for (tmp = vma; tmp->vm_start >= start + size;
2935 tmp = tmp->vm_next) {
2937 * Split pmd and munlock page on the border
2938 * of the range.
2940 vma_adjust_trans_huge(tmp, start, start + size, 0);
2942 munlock_vma_pages_range(tmp,
2943 max(tmp->vm_start, start),
2944 min(tmp->vm_end, start + size));
2948 file = get_file(vma->vm_file);
2949 ret = do_mmap_pgoff(vma->vm_file, start, size,
2950 prot, flags, pgoff, &populate, NULL);
2951 fput(file);
2952 out:
2953 up_write(&mm->mmap_sem);
2954 if (populate)
2955 mm_populate(ret, populate);
2956 if (!IS_ERR_VALUE(ret))
2957 ret = 0;
2958 return ret;
2962 * this is really a simplified "do_mmap". it only handles
2963 * anonymous maps. eventually we may be able to do some
2964 * brk-specific accounting here.
2966 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2968 struct mm_struct *mm = current->mm;
2969 struct vm_area_struct *vma, *prev;
2970 struct rb_node **rb_link, *rb_parent;
2971 pgoff_t pgoff = addr >> PAGE_SHIFT;
2972 int error;
2973 unsigned long mapped_addr;
2975 /* Until we need other flags, refuse anything except VM_EXEC. */
2976 if ((flags & (~VM_EXEC)) != 0)
2977 return -EINVAL;
2978 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2980 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2981 if (IS_ERR_VALUE(mapped_addr))
2982 return mapped_addr;
2984 error = mlock_future_check(mm, mm->def_flags, len);
2985 if (error)
2986 return error;
2989 * Clear old maps. this also does some error checking for us
2991 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2992 &rb_parent)) {
2993 if (do_munmap(mm, addr, len, uf))
2994 return -ENOMEM;
2997 /* Check against address space limits *after* clearing old maps... */
2998 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2999 return -ENOMEM;
3001 if (mm->map_count > sysctl_max_map_count)
3002 return -ENOMEM;
3004 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3005 return -ENOMEM;
3007 /* Can we just expand an old private anonymous mapping? */
3008 vma = vma_merge(mm, prev, addr, addr + len, flags,
3009 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3010 if (vma)
3011 goto out;
3014 * create a vma struct for an anonymous mapping
3016 vma = vm_area_alloc(mm);
3017 if (!vma) {
3018 vm_unacct_memory(len >> PAGE_SHIFT);
3019 return -ENOMEM;
3022 vma_set_anonymous(vma);
3023 vma->vm_start = addr;
3024 vma->vm_end = addr + len;
3025 vma->vm_pgoff = pgoff;
3026 vma->vm_flags = flags;
3027 vma->vm_page_prot = vm_get_page_prot(flags);
3028 vma_link(mm, vma, prev, rb_link, rb_parent);
3029 out:
3030 perf_event_mmap(vma);
3031 mm->total_vm += len >> PAGE_SHIFT;
3032 mm->data_vm += len >> PAGE_SHIFT;
3033 if (flags & VM_LOCKED)
3034 mm->locked_vm += (len >> PAGE_SHIFT);
3035 vma->vm_flags |= VM_SOFTDIRTY;
3036 return 0;
3039 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3041 struct mm_struct *mm = current->mm;
3042 unsigned long len;
3043 int ret;
3044 bool populate;
3045 LIST_HEAD(uf);
3047 len = PAGE_ALIGN(request);
3048 if (len < request)
3049 return -ENOMEM;
3050 if (!len)
3051 return 0;
3053 if (down_write_killable(&mm->mmap_sem))
3054 return -EINTR;
3056 ret = do_brk_flags(addr, len, flags, &uf);
3057 populate = ((mm->def_flags & VM_LOCKED) != 0);
3058 up_write(&mm->mmap_sem);
3059 userfaultfd_unmap_complete(mm, &uf);
3060 if (populate && !ret)
3061 mm_populate(addr, len);
3062 return ret;
3064 EXPORT_SYMBOL(vm_brk_flags);
3066 int vm_brk(unsigned long addr, unsigned long len)
3068 return vm_brk_flags(addr, len, 0);
3070 EXPORT_SYMBOL(vm_brk);
3072 /* Release all mmaps. */
3073 void exit_mmap(struct mm_struct *mm)
3075 struct mmu_gather tlb;
3076 struct vm_area_struct *vma;
3077 unsigned long nr_accounted = 0;
3079 /* mm's last user has gone, and its about to be pulled down */
3080 mmu_notifier_release(mm);
3082 if (unlikely(mm_is_oom_victim(mm))) {
3084 * Manually reap the mm to free as much memory as possible.
3085 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3086 * this mm from further consideration. Taking mm->mmap_sem for
3087 * write after setting MMF_OOM_SKIP will guarantee that the oom
3088 * reaper will not run on this mm again after mmap_sem is
3089 * dropped.
3091 * Nothing can be holding mm->mmap_sem here and the above call
3092 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3093 * __oom_reap_task_mm() will not block.
3095 * This needs to be done before calling munlock_vma_pages_all(),
3096 * which clears VM_LOCKED, otherwise the oom reaper cannot
3097 * reliably test it.
3099 (void)__oom_reap_task_mm(mm);
3101 set_bit(MMF_OOM_SKIP, &mm->flags);
3102 down_write(&mm->mmap_sem);
3103 up_write(&mm->mmap_sem);
3106 if (mm->locked_vm) {
3107 vma = mm->mmap;
3108 while (vma) {
3109 if (vma->vm_flags & VM_LOCKED)
3110 munlock_vma_pages_all(vma);
3111 vma = vma->vm_next;
3115 arch_exit_mmap(mm);
3117 vma = mm->mmap;
3118 if (!vma) /* Can happen if dup_mmap() received an OOM */
3119 return;
3121 lru_add_drain();
3122 flush_cache_mm(mm);
3123 tlb_gather_mmu(&tlb, mm, 0, -1);
3124 /* update_hiwater_rss(mm) here? but nobody should be looking */
3125 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3126 unmap_vmas(&tlb, vma, 0, -1);
3127 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3128 tlb_finish_mmu(&tlb, 0, -1);
3131 * Walk the list again, actually closing and freeing it,
3132 * with preemption enabled, without holding any MM locks.
3134 while (vma) {
3135 if (vma->vm_flags & VM_ACCOUNT)
3136 nr_accounted += vma_pages(vma);
3137 vma = remove_vma(vma);
3139 vm_unacct_memory(nr_accounted);
3142 /* Insert vm structure into process list sorted by address
3143 * and into the inode's i_mmap tree. If vm_file is non-NULL
3144 * then i_mmap_rwsem is taken here.
3146 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3148 struct vm_area_struct *prev;
3149 struct rb_node **rb_link, *rb_parent;
3151 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3152 &prev, &rb_link, &rb_parent))
3153 return -ENOMEM;
3154 if ((vma->vm_flags & VM_ACCOUNT) &&
3155 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3156 return -ENOMEM;
3159 * The vm_pgoff of a purely anonymous vma should be irrelevant
3160 * until its first write fault, when page's anon_vma and index
3161 * are set. But now set the vm_pgoff it will almost certainly
3162 * end up with (unless mremap moves it elsewhere before that
3163 * first wfault), so /proc/pid/maps tells a consistent story.
3165 * By setting it to reflect the virtual start address of the
3166 * vma, merges and splits can happen in a seamless way, just
3167 * using the existing file pgoff checks and manipulations.
3168 * Similarly in do_mmap_pgoff and in do_brk.
3170 if (vma_is_anonymous(vma)) {
3171 BUG_ON(vma->anon_vma);
3172 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3175 vma_link(mm, vma, prev, rb_link, rb_parent);
3176 return 0;
3180 * Copy the vma structure to a new location in the same mm,
3181 * prior to moving page table entries, to effect an mremap move.
3183 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3184 unsigned long addr, unsigned long len, pgoff_t pgoff,
3185 bool *need_rmap_locks)
3187 struct vm_area_struct *vma = *vmap;
3188 unsigned long vma_start = vma->vm_start;
3189 struct mm_struct *mm = vma->vm_mm;
3190 struct vm_area_struct *new_vma, *prev;
3191 struct rb_node **rb_link, *rb_parent;
3192 bool faulted_in_anon_vma = true;
3195 * If anonymous vma has not yet been faulted, update new pgoff
3196 * to match new location, to increase its chance of merging.
3198 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3199 pgoff = addr >> PAGE_SHIFT;
3200 faulted_in_anon_vma = false;
3203 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3204 return NULL; /* should never get here */
3205 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3206 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3207 vma->vm_userfaultfd_ctx);
3208 if (new_vma) {
3210 * Source vma may have been merged into new_vma
3212 if (unlikely(vma_start >= new_vma->vm_start &&
3213 vma_start < new_vma->vm_end)) {
3215 * The only way we can get a vma_merge with
3216 * self during an mremap is if the vma hasn't
3217 * been faulted in yet and we were allowed to
3218 * reset the dst vma->vm_pgoff to the
3219 * destination address of the mremap to allow
3220 * the merge to happen. mremap must change the
3221 * vm_pgoff linearity between src and dst vmas
3222 * (in turn preventing a vma_merge) to be
3223 * safe. It is only safe to keep the vm_pgoff
3224 * linear if there are no pages mapped yet.
3226 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3227 *vmap = vma = new_vma;
3229 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3230 } else {
3231 new_vma = vm_area_dup(vma);
3232 if (!new_vma)
3233 goto out;
3234 new_vma->vm_start = addr;
3235 new_vma->vm_end = addr + len;
3236 new_vma->vm_pgoff = pgoff;
3237 if (vma_dup_policy(vma, new_vma))
3238 goto out_free_vma;
3239 if (anon_vma_clone(new_vma, vma))
3240 goto out_free_mempol;
3241 if (new_vma->vm_file)
3242 get_file(new_vma->vm_file);
3243 if (new_vma->vm_ops && new_vma->vm_ops->open)
3244 new_vma->vm_ops->open(new_vma);
3245 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3246 *need_rmap_locks = false;
3248 return new_vma;
3250 out_free_mempol:
3251 mpol_put(vma_policy(new_vma));
3252 out_free_vma:
3253 vm_area_free(new_vma);
3254 out:
3255 return NULL;
3259 * Return true if the calling process may expand its vm space by the passed
3260 * number of pages
3262 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3264 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3265 return false;
3267 if (is_data_mapping(flags) &&
3268 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3269 /* Workaround for Valgrind */
3270 if (rlimit(RLIMIT_DATA) == 0 &&
3271 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3272 return true;
3274 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3275 current->comm, current->pid,
3276 (mm->data_vm + npages) << PAGE_SHIFT,
3277 rlimit(RLIMIT_DATA),
3278 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3280 if (!ignore_rlimit_data)
3281 return false;
3284 return true;
3287 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3289 mm->total_vm += npages;
3291 if (is_exec_mapping(flags))
3292 mm->exec_vm += npages;
3293 else if (is_stack_mapping(flags))
3294 mm->stack_vm += npages;
3295 else if (is_data_mapping(flags))
3296 mm->data_vm += npages;
3299 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3302 * Having a close hook prevents vma merging regardless of flags.
3304 static void special_mapping_close(struct vm_area_struct *vma)
3308 static const char *special_mapping_name(struct vm_area_struct *vma)
3310 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3313 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3315 struct vm_special_mapping *sm = new_vma->vm_private_data;
3317 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3318 return -EFAULT;
3320 if (sm->mremap)
3321 return sm->mremap(sm, new_vma);
3323 return 0;
3326 static const struct vm_operations_struct special_mapping_vmops = {
3327 .close = special_mapping_close,
3328 .fault = special_mapping_fault,
3329 .mremap = special_mapping_mremap,
3330 .name = special_mapping_name,
3331 /* vDSO code relies that VVAR can't be accessed remotely */
3332 .access = NULL,
3335 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3336 .close = special_mapping_close,
3337 .fault = special_mapping_fault,
3340 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3342 struct vm_area_struct *vma = vmf->vma;
3343 pgoff_t pgoff;
3344 struct page **pages;
3346 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3347 pages = vma->vm_private_data;
3348 } else {
3349 struct vm_special_mapping *sm = vma->vm_private_data;
3351 if (sm->fault)
3352 return sm->fault(sm, vmf->vma, vmf);
3354 pages = sm->pages;
3357 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3358 pgoff--;
3360 if (*pages) {
3361 struct page *page = *pages;
3362 get_page(page);
3363 vmf->page = page;
3364 return 0;
3367 return VM_FAULT_SIGBUS;
3370 static struct vm_area_struct *__install_special_mapping(
3371 struct mm_struct *mm,
3372 unsigned long addr, unsigned long len,
3373 unsigned long vm_flags, void *priv,
3374 const struct vm_operations_struct *ops)
3376 int ret;
3377 struct vm_area_struct *vma;
3379 vma = vm_area_alloc(mm);
3380 if (unlikely(vma == NULL))
3381 return ERR_PTR(-ENOMEM);
3383 vma->vm_start = addr;
3384 vma->vm_end = addr + len;
3386 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3387 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3389 vma->vm_ops = ops;
3390 vma->vm_private_data = priv;
3392 ret = insert_vm_struct(mm, vma);
3393 if (ret)
3394 goto out;
3396 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3398 perf_event_mmap(vma);
3400 return vma;
3402 out:
3403 vm_area_free(vma);
3404 return ERR_PTR(ret);
3407 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3408 const struct vm_special_mapping *sm)
3410 return vma->vm_private_data == sm &&
3411 (vma->vm_ops == &special_mapping_vmops ||
3412 vma->vm_ops == &legacy_special_mapping_vmops);
3416 * Called with mm->mmap_sem held for writing.
3417 * Insert a new vma covering the given region, with the given flags.
3418 * Its pages are supplied by the given array of struct page *.
3419 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3420 * The region past the last page supplied will always produce SIGBUS.
3421 * The array pointer and the pages it points to are assumed to stay alive
3422 * for as long as this mapping might exist.
3424 struct vm_area_struct *_install_special_mapping(
3425 struct mm_struct *mm,
3426 unsigned long addr, unsigned long len,
3427 unsigned long vm_flags, const struct vm_special_mapping *spec)
3429 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3430 &special_mapping_vmops);
3433 int install_special_mapping(struct mm_struct *mm,
3434 unsigned long addr, unsigned long len,
3435 unsigned long vm_flags, struct page **pages)
3437 struct vm_area_struct *vma = __install_special_mapping(
3438 mm, addr, len, vm_flags, (void *)pages,
3439 &legacy_special_mapping_vmops);
3441 return PTR_ERR_OR_ZERO(vma);
3444 static DEFINE_MUTEX(mm_all_locks_mutex);
3446 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3448 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3450 * The LSB of head.next can't change from under us
3451 * because we hold the mm_all_locks_mutex.
3453 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3455 * We can safely modify head.next after taking the
3456 * anon_vma->root->rwsem. If some other vma in this mm shares
3457 * the same anon_vma we won't take it again.
3459 * No need of atomic instructions here, head.next
3460 * can't change from under us thanks to the
3461 * anon_vma->root->rwsem.
3463 if (__test_and_set_bit(0, (unsigned long *)
3464 &anon_vma->root->rb_root.rb_root.rb_node))
3465 BUG();
3469 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3471 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3473 * AS_MM_ALL_LOCKS can't change from under us because
3474 * we hold the mm_all_locks_mutex.
3476 * Operations on ->flags have to be atomic because
3477 * even if AS_MM_ALL_LOCKS is stable thanks to the
3478 * mm_all_locks_mutex, there may be other cpus
3479 * changing other bitflags in parallel to us.
3481 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3482 BUG();
3483 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3488 * This operation locks against the VM for all pte/vma/mm related
3489 * operations that could ever happen on a certain mm. This includes
3490 * vmtruncate, try_to_unmap, and all page faults.
3492 * The caller must take the mmap_sem in write mode before calling
3493 * mm_take_all_locks(). The caller isn't allowed to release the
3494 * mmap_sem until mm_drop_all_locks() returns.
3496 * mmap_sem in write mode is required in order to block all operations
3497 * that could modify pagetables and free pages without need of
3498 * altering the vma layout. It's also needed in write mode to avoid new
3499 * anon_vmas to be associated with existing vmas.
3501 * A single task can't take more than one mm_take_all_locks() in a row
3502 * or it would deadlock.
3504 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3505 * mapping->flags avoid to take the same lock twice, if more than one
3506 * vma in this mm is backed by the same anon_vma or address_space.
3508 * We take locks in following order, accordingly to comment at beginning
3509 * of mm/rmap.c:
3510 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3511 * hugetlb mapping);
3512 * - all i_mmap_rwsem locks;
3513 * - all anon_vma->rwseml
3515 * We can take all locks within these types randomly because the VM code
3516 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3517 * mm_all_locks_mutex.
3519 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3520 * that may have to take thousand of locks.
3522 * mm_take_all_locks() can fail if it's interrupted by signals.
3524 int mm_take_all_locks(struct mm_struct *mm)
3526 struct vm_area_struct *vma;
3527 struct anon_vma_chain *avc;
3529 BUG_ON(down_read_trylock(&mm->mmap_sem));
3531 mutex_lock(&mm_all_locks_mutex);
3533 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3534 if (signal_pending(current))
3535 goto out_unlock;
3536 if (vma->vm_file && vma->vm_file->f_mapping &&
3537 is_vm_hugetlb_page(vma))
3538 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3541 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3542 if (signal_pending(current))
3543 goto out_unlock;
3544 if (vma->vm_file && vma->vm_file->f_mapping &&
3545 !is_vm_hugetlb_page(vma))
3546 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3549 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3550 if (signal_pending(current))
3551 goto out_unlock;
3552 if (vma->anon_vma)
3553 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3554 vm_lock_anon_vma(mm, avc->anon_vma);
3557 return 0;
3559 out_unlock:
3560 mm_drop_all_locks(mm);
3561 return -EINTR;
3564 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3566 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3568 * The LSB of head.next can't change to 0 from under
3569 * us because we hold the mm_all_locks_mutex.
3571 * We must however clear the bitflag before unlocking
3572 * the vma so the users using the anon_vma->rb_root will
3573 * never see our bitflag.
3575 * No need of atomic instructions here, head.next
3576 * can't change from under us until we release the
3577 * anon_vma->root->rwsem.
3579 if (!__test_and_clear_bit(0, (unsigned long *)
3580 &anon_vma->root->rb_root.rb_root.rb_node))
3581 BUG();
3582 anon_vma_unlock_write(anon_vma);
3586 static void vm_unlock_mapping(struct address_space *mapping)
3588 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3590 * AS_MM_ALL_LOCKS can't change to 0 from under us
3591 * because we hold the mm_all_locks_mutex.
3593 i_mmap_unlock_write(mapping);
3594 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3595 &mapping->flags))
3596 BUG();
3601 * The mmap_sem cannot be released by the caller until
3602 * mm_drop_all_locks() returns.
3604 void mm_drop_all_locks(struct mm_struct *mm)
3606 struct vm_area_struct *vma;
3607 struct anon_vma_chain *avc;
3609 BUG_ON(down_read_trylock(&mm->mmap_sem));
3610 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3612 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3613 if (vma->anon_vma)
3614 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3615 vm_unlock_anon_vma(avc->anon_vma);
3616 if (vma->vm_file && vma->vm_file->f_mapping)
3617 vm_unlock_mapping(vma->vm_file->f_mapping);
3620 mutex_unlock(&mm_all_locks_mutex);
3624 * initialise the percpu counter for VM
3626 void __init mmap_init(void)
3628 int ret;
3630 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3631 VM_BUG_ON(ret);
3635 * Initialise sysctl_user_reserve_kbytes.
3637 * This is intended to prevent a user from starting a single memory hogging
3638 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3639 * mode.
3641 * The default value is min(3% of free memory, 128MB)
3642 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3644 static int init_user_reserve(void)
3646 unsigned long free_kbytes;
3648 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3650 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3651 return 0;
3653 subsys_initcall(init_user_reserve);
3656 * Initialise sysctl_admin_reserve_kbytes.
3658 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3659 * to log in and kill a memory hogging process.
3661 * Systems with more than 256MB will reserve 8MB, enough to recover
3662 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3663 * only reserve 3% of free pages by default.
3665 static int init_admin_reserve(void)
3667 unsigned long free_kbytes;
3669 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3671 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3672 return 0;
3674 subsys_initcall(init_admin_reserve);
3677 * Reinititalise user and admin reserves if memory is added or removed.
3679 * The default user reserve max is 128MB, and the default max for the
3680 * admin reserve is 8MB. These are usually, but not always, enough to
3681 * enable recovery from a memory hogging process using login/sshd, a shell,
3682 * and tools like top. It may make sense to increase or even disable the
3683 * reserve depending on the existence of swap or variations in the recovery
3684 * tools. So, the admin may have changed them.
3686 * If memory is added and the reserves have been eliminated or increased above
3687 * the default max, then we'll trust the admin.
3689 * If memory is removed and there isn't enough free memory, then we
3690 * need to reset the reserves.
3692 * Otherwise keep the reserve set by the admin.
3694 static int reserve_mem_notifier(struct notifier_block *nb,
3695 unsigned long action, void *data)
3697 unsigned long tmp, free_kbytes;
3699 switch (action) {
3700 case MEM_ONLINE:
3701 /* Default max is 128MB. Leave alone if modified by operator. */
3702 tmp = sysctl_user_reserve_kbytes;
3703 if (0 < tmp && tmp < (1UL << 17))
3704 init_user_reserve();
3706 /* Default max is 8MB. Leave alone if modified by operator. */
3707 tmp = sysctl_admin_reserve_kbytes;
3708 if (0 < tmp && tmp < (1UL << 13))
3709 init_admin_reserve();
3711 break;
3712 case MEM_OFFLINE:
3713 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3715 if (sysctl_user_reserve_kbytes > free_kbytes) {
3716 init_user_reserve();
3717 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3718 sysctl_user_reserve_kbytes);
3721 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3722 init_admin_reserve();
3723 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3724 sysctl_admin_reserve_kbytes);
3726 break;
3727 default:
3728 break;
3730 return NOTIFY_OK;
3733 static struct notifier_block reserve_mem_nb = {
3734 .notifier_call = reserve_mem_notifier,
3737 static int __meminit init_reserve_notifier(void)
3739 if (register_hotmemory_notifier(&reserve_mem_nb))
3740 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3742 return 0;
3744 subsys_initcall(init_reserve_notifier);