1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET An implementation of the SOCKET network access protocol.
5 * Version: @(#)socket.c 1.1.93 18/02/95
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
49 * This module is effectively the top level interface to the BSD socket
52 * Based upon Swansea University Computer Society NET3.039
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
93 #include <net/compat.h>
95 #include <net/cls_cgroup.h>
98 #include <linux/netfilter.h>
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly
;
110 unsigned int sysctl_net_busy_poll __read_mostly
;
113 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
114 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
115 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
117 static int sock_close(struct inode
*inode
, struct file
*file
);
118 static __poll_t
sock_poll(struct file
*file
,
119 struct poll_table_struct
*wait
);
120 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
122 static long compat_sock_ioctl(struct file
*file
,
123 unsigned int cmd
, unsigned long arg
);
125 static int sock_fasync(int fd
, struct file
*filp
, int on
);
126 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
127 int offset
, size_t size
, loff_t
*ppos
, int more
);
128 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
129 struct pipe_inode_info
*pipe
, size_t len
,
132 #ifdef CONFIG_PROC_FS
133 static void sock_show_fdinfo(struct seq_file
*m
, struct file
*f
)
135 struct socket
*sock
= f
->private_data
;
137 if (sock
->ops
->show_fdinfo
)
138 sock
->ops
->show_fdinfo(m
, sock
);
141 #define sock_show_fdinfo NULL
145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146 * in the operation structures but are done directly via the socketcall() multiplexor.
149 static const struct file_operations socket_file_ops
= {
150 .owner
= THIS_MODULE
,
152 .read_iter
= sock_read_iter
,
153 .write_iter
= sock_write_iter
,
155 .unlocked_ioctl
= sock_ioctl
,
157 .compat_ioctl
= compat_sock_ioctl
,
160 .release
= sock_close
,
161 .fasync
= sock_fasync
,
162 .sendpage
= sock_sendpage
,
163 .splice_write
= generic_splice_sendpage
,
164 .splice_read
= sock_splice_read
,
165 .show_fdinfo
= sock_show_fdinfo
,
169 * The protocol list. Each protocol is registered in here.
172 static DEFINE_SPINLOCK(net_family_lock
);
173 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
192 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
194 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
198 if (copy_from_user(kaddr
, uaddr
, ulen
))
200 return audit_sockaddr(ulen
, kaddr
);
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
220 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
221 void __user
*uaddr
, int __user
*ulen
)
226 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
227 err
= get_user(len
, ulen
);
235 if (audit_sockaddr(klen
, kaddr
))
237 if (copy_to_user(uaddr
, kaddr
, len
))
241 * "fromlen shall refer to the value before truncation.."
244 return __put_user(klen
, ulen
);
247 static struct kmem_cache
*sock_inode_cachep __ro_after_init
;
249 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
251 struct socket_alloc
*ei
;
253 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
256 init_waitqueue_head(&ei
->socket
.wq
.wait
);
257 ei
->socket
.wq
.fasync_list
= NULL
;
258 ei
->socket
.wq
.flags
= 0;
260 ei
->socket
.state
= SS_UNCONNECTED
;
261 ei
->socket
.flags
= 0;
262 ei
->socket
.ops
= NULL
;
263 ei
->socket
.sk
= NULL
;
264 ei
->socket
.file
= NULL
;
266 return &ei
->vfs_inode
;
269 static void sock_free_inode(struct inode
*inode
)
271 struct socket_alloc
*ei
;
273 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
274 kmem_cache_free(sock_inode_cachep
, ei
);
277 static void init_once(void *foo
)
279 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
281 inode_init_once(&ei
->vfs_inode
);
284 static void init_inodecache(void)
286 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc
),
289 (SLAB_HWCACHE_ALIGN
|
290 SLAB_RECLAIM_ACCOUNT
|
291 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
293 BUG_ON(sock_inode_cachep
== NULL
);
296 static const struct super_operations sockfs_ops
= {
297 .alloc_inode
= sock_alloc_inode
,
298 .free_inode
= sock_free_inode
,
299 .statfs
= simple_statfs
,
303 * sockfs_dname() is called from d_path().
305 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
307 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
308 d_inode(dentry
)->i_ino
);
311 static const struct dentry_operations sockfs_dentry_operations
= {
312 .d_dname
= sockfs_dname
,
315 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
316 struct dentry
*dentry
, struct inode
*inode
,
317 const char *suffix
, void *value
, size_t size
)
320 if (dentry
->d_name
.len
+ 1 > size
)
322 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
324 return dentry
->d_name
.len
+ 1;
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
331 static const struct xattr_handler sockfs_xattr_handler
= {
332 .name
= XATTR_NAME_SOCKPROTONAME
,
333 .get
= sockfs_xattr_get
,
336 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
337 struct dentry
*dentry
, struct inode
*inode
,
338 const char *suffix
, const void *value
,
339 size_t size
, int flags
)
341 /* Handled by LSM. */
345 static const struct xattr_handler sockfs_security_xattr_handler
= {
346 .prefix
= XATTR_SECURITY_PREFIX
,
347 .set
= sockfs_security_xattr_set
,
350 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
351 &sockfs_xattr_handler
,
352 &sockfs_security_xattr_handler
,
356 static int sockfs_init_fs_context(struct fs_context
*fc
)
358 struct pseudo_fs_context
*ctx
= init_pseudo(fc
, SOCKFS_MAGIC
);
361 ctx
->ops
= &sockfs_ops
;
362 ctx
->dops
= &sockfs_dentry_operations
;
363 ctx
->xattr
= sockfs_xattr_handlers
;
367 static struct vfsmount
*sock_mnt __read_mostly
;
369 static struct file_system_type sock_fs_type
= {
371 .init_fs_context
= sockfs_init_fs_context
,
372 .kill_sb
= kill_anon_super
,
376 * Obtains the first available file descriptor and sets it up for use.
378 * These functions create file structures and maps them to fd space
379 * of the current process. On success it returns file descriptor
380 * and file struct implicitly stored in sock->file.
381 * Note that another thread may close file descriptor before we return
382 * from this function. We use the fact that now we do not refer
383 * to socket after mapping. If one day we will need it, this
384 * function will increment ref. count on file by 1.
386 * In any case returned fd MAY BE not valid!
387 * This race condition is unavoidable
388 * with shared fd spaces, we cannot solve it inside kernel,
389 * but we take care of internal coherence yet.
393 * sock_alloc_file - Bind a &socket to a &file
395 * @flags: file status flags
396 * @dname: protocol name
398 * Returns the &file bound with @sock, implicitly storing it
399 * in sock->file. If dname is %NULL, sets to "".
400 * On failure the return is a ERR pointer (see linux/err.h).
401 * This function uses GFP_KERNEL internally.
404 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
409 dname
= sock
->sk
? sock
->sk
->sk_prot_creator
->name
: "";
411 file
= alloc_file_pseudo(SOCK_INODE(sock
), sock_mnt
, dname
,
412 O_RDWR
| (flags
& O_NONBLOCK
),
420 file
->private_data
= sock
;
421 stream_open(SOCK_INODE(sock
), file
);
424 EXPORT_SYMBOL(sock_alloc_file
);
426 static int sock_map_fd(struct socket
*sock
, int flags
)
428 struct file
*newfile
;
429 int fd
= get_unused_fd_flags(flags
);
430 if (unlikely(fd
< 0)) {
435 newfile
= sock_alloc_file(sock
, flags
, NULL
);
436 if (!IS_ERR(newfile
)) {
437 fd_install(fd
, newfile
);
442 return PTR_ERR(newfile
);
446 * sock_from_file - Return the &socket bounded to @file.
448 * @err: pointer to an error code return
450 * On failure returns %NULL and assigns -ENOTSOCK to @err.
453 struct socket
*sock_from_file(struct file
*file
, int *err
)
455 if (file
->f_op
== &socket_file_ops
)
456 return file
->private_data
; /* set in sock_map_fd */
461 EXPORT_SYMBOL(sock_from_file
);
464 * sockfd_lookup - Go from a file number to its socket slot
466 * @err: pointer to an error code return
468 * The file handle passed in is locked and the socket it is bound
469 * to is returned. If an error occurs the err pointer is overwritten
470 * with a negative errno code and NULL is returned. The function checks
471 * for both invalid handles and passing a handle which is not a socket.
473 * On a success the socket object pointer is returned.
476 struct socket
*sockfd_lookup(int fd
, int *err
)
487 sock
= sock_from_file(file
, err
);
492 EXPORT_SYMBOL(sockfd_lookup
);
494 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
496 struct fd f
= fdget(fd
);
501 sock
= sock_from_file(f
.file
, err
);
503 *fput_needed
= f
.flags
;
511 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
517 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
527 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
532 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
539 static int sockfs_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
541 int err
= simple_setattr(dentry
, iattr
);
543 if (!err
&& (iattr
->ia_valid
& ATTR_UID
)) {
544 struct socket
*sock
= SOCKET_I(d_inode(dentry
));
547 sock
->sk
->sk_uid
= iattr
->ia_uid
;
555 static const struct inode_operations sockfs_inode_ops
= {
556 .listxattr
= sockfs_listxattr
,
557 .setattr
= sockfs_setattr
,
561 * sock_alloc - allocate a socket
563 * Allocate a new inode and socket object. The two are bound together
564 * and initialised. The socket is then returned. If we are out of inodes
565 * NULL is returned. This functions uses GFP_KERNEL internally.
568 struct socket
*sock_alloc(void)
573 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
577 sock
= SOCKET_I(inode
);
579 inode
->i_ino
= get_next_ino();
580 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
581 inode
->i_uid
= current_fsuid();
582 inode
->i_gid
= current_fsgid();
583 inode
->i_op
= &sockfs_inode_ops
;
587 EXPORT_SYMBOL(sock_alloc
);
590 * sock_release - close a socket
591 * @sock: socket to close
593 * The socket is released from the protocol stack if it has a release
594 * callback, and the inode is then released if the socket is bound to
595 * an inode not a file.
598 static void __sock_release(struct socket
*sock
, struct inode
*inode
)
601 struct module
*owner
= sock
->ops
->owner
;
605 sock
->ops
->release(sock
);
613 if (sock
->wq
.fasync_list
)
614 pr_err("%s: fasync list not empty!\n", __func__
);
617 iput(SOCK_INODE(sock
));
623 void sock_release(struct socket
*sock
)
625 __sock_release(sock
, NULL
);
627 EXPORT_SYMBOL(sock_release
);
629 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
631 u8 flags
= *tx_flags
;
633 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
634 flags
|= SKBTX_HW_TSTAMP
;
636 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
637 flags
|= SKBTX_SW_TSTAMP
;
639 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
640 flags
|= SKBTX_SCHED_TSTAMP
;
644 EXPORT_SYMBOL(__sock_tx_timestamp
);
646 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket
*, struct msghdr
*,
648 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket
*, struct msghdr
*,
650 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
652 int ret
= INDIRECT_CALL_INET(sock
->ops
->sendmsg
, inet6_sendmsg
,
653 inet_sendmsg
, sock
, msg
,
655 BUG_ON(ret
== -EIOCBQUEUED
);
660 * sock_sendmsg - send a message through @sock
662 * @msg: message to send
664 * Sends @msg through @sock, passing through LSM.
665 * Returns the number of bytes sent, or an error code.
667 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
669 int err
= security_socket_sendmsg(sock
, msg
,
672 return err
?: sock_sendmsg_nosec(sock
, msg
);
674 EXPORT_SYMBOL(sock_sendmsg
);
677 * kernel_sendmsg - send a message through @sock (kernel-space)
679 * @msg: message header
681 * @num: vec array length
682 * @size: total message data size
684 * Builds the message data with @vec and sends it through @sock.
685 * Returns the number of bytes sent, or an error code.
688 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
689 struct kvec
*vec
, size_t num
, size_t size
)
691 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
692 return sock_sendmsg(sock
, msg
);
694 EXPORT_SYMBOL(kernel_sendmsg
);
697 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
699 * @msg: message header
700 * @vec: output s/g array
701 * @num: output s/g array length
702 * @size: total message data size
704 * Builds the message data with @vec and sends it through @sock.
705 * Returns the number of bytes sent, or an error code.
706 * Caller must hold @sk.
709 int kernel_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
,
710 struct kvec
*vec
, size_t num
, size_t size
)
712 struct socket
*sock
= sk
->sk_socket
;
714 if (!sock
->ops
->sendmsg_locked
)
715 return sock_no_sendmsg_locked(sk
, msg
, size
);
717 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
719 return sock
->ops
->sendmsg_locked(sk
, msg
, msg_data_left(msg
));
721 EXPORT_SYMBOL(kernel_sendmsg_locked
);
723 static bool skb_is_err_queue(const struct sk_buff
*skb
)
725 /* pkt_type of skbs enqueued on the error queue are set to
726 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
727 * in recvmsg, since skbs received on a local socket will never
728 * have a pkt_type of PACKET_OUTGOING.
730 return skb
->pkt_type
== PACKET_OUTGOING
;
733 /* On transmit, software and hardware timestamps are returned independently.
734 * As the two skb clones share the hardware timestamp, which may be updated
735 * before the software timestamp is received, a hardware TX timestamp may be
736 * returned only if there is no software TX timestamp. Ignore false software
737 * timestamps, which may be made in the __sock_recv_timestamp() call when the
738 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
739 * hardware timestamp.
741 static bool skb_is_swtx_tstamp(const struct sk_buff
*skb
, int false_tstamp
)
743 return skb
->tstamp
&& !false_tstamp
&& skb_is_err_queue(skb
);
746 static void put_ts_pktinfo(struct msghdr
*msg
, struct sk_buff
*skb
)
748 struct scm_ts_pktinfo ts_pktinfo
;
749 struct net_device
*orig_dev
;
751 if (!skb_mac_header_was_set(skb
))
754 memset(&ts_pktinfo
, 0, sizeof(ts_pktinfo
));
757 orig_dev
= dev_get_by_napi_id(skb_napi_id(skb
));
759 ts_pktinfo
.if_index
= orig_dev
->ifindex
;
762 ts_pktinfo
.pkt_length
= skb
->len
- skb_mac_offset(skb
);
763 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_PKTINFO
,
764 sizeof(ts_pktinfo
), &ts_pktinfo
);
768 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
770 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
773 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
774 int new_tstamp
= sock_flag(sk
, SOCK_TSTAMP_NEW
);
775 struct scm_timestamping_internal tss
;
777 int empty
= 1, false_tstamp
= 0;
778 struct skb_shared_hwtstamps
*shhwtstamps
=
781 /* Race occurred between timestamp enabling and packet
782 receiving. Fill in the current time for now. */
783 if (need_software_tstamp
&& skb
->tstamp
== 0) {
784 __net_timestamp(skb
);
788 if (need_software_tstamp
) {
789 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
791 struct __kernel_sock_timeval tv
;
793 skb_get_new_timestamp(skb
, &tv
);
794 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_NEW
,
797 struct __kernel_old_timeval tv
;
799 skb_get_timestamp(skb
, &tv
);
800 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_OLD
,
805 struct __kernel_timespec ts
;
807 skb_get_new_timestampns(skb
, &ts
);
808 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_NEW
,
811 struct __kernel_old_timespec ts
;
813 skb_get_timestampns(skb
, &ts
);
814 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_OLD
,
820 memset(&tss
, 0, sizeof(tss
));
821 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
822 ktime_to_timespec64_cond(skb
->tstamp
, tss
.ts
+ 0))
825 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
826 !skb_is_swtx_tstamp(skb
, false_tstamp
) &&
827 ktime_to_timespec64_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2)) {
829 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_PKTINFO
) &&
830 !skb_is_err_queue(skb
))
831 put_ts_pktinfo(msg
, skb
);
834 if (sock_flag(sk
, SOCK_TSTAMP_NEW
))
835 put_cmsg_scm_timestamping64(msg
, &tss
);
837 put_cmsg_scm_timestamping(msg
, &tss
);
839 if (skb_is_err_queue(skb
) && skb
->len
&&
840 SKB_EXT_ERR(skb
)->opt_stats
)
841 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_OPT_STATS
,
842 skb
->len
, skb
->data
);
845 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
847 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
852 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
854 if (!skb
->wifi_acked_valid
)
857 ack
= skb
->wifi_acked
;
859 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
861 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
863 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
866 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
867 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
868 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
871 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
874 sock_recv_timestamp(msg
, sk
, skb
);
875 sock_recv_drops(msg
, sk
, skb
);
877 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
879 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket
*, struct msghdr
*,
881 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket
*, struct msghdr
*,
883 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
886 return INDIRECT_CALL_INET(sock
->ops
->recvmsg
, inet6_recvmsg
,
887 inet_recvmsg
, sock
, msg
, msg_data_left(msg
),
892 * sock_recvmsg - receive a message from @sock
894 * @msg: message to receive
895 * @flags: message flags
897 * Receives @msg from @sock, passing through LSM. Returns the total number
898 * of bytes received, or an error.
900 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
902 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
904 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
906 EXPORT_SYMBOL(sock_recvmsg
);
909 * kernel_recvmsg - Receive a message from a socket (kernel space)
910 * @sock: The socket to receive the message from
911 * @msg: Received message
912 * @vec: Input s/g array for message data
913 * @num: Size of input s/g array
914 * @size: Number of bytes to read
915 * @flags: Message flags (MSG_DONTWAIT, etc...)
917 * On return the msg structure contains the scatter/gather array passed in the
918 * vec argument. The array is modified so that it consists of the unfilled
919 * portion of the original array.
921 * The returned value is the total number of bytes received, or an error.
924 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
925 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
927 mm_segment_t oldfs
= get_fs();
930 iov_iter_kvec(&msg
->msg_iter
, READ
, vec
, num
, size
);
932 result
= sock_recvmsg(sock
, msg
, flags
);
936 EXPORT_SYMBOL(kernel_recvmsg
);
938 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
939 int offset
, size_t size
, loff_t
*ppos
, int more
)
944 sock
= file
->private_data
;
946 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
947 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
950 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
953 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
954 struct pipe_inode_info
*pipe
, size_t len
,
957 struct socket
*sock
= file
->private_data
;
959 if (unlikely(!sock
->ops
->splice_read
))
960 return generic_file_splice_read(file
, ppos
, pipe
, len
, flags
);
962 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
965 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
967 struct file
*file
= iocb
->ki_filp
;
968 struct socket
*sock
= file
->private_data
;
969 struct msghdr msg
= {.msg_iter
= *to
,
973 if (file
->f_flags
& O_NONBLOCK
|| (iocb
->ki_flags
& IOCB_NOWAIT
))
974 msg
.msg_flags
= MSG_DONTWAIT
;
976 if (iocb
->ki_pos
!= 0)
979 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
982 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
987 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
989 struct file
*file
= iocb
->ki_filp
;
990 struct socket
*sock
= file
->private_data
;
991 struct msghdr msg
= {.msg_iter
= *from
,
995 if (iocb
->ki_pos
!= 0)
998 if (file
->f_flags
& O_NONBLOCK
|| (iocb
->ki_flags
& IOCB_NOWAIT
))
999 msg
.msg_flags
= MSG_DONTWAIT
;
1001 if (sock
->type
== SOCK_SEQPACKET
)
1002 msg
.msg_flags
|= MSG_EOR
;
1004 res
= sock_sendmsg(sock
, &msg
);
1005 *from
= msg
.msg_iter
;
1010 * Atomic setting of ioctl hooks to avoid race
1011 * with module unload.
1014 static DEFINE_MUTEX(br_ioctl_mutex
);
1015 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
1017 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
1019 mutex_lock(&br_ioctl_mutex
);
1020 br_ioctl_hook
= hook
;
1021 mutex_unlock(&br_ioctl_mutex
);
1023 EXPORT_SYMBOL(brioctl_set
);
1025 static DEFINE_MUTEX(vlan_ioctl_mutex
);
1026 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
1028 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
1030 mutex_lock(&vlan_ioctl_mutex
);
1031 vlan_ioctl_hook
= hook
;
1032 mutex_unlock(&vlan_ioctl_mutex
);
1034 EXPORT_SYMBOL(vlan_ioctl_set
);
1036 static DEFINE_MUTEX(dlci_ioctl_mutex
);
1037 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
1039 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
1041 mutex_lock(&dlci_ioctl_mutex
);
1042 dlci_ioctl_hook
= hook
;
1043 mutex_unlock(&dlci_ioctl_mutex
);
1045 EXPORT_SYMBOL(dlci_ioctl_set
);
1047 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
1048 unsigned int cmd
, unsigned long arg
)
1051 void __user
*argp
= (void __user
*)arg
;
1053 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
1056 * If this ioctl is unknown try to hand it down
1057 * to the NIC driver.
1059 if (err
!= -ENOIOCTLCMD
)
1062 if (cmd
== SIOCGIFCONF
) {
1064 if (copy_from_user(&ifc
, argp
, sizeof(struct ifconf
)))
1067 err
= dev_ifconf(net
, &ifc
, sizeof(struct ifreq
));
1069 if (!err
&& copy_to_user(argp
, &ifc
, sizeof(struct ifconf
)))
1074 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1076 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1077 if (!err
&& need_copyout
)
1078 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1085 * With an ioctl, arg may well be a user mode pointer, but we don't know
1086 * what to do with it - that's up to the protocol still.
1090 * get_net_ns - increment the refcount of the network namespace
1091 * @ns: common namespace (net)
1093 * Returns the net's common namespace.
1096 struct ns_common
*get_net_ns(struct ns_common
*ns
)
1098 return &get_net(container_of(ns
, struct net
, ns
))->ns
;
1100 EXPORT_SYMBOL_GPL(get_net_ns
);
1102 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1104 struct socket
*sock
;
1106 void __user
*argp
= (void __user
*)arg
;
1110 sock
= file
->private_data
;
1113 if (unlikely(cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))) {
1116 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1118 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1119 if (!err
&& need_copyout
)
1120 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1123 #ifdef CONFIG_WEXT_CORE
1124 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1125 err
= wext_handle_ioctl(net
, cmd
, argp
);
1132 if (get_user(pid
, (int __user
*)argp
))
1134 err
= f_setown(sock
->file
, pid
, 1);
1138 err
= put_user(f_getown(sock
->file
),
1139 (int __user
*)argp
);
1147 request_module("bridge");
1149 mutex_lock(&br_ioctl_mutex
);
1151 err
= br_ioctl_hook(net
, cmd
, argp
);
1152 mutex_unlock(&br_ioctl_mutex
);
1157 if (!vlan_ioctl_hook
)
1158 request_module("8021q");
1160 mutex_lock(&vlan_ioctl_mutex
);
1161 if (vlan_ioctl_hook
)
1162 err
= vlan_ioctl_hook(net
, argp
);
1163 mutex_unlock(&vlan_ioctl_mutex
);
1168 if (!dlci_ioctl_hook
)
1169 request_module("dlci");
1171 mutex_lock(&dlci_ioctl_mutex
);
1172 if (dlci_ioctl_hook
)
1173 err
= dlci_ioctl_hook(cmd
, argp
);
1174 mutex_unlock(&dlci_ioctl_mutex
);
1178 if (!ns_capable(net
->user_ns
, CAP_NET_ADMIN
))
1181 err
= open_related_ns(&net
->ns
, get_net_ns
);
1183 case SIOCGSTAMP_OLD
:
1184 case SIOCGSTAMPNS_OLD
:
1185 if (!sock
->ops
->gettstamp
) {
1189 err
= sock
->ops
->gettstamp(sock
, argp
,
1190 cmd
== SIOCGSTAMP_OLD
,
1191 !IS_ENABLED(CONFIG_64BIT
));
1193 case SIOCGSTAMP_NEW
:
1194 case SIOCGSTAMPNS_NEW
:
1195 if (!sock
->ops
->gettstamp
) {
1199 err
= sock
->ops
->gettstamp(sock
, argp
,
1200 cmd
== SIOCGSTAMP_NEW
,
1204 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1211 * sock_create_lite - creates a socket
1212 * @family: protocol family (AF_INET, ...)
1213 * @type: communication type (SOCK_STREAM, ...)
1214 * @protocol: protocol (0, ...)
1217 * Creates a new socket and assigns it to @res, passing through LSM.
1218 * The new socket initialization is not complete, see kernel_accept().
1219 * Returns 0 or an error. On failure @res is set to %NULL.
1220 * This function internally uses GFP_KERNEL.
1223 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1226 struct socket
*sock
= NULL
;
1228 err
= security_socket_create(family
, type
, protocol
, 1);
1232 sock
= sock_alloc();
1239 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1251 EXPORT_SYMBOL(sock_create_lite
);
1253 /* No kernel lock held - perfect */
1254 static __poll_t
sock_poll(struct file
*file
, poll_table
*wait
)
1256 struct socket
*sock
= file
->private_data
;
1257 __poll_t events
= poll_requested_events(wait
), flag
= 0;
1259 if (!sock
->ops
->poll
)
1262 if (sk_can_busy_loop(sock
->sk
)) {
1263 /* poll once if requested by the syscall */
1264 if (events
& POLL_BUSY_LOOP
)
1265 sk_busy_loop(sock
->sk
, 1);
1267 /* if this socket can poll_ll, tell the system call */
1268 flag
= POLL_BUSY_LOOP
;
1271 return sock
->ops
->poll(file
, sock
, wait
) | flag
;
1274 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1276 struct socket
*sock
= file
->private_data
;
1278 return sock
->ops
->mmap(file
, sock
, vma
);
1281 static int sock_close(struct inode
*inode
, struct file
*filp
)
1283 __sock_release(SOCKET_I(inode
), inode
);
1288 * Update the socket async list
1290 * Fasync_list locking strategy.
1292 * 1. fasync_list is modified only under process context socket lock
1293 * i.e. under semaphore.
1294 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1295 * or under socket lock
1298 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1300 struct socket
*sock
= filp
->private_data
;
1301 struct sock
*sk
= sock
->sk
;
1302 struct socket_wq
*wq
= &sock
->wq
;
1308 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1310 if (!wq
->fasync_list
)
1311 sock_reset_flag(sk
, SOCK_FASYNC
);
1313 sock_set_flag(sk
, SOCK_FASYNC
);
1319 /* This function may be called only under rcu_lock */
1321 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1323 if (!wq
|| !wq
->fasync_list
)
1327 case SOCK_WAKE_WAITD
:
1328 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1331 case SOCK_WAKE_SPACE
:
1332 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1337 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1340 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1345 EXPORT_SYMBOL(sock_wake_async
);
1348 * __sock_create - creates a socket
1349 * @net: net namespace
1350 * @family: protocol family (AF_INET, ...)
1351 * @type: communication type (SOCK_STREAM, ...)
1352 * @protocol: protocol (0, ...)
1354 * @kern: boolean for kernel space sockets
1356 * Creates a new socket and assigns it to @res, passing through LSM.
1357 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1358 * be set to true if the socket resides in kernel space.
1359 * This function internally uses GFP_KERNEL.
1362 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1363 struct socket
**res
, int kern
)
1366 struct socket
*sock
;
1367 const struct net_proto_family
*pf
;
1370 * Check protocol is in range
1372 if (family
< 0 || family
>= NPROTO
)
1373 return -EAFNOSUPPORT
;
1374 if (type
< 0 || type
>= SOCK_MAX
)
1379 This uglymoron is moved from INET layer to here to avoid
1380 deadlock in module load.
1382 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1383 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1388 err
= security_socket_create(family
, type
, protocol
, kern
);
1393 * Allocate the socket and allow the family to set things up. if
1394 * the protocol is 0, the family is instructed to select an appropriate
1397 sock
= sock_alloc();
1399 net_warn_ratelimited("socket: no more sockets\n");
1400 return -ENFILE
; /* Not exactly a match, but its the
1401 closest posix thing */
1406 #ifdef CONFIG_MODULES
1407 /* Attempt to load a protocol module if the find failed.
1409 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1410 * requested real, full-featured networking support upon configuration.
1411 * Otherwise module support will break!
1413 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1414 request_module("net-pf-%d", family
);
1418 pf
= rcu_dereference(net_families
[family
]);
1419 err
= -EAFNOSUPPORT
;
1424 * We will call the ->create function, that possibly is in a loadable
1425 * module, so we have to bump that loadable module refcnt first.
1427 if (!try_module_get(pf
->owner
))
1430 /* Now protected by module ref count */
1433 err
= pf
->create(net
, sock
, protocol
, kern
);
1435 goto out_module_put
;
1438 * Now to bump the refcnt of the [loadable] module that owns this
1439 * socket at sock_release time we decrement its refcnt.
1441 if (!try_module_get(sock
->ops
->owner
))
1442 goto out_module_busy
;
1445 * Now that we're done with the ->create function, the [loadable]
1446 * module can have its refcnt decremented
1448 module_put(pf
->owner
);
1449 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1451 goto out_sock_release
;
1457 err
= -EAFNOSUPPORT
;
1460 module_put(pf
->owner
);
1467 goto out_sock_release
;
1469 EXPORT_SYMBOL(__sock_create
);
1472 * sock_create - creates a socket
1473 * @family: protocol family (AF_INET, ...)
1474 * @type: communication type (SOCK_STREAM, ...)
1475 * @protocol: protocol (0, ...)
1478 * A wrapper around __sock_create().
1479 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1482 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1484 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1486 EXPORT_SYMBOL(sock_create
);
1489 * sock_create_kern - creates a socket (kernel space)
1490 * @net: net namespace
1491 * @family: protocol family (AF_INET, ...)
1492 * @type: communication type (SOCK_STREAM, ...)
1493 * @protocol: protocol (0, ...)
1496 * A wrapper around __sock_create().
1497 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1500 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1502 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1504 EXPORT_SYMBOL(sock_create_kern
);
1506 int __sys_socket(int family
, int type
, int protocol
)
1509 struct socket
*sock
;
1512 /* Check the SOCK_* constants for consistency. */
1513 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1514 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1515 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1516 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1518 flags
= type
& ~SOCK_TYPE_MASK
;
1519 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1521 type
&= SOCK_TYPE_MASK
;
1523 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1524 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1526 retval
= sock_create(family
, type
, protocol
, &sock
);
1530 return sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1533 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1535 return __sys_socket(family
, type
, protocol
);
1539 * Create a pair of connected sockets.
1542 int __sys_socketpair(int family
, int type
, int protocol
, int __user
*usockvec
)
1544 struct socket
*sock1
, *sock2
;
1546 struct file
*newfile1
, *newfile2
;
1549 flags
= type
& ~SOCK_TYPE_MASK
;
1550 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1552 type
&= SOCK_TYPE_MASK
;
1554 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1555 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1558 * reserve descriptors and make sure we won't fail
1559 * to return them to userland.
1561 fd1
= get_unused_fd_flags(flags
);
1562 if (unlikely(fd1
< 0))
1565 fd2
= get_unused_fd_flags(flags
);
1566 if (unlikely(fd2
< 0)) {
1571 err
= put_user(fd1
, &usockvec
[0]);
1575 err
= put_user(fd2
, &usockvec
[1]);
1580 * Obtain the first socket and check if the underlying protocol
1581 * supports the socketpair call.
1584 err
= sock_create(family
, type
, protocol
, &sock1
);
1585 if (unlikely(err
< 0))
1588 err
= sock_create(family
, type
, protocol
, &sock2
);
1589 if (unlikely(err
< 0)) {
1590 sock_release(sock1
);
1594 err
= security_socket_socketpair(sock1
, sock2
);
1595 if (unlikely(err
)) {
1596 sock_release(sock2
);
1597 sock_release(sock1
);
1601 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1602 if (unlikely(err
< 0)) {
1603 sock_release(sock2
);
1604 sock_release(sock1
);
1608 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1609 if (IS_ERR(newfile1
)) {
1610 err
= PTR_ERR(newfile1
);
1611 sock_release(sock2
);
1615 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1616 if (IS_ERR(newfile2
)) {
1617 err
= PTR_ERR(newfile2
);
1622 audit_fd_pair(fd1
, fd2
);
1624 fd_install(fd1
, newfile1
);
1625 fd_install(fd2
, newfile2
);
1634 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1635 int __user
*, usockvec
)
1637 return __sys_socketpair(family
, type
, protocol
, usockvec
);
1641 * Bind a name to a socket. Nothing much to do here since it's
1642 * the protocol's responsibility to handle the local address.
1644 * We move the socket address to kernel space before we call
1645 * the protocol layer (having also checked the address is ok).
1648 int __sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1650 struct socket
*sock
;
1651 struct sockaddr_storage address
;
1652 int err
, fput_needed
;
1654 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1656 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1658 err
= security_socket_bind(sock
,
1659 (struct sockaddr
*)&address
,
1662 err
= sock
->ops
->bind(sock
,
1666 fput_light(sock
->file
, fput_needed
);
1671 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1673 return __sys_bind(fd
, umyaddr
, addrlen
);
1677 * Perform a listen. Basically, we allow the protocol to do anything
1678 * necessary for a listen, and if that works, we mark the socket as
1679 * ready for listening.
1682 int __sys_listen(int fd
, int backlog
)
1684 struct socket
*sock
;
1685 int err
, fput_needed
;
1688 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1690 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1691 if ((unsigned int)backlog
> somaxconn
)
1692 backlog
= somaxconn
;
1694 err
= security_socket_listen(sock
, backlog
);
1696 err
= sock
->ops
->listen(sock
, backlog
);
1698 fput_light(sock
->file
, fput_needed
);
1703 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1705 return __sys_listen(fd
, backlog
);
1708 int __sys_accept4_file(struct file
*file
, unsigned file_flags
,
1709 struct sockaddr __user
*upeer_sockaddr
,
1710 int __user
*upeer_addrlen
, int flags
)
1712 struct socket
*sock
, *newsock
;
1713 struct file
*newfile
;
1714 int err
, len
, newfd
;
1715 struct sockaddr_storage address
;
1717 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1720 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1721 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1723 sock
= sock_from_file(file
, &err
);
1728 newsock
= sock_alloc();
1732 newsock
->type
= sock
->type
;
1733 newsock
->ops
= sock
->ops
;
1736 * We don't need try_module_get here, as the listening socket (sock)
1737 * has the protocol module (sock->ops->owner) held.
1739 __module_get(newsock
->ops
->owner
);
1741 newfd
= get_unused_fd_flags(flags
);
1742 if (unlikely(newfd
< 0)) {
1744 sock_release(newsock
);
1747 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1748 if (IS_ERR(newfile
)) {
1749 err
= PTR_ERR(newfile
);
1750 put_unused_fd(newfd
);
1754 err
= security_socket_accept(sock
, newsock
);
1758 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
| file_flags
,
1763 if (upeer_sockaddr
) {
1764 len
= newsock
->ops
->getname(newsock
,
1765 (struct sockaddr
*)&address
, 2);
1767 err
= -ECONNABORTED
;
1770 err
= move_addr_to_user(&address
,
1771 len
, upeer_sockaddr
, upeer_addrlen
);
1776 /* File flags are not inherited via accept() unlike another OSes. */
1778 fd_install(newfd
, newfile
);
1784 put_unused_fd(newfd
);
1790 * For accept, we attempt to create a new socket, set up the link
1791 * with the client, wake up the client, then return the new
1792 * connected fd. We collect the address of the connector in kernel
1793 * space and move it to user at the very end. This is unclean because
1794 * we open the socket then return an error.
1796 * 1003.1g adds the ability to recvmsg() to query connection pending
1797 * status to recvmsg. We need to add that support in a way thats
1798 * clean when we restructure accept also.
1801 int __sys_accept4(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1802 int __user
*upeer_addrlen
, int flags
)
1809 ret
= __sys_accept4_file(f
.file
, 0, upeer_sockaddr
,
1810 upeer_addrlen
, flags
);
1818 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1819 int __user
*, upeer_addrlen
, int, flags
)
1821 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, flags
);
1824 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1825 int __user
*, upeer_addrlen
)
1827 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1831 * Attempt to connect to a socket with the server address. The address
1832 * is in user space so we verify it is OK and move it to kernel space.
1834 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1837 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1838 * other SEQPACKET protocols that take time to connect() as it doesn't
1839 * include the -EINPROGRESS status for such sockets.
1842 int __sys_connect_file(struct file
*file
, struct sockaddr_storage
*address
,
1843 int addrlen
, int file_flags
)
1845 struct socket
*sock
;
1848 sock
= sock_from_file(file
, &err
);
1853 security_socket_connect(sock
, (struct sockaddr
*)address
, addrlen
);
1857 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)address
, addrlen
,
1858 sock
->file
->f_flags
| file_flags
);
1863 int __sys_connect(int fd
, struct sockaddr __user
*uservaddr
, int addrlen
)
1870 struct sockaddr_storage address
;
1872 ret
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1874 ret
= __sys_connect_file(f
.file
, &address
, addrlen
, 0);
1882 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1885 return __sys_connect(fd
, uservaddr
, addrlen
);
1889 * Get the local address ('name') of a socket object. Move the obtained
1890 * name to user space.
1893 int __sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1894 int __user
*usockaddr_len
)
1896 struct socket
*sock
;
1897 struct sockaddr_storage address
;
1898 int err
, fput_needed
;
1900 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1904 err
= security_socket_getsockname(sock
);
1908 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 0);
1911 /* "err" is actually length in this case */
1912 err
= move_addr_to_user(&address
, err
, usockaddr
, usockaddr_len
);
1915 fput_light(sock
->file
, fput_needed
);
1920 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1921 int __user
*, usockaddr_len
)
1923 return __sys_getsockname(fd
, usockaddr
, usockaddr_len
);
1927 * Get the remote address ('name') of a socket object. Move the obtained
1928 * name to user space.
1931 int __sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1932 int __user
*usockaddr_len
)
1934 struct socket
*sock
;
1935 struct sockaddr_storage address
;
1936 int err
, fput_needed
;
1938 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1940 err
= security_socket_getpeername(sock
);
1942 fput_light(sock
->file
, fput_needed
);
1946 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 1);
1948 /* "err" is actually length in this case */
1949 err
= move_addr_to_user(&address
, err
, usockaddr
,
1951 fput_light(sock
->file
, fput_needed
);
1956 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1957 int __user
*, usockaddr_len
)
1959 return __sys_getpeername(fd
, usockaddr
, usockaddr_len
);
1963 * Send a datagram to a given address. We move the address into kernel
1964 * space and check the user space data area is readable before invoking
1967 int __sys_sendto(int fd
, void __user
*buff
, size_t len
, unsigned int flags
,
1968 struct sockaddr __user
*addr
, int addr_len
)
1970 struct socket
*sock
;
1971 struct sockaddr_storage address
;
1977 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1980 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1984 msg
.msg_name
= NULL
;
1985 msg
.msg_control
= NULL
;
1986 msg
.msg_controllen
= 0;
1987 msg
.msg_namelen
= 0;
1989 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1992 msg
.msg_name
= (struct sockaddr
*)&address
;
1993 msg
.msg_namelen
= addr_len
;
1995 if (sock
->file
->f_flags
& O_NONBLOCK
)
1996 flags
|= MSG_DONTWAIT
;
1997 msg
.msg_flags
= flags
;
1998 err
= sock_sendmsg(sock
, &msg
);
2001 fput_light(sock
->file
, fput_needed
);
2006 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
2007 unsigned int, flags
, struct sockaddr __user
*, addr
,
2010 return __sys_sendto(fd
, buff
, len
, flags
, addr
, addr_len
);
2014 * Send a datagram down a socket.
2017 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
2018 unsigned int, flags
)
2020 return __sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
2024 * Receive a frame from the socket and optionally record the address of the
2025 * sender. We verify the buffers are writable and if needed move the
2026 * sender address from kernel to user space.
2028 int __sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
, unsigned int flags
,
2029 struct sockaddr __user
*addr
, int __user
*addr_len
)
2031 struct socket
*sock
;
2034 struct sockaddr_storage address
;
2038 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
2041 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2045 msg
.msg_control
= NULL
;
2046 msg
.msg_controllen
= 0;
2047 /* Save some cycles and don't copy the address if not needed */
2048 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
2049 /* We assume all kernel code knows the size of sockaddr_storage */
2050 msg
.msg_namelen
= 0;
2051 msg
.msg_iocb
= NULL
;
2053 if (sock
->file
->f_flags
& O_NONBLOCK
)
2054 flags
|= MSG_DONTWAIT
;
2055 err
= sock_recvmsg(sock
, &msg
, flags
);
2057 if (err
>= 0 && addr
!= NULL
) {
2058 err2
= move_addr_to_user(&address
,
2059 msg
.msg_namelen
, addr
, addr_len
);
2064 fput_light(sock
->file
, fput_needed
);
2069 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
2070 unsigned int, flags
, struct sockaddr __user
*, addr
,
2071 int __user
*, addr_len
)
2073 return __sys_recvfrom(fd
, ubuf
, size
, flags
, addr
, addr_len
);
2077 * Receive a datagram from a socket.
2080 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
2081 unsigned int, flags
)
2083 return __sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
2087 * Set a socket option. Because we don't know the option lengths we have
2088 * to pass the user mode parameter for the protocols to sort out.
2091 static int __sys_setsockopt(int fd
, int level
, int optname
,
2092 char __user
*optval
, int optlen
)
2094 mm_segment_t oldfs
= get_fs();
2095 char *kernel_optval
= NULL
;
2096 int err
, fput_needed
;
2097 struct socket
*sock
;
2102 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2104 err
= security_socket_setsockopt(sock
, level
, optname
);
2108 err
= BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock
->sk
, &level
,
2109 &optname
, optval
, &optlen
,
2114 } else if (err
> 0) {
2119 if (kernel_optval
) {
2121 optval
= (char __user __force
*)kernel_optval
;
2124 if (level
== SOL_SOCKET
)
2126 sock_setsockopt(sock
, level
, optname
, optval
,
2130 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2133 if (kernel_optval
) {
2135 kfree(kernel_optval
);
2138 fput_light(sock
->file
, fput_needed
);
2143 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
2144 char __user
*, optval
, int, optlen
)
2146 return __sys_setsockopt(fd
, level
, optname
, optval
, optlen
);
2150 * Get a socket option. Because we don't know the option lengths we have
2151 * to pass a user mode parameter for the protocols to sort out.
2154 static int __sys_getsockopt(int fd
, int level
, int optname
,
2155 char __user
*optval
, int __user
*optlen
)
2157 int err
, fput_needed
;
2158 struct socket
*sock
;
2161 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2163 err
= security_socket_getsockopt(sock
, level
, optname
);
2167 max_optlen
= BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen
);
2169 if (level
== SOL_SOCKET
)
2171 sock_getsockopt(sock
, level
, optname
, optval
,
2175 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2178 err
= BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock
->sk
, level
, optname
,
2182 fput_light(sock
->file
, fput_needed
);
2187 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
2188 char __user
*, optval
, int __user
*, optlen
)
2190 return __sys_getsockopt(fd
, level
, optname
, optval
, optlen
);
2194 * Shutdown a socket.
2197 int __sys_shutdown(int fd
, int how
)
2199 int err
, fput_needed
;
2200 struct socket
*sock
;
2202 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2204 err
= security_socket_shutdown(sock
, how
);
2206 err
= sock
->ops
->shutdown(sock
, how
);
2207 fput_light(sock
->file
, fput_needed
);
2212 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
2214 return __sys_shutdown(fd
, how
);
2217 /* A couple of helpful macros for getting the address of the 32/64 bit
2218 * fields which are the same type (int / unsigned) on our platforms.
2220 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2221 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2222 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2224 struct used_address
{
2225 struct sockaddr_storage name
;
2226 unsigned int name_len
;
2229 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
2230 struct user_msghdr __user
*umsg
,
2231 struct sockaddr __user
**save_addr
,
2234 struct user_msghdr msg
;
2237 if (copy_from_user(&msg
, umsg
, sizeof(*umsg
)))
2240 kmsg
->msg_control
= (void __force
*)msg
.msg_control
;
2241 kmsg
->msg_controllen
= msg
.msg_controllen
;
2242 kmsg
->msg_flags
= msg
.msg_flags
;
2244 kmsg
->msg_namelen
= msg
.msg_namelen
;
2246 kmsg
->msg_namelen
= 0;
2248 if (kmsg
->msg_namelen
< 0)
2251 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
2252 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
2255 *save_addr
= msg
.msg_name
;
2257 if (msg
.msg_name
&& kmsg
->msg_namelen
) {
2259 err
= move_addr_to_kernel(msg
.msg_name
,
2266 kmsg
->msg_name
= NULL
;
2267 kmsg
->msg_namelen
= 0;
2270 if (msg
.msg_iovlen
> UIO_MAXIOV
)
2273 kmsg
->msg_iocb
= NULL
;
2275 err
= import_iovec(save_addr
? READ
: WRITE
,
2276 msg
.msg_iov
, msg
.msg_iovlen
,
2277 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
2278 return err
< 0 ? err
: 0;
2281 static int ____sys_sendmsg(struct socket
*sock
, struct msghdr
*msg_sys
,
2282 unsigned int flags
, struct used_address
*used_address
,
2283 unsigned int allowed_msghdr_flags
)
2285 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
2286 __aligned(sizeof(__kernel_size_t
));
2287 /* 20 is size of ipv6_pktinfo */
2288 unsigned char *ctl_buf
= ctl
;
2294 if (msg_sys
->msg_controllen
> INT_MAX
)
2296 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
2297 ctl_len
= msg_sys
->msg_controllen
;
2298 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2300 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2304 ctl_buf
= msg_sys
->msg_control
;
2305 ctl_len
= msg_sys
->msg_controllen
;
2306 } else if (ctl_len
) {
2307 BUILD_BUG_ON(sizeof(struct cmsghdr
) !=
2308 CMSG_ALIGN(sizeof(struct cmsghdr
)));
2309 if (ctl_len
> sizeof(ctl
)) {
2310 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2311 if (ctl_buf
== NULL
)
2316 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2317 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2318 * checking falls down on this.
2320 if (copy_from_user(ctl_buf
,
2321 (void __user __force
*)msg_sys
->msg_control
,
2324 msg_sys
->msg_control
= ctl_buf
;
2326 msg_sys
->msg_flags
= flags
;
2328 if (sock
->file
->f_flags
& O_NONBLOCK
)
2329 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2331 * If this is sendmmsg() and current destination address is same as
2332 * previously succeeded address, omit asking LSM's decision.
2333 * used_address->name_len is initialized to UINT_MAX so that the first
2334 * destination address never matches.
2336 if (used_address
&& msg_sys
->msg_name
&&
2337 used_address
->name_len
== msg_sys
->msg_namelen
&&
2338 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2339 used_address
->name_len
)) {
2340 err
= sock_sendmsg_nosec(sock
, msg_sys
);
2343 err
= sock_sendmsg(sock
, msg_sys
);
2345 * If this is sendmmsg() and sending to current destination address was
2346 * successful, remember it.
2348 if (used_address
&& err
>= 0) {
2349 used_address
->name_len
= msg_sys
->msg_namelen
;
2350 if (msg_sys
->msg_name
)
2351 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2352 used_address
->name_len
);
2357 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2362 int sendmsg_copy_msghdr(struct msghdr
*msg
,
2363 struct user_msghdr __user
*umsg
, unsigned flags
,
2368 if (flags
& MSG_CMSG_COMPAT
) {
2369 struct compat_msghdr __user
*msg_compat
;
2371 msg_compat
= (struct compat_msghdr __user
*) umsg
;
2372 err
= get_compat_msghdr(msg
, msg_compat
, NULL
, iov
);
2374 err
= copy_msghdr_from_user(msg
, umsg
, NULL
, iov
);
2382 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2383 struct msghdr
*msg_sys
, unsigned int flags
,
2384 struct used_address
*used_address
,
2385 unsigned int allowed_msghdr_flags
)
2387 struct sockaddr_storage address
;
2388 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2391 msg_sys
->msg_name
= &address
;
2393 err
= sendmsg_copy_msghdr(msg_sys
, msg
, flags
, &iov
);
2397 err
= ____sys_sendmsg(sock
, msg_sys
, flags
, used_address
,
2398 allowed_msghdr_flags
);
2404 * BSD sendmsg interface
2406 long __sys_sendmsg_sock(struct socket
*sock
, struct msghdr
*msg
,
2409 /* disallow ancillary data requests from this path */
2410 if (msg
->msg_control
|| msg
->msg_controllen
)
2413 return ____sys_sendmsg(sock
, msg
, flags
, NULL
, 0);
2416 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2417 bool forbid_cmsg_compat
)
2419 int fput_needed
, err
;
2420 struct msghdr msg_sys
;
2421 struct socket
*sock
;
2423 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2426 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2430 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2432 fput_light(sock
->file
, fput_needed
);
2437 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
2439 return __sys_sendmsg(fd
, msg
, flags
, true);
2443 * Linux sendmmsg interface
2446 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2447 unsigned int flags
, bool forbid_cmsg_compat
)
2449 int fput_needed
, err
, datagrams
;
2450 struct socket
*sock
;
2451 struct mmsghdr __user
*entry
;
2452 struct compat_mmsghdr __user
*compat_entry
;
2453 struct msghdr msg_sys
;
2454 struct used_address used_address
;
2455 unsigned int oflags
= flags
;
2457 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2460 if (vlen
> UIO_MAXIOV
)
2465 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2469 used_address
.name_len
= UINT_MAX
;
2471 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2475 while (datagrams
< vlen
) {
2476 if (datagrams
== vlen
- 1)
2479 if (MSG_CMSG_COMPAT
& flags
) {
2480 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2481 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2484 err
= __put_user(err
, &compat_entry
->msg_len
);
2487 err
= ___sys_sendmsg(sock
,
2488 (struct user_msghdr __user
*)entry
,
2489 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2492 err
= put_user(err
, &entry
->msg_len
);
2499 if (msg_data_left(&msg_sys
))
2504 fput_light(sock
->file
, fput_needed
);
2506 /* We only return an error if no datagrams were able to be sent */
2513 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2514 unsigned int, vlen
, unsigned int, flags
)
2516 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
, true);
2519 int recvmsg_copy_msghdr(struct msghdr
*msg
,
2520 struct user_msghdr __user
*umsg
, unsigned flags
,
2521 struct sockaddr __user
**uaddr
,
2526 if (MSG_CMSG_COMPAT
& flags
) {
2527 struct compat_msghdr __user
*msg_compat
;
2529 msg_compat
= (struct compat_msghdr __user
*) umsg
;
2530 err
= get_compat_msghdr(msg
, msg_compat
, uaddr
, iov
);
2532 err
= copy_msghdr_from_user(msg
, umsg
, uaddr
, iov
);
2540 static int ____sys_recvmsg(struct socket
*sock
, struct msghdr
*msg_sys
,
2541 struct user_msghdr __user
*msg
,
2542 struct sockaddr __user
*uaddr
,
2543 unsigned int flags
, int nosec
)
2545 struct compat_msghdr __user
*msg_compat
=
2546 (struct compat_msghdr __user
*) msg
;
2547 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2548 struct sockaddr_storage addr
;
2549 unsigned long cmsg_ptr
;
2553 msg_sys
->msg_name
= &addr
;
2554 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2555 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2557 /* We assume all kernel code knows the size of sockaddr_storage */
2558 msg_sys
->msg_namelen
= 0;
2560 if (sock
->file
->f_flags
& O_NONBLOCK
)
2561 flags
|= MSG_DONTWAIT
;
2563 if (unlikely(nosec
))
2564 err
= sock_recvmsg_nosec(sock
, msg_sys
, flags
);
2566 err
= sock_recvmsg(sock
, msg_sys
, flags
);
2572 if (uaddr
!= NULL
) {
2573 err
= move_addr_to_user(&addr
,
2574 msg_sys
->msg_namelen
, uaddr
,
2579 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2583 if (MSG_CMSG_COMPAT
& flags
)
2584 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2585 &msg_compat
->msg_controllen
);
2587 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2588 &msg
->msg_controllen
);
2596 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2597 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2599 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2600 /* user mode address pointers */
2601 struct sockaddr __user
*uaddr
;
2604 err
= recvmsg_copy_msghdr(msg_sys
, msg
, flags
, &uaddr
, &iov
);
2608 err
= ____sys_recvmsg(sock
, msg_sys
, msg
, uaddr
, flags
, nosec
);
2614 * BSD recvmsg interface
2617 long __sys_recvmsg_sock(struct socket
*sock
, struct msghdr
*msg
,
2618 struct user_msghdr __user
*umsg
,
2619 struct sockaddr __user
*uaddr
, unsigned int flags
)
2621 /* disallow ancillary data requests from this path */
2622 if (msg
->msg_control
|| msg
->msg_controllen
)
2625 return ____sys_recvmsg(sock
, msg
, umsg
, uaddr
, flags
, 0);
2628 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2629 bool forbid_cmsg_compat
)
2631 int fput_needed
, err
;
2632 struct msghdr msg_sys
;
2633 struct socket
*sock
;
2635 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2638 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2642 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2644 fput_light(sock
->file
, fput_needed
);
2649 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2650 unsigned int, flags
)
2652 return __sys_recvmsg(fd
, msg
, flags
, true);
2656 * Linux recvmmsg interface
2659 static int do_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2660 unsigned int vlen
, unsigned int flags
,
2661 struct timespec64
*timeout
)
2663 int fput_needed
, err
, datagrams
;
2664 struct socket
*sock
;
2665 struct mmsghdr __user
*entry
;
2666 struct compat_mmsghdr __user
*compat_entry
;
2667 struct msghdr msg_sys
;
2668 struct timespec64 end_time
;
2669 struct timespec64 timeout64
;
2672 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2678 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2682 if (likely(!(flags
& MSG_ERRQUEUE
))) {
2683 err
= sock_error(sock
->sk
);
2691 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2693 while (datagrams
< vlen
) {
2695 * No need to ask LSM for more than the first datagram.
2697 if (MSG_CMSG_COMPAT
& flags
) {
2698 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2699 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2703 err
= __put_user(err
, &compat_entry
->msg_len
);
2706 err
= ___sys_recvmsg(sock
,
2707 (struct user_msghdr __user
*)entry
,
2708 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2712 err
= put_user(err
, &entry
->msg_len
);
2720 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2721 if (flags
& MSG_WAITFORONE
)
2722 flags
|= MSG_DONTWAIT
;
2725 ktime_get_ts64(&timeout64
);
2726 *timeout
= timespec64_sub(end_time
, timeout64
);
2727 if (timeout
->tv_sec
< 0) {
2728 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2732 /* Timeout, return less than vlen datagrams */
2733 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2737 /* Out of band data, return right away */
2738 if (msg_sys
.msg_flags
& MSG_OOB
)
2746 if (datagrams
== 0) {
2752 * We may return less entries than requested (vlen) if the
2753 * sock is non block and there aren't enough datagrams...
2755 if (err
!= -EAGAIN
) {
2757 * ... or if recvmsg returns an error after we
2758 * received some datagrams, where we record the
2759 * error to return on the next call or if the
2760 * app asks about it using getsockopt(SO_ERROR).
2762 sock
->sk
->sk_err
= -err
;
2765 fput_light(sock
->file
, fput_needed
);
2770 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2771 unsigned int vlen
, unsigned int flags
,
2772 struct __kernel_timespec __user
*timeout
,
2773 struct old_timespec32 __user
*timeout32
)
2776 struct timespec64 timeout_sys
;
2778 if (timeout
&& get_timespec64(&timeout_sys
, timeout
))
2781 if (timeout32
&& get_old_timespec32(&timeout_sys
, timeout32
))
2784 if (!timeout
&& !timeout32
)
2785 return do_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2787 datagrams
= do_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2792 if (timeout
&& put_timespec64(&timeout_sys
, timeout
))
2793 datagrams
= -EFAULT
;
2795 if (timeout32
&& put_old_timespec32(&timeout_sys
, timeout32
))
2796 datagrams
= -EFAULT
;
2801 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2802 unsigned int, vlen
, unsigned int, flags
,
2803 struct __kernel_timespec __user
*, timeout
)
2805 if (flags
& MSG_CMSG_COMPAT
)
2808 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, timeout
, NULL
);
2811 #ifdef CONFIG_COMPAT_32BIT_TIME
2812 SYSCALL_DEFINE5(recvmmsg_time32
, int, fd
, struct mmsghdr __user
*, mmsg
,
2813 unsigned int, vlen
, unsigned int, flags
,
2814 struct old_timespec32 __user
*, timeout
)
2816 if (flags
& MSG_CMSG_COMPAT
)
2819 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
, timeout
);
2823 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2824 /* Argument list sizes for sys_socketcall */
2825 #define AL(x) ((x) * sizeof(unsigned long))
2826 static const unsigned char nargs
[21] = {
2827 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2828 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2829 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2836 * System call vectors.
2838 * Argument checking cleaned up. Saved 20% in size.
2839 * This function doesn't need to set the kernel lock because
2840 * it is set by the callees.
2843 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2845 unsigned long a
[AUDITSC_ARGS
];
2846 unsigned long a0
, a1
;
2850 if (call
< 1 || call
> SYS_SENDMMSG
)
2852 call
= array_index_nospec(call
, SYS_SENDMMSG
+ 1);
2855 if (len
> sizeof(a
))
2858 /* copy_from_user should be SMP safe. */
2859 if (copy_from_user(a
, args
, len
))
2862 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2871 err
= __sys_socket(a0
, a1
, a
[2]);
2874 err
= __sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2877 err
= __sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2880 err
= __sys_listen(a0
, a1
);
2883 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2884 (int __user
*)a
[2], 0);
2886 case SYS_GETSOCKNAME
:
2888 __sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2889 (int __user
*)a
[2]);
2891 case SYS_GETPEERNAME
:
2893 __sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2894 (int __user
*)a
[2]);
2896 case SYS_SOCKETPAIR
:
2897 err
= __sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2900 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2904 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2905 (struct sockaddr __user
*)a
[4], a
[5]);
2908 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2912 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2913 (struct sockaddr __user
*)a
[4],
2914 (int __user
*)a
[5]);
2917 err
= __sys_shutdown(a0
, a1
);
2919 case SYS_SETSOCKOPT
:
2920 err
= __sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2923 case SYS_GETSOCKOPT
:
2925 __sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2926 (int __user
*)a
[4]);
2929 err
= __sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
,
2933 err
= __sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
2937 err
= __sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
,
2941 if (IS_ENABLED(CONFIG_64BIT
))
2942 err
= __sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
,
2944 (struct __kernel_timespec __user
*)a
[4],
2947 err
= __sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
,
2949 (struct old_timespec32 __user
*)a
[4]);
2952 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2953 (int __user
*)a
[2], a
[3]);
2962 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2965 * sock_register - add a socket protocol handler
2966 * @ops: description of protocol
2968 * This function is called by a protocol handler that wants to
2969 * advertise its address family, and have it linked into the
2970 * socket interface. The value ops->family corresponds to the
2971 * socket system call protocol family.
2973 int sock_register(const struct net_proto_family
*ops
)
2977 if (ops
->family
>= NPROTO
) {
2978 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2982 spin_lock(&net_family_lock
);
2983 if (rcu_dereference_protected(net_families
[ops
->family
],
2984 lockdep_is_held(&net_family_lock
)))
2987 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2990 spin_unlock(&net_family_lock
);
2992 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2995 EXPORT_SYMBOL(sock_register
);
2998 * sock_unregister - remove a protocol handler
2999 * @family: protocol family to remove
3001 * This function is called by a protocol handler that wants to
3002 * remove its address family, and have it unlinked from the
3003 * new socket creation.
3005 * If protocol handler is a module, then it can use module reference
3006 * counts to protect against new references. If protocol handler is not
3007 * a module then it needs to provide its own protection in
3008 * the ops->create routine.
3010 void sock_unregister(int family
)
3012 BUG_ON(family
< 0 || family
>= NPROTO
);
3014 spin_lock(&net_family_lock
);
3015 RCU_INIT_POINTER(net_families
[family
], NULL
);
3016 spin_unlock(&net_family_lock
);
3020 pr_info("NET: Unregistered protocol family %d\n", family
);
3022 EXPORT_SYMBOL(sock_unregister
);
3024 bool sock_is_registered(int family
)
3026 return family
< NPROTO
&& rcu_access_pointer(net_families
[family
]);
3029 static int __init
sock_init(void)
3033 * Initialize the network sysctl infrastructure.
3035 err
= net_sysctl_init();
3040 * Initialize skbuff SLAB cache
3045 * Initialize the protocols module.
3050 err
= register_filesystem(&sock_fs_type
);
3053 sock_mnt
= kern_mount(&sock_fs_type
);
3054 if (IS_ERR(sock_mnt
)) {
3055 err
= PTR_ERR(sock_mnt
);
3059 /* The real protocol initialization is performed in later initcalls.
3062 #ifdef CONFIG_NETFILTER
3063 err
= netfilter_init();
3068 ptp_classifier_init();
3074 unregister_filesystem(&sock_fs_type
);
3079 core_initcall(sock_init
); /* early initcall */
3081 #ifdef CONFIG_PROC_FS
3082 void socket_seq_show(struct seq_file
*seq
)
3084 seq_printf(seq
, "sockets: used %d\n",
3085 sock_inuse_get(seq
->private));
3087 #endif /* CONFIG_PROC_FS */
3089 #ifdef CONFIG_COMPAT
3090 static int compat_dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
3092 struct compat_ifconf ifc32
;
3096 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
3099 ifc
.ifc_len
= ifc32
.ifc_len
;
3100 ifc
.ifc_req
= compat_ptr(ifc32
.ifcbuf
);
3103 err
= dev_ifconf(net
, &ifc
, sizeof(struct compat_ifreq
));
3108 ifc32
.ifc_len
= ifc
.ifc_len
;
3109 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
3115 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
3117 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
3118 bool convert_in
= false, convert_out
= false;
3119 size_t buf_size
= 0;
3120 struct ethtool_rxnfc __user
*rxnfc
= NULL
;
3122 u32 rule_cnt
= 0, actual_rule_cnt
;
3127 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
3130 compat_rxnfc
= compat_ptr(data
);
3132 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
3135 /* Most ethtool structures are defined without padding.
3136 * Unfortunately struct ethtool_rxnfc is an exception.
3141 case ETHTOOL_GRXCLSRLALL
:
3142 /* Buffer size is variable */
3143 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
3145 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
3147 buf_size
+= rule_cnt
* sizeof(u32
);
3149 case ETHTOOL_GRXRINGS
:
3150 case ETHTOOL_GRXCLSRLCNT
:
3151 case ETHTOOL_GRXCLSRULE
:
3152 case ETHTOOL_SRXCLSRLINS
:
3155 case ETHTOOL_SRXCLSRLDEL
:
3156 buf_size
+= sizeof(struct ethtool_rxnfc
);
3158 rxnfc
= compat_alloc_user_space(buf_size
);
3162 if (copy_from_user(&ifr
.ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
3165 ifr
.ifr_data
= convert_in
? rxnfc
: (void __user
*)compat_rxnfc
;
3168 /* We expect there to be holes between fs.m_ext and
3169 * fs.ring_cookie and at the end of fs, but nowhere else.
3171 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
3172 sizeof(compat_rxnfc
->fs
.m_ext
) !=
3173 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
3174 sizeof(rxnfc
->fs
.m_ext
));
3176 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
3177 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
3178 offsetof(struct ethtool_rxnfc
, fs
.location
) -
3179 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
3181 if (copy_in_user(rxnfc
, compat_rxnfc
,
3182 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
3183 (void __user
*)rxnfc
) ||
3184 copy_in_user(&rxnfc
->fs
.ring_cookie
,
3185 &compat_rxnfc
->fs
.ring_cookie
,
3186 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
3187 (void __user
*)&rxnfc
->fs
.ring_cookie
))
3189 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
3190 if (put_user(rule_cnt
, &rxnfc
->rule_cnt
))
3192 } else if (copy_in_user(&rxnfc
->rule_cnt
,
3193 &compat_rxnfc
->rule_cnt
,
3194 sizeof(rxnfc
->rule_cnt
)))
3198 ret
= dev_ioctl(net
, SIOCETHTOOL
, &ifr
, NULL
);
3203 if (copy_in_user(compat_rxnfc
, rxnfc
,
3204 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
3205 (const void __user
*)rxnfc
) ||
3206 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
3207 &rxnfc
->fs
.ring_cookie
,
3208 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
3209 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
3210 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
3211 sizeof(rxnfc
->rule_cnt
)))
3214 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
3215 /* As an optimisation, we only copy the actual
3216 * number of rules that the underlying
3217 * function returned. Since Mallory might
3218 * change the rule count in user memory, we
3219 * check that it is less than the rule count
3220 * originally given (as the user buffer size),
3221 * which has been range-checked.
3223 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
3225 if (actual_rule_cnt
< rule_cnt
)
3226 rule_cnt
= actual_rule_cnt
;
3227 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
3228 &rxnfc
->rule_locs
[0],
3229 rule_cnt
* sizeof(u32
)))
3237 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
3239 compat_uptr_t uptr32
;
3244 if (copy_from_user(&ifr
, uifr32
, sizeof(struct compat_ifreq
)))
3247 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
3250 saved
= ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
;
3251 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= compat_ptr(uptr32
);
3253 err
= dev_ioctl(net
, SIOCWANDEV
, &ifr
, NULL
);
3255 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= saved
;
3256 if (copy_to_user(uifr32
, &ifr
, sizeof(struct compat_ifreq
)))
3262 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3263 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
3264 struct compat_ifreq __user
*u_ifreq32
)
3269 if (copy_from_user(ifreq
.ifr_name
, u_ifreq32
->ifr_name
, IFNAMSIZ
))
3271 if (get_user(data32
, &u_ifreq32
->ifr_data
))
3273 ifreq
.ifr_data
= compat_ptr(data32
);
3275 return dev_ioctl(net
, cmd
, &ifreq
, NULL
);
3278 static int compat_ifreq_ioctl(struct net
*net
, struct socket
*sock
,
3280 struct compat_ifreq __user
*uifr32
)
3282 struct ifreq __user
*uifr
;
3285 /* Handle the fact that while struct ifreq has the same *layout* on
3286 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3287 * which are handled elsewhere, it still has different *size* due to
3288 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3289 * resulting in struct ifreq being 32 and 40 bytes respectively).
3290 * As a result, if the struct happens to be at the end of a page and
3291 * the next page isn't readable/writable, we get a fault. To prevent
3292 * that, copy back and forth to the full size.
3295 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3296 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
3299 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
3310 case SIOCGIFBRDADDR
:
3311 case SIOCGIFDSTADDR
:
3312 case SIOCGIFNETMASK
:
3318 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3326 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3327 struct compat_ifreq __user
*uifr32
)
3330 struct compat_ifmap __user
*uifmap32
;
3333 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3334 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3335 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3336 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3337 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3338 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3339 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3340 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3344 err
= dev_ioctl(net
, cmd
, &ifr
, NULL
);
3346 if (cmd
== SIOCGIFMAP
&& !err
) {
3347 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3348 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3349 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3350 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3351 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3352 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3353 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3362 struct sockaddr rt_dst
; /* target address */
3363 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3364 struct sockaddr rt_genmask
; /* target network mask (IP) */
3365 unsigned short rt_flags
;
3368 unsigned char rt_tos
;
3369 unsigned char rt_class
;
3371 short rt_metric
; /* +1 for binary compatibility! */
3372 /* char * */ u32 rt_dev
; /* forcing the device at add */
3373 u32 rt_mtu
; /* per route MTU/Window */
3374 u32 rt_window
; /* Window clamping */
3375 unsigned short rt_irtt
; /* Initial RTT */
3378 struct in6_rtmsg32
{
3379 struct in6_addr rtmsg_dst
;
3380 struct in6_addr rtmsg_src
;
3381 struct in6_addr rtmsg_gateway
;
3391 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3392 unsigned int cmd
, void __user
*argp
)
3396 struct in6_rtmsg r6
;
3400 mm_segment_t old_fs
= get_fs();
3402 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3403 struct in6_rtmsg32 __user
*ur6
= argp
;
3404 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3405 3 * sizeof(struct in6_addr
));
3406 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3407 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3408 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3409 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3410 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3411 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3412 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3416 struct rtentry32 __user
*ur4
= argp
;
3417 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3418 3 * sizeof(struct sockaddr
));
3419 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3420 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3421 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3422 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3423 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3424 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3426 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3427 r4
.rt_dev
= (char __user __force
*)devname
;
3441 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3448 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3449 * for some operations; this forces use of the newer bridge-utils that
3450 * use compatible ioctls
3452 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3456 if (get_user(tmp
, argp
))
3458 if (tmp
== BRCTL_GET_VERSION
)
3459 return BRCTL_VERSION
+ 1;
3463 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3464 unsigned int cmd
, unsigned long arg
)
3466 void __user
*argp
= compat_ptr(arg
);
3467 struct sock
*sk
= sock
->sk
;
3468 struct net
*net
= sock_net(sk
);
3470 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3471 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3476 return old_bridge_ioctl(argp
);
3478 return compat_dev_ifconf(net
, argp
);
3480 return ethtool_ioctl(net
, argp
);
3482 return compat_siocwandev(net
, argp
);
3485 return compat_sioc_ifmap(net
, cmd
, argp
);
3488 return routing_ioctl(net
, sock
, cmd
, argp
);
3489 case SIOCGSTAMP_OLD
:
3490 case SIOCGSTAMPNS_OLD
:
3491 if (!sock
->ops
->gettstamp
)
3492 return -ENOIOCTLCMD
;
3493 return sock
->ops
->gettstamp(sock
, argp
, cmd
== SIOCGSTAMP_OLD
,
3494 !COMPAT_USE_64BIT_TIME
);
3496 case SIOCBONDSLAVEINFOQUERY
:
3497 case SIOCBONDINFOQUERY
:
3500 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3513 case SIOCGSTAMP_NEW
:
3514 case SIOCGSTAMPNS_NEW
:
3515 return sock_ioctl(file
, cmd
, arg
);
3532 case SIOCSIFHWBROADCAST
:
3534 case SIOCGIFBRDADDR
:
3535 case SIOCSIFBRDADDR
:
3536 case SIOCGIFDSTADDR
:
3537 case SIOCSIFDSTADDR
:
3538 case SIOCGIFNETMASK
:
3539 case SIOCSIFNETMASK
:
3551 case SIOCBONDENSLAVE
:
3552 case SIOCBONDRELEASE
:
3553 case SIOCBONDSETHWADDR
:
3554 case SIOCBONDCHANGEACTIVE
:
3555 return compat_ifreq_ioctl(net
, sock
, cmd
, argp
);
3563 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3566 return -ENOIOCTLCMD
;
3569 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3572 struct socket
*sock
= file
->private_data
;
3573 int ret
= -ENOIOCTLCMD
;
3580 if (sock
->ops
->compat_ioctl
)
3581 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3583 if (ret
== -ENOIOCTLCMD
&&
3584 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3585 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3587 if (ret
== -ENOIOCTLCMD
)
3588 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3595 * kernel_bind - bind an address to a socket (kernel space)
3598 * @addrlen: length of address
3600 * Returns 0 or an error.
3603 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3605 return sock
->ops
->bind(sock
, addr
, addrlen
);
3607 EXPORT_SYMBOL(kernel_bind
);
3610 * kernel_listen - move socket to listening state (kernel space)
3612 * @backlog: pending connections queue size
3614 * Returns 0 or an error.
3617 int kernel_listen(struct socket
*sock
, int backlog
)
3619 return sock
->ops
->listen(sock
, backlog
);
3621 EXPORT_SYMBOL(kernel_listen
);
3624 * kernel_accept - accept a connection (kernel space)
3625 * @sock: listening socket
3626 * @newsock: new connected socket
3629 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3630 * If it fails, @newsock is guaranteed to be %NULL.
3631 * Returns 0 or an error.
3634 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3636 struct sock
*sk
= sock
->sk
;
3639 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3644 err
= sock
->ops
->accept(sock
, *newsock
, flags
, true);
3646 sock_release(*newsock
);
3651 (*newsock
)->ops
= sock
->ops
;
3652 __module_get((*newsock
)->ops
->owner
);
3657 EXPORT_SYMBOL(kernel_accept
);
3660 * kernel_connect - connect a socket (kernel space)
3663 * @addrlen: address length
3664 * @flags: flags (O_NONBLOCK, ...)
3666 * For datagram sockets, @addr is the addres to which datagrams are sent
3667 * by default, and the only address from which datagrams are received.
3668 * For stream sockets, attempts to connect to @addr.
3669 * Returns 0 or an error code.
3672 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3675 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3677 EXPORT_SYMBOL(kernel_connect
);
3680 * kernel_getsockname - get the address which the socket is bound (kernel space)
3682 * @addr: address holder
3684 * Fills the @addr pointer with the address which the socket is bound.
3685 * Returns 0 or an error code.
3688 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
)
3690 return sock
->ops
->getname(sock
, addr
, 0);
3692 EXPORT_SYMBOL(kernel_getsockname
);
3695 * kernel_peername - get the address which the socket is connected (kernel space)
3697 * @addr: address holder
3699 * Fills the @addr pointer with the address which the socket is connected.
3700 * Returns 0 or an error code.
3703 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
)
3705 return sock
->ops
->getname(sock
, addr
, 1);
3707 EXPORT_SYMBOL(kernel_getpeername
);
3710 * kernel_getsockopt - get a socket option (kernel space)
3712 * @level: API level (SOL_SOCKET, ...)
3713 * @optname: option tag
3714 * @optval: option value
3715 * @optlen: option length
3717 * Assigns the option length to @optlen.
3718 * Returns 0 or an error.
3721 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3722 char *optval
, int *optlen
)
3724 mm_segment_t oldfs
= get_fs();
3725 char __user
*uoptval
;
3726 int __user
*uoptlen
;
3729 uoptval
= (char __user __force
*) optval
;
3730 uoptlen
= (int __user __force
*) optlen
;
3733 if (level
== SOL_SOCKET
)
3734 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3736 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3741 EXPORT_SYMBOL(kernel_getsockopt
);
3744 * kernel_setsockopt - set a socket option (kernel space)
3746 * @level: API level (SOL_SOCKET, ...)
3747 * @optname: option tag
3748 * @optval: option value
3749 * @optlen: option length
3751 * Returns 0 or an error.
3754 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3755 char *optval
, unsigned int optlen
)
3757 mm_segment_t oldfs
= get_fs();
3758 char __user
*uoptval
;
3761 uoptval
= (char __user __force
*) optval
;
3764 if (level
== SOL_SOCKET
)
3765 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3767 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3772 EXPORT_SYMBOL(kernel_setsockopt
);
3775 * kernel_sendpage - send a &page through a socket (kernel space)
3778 * @offset: page offset
3779 * @size: total size in bytes
3780 * @flags: flags (MSG_DONTWAIT, ...)
3782 * Returns the total amount sent in bytes or an error.
3785 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3786 size_t size
, int flags
)
3788 if (sock
->ops
->sendpage
)
3789 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3791 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3793 EXPORT_SYMBOL(kernel_sendpage
);
3796 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3799 * @offset: page offset
3800 * @size: total size in bytes
3801 * @flags: flags (MSG_DONTWAIT, ...)
3803 * Returns the total amount sent in bytes or an error.
3804 * Caller must hold @sk.
3807 int kernel_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
3808 size_t size
, int flags
)
3810 struct socket
*sock
= sk
->sk_socket
;
3812 if (sock
->ops
->sendpage_locked
)
3813 return sock
->ops
->sendpage_locked(sk
, page
, offset
, size
,
3816 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
3818 EXPORT_SYMBOL(kernel_sendpage_locked
);
3821 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3823 * @how: connection part
3825 * Returns 0 or an error.
3828 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3830 return sock
->ops
->shutdown(sock
, how
);
3832 EXPORT_SYMBOL(kernel_sock_shutdown
);
3835 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3838 * This routine returns the IP overhead imposed by a socket i.e.
3839 * the length of the underlying IP header, depending on whether
3840 * this is an IPv4 or IPv6 socket and the length from IP options turned
3841 * on at the socket. Assumes that the caller has a lock on the socket.
3844 u32
kernel_sock_ip_overhead(struct sock
*sk
)
3846 struct inet_sock
*inet
;
3847 struct ip_options_rcu
*opt
;
3849 #if IS_ENABLED(CONFIG_IPV6)
3850 struct ipv6_pinfo
*np
;
3851 struct ipv6_txoptions
*optv6
= NULL
;
3852 #endif /* IS_ENABLED(CONFIG_IPV6) */
3857 switch (sk
->sk_family
) {
3860 overhead
+= sizeof(struct iphdr
);
3861 opt
= rcu_dereference_protected(inet
->inet_opt
,
3862 sock_owned_by_user(sk
));
3864 overhead
+= opt
->opt
.optlen
;
3866 #if IS_ENABLED(CONFIG_IPV6)
3869 overhead
+= sizeof(struct ipv6hdr
);
3871 optv6
= rcu_dereference_protected(np
->opt
,
3872 sock_owned_by_user(sk
));
3874 overhead
+= (optv6
->opt_flen
+ optv6
->opt_nflen
);
3876 #endif /* IS_ENABLED(CONFIG_IPV6) */
3877 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3881 EXPORT_SYMBOL(kernel_sock_ip_overhead
);