1 // SPDX-License-Identifier: GPL-2.0
3 * Microchip / Atmel ECC (I2C) driver.
5 * Copyright (c) 2017, Microchip Technology Inc.
6 * Author: Tudor Ambarus <tudor.ambarus@microchip.com>
9 #include <linux/bitrev.h>
10 #include <linux/crc16.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/i2c.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_device.h>
20 #include <linux/scatterlist.h>
21 #include <linux/slab.h>
22 #include <linux/workqueue.h>
23 #include <crypto/internal/kpp.h>
24 #include <crypto/ecdh.h>
25 #include <crypto/kpp.h>
26 #include "atmel-ecc.h"
28 /* Used for binding tfm objects to i2c clients. */
29 struct atmel_ecc_driver_data
{
30 struct list_head i2c_client_list
;
31 spinlock_t i2c_list_lock
;
32 } ____cacheline_aligned
;
34 static struct atmel_ecc_driver_data driver_data
;
37 * atmel_ecc_i2c_client_priv - i2c_client private data
38 * @client : pointer to i2c client device
39 * @i2c_client_list_node: part of i2c_client_list
40 * @lock : lock for sending i2c commands
41 * @wake_token : wake token array of zeros
42 * @wake_token_sz : size in bytes of the wake_token
43 * @tfm_count : number of active crypto transformations on i2c client
45 * Reads and writes from/to the i2c client are sequential. The first byte
46 * transmitted to the device is treated as the byte size. Any attempt to send
47 * more than this number of bytes will cause the device to not ACK those bytes.
48 * After the host writes a single command byte to the input buffer, reads are
49 * prohibited until after the device completes command execution. Use a mutex
50 * when sending i2c commands.
52 struct atmel_ecc_i2c_client_priv
{
53 struct i2c_client
*client
;
54 struct list_head i2c_client_list_node
;
56 u8 wake_token
[WAKE_TOKEN_MAX_SIZE
];
58 atomic_t tfm_count ____cacheline_aligned
;
62 * atmel_ecdh_ctx - transformation context
63 * @client : pointer to i2c client device
64 * @fallback : used for unsupported curves or when user wants to use its own
66 * @public_key : generated when calling set_secret(). It's the responsibility
67 * of the user to not call set_secret() while
68 * generate_public_key() or compute_shared_secret() are in flight.
69 * @curve_id : elliptic curve id
70 * @n_sz : size in bytes of the n prime
71 * @do_fallback: true when the device doesn't support the curve or when the user
72 * wants to use its own private key.
74 struct atmel_ecdh_ctx
{
75 struct i2c_client
*client
;
76 struct crypto_kpp
*fallback
;
78 unsigned int curve_id
;
84 * atmel_ecc_work_data - data structure representing the work
85 * @ctx : transformation context.
86 * @cbk : pointer to a callback function to be invoked upon completion of this
87 * request. This has the form:
88 * callback(struct atmel_ecc_work_data *work_data, void *areq, u8 status)
90 * @work_data: data structure representing the work
91 * @areq : optional pointer to an argument passed with the original
93 * @status : status returned from the i2c client device or i2c error.
94 * @areq: optional pointer to a user argument for use at callback time.
95 * @work: describes the task to be executed.
96 * @cmd : structure used for communicating with the device.
98 struct atmel_ecc_work_data
{
99 struct atmel_ecdh_ctx
*ctx
;
100 void (*cbk
)(struct atmel_ecc_work_data
*work_data
, void *areq
,
103 struct work_struct work
;
104 struct atmel_ecc_cmd cmd
;
107 static u16
atmel_ecc_crc16(u16 crc
, const u8
*buffer
, size_t len
)
109 return cpu_to_le16(bitrev16(crc16(crc
, buffer
, len
)));
113 * atmel_ecc_checksum() - Generate 16-bit CRC as required by ATMEL ECC.
114 * CRC16 verification of the count, opcode, param1, param2 and data bytes.
115 * The checksum is saved in little-endian format in the least significant
116 * two bytes of the command. CRC polynomial is 0x8005 and the initial register
117 * value should be zero.
119 * @cmd : structure used for communicating with the device.
121 static void atmel_ecc_checksum(struct atmel_ecc_cmd
*cmd
)
123 u8
*data
= &cmd
->count
;
124 size_t len
= cmd
->count
- CRC_SIZE
;
125 u16
*crc16
= (u16
*)(data
+ len
);
127 *crc16
= atmel_ecc_crc16(0, data
, len
);
130 static void atmel_ecc_init_read_cmd(struct atmel_ecc_cmd
*cmd
)
132 cmd
->word_addr
= COMMAND
;
133 cmd
->opcode
= OPCODE_READ
;
135 * Read the word from Configuration zone that contains the lock bytes
136 * (UserExtra, Selector, LockValue, LockConfig).
138 cmd
->param1
= CONFIG_ZONE
;
139 cmd
->param2
= DEVICE_LOCK_ADDR
;
140 cmd
->count
= READ_COUNT
;
142 atmel_ecc_checksum(cmd
);
144 cmd
->msecs
= MAX_EXEC_TIME_READ
;
145 cmd
->rxsize
= READ_RSP_SIZE
;
148 static void atmel_ecc_init_genkey_cmd(struct atmel_ecc_cmd
*cmd
, u16 keyid
)
150 cmd
->word_addr
= COMMAND
;
151 cmd
->count
= GENKEY_COUNT
;
152 cmd
->opcode
= OPCODE_GENKEY
;
153 cmd
->param1
= GENKEY_MODE_PRIVATE
;
154 /* a random private key will be generated and stored in slot keyID */
155 cmd
->param2
= cpu_to_le16(keyid
);
157 atmel_ecc_checksum(cmd
);
159 cmd
->msecs
= MAX_EXEC_TIME_GENKEY
;
160 cmd
->rxsize
= GENKEY_RSP_SIZE
;
163 static int atmel_ecc_init_ecdh_cmd(struct atmel_ecc_cmd
*cmd
,
164 struct scatterlist
*pubkey
)
168 cmd
->word_addr
= COMMAND
;
169 cmd
->count
= ECDH_COUNT
;
170 cmd
->opcode
= OPCODE_ECDH
;
171 cmd
->param1
= ECDH_PREFIX_MODE
;
172 /* private key slot */
173 cmd
->param2
= cpu_to_le16(DATA_SLOT_2
);
176 * The device only supports NIST P256 ECC keys. The public key size will
177 * always be the same. Use a macro for the key size to avoid unnecessary
180 copied
= sg_copy_to_buffer(pubkey
,
181 sg_nents_for_len(pubkey
,
182 ATMEL_ECC_PUBKEY_SIZE
),
183 cmd
->data
, ATMEL_ECC_PUBKEY_SIZE
);
184 if (copied
!= ATMEL_ECC_PUBKEY_SIZE
)
187 atmel_ecc_checksum(cmd
);
189 cmd
->msecs
= MAX_EXEC_TIME_ECDH
;
190 cmd
->rxsize
= ECDH_RSP_SIZE
;
196 * After wake and after execution of a command, there will be error, status, or
197 * result bytes in the device's output register that can be retrieved by the
198 * system. When the length of that group is four bytes, the codes returned are
199 * detailed in error_list.
201 static int atmel_ecc_status(struct device
*dev
, u8
*status
)
203 size_t err_list_len
= ARRAY_SIZE(error_list
);
205 u8 err_id
= status
[1];
207 if (*status
!= STATUS_SIZE
)
210 if (err_id
== STATUS_WAKE_SUCCESSFUL
|| err_id
== STATUS_NOERR
)
213 for (i
= 0; i
< err_list_len
; i
++)
214 if (error_list
[i
].value
== err_id
)
217 /* if err_id is not in the error_list then ignore it */
218 if (i
!= err_list_len
) {
219 dev_err(dev
, "%02x: %s:\n", err_id
, error_list
[i
].error_text
);
226 static int atmel_ecc_wakeup(struct i2c_client
*client
)
228 struct atmel_ecc_i2c_client_priv
*i2c_priv
= i2c_get_clientdata(client
);
229 u8 status
[STATUS_RSP_SIZE
];
233 * The device ignores any levels or transitions on the SCL pin when the
234 * device is idle, asleep or during waking up. Don't check for error
235 * when waking up the device.
237 i2c_master_send(client
, i2c_priv
->wake_token
, i2c_priv
->wake_token_sz
);
240 * Wait to wake the device. Typical execution times for ecdh and genkey
241 * are around tens of milliseconds. Delta is chosen to 50 microseconds.
243 usleep_range(TWHI_MIN
, TWHI_MAX
);
245 ret
= i2c_master_recv(client
, status
, STATUS_SIZE
);
249 return atmel_ecc_status(&client
->dev
, status
);
252 static int atmel_ecc_sleep(struct i2c_client
*client
)
254 u8 sleep
= SLEEP_TOKEN
;
256 return i2c_master_send(client
, &sleep
, 1);
259 static void atmel_ecdh_done(struct atmel_ecc_work_data
*work_data
, void *areq
,
262 struct kpp_request
*req
= areq
;
263 struct atmel_ecdh_ctx
*ctx
= work_data
->ctx
;
264 struct atmel_ecc_cmd
*cmd
= &work_data
->cmd
;
270 /* might want less than we've got */
271 n_sz
= min_t(size_t, ctx
->n_sz
, req
->dst_len
);
273 /* copy the shared secret */
274 copied
= sg_copy_from_buffer(req
->dst
, sg_nents_for_len(req
->dst
, n_sz
),
275 &cmd
->data
[RSP_DATA_IDX
], n_sz
);
282 kpp_request_complete(req
, status
);
286 * atmel_ecc_send_receive() - send a command to the device and receive its
288 * @client: i2c client device
289 * @cmd : structure used to communicate with the device
291 * After the device receives a Wake token, a watchdog counter starts within the
292 * device. After the watchdog timer expires, the device enters sleep mode
293 * regardless of whether some I/O transmission or command execution is in
294 * progress. If a command is attempted when insufficient time remains prior to
295 * watchdog timer execution, the device will return the watchdog timeout error
296 * code without attempting to execute the command. There is no way to reset the
297 * counter other than to put the device into sleep or idle mode and then
300 static int atmel_ecc_send_receive(struct i2c_client
*client
,
301 struct atmel_ecc_cmd
*cmd
)
303 struct atmel_ecc_i2c_client_priv
*i2c_priv
= i2c_get_clientdata(client
);
306 mutex_lock(&i2c_priv
->lock
);
308 ret
= atmel_ecc_wakeup(client
);
312 /* send the command */
313 ret
= i2c_master_send(client
, (u8
*)cmd
, cmd
->count
+ WORD_ADDR_SIZE
);
317 /* delay the appropriate amount of time for command to execute */
320 /* receive the response */
321 ret
= i2c_master_recv(client
, cmd
->data
, cmd
->rxsize
);
325 /* put the device into low-power mode */
326 ret
= atmel_ecc_sleep(client
);
330 mutex_unlock(&i2c_priv
->lock
);
331 return atmel_ecc_status(&client
->dev
, cmd
->data
);
333 mutex_unlock(&i2c_priv
->lock
);
337 static void atmel_ecc_work_handler(struct work_struct
*work
)
339 struct atmel_ecc_work_data
*work_data
=
340 container_of(work
, struct atmel_ecc_work_data
, work
);
341 struct atmel_ecc_cmd
*cmd
= &work_data
->cmd
;
342 struct i2c_client
*client
= work_data
->ctx
->client
;
345 status
= atmel_ecc_send_receive(client
, cmd
);
346 work_data
->cbk(work_data
, work_data
->areq
, status
);
349 static void atmel_ecc_enqueue(struct atmel_ecc_work_data
*work_data
,
350 void (*cbk
)(struct atmel_ecc_work_data
*work_data
,
351 void *areq
, int status
),
354 work_data
->cbk
= (void *)cbk
;
355 work_data
->areq
= areq
;
357 INIT_WORK(&work_data
->work
, atmel_ecc_work_handler
);
358 schedule_work(&work_data
->work
);
361 static unsigned int atmel_ecdh_supported_curve(unsigned int curve_id
)
363 if (curve_id
== ECC_CURVE_NIST_P256
)
364 return ATMEL_ECC_NIST_P256_N_SIZE
;
370 * A random private key is generated and stored in the device. The device
371 * returns the pair public key.
373 static int atmel_ecdh_set_secret(struct crypto_kpp
*tfm
, const void *buf
,
376 struct atmel_ecdh_ctx
*ctx
= kpp_tfm_ctx(tfm
);
377 struct atmel_ecc_cmd
*cmd
;
382 /* free the old public key, if any */
383 kfree(ctx
->public_key
);
384 /* make sure you don't free the old public key twice */
385 ctx
->public_key
= NULL
;
387 if (crypto_ecdh_decode_key(buf
, len
, ¶ms
) < 0) {
388 dev_err(&ctx
->client
->dev
, "crypto_ecdh_decode_key failed\n");
392 ctx
->n_sz
= atmel_ecdh_supported_curve(params
.curve_id
);
393 if (!ctx
->n_sz
|| params
.key_size
) {
394 /* fallback to ecdh software implementation */
395 ctx
->do_fallback
= true;
396 return crypto_kpp_set_secret(ctx
->fallback
, buf
, len
);
399 cmd
= kmalloc(sizeof(*cmd
), GFP_KERNEL
);
404 * The device only supports NIST P256 ECC keys. The public key size will
405 * always be the same. Use a macro for the key size to avoid unnecessary
408 public_key
= kmalloc(ATMEL_ECC_PUBKEY_SIZE
, GFP_KERNEL
);
412 ctx
->do_fallback
= false;
413 ctx
->curve_id
= params
.curve_id
;
415 atmel_ecc_init_genkey_cmd(cmd
, DATA_SLOT_2
);
417 ret
= atmel_ecc_send_receive(ctx
->client
, cmd
);
419 goto free_public_key
;
421 /* save the public key */
422 memcpy(public_key
, &cmd
->data
[RSP_DATA_IDX
], ATMEL_ECC_PUBKEY_SIZE
);
423 ctx
->public_key
= public_key
;
435 static int atmel_ecdh_generate_public_key(struct kpp_request
*req
)
437 struct crypto_kpp
*tfm
= crypto_kpp_reqtfm(req
);
438 struct atmel_ecdh_ctx
*ctx
= kpp_tfm_ctx(tfm
);
439 size_t copied
, nbytes
;
442 if (ctx
->do_fallback
) {
443 kpp_request_set_tfm(req
, ctx
->fallback
);
444 return crypto_kpp_generate_public_key(req
);
447 /* might want less than we've got */
448 nbytes
= min_t(size_t, ATMEL_ECC_PUBKEY_SIZE
, req
->dst_len
);
450 /* public key was saved at private key generation */
451 copied
= sg_copy_from_buffer(req
->dst
,
452 sg_nents_for_len(req
->dst
, nbytes
),
453 ctx
->public_key
, nbytes
);
454 if (copied
!= nbytes
)
460 static int atmel_ecdh_compute_shared_secret(struct kpp_request
*req
)
462 struct crypto_kpp
*tfm
= crypto_kpp_reqtfm(req
);
463 struct atmel_ecdh_ctx
*ctx
= kpp_tfm_ctx(tfm
);
464 struct atmel_ecc_work_data
*work_data
;
468 if (ctx
->do_fallback
) {
469 kpp_request_set_tfm(req
, ctx
->fallback
);
470 return crypto_kpp_compute_shared_secret(req
);
473 /* must have exactly two points to be on the curve */
474 if (req
->src_len
!= ATMEL_ECC_PUBKEY_SIZE
)
477 gfp
= (req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
) ? GFP_KERNEL
:
480 work_data
= kmalloc(sizeof(*work_data
), gfp
);
484 work_data
->ctx
= ctx
;
486 ret
= atmel_ecc_init_ecdh_cmd(&work_data
->cmd
, req
->src
);
490 atmel_ecc_enqueue(work_data
, atmel_ecdh_done
, req
);
499 static struct i2c_client
*atmel_ecc_i2c_client_alloc(void)
501 struct atmel_ecc_i2c_client_priv
*i2c_priv
, *min_i2c_priv
= NULL
;
502 struct i2c_client
*client
= ERR_PTR(-ENODEV
);
503 int min_tfm_cnt
= INT_MAX
;
506 spin_lock(&driver_data
.i2c_list_lock
);
508 if (list_empty(&driver_data
.i2c_client_list
)) {
509 spin_unlock(&driver_data
.i2c_list_lock
);
510 return ERR_PTR(-ENODEV
);
513 list_for_each_entry(i2c_priv
, &driver_data
.i2c_client_list
,
514 i2c_client_list_node
) {
515 tfm_cnt
= atomic_read(&i2c_priv
->tfm_count
);
516 if (tfm_cnt
< min_tfm_cnt
) {
517 min_tfm_cnt
= tfm_cnt
;
518 min_i2c_priv
= i2c_priv
;
525 atomic_inc(&min_i2c_priv
->tfm_count
);
526 client
= min_i2c_priv
->client
;
529 spin_unlock(&driver_data
.i2c_list_lock
);
534 static void atmel_ecc_i2c_client_free(struct i2c_client
*client
)
536 struct atmel_ecc_i2c_client_priv
*i2c_priv
= i2c_get_clientdata(client
);
538 atomic_dec(&i2c_priv
->tfm_count
);
541 static int atmel_ecdh_init_tfm(struct crypto_kpp
*tfm
)
543 const char *alg
= kpp_alg_name(tfm
);
544 struct crypto_kpp
*fallback
;
545 struct atmel_ecdh_ctx
*ctx
= kpp_tfm_ctx(tfm
);
547 ctx
->client
= atmel_ecc_i2c_client_alloc();
548 if (IS_ERR(ctx
->client
)) {
549 pr_err("tfm - i2c_client binding failed\n");
550 return PTR_ERR(ctx
->client
);
553 fallback
= crypto_alloc_kpp(alg
, 0, CRYPTO_ALG_NEED_FALLBACK
);
554 if (IS_ERR(fallback
)) {
555 dev_err(&ctx
->client
->dev
, "Failed to allocate transformation for '%s': %ld\n",
556 alg
, PTR_ERR(fallback
));
557 return PTR_ERR(fallback
);
560 crypto_kpp_set_flags(fallback
, crypto_kpp_get_flags(tfm
));
561 ctx
->fallback
= fallback
;
566 static void atmel_ecdh_exit_tfm(struct crypto_kpp
*tfm
)
568 struct atmel_ecdh_ctx
*ctx
= kpp_tfm_ctx(tfm
);
570 kfree(ctx
->public_key
);
571 crypto_free_kpp(ctx
->fallback
);
572 atmel_ecc_i2c_client_free(ctx
->client
);
575 static unsigned int atmel_ecdh_max_size(struct crypto_kpp
*tfm
)
577 struct atmel_ecdh_ctx
*ctx
= kpp_tfm_ctx(tfm
);
580 return crypto_kpp_maxsize(ctx
->fallback
);
583 * The device only supports NIST P256 ECC keys. The public key size will
584 * always be the same. Use a macro for the key size to avoid unnecessary
587 return ATMEL_ECC_PUBKEY_SIZE
;
590 static struct kpp_alg atmel_ecdh
= {
591 .set_secret
= atmel_ecdh_set_secret
,
592 .generate_public_key
= atmel_ecdh_generate_public_key
,
593 .compute_shared_secret
= atmel_ecdh_compute_shared_secret
,
594 .init
= atmel_ecdh_init_tfm
,
595 .exit
= atmel_ecdh_exit_tfm
,
596 .max_size
= atmel_ecdh_max_size
,
598 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
,
600 .cra_driver_name
= "atmel-ecdh",
601 .cra_priority
= ATMEL_ECC_PRIORITY
,
602 .cra_module
= THIS_MODULE
,
603 .cra_ctxsize
= sizeof(struct atmel_ecdh_ctx
),
607 static inline size_t atmel_ecc_wake_token_sz(u32 bus_clk_rate
)
609 u32 no_of_bits
= DIV_ROUND_UP(TWLO_USEC
* bus_clk_rate
, USEC_PER_SEC
);
611 /* return the size of the wake_token in bytes */
612 return DIV_ROUND_UP(no_of_bits
, 8);
615 static int device_sanity_check(struct i2c_client
*client
)
617 struct atmel_ecc_cmd
*cmd
;
620 cmd
= kmalloc(sizeof(*cmd
), GFP_KERNEL
);
624 atmel_ecc_init_read_cmd(cmd
);
626 ret
= atmel_ecc_send_receive(client
, cmd
);
631 * It is vital that the Configuration, Data and OTP zones be locked
632 * prior to release into the field of the system containing the device.
633 * Failure to lock these zones may permit modification of any secret
634 * keys and may lead to other security problems.
636 if (cmd
->data
[LOCK_CONFIG_IDX
] || cmd
->data
[LOCK_VALUE_IDX
]) {
637 dev_err(&client
->dev
, "Configuration or Data and OTP zones are unlocked!\n");
647 static int atmel_ecc_probe(struct i2c_client
*client
,
648 const struct i2c_device_id
*id
)
650 struct atmel_ecc_i2c_client_priv
*i2c_priv
;
651 struct device
*dev
= &client
->dev
;
655 if (!i2c_check_functionality(client
->adapter
, I2C_FUNC_I2C
)) {
656 dev_err(dev
, "I2C_FUNC_I2C not supported\n");
660 ret
= of_property_read_u32(client
->adapter
->dev
.of_node
,
661 "clock-frequency", &bus_clk_rate
);
663 dev_err(dev
, "of: failed to read clock-frequency property\n");
667 if (bus_clk_rate
> 1000000L) {
668 dev_err(dev
, "%d exceeds maximum supported clock frequency (1MHz)\n",
673 i2c_priv
= devm_kmalloc(dev
, sizeof(*i2c_priv
), GFP_KERNEL
);
677 i2c_priv
->client
= client
;
678 mutex_init(&i2c_priv
->lock
);
681 * WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate -
682 * 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz
683 * will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE.
685 i2c_priv
->wake_token_sz
= atmel_ecc_wake_token_sz(bus_clk_rate
);
687 memset(i2c_priv
->wake_token
, 0, sizeof(i2c_priv
->wake_token
));
689 atomic_set(&i2c_priv
->tfm_count
, 0);
691 i2c_set_clientdata(client
, i2c_priv
);
693 ret
= device_sanity_check(client
);
697 spin_lock(&driver_data
.i2c_list_lock
);
698 list_add_tail(&i2c_priv
->i2c_client_list_node
,
699 &driver_data
.i2c_client_list
);
700 spin_unlock(&driver_data
.i2c_list_lock
);
702 ret
= crypto_register_kpp(&atmel_ecdh
);
704 spin_lock(&driver_data
.i2c_list_lock
);
705 list_del(&i2c_priv
->i2c_client_list_node
);
706 spin_unlock(&driver_data
.i2c_list_lock
);
708 dev_err(dev
, "%s alg registration failed\n",
709 atmel_ecdh
.base
.cra_driver_name
);
711 dev_info(dev
, "atmel ecc algorithms registered in /proc/crypto\n");
717 static int atmel_ecc_remove(struct i2c_client
*client
)
719 struct atmel_ecc_i2c_client_priv
*i2c_priv
= i2c_get_clientdata(client
);
721 /* Return EBUSY if i2c client already allocated. */
722 if (atomic_read(&i2c_priv
->tfm_count
)) {
723 dev_err(&client
->dev
, "Device is busy\n");
727 crypto_unregister_kpp(&atmel_ecdh
);
729 spin_lock(&driver_data
.i2c_list_lock
);
730 list_del(&i2c_priv
->i2c_client_list_node
);
731 spin_unlock(&driver_data
.i2c_list_lock
);
737 static const struct of_device_id atmel_ecc_dt_ids
[] = {
739 .compatible
= "atmel,atecc508a",
744 MODULE_DEVICE_TABLE(of
, atmel_ecc_dt_ids
);
747 static const struct i2c_device_id atmel_ecc_id
[] = {
751 MODULE_DEVICE_TABLE(i2c
, atmel_ecc_id
);
753 static struct i2c_driver atmel_ecc_driver
= {
756 .of_match_table
= of_match_ptr(atmel_ecc_dt_ids
),
758 .probe
= atmel_ecc_probe
,
759 .remove
= atmel_ecc_remove
,
760 .id_table
= atmel_ecc_id
,
763 static int __init
atmel_ecc_init(void)
765 spin_lock_init(&driver_data
.i2c_list_lock
);
766 INIT_LIST_HEAD(&driver_data
.i2c_client_list
);
767 return i2c_add_driver(&atmel_ecc_driver
);
770 static void __exit
atmel_ecc_exit(void)
772 flush_scheduled_work();
773 i2c_del_driver(&atmel_ecc_driver
);
776 module_init(atmel_ecc_init
);
777 module_exit(atmel_ecc_exit
);
779 MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
780 MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver");
781 MODULE_LICENSE("GPL v2");