dmaengine: imx-sdma: Let the core do the device node validation
[linux/fpc-iii.git] / drivers / crypto / hisilicon / sec / sec_algs.c
blob02768af0dccdd4f6e1285dde4ac5febd580379ce
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2016-2017 Hisilicon Limited. */
3 #include <linux/crypto.h>
4 #include <linux/dma-mapping.h>
5 #include <linux/dmapool.h>
6 #include <linux/module.h>
7 #include <linux/mutex.h>
8 #include <linux/slab.h>
10 #include <crypto/aes.h>
11 #include <crypto/algapi.h>
12 #include <crypto/des.h>
13 #include <crypto/skcipher.h>
14 #include <crypto/xts.h>
15 #include <crypto/internal/skcipher.h>
17 #include "sec_drv.h"
19 #define SEC_MAX_CIPHER_KEY 64
20 #define SEC_REQ_LIMIT SZ_32M
22 struct sec_c_alg_cfg {
23 unsigned c_alg : 3;
24 unsigned c_mode : 3;
25 unsigned key_len : 2;
26 unsigned c_width : 2;
29 static const struct sec_c_alg_cfg sec_c_alg_cfgs[] = {
30 [SEC_C_DES_ECB_64] = {
31 .c_alg = SEC_C_ALG_DES,
32 .c_mode = SEC_C_MODE_ECB,
33 .key_len = SEC_KEY_LEN_DES,
35 [SEC_C_DES_CBC_64] = {
36 .c_alg = SEC_C_ALG_DES,
37 .c_mode = SEC_C_MODE_CBC,
38 .key_len = SEC_KEY_LEN_DES,
40 [SEC_C_3DES_ECB_192_3KEY] = {
41 .c_alg = SEC_C_ALG_3DES,
42 .c_mode = SEC_C_MODE_ECB,
43 .key_len = SEC_KEY_LEN_3DES_3_KEY,
45 [SEC_C_3DES_ECB_192_2KEY] = {
46 .c_alg = SEC_C_ALG_3DES,
47 .c_mode = SEC_C_MODE_ECB,
48 .key_len = SEC_KEY_LEN_3DES_2_KEY,
50 [SEC_C_3DES_CBC_192_3KEY] = {
51 .c_alg = SEC_C_ALG_3DES,
52 .c_mode = SEC_C_MODE_CBC,
53 .key_len = SEC_KEY_LEN_3DES_3_KEY,
55 [SEC_C_3DES_CBC_192_2KEY] = {
56 .c_alg = SEC_C_ALG_3DES,
57 .c_mode = SEC_C_MODE_CBC,
58 .key_len = SEC_KEY_LEN_3DES_2_KEY,
60 [SEC_C_AES_ECB_128] = {
61 .c_alg = SEC_C_ALG_AES,
62 .c_mode = SEC_C_MODE_ECB,
63 .key_len = SEC_KEY_LEN_AES_128,
65 [SEC_C_AES_ECB_192] = {
66 .c_alg = SEC_C_ALG_AES,
67 .c_mode = SEC_C_MODE_ECB,
68 .key_len = SEC_KEY_LEN_AES_192,
70 [SEC_C_AES_ECB_256] = {
71 .c_alg = SEC_C_ALG_AES,
72 .c_mode = SEC_C_MODE_ECB,
73 .key_len = SEC_KEY_LEN_AES_256,
75 [SEC_C_AES_CBC_128] = {
76 .c_alg = SEC_C_ALG_AES,
77 .c_mode = SEC_C_MODE_CBC,
78 .key_len = SEC_KEY_LEN_AES_128,
80 [SEC_C_AES_CBC_192] = {
81 .c_alg = SEC_C_ALG_AES,
82 .c_mode = SEC_C_MODE_CBC,
83 .key_len = SEC_KEY_LEN_AES_192,
85 [SEC_C_AES_CBC_256] = {
86 .c_alg = SEC_C_ALG_AES,
87 .c_mode = SEC_C_MODE_CBC,
88 .key_len = SEC_KEY_LEN_AES_256,
90 [SEC_C_AES_CTR_128] = {
91 .c_alg = SEC_C_ALG_AES,
92 .c_mode = SEC_C_MODE_CTR,
93 .key_len = SEC_KEY_LEN_AES_128,
95 [SEC_C_AES_CTR_192] = {
96 .c_alg = SEC_C_ALG_AES,
97 .c_mode = SEC_C_MODE_CTR,
98 .key_len = SEC_KEY_LEN_AES_192,
100 [SEC_C_AES_CTR_256] = {
101 .c_alg = SEC_C_ALG_AES,
102 .c_mode = SEC_C_MODE_CTR,
103 .key_len = SEC_KEY_LEN_AES_256,
105 [SEC_C_AES_XTS_128] = {
106 .c_alg = SEC_C_ALG_AES,
107 .c_mode = SEC_C_MODE_XTS,
108 .key_len = SEC_KEY_LEN_AES_128,
110 [SEC_C_AES_XTS_256] = {
111 .c_alg = SEC_C_ALG_AES,
112 .c_mode = SEC_C_MODE_XTS,
113 .key_len = SEC_KEY_LEN_AES_256,
115 [SEC_C_NULL] = {
120 * Mutex used to ensure safe operation of reference count of
121 * alg providers
123 static DEFINE_MUTEX(algs_lock);
124 static unsigned int active_devs;
126 static void sec_alg_skcipher_init_template(struct sec_alg_tfm_ctx *ctx,
127 struct sec_bd_info *req,
128 enum sec_cipher_alg alg)
130 const struct sec_c_alg_cfg *cfg = &sec_c_alg_cfgs[alg];
132 memset(req, 0, sizeof(*req));
133 req->w0 |= cfg->c_mode << SEC_BD_W0_C_MODE_S;
134 req->w1 |= cfg->c_alg << SEC_BD_W1_C_ALG_S;
135 req->w3 |= cfg->key_len << SEC_BD_W3_C_KEY_LEN_S;
136 req->w0 |= cfg->c_width << SEC_BD_W0_C_WIDTH_S;
138 req->cipher_key_addr_lo = lower_32_bits(ctx->pkey);
139 req->cipher_key_addr_hi = upper_32_bits(ctx->pkey);
142 static void sec_alg_skcipher_init_context(struct crypto_skcipher *atfm,
143 const u8 *key,
144 unsigned int keylen,
145 enum sec_cipher_alg alg)
147 struct crypto_tfm *tfm = crypto_skcipher_tfm(atfm);
148 struct sec_alg_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
150 ctx->cipher_alg = alg;
151 memcpy(ctx->key, key, keylen);
152 sec_alg_skcipher_init_template(ctx, &ctx->req_template,
153 ctx->cipher_alg);
156 static int sec_alloc_and_fill_hw_sgl(struct sec_hw_sgl **sec_sgl,
157 dma_addr_t *psec_sgl,
158 struct scatterlist *sgl,
159 int count,
160 struct sec_dev_info *info)
162 struct sec_hw_sgl *sgl_current = NULL;
163 struct sec_hw_sgl *sgl_next;
164 dma_addr_t sgl_next_dma;
165 struct scatterlist *sg;
166 int ret, sge_index, i;
168 if (!count)
169 return -EINVAL;
171 for_each_sg(sgl, sg, count, i) {
172 sge_index = i % SEC_MAX_SGE_NUM;
173 if (sge_index == 0) {
174 sgl_next = dma_pool_zalloc(info->hw_sgl_pool,
175 GFP_KERNEL, &sgl_next_dma);
176 if (!sgl_next) {
177 ret = -ENOMEM;
178 goto err_free_hw_sgls;
181 if (!sgl_current) { /* First one */
182 *psec_sgl = sgl_next_dma;
183 *sec_sgl = sgl_next;
184 } else { /* Chained */
185 sgl_current->entry_sum_in_sgl = SEC_MAX_SGE_NUM;
186 sgl_current->next_sgl = sgl_next_dma;
187 sgl_current->next = sgl_next;
189 sgl_current = sgl_next;
191 sgl_current->sge_entries[sge_index].buf = sg_dma_address(sg);
192 sgl_current->sge_entries[sge_index].len = sg_dma_len(sg);
193 sgl_current->data_bytes_in_sgl += sg_dma_len(sg);
195 sgl_current->entry_sum_in_sgl = count % SEC_MAX_SGE_NUM;
196 sgl_current->next_sgl = 0;
197 (*sec_sgl)->entry_sum_in_chain = count;
199 return 0;
201 err_free_hw_sgls:
202 sgl_current = *sec_sgl;
203 while (sgl_current) {
204 sgl_next = sgl_current->next;
205 dma_pool_free(info->hw_sgl_pool, sgl_current,
206 sgl_current->next_sgl);
207 sgl_current = sgl_next;
209 *psec_sgl = 0;
211 return ret;
214 static void sec_free_hw_sgl(struct sec_hw_sgl *hw_sgl,
215 dma_addr_t psec_sgl, struct sec_dev_info *info)
217 struct sec_hw_sgl *sgl_current, *sgl_next;
219 if (!hw_sgl)
220 return;
221 sgl_current = hw_sgl;
222 while (sgl_current->next) {
223 sgl_next = sgl_current->next;
224 dma_pool_free(info->hw_sgl_pool, sgl_current,
225 sgl_current->next_sgl);
226 sgl_current = sgl_next;
228 dma_pool_free(info->hw_sgl_pool, hw_sgl, psec_sgl);
231 static int sec_alg_skcipher_setkey(struct crypto_skcipher *tfm,
232 const u8 *key, unsigned int keylen,
233 enum sec_cipher_alg alg)
235 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
236 struct device *dev = ctx->queue->dev_info->dev;
238 mutex_lock(&ctx->lock);
239 if (ctx->key) {
240 /* rekeying */
241 memset(ctx->key, 0, SEC_MAX_CIPHER_KEY);
242 } else {
243 /* new key */
244 ctx->key = dma_alloc_coherent(dev, SEC_MAX_CIPHER_KEY,
245 &ctx->pkey, GFP_KERNEL);
246 if (!ctx->key) {
247 mutex_unlock(&ctx->lock);
248 return -ENOMEM;
251 mutex_unlock(&ctx->lock);
252 sec_alg_skcipher_init_context(tfm, key, keylen, alg);
254 return 0;
257 static int sec_alg_skcipher_setkey_aes_ecb(struct crypto_skcipher *tfm,
258 const u8 *key, unsigned int keylen)
260 enum sec_cipher_alg alg;
262 switch (keylen) {
263 case AES_KEYSIZE_128:
264 alg = SEC_C_AES_ECB_128;
265 break;
266 case AES_KEYSIZE_192:
267 alg = SEC_C_AES_ECB_192;
268 break;
269 case AES_KEYSIZE_256:
270 alg = SEC_C_AES_ECB_256;
271 break;
272 default:
273 return -EINVAL;
276 return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
279 static int sec_alg_skcipher_setkey_aes_cbc(struct crypto_skcipher *tfm,
280 const u8 *key, unsigned int keylen)
282 enum sec_cipher_alg alg;
284 switch (keylen) {
285 case AES_KEYSIZE_128:
286 alg = SEC_C_AES_CBC_128;
287 break;
288 case AES_KEYSIZE_192:
289 alg = SEC_C_AES_CBC_192;
290 break;
291 case AES_KEYSIZE_256:
292 alg = SEC_C_AES_CBC_256;
293 break;
294 default:
295 return -EINVAL;
298 return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
301 static int sec_alg_skcipher_setkey_aes_ctr(struct crypto_skcipher *tfm,
302 const u8 *key, unsigned int keylen)
304 enum sec_cipher_alg alg;
306 switch (keylen) {
307 case AES_KEYSIZE_128:
308 alg = SEC_C_AES_CTR_128;
309 break;
310 case AES_KEYSIZE_192:
311 alg = SEC_C_AES_CTR_192;
312 break;
313 case AES_KEYSIZE_256:
314 alg = SEC_C_AES_CTR_256;
315 break;
316 default:
317 return -EINVAL;
320 return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
323 static int sec_alg_skcipher_setkey_aes_xts(struct crypto_skcipher *tfm,
324 const u8 *key, unsigned int keylen)
326 enum sec_cipher_alg alg;
327 int ret;
329 ret = xts_verify_key(tfm, key, keylen);
330 if (ret)
331 return ret;
333 switch (keylen) {
334 case AES_KEYSIZE_128 * 2:
335 alg = SEC_C_AES_XTS_128;
336 break;
337 case AES_KEYSIZE_256 * 2:
338 alg = SEC_C_AES_XTS_256;
339 break;
340 default:
341 return -EINVAL;
344 return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
347 static int sec_alg_skcipher_setkey_des_ecb(struct crypto_skcipher *tfm,
348 const u8 *key, unsigned int keylen)
350 if (keylen != DES_KEY_SIZE)
351 return -EINVAL;
353 return sec_alg_skcipher_setkey(tfm, key, keylen, SEC_C_DES_ECB_64);
356 static int sec_alg_skcipher_setkey_des_cbc(struct crypto_skcipher *tfm,
357 const u8 *key, unsigned int keylen)
359 if (keylen != DES_KEY_SIZE)
360 return -EINVAL;
362 return sec_alg_skcipher_setkey(tfm, key, keylen, SEC_C_DES_CBC_64);
365 static int sec_alg_skcipher_setkey_3des_ecb(struct crypto_skcipher *tfm,
366 const u8 *key, unsigned int keylen)
368 return unlikely(des3_verify_key(tfm, key)) ?:
369 sec_alg_skcipher_setkey(tfm, key, keylen,
370 SEC_C_3DES_ECB_192_3KEY);
373 static int sec_alg_skcipher_setkey_3des_cbc(struct crypto_skcipher *tfm,
374 const u8 *key, unsigned int keylen)
376 return unlikely(des3_verify_key(tfm, key)) ?:
377 sec_alg_skcipher_setkey(tfm, key, keylen,
378 SEC_C_3DES_CBC_192_3KEY);
381 static void sec_alg_free_el(struct sec_request_el *el,
382 struct sec_dev_info *info)
384 sec_free_hw_sgl(el->out, el->dma_out, info);
385 sec_free_hw_sgl(el->in, el->dma_in, info);
386 kfree(el->sgl_in);
387 kfree(el->sgl_out);
388 kfree(el);
391 /* queuelock must be held */
392 static int sec_send_request(struct sec_request *sec_req, struct sec_queue *queue)
394 struct sec_request_el *el, *temp;
395 int ret = 0;
397 mutex_lock(&sec_req->lock);
398 list_for_each_entry_safe(el, temp, &sec_req->elements, head) {
400 * Add to hardware queue only under following circumstances
401 * 1) Software and hardware queue empty so no chain dependencies
402 * 2) No dependencies as new IV - (check software queue empty
403 * to maintain order)
404 * 3) No dependencies because the mode does no chaining.
406 * In other cases first insert onto the software queue which
407 * is then emptied as requests complete
409 if (!queue->havesoftqueue ||
410 (kfifo_is_empty(&queue->softqueue) &&
411 sec_queue_empty(queue))) {
412 ret = sec_queue_send(queue, &el->req, sec_req);
413 if (ret == -EAGAIN) {
414 /* Wait unti we can send then try again */
415 /* DEAD if here - should not happen */
416 ret = -EBUSY;
417 goto err_unlock;
419 } else {
420 kfifo_put(&queue->softqueue, el);
423 err_unlock:
424 mutex_unlock(&sec_req->lock);
426 return ret;
429 static void sec_skcipher_alg_callback(struct sec_bd_info *sec_resp,
430 struct crypto_async_request *req_base)
432 struct skcipher_request *skreq = container_of(req_base,
433 struct skcipher_request,
434 base);
435 struct sec_request *sec_req = skcipher_request_ctx(skreq);
436 struct sec_request *backlog_req;
437 struct sec_request_el *sec_req_el, *nextrequest;
438 struct sec_alg_tfm_ctx *ctx = sec_req->tfm_ctx;
439 struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(skreq);
440 struct device *dev = ctx->queue->dev_info->dev;
441 int icv_or_skey_en, ret;
442 bool done;
444 sec_req_el = list_first_entry(&sec_req->elements, struct sec_request_el,
445 head);
446 icv_or_skey_en = (sec_resp->w0 & SEC_BD_W0_ICV_OR_SKEY_EN_M) >>
447 SEC_BD_W0_ICV_OR_SKEY_EN_S;
448 if (sec_resp->w1 & SEC_BD_W1_BD_INVALID || icv_or_skey_en == 3) {
449 dev_err(dev, "Got an invalid answer %lu %d\n",
450 sec_resp->w1 & SEC_BD_W1_BD_INVALID,
451 icv_or_skey_en);
452 sec_req->err = -EINVAL;
454 * We need to muddle on to avoid getting stuck with elements
455 * on the queue. Error will be reported so requester so
456 * it should be able to handle appropriately.
460 mutex_lock(&ctx->queue->queuelock);
461 /* Put the IV in place for chained cases */
462 switch (ctx->cipher_alg) {
463 case SEC_C_AES_CBC_128:
464 case SEC_C_AES_CBC_192:
465 case SEC_C_AES_CBC_256:
466 if (sec_req_el->req.w0 & SEC_BD_W0_DE)
467 sg_pcopy_to_buffer(sec_req_el->sgl_out,
468 sg_nents(sec_req_el->sgl_out),
469 skreq->iv,
470 crypto_skcipher_ivsize(atfm),
471 sec_req_el->el_length -
472 crypto_skcipher_ivsize(atfm));
473 else
474 sg_pcopy_to_buffer(sec_req_el->sgl_in,
475 sg_nents(sec_req_el->sgl_in),
476 skreq->iv,
477 crypto_skcipher_ivsize(atfm),
478 sec_req_el->el_length -
479 crypto_skcipher_ivsize(atfm));
480 /* No need to sync to the device as coherent DMA */
481 break;
482 case SEC_C_AES_CTR_128:
483 case SEC_C_AES_CTR_192:
484 case SEC_C_AES_CTR_256:
485 crypto_inc(skreq->iv, 16);
486 break;
487 default:
488 /* Do not update */
489 break;
492 if (ctx->queue->havesoftqueue &&
493 !kfifo_is_empty(&ctx->queue->softqueue) &&
494 sec_queue_empty(ctx->queue)) {
495 ret = kfifo_get(&ctx->queue->softqueue, &nextrequest);
496 if (ret <= 0)
497 dev_err(dev,
498 "Error getting next element from kfifo %d\n",
499 ret);
500 else
501 /* We know there is space so this cannot fail */
502 sec_queue_send(ctx->queue, &nextrequest->req,
503 nextrequest->sec_req);
504 } else if (!list_empty(&ctx->backlog)) {
505 /* Need to verify there is room first */
506 backlog_req = list_first_entry(&ctx->backlog,
507 typeof(*backlog_req),
508 backlog_head);
509 if (sec_queue_can_enqueue(ctx->queue,
510 backlog_req->num_elements) ||
511 (ctx->queue->havesoftqueue &&
512 kfifo_avail(&ctx->queue->softqueue) >
513 backlog_req->num_elements)) {
514 sec_send_request(backlog_req, ctx->queue);
515 backlog_req->req_base->complete(backlog_req->req_base,
516 -EINPROGRESS);
517 list_del(&backlog_req->backlog_head);
520 mutex_unlock(&ctx->queue->queuelock);
522 mutex_lock(&sec_req->lock);
523 list_del(&sec_req_el->head);
524 mutex_unlock(&sec_req->lock);
525 sec_alg_free_el(sec_req_el, ctx->queue->dev_info);
528 * Request is done.
529 * The dance is needed as the lock is freed in the completion
531 mutex_lock(&sec_req->lock);
532 done = list_empty(&sec_req->elements);
533 mutex_unlock(&sec_req->lock);
534 if (done) {
535 if (crypto_skcipher_ivsize(atfm)) {
536 dma_unmap_single(dev, sec_req->dma_iv,
537 crypto_skcipher_ivsize(atfm),
538 DMA_TO_DEVICE);
540 dma_unmap_sg(dev, skreq->src, sec_req->len_in,
541 DMA_BIDIRECTIONAL);
542 if (skreq->src != skreq->dst)
543 dma_unmap_sg(dev, skreq->dst, sec_req->len_out,
544 DMA_BIDIRECTIONAL);
545 skreq->base.complete(&skreq->base, sec_req->err);
549 void sec_alg_callback(struct sec_bd_info *resp, void *shadow)
551 struct sec_request *sec_req = shadow;
553 sec_req->cb(resp, sec_req->req_base);
556 static int sec_alg_alloc_and_calc_split_sizes(int length, size_t **split_sizes,
557 int *steps)
559 size_t *sizes;
560 int i;
562 /* Split into suitable sized blocks */
563 *steps = roundup(length, SEC_REQ_LIMIT) / SEC_REQ_LIMIT;
564 sizes = kcalloc(*steps, sizeof(*sizes), GFP_KERNEL);
565 if (!sizes)
566 return -ENOMEM;
568 for (i = 0; i < *steps - 1; i++)
569 sizes[i] = SEC_REQ_LIMIT;
570 sizes[*steps - 1] = length - SEC_REQ_LIMIT * (*steps - 1);
571 *split_sizes = sizes;
573 return 0;
576 static int sec_map_and_split_sg(struct scatterlist *sgl, size_t *split_sizes,
577 int steps, struct scatterlist ***splits,
578 int **splits_nents,
579 int sgl_len_in,
580 struct device *dev)
582 int ret, count;
584 count = dma_map_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
585 if (!count)
586 return -EINVAL;
588 *splits = kcalloc(steps, sizeof(struct scatterlist *), GFP_KERNEL);
589 if (!*splits) {
590 ret = -ENOMEM;
591 goto err_unmap_sg;
593 *splits_nents = kcalloc(steps, sizeof(int), GFP_KERNEL);
594 if (!*splits_nents) {
595 ret = -ENOMEM;
596 goto err_free_splits;
599 /* output the scatter list before and after this */
600 ret = sg_split(sgl, count, 0, steps, split_sizes,
601 *splits, *splits_nents, GFP_KERNEL);
602 if (ret) {
603 ret = -ENOMEM;
604 goto err_free_splits_nents;
607 return 0;
609 err_free_splits_nents:
610 kfree(*splits_nents);
611 err_free_splits:
612 kfree(*splits);
613 err_unmap_sg:
614 dma_unmap_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
616 return ret;
620 * Reverses the sec_map_and_split_sg call for messages not yet added to
621 * the queues.
623 static void sec_unmap_sg_on_err(struct scatterlist *sgl, int steps,
624 struct scatterlist **splits, int *splits_nents,
625 int sgl_len_in, struct device *dev)
627 int i;
629 for (i = 0; i < steps; i++)
630 kfree(splits[i]);
631 kfree(splits_nents);
632 kfree(splits);
634 dma_unmap_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
637 static struct sec_request_el
638 *sec_alg_alloc_and_fill_el(struct sec_bd_info *template, int encrypt,
639 int el_size, bool different_dest,
640 struct scatterlist *sgl_in, int n_ents_in,
641 struct scatterlist *sgl_out, int n_ents_out,
642 struct sec_dev_info *info)
644 struct sec_request_el *el;
645 struct sec_bd_info *req;
646 int ret;
648 el = kzalloc(sizeof(*el), GFP_KERNEL);
649 if (!el)
650 return ERR_PTR(-ENOMEM);
651 el->el_length = el_size;
652 req = &el->req;
653 memcpy(req, template, sizeof(*req));
655 req->w0 &= ~SEC_BD_W0_CIPHER_M;
656 if (encrypt)
657 req->w0 |= SEC_CIPHER_ENCRYPT << SEC_BD_W0_CIPHER_S;
658 else
659 req->w0 |= SEC_CIPHER_DECRYPT << SEC_BD_W0_CIPHER_S;
661 req->w0 &= ~SEC_BD_W0_C_GRAN_SIZE_19_16_M;
662 req->w0 |= ((el_size >> 16) << SEC_BD_W0_C_GRAN_SIZE_19_16_S) &
663 SEC_BD_W0_C_GRAN_SIZE_19_16_M;
665 req->w0 &= ~SEC_BD_W0_C_GRAN_SIZE_21_20_M;
666 req->w0 |= ((el_size >> 20) << SEC_BD_W0_C_GRAN_SIZE_21_20_S) &
667 SEC_BD_W0_C_GRAN_SIZE_21_20_M;
669 /* Writing whole u32 so no need to take care of masking */
670 req->w2 = ((1 << SEC_BD_W2_GRAN_NUM_S) & SEC_BD_W2_GRAN_NUM_M) |
671 ((el_size << SEC_BD_W2_C_GRAN_SIZE_15_0_S) &
672 SEC_BD_W2_C_GRAN_SIZE_15_0_M);
674 req->w3 &= ~SEC_BD_W3_CIPHER_LEN_OFFSET_M;
675 req->w1 |= SEC_BD_W1_ADDR_TYPE;
677 el->sgl_in = sgl_in;
679 ret = sec_alloc_and_fill_hw_sgl(&el->in, &el->dma_in, el->sgl_in,
680 n_ents_in, info);
681 if (ret)
682 goto err_free_el;
684 req->data_addr_lo = lower_32_bits(el->dma_in);
685 req->data_addr_hi = upper_32_bits(el->dma_in);
687 if (different_dest) {
688 el->sgl_out = sgl_out;
689 ret = sec_alloc_and_fill_hw_sgl(&el->out, &el->dma_out,
690 el->sgl_out,
691 n_ents_out, info);
692 if (ret)
693 goto err_free_hw_sgl_in;
695 req->w0 |= SEC_BD_W0_DE;
696 req->cipher_destin_addr_lo = lower_32_bits(el->dma_out);
697 req->cipher_destin_addr_hi = upper_32_bits(el->dma_out);
699 } else {
700 req->w0 &= ~SEC_BD_W0_DE;
701 req->cipher_destin_addr_lo = lower_32_bits(el->dma_in);
702 req->cipher_destin_addr_hi = upper_32_bits(el->dma_in);
705 return el;
707 err_free_hw_sgl_in:
708 sec_free_hw_sgl(el->in, el->dma_in, info);
709 err_free_el:
710 kfree(el);
712 return ERR_PTR(ret);
715 static int sec_alg_skcipher_crypto(struct skcipher_request *skreq,
716 bool encrypt)
718 struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(skreq);
719 struct crypto_tfm *tfm = crypto_skcipher_tfm(atfm);
720 struct sec_alg_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
721 struct sec_queue *queue = ctx->queue;
722 struct sec_request *sec_req = skcipher_request_ctx(skreq);
723 struct sec_dev_info *info = queue->dev_info;
724 int i, ret, steps;
725 size_t *split_sizes;
726 struct scatterlist **splits_in;
727 struct scatterlist **splits_out = NULL;
728 int *splits_in_nents;
729 int *splits_out_nents = NULL;
730 struct sec_request_el *el, *temp;
731 bool split = skreq->src != skreq->dst;
733 mutex_init(&sec_req->lock);
734 sec_req->req_base = &skreq->base;
735 sec_req->err = 0;
736 /* SGL mapping out here to allow us to break it up as necessary */
737 sec_req->len_in = sg_nents(skreq->src);
739 ret = sec_alg_alloc_and_calc_split_sizes(skreq->cryptlen, &split_sizes,
740 &steps);
741 if (ret)
742 return ret;
743 sec_req->num_elements = steps;
744 ret = sec_map_and_split_sg(skreq->src, split_sizes, steps, &splits_in,
745 &splits_in_nents, sec_req->len_in,
746 info->dev);
747 if (ret)
748 goto err_free_split_sizes;
750 if (split) {
751 sec_req->len_out = sg_nents(skreq->dst);
752 ret = sec_map_and_split_sg(skreq->dst, split_sizes, steps,
753 &splits_out, &splits_out_nents,
754 sec_req->len_out, info->dev);
755 if (ret)
756 goto err_unmap_in_sg;
758 /* Shared info stored in seq_req - applies to all BDs */
759 sec_req->tfm_ctx = ctx;
760 sec_req->cb = sec_skcipher_alg_callback;
761 INIT_LIST_HEAD(&sec_req->elements);
764 * Future optimization.
765 * In the chaining case we can't use a dma pool bounce buffer
766 * but in the case where we know there is no chaining we can
768 if (crypto_skcipher_ivsize(atfm)) {
769 sec_req->dma_iv = dma_map_single(info->dev, skreq->iv,
770 crypto_skcipher_ivsize(atfm),
771 DMA_TO_DEVICE);
772 if (dma_mapping_error(info->dev, sec_req->dma_iv)) {
773 ret = -ENOMEM;
774 goto err_unmap_out_sg;
778 /* Set them all up then queue - cleaner error handling. */
779 for (i = 0; i < steps; i++) {
780 el = sec_alg_alloc_and_fill_el(&ctx->req_template,
781 encrypt ? 1 : 0,
782 split_sizes[i],
783 skreq->src != skreq->dst,
784 splits_in[i], splits_in_nents[i],
785 split ? splits_out[i] : NULL,
786 split ? splits_out_nents[i] : 0,
787 info);
788 if (IS_ERR(el)) {
789 ret = PTR_ERR(el);
790 goto err_free_elements;
792 el->req.cipher_iv_addr_lo = lower_32_bits(sec_req->dma_iv);
793 el->req.cipher_iv_addr_hi = upper_32_bits(sec_req->dma_iv);
794 el->sec_req = sec_req;
795 list_add_tail(&el->head, &sec_req->elements);
799 * Only attempt to queue if the whole lot can fit in the queue -
800 * we can't successfully cleanup after a partial queing so this
801 * must succeed or fail atomically.
803 * Big hammer test of both software and hardware queues - could be
804 * more refined but this is unlikely to happen so no need.
807 /* Grab a big lock for a long time to avoid concurrency issues */
808 mutex_lock(&queue->queuelock);
811 * Can go on to queue if we have space in either:
812 * 1) The hardware queue and no software queue
813 * 2) The software queue
814 * AND there is nothing in the backlog. If there is backlog we
815 * have to only queue to the backlog queue and return busy.
817 if ((!sec_queue_can_enqueue(queue, steps) &&
818 (!queue->havesoftqueue ||
819 kfifo_avail(&queue->softqueue) > steps)) ||
820 !list_empty(&ctx->backlog)) {
821 ret = -EBUSY;
822 if ((skreq->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
823 list_add_tail(&sec_req->backlog_head, &ctx->backlog);
824 mutex_unlock(&queue->queuelock);
825 goto out;
828 mutex_unlock(&queue->queuelock);
829 goto err_free_elements;
831 ret = sec_send_request(sec_req, queue);
832 mutex_unlock(&queue->queuelock);
833 if (ret)
834 goto err_free_elements;
836 ret = -EINPROGRESS;
837 out:
838 /* Cleanup - all elements in pointer arrays have been copied */
839 kfree(splits_in_nents);
840 kfree(splits_in);
841 kfree(splits_out_nents);
842 kfree(splits_out);
843 kfree(split_sizes);
844 return ret;
846 err_free_elements:
847 list_for_each_entry_safe(el, temp, &sec_req->elements, head) {
848 list_del(&el->head);
849 sec_alg_free_el(el, info);
851 if (crypto_skcipher_ivsize(atfm))
852 dma_unmap_single(info->dev, sec_req->dma_iv,
853 crypto_skcipher_ivsize(atfm),
854 DMA_BIDIRECTIONAL);
855 err_unmap_out_sg:
856 if (split)
857 sec_unmap_sg_on_err(skreq->dst, steps, splits_out,
858 splits_out_nents, sec_req->len_out,
859 info->dev);
860 err_unmap_in_sg:
861 sec_unmap_sg_on_err(skreq->src, steps, splits_in, splits_in_nents,
862 sec_req->len_in, info->dev);
863 err_free_split_sizes:
864 kfree(split_sizes);
866 return ret;
869 static int sec_alg_skcipher_encrypt(struct skcipher_request *req)
871 return sec_alg_skcipher_crypto(req, true);
874 static int sec_alg_skcipher_decrypt(struct skcipher_request *req)
876 return sec_alg_skcipher_crypto(req, false);
879 static int sec_alg_skcipher_init(struct crypto_skcipher *tfm)
881 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
883 mutex_init(&ctx->lock);
884 INIT_LIST_HEAD(&ctx->backlog);
885 crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_request));
887 ctx->queue = sec_queue_alloc_start_safe();
888 if (IS_ERR(ctx->queue))
889 return PTR_ERR(ctx->queue);
891 mutex_init(&ctx->queue->queuelock);
892 ctx->queue->havesoftqueue = false;
894 return 0;
897 static void sec_alg_skcipher_exit(struct crypto_skcipher *tfm)
899 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
900 struct device *dev = ctx->queue->dev_info->dev;
902 if (ctx->key) {
903 memzero_explicit(ctx->key, SEC_MAX_CIPHER_KEY);
904 dma_free_coherent(dev, SEC_MAX_CIPHER_KEY, ctx->key,
905 ctx->pkey);
907 sec_queue_stop_release(ctx->queue);
910 static int sec_alg_skcipher_init_with_queue(struct crypto_skcipher *tfm)
912 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
913 int ret;
915 ret = sec_alg_skcipher_init(tfm);
916 if (ret)
917 return ret;
919 INIT_KFIFO(ctx->queue->softqueue);
920 ret = kfifo_alloc(&ctx->queue->softqueue, 512, GFP_KERNEL);
921 if (ret) {
922 sec_alg_skcipher_exit(tfm);
923 return ret;
925 ctx->queue->havesoftqueue = true;
927 return 0;
930 static void sec_alg_skcipher_exit_with_queue(struct crypto_skcipher *tfm)
932 struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
934 kfifo_free(&ctx->queue->softqueue);
935 sec_alg_skcipher_exit(tfm);
938 static struct skcipher_alg sec_algs[] = {
940 .base = {
941 .cra_name = "ecb(aes)",
942 .cra_driver_name = "hisi_sec_aes_ecb",
943 .cra_priority = 4001,
944 .cra_flags = CRYPTO_ALG_ASYNC,
945 .cra_blocksize = AES_BLOCK_SIZE,
946 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
947 .cra_alignmask = 0,
948 .cra_module = THIS_MODULE,
950 .init = sec_alg_skcipher_init,
951 .exit = sec_alg_skcipher_exit,
952 .setkey = sec_alg_skcipher_setkey_aes_ecb,
953 .decrypt = sec_alg_skcipher_decrypt,
954 .encrypt = sec_alg_skcipher_encrypt,
955 .min_keysize = AES_MIN_KEY_SIZE,
956 .max_keysize = AES_MAX_KEY_SIZE,
957 .ivsize = 0,
958 }, {
959 .base = {
960 .cra_name = "cbc(aes)",
961 .cra_driver_name = "hisi_sec_aes_cbc",
962 .cra_priority = 4001,
963 .cra_flags = CRYPTO_ALG_ASYNC,
964 .cra_blocksize = AES_BLOCK_SIZE,
965 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
966 .cra_alignmask = 0,
967 .cra_module = THIS_MODULE,
969 .init = sec_alg_skcipher_init_with_queue,
970 .exit = sec_alg_skcipher_exit_with_queue,
971 .setkey = sec_alg_skcipher_setkey_aes_cbc,
972 .decrypt = sec_alg_skcipher_decrypt,
973 .encrypt = sec_alg_skcipher_encrypt,
974 .min_keysize = AES_MIN_KEY_SIZE,
975 .max_keysize = AES_MAX_KEY_SIZE,
976 .ivsize = AES_BLOCK_SIZE,
977 }, {
978 .base = {
979 .cra_name = "ctr(aes)",
980 .cra_driver_name = "hisi_sec_aes_ctr",
981 .cra_priority = 4001,
982 .cra_flags = CRYPTO_ALG_ASYNC,
983 .cra_blocksize = AES_BLOCK_SIZE,
984 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
985 .cra_alignmask = 0,
986 .cra_module = THIS_MODULE,
988 .init = sec_alg_skcipher_init_with_queue,
989 .exit = sec_alg_skcipher_exit_with_queue,
990 .setkey = sec_alg_skcipher_setkey_aes_ctr,
991 .decrypt = sec_alg_skcipher_decrypt,
992 .encrypt = sec_alg_skcipher_encrypt,
993 .min_keysize = AES_MIN_KEY_SIZE,
994 .max_keysize = AES_MAX_KEY_SIZE,
995 .ivsize = AES_BLOCK_SIZE,
996 }, {
997 .base = {
998 .cra_name = "xts(aes)",
999 .cra_driver_name = "hisi_sec_aes_xts",
1000 .cra_priority = 4001,
1001 .cra_flags = CRYPTO_ALG_ASYNC,
1002 .cra_blocksize = AES_BLOCK_SIZE,
1003 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1004 .cra_alignmask = 0,
1005 .cra_module = THIS_MODULE,
1007 .init = sec_alg_skcipher_init,
1008 .exit = sec_alg_skcipher_exit,
1009 .setkey = sec_alg_skcipher_setkey_aes_xts,
1010 .decrypt = sec_alg_skcipher_decrypt,
1011 .encrypt = sec_alg_skcipher_encrypt,
1012 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1013 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1014 .ivsize = AES_BLOCK_SIZE,
1015 }, {
1016 /* Unable to find any test vectors so untested */
1017 .base = {
1018 .cra_name = "ecb(des)",
1019 .cra_driver_name = "hisi_sec_des_ecb",
1020 .cra_priority = 4001,
1021 .cra_flags = CRYPTO_ALG_ASYNC,
1022 .cra_blocksize = DES_BLOCK_SIZE,
1023 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1024 .cra_alignmask = 0,
1025 .cra_module = THIS_MODULE,
1027 .init = sec_alg_skcipher_init,
1028 .exit = sec_alg_skcipher_exit,
1029 .setkey = sec_alg_skcipher_setkey_des_ecb,
1030 .decrypt = sec_alg_skcipher_decrypt,
1031 .encrypt = sec_alg_skcipher_encrypt,
1032 .min_keysize = DES_KEY_SIZE,
1033 .max_keysize = DES_KEY_SIZE,
1034 .ivsize = 0,
1035 }, {
1036 .base = {
1037 .cra_name = "cbc(des)",
1038 .cra_driver_name = "hisi_sec_des_cbc",
1039 .cra_priority = 4001,
1040 .cra_flags = CRYPTO_ALG_ASYNC,
1041 .cra_blocksize = DES_BLOCK_SIZE,
1042 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1043 .cra_alignmask = 0,
1044 .cra_module = THIS_MODULE,
1046 .init = sec_alg_skcipher_init_with_queue,
1047 .exit = sec_alg_skcipher_exit_with_queue,
1048 .setkey = sec_alg_skcipher_setkey_des_cbc,
1049 .decrypt = sec_alg_skcipher_decrypt,
1050 .encrypt = sec_alg_skcipher_encrypt,
1051 .min_keysize = DES_KEY_SIZE,
1052 .max_keysize = DES_KEY_SIZE,
1053 .ivsize = DES_BLOCK_SIZE,
1054 }, {
1055 .base = {
1056 .cra_name = "cbc(des3_ede)",
1057 .cra_driver_name = "hisi_sec_3des_cbc",
1058 .cra_priority = 4001,
1059 .cra_flags = CRYPTO_ALG_ASYNC,
1060 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1061 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1062 .cra_alignmask = 0,
1063 .cra_module = THIS_MODULE,
1065 .init = sec_alg_skcipher_init_with_queue,
1066 .exit = sec_alg_skcipher_exit_with_queue,
1067 .setkey = sec_alg_skcipher_setkey_3des_cbc,
1068 .decrypt = sec_alg_skcipher_decrypt,
1069 .encrypt = sec_alg_skcipher_encrypt,
1070 .min_keysize = DES3_EDE_KEY_SIZE,
1071 .max_keysize = DES3_EDE_KEY_SIZE,
1072 .ivsize = DES3_EDE_BLOCK_SIZE,
1073 }, {
1074 .base = {
1075 .cra_name = "ecb(des3_ede)",
1076 .cra_driver_name = "hisi_sec_3des_ecb",
1077 .cra_priority = 4001,
1078 .cra_flags = CRYPTO_ALG_ASYNC,
1079 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1080 .cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1081 .cra_alignmask = 0,
1082 .cra_module = THIS_MODULE,
1084 .init = sec_alg_skcipher_init,
1085 .exit = sec_alg_skcipher_exit,
1086 .setkey = sec_alg_skcipher_setkey_3des_ecb,
1087 .decrypt = sec_alg_skcipher_decrypt,
1088 .encrypt = sec_alg_skcipher_encrypt,
1089 .min_keysize = DES3_EDE_KEY_SIZE,
1090 .max_keysize = DES3_EDE_KEY_SIZE,
1091 .ivsize = 0,
1095 int sec_algs_register(void)
1097 int ret = 0;
1099 mutex_lock(&algs_lock);
1100 if (++active_devs != 1)
1101 goto unlock;
1103 ret = crypto_register_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
1104 if (ret)
1105 --active_devs;
1106 unlock:
1107 mutex_unlock(&algs_lock);
1109 return ret;
1112 void sec_algs_unregister(void)
1114 mutex_lock(&algs_lock);
1115 if (--active_devs != 0)
1116 goto unlock;
1117 crypto_unregister_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
1119 unlock:
1120 mutex_unlock(&algs_lock);