1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/kernel.h>
9 #include <linux/module.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
33 #define DRV_MODULE_NAME "n2_crypto"
34 #define DRV_MODULE_VERSION "0.2"
35 #define DRV_MODULE_RELDATE "July 28, 2011"
37 static const char version
[] =
38 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION
);
45 #define N2_CRA_PRIORITY 200
47 static DEFINE_MUTEX(spu_lock
);
51 unsigned long qhandle
;
58 struct list_head jobs
;
65 struct list_head list
;
69 struct spu_queue
*queue
;
73 static struct spu_queue
**cpu_to_cwq
;
74 static struct spu_queue
**cpu_to_mau
;
76 static unsigned long spu_next_offset(struct spu_queue
*q
, unsigned long off
)
78 if (q
->q_type
== HV_NCS_QTYPE_MAU
) {
79 off
+= MAU_ENTRY_SIZE
;
80 if (off
== (MAU_ENTRY_SIZE
* MAU_NUM_ENTRIES
))
83 off
+= CWQ_ENTRY_SIZE
;
84 if (off
== (CWQ_ENTRY_SIZE
* CWQ_NUM_ENTRIES
))
90 struct n2_request_common
{
91 struct list_head entry
;
94 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
96 /* An async job request records the final tail value it used in
97 * n2_request_common->offset, test to see if that offset is in
98 * the range old_head, new_head, inclusive.
100 static inline bool job_finished(struct spu_queue
*q
, unsigned int offset
,
101 unsigned long old_head
, unsigned long new_head
)
103 if (old_head
<= new_head
) {
104 if (offset
> old_head
&& offset
<= new_head
)
107 if (offset
> old_head
|| offset
<= new_head
)
113 /* When the HEAD marker is unequal to the actual HEAD, we get
114 * a virtual device INO interrupt. We should process the
115 * completed CWQ entries and adjust the HEAD marker to clear
118 static irqreturn_t
cwq_intr(int irq
, void *dev_id
)
120 unsigned long off
, new_head
, hv_ret
;
121 struct spu_queue
*q
= dev_id
;
123 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
124 smp_processor_id(), q
->qhandle
);
128 hv_ret
= sun4v_ncs_gethead(q
->qhandle
, &new_head
);
130 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
131 smp_processor_id(), new_head
, hv_ret
);
133 for (off
= q
->head
; off
!= new_head
; off
= spu_next_offset(q
, off
)) {
137 hv_ret
= sun4v_ncs_sethead_marker(q
->qhandle
, new_head
);
138 if (hv_ret
== HV_EOK
)
141 spin_unlock(&q
->lock
);
146 static irqreturn_t
mau_intr(int irq
, void *dev_id
)
148 struct spu_queue
*q
= dev_id
;
149 unsigned long head
, hv_ret
;
153 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
154 smp_processor_id(), q
->qhandle
);
156 hv_ret
= sun4v_ncs_gethead(q
->qhandle
, &head
);
158 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
159 smp_processor_id(), head
, hv_ret
);
161 sun4v_ncs_sethead_marker(q
->qhandle
, head
);
163 spin_unlock(&q
->lock
);
168 static void *spu_queue_next(struct spu_queue
*q
, void *cur
)
170 return q
->q
+ spu_next_offset(q
, cur
- q
->q
);
173 static int spu_queue_num_free(struct spu_queue
*q
)
175 unsigned long head
= q
->head
;
176 unsigned long tail
= q
->tail
;
177 unsigned long end
= (CWQ_ENTRY_SIZE
* CWQ_NUM_ENTRIES
);
183 diff
= (end
- tail
) + head
;
185 return (diff
/ CWQ_ENTRY_SIZE
) - 1;
188 static void *spu_queue_alloc(struct spu_queue
*q
, int num_entries
)
190 int avail
= spu_queue_num_free(q
);
192 if (avail
>= num_entries
)
193 return q
->q
+ q
->tail
;
198 static unsigned long spu_queue_submit(struct spu_queue
*q
, void *last
)
200 unsigned long hv_ret
, new_tail
;
202 new_tail
= spu_next_offset(q
, last
- q
->q
);
204 hv_ret
= sun4v_ncs_settail(q
->qhandle
, new_tail
);
205 if (hv_ret
== HV_EOK
)
210 static u64
control_word_base(unsigned int len
, unsigned int hmac_key_len
,
211 int enc_type
, int auth_type
,
212 unsigned int hash_len
,
213 bool sfas
, bool sob
, bool eob
, bool encrypt
,
216 u64 word
= (len
- 1) & CONTROL_LEN
;
218 word
|= ((u64
) opcode
<< CONTROL_OPCODE_SHIFT
);
219 word
|= ((u64
) enc_type
<< CONTROL_ENC_TYPE_SHIFT
);
220 word
|= ((u64
) auth_type
<< CONTROL_AUTH_TYPE_SHIFT
);
222 word
|= CONTROL_STORE_FINAL_AUTH_STATE
;
224 word
|= CONTROL_START_OF_BLOCK
;
226 word
|= CONTROL_END_OF_BLOCK
;
228 word
|= CONTROL_ENCRYPT
;
230 word
|= ((u64
) (hmac_key_len
- 1)) << CONTROL_HMAC_KEY_LEN_SHIFT
;
232 word
|= ((u64
) (hash_len
- 1)) << CONTROL_HASH_LEN_SHIFT
;
238 static inline bool n2_should_run_async(struct spu_queue
*qp
, int this_len
)
240 if (this_len
>= 64 ||
241 qp
->head
!= qp
->tail
)
247 struct n2_ahash_alg
{
248 struct list_head entry
;
250 const u32
*hash_init
;
255 struct ahash_alg alg
;
258 static inline struct n2_ahash_alg
*n2_ahash_alg(struct crypto_tfm
*tfm
)
260 struct crypto_alg
*alg
= tfm
->__crt_alg
;
261 struct ahash_alg
*ahash_alg
;
263 ahash_alg
= container_of(alg
, struct ahash_alg
, halg
.base
);
265 return container_of(ahash_alg
, struct n2_ahash_alg
, alg
);
269 const char *child_alg
;
270 struct n2_ahash_alg derived
;
273 static inline struct n2_hmac_alg
*n2_hmac_alg(struct crypto_tfm
*tfm
)
275 struct crypto_alg
*alg
= tfm
->__crt_alg
;
276 struct ahash_alg
*ahash_alg
;
278 ahash_alg
= container_of(alg
, struct ahash_alg
, halg
.base
);
280 return container_of(ahash_alg
, struct n2_hmac_alg
, derived
.alg
);
284 struct crypto_ahash
*fallback_tfm
;
287 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
290 struct n2_hash_ctx base
;
292 struct crypto_shash
*child_shash
;
295 unsigned char hash_key
[N2_HASH_KEY_MAX
];
298 struct n2_hash_req_ctx
{
300 struct md5_state md5
;
301 struct sha1_state sha1
;
302 struct sha256_state sha256
;
305 struct ahash_request fallback_req
;
308 static int n2_hash_async_init(struct ahash_request
*req
)
310 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
311 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
312 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
314 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
315 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
317 return crypto_ahash_init(&rctx
->fallback_req
);
320 static int n2_hash_async_update(struct ahash_request
*req
)
322 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
323 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
324 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
326 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
327 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
328 rctx
->fallback_req
.nbytes
= req
->nbytes
;
329 rctx
->fallback_req
.src
= req
->src
;
331 return crypto_ahash_update(&rctx
->fallback_req
);
334 static int n2_hash_async_final(struct ahash_request
*req
)
336 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
337 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
338 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
340 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
341 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
342 rctx
->fallback_req
.result
= req
->result
;
344 return crypto_ahash_final(&rctx
->fallback_req
);
347 static int n2_hash_async_finup(struct ahash_request
*req
)
349 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
350 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
351 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
353 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
354 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
355 rctx
->fallback_req
.nbytes
= req
->nbytes
;
356 rctx
->fallback_req
.src
= req
->src
;
357 rctx
->fallback_req
.result
= req
->result
;
359 return crypto_ahash_finup(&rctx
->fallback_req
);
362 static int n2_hash_async_noimport(struct ahash_request
*req
, const void *in
)
367 static int n2_hash_async_noexport(struct ahash_request
*req
, void *out
)
372 static int n2_hash_cra_init(struct crypto_tfm
*tfm
)
374 const char *fallback_driver_name
= crypto_tfm_alg_name(tfm
);
375 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
376 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(ahash
);
377 struct crypto_ahash
*fallback_tfm
;
380 fallback_tfm
= crypto_alloc_ahash(fallback_driver_name
, 0,
381 CRYPTO_ALG_NEED_FALLBACK
);
382 if (IS_ERR(fallback_tfm
)) {
383 pr_warning("Fallback driver '%s' could not be loaded!\n",
384 fallback_driver_name
);
385 err
= PTR_ERR(fallback_tfm
);
389 crypto_ahash_set_reqsize(ahash
, (sizeof(struct n2_hash_req_ctx
) +
390 crypto_ahash_reqsize(fallback_tfm
)));
392 ctx
->fallback_tfm
= fallback_tfm
;
399 static void n2_hash_cra_exit(struct crypto_tfm
*tfm
)
401 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
402 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(ahash
);
404 crypto_free_ahash(ctx
->fallback_tfm
);
407 static int n2_hmac_cra_init(struct crypto_tfm
*tfm
)
409 const char *fallback_driver_name
= crypto_tfm_alg_name(tfm
);
410 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
411 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(ahash
);
412 struct n2_hmac_alg
*n2alg
= n2_hmac_alg(tfm
);
413 struct crypto_ahash
*fallback_tfm
;
414 struct crypto_shash
*child_shash
;
417 fallback_tfm
= crypto_alloc_ahash(fallback_driver_name
, 0,
418 CRYPTO_ALG_NEED_FALLBACK
);
419 if (IS_ERR(fallback_tfm
)) {
420 pr_warning("Fallback driver '%s' could not be loaded!\n",
421 fallback_driver_name
);
422 err
= PTR_ERR(fallback_tfm
);
426 child_shash
= crypto_alloc_shash(n2alg
->child_alg
, 0, 0);
427 if (IS_ERR(child_shash
)) {
428 pr_warning("Child shash '%s' could not be loaded!\n",
430 err
= PTR_ERR(child_shash
);
431 goto out_free_fallback
;
434 crypto_ahash_set_reqsize(ahash
, (sizeof(struct n2_hash_req_ctx
) +
435 crypto_ahash_reqsize(fallback_tfm
)));
437 ctx
->child_shash
= child_shash
;
438 ctx
->base
.fallback_tfm
= fallback_tfm
;
442 crypto_free_ahash(fallback_tfm
);
448 static void n2_hmac_cra_exit(struct crypto_tfm
*tfm
)
450 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
451 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(ahash
);
453 crypto_free_ahash(ctx
->base
.fallback_tfm
);
454 crypto_free_shash(ctx
->child_shash
);
457 static int n2_hmac_async_setkey(struct crypto_ahash
*tfm
, const u8
*key
,
460 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(tfm
);
461 struct crypto_shash
*child_shash
= ctx
->child_shash
;
462 struct crypto_ahash
*fallback_tfm
;
463 SHASH_DESC_ON_STACK(shash
, child_shash
);
466 fallback_tfm
= ctx
->base
.fallback_tfm
;
467 err
= crypto_ahash_setkey(fallback_tfm
, key
, keylen
);
471 shash
->tfm
= child_shash
;
473 bs
= crypto_shash_blocksize(child_shash
);
474 ds
= crypto_shash_digestsize(child_shash
);
475 BUG_ON(ds
> N2_HASH_KEY_MAX
);
477 err
= crypto_shash_digest(shash
, key
, keylen
,
482 } else if (keylen
<= N2_HASH_KEY_MAX
)
483 memcpy(ctx
->hash_key
, key
, keylen
);
485 ctx
->hash_key_len
= keylen
;
490 static unsigned long wait_for_tail(struct spu_queue
*qp
)
492 unsigned long head
, hv_ret
;
495 hv_ret
= sun4v_ncs_gethead(qp
->qhandle
, &head
);
496 if (hv_ret
!= HV_EOK
) {
497 pr_err("Hypervisor error on gethead\n");
500 if (head
== qp
->tail
) {
508 static unsigned long submit_and_wait_for_tail(struct spu_queue
*qp
,
509 struct cwq_initial_entry
*ent
)
511 unsigned long hv_ret
= spu_queue_submit(qp
, ent
);
513 if (hv_ret
== HV_EOK
)
514 hv_ret
= wait_for_tail(qp
);
519 static int n2_do_async_digest(struct ahash_request
*req
,
520 unsigned int auth_type
, unsigned int digest_size
,
521 unsigned int result_size
, void *hash_loc
,
522 unsigned long auth_key
, unsigned int auth_key_len
)
524 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
525 struct cwq_initial_entry
*ent
;
526 struct crypto_hash_walk walk
;
527 struct spu_queue
*qp
;
532 /* The total effective length of the operation may not
535 if (unlikely(req
->nbytes
> (1 << 16))) {
536 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
537 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
539 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
540 rctx
->fallback_req
.base
.flags
=
541 req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
542 rctx
->fallback_req
.nbytes
= req
->nbytes
;
543 rctx
->fallback_req
.src
= req
->src
;
544 rctx
->fallback_req
.result
= req
->result
;
546 return crypto_ahash_digest(&rctx
->fallback_req
);
549 nbytes
= crypto_hash_walk_first(req
, &walk
);
552 qp
= cpu_to_cwq
[cpu
];
556 spin_lock_irqsave(&qp
->lock
, flags
);
558 /* XXX can do better, improve this later by doing a by-hand scatterlist
561 ent
= qp
->q
+ qp
->tail
;
563 ent
->control
= control_word_base(nbytes
, auth_key_len
, 0,
564 auth_type
, digest_size
,
565 false, true, false, false,
568 ent
->src_addr
= __pa(walk
.data
);
569 ent
->auth_key_addr
= auth_key
;
570 ent
->auth_iv_addr
= __pa(hash_loc
);
571 ent
->final_auth_state_addr
= 0UL;
572 ent
->enc_key_addr
= 0UL;
573 ent
->enc_iv_addr
= 0UL;
574 ent
->dest_addr
= __pa(hash_loc
);
576 nbytes
= crypto_hash_walk_done(&walk
, 0);
578 ent
= spu_queue_next(qp
, ent
);
580 ent
->control
= (nbytes
- 1);
581 ent
->src_addr
= __pa(walk
.data
);
582 ent
->auth_key_addr
= 0UL;
583 ent
->auth_iv_addr
= 0UL;
584 ent
->final_auth_state_addr
= 0UL;
585 ent
->enc_key_addr
= 0UL;
586 ent
->enc_iv_addr
= 0UL;
587 ent
->dest_addr
= 0UL;
589 nbytes
= crypto_hash_walk_done(&walk
, 0);
591 ent
->control
|= CONTROL_END_OF_BLOCK
;
593 if (submit_and_wait_for_tail(qp
, ent
) != HV_EOK
)
598 spin_unlock_irqrestore(&qp
->lock
, flags
);
601 memcpy(req
->result
, hash_loc
, result_size
);
608 static int n2_hash_async_digest(struct ahash_request
*req
)
610 struct n2_ahash_alg
*n2alg
= n2_ahash_alg(req
->base
.tfm
);
611 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
614 ds
= n2alg
->digest_size
;
615 if (unlikely(req
->nbytes
== 0)) {
616 memcpy(req
->result
, n2alg
->hash_zero
, ds
);
619 memcpy(&rctx
->u
, n2alg
->hash_init
, n2alg
->hw_op_hashsz
);
621 return n2_do_async_digest(req
, n2alg
->auth_type
,
622 n2alg
->hw_op_hashsz
, ds
,
626 static int n2_hmac_async_digest(struct ahash_request
*req
)
628 struct n2_hmac_alg
*n2alg
= n2_hmac_alg(req
->base
.tfm
);
629 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
630 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
631 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(tfm
);
634 ds
= n2alg
->derived
.digest_size
;
635 if (unlikely(req
->nbytes
== 0) ||
636 unlikely(ctx
->hash_key_len
> N2_HASH_KEY_MAX
)) {
637 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
638 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
640 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
641 rctx
->fallback_req
.base
.flags
=
642 req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
643 rctx
->fallback_req
.nbytes
= req
->nbytes
;
644 rctx
->fallback_req
.src
= req
->src
;
645 rctx
->fallback_req
.result
= req
->result
;
647 return crypto_ahash_digest(&rctx
->fallback_req
);
649 memcpy(&rctx
->u
, n2alg
->derived
.hash_init
,
650 n2alg
->derived
.hw_op_hashsz
);
652 return n2_do_async_digest(req
, n2alg
->derived
.hmac_type
,
653 n2alg
->derived
.hw_op_hashsz
, ds
,
655 __pa(&ctx
->hash_key
),
659 struct n2_cipher_context
{
663 u8 aes
[AES_MAX_KEY_SIZE
];
664 u8 des
[DES_KEY_SIZE
];
665 u8 des3
[3 * DES_KEY_SIZE
];
666 u8 arc4
[258]; /* S-box, X, Y */
670 #define N2_CHUNK_ARR_LEN 16
672 struct n2_crypto_chunk
{
673 struct list_head entry
;
674 unsigned long iv_paddr
: 44;
675 unsigned long arr_len
: 20;
676 unsigned long dest_paddr
;
677 unsigned long dest_final
;
679 unsigned long src_paddr
: 44;
680 unsigned long src_len
: 20;
681 } arr
[N2_CHUNK_ARR_LEN
];
684 struct n2_request_context
{
685 struct ablkcipher_walk walk
;
686 struct list_head chunk_list
;
687 struct n2_crypto_chunk chunk
;
691 /* The SPU allows some level of flexibility for partial cipher blocks
692 * being specified in a descriptor.
694 * It merely requires that every descriptor's length field is at least
695 * as large as the cipher block size. This means that a cipher block
696 * can span at most 2 descriptors. However, this does not allow a
697 * partial block to span into the final descriptor as that would
698 * violate the rule (since every descriptor's length must be at lest
699 * the block size). So, for example, assuming an 8 byte block size:
701 * 0xe --> 0xa --> 0x8
703 * is a valid length sequence, whereas:
705 * 0xe --> 0xb --> 0x7
707 * is not a valid sequence.
710 struct n2_cipher_alg
{
711 struct list_head entry
;
713 struct crypto_alg alg
;
716 static inline struct n2_cipher_alg
*n2_cipher_alg(struct crypto_tfm
*tfm
)
718 struct crypto_alg
*alg
= tfm
->__crt_alg
;
720 return container_of(alg
, struct n2_cipher_alg
, alg
);
723 struct n2_cipher_request_context
{
724 struct ablkcipher_walk walk
;
727 static int n2_aes_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
730 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
731 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
732 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
734 ctx
->enc_type
= (n2alg
->enc_type
& ENC_TYPE_CHAINING_MASK
);
737 case AES_KEYSIZE_128
:
738 ctx
->enc_type
|= ENC_TYPE_ALG_AES128
;
740 case AES_KEYSIZE_192
:
741 ctx
->enc_type
|= ENC_TYPE_ALG_AES192
;
743 case AES_KEYSIZE_256
:
744 ctx
->enc_type
|= ENC_TYPE_ALG_AES256
;
747 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
751 ctx
->key_len
= keylen
;
752 memcpy(ctx
->key
.aes
, key
, keylen
);
756 static int n2_des_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
759 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
760 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
761 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
762 u32 tmp
[DES_EXPKEY_WORDS
];
765 ctx
->enc_type
= n2alg
->enc_type
;
767 if (keylen
!= DES_KEY_SIZE
) {
768 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
772 err
= des_ekey(tmp
, key
);
773 if (err
== 0 && (tfm
->crt_flags
& CRYPTO_TFM_REQ_FORBID_WEAK_KEYS
)) {
774 tfm
->crt_flags
|= CRYPTO_TFM_RES_WEAK_KEY
;
778 ctx
->key_len
= keylen
;
779 memcpy(ctx
->key
.des
, key
, keylen
);
783 static int n2_3des_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
786 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
787 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
788 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
792 flags
= crypto_ablkcipher_get_flags(cipher
);
793 err
= __des3_verify_key(&flags
, key
);
795 crypto_ablkcipher_set_flags(cipher
, flags
);
799 ctx
->enc_type
= n2alg
->enc_type
;
801 ctx
->key_len
= keylen
;
802 memcpy(ctx
->key
.des3
, key
, keylen
);
806 static int n2_arc4_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
809 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
810 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
811 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
812 u8
*s
= ctx
->key
.arc4
;
817 ctx
->enc_type
= n2alg
->enc_type
;
822 for (i
= 0; i
< 256; i
++)
824 for (i
= 0; i
< 256; i
++) {
826 j
= (j
+ key
[k
] + a
) & 0xff;
836 static inline int cipher_descriptor_len(int nbytes
, unsigned int block_size
)
838 int this_len
= nbytes
;
840 this_len
-= (nbytes
& (block_size
- 1));
841 return this_len
> (1 << 16) ? (1 << 16) : this_len
;
844 static int __n2_crypt_chunk(struct crypto_tfm
*tfm
, struct n2_crypto_chunk
*cp
,
845 struct spu_queue
*qp
, bool encrypt
)
847 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
848 struct cwq_initial_entry
*ent
;
852 ent
= spu_queue_alloc(qp
, cp
->arr_len
);
854 pr_info("queue_alloc() of %d fails\n",
859 in_place
= (cp
->dest_paddr
== cp
->arr
[0].src_paddr
);
861 ent
->control
= control_word_base(cp
->arr
[0].src_len
,
862 0, ctx
->enc_type
, 0, 0,
863 false, true, false, encrypt
,
865 (in_place
? OPCODE_INPLACE_BIT
: 0));
866 ent
->src_addr
= cp
->arr
[0].src_paddr
;
867 ent
->auth_key_addr
= 0UL;
868 ent
->auth_iv_addr
= 0UL;
869 ent
->final_auth_state_addr
= 0UL;
870 ent
->enc_key_addr
= __pa(&ctx
->key
);
871 ent
->enc_iv_addr
= cp
->iv_paddr
;
872 ent
->dest_addr
= (in_place
? 0UL : cp
->dest_paddr
);
874 for (i
= 1; i
< cp
->arr_len
; i
++) {
875 ent
= spu_queue_next(qp
, ent
);
877 ent
->control
= cp
->arr
[i
].src_len
- 1;
878 ent
->src_addr
= cp
->arr
[i
].src_paddr
;
879 ent
->auth_key_addr
= 0UL;
880 ent
->auth_iv_addr
= 0UL;
881 ent
->final_auth_state_addr
= 0UL;
882 ent
->enc_key_addr
= 0UL;
883 ent
->enc_iv_addr
= 0UL;
884 ent
->dest_addr
= 0UL;
886 ent
->control
|= CONTROL_END_OF_BLOCK
;
888 return (spu_queue_submit(qp
, ent
) != HV_EOK
) ? -EINVAL
: 0;
891 static int n2_compute_chunks(struct ablkcipher_request
*req
)
893 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
894 struct ablkcipher_walk
*walk
= &rctx
->walk
;
895 struct n2_crypto_chunk
*chunk
;
896 unsigned long dest_prev
;
897 unsigned int tot_len
;
901 ablkcipher_walk_init(walk
, req
->dst
, req
->src
, req
->nbytes
);
902 err
= ablkcipher_walk_phys(req
, walk
);
906 INIT_LIST_HEAD(&rctx
->chunk_list
);
908 chunk
= &rctx
->chunk
;
909 INIT_LIST_HEAD(&chunk
->entry
);
911 chunk
->iv_paddr
= 0UL;
913 chunk
->dest_paddr
= 0UL;
915 prev_in_place
= false;
919 while ((nbytes
= walk
->nbytes
) != 0) {
920 unsigned long dest_paddr
, src_paddr
;
924 src_paddr
= (page_to_phys(walk
->src
.page
) +
926 dest_paddr
= (page_to_phys(walk
->dst
.page
) +
928 in_place
= (src_paddr
== dest_paddr
);
929 this_len
= cipher_descriptor_len(nbytes
, walk
->blocksize
);
931 if (chunk
->arr_len
!= 0) {
932 if (in_place
!= prev_in_place
||
934 dest_paddr
!= dest_prev
) ||
935 chunk
->arr_len
== N2_CHUNK_ARR_LEN
||
936 tot_len
+ this_len
> (1 << 16)) {
937 chunk
->dest_final
= dest_prev
;
938 list_add_tail(&chunk
->entry
,
940 chunk
= kzalloc(sizeof(*chunk
), GFP_ATOMIC
);
945 INIT_LIST_HEAD(&chunk
->entry
);
948 if (chunk
->arr_len
== 0) {
949 chunk
->dest_paddr
= dest_paddr
;
952 chunk
->arr
[chunk
->arr_len
].src_paddr
= src_paddr
;
953 chunk
->arr
[chunk
->arr_len
].src_len
= this_len
;
956 dest_prev
= dest_paddr
+ this_len
;
957 prev_in_place
= in_place
;
960 err
= ablkcipher_walk_done(req
, walk
, nbytes
- this_len
);
964 if (!err
&& chunk
->arr_len
!= 0) {
965 chunk
->dest_final
= dest_prev
;
966 list_add_tail(&chunk
->entry
, &rctx
->chunk_list
);
972 static void n2_chunk_complete(struct ablkcipher_request
*req
, void *final_iv
)
974 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
975 struct n2_crypto_chunk
*c
, *tmp
;
978 memcpy(rctx
->walk
.iv
, final_iv
, rctx
->walk
.blocksize
);
980 ablkcipher_walk_complete(&rctx
->walk
);
981 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
, entry
) {
983 if (unlikely(c
!= &rctx
->chunk
))
989 static int n2_do_ecb(struct ablkcipher_request
*req
, bool encrypt
)
991 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
992 struct crypto_tfm
*tfm
= req
->base
.tfm
;
993 int err
= n2_compute_chunks(req
);
994 struct n2_crypto_chunk
*c
, *tmp
;
995 unsigned long flags
, hv_ret
;
996 struct spu_queue
*qp
;
1001 qp
= cpu_to_cwq
[get_cpu()];
1006 spin_lock_irqsave(&qp
->lock
, flags
);
1008 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
, entry
) {
1009 err
= __n2_crypt_chunk(tfm
, c
, qp
, encrypt
);
1012 list_del(&c
->entry
);
1013 if (unlikely(c
!= &rctx
->chunk
))
1017 hv_ret
= wait_for_tail(qp
);
1018 if (hv_ret
!= HV_EOK
)
1022 spin_unlock_irqrestore(&qp
->lock
, flags
);
1027 n2_chunk_complete(req
, NULL
);
1031 static int n2_encrypt_ecb(struct ablkcipher_request
*req
)
1033 return n2_do_ecb(req
, true);
1036 static int n2_decrypt_ecb(struct ablkcipher_request
*req
)
1038 return n2_do_ecb(req
, false);
1041 static int n2_do_chaining(struct ablkcipher_request
*req
, bool encrypt
)
1043 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
1044 struct crypto_tfm
*tfm
= req
->base
.tfm
;
1045 unsigned long flags
, hv_ret
, iv_paddr
;
1046 int err
= n2_compute_chunks(req
);
1047 struct n2_crypto_chunk
*c
, *tmp
;
1048 struct spu_queue
*qp
;
1049 void *final_iv_addr
;
1051 final_iv_addr
= NULL
;
1056 qp
= cpu_to_cwq
[get_cpu()];
1061 spin_lock_irqsave(&qp
->lock
, flags
);
1064 iv_paddr
= __pa(rctx
->walk
.iv
);
1065 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
,
1067 c
->iv_paddr
= iv_paddr
;
1068 err
= __n2_crypt_chunk(tfm
, c
, qp
, true);
1071 iv_paddr
= c
->dest_final
- rctx
->walk
.blocksize
;
1072 list_del(&c
->entry
);
1073 if (unlikely(c
!= &rctx
->chunk
))
1076 final_iv_addr
= __va(iv_paddr
);
1078 list_for_each_entry_safe_reverse(c
, tmp
, &rctx
->chunk_list
,
1080 if (c
== &rctx
->chunk
) {
1081 iv_paddr
= __pa(rctx
->walk
.iv
);
1083 iv_paddr
= (tmp
->arr
[tmp
->arr_len
-1].src_paddr
+
1084 tmp
->arr
[tmp
->arr_len
-1].src_len
-
1085 rctx
->walk
.blocksize
);
1087 if (!final_iv_addr
) {
1090 pa
= (c
->arr
[c
->arr_len
-1].src_paddr
+
1091 c
->arr
[c
->arr_len
-1].src_len
-
1092 rctx
->walk
.blocksize
);
1093 final_iv_addr
= rctx
->temp_iv
;
1094 memcpy(rctx
->temp_iv
, __va(pa
),
1095 rctx
->walk
.blocksize
);
1097 c
->iv_paddr
= iv_paddr
;
1098 err
= __n2_crypt_chunk(tfm
, c
, qp
, false);
1101 list_del(&c
->entry
);
1102 if (unlikely(c
!= &rctx
->chunk
))
1107 hv_ret
= wait_for_tail(qp
);
1108 if (hv_ret
!= HV_EOK
)
1112 spin_unlock_irqrestore(&qp
->lock
, flags
);
1117 n2_chunk_complete(req
, err
? NULL
: final_iv_addr
);
1121 static int n2_encrypt_chaining(struct ablkcipher_request
*req
)
1123 return n2_do_chaining(req
, true);
1126 static int n2_decrypt_chaining(struct ablkcipher_request
*req
)
1128 return n2_do_chaining(req
, false);
1131 struct n2_cipher_tmpl
{
1133 const char *drv_name
;
1136 struct ablkcipher_alg ablkcipher
;
1139 static const struct n2_cipher_tmpl cipher_tmpls
[] = {
1140 /* ARC4: only ECB is supported (chaining bits ignored) */
1141 { .name
= "ecb(arc4)",
1142 .drv_name
= "ecb-arc4",
1144 .enc_type
= (ENC_TYPE_ALG_RC4_STREAM
|
1145 ENC_TYPE_CHAINING_ECB
),
1149 .setkey
= n2_arc4_setkey
,
1150 .encrypt
= n2_encrypt_ecb
,
1151 .decrypt
= n2_decrypt_ecb
,
1155 /* DES: ECB CBC and CFB are supported */
1156 { .name
= "ecb(des)",
1157 .drv_name
= "ecb-des",
1158 .block_size
= DES_BLOCK_SIZE
,
1159 .enc_type
= (ENC_TYPE_ALG_DES
|
1160 ENC_TYPE_CHAINING_ECB
),
1162 .min_keysize
= DES_KEY_SIZE
,
1163 .max_keysize
= DES_KEY_SIZE
,
1164 .setkey
= n2_des_setkey
,
1165 .encrypt
= n2_encrypt_ecb
,
1166 .decrypt
= n2_decrypt_ecb
,
1169 { .name
= "cbc(des)",
1170 .drv_name
= "cbc-des",
1171 .block_size
= DES_BLOCK_SIZE
,
1172 .enc_type
= (ENC_TYPE_ALG_DES
|
1173 ENC_TYPE_CHAINING_CBC
),
1175 .ivsize
= DES_BLOCK_SIZE
,
1176 .min_keysize
= DES_KEY_SIZE
,
1177 .max_keysize
= DES_KEY_SIZE
,
1178 .setkey
= n2_des_setkey
,
1179 .encrypt
= n2_encrypt_chaining
,
1180 .decrypt
= n2_decrypt_chaining
,
1183 { .name
= "cfb(des)",
1184 .drv_name
= "cfb-des",
1185 .block_size
= DES_BLOCK_SIZE
,
1186 .enc_type
= (ENC_TYPE_ALG_DES
|
1187 ENC_TYPE_CHAINING_CFB
),
1189 .min_keysize
= DES_KEY_SIZE
,
1190 .max_keysize
= DES_KEY_SIZE
,
1191 .setkey
= n2_des_setkey
,
1192 .encrypt
= n2_encrypt_chaining
,
1193 .decrypt
= n2_decrypt_chaining
,
1197 /* 3DES: ECB CBC and CFB are supported */
1198 { .name
= "ecb(des3_ede)",
1199 .drv_name
= "ecb-3des",
1200 .block_size
= DES_BLOCK_SIZE
,
1201 .enc_type
= (ENC_TYPE_ALG_3DES
|
1202 ENC_TYPE_CHAINING_ECB
),
1204 .min_keysize
= 3 * DES_KEY_SIZE
,
1205 .max_keysize
= 3 * DES_KEY_SIZE
,
1206 .setkey
= n2_3des_setkey
,
1207 .encrypt
= n2_encrypt_ecb
,
1208 .decrypt
= n2_decrypt_ecb
,
1211 { .name
= "cbc(des3_ede)",
1212 .drv_name
= "cbc-3des",
1213 .block_size
= DES_BLOCK_SIZE
,
1214 .enc_type
= (ENC_TYPE_ALG_3DES
|
1215 ENC_TYPE_CHAINING_CBC
),
1217 .ivsize
= DES_BLOCK_SIZE
,
1218 .min_keysize
= 3 * DES_KEY_SIZE
,
1219 .max_keysize
= 3 * DES_KEY_SIZE
,
1220 .setkey
= n2_3des_setkey
,
1221 .encrypt
= n2_encrypt_chaining
,
1222 .decrypt
= n2_decrypt_chaining
,
1225 { .name
= "cfb(des3_ede)",
1226 .drv_name
= "cfb-3des",
1227 .block_size
= DES_BLOCK_SIZE
,
1228 .enc_type
= (ENC_TYPE_ALG_3DES
|
1229 ENC_TYPE_CHAINING_CFB
),
1231 .min_keysize
= 3 * DES_KEY_SIZE
,
1232 .max_keysize
= 3 * DES_KEY_SIZE
,
1233 .setkey
= n2_3des_setkey
,
1234 .encrypt
= n2_encrypt_chaining
,
1235 .decrypt
= n2_decrypt_chaining
,
1238 /* AES: ECB CBC and CTR are supported */
1239 { .name
= "ecb(aes)",
1240 .drv_name
= "ecb-aes",
1241 .block_size
= AES_BLOCK_SIZE
,
1242 .enc_type
= (ENC_TYPE_ALG_AES128
|
1243 ENC_TYPE_CHAINING_ECB
),
1245 .min_keysize
= AES_MIN_KEY_SIZE
,
1246 .max_keysize
= AES_MAX_KEY_SIZE
,
1247 .setkey
= n2_aes_setkey
,
1248 .encrypt
= n2_encrypt_ecb
,
1249 .decrypt
= n2_decrypt_ecb
,
1252 { .name
= "cbc(aes)",
1253 .drv_name
= "cbc-aes",
1254 .block_size
= AES_BLOCK_SIZE
,
1255 .enc_type
= (ENC_TYPE_ALG_AES128
|
1256 ENC_TYPE_CHAINING_CBC
),
1258 .ivsize
= AES_BLOCK_SIZE
,
1259 .min_keysize
= AES_MIN_KEY_SIZE
,
1260 .max_keysize
= AES_MAX_KEY_SIZE
,
1261 .setkey
= n2_aes_setkey
,
1262 .encrypt
= n2_encrypt_chaining
,
1263 .decrypt
= n2_decrypt_chaining
,
1266 { .name
= "ctr(aes)",
1267 .drv_name
= "ctr-aes",
1268 .block_size
= AES_BLOCK_SIZE
,
1269 .enc_type
= (ENC_TYPE_ALG_AES128
|
1270 ENC_TYPE_CHAINING_COUNTER
),
1272 .ivsize
= AES_BLOCK_SIZE
,
1273 .min_keysize
= AES_MIN_KEY_SIZE
,
1274 .max_keysize
= AES_MAX_KEY_SIZE
,
1275 .setkey
= n2_aes_setkey
,
1276 .encrypt
= n2_encrypt_chaining
,
1277 .decrypt
= n2_encrypt_chaining
,
1282 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1284 static LIST_HEAD(cipher_algs
);
1286 struct n2_hash_tmpl
{
1288 const u8
*hash_zero
;
1289 const u32
*hash_init
;
1297 static const u32 md5_init
[MD5_HASH_WORDS
] = {
1298 cpu_to_le32(MD5_H0
),
1299 cpu_to_le32(MD5_H1
),
1300 cpu_to_le32(MD5_H2
),
1301 cpu_to_le32(MD5_H3
),
1303 static const u32 sha1_init
[SHA1_DIGEST_SIZE
/ 4] = {
1304 SHA1_H0
, SHA1_H1
, SHA1_H2
, SHA1_H3
, SHA1_H4
,
1306 static const u32 sha256_init
[SHA256_DIGEST_SIZE
/ 4] = {
1307 SHA256_H0
, SHA256_H1
, SHA256_H2
, SHA256_H3
,
1308 SHA256_H4
, SHA256_H5
, SHA256_H6
, SHA256_H7
,
1310 static const u32 sha224_init
[SHA256_DIGEST_SIZE
/ 4] = {
1311 SHA224_H0
, SHA224_H1
, SHA224_H2
, SHA224_H3
,
1312 SHA224_H4
, SHA224_H5
, SHA224_H6
, SHA224_H7
,
1315 static const struct n2_hash_tmpl hash_tmpls
[] = {
1317 .hash_zero
= md5_zero_message_hash
,
1318 .hash_init
= md5_init
,
1319 .auth_type
= AUTH_TYPE_MD5
,
1320 .hmac_type
= AUTH_TYPE_HMAC_MD5
,
1321 .hw_op_hashsz
= MD5_DIGEST_SIZE
,
1322 .digest_size
= MD5_DIGEST_SIZE
,
1323 .block_size
= MD5_HMAC_BLOCK_SIZE
},
1325 .hash_zero
= sha1_zero_message_hash
,
1326 .hash_init
= sha1_init
,
1327 .auth_type
= AUTH_TYPE_SHA1
,
1328 .hmac_type
= AUTH_TYPE_HMAC_SHA1
,
1329 .hw_op_hashsz
= SHA1_DIGEST_SIZE
,
1330 .digest_size
= SHA1_DIGEST_SIZE
,
1331 .block_size
= SHA1_BLOCK_SIZE
},
1333 .hash_zero
= sha256_zero_message_hash
,
1334 .hash_init
= sha256_init
,
1335 .auth_type
= AUTH_TYPE_SHA256
,
1336 .hmac_type
= AUTH_TYPE_HMAC_SHA256
,
1337 .hw_op_hashsz
= SHA256_DIGEST_SIZE
,
1338 .digest_size
= SHA256_DIGEST_SIZE
,
1339 .block_size
= SHA256_BLOCK_SIZE
},
1341 .hash_zero
= sha224_zero_message_hash
,
1342 .hash_init
= sha224_init
,
1343 .auth_type
= AUTH_TYPE_SHA256
,
1344 .hmac_type
= AUTH_TYPE_RESERVED
,
1345 .hw_op_hashsz
= SHA256_DIGEST_SIZE
,
1346 .digest_size
= SHA224_DIGEST_SIZE
,
1347 .block_size
= SHA224_BLOCK_SIZE
},
1349 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1351 static LIST_HEAD(ahash_algs
);
1352 static LIST_HEAD(hmac_algs
);
1354 static int algs_registered
;
1356 static void __n2_unregister_algs(void)
1358 struct n2_cipher_alg
*cipher
, *cipher_tmp
;
1359 struct n2_ahash_alg
*alg
, *alg_tmp
;
1360 struct n2_hmac_alg
*hmac
, *hmac_tmp
;
1362 list_for_each_entry_safe(cipher
, cipher_tmp
, &cipher_algs
, entry
) {
1363 crypto_unregister_alg(&cipher
->alg
);
1364 list_del(&cipher
->entry
);
1367 list_for_each_entry_safe(hmac
, hmac_tmp
, &hmac_algs
, derived
.entry
) {
1368 crypto_unregister_ahash(&hmac
->derived
.alg
);
1369 list_del(&hmac
->derived
.entry
);
1372 list_for_each_entry_safe(alg
, alg_tmp
, &ahash_algs
, entry
) {
1373 crypto_unregister_ahash(&alg
->alg
);
1374 list_del(&alg
->entry
);
1379 static int n2_cipher_cra_init(struct crypto_tfm
*tfm
)
1381 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct n2_request_context
);
1385 static int __n2_register_one_cipher(const struct n2_cipher_tmpl
*tmpl
)
1387 struct n2_cipher_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1388 struct crypto_alg
*alg
;
1396 snprintf(alg
->cra_name
, CRYPTO_MAX_ALG_NAME
, "%s", tmpl
->name
);
1397 snprintf(alg
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "%s-n2", tmpl
->drv_name
);
1398 alg
->cra_priority
= N2_CRA_PRIORITY
;
1399 alg
->cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
1400 CRYPTO_ALG_KERN_DRIVER_ONLY
| CRYPTO_ALG_ASYNC
;
1401 alg
->cra_blocksize
= tmpl
->block_size
;
1402 p
->enc_type
= tmpl
->enc_type
;
1403 alg
->cra_ctxsize
= sizeof(struct n2_cipher_context
);
1404 alg
->cra_type
= &crypto_ablkcipher_type
;
1405 alg
->cra_u
.ablkcipher
= tmpl
->ablkcipher
;
1406 alg
->cra_init
= n2_cipher_cra_init
;
1407 alg
->cra_module
= THIS_MODULE
;
1409 list_add(&p
->entry
, &cipher_algs
);
1410 err
= crypto_register_alg(alg
);
1412 pr_err("%s alg registration failed\n", alg
->cra_name
);
1413 list_del(&p
->entry
);
1416 pr_info("%s alg registered\n", alg
->cra_name
);
1421 static int __n2_register_one_hmac(struct n2_ahash_alg
*n2ahash
)
1423 struct n2_hmac_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1424 struct ahash_alg
*ahash
;
1425 struct crypto_alg
*base
;
1431 p
->child_alg
= n2ahash
->alg
.halg
.base
.cra_name
;
1432 memcpy(&p
->derived
, n2ahash
, sizeof(struct n2_ahash_alg
));
1433 INIT_LIST_HEAD(&p
->derived
.entry
);
1435 ahash
= &p
->derived
.alg
;
1436 ahash
->digest
= n2_hmac_async_digest
;
1437 ahash
->setkey
= n2_hmac_async_setkey
;
1439 base
= &ahash
->halg
.base
;
1440 snprintf(base
->cra_name
, CRYPTO_MAX_ALG_NAME
, "hmac(%s)", p
->child_alg
);
1441 snprintf(base
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "hmac-%s-n2", p
->child_alg
);
1443 base
->cra_ctxsize
= sizeof(struct n2_hmac_ctx
);
1444 base
->cra_init
= n2_hmac_cra_init
;
1445 base
->cra_exit
= n2_hmac_cra_exit
;
1447 list_add(&p
->derived
.entry
, &hmac_algs
);
1448 err
= crypto_register_ahash(ahash
);
1450 pr_err("%s alg registration failed\n", base
->cra_name
);
1451 list_del(&p
->derived
.entry
);
1454 pr_info("%s alg registered\n", base
->cra_name
);
1459 static int __n2_register_one_ahash(const struct n2_hash_tmpl
*tmpl
)
1461 struct n2_ahash_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1462 struct hash_alg_common
*halg
;
1463 struct crypto_alg
*base
;
1464 struct ahash_alg
*ahash
;
1470 p
->hash_zero
= tmpl
->hash_zero
;
1471 p
->hash_init
= tmpl
->hash_init
;
1472 p
->auth_type
= tmpl
->auth_type
;
1473 p
->hmac_type
= tmpl
->hmac_type
;
1474 p
->hw_op_hashsz
= tmpl
->hw_op_hashsz
;
1475 p
->digest_size
= tmpl
->digest_size
;
1478 ahash
->init
= n2_hash_async_init
;
1479 ahash
->update
= n2_hash_async_update
;
1480 ahash
->final
= n2_hash_async_final
;
1481 ahash
->finup
= n2_hash_async_finup
;
1482 ahash
->digest
= n2_hash_async_digest
;
1483 ahash
->export
= n2_hash_async_noexport
;
1484 ahash
->import
= n2_hash_async_noimport
;
1486 halg
= &ahash
->halg
;
1487 halg
->digestsize
= tmpl
->digest_size
;
1490 snprintf(base
->cra_name
, CRYPTO_MAX_ALG_NAME
, "%s", tmpl
->name
);
1491 snprintf(base
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "%s-n2", tmpl
->name
);
1492 base
->cra_priority
= N2_CRA_PRIORITY
;
1493 base
->cra_flags
= CRYPTO_ALG_KERN_DRIVER_ONLY
|
1494 CRYPTO_ALG_NEED_FALLBACK
;
1495 base
->cra_blocksize
= tmpl
->block_size
;
1496 base
->cra_ctxsize
= sizeof(struct n2_hash_ctx
);
1497 base
->cra_module
= THIS_MODULE
;
1498 base
->cra_init
= n2_hash_cra_init
;
1499 base
->cra_exit
= n2_hash_cra_exit
;
1501 list_add(&p
->entry
, &ahash_algs
);
1502 err
= crypto_register_ahash(ahash
);
1504 pr_err("%s alg registration failed\n", base
->cra_name
);
1505 list_del(&p
->entry
);
1508 pr_info("%s alg registered\n", base
->cra_name
);
1510 if (!err
&& p
->hmac_type
!= AUTH_TYPE_RESERVED
)
1511 err
= __n2_register_one_hmac(p
);
1515 static int n2_register_algs(void)
1519 mutex_lock(&spu_lock
);
1520 if (algs_registered
++)
1523 for (i
= 0; i
< NUM_HASH_TMPLS
; i
++) {
1524 err
= __n2_register_one_ahash(&hash_tmpls
[i
]);
1526 __n2_unregister_algs();
1530 for (i
= 0; i
< NUM_CIPHER_TMPLS
; i
++) {
1531 err
= __n2_register_one_cipher(&cipher_tmpls
[i
]);
1533 __n2_unregister_algs();
1539 mutex_unlock(&spu_lock
);
1543 static void n2_unregister_algs(void)
1545 mutex_lock(&spu_lock
);
1546 if (!--algs_registered
)
1547 __n2_unregister_algs();
1548 mutex_unlock(&spu_lock
);
1551 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1552 * a devino. This isn't very useful to us because all of the
1553 * interrupts listed in the device_node have been translated to
1554 * Linux virtual IRQ cookie numbers.
1556 * So we have to back-translate, going through the 'intr' and 'ino'
1557 * property tables of the n2cp MDESC node, matching it with the OF
1558 * 'interrupts' property entries, in order to to figure out which
1559 * devino goes to which already-translated IRQ.
1561 static int find_devino_index(struct platform_device
*dev
, struct spu_mdesc_info
*ip
,
1562 unsigned long dev_ino
)
1564 const unsigned int *dev_intrs
;
1568 for (i
= 0; i
< ip
->num_intrs
; i
++) {
1569 if (ip
->ino_table
[i
].ino
== dev_ino
)
1572 if (i
== ip
->num_intrs
)
1575 intr
= ip
->ino_table
[i
].intr
;
1577 dev_intrs
= of_get_property(dev
->dev
.of_node
, "interrupts", NULL
);
1581 for (i
= 0; i
< dev
->archdata
.num_irqs
; i
++) {
1582 if (dev_intrs
[i
] == intr
)
1589 static int spu_map_ino(struct platform_device
*dev
, struct spu_mdesc_info
*ip
,
1590 const char *irq_name
, struct spu_queue
*p
,
1591 irq_handler_t handler
)
1596 herr
= sun4v_ncs_qhandle_to_devino(p
->qhandle
, &p
->devino
);
1600 index
= find_devino_index(dev
, ip
, p
->devino
);
1604 p
->irq
= dev
->archdata
.irqs
[index
];
1606 sprintf(p
->irq_name
, "%s-%d", irq_name
, index
);
1608 return request_irq(p
->irq
, handler
, 0, p
->irq_name
, p
);
1611 static struct kmem_cache
*queue_cache
[2];
1613 static void *new_queue(unsigned long q_type
)
1615 return kmem_cache_zalloc(queue_cache
[q_type
- 1], GFP_KERNEL
);
1618 static void free_queue(void *p
, unsigned long q_type
)
1620 kmem_cache_free(queue_cache
[q_type
- 1], p
);
1623 static int queue_cache_init(void)
1625 if (!queue_cache
[HV_NCS_QTYPE_MAU
- 1])
1626 queue_cache
[HV_NCS_QTYPE_MAU
- 1] =
1627 kmem_cache_create("mau_queue",
1630 MAU_ENTRY_SIZE
, 0, NULL
);
1631 if (!queue_cache
[HV_NCS_QTYPE_MAU
- 1])
1634 if (!queue_cache
[HV_NCS_QTYPE_CWQ
- 1])
1635 queue_cache
[HV_NCS_QTYPE_CWQ
- 1] =
1636 kmem_cache_create("cwq_queue",
1639 CWQ_ENTRY_SIZE
, 0, NULL
);
1640 if (!queue_cache
[HV_NCS_QTYPE_CWQ
- 1]) {
1641 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_MAU
- 1]);
1642 queue_cache
[HV_NCS_QTYPE_MAU
- 1] = NULL
;
1648 static void queue_cache_destroy(void)
1650 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_MAU
- 1]);
1651 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_CWQ
- 1]);
1652 queue_cache
[HV_NCS_QTYPE_MAU
- 1] = NULL
;
1653 queue_cache
[HV_NCS_QTYPE_CWQ
- 1] = NULL
;
1656 static long spu_queue_register_workfn(void *arg
)
1658 struct spu_qreg
*qr
= arg
;
1659 struct spu_queue
*p
= qr
->queue
;
1660 unsigned long q_type
= qr
->type
;
1661 unsigned long hv_ret
;
1663 hv_ret
= sun4v_ncs_qconf(q_type
, __pa(p
->q
),
1664 CWQ_NUM_ENTRIES
, &p
->qhandle
);
1666 sun4v_ncs_sethead_marker(p
->qhandle
, 0);
1668 return hv_ret
? -EINVAL
: 0;
1671 static int spu_queue_register(struct spu_queue
*p
, unsigned long q_type
)
1673 int cpu
= cpumask_any_and(&p
->sharing
, cpu_online_mask
);
1674 struct spu_qreg qr
= { .queue
= p
, .type
= q_type
};
1676 return work_on_cpu_safe(cpu
, spu_queue_register_workfn
, &qr
);
1679 static int spu_queue_setup(struct spu_queue
*p
)
1683 p
->q
= new_queue(p
->q_type
);
1687 err
= spu_queue_register(p
, p
->q_type
);
1689 free_queue(p
->q
, p
->q_type
);
1696 static void spu_queue_destroy(struct spu_queue
*p
)
1698 unsigned long hv_ret
;
1703 hv_ret
= sun4v_ncs_qconf(p
->q_type
, p
->qhandle
, 0, &p
->qhandle
);
1706 free_queue(p
->q
, p
->q_type
);
1709 static void spu_list_destroy(struct list_head
*list
)
1711 struct spu_queue
*p
, *n
;
1713 list_for_each_entry_safe(p
, n
, list
, list
) {
1716 for (i
= 0; i
< NR_CPUS
; i
++) {
1717 if (cpu_to_cwq
[i
] == p
)
1718 cpu_to_cwq
[i
] = NULL
;
1722 free_irq(p
->irq
, p
);
1725 spu_queue_destroy(p
);
1731 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1732 * gathering cpu membership information.
1734 static int spu_mdesc_walk_arcs(struct mdesc_handle
*mdesc
,
1735 struct platform_device
*dev
,
1736 u64 node
, struct spu_queue
*p
,
1737 struct spu_queue
**table
)
1741 mdesc_for_each_arc(arc
, mdesc
, node
, MDESC_ARC_TYPE_BACK
) {
1742 u64 tgt
= mdesc_arc_target(mdesc
, arc
);
1743 const char *name
= mdesc_node_name(mdesc
, tgt
);
1746 if (strcmp(name
, "cpu"))
1748 id
= mdesc_get_property(mdesc
, tgt
, "id", NULL
);
1749 if (table
[*id
] != NULL
) {
1750 dev_err(&dev
->dev
, "%pOF: SPU cpu slot already set.\n",
1754 cpumask_set_cpu(*id
, &p
->sharing
);
1760 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
1761 static int handle_exec_unit(struct spu_mdesc_info
*ip
, struct list_head
*list
,
1762 struct platform_device
*dev
, struct mdesc_handle
*mdesc
,
1763 u64 node
, const char *iname
, unsigned long q_type
,
1764 irq_handler_t handler
, struct spu_queue
**table
)
1766 struct spu_queue
*p
;
1769 p
= kzalloc(sizeof(struct spu_queue
), GFP_KERNEL
);
1771 dev_err(&dev
->dev
, "%pOF: Could not allocate SPU queue.\n",
1776 cpumask_clear(&p
->sharing
);
1777 spin_lock_init(&p
->lock
);
1779 INIT_LIST_HEAD(&p
->jobs
);
1780 list_add(&p
->list
, list
);
1782 err
= spu_mdesc_walk_arcs(mdesc
, dev
, node
, p
, table
);
1786 err
= spu_queue_setup(p
);
1790 return spu_map_ino(dev
, ip
, iname
, p
, handler
);
1793 static int spu_mdesc_scan(struct mdesc_handle
*mdesc
, struct platform_device
*dev
,
1794 struct spu_mdesc_info
*ip
, struct list_head
*list
,
1795 const char *exec_name
, unsigned long q_type
,
1796 irq_handler_t handler
, struct spu_queue
**table
)
1801 mdesc_for_each_node_by_name(mdesc
, node
, "exec-unit") {
1804 type
= mdesc_get_property(mdesc
, node
, "type", NULL
);
1805 if (!type
|| strcmp(type
, exec_name
))
1808 err
= handle_exec_unit(ip
, list
, dev
, mdesc
, node
,
1809 exec_name
, q_type
, handler
, table
);
1811 spu_list_destroy(list
);
1819 static int get_irq_props(struct mdesc_handle
*mdesc
, u64 node
,
1820 struct spu_mdesc_info
*ip
)
1826 ino
= mdesc_get_property(mdesc
, node
, "ino", &ino_len
);
1828 printk("NO 'ino'\n");
1832 ip
->num_intrs
= ino_len
/ sizeof(u64
);
1833 ip
->ino_table
= kzalloc((sizeof(struct ino_blob
) *
1839 for (i
= 0; i
< ip
->num_intrs
; i
++) {
1840 struct ino_blob
*b
= &ip
->ino_table
[i
];
1848 static int grab_mdesc_irq_props(struct mdesc_handle
*mdesc
,
1849 struct platform_device
*dev
,
1850 struct spu_mdesc_info
*ip
,
1851 const char *node_name
)
1853 const unsigned int *reg
;
1856 reg
= of_get_property(dev
->dev
.of_node
, "reg", NULL
);
1860 mdesc_for_each_node_by_name(mdesc
, node
, "virtual-device") {
1864 name
= mdesc_get_property(mdesc
, node
, "name", NULL
);
1865 if (!name
|| strcmp(name
, node_name
))
1867 chdl
= mdesc_get_property(mdesc
, node
, "cfg-handle", NULL
);
1868 if (!chdl
|| (*chdl
!= *reg
))
1870 ip
->cfg_handle
= *chdl
;
1871 return get_irq_props(mdesc
, node
, ip
);
1877 static unsigned long n2_spu_hvapi_major
;
1878 static unsigned long n2_spu_hvapi_minor
;
1880 static int n2_spu_hvapi_register(void)
1884 n2_spu_hvapi_major
= 2;
1885 n2_spu_hvapi_minor
= 0;
1887 err
= sun4v_hvapi_register(HV_GRP_NCS
,
1889 &n2_spu_hvapi_minor
);
1892 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1894 n2_spu_hvapi_minor
);
1899 static void n2_spu_hvapi_unregister(void)
1901 sun4v_hvapi_unregister(HV_GRP_NCS
);
1904 static int global_ref
;
1906 static int grab_global_resources(void)
1910 mutex_lock(&spu_lock
);
1915 err
= n2_spu_hvapi_register();
1919 err
= queue_cache_init();
1921 goto out_hvapi_release
;
1924 cpu_to_cwq
= kcalloc(NR_CPUS
, sizeof(struct spu_queue
*),
1927 goto out_queue_cache_destroy
;
1929 cpu_to_mau
= kcalloc(NR_CPUS
, sizeof(struct spu_queue
*),
1932 goto out_free_cwq_table
;
1939 mutex_unlock(&spu_lock
);
1946 out_queue_cache_destroy
:
1947 queue_cache_destroy();
1950 n2_spu_hvapi_unregister();
1954 static void release_global_resources(void)
1956 mutex_lock(&spu_lock
);
1957 if (!--global_ref
) {
1964 queue_cache_destroy();
1965 n2_spu_hvapi_unregister();
1967 mutex_unlock(&spu_lock
);
1970 static struct n2_crypto
*alloc_n2cp(void)
1972 struct n2_crypto
*np
= kzalloc(sizeof(struct n2_crypto
), GFP_KERNEL
);
1975 INIT_LIST_HEAD(&np
->cwq_list
);
1980 static void free_n2cp(struct n2_crypto
*np
)
1982 kfree(np
->cwq_info
.ino_table
);
1983 np
->cwq_info
.ino_table
= NULL
;
1988 static void n2_spu_driver_version(void)
1990 static int n2_spu_version_printed
;
1992 if (n2_spu_version_printed
++ == 0)
1993 pr_info("%s", version
);
1996 static int n2_crypto_probe(struct platform_device
*dev
)
1998 struct mdesc_handle
*mdesc
;
1999 struct n2_crypto
*np
;
2002 n2_spu_driver_version();
2004 pr_info("Found N2CP at %pOF\n", dev
->dev
.of_node
);
2008 dev_err(&dev
->dev
, "%pOF: Unable to allocate n2cp.\n",
2013 err
= grab_global_resources();
2015 dev_err(&dev
->dev
, "%pOF: Unable to grab global resources.\n",
2020 mdesc
= mdesc_grab();
2023 dev_err(&dev
->dev
, "%pOF: Unable to grab MDESC.\n",
2026 goto out_free_global
;
2028 err
= grab_mdesc_irq_props(mdesc
, dev
, &np
->cwq_info
, "n2cp");
2030 dev_err(&dev
->dev
, "%pOF: Unable to grab IRQ props.\n",
2032 mdesc_release(mdesc
);
2033 goto out_free_global
;
2036 err
= spu_mdesc_scan(mdesc
, dev
, &np
->cwq_info
, &np
->cwq_list
,
2037 "cwq", HV_NCS_QTYPE_CWQ
, cwq_intr
,
2039 mdesc_release(mdesc
);
2042 dev_err(&dev
->dev
, "%pOF: CWQ MDESC scan failed.\n",
2044 goto out_free_global
;
2047 err
= n2_register_algs();
2049 dev_err(&dev
->dev
, "%pOF: Unable to register algorithms.\n",
2051 goto out_free_spu_list
;
2054 dev_set_drvdata(&dev
->dev
, np
);
2059 spu_list_destroy(&np
->cwq_list
);
2062 release_global_resources();
2070 static int n2_crypto_remove(struct platform_device
*dev
)
2072 struct n2_crypto
*np
= dev_get_drvdata(&dev
->dev
);
2074 n2_unregister_algs();
2076 spu_list_destroy(&np
->cwq_list
);
2078 release_global_resources();
2085 static struct n2_mau
*alloc_ncp(void)
2087 struct n2_mau
*mp
= kzalloc(sizeof(struct n2_mau
), GFP_KERNEL
);
2090 INIT_LIST_HEAD(&mp
->mau_list
);
2095 static void free_ncp(struct n2_mau
*mp
)
2097 kfree(mp
->mau_info
.ino_table
);
2098 mp
->mau_info
.ino_table
= NULL
;
2103 static int n2_mau_probe(struct platform_device
*dev
)
2105 struct mdesc_handle
*mdesc
;
2109 n2_spu_driver_version();
2111 pr_info("Found NCP at %pOF\n", dev
->dev
.of_node
);
2115 dev_err(&dev
->dev
, "%pOF: Unable to allocate ncp.\n",
2120 err
= grab_global_resources();
2122 dev_err(&dev
->dev
, "%pOF: Unable to grab global resources.\n",
2127 mdesc
= mdesc_grab();
2130 dev_err(&dev
->dev
, "%pOF: Unable to grab MDESC.\n",
2133 goto out_free_global
;
2136 err
= grab_mdesc_irq_props(mdesc
, dev
, &mp
->mau_info
, "ncp");
2138 dev_err(&dev
->dev
, "%pOF: Unable to grab IRQ props.\n",
2140 mdesc_release(mdesc
);
2141 goto out_free_global
;
2144 err
= spu_mdesc_scan(mdesc
, dev
, &mp
->mau_info
, &mp
->mau_list
,
2145 "mau", HV_NCS_QTYPE_MAU
, mau_intr
,
2147 mdesc_release(mdesc
);
2150 dev_err(&dev
->dev
, "%pOF: MAU MDESC scan failed.\n",
2152 goto out_free_global
;
2155 dev_set_drvdata(&dev
->dev
, mp
);
2160 release_global_resources();
2168 static int n2_mau_remove(struct platform_device
*dev
)
2170 struct n2_mau
*mp
= dev_get_drvdata(&dev
->dev
);
2172 spu_list_destroy(&mp
->mau_list
);
2174 release_global_resources();
2181 static const struct of_device_id n2_crypto_match
[] = {
2184 .compatible
= "SUNW,n2-cwq",
2188 .compatible
= "SUNW,vf-cwq",
2192 .compatible
= "SUNW,kt-cwq",
2197 MODULE_DEVICE_TABLE(of
, n2_crypto_match
);
2199 static struct platform_driver n2_crypto_driver
= {
2202 .of_match_table
= n2_crypto_match
,
2204 .probe
= n2_crypto_probe
,
2205 .remove
= n2_crypto_remove
,
2208 static const struct of_device_id n2_mau_match
[] = {
2211 .compatible
= "SUNW,n2-mau",
2215 .compatible
= "SUNW,vf-mau",
2219 .compatible
= "SUNW,kt-mau",
2224 MODULE_DEVICE_TABLE(of
, n2_mau_match
);
2226 static struct platform_driver n2_mau_driver
= {
2229 .of_match_table
= n2_mau_match
,
2231 .probe
= n2_mau_probe
,
2232 .remove
= n2_mau_remove
,
2235 static struct platform_driver
* const drivers
[] = {
2240 static int __init
n2_init(void)
2242 return platform_register_drivers(drivers
, ARRAY_SIZE(drivers
));
2245 static void __exit
n2_exit(void)
2247 platform_unregister_drivers(drivers
, ARRAY_SIZE(drivers
));
2250 module_init(n2_init
);
2251 module_exit(n2_exit
);