dmaengine: imx-sdma: Let the core do the device node validation
[linux/fpc-iii.git] / drivers / crypto / ux500 / cryp / cryp_core.c
blob7a93cba0877f3f39a0a20e62f55eb8bab6b8dd91
1 /**
2 * Copyright (C) ST-Ericsson SA 2010
3 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
4 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
5 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
6 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
7 * Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
8 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
9 * License terms: GNU General Public License (GPL) version 2
12 #include <linux/clk.h>
13 #include <linux/completion.h>
14 #include <linux/crypto.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/irqreturn.h>
21 #include <linux/klist.h>
22 #include <linux/module.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/platform_device.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/semaphore.h>
27 #include <linux/platform_data/dma-ste-dma40.h>
29 #include <crypto/aes.h>
30 #include <crypto/algapi.h>
31 #include <crypto/ctr.h>
32 #include <crypto/des.h>
33 #include <crypto/scatterwalk.h>
35 #include <linux/platform_data/crypto-ux500.h>
37 #include "cryp_p.h"
38 #include "cryp.h"
40 #define CRYP_MAX_KEY_SIZE 32
41 #define BYTES_PER_WORD 4
43 static int cryp_mode;
44 static atomic_t session_id;
46 static struct stedma40_chan_cfg *mem_to_engine;
47 static struct stedma40_chan_cfg *engine_to_mem;
49 /**
50 * struct cryp_driver_data - data specific to the driver.
52 * @device_list: A list of registered devices to choose from.
53 * @device_allocation: A semaphore initialized with number of devices.
55 struct cryp_driver_data {
56 struct klist device_list;
57 struct semaphore device_allocation;
60 /**
61 * struct cryp_ctx - Crypto context
62 * @config: Crypto mode.
63 * @key[CRYP_MAX_KEY_SIZE]: Key.
64 * @keylen: Length of key.
65 * @iv: Pointer to initialization vector.
66 * @indata: Pointer to indata.
67 * @outdata: Pointer to outdata.
68 * @datalen: Length of indata.
69 * @outlen: Length of outdata.
70 * @blocksize: Size of blocks.
71 * @updated: Updated flag.
72 * @dev_ctx: Device dependent context.
73 * @device: Pointer to the device.
75 struct cryp_ctx {
76 struct cryp_config config;
77 u8 key[CRYP_MAX_KEY_SIZE];
78 u32 keylen;
79 u8 *iv;
80 const u8 *indata;
81 u8 *outdata;
82 u32 datalen;
83 u32 outlen;
84 u32 blocksize;
85 u8 updated;
86 struct cryp_device_context dev_ctx;
87 struct cryp_device_data *device;
88 u32 session_id;
91 static struct cryp_driver_data driver_data;
93 /**
94 * uint8p_to_uint32_be - 4*uint8 to uint32 big endian
95 * @in: Data to convert.
97 static inline u32 uint8p_to_uint32_be(u8 *in)
99 u32 *data = (u32 *)in;
101 return cpu_to_be32p(data);
105 * swap_bits_in_byte - mirror the bits in a byte
106 * @b: the byte to be mirrored
108 * The bits are swapped the following way:
109 * Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
110 * nibble 2 (n2) bits 4-7.
112 * Nibble 1 (n1):
113 * (The "old" (moved) bit is replaced with a zero)
114 * 1. Move bit 6 and 7, 4 positions to the left.
115 * 2. Move bit 3 and 5, 2 positions to the left.
116 * 3. Move bit 1-4, 1 position to the left.
118 * Nibble 2 (n2):
119 * 1. Move bit 0 and 1, 4 positions to the right.
120 * 2. Move bit 2 and 4, 2 positions to the right.
121 * 3. Move bit 3-6, 1 position to the right.
123 * Combine the two nibbles to a complete and swapped byte.
126 static inline u8 swap_bits_in_byte(u8 b)
128 #define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */
129 #define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5,
130 right shift 2 */
131 #define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4,
132 right shift 1 */
133 #define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */
134 #define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4,
135 left shift 2 */
136 #define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6,
137 left shift 1 */
139 u8 n1;
140 u8 n2;
142 /* Swap most significant nibble */
143 /* Right shift 4, bits 6 and 7 */
144 n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4));
145 /* Right shift 2, bits 3 and 5 */
146 n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
147 /* Right shift 1, bits 1-4 */
148 n1 = (n1 & R_SHIFT_1_MASK) >> 1;
150 /* Swap least significant nibble */
151 /* Left shift 4, bits 0 and 1 */
152 n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4));
153 /* Left shift 2, bits 2 and 4 */
154 n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
155 /* Left shift 1, bits 3-6 */
156 n2 = (n2 & L_SHIFT_1_MASK) << 1;
158 return n1 | n2;
161 static inline void swap_words_in_key_and_bits_in_byte(const u8 *in,
162 u8 *out, u32 len)
164 unsigned int i = 0;
165 int j;
166 int index = 0;
168 j = len - BYTES_PER_WORD;
169 while (j >= 0) {
170 for (i = 0; i < BYTES_PER_WORD; i++) {
171 index = len - j - BYTES_PER_WORD + i;
172 out[j + i] =
173 swap_bits_in_byte(in[index]);
175 j -= BYTES_PER_WORD;
179 static void add_session_id(struct cryp_ctx *ctx)
182 * We never want 0 to be a valid value, since this is the default value
183 * for the software context.
185 if (unlikely(atomic_inc_and_test(&session_id)))
186 atomic_inc(&session_id);
188 ctx->session_id = atomic_read(&session_id);
191 static irqreturn_t cryp_interrupt_handler(int irq, void *param)
193 struct cryp_ctx *ctx;
194 int count;
195 struct cryp_device_data *device_data;
197 if (param == NULL) {
198 BUG_ON(!param);
199 return IRQ_HANDLED;
202 /* The device is coming from the one found in hw_crypt_noxts. */
203 device_data = (struct cryp_device_data *)param;
205 ctx = device_data->current_ctx;
207 if (ctx == NULL) {
208 BUG_ON(!ctx);
209 return IRQ_HANDLED;
212 dev_dbg(ctx->device->dev, "[%s] (len: %d) %s, ", __func__, ctx->outlen,
213 cryp_pending_irq_src(device_data, CRYP_IRQ_SRC_OUTPUT_FIFO) ?
214 "out" : "in");
216 if (cryp_pending_irq_src(device_data,
217 CRYP_IRQ_SRC_OUTPUT_FIFO)) {
218 if (ctx->outlen / ctx->blocksize > 0) {
219 count = ctx->blocksize / 4;
221 readsl(&device_data->base->dout, ctx->outdata, count);
222 ctx->outdata += count;
223 ctx->outlen -= count;
225 if (ctx->outlen == 0) {
226 cryp_disable_irq_src(device_data,
227 CRYP_IRQ_SRC_OUTPUT_FIFO);
230 } else if (cryp_pending_irq_src(device_data,
231 CRYP_IRQ_SRC_INPUT_FIFO)) {
232 if (ctx->datalen / ctx->blocksize > 0) {
233 count = ctx->blocksize / 4;
235 writesl(&device_data->base->din, ctx->indata, count);
237 ctx->indata += count;
238 ctx->datalen -= count;
240 if (ctx->datalen == 0)
241 cryp_disable_irq_src(device_data,
242 CRYP_IRQ_SRC_INPUT_FIFO);
244 if (ctx->config.algomode == CRYP_ALGO_AES_XTS) {
245 CRYP_PUT_BITS(&device_data->base->cr,
246 CRYP_START_ENABLE,
247 CRYP_CR_START_POS,
248 CRYP_CR_START_MASK);
250 cryp_wait_until_done(device_data);
255 return IRQ_HANDLED;
258 static int mode_is_aes(enum cryp_algo_mode mode)
260 return CRYP_ALGO_AES_ECB == mode ||
261 CRYP_ALGO_AES_CBC == mode ||
262 CRYP_ALGO_AES_CTR == mode ||
263 CRYP_ALGO_AES_XTS == mode;
266 static int cfg_iv(struct cryp_device_data *device_data, u32 left, u32 right,
267 enum cryp_init_vector_index index)
269 struct cryp_init_vector_value vector_value;
271 dev_dbg(device_data->dev, "[%s]", __func__);
273 vector_value.init_value_left = left;
274 vector_value.init_value_right = right;
276 return cryp_configure_init_vector(device_data,
277 index,
278 vector_value);
281 static int cfg_ivs(struct cryp_device_data *device_data, struct cryp_ctx *ctx)
283 int i;
284 int status = 0;
285 int num_of_regs = ctx->blocksize / 8;
286 u32 iv[AES_BLOCK_SIZE / 4];
288 dev_dbg(device_data->dev, "[%s]", __func__);
291 * Since we loop on num_of_regs we need to have a check in case
292 * someone provides an incorrect blocksize which would force calling
293 * cfg_iv with i greater than 2 which is an error.
295 if (num_of_regs > 2) {
296 dev_err(device_data->dev, "[%s] Incorrect blocksize %d",
297 __func__, ctx->blocksize);
298 return -EINVAL;
301 for (i = 0; i < ctx->blocksize / 4; i++)
302 iv[i] = uint8p_to_uint32_be(ctx->iv + i*4);
304 for (i = 0; i < num_of_regs; i++) {
305 status = cfg_iv(device_data, iv[i*2], iv[i*2+1],
306 (enum cryp_init_vector_index) i);
307 if (status != 0)
308 return status;
310 return status;
313 static int set_key(struct cryp_device_data *device_data,
314 u32 left_key,
315 u32 right_key,
316 enum cryp_key_reg_index index)
318 struct cryp_key_value key_value;
319 int cryp_error;
321 dev_dbg(device_data->dev, "[%s]", __func__);
323 key_value.key_value_left = left_key;
324 key_value.key_value_right = right_key;
326 cryp_error = cryp_configure_key_values(device_data,
327 index,
328 key_value);
329 if (cryp_error != 0)
330 dev_err(device_data->dev, "[%s]: "
331 "cryp_configure_key_values() failed!", __func__);
333 return cryp_error;
336 static int cfg_keys(struct cryp_ctx *ctx)
338 int i;
339 int num_of_regs = ctx->keylen / 8;
340 u32 swapped_key[CRYP_MAX_KEY_SIZE / 4];
341 int cryp_error = 0;
343 dev_dbg(ctx->device->dev, "[%s]", __func__);
345 if (mode_is_aes(ctx->config.algomode)) {
346 swap_words_in_key_and_bits_in_byte((u8 *)ctx->key,
347 (u8 *)swapped_key,
348 ctx->keylen);
349 } else {
350 for (i = 0; i < ctx->keylen / 4; i++)
351 swapped_key[i] = uint8p_to_uint32_be(ctx->key + i*4);
354 for (i = 0; i < num_of_regs; i++) {
355 cryp_error = set_key(ctx->device,
356 *(((u32 *)swapped_key)+i*2),
357 *(((u32 *)swapped_key)+i*2+1),
358 (enum cryp_key_reg_index) i);
360 if (cryp_error != 0) {
361 dev_err(ctx->device->dev, "[%s]: set_key() failed!",
362 __func__);
363 return cryp_error;
366 return cryp_error;
369 static int cryp_setup_context(struct cryp_ctx *ctx,
370 struct cryp_device_data *device_data)
372 u32 control_register = CRYP_CR_DEFAULT;
374 switch (cryp_mode) {
375 case CRYP_MODE_INTERRUPT:
376 writel_relaxed(CRYP_IMSC_DEFAULT, &device_data->base->imsc);
377 break;
379 case CRYP_MODE_DMA:
380 writel_relaxed(CRYP_DMACR_DEFAULT, &device_data->base->dmacr);
381 break;
383 default:
384 break;
387 if (ctx->updated == 0) {
388 cryp_flush_inoutfifo(device_data);
389 if (cfg_keys(ctx) != 0) {
390 dev_err(ctx->device->dev, "[%s]: cfg_keys failed!",
391 __func__);
392 return -EINVAL;
395 if (ctx->iv &&
396 CRYP_ALGO_AES_ECB != ctx->config.algomode &&
397 CRYP_ALGO_DES_ECB != ctx->config.algomode &&
398 CRYP_ALGO_TDES_ECB != ctx->config.algomode) {
399 if (cfg_ivs(device_data, ctx) != 0)
400 return -EPERM;
403 cryp_set_configuration(device_data, &ctx->config,
404 &control_register);
405 add_session_id(ctx);
406 } else if (ctx->updated == 1 &&
407 ctx->session_id != atomic_read(&session_id)) {
408 cryp_flush_inoutfifo(device_data);
409 cryp_restore_device_context(device_data, &ctx->dev_ctx);
411 add_session_id(ctx);
412 control_register = ctx->dev_ctx.cr;
413 } else
414 control_register = ctx->dev_ctx.cr;
416 writel(control_register |
417 (CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS),
418 &device_data->base->cr);
420 return 0;
423 static int cryp_get_device_data(struct cryp_ctx *ctx,
424 struct cryp_device_data **device_data)
426 int ret;
427 struct klist_iter device_iterator;
428 struct klist_node *device_node;
429 struct cryp_device_data *local_device_data = NULL;
430 pr_debug(DEV_DBG_NAME " [%s]", __func__);
432 /* Wait until a device is available */
433 ret = down_interruptible(&driver_data.device_allocation);
434 if (ret)
435 return ret; /* Interrupted */
437 /* Select a device */
438 klist_iter_init(&driver_data.device_list, &device_iterator);
440 device_node = klist_next(&device_iterator);
441 while (device_node) {
442 local_device_data = container_of(device_node,
443 struct cryp_device_data, list_node);
444 spin_lock(&local_device_data->ctx_lock);
445 /* current_ctx allocates a device, NULL = unallocated */
446 if (local_device_data->current_ctx) {
447 device_node = klist_next(&device_iterator);
448 } else {
449 local_device_data->current_ctx = ctx;
450 ctx->device = local_device_data;
451 spin_unlock(&local_device_data->ctx_lock);
452 break;
454 spin_unlock(&local_device_data->ctx_lock);
456 klist_iter_exit(&device_iterator);
458 if (!device_node) {
460 * No free device found.
461 * Since we allocated a device with down_interruptible, this
462 * should not be able to happen.
463 * Number of available devices, which are contained in
464 * device_allocation, is therefore decremented by not doing
465 * an up(device_allocation).
467 return -EBUSY;
470 *device_data = local_device_data;
472 return 0;
475 static void cryp_dma_setup_channel(struct cryp_device_data *device_data,
476 struct device *dev)
478 struct dma_slave_config mem2cryp = {
479 .direction = DMA_MEM_TO_DEV,
480 .dst_addr = device_data->phybase + CRYP_DMA_TX_FIFO,
481 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
482 .dst_maxburst = 4,
484 struct dma_slave_config cryp2mem = {
485 .direction = DMA_DEV_TO_MEM,
486 .src_addr = device_data->phybase + CRYP_DMA_RX_FIFO,
487 .src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
488 .src_maxburst = 4,
491 dma_cap_zero(device_data->dma.mask);
492 dma_cap_set(DMA_SLAVE, device_data->dma.mask);
494 device_data->dma.cfg_mem2cryp = mem_to_engine;
495 device_data->dma.chan_mem2cryp =
496 dma_request_channel(device_data->dma.mask,
497 stedma40_filter,
498 device_data->dma.cfg_mem2cryp);
500 device_data->dma.cfg_cryp2mem = engine_to_mem;
501 device_data->dma.chan_cryp2mem =
502 dma_request_channel(device_data->dma.mask,
503 stedma40_filter,
504 device_data->dma.cfg_cryp2mem);
506 dmaengine_slave_config(device_data->dma.chan_mem2cryp, &mem2cryp);
507 dmaengine_slave_config(device_data->dma.chan_cryp2mem, &cryp2mem);
509 init_completion(&device_data->dma.cryp_dma_complete);
512 static void cryp_dma_out_callback(void *data)
514 struct cryp_ctx *ctx = (struct cryp_ctx *) data;
515 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
517 complete(&ctx->device->dma.cryp_dma_complete);
520 static int cryp_set_dma_transfer(struct cryp_ctx *ctx,
521 struct scatterlist *sg,
522 int len,
523 enum dma_data_direction direction)
525 struct dma_async_tx_descriptor *desc;
526 struct dma_chan *channel = NULL;
527 dma_cookie_t cookie;
529 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
531 if (unlikely(!IS_ALIGNED((u32)sg, 4))) {
532 dev_err(ctx->device->dev, "[%s]: Data in sg list isn't "
533 "aligned! Addr: 0x%08x", __func__, (u32)sg);
534 return -EFAULT;
537 switch (direction) {
538 case DMA_TO_DEVICE:
539 channel = ctx->device->dma.chan_mem2cryp;
540 ctx->device->dma.sg_src = sg;
541 ctx->device->dma.sg_src_len = dma_map_sg(channel->device->dev,
542 ctx->device->dma.sg_src,
543 ctx->device->dma.nents_src,
544 direction);
546 if (!ctx->device->dma.sg_src_len) {
547 dev_dbg(ctx->device->dev,
548 "[%s]: Could not map the sg list (TO_DEVICE)",
549 __func__);
550 return -EFAULT;
553 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
554 "(TO_DEVICE)", __func__);
556 desc = dmaengine_prep_slave_sg(channel,
557 ctx->device->dma.sg_src,
558 ctx->device->dma.sg_src_len,
559 DMA_MEM_TO_DEV, DMA_CTRL_ACK);
560 break;
562 case DMA_FROM_DEVICE:
563 channel = ctx->device->dma.chan_cryp2mem;
564 ctx->device->dma.sg_dst = sg;
565 ctx->device->dma.sg_dst_len = dma_map_sg(channel->device->dev,
566 ctx->device->dma.sg_dst,
567 ctx->device->dma.nents_dst,
568 direction);
570 if (!ctx->device->dma.sg_dst_len) {
571 dev_dbg(ctx->device->dev,
572 "[%s]: Could not map the sg list (FROM_DEVICE)",
573 __func__);
574 return -EFAULT;
577 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
578 "(FROM_DEVICE)", __func__);
580 desc = dmaengine_prep_slave_sg(channel,
581 ctx->device->dma.sg_dst,
582 ctx->device->dma.sg_dst_len,
583 DMA_DEV_TO_MEM,
584 DMA_CTRL_ACK |
585 DMA_PREP_INTERRUPT);
587 desc->callback = cryp_dma_out_callback;
588 desc->callback_param = ctx;
589 break;
591 default:
592 dev_dbg(ctx->device->dev, "[%s]: Invalid DMA direction",
593 __func__);
594 return -EFAULT;
597 cookie = dmaengine_submit(desc);
598 if (dma_submit_error(cookie)) {
599 dev_dbg(ctx->device->dev, "[%s]: DMA submission failed\n",
600 __func__);
601 return cookie;
604 dma_async_issue_pending(channel);
606 return 0;
609 static void cryp_dma_done(struct cryp_ctx *ctx)
611 struct dma_chan *chan;
613 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
615 chan = ctx->device->dma.chan_mem2cryp;
616 dmaengine_terminate_all(chan);
617 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_src,
618 ctx->device->dma.sg_src_len, DMA_TO_DEVICE);
620 chan = ctx->device->dma.chan_cryp2mem;
621 dmaengine_terminate_all(chan);
622 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_dst,
623 ctx->device->dma.sg_dst_len, DMA_FROM_DEVICE);
626 static int cryp_dma_write(struct cryp_ctx *ctx, struct scatterlist *sg,
627 int len)
629 int error = cryp_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
630 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
632 if (error) {
633 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
634 "failed", __func__);
635 return error;
638 return len;
641 static int cryp_dma_read(struct cryp_ctx *ctx, struct scatterlist *sg, int len)
643 int error = cryp_set_dma_transfer(ctx, sg, len, DMA_FROM_DEVICE);
644 if (error) {
645 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
646 "failed", __func__);
647 return error;
650 return len;
653 static void cryp_polling_mode(struct cryp_ctx *ctx,
654 struct cryp_device_data *device_data)
656 int len = ctx->blocksize / BYTES_PER_WORD;
657 int remaining_length = ctx->datalen;
658 u32 *indata = (u32 *)ctx->indata;
659 u32 *outdata = (u32 *)ctx->outdata;
661 while (remaining_length > 0) {
662 writesl(&device_data->base->din, indata, len);
663 indata += len;
664 remaining_length -= (len * BYTES_PER_WORD);
665 cryp_wait_until_done(device_data);
667 readsl(&device_data->base->dout, outdata, len);
668 outdata += len;
669 cryp_wait_until_done(device_data);
673 static int cryp_disable_power(struct device *dev,
674 struct cryp_device_data *device_data,
675 bool save_device_context)
677 int ret = 0;
679 dev_dbg(dev, "[%s]", __func__);
681 spin_lock(&device_data->power_state_spinlock);
682 if (!device_data->power_state)
683 goto out;
685 spin_lock(&device_data->ctx_lock);
686 if (save_device_context && device_data->current_ctx) {
687 cryp_save_device_context(device_data,
688 &device_data->current_ctx->dev_ctx,
689 cryp_mode);
690 device_data->restore_dev_ctx = true;
692 spin_unlock(&device_data->ctx_lock);
694 clk_disable(device_data->clk);
695 ret = regulator_disable(device_data->pwr_regulator);
696 if (ret)
697 dev_err(dev, "[%s]: "
698 "regulator_disable() failed!",
699 __func__);
701 device_data->power_state = false;
703 out:
704 spin_unlock(&device_data->power_state_spinlock);
706 return ret;
709 static int cryp_enable_power(
710 struct device *dev,
711 struct cryp_device_data *device_data,
712 bool restore_device_context)
714 int ret = 0;
716 dev_dbg(dev, "[%s]", __func__);
718 spin_lock(&device_data->power_state_spinlock);
719 if (!device_data->power_state) {
720 ret = regulator_enable(device_data->pwr_regulator);
721 if (ret) {
722 dev_err(dev, "[%s]: regulator_enable() failed!",
723 __func__);
724 goto out;
727 ret = clk_enable(device_data->clk);
728 if (ret) {
729 dev_err(dev, "[%s]: clk_enable() failed!",
730 __func__);
731 regulator_disable(device_data->pwr_regulator);
732 goto out;
734 device_data->power_state = true;
737 if (device_data->restore_dev_ctx) {
738 spin_lock(&device_data->ctx_lock);
739 if (restore_device_context && device_data->current_ctx) {
740 device_data->restore_dev_ctx = false;
741 cryp_restore_device_context(device_data,
742 &device_data->current_ctx->dev_ctx);
744 spin_unlock(&device_data->ctx_lock);
746 out:
747 spin_unlock(&device_data->power_state_spinlock);
749 return ret;
752 static int hw_crypt_noxts(struct cryp_ctx *ctx,
753 struct cryp_device_data *device_data)
755 int ret = 0;
757 const u8 *indata = ctx->indata;
758 u8 *outdata = ctx->outdata;
759 u32 datalen = ctx->datalen;
760 u32 outlen = datalen;
762 pr_debug(DEV_DBG_NAME " [%s]", __func__);
764 ctx->outlen = ctx->datalen;
766 if (unlikely(!IS_ALIGNED((u32)indata, 4))) {
767 pr_debug(DEV_DBG_NAME " [%s]: Data isn't aligned! Addr: "
768 "0x%08x", __func__, (u32)indata);
769 return -EINVAL;
772 ret = cryp_setup_context(ctx, device_data);
774 if (ret)
775 goto out;
777 if (cryp_mode == CRYP_MODE_INTERRUPT) {
778 cryp_enable_irq_src(device_data, CRYP_IRQ_SRC_INPUT_FIFO |
779 CRYP_IRQ_SRC_OUTPUT_FIFO);
782 * ctx->outlen is decremented in the cryp_interrupt_handler
783 * function. We had to add cpu_relax() (barrier) to make sure
784 * that gcc didn't optimze away this variable.
786 while (ctx->outlen > 0)
787 cpu_relax();
788 } else if (cryp_mode == CRYP_MODE_POLLING ||
789 cryp_mode == CRYP_MODE_DMA) {
791 * The reason for having DMA in this if case is that if we are
792 * running cryp_mode = 2, then we separate DMA routines for
793 * handling cipher/plaintext > blocksize, except when
794 * running the normal CRYPTO_ALG_TYPE_CIPHER, then we still use
795 * the polling mode. Overhead of doing DMA setup eats up the
796 * benefits using it.
798 cryp_polling_mode(ctx, device_data);
799 } else {
800 dev_err(ctx->device->dev, "[%s]: Invalid operation mode!",
801 __func__);
802 ret = -EPERM;
803 goto out;
806 cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
807 ctx->updated = 1;
809 out:
810 ctx->indata = indata;
811 ctx->outdata = outdata;
812 ctx->datalen = datalen;
813 ctx->outlen = outlen;
815 return ret;
818 static int get_nents(struct scatterlist *sg, int nbytes)
820 int nents = 0;
822 while (nbytes > 0) {
823 nbytes -= sg->length;
824 sg = sg_next(sg);
825 nents++;
828 return nents;
831 static int ablk_dma_crypt(struct ablkcipher_request *areq)
833 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
834 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
835 struct cryp_device_data *device_data;
837 int bytes_written = 0;
838 int bytes_read = 0;
839 int ret;
841 pr_debug(DEV_DBG_NAME " [%s]", __func__);
843 ctx->datalen = areq->nbytes;
844 ctx->outlen = areq->nbytes;
846 ret = cryp_get_device_data(ctx, &device_data);
847 if (ret)
848 return ret;
850 ret = cryp_setup_context(ctx, device_data);
851 if (ret)
852 goto out;
854 /* We have the device now, so store the nents in the dma struct. */
855 ctx->device->dma.nents_src = get_nents(areq->src, ctx->datalen);
856 ctx->device->dma.nents_dst = get_nents(areq->dst, ctx->outlen);
858 /* Enable DMA in- and output. */
859 cryp_configure_for_dma(device_data, CRYP_DMA_ENABLE_BOTH_DIRECTIONS);
861 bytes_written = cryp_dma_write(ctx, areq->src, ctx->datalen);
862 bytes_read = cryp_dma_read(ctx, areq->dst, bytes_written);
864 wait_for_completion(&ctx->device->dma.cryp_dma_complete);
865 cryp_dma_done(ctx);
867 cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
868 ctx->updated = 1;
870 out:
871 spin_lock(&device_data->ctx_lock);
872 device_data->current_ctx = NULL;
873 ctx->device = NULL;
874 spin_unlock(&device_data->ctx_lock);
877 * The down_interruptible part for this semaphore is called in
878 * cryp_get_device_data.
880 up(&driver_data.device_allocation);
882 if (unlikely(bytes_written != bytes_read))
883 return -EPERM;
885 return 0;
888 static int ablk_crypt(struct ablkcipher_request *areq)
890 struct ablkcipher_walk walk;
891 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
892 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
893 struct cryp_device_data *device_data;
894 unsigned long src_paddr;
895 unsigned long dst_paddr;
896 int ret;
897 int nbytes;
899 pr_debug(DEV_DBG_NAME " [%s]", __func__);
901 ret = cryp_get_device_data(ctx, &device_data);
902 if (ret)
903 goto out;
905 ablkcipher_walk_init(&walk, areq->dst, areq->src, areq->nbytes);
906 ret = ablkcipher_walk_phys(areq, &walk);
908 if (ret) {
909 pr_err(DEV_DBG_NAME "[%s]: ablkcipher_walk_phys() failed!",
910 __func__);
911 goto out;
914 while ((nbytes = walk.nbytes) > 0) {
915 ctx->iv = walk.iv;
916 src_paddr = (page_to_phys(walk.src.page) + walk.src.offset);
917 ctx->indata = phys_to_virt(src_paddr);
919 dst_paddr = (page_to_phys(walk.dst.page) + walk.dst.offset);
920 ctx->outdata = phys_to_virt(dst_paddr);
922 ctx->datalen = nbytes - (nbytes % ctx->blocksize);
924 ret = hw_crypt_noxts(ctx, device_data);
925 if (ret)
926 goto out;
928 nbytes -= ctx->datalen;
929 ret = ablkcipher_walk_done(areq, &walk, nbytes);
930 if (ret)
931 goto out;
933 ablkcipher_walk_complete(&walk);
935 out:
936 /* Release the device */
937 spin_lock(&device_data->ctx_lock);
938 device_data->current_ctx = NULL;
939 ctx->device = NULL;
940 spin_unlock(&device_data->ctx_lock);
943 * The down_interruptible part for this semaphore is called in
944 * cryp_get_device_data.
946 up(&driver_data.device_allocation);
948 return ret;
951 static int aes_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
952 const u8 *key, unsigned int keylen)
954 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
955 u32 *flags = &cipher->base.crt_flags;
957 pr_debug(DEV_DBG_NAME " [%s]", __func__);
959 switch (keylen) {
960 case AES_KEYSIZE_128:
961 ctx->config.keysize = CRYP_KEY_SIZE_128;
962 break;
964 case AES_KEYSIZE_192:
965 ctx->config.keysize = CRYP_KEY_SIZE_192;
966 break;
968 case AES_KEYSIZE_256:
969 ctx->config.keysize = CRYP_KEY_SIZE_256;
970 break;
972 default:
973 pr_err(DEV_DBG_NAME "[%s]: Unknown keylen!", __func__);
974 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
975 return -EINVAL;
978 memcpy(ctx->key, key, keylen);
979 ctx->keylen = keylen;
981 ctx->updated = 0;
983 return 0;
986 static int des_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
987 const u8 *key, unsigned int keylen)
989 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
990 u32 *flags = &cipher->base.crt_flags;
991 u32 tmp[DES_EXPKEY_WORDS];
992 int ret;
994 pr_debug(DEV_DBG_NAME " [%s]", __func__);
995 if (keylen != DES_KEY_SIZE) {
996 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
997 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
998 __func__);
999 return -EINVAL;
1002 ret = des_ekey(tmp, key);
1003 if (unlikely(ret == 0) &&
1004 (*flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) {
1005 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
1006 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_WEAK_KEY",
1007 __func__);
1008 return -EINVAL;
1011 memcpy(ctx->key, key, keylen);
1012 ctx->keylen = keylen;
1014 ctx->updated = 0;
1015 return 0;
1018 static int des3_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
1019 const u8 *key, unsigned int keylen)
1021 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1022 u32 flags;
1023 int err;
1025 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1027 flags = crypto_ablkcipher_get_flags(cipher);
1028 err = __des3_verify_key(&flags, key);
1029 if (unlikely(err)) {
1030 crypto_ablkcipher_set_flags(cipher, flags);
1031 return err;
1034 memcpy(ctx->key, key, keylen);
1035 ctx->keylen = keylen;
1037 ctx->updated = 0;
1038 return 0;
1041 static int cryp_blk_encrypt(struct ablkcipher_request *areq)
1043 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1044 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1046 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1048 ctx->config.algodir = CRYP_ALGORITHM_ENCRYPT;
1051 * DMA does not work for DES due to a hw bug */
1052 if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1053 return ablk_dma_crypt(areq);
1055 /* For everything except DMA, we run the non DMA version. */
1056 return ablk_crypt(areq);
1059 static int cryp_blk_decrypt(struct ablkcipher_request *areq)
1061 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1062 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1064 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1066 ctx->config.algodir = CRYP_ALGORITHM_DECRYPT;
1068 /* DMA does not work for DES due to a hw bug */
1069 if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1070 return ablk_dma_crypt(areq);
1072 /* For everything except DMA, we run the non DMA version. */
1073 return ablk_crypt(areq);
1076 struct cryp_algo_template {
1077 enum cryp_algo_mode algomode;
1078 struct crypto_alg crypto;
1081 static int cryp_cra_init(struct crypto_tfm *tfm)
1083 struct cryp_ctx *ctx = crypto_tfm_ctx(tfm);
1084 struct crypto_alg *alg = tfm->__crt_alg;
1085 struct cryp_algo_template *cryp_alg = container_of(alg,
1086 struct cryp_algo_template,
1087 crypto);
1089 ctx->config.algomode = cryp_alg->algomode;
1090 ctx->blocksize = crypto_tfm_alg_blocksize(tfm);
1092 return 0;
1095 static struct cryp_algo_template cryp_algs[] = {
1097 .algomode = CRYP_ALGO_AES_ECB,
1098 .crypto = {
1099 .cra_name = "aes",
1100 .cra_driver_name = "aes-ux500",
1101 .cra_priority = 300,
1102 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1103 CRYPTO_ALG_ASYNC,
1104 .cra_blocksize = AES_BLOCK_SIZE,
1105 .cra_ctxsize = sizeof(struct cryp_ctx),
1106 .cra_alignmask = 3,
1107 .cra_type = &crypto_ablkcipher_type,
1108 .cra_init = cryp_cra_init,
1109 .cra_module = THIS_MODULE,
1110 .cra_u = {
1111 .ablkcipher = {
1112 .min_keysize = AES_MIN_KEY_SIZE,
1113 .max_keysize = AES_MAX_KEY_SIZE,
1114 .setkey = aes_ablkcipher_setkey,
1115 .encrypt = cryp_blk_encrypt,
1116 .decrypt = cryp_blk_decrypt
1122 .algomode = CRYP_ALGO_AES_ECB,
1123 .crypto = {
1124 .cra_name = "ecb(aes)",
1125 .cra_driver_name = "ecb-aes-ux500",
1126 .cra_priority = 300,
1127 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1128 CRYPTO_ALG_ASYNC,
1129 .cra_blocksize = AES_BLOCK_SIZE,
1130 .cra_ctxsize = sizeof(struct cryp_ctx),
1131 .cra_alignmask = 3,
1132 .cra_type = &crypto_ablkcipher_type,
1133 .cra_init = cryp_cra_init,
1134 .cra_module = THIS_MODULE,
1135 .cra_u = {
1136 .ablkcipher = {
1137 .min_keysize = AES_MIN_KEY_SIZE,
1138 .max_keysize = AES_MAX_KEY_SIZE,
1139 .setkey = aes_ablkcipher_setkey,
1140 .encrypt = cryp_blk_encrypt,
1141 .decrypt = cryp_blk_decrypt,
1147 .algomode = CRYP_ALGO_AES_CBC,
1148 .crypto = {
1149 .cra_name = "cbc(aes)",
1150 .cra_driver_name = "cbc-aes-ux500",
1151 .cra_priority = 300,
1152 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1153 CRYPTO_ALG_ASYNC,
1154 .cra_blocksize = AES_BLOCK_SIZE,
1155 .cra_ctxsize = sizeof(struct cryp_ctx),
1156 .cra_alignmask = 3,
1157 .cra_type = &crypto_ablkcipher_type,
1158 .cra_init = cryp_cra_init,
1159 .cra_module = THIS_MODULE,
1160 .cra_u = {
1161 .ablkcipher = {
1162 .min_keysize = AES_MIN_KEY_SIZE,
1163 .max_keysize = AES_MAX_KEY_SIZE,
1164 .setkey = aes_ablkcipher_setkey,
1165 .encrypt = cryp_blk_encrypt,
1166 .decrypt = cryp_blk_decrypt,
1167 .ivsize = AES_BLOCK_SIZE,
1173 .algomode = CRYP_ALGO_AES_CTR,
1174 .crypto = {
1175 .cra_name = "ctr(aes)",
1176 .cra_driver_name = "ctr-aes-ux500",
1177 .cra_priority = 300,
1178 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1179 CRYPTO_ALG_ASYNC,
1180 .cra_blocksize = AES_BLOCK_SIZE,
1181 .cra_ctxsize = sizeof(struct cryp_ctx),
1182 .cra_alignmask = 3,
1183 .cra_type = &crypto_ablkcipher_type,
1184 .cra_init = cryp_cra_init,
1185 .cra_module = THIS_MODULE,
1186 .cra_u = {
1187 .ablkcipher = {
1188 .min_keysize = AES_MIN_KEY_SIZE,
1189 .max_keysize = AES_MAX_KEY_SIZE,
1190 .setkey = aes_ablkcipher_setkey,
1191 .encrypt = cryp_blk_encrypt,
1192 .decrypt = cryp_blk_decrypt,
1193 .ivsize = AES_BLOCK_SIZE,
1199 .algomode = CRYP_ALGO_DES_ECB,
1200 .crypto = {
1201 .cra_name = "ecb(des)",
1202 .cra_driver_name = "ecb-des-ux500",
1203 .cra_priority = 300,
1204 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1205 CRYPTO_ALG_ASYNC,
1206 .cra_blocksize = DES_BLOCK_SIZE,
1207 .cra_ctxsize = sizeof(struct cryp_ctx),
1208 .cra_alignmask = 3,
1209 .cra_type = &crypto_ablkcipher_type,
1210 .cra_init = cryp_cra_init,
1211 .cra_module = THIS_MODULE,
1212 .cra_u = {
1213 .ablkcipher = {
1214 .min_keysize = DES_KEY_SIZE,
1215 .max_keysize = DES_KEY_SIZE,
1216 .setkey = des_ablkcipher_setkey,
1217 .encrypt = cryp_blk_encrypt,
1218 .decrypt = cryp_blk_decrypt,
1224 .algomode = CRYP_ALGO_TDES_ECB,
1225 .crypto = {
1226 .cra_name = "ecb(des3_ede)",
1227 .cra_driver_name = "ecb-des3_ede-ux500",
1228 .cra_priority = 300,
1229 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1230 CRYPTO_ALG_ASYNC,
1231 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1232 .cra_ctxsize = sizeof(struct cryp_ctx),
1233 .cra_alignmask = 3,
1234 .cra_type = &crypto_ablkcipher_type,
1235 .cra_init = cryp_cra_init,
1236 .cra_module = THIS_MODULE,
1237 .cra_u = {
1238 .ablkcipher = {
1239 .min_keysize = DES3_EDE_KEY_SIZE,
1240 .max_keysize = DES3_EDE_KEY_SIZE,
1241 .setkey = des3_ablkcipher_setkey,
1242 .encrypt = cryp_blk_encrypt,
1243 .decrypt = cryp_blk_decrypt,
1249 .algomode = CRYP_ALGO_DES_CBC,
1250 .crypto = {
1251 .cra_name = "cbc(des)",
1252 .cra_driver_name = "cbc-des-ux500",
1253 .cra_priority = 300,
1254 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1255 CRYPTO_ALG_ASYNC,
1256 .cra_blocksize = DES_BLOCK_SIZE,
1257 .cra_ctxsize = sizeof(struct cryp_ctx),
1258 .cra_alignmask = 3,
1259 .cra_type = &crypto_ablkcipher_type,
1260 .cra_init = cryp_cra_init,
1261 .cra_module = THIS_MODULE,
1262 .cra_u = {
1263 .ablkcipher = {
1264 .min_keysize = DES_KEY_SIZE,
1265 .max_keysize = DES_KEY_SIZE,
1266 .setkey = des_ablkcipher_setkey,
1267 .encrypt = cryp_blk_encrypt,
1268 .decrypt = cryp_blk_decrypt,
1274 .algomode = CRYP_ALGO_TDES_CBC,
1275 .crypto = {
1276 .cra_name = "cbc(des3_ede)",
1277 .cra_driver_name = "cbc-des3_ede-ux500",
1278 .cra_priority = 300,
1279 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1280 CRYPTO_ALG_ASYNC,
1281 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1282 .cra_ctxsize = sizeof(struct cryp_ctx),
1283 .cra_alignmask = 3,
1284 .cra_type = &crypto_ablkcipher_type,
1285 .cra_init = cryp_cra_init,
1286 .cra_module = THIS_MODULE,
1287 .cra_u = {
1288 .ablkcipher = {
1289 .min_keysize = DES3_EDE_KEY_SIZE,
1290 .max_keysize = DES3_EDE_KEY_SIZE,
1291 .setkey = des3_ablkcipher_setkey,
1292 .encrypt = cryp_blk_encrypt,
1293 .decrypt = cryp_blk_decrypt,
1294 .ivsize = DES3_EDE_BLOCK_SIZE,
1302 * cryp_algs_register_all -
1304 static int cryp_algs_register_all(void)
1306 int ret;
1307 int i;
1308 int count;
1310 pr_debug("[%s]", __func__);
1312 for (i = 0; i < ARRAY_SIZE(cryp_algs); i++) {
1313 ret = crypto_register_alg(&cryp_algs[i].crypto);
1314 if (ret) {
1315 count = i;
1316 pr_err("[%s] alg registration failed",
1317 cryp_algs[i].crypto.cra_driver_name);
1318 goto unreg;
1321 return 0;
1322 unreg:
1323 for (i = 0; i < count; i++)
1324 crypto_unregister_alg(&cryp_algs[i].crypto);
1325 return ret;
1329 * cryp_algs_unregister_all -
1331 static void cryp_algs_unregister_all(void)
1333 int i;
1335 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1337 for (i = 0; i < ARRAY_SIZE(cryp_algs); i++)
1338 crypto_unregister_alg(&cryp_algs[i].crypto);
1341 static int ux500_cryp_probe(struct platform_device *pdev)
1343 int ret;
1344 struct resource *res;
1345 struct resource *res_irq;
1346 struct cryp_device_data *device_data;
1347 struct cryp_protection_config prot = {
1348 .privilege_access = CRYP_STATE_ENABLE
1350 struct device *dev = &pdev->dev;
1352 dev_dbg(dev, "[%s]", __func__);
1353 device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1354 if (!device_data) {
1355 ret = -ENOMEM;
1356 goto out;
1359 device_data->dev = dev;
1360 device_data->current_ctx = NULL;
1362 /* Grab the DMA configuration from platform data. */
1363 mem_to_engine = &((struct cryp_platform_data *)
1364 dev->platform_data)->mem_to_engine;
1365 engine_to_mem = &((struct cryp_platform_data *)
1366 dev->platform_data)->engine_to_mem;
1368 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1369 if (!res) {
1370 dev_err(dev, "[%s]: platform_get_resource() failed",
1371 __func__);
1372 ret = -ENODEV;
1373 goto out;
1376 device_data->phybase = res->start;
1377 device_data->base = devm_ioremap_resource(dev, res);
1378 if (IS_ERR(device_data->base)) {
1379 dev_err(dev, "[%s]: ioremap failed!", __func__);
1380 ret = PTR_ERR(device_data->base);
1381 goto out;
1384 spin_lock_init(&device_data->ctx_lock);
1385 spin_lock_init(&device_data->power_state_spinlock);
1387 /* Enable power for CRYP hardware block */
1388 device_data->pwr_regulator = regulator_get(&pdev->dev, "v-ape");
1389 if (IS_ERR(device_data->pwr_regulator)) {
1390 dev_err(dev, "[%s]: could not get cryp regulator", __func__);
1391 ret = PTR_ERR(device_data->pwr_regulator);
1392 device_data->pwr_regulator = NULL;
1393 goto out;
1396 /* Enable the clk for CRYP hardware block */
1397 device_data->clk = devm_clk_get(&pdev->dev, NULL);
1398 if (IS_ERR(device_data->clk)) {
1399 dev_err(dev, "[%s]: clk_get() failed!", __func__);
1400 ret = PTR_ERR(device_data->clk);
1401 goto out_regulator;
1404 ret = clk_prepare(device_data->clk);
1405 if (ret) {
1406 dev_err(dev, "[%s]: clk_prepare() failed!", __func__);
1407 goto out_regulator;
1410 /* Enable device power (and clock) */
1411 ret = cryp_enable_power(device_data->dev, device_data, false);
1412 if (ret) {
1413 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1414 goto out_clk_unprepare;
1417 if (cryp_check(device_data)) {
1418 dev_err(dev, "[%s]: cryp_check() failed!", __func__);
1419 ret = -EINVAL;
1420 goto out_power;
1423 if (cryp_configure_protection(device_data, &prot)) {
1424 dev_err(dev, "[%s]: cryp_configure_protection() failed!",
1425 __func__);
1426 ret = -EINVAL;
1427 goto out_power;
1430 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1431 if (!res_irq) {
1432 dev_err(dev, "[%s]: IORESOURCE_IRQ unavailable",
1433 __func__);
1434 ret = -ENODEV;
1435 goto out_power;
1438 ret = devm_request_irq(&pdev->dev, res_irq->start,
1439 cryp_interrupt_handler, 0, "cryp1", device_data);
1440 if (ret) {
1441 dev_err(dev, "[%s]: Unable to request IRQ", __func__);
1442 goto out_power;
1445 if (cryp_mode == CRYP_MODE_DMA)
1446 cryp_dma_setup_channel(device_data, dev);
1448 platform_set_drvdata(pdev, device_data);
1450 /* Put the new device into the device list... */
1451 klist_add_tail(&device_data->list_node, &driver_data.device_list);
1453 /* ... and signal that a new device is available. */
1454 up(&driver_data.device_allocation);
1456 atomic_set(&session_id, 1);
1458 ret = cryp_algs_register_all();
1459 if (ret) {
1460 dev_err(dev, "[%s]: cryp_algs_register_all() failed!",
1461 __func__);
1462 goto out_power;
1465 dev_info(dev, "successfully registered\n");
1467 return 0;
1469 out_power:
1470 cryp_disable_power(device_data->dev, device_data, false);
1472 out_clk_unprepare:
1473 clk_unprepare(device_data->clk);
1475 out_regulator:
1476 regulator_put(device_data->pwr_regulator);
1478 out:
1479 return ret;
1482 static int ux500_cryp_remove(struct platform_device *pdev)
1484 struct cryp_device_data *device_data;
1486 dev_dbg(&pdev->dev, "[%s]", __func__);
1487 device_data = platform_get_drvdata(pdev);
1488 if (!device_data) {
1489 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1490 __func__);
1491 return -ENOMEM;
1494 /* Try to decrease the number of available devices. */
1495 if (down_trylock(&driver_data.device_allocation))
1496 return -EBUSY;
1498 /* Check that the device is free */
1499 spin_lock(&device_data->ctx_lock);
1500 /* current_ctx allocates a device, NULL = unallocated */
1501 if (device_data->current_ctx) {
1502 /* The device is busy */
1503 spin_unlock(&device_data->ctx_lock);
1504 /* Return the device to the pool. */
1505 up(&driver_data.device_allocation);
1506 return -EBUSY;
1509 spin_unlock(&device_data->ctx_lock);
1511 /* Remove the device from the list */
1512 if (klist_node_attached(&device_data->list_node))
1513 klist_remove(&device_data->list_node);
1515 /* If this was the last device, remove the services */
1516 if (list_empty(&driver_data.device_list.k_list))
1517 cryp_algs_unregister_all();
1519 if (cryp_disable_power(&pdev->dev, device_data, false))
1520 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1521 __func__);
1523 clk_unprepare(device_data->clk);
1524 regulator_put(device_data->pwr_regulator);
1526 return 0;
1529 static void ux500_cryp_shutdown(struct platform_device *pdev)
1531 struct cryp_device_data *device_data;
1533 dev_dbg(&pdev->dev, "[%s]", __func__);
1535 device_data = platform_get_drvdata(pdev);
1536 if (!device_data) {
1537 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1538 __func__);
1539 return;
1542 /* Check that the device is free */
1543 spin_lock(&device_data->ctx_lock);
1544 /* current_ctx allocates a device, NULL = unallocated */
1545 if (!device_data->current_ctx) {
1546 if (down_trylock(&driver_data.device_allocation))
1547 dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
1548 "Shutting down anyway...", __func__);
1550 * (Allocate the device)
1551 * Need to set this to non-null (dummy) value,
1552 * to avoid usage if context switching.
1554 device_data->current_ctx++;
1556 spin_unlock(&device_data->ctx_lock);
1558 /* Remove the device from the list */
1559 if (klist_node_attached(&device_data->list_node))
1560 klist_remove(&device_data->list_node);
1562 /* If this was the last device, remove the services */
1563 if (list_empty(&driver_data.device_list.k_list))
1564 cryp_algs_unregister_all();
1566 if (cryp_disable_power(&pdev->dev, device_data, false))
1567 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1568 __func__);
1572 #ifdef CONFIG_PM_SLEEP
1573 static int ux500_cryp_suspend(struct device *dev)
1575 int ret;
1576 struct platform_device *pdev = to_platform_device(dev);
1577 struct cryp_device_data *device_data;
1578 struct resource *res_irq;
1579 struct cryp_ctx *temp_ctx = NULL;
1581 dev_dbg(dev, "[%s]", __func__);
1583 /* Handle state? */
1584 device_data = platform_get_drvdata(pdev);
1585 if (!device_data) {
1586 dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1587 return -ENOMEM;
1590 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1591 if (!res_irq)
1592 dev_err(dev, "[%s]: IORESOURCE_IRQ, unavailable", __func__);
1593 else
1594 disable_irq(res_irq->start);
1596 spin_lock(&device_data->ctx_lock);
1597 if (!device_data->current_ctx)
1598 device_data->current_ctx++;
1599 spin_unlock(&device_data->ctx_lock);
1601 if (device_data->current_ctx == ++temp_ctx) {
1602 if (down_interruptible(&driver_data.device_allocation))
1603 dev_dbg(dev, "[%s]: down_interruptible() failed",
1604 __func__);
1605 ret = cryp_disable_power(dev, device_data, false);
1607 } else
1608 ret = cryp_disable_power(dev, device_data, true);
1610 if (ret)
1611 dev_err(dev, "[%s]: cryp_disable_power()", __func__);
1613 return ret;
1616 static int ux500_cryp_resume(struct device *dev)
1618 int ret = 0;
1619 struct platform_device *pdev = to_platform_device(dev);
1620 struct cryp_device_data *device_data;
1621 struct resource *res_irq;
1622 struct cryp_ctx *temp_ctx = NULL;
1624 dev_dbg(dev, "[%s]", __func__);
1626 device_data = platform_get_drvdata(pdev);
1627 if (!device_data) {
1628 dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1629 return -ENOMEM;
1632 spin_lock(&device_data->ctx_lock);
1633 if (device_data->current_ctx == ++temp_ctx)
1634 device_data->current_ctx = NULL;
1635 spin_unlock(&device_data->ctx_lock);
1638 if (!device_data->current_ctx)
1639 up(&driver_data.device_allocation);
1640 else
1641 ret = cryp_enable_power(dev, device_data, true);
1643 if (ret)
1644 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1645 else {
1646 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1647 if (res_irq)
1648 enable_irq(res_irq->start);
1651 return ret;
1653 #endif
1655 static SIMPLE_DEV_PM_OPS(ux500_cryp_pm, ux500_cryp_suspend, ux500_cryp_resume);
1657 static const struct of_device_id ux500_cryp_match[] = {
1658 { .compatible = "stericsson,ux500-cryp" },
1659 { },
1661 MODULE_DEVICE_TABLE(of, ux500_cryp_match);
1663 static struct platform_driver cryp_driver = {
1664 .probe = ux500_cryp_probe,
1665 .remove = ux500_cryp_remove,
1666 .shutdown = ux500_cryp_shutdown,
1667 .driver = {
1668 .name = "cryp1",
1669 .of_match_table = ux500_cryp_match,
1670 .pm = &ux500_cryp_pm,
1674 static int __init ux500_cryp_mod_init(void)
1676 pr_debug("[%s] is called!", __func__);
1677 klist_init(&driver_data.device_list, NULL, NULL);
1678 /* Initialize the semaphore to 0 devices (locked state) */
1679 sema_init(&driver_data.device_allocation, 0);
1680 return platform_driver_register(&cryp_driver);
1683 static void __exit ux500_cryp_mod_fini(void)
1685 pr_debug("[%s] is called!", __func__);
1686 platform_driver_unregister(&cryp_driver);
1689 module_init(ux500_cryp_mod_init);
1690 module_exit(ux500_cryp_mod_fini);
1692 module_param(cryp_mode, int, 0);
1694 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 CRYP crypto engine.");
1695 MODULE_ALIAS_CRYPTO("aes-all");
1696 MODULE_ALIAS_CRYPTO("des-all");
1698 MODULE_LICENSE("GPL");