dmaengine: imx-sdma: Let the core do the device node validation
[linux/fpc-iii.git] / drivers / net / ieee802154 / mcr20a.c
blob8bb53ec8d9cf296f4735af57d50de364ce68ec9b
1 /*
2 * Driver for NXP MCR20A 802.15.4 Wireless-PAN Networking controller
4 * Copyright (C) 2018 Xue Liu <liuxuenetmail@gmail.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/spi/spi.h>
20 #include <linux/workqueue.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/skbuff.h>
24 #include <linux/of_gpio.h>
25 #include <linux/regmap.h>
26 #include <linux/ieee802154.h>
27 #include <linux/debugfs.h>
29 #include <net/mac802154.h>
30 #include <net/cfg802154.h>
32 #include <linux/device.h>
34 #include "mcr20a.h"
36 #define SPI_COMMAND_BUFFER 3
38 #define REGISTER_READ BIT(7)
39 #define REGISTER_WRITE (0 << 7)
40 #define REGISTER_ACCESS (0 << 6)
41 #define PACKET_BUFF_BURST_ACCESS BIT(6)
42 #define PACKET_BUFF_BYTE_ACCESS BIT(5)
44 #define MCR20A_WRITE_REG(x) (x)
45 #define MCR20A_READ_REG(x) (REGISTER_READ | (x))
46 #define MCR20A_BURST_READ_PACKET_BUF (0xC0)
47 #define MCR20A_BURST_WRITE_PACKET_BUF (0x40)
49 #define MCR20A_CMD_REG 0x80
50 #define MCR20A_CMD_REG_MASK 0x3f
51 #define MCR20A_CMD_WRITE 0x40
52 #define MCR20A_CMD_FB 0x20
54 /* Number of Interrupt Request Status Register */
55 #define MCR20A_IRQSTS_NUM 2 /* only IRQ_STS1 and IRQ_STS2 */
57 /* MCR20A CCA Type */
58 enum {
59 MCR20A_CCA_ED, // energy detect - CCA bit not active,
60 // not to be used for T and CCCA sequences
61 MCR20A_CCA_MODE1, // energy detect - CCA bit ACTIVE
62 MCR20A_CCA_MODE2, // 802.15.4 compliant signal detect - CCA bit ACTIVE
63 MCR20A_CCA_MODE3
66 enum {
67 MCR20A_XCVSEQ_IDLE = 0x00,
68 MCR20A_XCVSEQ_RX = 0x01,
69 MCR20A_XCVSEQ_TX = 0x02,
70 MCR20A_XCVSEQ_CCA = 0x03,
71 MCR20A_XCVSEQ_TR = 0x04,
72 MCR20A_XCVSEQ_CCCA = 0x05,
75 /* IEEE-802.15.4 defined constants (2.4 GHz logical channels) */
76 #define MCR20A_MIN_CHANNEL (11)
77 #define MCR20A_MAX_CHANNEL (26)
78 #define MCR20A_CHANNEL_SPACING (5)
80 /* MCR20A CCA Threshold constans */
81 #define MCR20A_MIN_CCA_THRESHOLD (0x6EU)
82 #define MCR20A_MAX_CCA_THRESHOLD (0x00U)
84 /* version 0C */
85 #define MCR20A_OVERWRITE_VERSION (0x0C)
87 /* MCR20A PLL configurations */
88 static const u8 PLL_INT[16] = {
89 /* 2405 */ 0x0B, /* 2410 */ 0x0B, /* 2415 */ 0x0B,
90 /* 2420 */ 0x0B, /* 2425 */ 0x0B, /* 2430 */ 0x0B,
91 /* 2435 */ 0x0C, /* 2440 */ 0x0C, /* 2445 */ 0x0C,
92 /* 2450 */ 0x0C, /* 2455 */ 0x0C, /* 2460 */ 0x0C,
93 /* 2465 */ 0x0D, /* 2470 */ 0x0D, /* 2475 */ 0x0D,
94 /* 2480 */ 0x0D
97 static const u8 PLL_FRAC[16] = {
98 /* 2405 */ 0x28, /* 2410 */ 0x50, /* 2415 */ 0x78,
99 /* 2420 */ 0xA0, /* 2425 */ 0xC8, /* 2430 */ 0xF0,
100 /* 2435 */ 0x18, /* 2440 */ 0x40, /* 2445 */ 0x68,
101 /* 2450 */ 0x90, /* 2455 */ 0xB8, /* 2460 */ 0xE0,
102 /* 2465 */ 0x08, /* 2470 */ 0x30, /* 2475 */ 0x58,
103 /* 2480 */ 0x80
106 static const struct reg_sequence mar20a_iar_overwrites[] = {
107 { IAR_MISC_PAD_CTRL, 0x02 },
108 { IAR_VCO_CTRL1, 0xB3 },
109 { IAR_VCO_CTRL2, 0x07 },
110 { IAR_PA_TUNING, 0x71 },
111 { IAR_CHF_IBUF, 0x2F },
112 { IAR_CHF_QBUF, 0x2F },
113 { IAR_CHF_IRIN, 0x24 },
114 { IAR_CHF_QRIN, 0x24 },
115 { IAR_CHF_IL, 0x24 },
116 { IAR_CHF_QL, 0x24 },
117 { IAR_CHF_CC1, 0x32 },
118 { IAR_CHF_CCL, 0x1D },
119 { IAR_CHF_CC2, 0x2D },
120 { IAR_CHF_IROUT, 0x24 },
121 { IAR_CHF_QROUT, 0x24 },
122 { IAR_PA_CAL, 0x28 },
123 { IAR_AGC_THR1, 0x55 },
124 { IAR_AGC_THR2, 0x2D },
125 { IAR_ATT_RSSI1, 0x5F },
126 { IAR_ATT_RSSI2, 0x8F },
127 { IAR_RSSI_OFFSET, 0x61 },
128 { IAR_CHF_PMA_GAIN, 0x03 },
129 { IAR_CCA1_THRESH, 0x50 },
130 { IAR_CORR_NVAL, 0x13 },
131 { IAR_ACKDELAY, 0x3D },
134 #define MCR20A_VALID_CHANNELS (0x07FFF800)
135 #define MCR20A_MAX_BUF (127)
137 #define printdev(X) (&X->spi->dev)
139 /* regmap information for Direct Access Register (DAR) access */
140 #define MCR20A_DAR_WRITE 0x01
141 #define MCR20A_DAR_READ 0x00
142 #define MCR20A_DAR_NUMREGS 0x3F
144 /* regmap information for Indirect Access Register (IAR) access */
145 #define MCR20A_IAR_ACCESS 0x80
146 #define MCR20A_IAR_NUMREGS 0xBEFF
148 /* Read/Write SPI Commands for DAR and IAR registers. */
149 #define MCR20A_READSHORT(reg) ((reg) << 1)
150 #define MCR20A_WRITESHORT(reg) ((reg) << 1 | 1)
151 #define MCR20A_READLONG(reg) (1 << 15 | (reg) << 5)
152 #define MCR20A_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
154 /* Type definitions for link configuration of instantiable layers */
155 #define MCR20A_PHY_INDIRECT_QUEUE_SIZE (12)
157 static bool
158 mcr20a_dar_writeable(struct device *dev, unsigned int reg)
160 switch (reg) {
161 case DAR_IRQ_STS1:
162 case DAR_IRQ_STS2:
163 case DAR_IRQ_STS3:
164 case DAR_PHY_CTRL1:
165 case DAR_PHY_CTRL2:
166 case DAR_PHY_CTRL3:
167 case DAR_PHY_CTRL4:
168 case DAR_SRC_CTRL:
169 case DAR_SRC_ADDRS_SUM_LSB:
170 case DAR_SRC_ADDRS_SUM_MSB:
171 case DAR_T3CMP_LSB:
172 case DAR_T3CMP_MSB:
173 case DAR_T3CMP_USB:
174 case DAR_T2PRIMECMP_LSB:
175 case DAR_T2PRIMECMP_MSB:
176 case DAR_T1CMP_LSB:
177 case DAR_T1CMP_MSB:
178 case DAR_T1CMP_USB:
179 case DAR_T2CMP_LSB:
180 case DAR_T2CMP_MSB:
181 case DAR_T2CMP_USB:
182 case DAR_T4CMP_LSB:
183 case DAR_T4CMP_MSB:
184 case DAR_T4CMP_USB:
185 case DAR_PLL_INT0:
186 case DAR_PLL_FRAC0_LSB:
187 case DAR_PLL_FRAC0_MSB:
188 case DAR_PA_PWR:
189 /* no DAR_ACM */
190 case DAR_OVERWRITE_VER:
191 case DAR_CLK_OUT_CTRL:
192 case DAR_PWR_MODES:
193 return true;
194 default:
195 return false;
199 static bool
200 mcr20a_dar_readable(struct device *dev, unsigned int reg)
202 bool rc;
204 /* all writeable are also readable */
205 rc = mcr20a_dar_writeable(dev, reg);
206 if (rc)
207 return rc;
209 /* readonly regs */
210 switch (reg) {
211 case DAR_RX_FRM_LEN:
212 case DAR_CCA1_ED_FNL:
213 case DAR_EVENT_TMR_LSB:
214 case DAR_EVENT_TMR_MSB:
215 case DAR_EVENT_TMR_USB:
216 case DAR_TIMESTAMP_LSB:
217 case DAR_TIMESTAMP_MSB:
218 case DAR_TIMESTAMP_USB:
219 case DAR_SEQ_STATE:
220 case DAR_LQI_VALUE:
221 case DAR_RSSI_CCA_CONT:
222 return true;
223 default:
224 return false;
228 static bool
229 mcr20a_dar_volatile(struct device *dev, unsigned int reg)
231 /* can be changed during runtime */
232 switch (reg) {
233 case DAR_IRQ_STS1:
234 case DAR_IRQ_STS2:
235 case DAR_IRQ_STS3:
236 /* use them in spi_async and regmap so it's volatile */
237 return true;
238 default:
239 return false;
243 static bool
244 mcr20a_dar_precious(struct device *dev, unsigned int reg)
246 /* don't clear irq line on read */
247 switch (reg) {
248 case DAR_IRQ_STS1:
249 case DAR_IRQ_STS2:
250 case DAR_IRQ_STS3:
251 return true;
252 default:
253 return false;
257 static const struct regmap_config mcr20a_dar_regmap = {
258 .name = "mcr20a_dar",
259 .reg_bits = 8,
260 .val_bits = 8,
261 .write_flag_mask = REGISTER_ACCESS | REGISTER_WRITE,
262 .read_flag_mask = REGISTER_ACCESS | REGISTER_READ,
263 .cache_type = REGCACHE_RBTREE,
264 .writeable_reg = mcr20a_dar_writeable,
265 .readable_reg = mcr20a_dar_readable,
266 .volatile_reg = mcr20a_dar_volatile,
267 .precious_reg = mcr20a_dar_precious,
268 .fast_io = true,
269 .can_multi_write = true,
272 static bool
273 mcr20a_iar_writeable(struct device *dev, unsigned int reg)
275 switch (reg) {
276 case IAR_XTAL_TRIM:
277 case IAR_PMC_LP_TRIM:
278 case IAR_MACPANID0_LSB:
279 case IAR_MACPANID0_MSB:
280 case IAR_MACSHORTADDRS0_LSB:
281 case IAR_MACSHORTADDRS0_MSB:
282 case IAR_MACLONGADDRS0_0:
283 case IAR_MACLONGADDRS0_8:
284 case IAR_MACLONGADDRS0_16:
285 case IAR_MACLONGADDRS0_24:
286 case IAR_MACLONGADDRS0_32:
287 case IAR_MACLONGADDRS0_40:
288 case IAR_MACLONGADDRS0_48:
289 case IAR_MACLONGADDRS0_56:
290 case IAR_RX_FRAME_FILTER:
291 case IAR_PLL_INT1:
292 case IAR_PLL_FRAC1_LSB:
293 case IAR_PLL_FRAC1_MSB:
294 case IAR_MACPANID1_LSB:
295 case IAR_MACPANID1_MSB:
296 case IAR_MACSHORTADDRS1_LSB:
297 case IAR_MACSHORTADDRS1_MSB:
298 case IAR_MACLONGADDRS1_0:
299 case IAR_MACLONGADDRS1_8:
300 case IAR_MACLONGADDRS1_16:
301 case IAR_MACLONGADDRS1_24:
302 case IAR_MACLONGADDRS1_32:
303 case IAR_MACLONGADDRS1_40:
304 case IAR_MACLONGADDRS1_48:
305 case IAR_MACLONGADDRS1_56:
306 case IAR_DUAL_PAN_CTRL:
307 case IAR_DUAL_PAN_DWELL:
308 case IAR_CCA1_THRESH:
309 case IAR_CCA1_ED_OFFSET_COMP:
310 case IAR_LQI_OFFSET_COMP:
311 case IAR_CCA_CTRL:
312 case IAR_CCA2_CORR_PEAKS:
313 case IAR_CCA2_CORR_THRESH:
314 case IAR_TMR_PRESCALE:
315 case IAR_ANT_PAD_CTRL:
316 case IAR_MISC_PAD_CTRL:
317 case IAR_BSM_CTRL:
318 case IAR_RNG:
319 case IAR_RX_WTR_MARK:
320 case IAR_SOFT_RESET:
321 case IAR_TXDELAY:
322 case IAR_ACKDELAY:
323 case IAR_CORR_NVAL:
324 case IAR_ANT_AGC_CTRL:
325 case IAR_AGC_THR1:
326 case IAR_AGC_THR2:
327 case IAR_PA_CAL:
328 case IAR_ATT_RSSI1:
329 case IAR_ATT_RSSI2:
330 case IAR_RSSI_OFFSET:
331 case IAR_XTAL_CTRL:
332 case IAR_CHF_PMA_GAIN:
333 case IAR_CHF_IBUF:
334 case IAR_CHF_QBUF:
335 case IAR_CHF_IRIN:
336 case IAR_CHF_QRIN:
337 case IAR_CHF_IL:
338 case IAR_CHF_QL:
339 case IAR_CHF_CC1:
340 case IAR_CHF_CCL:
341 case IAR_CHF_CC2:
342 case IAR_CHF_IROUT:
343 case IAR_CHF_QROUT:
344 case IAR_PA_TUNING:
345 case IAR_VCO_CTRL1:
346 case IAR_VCO_CTRL2:
347 return true;
348 default:
349 return false;
353 static bool
354 mcr20a_iar_readable(struct device *dev, unsigned int reg)
356 bool rc;
358 /* all writeable are also readable */
359 rc = mcr20a_iar_writeable(dev, reg);
360 if (rc)
361 return rc;
363 /* readonly regs */
364 switch (reg) {
365 case IAR_PART_ID:
366 case IAR_DUAL_PAN_STS:
367 case IAR_RX_BYTE_COUNT:
368 case IAR_FILTERFAIL_CODE1:
369 case IAR_FILTERFAIL_CODE2:
370 case IAR_RSSI:
371 return true;
372 default:
373 return false;
377 static bool
378 mcr20a_iar_volatile(struct device *dev, unsigned int reg)
380 /* can be changed during runtime */
381 switch (reg) {
382 case IAR_DUAL_PAN_STS:
383 case IAR_RX_BYTE_COUNT:
384 case IAR_FILTERFAIL_CODE1:
385 case IAR_FILTERFAIL_CODE2:
386 case IAR_RSSI:
387 return true;
388 default:
389 return false;
393 static const struct regmap_config mcr20a_iar_regmap = {
394 .name = "mcr20a_iar",
395 .reg_bits = 16,
396 .val_bits = 8,
397 .write_flag_mask = REGISTER_ACCESS | REGISTER_WRITE | IAR_INDEX,
398 .read_flag_mask = REGISTER_ACCESS | REGISTER_READ | IAR_INDEX,
399 .cache_type = REGCACHE_RBTREE,
400 .writeable_reg = mcr20a_iar_writeable,
401 .readable_reg = mcr20a_iar_readable,
402 .volatile_reg = mcr20a_iar_volatile,
403 .fast_io = true,
406 struct mcr20a_local {
407 struct spi_device *spi;
409 struct ieee802154_hw *hw;
410 struct regmap *regmap_dar;
411 struct regmap *regmap_iar;
413 u8 *buf;
415 bool is_tx;
417 /* for writing tx buffer */
418 struct spi_message tx_buf_msg;
419 u8 tx_header[1];
420 /* burst buffer write command */
421 struct spi_transfer tx_xfer_header;
422 u8 tx_len[1];
423 /* len of tx packet */
424 struct spi_transfer tx_xfer_len;
425 /* data of tx packet */
426 struct spi_transfer tx_xfer_buf;
427 struct sk_buff *tx_skb;
429 /* for read length rxfifo */
430 struct spi_message reg_msg;
431 u8 reg_cmd[1];
432 u8 reg_data[MCR20A_IRQSTS_NUM];
433 struct spi_transfer reg_xfer_cmd;
434 struct spi_transfer reg_xfer_data;
436 /* receive handling */
437 struct spi_message rx_buf_msg;
438 u8 rx_header[1];
439 struct spi_transfer rx_xfer_header;
440 u8 rx_lqi[1];
441 struct spi_transfer rx_xfer_lqi;
442 u8 rx_buf[MCR20A_MAX_BUF];
443 struct spi_transfer rx_xfer_buf;
445 /* isr handling for reading intstat */
446 struct spi_message irq_msg;
447 u8 irq_header[1];
448 u8 irq_data[MCR20A_IRQSTS_NUM];
449 struct spi_transfer irq_xfer_data;
450 struct spi_transfer irq_xfer_header;
453 static void
454 mcr20a_write_tx_buf_complete(void *context)
456 struct mcr20a_local *lp = context;
457 int ret;
459 dev_dbg(printdev(lp), "%s\n", __func__);
461 lp->reg_msg.complete = NULL;
462 lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_PHY_CTRL1);
463 lp->reg_data[0] = MCR20A_XCVSEQ_TX;
464 lp->reg_xfer_data.len = 1;
466 ret = spi_async(lp->spi, &lp->reg_msg);
467 if (ret)
468 dev_err(printdev(lp), "failed to set SEQ TX\n");
471 static int
472 mcr20a_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
474 struct mcr20a_local *lp = hw->priv;
476 dev_dbg(printdev(lp), "%s\n", __func__);
478 lp->tx_skb = skb;
480 print_hex_dump_debug("mcr20a tx: ", DUMP_PREFIX_OFFSET, 16, 1,
481 skb->data, skb->len, 0);
483 lp->is_tx = 1;
485 lp->reg_msg.complete = NULL;
486 lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_PHY_CTRL1);
487 lp->reg_data[0] = MCR20A_XCVSEQ_IDLE;
488 lp->reg_xfer_data.len = 1;
490 return spi_async(lp->spi, &lp->reg_msg);
493 static int
494 mcr20a_ed(struct ieee802154_hw *hw, u8 *level)
496 WARN_ON(!level);
497 *level = 0xbe;
498 return 0;
501 static int
502 mcr20a_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
504 struct mcr20a_local *lp = hw->priv;
505 int ret;
507 dev_dbg(printdev(lp), "%s\n", __func__);
509 /* freqency = ((PLL_INT+64) + (PLL_FRAC/65536)) * 32 MHz */
510 ret = regmap_write(lp->regmap_dar, DAR_PLL_INT0, PLL_INT[channel - 11]);
511 if (ret)
512 return ret;
513 ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_LSB, 0x00);
514 if (ret)
515 return ret;
516 ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_MSB,
517 PLL_FRAC[channel - 11]);
518 if (ret)
519 return ret;
521 return 0;
524 static int
525 mcr20a_start(struct ieee802154_hw *hw)
527 struct mcr20a_local *lp = hw->priv;
528 int ret;
530 dev_dbg(printdev(lp), "%s\n", __func__);
532 /* No slotted operation */
533 dev_dbg(printdev(lp), "no slotted operation\n");
534 ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
535 DAR_PHY_CTRL1_SLOTTED, 0x0);
536 if (ret < 0)
537 return ret;
539 /* enable irq */
540 enable_irq(lp->spi->irq);
542 /* Unmask SEQ interrupt */
543 ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL2,
544 DAR_PHY_CTRL2_SEQMSK, 0x0);
545 if (ret < 0)
546 return ret;
548 /* Start the RX sequence */
549 dev_dbg(printdev(lp), "start the RX sequence\n");
550 ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
551 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
552 if (ret < 0)
553 return ret;
555 return 0;
558 static void
559 mcr20a_stop(struct ieee802154_hw *hw)
561 struct mcr20a_local *lp = hw->priv;
563 dev_dbg(printdev(lp), "%s\n", __func__);
565 /* stop all running sequence */
566 regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
567 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
569 /* disable irq */
570 disable_irq(lp->spi->irq);
573 static int
574 mcr20a_set_hw_addr_filt(struct ieee802154_hw *hw,
575 struct ieee802154_hw_addr_filt *filt,
576 unsigned long changed)
578 struct mcr20a_local *lp = hw->priv;
580 dev_dbg(printdev(lp), "%s\n", __func__);
582 if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
583 u16 addr = le16_to_cpu(filt->short_addr);
585 regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_LSB, addr);
586 regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_MSB, addr >> 8);
589 if (changed & IEEE802154_AFILT_PANID_CHANGED) {
590 u16 pan = le16_to_cpu(filt->pan_id);
592 regmap_write(lp->regmap_iar, IAR_MACPANID0_LSB, pan);
593 regmap_write(lp->regmap_iar, IAR_MACPANID0_MSB, pan >> 8);
596 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
597 u8 addr[8], i;
599 memcpy(addr, &filt->ieee_addr, 8);
600 for (i = 0; i < 8; i++)
601 regmap_write(lp->regmap_iar,
602 IAR_MACLONGADDRS0_0 + i, addr[i]);
605 if (changed & IEEE802154_AFILT_PANC_CHANGED) {
606 if (filt->pan_coord) {
607 regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
608 DAR_PHY_CTRL4_PANCORDNTR0, 0x10);
609 } else {
610 regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
611 DAR_PHY_CTRL4_PANCORDNTR0, 0x00);
615 return 0;
618 /* -30 dBm to 10 dBm */
619 #define MCR20A_MAX_TX_POWERS 0x14
620 static const s32 mcr20a_powers[MCR20A_MAX_TX_POWERS + 1] = {
621 -3000, -2800, -2600, -2400, -2200, -2000, -1800, -1600, -1400,
622 -1200, -1000, -800, -600, -400, -200, 0, 200, 400, 600, 800, 1000
625 static int
626 mcr20a_set_txpower(struct ieee802154_hw *hw, s32 mbm)
628 struct mcr20a_local *lp = hw->priv;
629 u32 i;
631 dev_dbg(printdev(lp), "%s(%d)\n", __func__, mbm);
633 for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
634 if (lp->hw->phy->supported.tx_powers[i] == mbm)
635 return regmap_write(lp->regmap_dar, DAR_PA_PWR,
636 ((i + 8) & 0x1F));
639 return -EINVAL;
642 #define MCR20A_MAX_ED_LEVELS MCR20A_MIN_CCA_THRESHOLD
643 static s32 mcr20a_ed_levels[MCR20A_MAX_ED_LEVELS + 1];
645 static int
646 mcr20a_set_cca_mode(struct ieee802154_hw *hw,
647 const struct wpan_phy_cca *cca)
649 struct mcr20a_local *lp = hw->priv;
650 unsigned int cca_mode = 0xff;
651 bool cca_mode_and = false;
652 int ret;
654 dev_dbg(printdev(lp), "%s\n", __func__);
656 /* mapping 802.15.4 to driver spec */
657 switch (cca->mode) {
658 case NL802154_CCA_ENERGY:
659 cca_mode = MCR20A_CCA_MODE1;
660 break;
661 case NL802154_CCA_CARRIER:
662 cca_mode = MCR20A_CCA_MODE2;
663 break;
664 case NL802154_CCA_ENERGY_CARRIER:
665 switch (cca->opt) {
666 case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
667 cca_mode = MCR20A_CCA_MODE3;
668 cca_mode_and = true;
669 break;
670 case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
671 cca_mode = MCR20A_CCA_MODE3;
672 cca_mode_and = false;
673 break;
674 default:
675 return -EINVAL;
677 break;
678 default:
679 return -EINVAL;
681 ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
682 DAR_PHY_CTRL4_CCATYPE_MASK,
683 cca_mode << DAR_PHY_CTRL4_CCATYPE_SHIFT);
684 if (ret < 0)
685 return ret;
687 if (cca_mode == MCR20A_CCA_MODE3) {
688 if (cca_mode_and) {
689 ret = regmap_update_bits(lp->regmap_iar, IAR_CCA_CTRL,
690 IAR_CCA_CTRL_CCA3_AND_NOT_OR,
691 0x08);
692 } else {
693 ret = regmap_update_bits(lp->regmap_iar,
694 IAR_CCA_CTRL,
695 IAR_CCA_CTRL_CCA3_AND_NOT_OR,
696 0x00);
698 if (ret < 0)
699 return ret;
702 return ret;
705 static int
706 mcr20a_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
708 struct mcr20a_local *lp = hw->priv;
709 u32 i;
711 dev_dbg(printdev(lp), "%s\n", __func__);
713 for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
714 if (hw->phy->supported.cca_ed_levels[i] == mbm)
715 return regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, i);
718 return 0;
721 static int
722 mcr20a_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
724 struct mcr20a_local *lp = hw->priv;
725 int ret;
726 u8 rx_frame_filter_reg = 0x0;
728 dev_dbg(printdev(lp), "%s(%d)\n", __func__, on);
730 if (on) {
731 /* All frame types accepted*/
732 rx_frame_filter_reg &= ~(IAR_RX_FRAME_FLT_FRM_VER);
733 rx_frame_filter_reg |= (IAR_RX_FRAME_FLT_ACK_FT |
734 IAR_RX_FRAME_FLT_NS_FT);
736 ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
737 DAR_PHY_CTRL4_PROMISCUOUS,
738 DAR_PHY_CTRL4_PROMISCUOUS);
739 if (ret < 0)
740 return ret;
742 ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
743 rx_frame_filter_reg);
744 if (ret < 0)
745 return ret;
746 } else {
747 ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
748 DAR_PHY_CTRL4_PROMISCUOUS, 0x0);
749 if (ret < 0)
750 return ret;
752 ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
753 IAR_RX_FRAME_FLT_FRM_VER |
754 IAR_RX_FRAME_FLT_BEACON_FT |
755 IAR_RX_FRAME_FLT_DATA_FT |
756 IAR_RX_FRAME_FLT_CMD_FT);
757 if (ret < 0)
758 return ret;
761 return 0;
764 static const struct ieee802154_ops mcr20a_hw_ops = {
765 .owner = THIS_MODULE,
766 .xmit_async = mcr20a_xmit,
767 .ed = mcr20a_ed,
768 .set_channel = mcr20a_set_channel,
769 .start = mcr20a_start,
770 .stop = mcr20a_stop,
771 .set_hw_addr_filt = mcr20a_set_hw_addr_filt,
772 .set_txpower = mcr20a_set_txpower,
773 .set_cca_mode = mcr20a_set_cca_mode,
774 .set_cca_ed_level = mcr20a_set_cca_ed_level,
775 .set_promiscuous_mode = mcr20a_set_promiscuous_mode,
778 static int
779 mcr20a_request_rx(struct mcr20a_local *lp)
781 dev_dbg(printdev(lp), "%s\n", __func__);
783 /* Start the RX sequence */
784 regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
785 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
787 return 0;
790 static void
791 mcr20a_handle_rx_read_buf_complete(void *context)
793 struct mcr20a_local *lp = context;
794 u8 len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
795 struct sk_buff *skb;
797 dev_dbg(printdev(lp), "%s\n", __func__);
799 dev_dbg(printdev(lp), "RX is done\n");
801 if (!ieee802154_is_valid_psdu_len(len)) {
802 dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
803 len = IEEE802154_MTU;
806 len = len - 2; /* get rid of frame check field */
808 skb = dev_alloc_skb(len);
809 if (!skb)
810 return;
812 memcpy(skb_put(skb, len), lp->rx_buf, len);
813 ieee802154_rx_irqsafe(lp->hw, skb, lp->rx_lqi[0]);
815 print_hex_dump_debug("mcr20a rx: ", DUMP_PREFIX_OFFSET, 16, 1,
816 lp->rx_buf, len, 0);
817 pr_debug("mcr20a rx: lqi: %02hhx\n", lp->rx_lqi[0]);
819 /* start RX sequence */
820 mcr20a_request_rx(lp);
823 static void
824 mcr20a_handle_rx_read_len_complete(void *context)
826 struct mcr20a_local *lp = context;
827 u8 len;
828 int ret;
830 dev_dbg(printdev(lp), "%s\n", __func__);
832 /* get the length of received frame */
833 len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
834 dev_dbg(printdev(lp), "frame len : %d\n", len);
836 /* prepare to read the rx buf */
837 lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
838 lp->rx_header[0] = MCR20A_BURST_READ_PACKET_BUF;
839 lp->rx_xfer_buf.len = len;
841 ret = spi_async(lp->spi, &lp->rx_buf_msg);
842 if (ret)
843 dev_err(printdev(lp), "failed to read rx buffer length\n");
846 static int
847 mcr20a_handle_rx(struct mcr20a_local *lp)
849 dev_dbg(printdev(lp), "%s\n", __func__);
850 lp->reg_msg.complete = mcr20a_handle_rx_read_len_complete;
851 lp->reg_cmd[0] = MCR20A_READ_REG(DAR_RX_FRM_LEN);
852 lp->reg_xfer_data.len = 1;
854 return spi_async(lp->spi, &lp->reg_msg);
857 static int
858 mcr20a_handle_tx_complete(struct mcr20a_local *lp)
860 dev_dbg(printdev(lp), "%s\n", __func__);
862 ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
864 return mcr20a_request_rx(lp);
867 static int
868 mcr20a_handle_tx(struct mcr20a_local *lp)
870 int ret;
872 dev_dbg(printdev(lp), "%s\n", __func__);
874 /* write tx buffer */
875 lp->tx_header[0] = MCR20A_BURST_WRITE_PACKET_BUF;
876 /* add 2 bytes of FCS */
877 lp->tx_len[0] = lp->tx_skb->len + 2;
878 lp->tx_xfer_buf.tx_buf = lp->tx_skb->data;
879 /* add 1 byte psduLength */
880 lp->tx_xfer_buf.len = lp->tx_skb->len + 1;
882 ret = spi_async(lp->spi, &lp->tx_buf_msg);
883 if (ret) {
884 dev_err(printdev(lp), "SPI write Failed for TX buf\n");
885 return ret;
888 return 0;
891 static void
892 mcr20a_irq_clean_complete(void *context)
894 struct mcr20a_local *lp = context;
895 u8 seq_state = lp->irq_data[DAR_IRQ_STS1] & DAR_PHY_CTRL1_XCVSEQ_MASK;
897 dev_dbg(printdev(lp), "%s\n", __func__);
899 enable_irq(lp->spi->irq);
901 dev_dbg(printdev(lp), "IRQ STA1 (%02x) STA2 (%02x)\n",
902 lp->irq_data[DAR_IRQ_STS1], lp->irq_data[DAR_IRQ_STS2]);
904 switch (seq_state) {
905 /* TX IRQ, RX IRQ and SEQ IRQ */
906 case (DAR_IRQSTS1_TXIRQ | DAR_IRQSTS1_SEQIRQ):
907 if (lp->is_tx) {
908 lp->is_tx = 0;
909 dev_dbg(printdev(lp), "TX is done. No ACK\n");
910 mcr20a_handle_tx_complete(lp);
912 break;
913 case (DAR_IRQSTS1_RXIRQ | DAR_IRQSTS1_SEQIRQ):
914 /* rx is starting */
915 dev_dbg(printdev(lp), "RX is starting\n");
916 mcr20a_handle_rx(lp);
917 break;
918 case (DAR_IRQSTS1_RXIRQ | DAR_IRQSTS1_TXIRQ | DAR_IRQSTS1_SEQIRQ):
919 if (lp->is_tx) {
920 /* tx is done */
921 lp->is_tx = 0;
922 dev_dbg(printdev(lp), "TX is done. Get ACK\n");
923 mcr20a_handle_tx_complete(lp);
924 } else {
925 /* rx is starting */
926 dev_dbg(printdev(lp), "RX is starting\n");
927 mcr20a_handle_rx(lp);
929 break;
930 case (DAR_IRQSTS1_SEQIRQ):
931 if (lp->is_tx) {
932 dev_dbg(printdev(lp), "TX is starting\n");
933 mcr20a_handle_tx(lp);
934 } else {
935 dev_dbg(printdev(lp), "MCR20A is stop\n");
937 break;
941 static void mcr20a_irq_status_complete(void *context)
943 int ret;
944 struct mcr20a_local *lp = context;
946 dev_dbg(printdev(lp), "%s\n", __func__);
947 regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
948 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
950 lp->reg_msg.complete = mcr20a_irq_clean_complete;
951 lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_IRQ_STS1);
952 memcpy(lp->reg_data, lp->irq_data, MCR20A_IRQSTS_NUM);
953 lp->reg_xfer_data.len = MCR20A_IRQSTS_NUM;
955 ret = spi_async(lp->spi, &lp->reg_msg);
957 if (ret)
958 dev_err(printdev(lp), "failed to clean irq status\n");
961 static irqreturn_t mcr20a_irq_isr(int irq, void *data)
963 struct mcr20a_local *lp = data;
964 int ret;
966 disable_irq_nosync(irq);
968 lp->irq_header[0] = MCR20A_READ_REG(DAR_IRQ_STS1);
969 /* read IRQSTSx */
970 ret = spi_async(lp->spi, &lp->irq_msg);
971 if (ret) {
972 enable_irq(irq);
973 return IRQ_NONE;
976 return IRQ_HANDLED;
979 static void mcr20a_hw_setup(struct mcr20a_local *lp)
981 u8 i;
982 struct ieee802154_hw *hw = lp->hw;
983 struct wpan_phy *phy = lp->hw->phy;
985 dev_dbg(printdev(lp), "%s\n", __func__);
987 phy->symbol_duration = 16;
988 phy->lifs_period = 40;
989 phy->sifs_period = 12;
991 hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
992 IEEE802154_HW_AFILT |
993 IEEE802154_HW_PROMISCUOUS;
995 phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL |
996 WPAN_PHY_FLAG_CCA_MODE;
998 phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
999 BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
1000 phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
1001 BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
1003 /* initiating cca_ed_levels */
1004 for (i = MCR20A_MAX_CCA_THRESHOLD; i < MCR20A_MIN_CCA_THRESHOLD + 1;
1005 ++i) {
1006 mcr20a_ed_levels[i] = -i * 100;
1009 phy->supported.cca_ed_levels = mcr20a_ed_levels;
1010 phy->supported.cca_ed_levels_size = ARRAY_SIZE(mcr20a_ed_levels);
1012 phy->cca.mode = NL802154_CCA_ENERGY;
1014 phy->supported.channels[0] = MCR20A_VALID_CHANNELS;
1015 phy->current_page = 0;
1016 /* MCR20A default reset value */
1017 phy->current_channel = 20;
1018 phy->symbol_duration = 16;
1019 phy->supported.tx_powers = mcr20a_powers;
1020 phy->supported.tx_powers_size = ARRAY_SIZE(mcr20a_powers);
1021 phy->cca_ed_level = phy->supported.cca_ed_levels[75];
1022 phy->transmit_power = phy->supported.tx_powers[0x0F];
1025 static void
1026 mcr20a_setup_tx_spi_messages(struct mcr20a_local *lp)
1028 spi_message_init(&lp->tx_buf_msg);
1029 lp->tx_buf_msg.context = lp;
1030 lp->tx_buf_msg.complete = mcr20a_write_tx_buf_complete;
1032 lp->tx_xfer_header.len = 1;
1033 lp->tx_xfer_header.tx_buf = lp->tx_header;
1035 lp->tx_xfer_len.len = 1;
1036 lp->tx_xfer_len.tx_buf = lp->tx_len;
1038 spi_message_add_tail(&lp->tx_xfer_header, &lp->tx_buf_msg);
1039 spi_message_add_tail(&lp->tx_xfer_len, &lp->tx_buf_msg);
1040 spi_message_add_tail(&lp->tx_xfer_buf, &lp->tx_buf_msg);
1043 static void
1044 mcr20a_setup_rx_spi_messages(struct mcr20a_local *lp)
1046 spi_message_init(&lp->reg_msg);
1047 lp->reg_msg.context = lp;
1049 lp->reg_xfer_cmd.len = 1;
1050 lp->reg_xfer_cmd.tx_buf = lp->reg_cmd;
1051 lp->reg_xfer_cmd.rx_buf = lp->reg_cmd;
1053 lp->reg_xfer_data.rx_buf = lp->reg_data;
1054 lp->reg_xfer_data.tx_buf = lp->reg_data;
1056 spi_message_add_tail(&lp->reg_xfer_cmd, &lp->reg_msg);
1057 spi_message_add_tail(&lp->reg_xfer_data, &lp->reg_msg);
1059 spi_message_init(&lp->rx_buf_msg);
1060 lp->rx_buf_msg.context = lp;
1061 lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
1062 lp->rx_xfer_header.len = 1;
1063 lp->rx_xfer_header.tx_buf = lp->rx_header;
1064 lp->rx_xfer_header.rx_buf = lp->rx_header;
1066 lp->rx_xfer_buf.rx_buf = lp->rx_buf;
1068 lp->rx_xfer_lqi.len = 1;
1069 lp->rx_xfer_lqi.rx_buf = lp->rx_lqi;
1071 spi_message_add_tail(&lp->rx_xfer_header, &lp->rx_buf_msg);
1072 spi_message_add_tail(&lp->rx_xfer_buf, &lp->rx_buf_msg);
1073 spi_message_add_tail(&lp->rx_xfer_lqi, &lp->rx_buf_msg);
1076 static void
1077 mcr20a_setup_irq_spi_messages(struct mcr20a_local *lp)
1079 spi_message_init(&lp->irq_msg);
1080 lp->irq_msg.context = lp;
1081 lp->irq_msg.complete = mcr20a_irq_status_complete;
1082 lp->irq_xfer_header.len = 1;
1083 lp->irq_xfer_header.tx_buf = lp->irq_header;
1084 lp->irq_xfer_header.rx_buf = lp->irq_header;
1086 lp->irq_xfer_data.len = MCR20A_IRQSTS_NUM;
1087 lp->irq_xfer_data.rx_buf = lp->irq_data;
1089 spi_message_add_tail(&lp->irq_xfer_header, &lp->irq_msg);
1090 spi_message_add_tail(&lp->irq_xfer_data, &lp->irq_msg);
1093 static int
1094 mcr20a_phy_init(struct mcr20a_local *lp)
1096 u8 index;
1097 unsigned int phy_reg = 0;
1098 int ret;
1100 dev_dbg(printdev(lp), "%s\n", __func__);
1102 /* Disable Tristate on COCO MISO for SPI reads */
1103 ret = regmap_write(lp->regmap_iar, IAR_MISC_PAD_CTRL, 0x02);
1104 if (ret)
1105 goto err_ret;
1107 /* Clear all PP IRQ bits in IRQSTS1 to avoid unexpected interrupts
1108 * immediately after init
1110 ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS1, 0xEF);
1111 if (ret)
1112 goto err_ret;
1114 /* Clear all PP IRQ bits in IRQSTS2 */
1115 ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS2,
1116 DAR_IRQSTS2_ASM_IRQ | DAR_IRQSTS2_PB_ERR_IRQ |
1117 DAR_IRQSTS2_WAKE_IRQ);
1118 if (ret)
1119 goto err_ret;
1121 /* Disable all timer interrupts */
1122 ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS3, 0xFF);
1123 if (ret)
1124 goto err_ret;
1126 /* PHY_CTRL1 : default HW settings + AUTOACK enabled */
1127 ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
1128 DAR_PHY_CTRL1_AUTOACK, DAR_PHY_CTRL1_AUTOACK);
1130 /* PHY_CTRL2 : disable all interrupts */
1131 ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL2, 0xFF);
1132 if (ret)
1133 goto err_ret;
1135 /* PHY_CTRL3 : disable all timers and remaining interrupts */
1136 ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL3,
1137 DAR_PHY_CTRL3_ASM_MSK | DAR_PHY_CTRL3_PB_ERR_MSK |
1138 DAR_PHY_CTRL3_WAKE_MSK);
1139 if (ret)
1140 goto err_ret;
1142 /* SRC_CTRL : enable Acknowledge Frame Pending and
1143 * Source Address Matching Enable
1145 ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL,
1146 DAR_SRC_CTRL_ACK_FRM_PND |
1147 (DAR_SRC_CTRL_INDEX << DAR_SRC_CTRL_INDEX_SHIFT));
1148 if (ret)
1149 goto err_ret;
1151 /* RX_FRAME_FILTER */
1152 /* FRM_VER[1:0] = b11. Accept FrameVersion 0 and 1 packets */
1153 ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
1154 IAR_RX_FRAME_FLT_FRM_VER |
1155 IAR_RX_FRAME_FLT_BEACON_FT |
1156 IAR_RX_FRAME_FLT_DATA_FT |
1157 IAR_RX_FRAME_FLT_CMD_FT);
1158 if (ret)
1159 goto err_ret;
1161 dev_info(printdev(lp), "MCR20A DAR overwrites version: 0x%02x\n",
1162 MCR20A_OVERWRITE_VERSION);
1164 /* Overwrites direct registers */
1165 ret = regmap_write(lp->regmap_dar, DAR_OVERWRITE_VER,
1166 MCR20A_OVERWRITE_VERSION);
1167 if (ret)
1168 goto err_ret;
1170 /* Overwrites indirect registers */
1171 ret = regmap_multi_reg_write(lp->regmap_iar, mar20a_iar_overwrites,
1172 ARRAY_SIZE(mar20a_iar_overwrites));
1173 if (ret)
1174 goto err_ret;
1176 /* Clear HW indirect queue */
1177 dev_dbg(printdev(lp), "clear HW indirect queue\n");
1178 for (index = 0; index < MCR20A_PHY_INDIRECT_QUEUE_SIZE; index++) {
1179 phy_reg = (u8)(((index & DAR_SRC_CTRL_INDEX) <<
1180 DAR_SRC_CTRL_INDEX_SHIFT)
1181 | (DAR_SRC_CTRL_SRCADDR_EN)
1182 | (DAR_SRC_CTRL_INDEX_DISABLE));
1183 ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL, phy_reg);
1184 if (ret)
1185 goto err_ret;
1186 phy_reg = 0;
1189 /* Assign HW Indirect hash table to PAN0 */
1190 ret = regmap_read(lp->regmap_iar, IAR_DUAL_PAN_CTRL, &phy_reg);
1191 if (ret)
1192 goto err_ret;
1194 /* Clear current lvl */
1195 phy_reg &= ~IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_MSK;
1197 /* Set new lvl */
1198 phy_reg |= MCR20A_PHY_INDIRECT_QUEUE_SIZE <<
1199 IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_SHIFT;
1200 ret = regmap_write(lp->regmap_iar, IAR_DUAL_PAN_CTRL, phy_reg);
1201 if (ret)
1202 goto err_ret;
1204 /* Set CCA threshold to -75 dBm */
1205 ret = regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, 0x4B);
1206 if (ret)
1207 goto err_ret;
1209 /* Set prescaller to obtain 1 symbol (16us) timebase */
1210 ret = regmap_write(lp->regmap_iar, IAR_TMR_PRESCALE, 0x05);
1211 if (ret)
1212 goto err_ret;
1214 /* Enable autodoze mode. */
1215 ret = regmap_update_bits(lp->regmap_dar, DAR_PWR_MODES,
1216 DAR_PWR_MODES_AUTODOZE,
1217 DAR_PWR_MODES_AUTODOZE);
1218 if (ret)
1219 goto err_ret;
1221 /* Disable clk_out */
1222 ret = regmap_update_bits(lp->regmap_dar, DAR_CLK_OUT_CTRL,
1223 DAR_CLK_OUT_CTRL_EN, 0x0);
1224 if (ret)
1225 goto err_ret;
1227 return 0;
1229 err_ret:
1230 return ret;
1233 static int
1234 mcr20a_probe(struct spi_device *spi)
1236 struct ieee802154_hw *hw;
1237 struct mcr20a_local *lp;
1238 struct gpio_desc *rst_b;
1239 int irq_type;
1240 int ret = -ENOMEM;
1242 dev_dbg(&spi->dev, "%s\n", __func__);
1244 if (!spi->irq) {
1245 dev_err(&spi->dev, "no IRQ specified\n");
1246 return -EINVAL;
1249 rst_b = devm_gpiod_get(&spi->dev, "rst_b", GPIOD_OUT_HIGH);
1250 if (IS_ERR(rst_b)) {
1251 ret = PTR_ERR(rst_b);
1252 if (ret != -EPROBE_DEFER)
1253 dev_err(&spi->dev, "Failed to get 'rst_b' gpio: %d", ret);
1254 return ret;
1257 /* reset mcr20a */
1258 usleep_range(10, 20);
1259 gpiod_set_value_cansleep(rst_b, 1);
1260 usleep_range(10, 20);
1261 gpiod_set_value_cansleep(rst_b, 0);
1262 usleep_range(120, 240);
1264 /* allocate ieee802154_hw and private data */
1265 hw = ieee802154_alloc_hw(sizeof(*lp), &mcr20a_hw_ops);
1266 if (!hw) {
1267 dev_crit(&spi->dev, "ieee802154_alloc_hw failed\n");
1268 return ret;
1271 /* init mcr20a local data */
1272 lp = hw->priv;
1273 lp->hw = hw;
1274 lp->spi = spi;
1276 /* init ieee802154_hw */
1277 hw->parent = &spi->dev;
1278 ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1280 /* init buf */
1281 lp->buf = devm_kzalloc(&spi->dev, SPI_COMMAND_BUFFER, GFP_KERNEL);
1283 if (!lp->buf) {
1284 ret = -ENOMEM;
1285 goto free_dev;
1288 mcr20a_setup_tx_spi_messages(lp);
1289 mcr20a_setup_rx_spi_messages(lp);
1290 mcr20a_setup_irq_spi_messages(lp);
1292 /* setup regmap */
1293 lp->regmap_dar = devm_regmap_init_spi(spi, &mcr20a_dar_regmap);
1294 if (IS_ERR(lp->regmap_dar)) {
1295 ret = PTR_ERR(lp->regmap_dar);
1296 dev_err(&spi->dev, "Failed to allocate dar map: %d\n",
1297 ret);
1298 goto free_dev;
1301 lp->regmap_iar = devm_regmap_init_spi(spi, &mcr20a_iar_regmap);
1302 if (IS_ERR(lp->regmap_iar)) {
1303 ret = PTR_ERR(lp->regmap_iar);
1304 dev_err(&spi->dev, "Failed to allocate iar map: %d\n", ret);
1305 goto free_dev;
1308 mcr20a_hw_setup(lp);
1310 spi_set_drvdata(spi, lp);
1312 ret = mcr20a_phy_init(lp);
1313 if (ret < 0) {
1314 dev_crit(&spi->dev, "mcr20a_phy_init failed\n");
1315 goto free_dev;
1318 irq_type = irq_get_trigger_type(spi->irq);
1319 if (!irq_type)
1320 irq_type = IRQF_TRIGGER_FALLING;
1322 ret = devm_request_irq(&spi->dev, spi->irq, mcr20a_irq_isr,
1323 irq_type, dev_name(&spi->dev), lp);
1324 if (ret) {
1325 dev_err(&spi->dev, "could not request_irq for mcr20a\n");
1326 ret = -ENODEV;
1327 goto free_dev;
1330 /* disable_irq by default and wait for starting hardware */
1331 disable_irq(spi->irq);
1333 ret = ieee802154_register_hw(hw);
1334 if (ret) {
1335 dev_crit(&spi->dev, "ieee802154_register_hw failed\n");
1336 goto free_dev;
1339 return ret;
1341 free_dev:
1342 ieee802154_free_hw(lp->hw);
1344 return ret;
1347 static int mcr20a_remove(struct spi_device *spi)
1349 struct mcr20a_local *lp = spi_get_drvdata(spi);
1351 dev_dbg(&spi->dev, "%s\n", __func__);
1353 ieee802154_unregister_hw(lp->hw);
1354 ieee802154_free_hw(lp->hw);
1356 return 0;
1359 static const struct of_device_id mcr20a_of_match[] = {
1360 { .compatible = "nxp,mcr20a", },
1361 { },
1363 MODULE_DEVICE_TABLE(of, mcr20a_of_match);
1365 static const struct spi_device_id mcr20a_device_id[] = {
1366 { .name = "mcr20a", },
1367 { },
1369 MODULE_DEVICE_TABLE(spi, mcr20a_device_id);
1371 static struct spi_driver mcr20a_driver = {
1372 .id_table = mcr20a_device_id,
1373 .driver = {
1374 .of_match_table = of_match_ptr(mcr20a_of_match),
1375 .name = "mcr20a",
1377 .probe = mcr20a_probe,
1378 .remove = mcr20a_remove,
1381 module_spi_driver(mcr20a_driver);
1383 MODULE_DESCRIPTION("MCR20A Transceiver Driver");
1384 MODULE_LICENSE("GPL v2");
1385 MODULE_AUTHOR("Xue Liu <liuxuenetmail@gmail>");