2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
21 Abstract: rt2500pci device specific routines.
22 Supported chipsets: RT2560.
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/eeprom_93cx6.h>
31 #include <linux/slab.h>
34 #include "rt2x00mmio.h"
35 #include "rt2x00pci.h"
36 #include "rt2500pci.h"
40 * All access to the CSR registers will go through the methods
41 * rt2x00mmio_register_read and rt2x00mmio_register_write.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
51 #define WAIT_FOR_BBP(__dev, __reg) \
52 rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53 #define WAIT_FOR_RF(__dev, __reg) \
54 rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56 static void rt2500pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
57 const unsigned int word
, const u8 value
)
61 mutex_lock(&rt2x00dev
->csr_mutex
);
64 * Wait until the BBP becomes available, afterwards we
65 * can safely write the new data into the register.
67 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
69 rt2x00_set_field32(®
, BBPCSR_VALUE
, value
);
70 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
71 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
72 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 1);
74 rt2x00mmio_register_write(rt2x00dev
, BBPCSR
, reg
);
77 mutex_unlock(&rt2x00dev
->csr_mutex
);
80 static u8
rt2500pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
81 const unsigned int word
)
86 mutex_lock(&rt2x00dev
->csr_mutex
);
89 * Wait until the BBP becomes available, afterwards we
90 * can safely write the read request into the register.
91 * After the data has been written, we wait until hardware
92 * returns the correct value, if at any time the register
93 * doesn't become available in time, reg will be 0xffffffff
94 * which means we return 0xff to the caller.
96 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
98 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
99 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
100 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 0);
102 rt2x00mmio_register_write(rt2x00dev
, BBPCSR
, reg
);
104 WAIT_FOR_BBP(rt2x00dev
, ®
);
107 value
= rt2x00_get_field32(reg
, BBPCSR_VALUE
);
109 mutex_unlock(&rt2x00dev
->csr_mutex
);
114 static void rt2500pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
115 const unsigned int word
, const u32 value
)
119 mutex_lock(&rt2x00dev
->csr_mutex
);
122 * Wait until the RF becomes available, afterwards we
123 * can safely write the new data into the register.
125 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
127 rt2x00_set_field32(®
, RFCSR_VALUE
, value
);
128 rt2x00_set_field32(®
, RFCSR_NUMBER_OF_BITS
, 20);
129 rt2x00_set_field32(®
, RFCSR_IF_SELECT
, 0);
130 rt2x00_set_field32(®
, RFCSR_BUSY
, 1);
132 rt2x00mmio_register_write(rt2x00dev
, RFCSR
, reg
);
133 rt2x00_rf_write(rt2x00dev
, word
, value
);
136 mutex_unlock(&rt2x00dev
->csr_mutex
);
139 static void rt2500pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
141 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
144 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR21
);
146 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_IN
);
147 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_OUT
);
148 eeprom
->reg_data_clock
=
149 !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_CLOCK
);
150 eeprom
->reg_chip_select
=
151 !!rt2x00_get_field32(reg
, CSR21_EEPROM_CHIP_SELECT
);
154 static void rt2500pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
156 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
159 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_IN
, !!eeprom
->reg_data_in
);
160 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_OUT
, !!eeprom
->reg_data_out
);
161 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_CLOCK
,
162 !!eeprom
->reg_data_clock
);
163 rt2x00_set_field32(®
, CSR21_EEPROM_CHIP_SELECT
,
164 !!eeprom
->reg_chip_select
);
166 rt2x00mmio_register_write(rt2x00dev
, CSR21
, reg
);
169 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
170 static const struct rt2x00debug rt2500pci_rt2x00debug
= {
171 .owner
= THIS_MODULE
,
173 .read
= rt2x00mmio_register_read
,
174 .write
= rt2x00mmio_register_write
,
175 .flags
= RT2X00DEBUGFS_OFFSET
,
176 .word_base
= CSR_REG_BASE
,
177 .word_size
= sizeof(u32
),
178 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
181 .read
= rt2x00_eeprom_read
,
182 .write
= rt2x00_eeprom_write
,
183 .word_base
= EEPROM_BASE
,
184 .word_size
= sizeof(u16
),
185 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
188 .read
= rt2500pci_bbp_read
,
189 .write
= rt2500pci_bbp_write
,
190 .word_base
= BBP_BASE
,
191 .word_size
= sizeof(u8
),
192 .word_count
= BBP_SIZE
/ sizeof(u8
),
195 .read
= rt2x00_rf_read
,
196 .write
= rt2500pci_rf_write
,
197 .word_base
= RF_BASE
,
198 .word_size
= sizeof(u32
),
199 .word_count
= RF_SIZE
/ sizeof(u32
),
202 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
204 static int rt2500pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
208 reg
= rt2x00mmio_register_read(rt2x00dev
, GPIOCSR
);
209 return rt2x00_get_field32(reg
, GPIOCSR_VAL0
);
212 #ifdef CONFIG_RT2X00_LIB_LEDS
213 static void rt2500pci_brightness_set(struct led_classdev
*led_cdev
,
214 enum led_brightness brightness
)
216 struct rt2x00_led
*led
=
217 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
218 unsigned int enabled
= brightness
!= LED_OFF
;
221 reg
= rt2x00mmio_register_read(led
->rt2x00dev
, LEDCSR
);
223 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
224 rt2x00_set_field32(®
, LEDCSR_LINK
, enabled
);
225 else if (led
->type
== LED_TYPE_ACTIVITY
)
226 rt2x00_set_field32(®
, LEDCSR_ACTIVITY
, enabled
);
228 rt2x00mmio_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
231 static int rt2500pci_blink_set(struct led_classdev
*led_cdev
,
232 unsigned long *delay_on
,
233 unsigned long *delay_off
)
235 struct rt2x00_led
*led
=
236 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
239 reg
= rt2x00mmio_register_read(led
->rt2x00dev
, LEDCSR
);
240 rt2x00_set_field32(®
, LEDCSR_ON_PERIOD
, *delay_on
);
241 rt2x00_set_field32(®
, LEDCSR_OFF_PERIOD
, *delay_off
);
242 rt2x00mmio_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
247 static void rt2500pci_init_led(struct rt2x00_dev
*rt2x00dev
,
248 struct rt2x00_led
*led
,
251 led
->rt2x00dev
= rt2x00dev
;
253 led
->led_dev
.brightness_set
= rt2500pci_brightness_set
;
254 led
->led_dev
.blink_set
= rt2500pci_blink_set
;
255 led
->flags
= LED_INITIALIZED
;
257 #endif /* CONFIG_RT2X00_LIB_LEDS */
260 * Configuration handlers.
262 static void rt2500pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
263 const unsigned int filter_flags
)
268 * Start configuration steps.
269 * Note that the version error will always be dropped
270 * and broadcast frames will always be accepted since
271 * there is no filter for it at this time.
273 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR0
);
274 rt2x00_set_field32(®
, RXCSR0_DROP_CRC
,
275 !(filter_flags
& FIF_FCSFAIL
));
276 rt2x00_set_field32(®
, RXCSR0_DROP_PHYSICAL
,
277 !(filter_flags
& FIF_PLCPFAIL
));
278 rt2x00_set_field32(®
, RXCSR0_DROP_CONTROL
,
279 !(filter_flags
& FIF_CONTROL
));
280 rt2x00_set_field32(®
, RXCSR0_DROP_NOT_TO_ME
,
281 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
));
282 rt2x00_set_field32(®
, RXCSR0_DROP_TODS
,
283 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
) &&
284 !rt2x00dev
->intf_ap_count
);
285 rt2x00_set_field32(®
, RXCSR0_DROP_VERSION_ERROR
, 1);
286 rt2x00_set_field32(®
, RXCSR0_DROP_MCAST
,
287 !(filter_flags
& FIF_ALLMULTI
));
288 rt2x00_set_field32(®
, RXCSR0_DROP_BCAST
, 0);
289 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
292 static void rt2500pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
293 struct rt2x00_intf
*intf
,
294 struct rt2x00intf_conf
*conf
,
295 const unsigned int flags
)
297 struct data_queue
*queue
= rt2x00dev
->bcn
;
298 unsigned int bcn_preload
;
301 if (flags
& CONFIG_UPDATE_TYPE
) {
303 * Enable beacon config
305 bcn_preload
= PREAMBLE
+ GET_DURATION(IEEE80211_HEADER
, 20);
306 reg
= rt2x00mmio_register_read(rt2x00dev
, BCNCSR1
);
307 rt2x00_set_field32(®
, BCNCSR1_PRELOAD
, bcn_preload
);
308 rt2x00_set_field32(®
, BCNCSR1_BEACON_CWMIN
, queue
->cw_min
);
309 rt2x00mmio_register_write(rt2x00dev
, BCNCSR1
, reg
);
312 * Enable synchronisation.
314 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
315 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, conf
->sync
);
316 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
319 if (flags
& CONFIG_UPDATE_MAC
)
320 rt2x00mmio_register_multiwrite(rt2x00dev
, CSR3
,
321 conf
->mac
, sizeof(conf
->mac
));
323 if (flags
& CONFIG_UPDATE_BSSID
)
324 rt2x00mmio_register_multiwrite(rt2x00dev
, CSR5
,
325 conf
->bssid
, sizeof(conf
->bssid
));
328 static void rt2500pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
329 struct rt2x00lib_erp
*erp
,
336 * When short preamble is enabled, we should set bit 0x08
338 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
339 preamble_mask
= erp
->short_preamble
<< 3;
341 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR1
);
342 rt2x00_set_field32(®
, TXCSR1_ACK_TIMEOUT
, 0x162);
343 rt2x00_set_field32(®
, TXCSR1_ACK_CONSUME_TIME
, 0xa2);
344 rt2x00_set_field32(®
, TXCSR1_TSF_OFFSET
, IEEE80211_HEADER
);
345 rt2x00_set_field32(®
, TXCSR1_AUTORESPONDER
, 1);
346 rt2x00mmio_register_write(rt2x00dev
, TXCSR1
, reg
);
348 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR2
);
349 rt2x00_set_field32(®
, ARCSR2_SIGNAL
, 0x00);
350 rt2x00_set_field32(®
, ARCSR2_SERVICE
, 0x04);
351 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
352 GET_DURATION(ACK_SIZE
, 10));
353 rt2x00mmio_register_write(rt2x00dev
, ARCSR2
, reg
);
355 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR3
);
356 rt2x00_set_field32(®
, ARCSR3_SIGNAL
, 0x01 | preamble_mask
);
357 rt2x00_set_field32(®
, ARCSR3_SERVICE
, 0x04);
358 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
359 GET_DURATION(ACK_SIZE
, 20));
360 rt2x00mmio_register_write(rt2x00dev
, ARCSR3
, reg
);
362 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR4
);
363 rt2x00_set_field32(®
, ARCSR4_SIGNAL
, 0x02 | preamble_mask
);
364 rt2x00_set_field32(®
, ARCSR4_SERVICE
, 0x04);
365 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
366 GET_DURATION(ACK_SIZE
, 55));
367 rt2x00mmio_register_write(rt2x00dev
, ARCSR4
, reg
);
369 reg
= rt2x00mmio_register_read(rt2x00dev
, ARCSR5
);
370 rt2x00_set_field32(®
, ARCSR5_SIGNAL
, 0x03 | preamble_mask
);
371 rt2x00_set_field32(®
, ARCSR5_SERVICE
, 0x84);
372 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
373 GET_DURATION(ACK_SIZE
, 110));
374 rt2x00mmio_register_write(rt2x00dev
, ARCSR5
, reg
);
377 if (changed
& BSS_CHANGED_BASIC_RATES
)
378 rt2x00mmio_register_write(rt2x00dev
, ARCSR1
, erp
->basic_rates
);
380 if (changed
& BSS_CHANGED_ERP_SLOT
) {
381 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR11
);
382 rt2x00_set_field32(®
, CSR11_SLOT_TIME
, erp
->slot_time
);
383 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
385 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR18
);
386 rt2x00_set_field32(®
, CSR18_SIFS
, erp
->sifs
);
387 rt2x00_set_field32(®
, CSR18_PIFS
, erp
->pifs
);
388 rt2x00mmio_register_write(rt2x00dev
, CSR18
, reg
);
390 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR19
);
391 rt2x00_set_field32(®
, CSR19_DIFS
, erp
->difs
);
392 rt2x00_set_field32(®
, CSR19_EIFS
, erp
->eifs
);
393 rt2x00mmio_register_write(rt2x00dev
, CSR19
, reg
);
396 if (changed
& BSS_CHANGED_BEACON_INT
) {
397 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR12
);
398 rt2x00_set_field32(®
, CSR12_BEACON_INTERVAL
,
399 erp
->beacon_int
* 16);
400 rt2x00_set_field32(®
, CSR12_CFP_MAX_DURATION
,
401 erp
->beacon_int
* 16);
402 rt2x00mmio_register_write(rt2x00dev
, CSR12
, reg
);
407 static void rt2500pci_config_ant(struct rt2x00_dev
*rt2x00dev
,
408 struct antenna_setup
*ant
)
415 * We should never come here because rt2x00lib is supposed
416 * to catch this and send us the correct antenna explicitely.
418 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
419 ant
->tx
== ANTENNA_SW_DIVERSITY
);
421 reg
= rt2x00mmio_register_read(rt2x00dev
, BBPCSR1
);
422 r14
= rt2500pci_bbp_read(rt2x00dev
, 14);
423 r2
= rt2500pci_bbp_read(rt2x00dev
, 2);
426 * Configure the TX antenna.
430 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 0);
431 rt2x00_set_field32(®
, BBPCSR1_CCK
, 0);
432 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 0);
436 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
437 rt2x00_set_field32(®
, BBPCSR1_CCK
, 2);
438 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 2);
443 * Configure the RX antenna.
447 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 0);
451 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
456 * RT2525E and RT5222 need to flip TX I/Q
458 if (rt2x00_rf(rt2x00dev
, RF2525E
) || rt2x00_rf(rt2x00dev
, RF5222
)) {
459 rt2x00_set_field8(&r2
, BBP_R2_TX_IQ_FLIP
, 1);
460 rt2x00_set_field32(®
, BBPCSR1_CCK_FLIP
, 1);
461 rt2x00_set_field32(®
, BBPCSR1_OFDM_FLIP
, 1);
464 * RT2525E does not need RX I/Q Flip.
466 if (rt2x00_rf(rt2x00dev
, RF2525E
))
467 rt2x00_set_field8(&r14
, BBP_R14_RX_IQ_FLIP
, 0);
469 rt2x00_set_field32(®
, BBPCSR1_CCK_FLIP
, 0);
470 rt2x00_set_field32(®
, BBPCSR1_OFDM_FLIP
, 0);
473 rt2x00mmio_register_write(rt2x00dev
, BBPCSR1
, reg
);
474 rt2500pci_bbp_write(rt2x00dev
, 14, r14
);
475 rt2500pci_bbp_write(rt2x00dev
, 2, r2
);
478 static void rt2500pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
479 struct rf_channel
*rf
, const int txpower
)
486 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
489 * Switch on tuning bits.
490 * For RT2523 devices we do not need to update the R1 register.
492 if (!rt2x00_rf(rt2x00dev
, RF2523
))
493 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 1);
494 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 1);
497 * For RT2525 we should first set the channel to half band higher.
499 if (rt2x00_rf(rt2x00dev
, RF2525
)) {
500 static const u32 vals
[] = {
501 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
502 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
503 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
504 0x00080d2e, 0x00080d3a
507 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
508 rt2500pci_rf_write(rt2x00dev
, 2, vals
[rf
->channel
- 1]);
509 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
511 rt2500pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
514 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
515 rt2500pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
516 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
518 rt2500pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
521 * Channel 14 requires the Japan filter bit to be set.
524 rt2x00_set_field8(&r70
, BBP_R70_JAPAN_FILTER
, rf
->channel
== 14);
525 rt2500pci_bbp_write(rt2x00dev
, 70, r70
);
530 * Switch off tuning bits.
531 * For RT2523 devices we do not need to update the R1 register.
533 if (!rt2x00_rf(rt2x00dev
, RF2523
)) {
534 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 0);
535 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
538 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 0);
539 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
542 * Clear false CRC during channel switch.
544 rf
->rf1
= rt2x00mmio_register_read(rt2x00dev
, CNT0
);
547 static void rt2500pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
552 rf3
= rt2x00_rf_read(rt2x00dev
, 3);
553 rt2x00_set_field32(&rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
554 rt2500pci_rf_write(rt2x00dev
, 3, rf3
);
557 static void rt2500pci_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
558 struct rt2x00lib_conf
*libconf
)
562 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR11
);
563 rt2x00_set_field32(®
, CSR11_LONG_RETRY
,
564 libconf
->conf
->long_frame_max_tx_count
);
565 rt2x00_set_field32(®
, CSR11_SHORT_RETRY
,
566 libconf
->conf
->short_frame_max_tx_count
);
567 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
570 static void rt2500pci_config_ps(struct rt2x00_dev
*rt2x00dev
,
571 struct rt2x00lib_conf
*libconf
)
573 enum dev_state state
=
574 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
575 STATE_SLEEP
: STATE_AWAKE
;
578 if (state
== STATE_SLEEP
) {
579 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR20
);
580 rt2x00_set_field32(®
, CSR20_DELAY_AFTER_TBCN
,
581 (rt2x00dev
->beacon_int
- 20) * 16);
582 rt2x00_set_field32(®
, CSR20_TBCN_BEFORE_WAKEUP
,
583 libconf
->conf
->listen_interval
- 1);
585 /* We must first disable autowake before it can be enabled */
586 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 0);
587 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
589 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 1);
590 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
592 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR20
);
593 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 0);
594 rt2x00mmio_register_write(rt2x00dev
, CSR20
, reg
);
597 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
600 static void rt2500pci_config(struct rt2x00_dev
*rt2x00dev
,
601 struct rt2x00lib_conf
*libconf
,
602 const unsigned int flags
)
604 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
605 rt2500pci_config_channel(rt2x00dev
, &libconf
->rf
,
606 libconf
->conf
->power_level
);
607 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
608 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
609 rt2500pci_config_txpower(rt2x00dev
,
610 libconf
->conf
->power_level
);
611 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
612 rt2500pci_config_retry_limit(rt2x00dev
, libconf
);
613 if (flags
& IEEE80211_CONF_CHANGE_PS
)
614 rt2500pci_config_ps(rt2x00dev
, libconf
);
620 static void rt2500pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
621 struct link_qual
*qual
)
626 * Update FCS error count from register.
628 reg
= rt2x00mmio_register_read(rt2x00dev
, CNT0
);
629 qual
->rx_failed
= rt2x00_get_field32(reg
, CNT0_FCS_ERROR
);
632 * Update False CCA count from register.
634 reg
= rt2x00mmio_register_read(rt2x00dev
, CNT3
);
635 qual
->false_cca
= rt2x00_get_field32(reg
, CNT3_FALSE_CCA
);
638 static inline void rt2500pci_set_vgc(struct rt2x00_dev
*rt2x00dev
,
639 struct link_qual
*qual
, u8 vgc_level
)
641 if (qual
->vgc_level_reg
!= vgc_level
) {
642 rt2500pci_bbp_write(rt2x00dev
, 17, vgc_level
);
643 qual
->vgc_level
= vgc_level
;
644 qual
->vgc_level_reg
= vgc_level
;
648 static void rt2500pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
649 struct link_qual
*qual
)
651 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x48);
654 static void rt2500pci_link_tuner(struct rt2x00_dev
*rt2x00dev
,
655 struct link_qual
*qual
, const u32 count
)
658 * To prevent collisions with MAC ASIC on chipsets
659 * up to version C the link tuning should halt after 20
660 * seconds while being associated.
662 if (rt2x00_rev(rt2x00dev
) < RT2560_VERSION_D
&&
663 rt2x00dev
->intf_associated
&& count
> 20)
667 * Chipset versions C and lower should directly continue
668 * to the dynamic CCA tuning. Chipset version D and higher
669 * should go straight to dynamic CCA tuning when they
670 * are not associated.
672 if (rt2x00_rev(rt2x00dev
) < RT2560_VERSION_D
||
673 !rt2x00dev
->intf_associated
)
674 goto dynamic_cca_tune
;
677 * A too low RSSI will cause too much false CCA which will
678 * then corrupt the R17 tuning. To remidy this the tuning should
679 * be stopped (While making sure the R17 value will not exceed limits)
681 if (qual
->rssi
< -80 && count
> 20) {
682 if (qual
->vgc_level_reg
>= 0x41)
683 rt2500pci_set_vgc(rt2x00dev
, qual
, qual
->vgc_level
);
688 * Special big-R17 for short distance
690 if (qual
->rssi
>= -58) {
691 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x50);
696 * Special mid-R17 for middle distance
698 if (qual
->rssi
>= -74) {
699 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x41);
704 * Leave short or middle distance condition, restore r17
705 * to the dynamic tuning range.
707 if (qual
->vgc_level_reg
>= 0x41) {
708 rt2500pci_set_vgc(rt2x00dev
, qual
, qual
->vgc_level
);
715 * R17 is inside the dynamic tuning range,
716 * start tuning the link based on the false cca counter.
718 if (qual
->false_cca
> 512 && qual
->vgc_level_reg
< 0x40)
719 rt2500pci_set_vgc(rt2x00dev
, qual
, ++qual
->vgc_level_reg
);
720 else if (qual
->false_cca
< 100 && qual
->vgc_level_reg
> 0x32)
721 rt2500pci_set_vgc(rt2x00dev
, qual
, --qual
->vgc_level_reg
);
727 static void rt2500pci_start_queue(struct data_queue
*queue
)
729 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
732 switch (queue
->qid
) {
734 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR0
);
735 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
, 0);
736 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
739 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
740 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
741 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
742 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
743 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
750 static void rt2500pci_kick_queue(struct data_queue
*queue
)
752 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
755 switch (queue
->qid
) {
757 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
758 rt2x00_set_field32(®
, TXCSR0_KICK_PRIO
, 1);
759 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
762 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
763 rt2x00_set_field32(®
, TXCSR0_KICK_TX
, 1);
764 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
767 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
768 rt2x00_set_field32(®
, TXCSR0_KICK_ATIM
, 1);
769 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
776 static void rt2500pci_stop_queue(struct data_queue
*queue
)
778 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
781 switch (queue
->qid
) {
785 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR0
);
786 rt2x00_set_field32(®
, TXCSR0_ABORT
, 1);
787 rt2x00mmio_register_write(rt2x00dev
, TXCSR0
, reg
);
790 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR0
);
791 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
, 1);
792 rt2x00mmio_register_write(rt2x00dev
, RXCSR0
, reg
);
795 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
796 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
797 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
798 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
799 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
802 * Wait for possibly running tbtt tasklets.
804 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
812 * Initialization functions.
814 static bool rt2500pci_get_entry_state(struct queue_entry
*entry
)
816 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
819 if (entry
->queue
->qid
== QID_RX
) {
820 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
822 return rt2x00_get_field32(word
, RXD_W0_OWNER_NIC
);
824 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
826 return (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
827 rt2x00_get_field32(word
, TXD_W0_VALID
));
831 static void rt2500pci_clear_entry(struct queue_entry
*entry
)
833 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
834 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
837 if (entry
->queue
->qid
== QID_RX
) {
838 word
= rt2x00_desc_read(entry_priv
->desc
, 1);
839 rt2x00_set_field32(&word
, RXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
840 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
842 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
843 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
844 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
846 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
847 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
848 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
849 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
853 static int rt2500pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
855 struct queue_entry_priv_mmio
*entry_priv
;
859 * Initialize registers.
861 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR2
);
862 rt2x00_set_field32(®
, TXCSR2_TXD_SIZE
, rt2x00dev
->tx
[0].desc_size
);
863 rt2x00_set_field32(®
, TXCSR2_NUM_TXD
, rt2x00dev
->tx
[1].limit
);
864 rt2x00_set_field32(®
, TXCSR2_NUM_ATIM
, rt2x00dev
->atim
->limit
);
865 rt2x00_set_field32(®
, TXCSR2_NUM_PRIO
, rt2x00dev
->tx
[0].limit
);
866 rt2x00mmio_register_write(rt2x00dev
, TXCSR2
, reg
);
868 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
869 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR3
);
870 rt2x00_set_field32(®
, TXCSR3_TX_RING_REGISTER
,
871 entry_priv
->desc_dma
);
872 rt2x00mmio_register_write(rt2x00dev
, TXCSR3
, reg
);
874 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
875 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR5
);
876 rt2x00_set_field32(®
, TXCSR5_PRIO_RING_REGISTER
,
877 entry_priv
->desc_dma
);
878 rt2x00mmio_register_write(rt2x00dev
, TXCSR5
, reg
);
880 entry_priv
= rt2x00dev
->atim
->entries
[0].priv_data
;
881 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR4
);
882 rt2x00_set_field32(®
, TXCSR4_ATIM_RING_REGISTER
,
883 entry_priv
->desc_dma
);
884 rt2x00mmio_register_write(rt2x00dev
, TXCSR4
, reg
);
886 entry_priv
= rt2x00dev
->bcn
->entries
[0].priv_data
;
887 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR6
);
888 rt2x00_set_field32(®
, TXCSR6_BEACON_RING_REGISTER
,
889 entry_priv
->desc_dma
);
890 rt2x00mmio_register_write(rt2x00dev
, TXCSR6
, reg
);
892 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR1
);
893 rt2x00_set_field32(®
, RXCSR1_RXD_SIZE
, rt2x00dev
->rx
->desc_size
);
894 rt2x00_set_field32(®
, RXCSR1_NUM_RXD
, rt2x00dev
->rx
->limit
);
895 rt2x00mmio_register_write(rt2x00dev
, RXCSR1
, reg
);
897 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
898 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR2
);
899 rt2x00_set_field32(®
, RXCSR2_RX_RING_REGISTER
,
900 entry_priv
->desc_dma
);
901 rt2x00mmio_register_write(rt2x00dev
, RXCSR2
, reg
);
906 static int rt2500pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
910 rt2x00mmio_register_write(rt2x00dev
, PSCSR0
, 0x00020002);
911 rt2x00mmio_register_write(rt2x00dev
, PSCSR1
, 0x00000002);
912 rt2x00mmio_register_write(rt2x00dev
, PSCSR2
, 0x00020002);
913 rt2x00mmio_register_write(rt2x00dev
, PSCSR3
, 0x00000002);
915 reg
= rt2x00mmio_register_read(rt2x00dev
, TIMECSR
);
916 rt2x00_set_field32(®
, TIMECSR_US_COUNT
, 33);
917 rt2x00_set_field32(®
, TIMECSR_US_64_COUNT
, 63);
918 rt2x00_set_field32(®
, TIMECSR_BEACON_EXPECT
, 0);
919 rt2x00mmio_register_write(rt2x00dev
, TIMECSR
, reg
);
921 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR9
);
922 rt2x00_set_field32(®
, CSR9_MAX_FRAME_UNIT
,
923 rt2x00dev
->rx
->data_size
/ 128);
924 rt2x00mmio_register_write(rt2x00dev
, CSR9
, reg
);
927 * Always use CWmin and CWmax set in descriptor.
929 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR11
);
930 rt2x00_set_field32(®
, CSR11_CW_SELECT
, 0);
931 rt2x00mmio_register_write(rt2x00dev
, CSR11
, reg
);
933 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
934 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
935 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, 0);
936 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
937 rt2x00_set_field32(®
, CSR14_TCFP
, 0);
938 rt2x00_set_field32(®
, CSR14_TATIMW
, 0);
939 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
940 rt2x00_set_field32(®
, CSR14_CFP_COUNT_PRELOAD
, 0);
941 rt2x00_set_field32(®
, CSR14_TBCM_PRELOAD
, 0);
942 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
944 rt2x00mmio_register_write(rt2x00dev
, CNT3
, 0);
946 reg
= rt2x00mmio_register_read(rt2x00dev
, TXCSR8
);
947 rt2x00_set_field32(®
, TXCSR8_BBP_ID0
, 10);
948 rt2x00_set_field32(®
, TXCSR8_BBP_ID0_VALID
, 1);
949 rt2x00_set_field32(®
, TXCSR8_BBP_ID1
, 11);
950 rt2x00_set_field32(®
, TXCSR8_BBP_ID1_VALID
, 1);
951 rt2x00_set_field32(®
, TXCSR8_BBP_ID2
, 13);
952 rt2x00_set_field32(®
, TXCSR8_BBP_ID2_VALID
, 1);
953 rt2x00_set_field32(®
, TXCSR8_BBP_ID3
, 12);
954 rt2x00_set_field32(®
, TXCSR8_BBP_ID3_VALID
, 1);
955 rt2x00mmio_register_write(rt2x00dev
, TXCSR8
, reg
);
957 reg
= rt2x00mmio_register_read(rt2x00dev
, ARTCSR0
);
958 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_1MBS
, 112);
959 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_2MBS
, 56);
960 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_5_5MBS
, 20);
961 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_11MBS
, 10);
962 rt2x00mmio_register_write(rt2x00dev
, ARTCSR0
, reg
);
964 reg
= rt2x00mmio_register_read(rt2x00dev
, ARTCSR1
);
965 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_6MBS
, 45);
966 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_9MBS
, 37);
967 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_12MBS
, 33);
968 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_18MBS
, 29);
969 rt2x00mmio_register_write(rt2x00dev
, ARTCSR1
, reg
);
971 reg
= rt2x00mmio_register_read(rt2x00dev
, ARTCSR2
);
972 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_24MBS
, 29);
973 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_36MBS
, 25);
974 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_48MBS
, 25);
975 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_54MBS
, 25);
976 rt2x00mmio_register_write(rt2x00dev
, ARTCSR2
, reg
);
978 reg
= rt2x00mmio_register_read(rt2x00dev
, RXCSR3
);
979 rt2x00_set_field32(®
, RXCSR3_BBP_ID0
, 47); /* CCK Signal */
980 rt2x00_set_field32(®
, RXCSR3_BBP_ID0_VALID
, 1);
981 rt2x00_set_field32(®
, RXCSR3_BBP_ID1
, 51); /* Rssi */
982 rt2x00_set_field32(®
, RXCSR3_BBP_ID1_VALID
, 1);
983 rt2x00_set_field32(®
, RXCSR3_BBP_ID2
, 42); /* OFDM Rate */
984 rt2x00_set_field32(®
, RXCSR3_BBP_ID2_VALID
, 1);
985 rt2x00_set_field32(®
, RXCSR3_BBP_ID3
, 51); /* RSSI */
986 rt2x00_set_field32(®
, RXCSR3_BBP_ID3_VALID
, 1);
987 rt2x00mmio_register_write(rt2x00dev
, RXCSR3
, reg
);
989 reg
= rt2x00mmio_register_read(rt2x00dev
, PCICSR
);
990 rt2x00_set_field32(®
, PCICSR_BIG_ENDIAN
, 0);
991 rt2x00_set_field32(®
, PCICSR_RX_TRESHOLD
, 0);
992 rt2x00_set_field32(®
, PCICSR_TX_TRESHOLD
, 3);
993 rt2x00_set_field32(®
, PCICSR_BURST_LENTH
, 1);
994 rt2x00_set_field32(®
, PCICSR_ENABLE_CLK
, 1);
995 rt2x00_set_field32(®
, PCICSR_READ_MULTIPLE
, 1);
996 rt2x00_set_field32(®
, PCICSR_WRITE_INVALID
, 1);
997 rt2x00mmio_register_write(rt2x00dev
, PCICSR
, reg
);
999 rt2x00mmio_register_write(rt2x00dev
, PWRCSR0
, 0x3f3b3100);
1001 rt2x00mmio_register_write(rt2x00dev
, GPIOCSR
, 0x0000ff00);
1002 rt2x00mmio_register_write(rt2x00dev
, TESTCSR
, 0x000000f0);
1004 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1007 rt2x00mmio_register_write(rt2x00dev
, MACCSR0
, 0x00213223);
1008 rt2x00mmio_register_write(rt2x00dev
, MACCSR1
, 0x00235518);
1010 reg
= rt2x00mmio_register_read(rt2x00dev
, MACCSR2
);
1011 rt2x00_set_field32(®
, MACCSR2_DELAY
, 64);
1012 rt2x00mmio_register_write(rt2x00dev
, MACCSR2
, reg
);
1014 reg
= rt2x00mmio_register_read(rt2x00dev
, RALINKCSR
);
1015 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA0
, 17);
1016 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID0
, 26);
1017 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_VALID0
, 1);
1018 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA1
, 0);
1019 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID1
, 26);
1020 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_VALID1
, 1);
1021 rt2x00mmio_register_write(rt2x00dev
, RALINKCSR
, reg
);
1023 rt2x00mmio_register_write(rt2x00dev
, BBPCSR1
, 0x82188200);
1025 rt2x00mmio_register_write(rt2x00dev
, TXACKCSR0
, 0x00000020);
1027 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR1
);
1028 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 1);
1029 rt2x00_set_field32(®
, CSR1_BBP_RESET
, 0);
1030 rt2x00_set_field32(®
, CSR1_HOST_READY
, 0);
1031 rt2x00mmio_register_write(rt2x00dev
, CSR1
, reg
);
1033 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR1
);
1034 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 0);
1035 rt2x00_set_field32(®
, CSR1_HOST_READY
, 1);
1036 rt2x00mmio_register_write(rt2x00dev
, CSR1
, reg
);
1039 * We must clear the FCS and FIFO error count.
1040 * These registers are cleared on read,
1041 * so we may pass a useless variable to store the value.
1043 reg
= rt2x00mmio_register_read(rt2x00dev
, CNT0
);
1044 reg
= rt2x00mmio_register_read(rt2x00dev
, CNT4
);
1049 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
1054 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1055 value
= rt2500pci_bbp_read(rt2x00dev
, 0);
1056 if ((value
!= 0xff) && (value
!= 0x00))
1058 udelay(REGISTER_BUSY_DELAY
);
1061 rt2x00_err(rt2x00dev
, "BBP register access failed, aborting\n");
1065 static int rt2500pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1072 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev
)))
1075 rt2500pci_bbp_write(rt2x00dev
, 3, 0x02);
1076 rt2500pci_bbp_write(rt2x00dev
, 4, 0x19);
1077 rt2500pci_bbp_write(rt2x00dev
, 14, 0x1c);
1078 rt2500pci_bbp_write(rt2x00dev
, 15, 0x30);
1079 rt2500pci_bbp_write(rt2x00dev
, 16, 0xac);
1080 rt2500pci_bbp_write(rt2x00dev
, 18, 0x18);
1081 rt2500pci_bbp_write(rt2x00dev
, 19, 0xff);
1082 rt2500pci_bbp_write(rt2x00dev
, 20, 0x1e);
1083 rt2500pci_bbp_write(rt2x00dev
, 21, 0x08);
1084 rt2500pci_bbp_write(rt2x00dev
, 22, 0x08);
1085 rt2500pci_bbp_write(rt2x00dev
, 23, 0x08);
1086 rt2500pci_bbp_write(rt2x00dev
, 24, 0x70);
1087 rt2500pci_bbp_write(rt2x00dev
, 25, 0x40);
1088 rt2500pci_bbp_write(rt2x00dev
, 26, 0x08);
1089 rt2500pci_bbp_write(rt2x00dev
, 27, 0x23);
1090 rt2500pci_bbp_write(rt2x00dev
, 30, 0x10);
1091 rt2500pci_bbp_write(rt2x00dev
, 31, 0x2b);
1092 rt2500pci_bbp_write(rt2x00dev
, 32, 0xb9);
1093 rt2500pci_bbp_write(rt2x00dev
, 34, 0x12);
1094 rt2500pci_bbp_write(rt2x00dev
, 35, 0x50);
1095 rt2500pci_bbp_write(rt2x00dev
, 39, 0xc4);
1096 rt2500pci_bbp_write(rt2x00dev
, 40, 0x02);
1097 rt2500pci_bbp_write(rt2x00dev
, 41, 0x60);
1098 rt2500pci_bbp_write(rt2x00dev
, 53, 0x10);
1099 rt2500pci_bbp_write(rt2x00dev
, 54, 0x18);
1100 rt2500pci_bbp_write(rt2x00dev
, 56, 0x08);
1101 rt2500pci_bbp_write(rt2x00dev
, 57, 0x10);
1102 rt2500pci_bbp_write(rt2x00dev
, 58, 0x08);
1103 rt2500pci_bbp_write(rt2x00dev
, 61, 0x6d);
1104 rt2500pci_bbp_write(rt2x00dev
, 62, 0x10);
1106 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1107 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
);
1109 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1110 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1111 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1112 rt2500pci_bbp_write(rt2x00dev
, reg_id
, value
);
1120 * Device state switch handlers.
1122 static void rt2500pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1123 enum dev_state state
)
1125 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
1127 unsigned long flags
;
1130 * When interrupts are being enabled, the interrupt registers
1131 * should clear the register to assure a clean state.
1133 if (state
== STATE_RADIO_IRQ_ON
) {
1134 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR7
);
1135 rt2x00mmio_register_write(rt2x00dev
, CSR7
, reg
);
1139 * Only toggle the interrupts bits we are going to use.
1140 * Non-checked interrupt bits are disabled by default.
1142 spin_lock_irqsave(&rt2x00dev
->irqmask_lock
, flags
);
1144 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
1145 rt2x00_set_field32(®
, CSR8_TBCN_EXPIRE
, mask
);
1146 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, mask
);
1147 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, mask
);
1148 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, mask
);
1149 rt2x00_set_field32(®
, CSR8_RXDONE
, mask
);
1150 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1152 spin_unlock_irqrestore(&rt2x00dev
->irqmask_lock
, flags
);
1154 if (state
== STATE_RADIO_IRQ_OFF
) {
1156 * Ensure that all tasklets are finished.
1158 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
1159 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
1160 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1164 static int rt2500pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1167 * Initialize all registers.
1169 if (unlikely(rt2500pci_init_queues(rt2x00dev
) ||
1170 rt2500pci_init_registers(rt2x00dev
) ||
1171 rt2500pci_init_bbp(rt2x00dev
)))
1177 static void rt2500pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1182 rt2x00mmio_register_write(rt2x00dev
, PWRCSR0
, 0);
1185 static int rt2500pci_set_state(struct rt2x00_dev
*rt2x00dev
,
1186 enum dev_state state
)
1194 put_to_sleep
= (state
!= STATE_AWAKE
);
1196 reg
= rt2x00mmio_register_read(rt2x00dev
, PWRCSR1
);
1197 rt2x00_set_field32(®
, PWRCSR1_SET_STATE
, 1);
1198 rt2x00_set_field32(®
, PWRCSR1_BBP_DESIRE_STATE
, state
);
1199 rt2x00_set_field32(®
, PWRCSR1_RF_DESIRE_STATE
, state
);
1200 rt2x00_set_field32(®
, PWRCSR1_PUT_TO_SLEEP
, put_to_sleep
);
1201 rt2x00mmio_register_write(rt2x00dev
, PWRCSR1
, reg
);
1204 * Device is not guaranteed to be in the requested state yet.
1205 * We must wait until the register indicates that the
1206 * device has entered the correct state.
1208 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1209 reg2
= rt2x00mmio_register_read(rt2x00dev
, PWRCSR1
);
1210 bbp_state
= rt2x00_get_field32(reg2
, PWRCSR1_BBP_CURR_STATE
);
1211 rf_state
= rt2x00_get_field32(reg2
, PWRCSR1_RF_CURR_STATE
);
1212 if (bbp_state
== state
&& rf_state
== state
)
1214 rt2x00mmio_register_write(rt2x00dev
, PWRCSR1
, reg
);
1221 static int rt2500pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1222 enum dev_state state
)
1227 case STATE_RADIO_ON
:
1228 retval
= rt2500pci_enable_radio(rt2x00dev
);
1230 case STATE_RADIO_OFF
:
1231 rt2500pci_disable_radio(rt2x00dev
);
1233 case STATE_RADIO_IRQ_ON
:
1234 case STATE_RADIO_IRQ_OFF
:
1235 rt2500pci_toggle_irq(rt2x00dev
, state
);
1237 case STATE_DEEP_SLEEP
:
1241 retval
= rt2500pci_set_state(rt2x00dev
, state
);
1248 if (unlikely(retval
))
1249 rt2x00_err(rt2x00dev
, "Device failed to enter state %d (%d)\n",
1256 * TX descriptor initialization
1258 static void rt2500pci_write_tx_desc(struct queue_entry
*entry
,
1259 struct txentry_desc
*txdesc
)
1261 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1262 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1263 __le32
*txd
= entry_priv
->desc
;
1267 * Start writing the descriptor words.
1269 word
= rt2x00_desc_read(txd
, 1);
1270 rt2x00_set_field32(&word
, TXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
1271 rt2x00_desc_write(txd
, 1, word
);
1273 word
= rt2x00_desc_read(txd
, 2);
1274 rt2x00_set_field32(&word
, TXD_W2_IV_OFFSET
, IEEE80211_HEADER
);
1275 rt2x00_set_field32(&word
, TXD_W2_AIFS
, entry
->queue
->aifs
);
1276 rt2x00_set_field32(&word
, TXD_W2_CWMIN
, entry
->queue
->cw_min
);
1277 rt2x00_set_field32(&word
, TXD_W2_CWMAX
, entry
->queue
->cw_max
);
1278 rt2x00_desc_write(txd
, 2, word
);
1280 word
= rt2x00_desc_read(txd
, 3);
1281 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1282 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1283 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_LOW
,
1284 txdesc
->u
.plcp
.length_low
);
1285 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_HIGH
,
1286 txdesc
->u
.plcp
.length_high
);
1287 rt2x00_desc_write(txd
, 3, word
);
1289 word
= rt2x00_desc_read(txd
, 10);
1290 rt2x00_set_field32(&word
, TXD_W10_RTS
,
1291 test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
));
1292 rt2x00_desc_write(txd
, 10, word
);
1295 * Writing TXD word 0 must the last to prevent a race condition with
1296 * the device, whereby the device may take hold of the TXD before we
1297 * finished updating it.
1299 word
= rt2x00_desc_read(txd
, 0);
1300 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1301 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1302 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1303 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1304 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1305 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1306 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1307 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1308 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1309 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1310 rt2x00_set_field32(&word
, TXD_W0_CIPHER_OWNER
, 1);
1311 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1312 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1313 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1314 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, txdesc
->length
);
1315 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, CIPHER_NONE
);
1316 rt2x00_desc_write(txd
, 0, word
);
1319 * Register descriptor details in skb frame descriptor.
1321 skbdesc
->desc
= txd
;
1322 skbdesc
->desc_len
= TXD_DESC_SIZE
;
1326 * TX data initialization
1328 static void rt2500pci_write_beacon(struct queue_entry
*entry
,
1329 struct txentry_desc
*txdesc
)
1331 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1335 * Disable beaconing while we are reloading the beacon data,
1336 * otherwise we might be sending out invalid data.
1338 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR14
);
1339 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
1340 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
1342 if (rt2x00queue_map_txskb(entry
)) {
1343 rt2x00_err(rt2x00dev
, "Fail to map beacon, aborting\n");
1348 * Write the TX descriptor for the beacon.
1350 rt2500pci_write_tx_desc(entry
, txdesc
);
1353 * Dump beacon to userspace through debugfs.
1355 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
);
1358 * Enable beaconing again.
1360 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
1361 rt2x00mmio_register_write(rt2x00dev
, CSR14
, reg
);
1365 * RX control handlers
1367 static void rt2500pci_fill_rxdone(struct queue_entry
*entry
,
1368 struct rxdone_entry_desc
*rxdesc
)
1370 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1374 word0
= rt2x00_desc_read(entry_priv
->desc
, 0);
1375 word2
= rt2x00_desc_read(entry_priv
->desc
, 2);
1377 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1378 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1379 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1380 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1383 * Obtain the status about this packet.
1384 * When frame was received with an OFDM bitrate,
1385 * the signal is the PLCP value. If it was received with
1386 * a CCK bitrate the signal is the rate in 100kbit/s.
1388 rxdesc
->signal
= rt2x00_get_field32(word2
, RXD_W2_SIGNAL
);
1389 rxdesc
->rssi
= rt2x00_get_field32(word2
, RXD_W2_RSSI
) -
1390 entry
->queue
->rt2x00dev
->rssi_offset
;
1391 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1393 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1394 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1396 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
1397 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1398 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1402 * Interrupt functions.
1404 static void rt2500pci_txdone(struct rt2x00_dev
*rt2x00dev
,
1405 const enum data_queue_qid queue_idx
)
1407 struct data_queue
*queue
= rt2x00queue_get_tx_queue(rt2x00dev
, queue_idx
);
1408 struct queue_entry_priv_mmio
*entry_priv
;
1409 struct queue_entry
*entry
;
1410 struct txdone_entry_desc txdesc
;
1413 while (!rt2x00queue_empty(queue
)) {
1414 entry
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
1415 entry_priv
= entry
->priv_data
;
1416 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
1418 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1419 !rt2x00_get_field32(word
, TXD_W0_VALID
))
1423 * Obtain the status about this packet.
1426 switch (rt2x00_get_field32(word
, TXD_W0_RESULT
)) {
1427 case 0: /* Success */
1428 case 1: /* Success with retry */
1429 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
1431 case 2: /* Failure, excessive retries */
1432 __set_bit(TXDONE_EXCESSIVE_RETRY
, &txdesc
.flags
);
1433 /* Fall through - this is a failed frame! */
1434 default: /* Failure */
1435 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
1437 txdesc
.retry
= rt2x00_get_field32(word
, TXD_W0_RETRY_COUNT
);
1439 rt2x00lib_txdone(entry
, &txdesc
);
1443 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev
*rt2x00dev
,
1444 struct rt2x00_field32 irq_field
)
1449 * Enable a single interrupt. The interrupt mask register
1450 * access needs locking.
1452 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
1454 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
1455 rt2x00_set_field32(®
, irq_field
, 0);
1456 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1458 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
1461 static void rt2500pci_txstatus_tasklet(unsigned long data
)
1463 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1467 * Handle all tx queues.
1469 rt2500pci_txdone(rt2x00dev
, QID_ATIM
);
1470 rt2500pci_txdone(rt2x00dev
, QID_AC_VO
);
1471 rt2500pci_txdone(rt2x00dev
, QID_AC_VI
);
1474 * Enable all TXDONE interrupts again.
1476 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
)) {
1477 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
1479 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
1480 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, 0);
1481 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, 0);
1482 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, 0);
1483 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1485 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
1489 static void rt2500pci_tbtt_tasklet(unsigned long data
)
1491 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1492 rt2x00lib_beacondone(rt2x00dev
);
1493 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1494 rt2500pci_enable_interrupt(rt2x00dev
, CSR8_TBCN_EXPIRE
);
1497 static void rt2500pci_rxdone_tasklet(unsigned long data
)
1499 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
1500 if (rt2x00mmio_rxdone(rt2x00dev
))
1501 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
1502 else if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1503 rt2500pci_enable_interrupt(rt2x00dev
, CSR8_RXDONE
);
1506 static irqreturn_t
rt2500pci_interrupt(int irq
, void *dev_instance
)
1508 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1512 * Get the interrupt sources & saved to local variable.
1513 * Write register value back to clear pending interrupts.
1515 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR7
);
1516 rt2x00mmio_register_write(rt2x00dev
, CSR7
, reg
);
1521 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1527 * Schedule tasklets for interrupt handling.
1529 if (rt2x00_get_field32(reg
, CSR7_TBCN_EXPIRE
))
1530 tasklet_hi_schedule(&rt2x00dev
->tbtt_tasklet
);
1532 if (rt2x00_get_field32(reg
, CSR7_RXDONE
))
1533 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
1535 if (rt2x00_get_field32(reg
, CSR7_TXDONE_ATIMRING
) ||
1536 rt2x00_get_field32(reg
, CSR7_TXDONE_PRIORING
) ||
1537 rt2x00_get_field32(reg
, CSR7_TXDONE_TXRING
)) {
1538 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
1540 * Mask out all txdone interrupts.
1542 rt2x00_set_field32(&mask
, CSR8_TXDONE_TXRING
, 1);
1543 rt2x00_set_field32(&mask
, CSR8_TXDONE_ATIMRING
, 1);
1544 rt2x00_set_field32(&mask
, CSR8_TXDONE_PRIORING
, 1);
1548 * Disable all interrupts for which a tasklet was scheduled right now,
1549 * the tasklet will reenable the appropriate interrupts.
1551 spin_lock(&rt2x00dev
->irqmask_lock
);
1553 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR8
);
1555 rt2x00mmio_register_write(rt2x00dev
, CSR8
, reg
);
1557 spin_unlock(&rt2x00dev
->irqmask_lock
);
1563 * Device probe functions.
1565 static int rt2500pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1567 struct eeprom_93cx6 eeprom
;
1572 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR21
);
1574 eeprom
.data
= rt2x00dev
;
1575 eeprom
.register_read
= rt2500pci_eepromregister_read
;
1576 eeprom
.register_write
= rt2500pci_eepromregister_write
;
1577 eeprom
.width
= rt2x00_get_field32(reg
, CSR21_TYPE_93C46
) ?
1578 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
1579 eeprom
.reg_data_in
= 0;
1580 eeprom
.reg_data_out
= 0;
1581 eeprom
.reg_data_clock
= 0;
1582 eeprom
.reg_chip_select
= 0;
1584 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
1585 EEPROM_SIZE
/ sizeof(u16
));
1588 * Start validation of the data that has been read.
1590 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1591 rt2x00lib_set_mac_address(rt2x00dev
, mac
);
1593 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
1594 if (word
== 0xffff) {
1595 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1596 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1597 ANTENNA_SW_DIVERSITY
);
1598 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1599 ANTENNA_SW_DIVERSITY
);
1600 rt2x00_set_field16(&word
, EEPROM_ANTENNA_LED_MODE
,
1602 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1603 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1604 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF2522
);
1605 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1606 rt2x00_eeprom_dbg(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1609 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
);
1610 if (word
== 0xffff) {
1611 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1612 rt2x00_set_field16(&word
, EEPROM_NIC_DYN_BBP_TUNE
, 0);
1613 rt2x00_set_field16(&word
, EEPROM_NIC_CCK_TX_POWER
, 0);
1614 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1615 rt2x00_eeprom_dbg(rt2x00dev
, "NIC: 0x%04x\n", word
);
1618 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
);
1619 if (word
== 0xffff) {
1620 rt2x00_set_field16(&word
, EEPROM_CALIBRATE_OFFSET_RSSI
,
1621 DEFAULT_RSSI_OFFSET
);
1622 rt2x00_eeprom_write(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, word
);
1623 rt2x00_eeprom_dbg(rt2x00dev
, "Calibrate offset: 0x%04x\n",
1630 static int rt2500pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1637 * Read EEPROM word for configuration.
1639 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
1642 * Identify RF chipset.
1644 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1645 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR0
);
1646 rt2x00_set_chip(rt2x00dev
, RT2560
, value
,
1647 rt2x00_get_field32(reg
, CSR0_REVISION
));
1649 if (!rt2x00_rf(rt2x00dev
, RF2522
) &&
1650 !rt2x00_rf(rt2x00dev
, RF2523
) &&
1651 !rt2x00_rf(rt2x00dev
, RF2524
) &&
1652 !rt2x00_rf(rt2x00dev
, RF2525
) &&
1653 !rt2x00_rf(rt2x00dev
, RF2525E
) &&
1654 !rt2x00_rf(rt2x00dev
, RF5222
)) {
1655 rt2x00_err(rt2x00dev
, "Invalid RF chipset detected\n");
1660 * Identify default antenna configuration.
1662 rt2x00dev
->default_ant
.tx
=
1663 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1664 rt2x00dev
->default_ant
.rx
=
1665 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1668 * Store led mode, for correct led behaviour.
1670 #ifdef CONFIG_RT2X00_LIB_LEDS
1671 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1673 rt2500pci_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1674 if (value
== LED_MODE_TXRX_ACTIVITY
||
1675 value
== LED_MODE_DEFAULT
||
1676 value
== LED_MODE_ASUS
)
1677 rt2500pci_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1679 #endif /* CONFIG_RT2X00_LIB_LEDS */
1682 * Detect if this device has an hardware controlled radio.
1684 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
)) {
1685 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
1687 * On this device RFKILL initialized during probe does not work.
1689 __set_bit(REQUIRE_DELAYED_RFKILL
, &rt2x00dev
->cap_flags
);
1693 * Check if the BBP tuning should be enabled.
1695 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
);
1696 if (!rt2x00_get_field16(eeprom
, EEPROM_NIC_DYN_BBP_TUNE
))
1697 __set_bit(CAPABILITY_LINK_TUNING
, &rt2x00dev
->cap_flags
);
1700 * Read the RSSI <-> dBm offset information.
1702 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
);
1703 rt2x00dev
->rssi_offset
=
1704 rt2x00_get_field16(eeprom
, EEPROM_CALIBRATE_OFFSET_RSSI
);
1710 * RF value list for RF2522
1713 static const struct rf_channel rf_vals_bg_2522
[] = {
1714 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1715 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1716 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1717 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1718 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1719 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1720 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1721 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1722 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1723 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1724 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1725 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1726 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1727 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1731 * RF value list for RF2523
1734 static const struct rf_channel rf_vals_bg_2523
[] = {
1735 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1736 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1737 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1738 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1739 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1740 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1741 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1742 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1743 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1744 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1745 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1746 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1747 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1748 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1752 * RF value list for RF2524
1755 static const struct rf_channel rf_vals_bg_2524
[] = {
1756 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1757 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1758 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1759 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1760 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1761 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1762 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1763 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1764 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1765 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1766 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1767 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1768 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1769 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1773 * RF value list for RF2525
1776 static const struct rf_channel rf_vals_bg_2525
[] = {
1777 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1778 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1779 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1780 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1781 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1782 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1783 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1784 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1785 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1786 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1787 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1788 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1789 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1790 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1794 * RF value list for RF2525e
1797 static const struct rf_channel rf_vals_bg_2525e
[] = {
1798 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1799 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1800 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1801 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1802 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1803 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1804 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1805 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1806 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1807 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1808 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1809 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1810 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1811 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1815 * RF value list for RF5222
1816 * Supports: 2.4 GHz & 5.2 GHz
1818 static const struct rf_channel rf_vals_5222
[] = {
1819 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1820 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1821 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1822 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1823 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1824 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1825 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1826 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1827 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1828 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1829 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1830 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1831 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1832 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1834 /* 802.11 UNI / HyperLan 2 */
1835 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1836 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1837 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1838 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1839 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1840 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1841 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1842 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1844 /* 802.11 HyperLan 2 */
1845 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1846 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1847 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1848 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1849 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1850 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1851 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1852 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1853 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1854 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1857 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1858 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1859 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1860 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1861 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1864 static int rt2500pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1866 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1867 struct channel_info
*info
;
1872 * Initialize all hw fields.
1874 ieee80211_hw_set(rt2x00dev
->hw
, PS_NULLFUNC_STACK
);
1875 ieee80211_hw_set(rt2x00dev
->hw
, SUPPORTS_PS
);
1876 ieee80211_hw_set(rt2x00dev
->hw
, HOST_BROADCAST_PS_BUFFERING
);
1877 ieee80211_hw_set(rt2x00dev
->hw
, SIGNAL_DBM
);
1879 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
1880 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1881 rt2x00_eeprom_addr(rt2x00dev
,
1882 EEPROM_MAC_ADDR_0
));
1885 * Disable powersaving as default.
1887 rt2x00dev
->hw
->wiphy
->flags
&= ~WIPHY_FLAG_PS_ON_BY_DEFAULT
;
1890 * Initialize hw_mode information.
1892 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1893 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
1895 if (rt2x00_rf(rt2x00dev
, RF2522
)) {
1896 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2522
);
1897 spec
->channels
= rf_vals_bg_2522
;
1898 } else if (rt2x00_rf(rt2x00dev
, RF2523
)) {
1899 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2523
);
1900 spec
->channels
= rf_vals_bg_2523
;
1901 } else if (rt2x00_rf(rt2x00dev
, RF2524
)) {
1902 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2524
);
1903 spec
->channels
= rf_vals_bg_2524
;
1904 } else if (rt2x00_rf(rt2x00dev
, RF2525
)) {
1905 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525
);
1906 spec
->channels
= rf_vals_bg_2525
;
1907 } else if (rt2x00_rf(rt2x00dev
, RF2525E
)) {
1908 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525e
);
1909 spec
->channels
= rf_vals_bg_2525e
;
1910 } else if (rt2x00_rf(rt2x00dev
, RF5222
)) {
1911 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
1912 spec
->num_channels
= ARRAY_SIZE(rf_vals_5222
);
1913 spec
->channels
= rf_vals_5222
;
1917 * Create channel information array
1919 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
1923 spec
->channels_info
= info
;
1925 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1926 for (i
= 0; i
< 14; i
++) {
1927 info
[i
].max_power
= MAX_TXPOWER
;
1928 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
1931 if (spec
->num_channels
> 14) {
1932 for (i
= 14; i
< spec
->num_channels
; i
++) {
1933 info
[i
].max_power
= MAX_TXPOWER
;
1934 info
[i
].default_power1
= DEFAULT_TXPOWER
;
1941 static int rt2500pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1947 * Allocate eeprom data.
1949 retval
= rt2500pci_validate_eeprom(rt2x00dev
);
1953 retval
= rt2500pci_init_eeprom(rt2x00dev
);
1958 * Enable rfkill polling by setting GPIO direction of the
1959 * rfkill switch GPIO pin correctly.
1961 reg
= rt2x00mmio_register_read(rt2x00dev
, GPIOCSR
);
1962 rt2x00_set_field32(®
, GPIOCSR_DIR0
, 1);
1963 rt2x00mmio_register_write(rt2x00dev
, GPIOCSR
, reg
);
1966 * Initialize hw specifications.
1968 retval
= rt2500pci_probe_hw_mode(rt2x00dev
);
1973 * This device requires the atim queue and DMA-mapped skbs.
1975 __set_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
);
1976 __set_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
);
1977 __set_bit(REQUIRE_SW_SEQNO
, &rt2x00dev
->cap_flags
);
1980 * Set the rssi offset.
1982 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1988 * IEEE80211 stack callback functions.
1990 static u64
rt2500pci_get_tsf(struct ieee80211_hw
*hw
,
1991 struct ieee80211_vif
*vif
)
1993 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1997 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR17
);
1998 tsf
= (u64
) rt2x00_get_field32(reg
, CSR17_HIGH_TSFTIMER
) << 32;
1999 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR16
);
2000 tsf
|= rt2x00_get_field32(reg
, CSR16_LOW_TSFTIMER
);
2005 static int rt2500pci_tx_last_beacon(struct ieee80211_hw
*hw
)
2007 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2010 reg
= rt2x00mmio_register_read(rt2x00dev
, CSR15
);
2011 return rt2x00_get_field32(reg
, CSR15_BEACON_SENT
);
2014 static const struct ieee80211_ops rt2500pci_mac80211_ops
= {
2016 .start
= rt2x00mac_start
,
2017 .stop
= rt2x00mac_stop
,
2018 .add_interface
= rt2x00mac_add_interface
,
2019 .remove_interface
= rt2x00mac_remove_interface
,
2020 .config
= rt2x00mac_config
,
2021 .configure_filter
= rt2x00mac_configure_filter
,
2022 .sw_scan_start
= rt2x00mac_sw_scan_start
,
2023 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
2024 .get_stats
= rt2x00mac_get_stats
,
2025 .bss_info_changed
= rt2x00mac_bss_info_changed
,
2026 .conf_tx
= rt2x00mac_conf_tx
,
2027 .get_tsf
= rt2500pci_get_tsf
,
2028 .tx_last_beacon
= rt2500pci_tx_last_beacon
,
2029 .rfkill_poll
= rt2x00mac_rfkill_poll
,
2030 .flush
= rt2x00mac_flush
,
2031 .set_antenna
= rt2x00mac_set_antenna
,
2032 .get_antenna
= rt2x00mac_get_antenna
,
2033 .get_ringparam
= rt2x00mac_get_ringparam
,
2034 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
2037 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops
= {
2038 .irq_handler
= rt2500pci_interrupt
,
2039 .txstatus_tasklet
= rt2500pci_txstatus_tasklet
,
2040 .tbtt_tasklet
= rt2500pci_tbtt_tasklet
,
2041 .rxdone_tasklet
= rt2500pci_rxdone_tasklet
,
2042 .probe_hw
= rt2500pci_probe_hw
,
2043 .initialize
= rt2x00mmio_initialize
,
2044 .uninitialize
= rt2x00mmio_uninitialize
,
2045 .get_entry_state
= rt2500pci_get_entry_state
,
2046 .clear_entry
= rt2500pci_clear_entry
,
2047 .set_device_state
= rt2500pci_set_device_state
,
2048 .rfkill_poll
= rt2500pci_rfkill_poll
,
2049 .link_stats
= rt2500pci_link_stats
,
2050 .reset_tuner
= rt2500pci_reset_tuner
,
2051 .link_tuner
= rt2500pci_link_tuner
,
2052 .start_queue
= rt2500pci_start_queue
,
2053 .kick_queue
= rt2500pci_kick_queue
,
2054 .stop_queue
= rt2500pci_stop_queue
,
2055 .flush_queue
= rt2x00mmio_flush_queue
,
2056 .write_tx_desc
= rt2500pci_write_tx_desc
,
2057 .write_beacon
= rt2500pci_write_beacon
,
2058 .fill_rxdone
= rt2500pci_fill_rxdone
,
2059 .config_filter
= rt2500pci_config_filter
,
2060 .config_intf
= rt2500pci_config_intf
,
2061 .config_erp
= rt2500pci_config_erp
,
2062 .config_ant
= rt2500pci_config_ant
,
2063 .config
= rt2500pci_config
,
2066 static void rt2500pci_queue_init(struct data_queue
*queue
)
2068 switch (queue
->qid
) {
2071 queue
->data_size
= DATA_FRAME_SIZE
;
2072 queue
->desc_size
= RXD_DESC_SIZE
;
2073 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2081 queue
->data_size
= DATA_FRAME_SIZE
;
2082 queue
->desc_size
= TXD_DESC_SIZE
;
2083 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2088 queue
->data_size
= MGMT_FRAME_SIZE
;
2089 queue
->desc_size
= TXD_DESC_SIZE
;
2090 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2095 queue
->data_size
= DATA_FRAME_SIZE
;
2096 queue
->desc_size
= TXD_DESC_SIZE
;
2097 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
2106 static const struct rt2x00_ops rt2500pci_ops
= {
2107 .name
= KBUILD_MODNAME
,
2109 .eeprom_size
= EEPROM_SIZE
,
2111 .tx_queues
= NUM_TX_QUEUES
,
2112 .queue_init
= rt2500pci_queue_init
,
2113 .lib
= &rt2500pci_rt2x00_ops
,
2114 .hw
= &rt2500pci_mac80211_ops
,
2115 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2116 .debugfs
= &rt2500pci_rt2x00debug
,
2117 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2121 * RT2500pci module information.
2123 static const struct pci_device_id rt2500pci_device_table
[] = {
2124 { PCI_DEVICE(0x1814, 0x0201) },
2128 MODULE_AUTHOR(DRV_PROJECT
);
2129 MODULE_VERSION(DRV_VERSION
);
2130 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2131 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2132 MODULE_DEVICE_TABLE(pci
, rt2500pci_device_table
);
2133 MODULE_LICENSE("GPL");
2135 static int rt2500pci_probe(struct pci_dev
*pci_dev
,
2136 const struct pci_device_id
*id
)
2138 return rt2x00pci_probe(pci_dev
, &rt2500pci_ops
);
2141 static struct pci_driver rt2500pci_driver
= {
2142 .name
= KBUILD_MODNAME
,
2143 .id_table
= rt2500pci_device_table
,
2144 .probe
= rt2500pci_probe
,
2145 .remove
= rt2x00pci_remove
,
2146 .suspend
= rt2x00pci_suspend
,
2147 .resume
= rt2x00pci_resume
,
2150 module_pci_driver(rt2500pci_driver
);