2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, see <http://www.gnu.org/licenses/>.
23 Abstract: rt2x00 queue specific routines.
26 #include <linux/slab.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/dma-mapping.h>
32 #include "rt2x00lib.h"
34 struct sk_buff
*rt2x00queue_alloc_rxskb(struct queue_entry
*entry
, gfp_t gfp
)
36 struct data_queue
*queue
= entry
->queue
;
37 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
39 struct skb_frame_desc
*skbdesc
;
40 unsigned int frame_size
;
41 unsigned int head_size
= 0;
42 unsigned int tail_size
= 0;
45 * The frame size includes descriptor size, because the
46 * hardware directly receive the frame into the skbuffer.
48 frame_size
= queue
->data_size
+ queue
->desc_size
+ queue
->winfo_size
;
51 * The payload should be aligned to a 4-byte boundary,
52 * this means we need at least 3 bytes for moving the frame
53 * into the correct offset.
58 * For IV/EIV/ICV assembly we must make sure there is
59 * at least 8 bytes bytes available in headroom for IV/EIV
60 * and 8 bytes for ICV data as tailroon.
62 if (rt2x00_has_cap_hw_crypto(rt2x00dev
)) {
70 skb
= __dev_alloc_skb(frame_size
+ head_size
+ tail_size
, gfp
);
75 * Make sure we not have a frame with the requested bytes
76 * available in the head and tail.
78 skb_reserve(skb
, head_size
);
79 skb_put(skb
, frame_size
);
84 skbdesc
= get_skb_frame_desc(skb
);
85 memset(skbdesc
, 0, sizeof(*skbdesc
));
87 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_DMA
)) {
90 skb_dma
= dma_map_single(rt2x00dev
->dev
, skb
->data
, skb
->len
,
92 if (unlikely(dma_mapping_error(rt2x00dev
->dev
, skb_dma
))) {
93 dev_kfree_skb_any(skb
);
97 skbdesc
->skb_dma
= skb_dma
;
98 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_RX
;
104 int rt2x00queue_map_txskb(struct queue_entry
*entry
)
106 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
107 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
110 dma_map_single(dev
, entry
->skb
->data
, entry
->skb
->len
, DMA_TO_DEVICE
);
112 if (unlikely(dma_mapping_error(dev
, skbdesc
->skb_dma
)))
115 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_TX
;
116 rt2x00lib_dmadone(entry
);
119 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb
);
121 void rt2x00queue_unmap_skb(struct queue_entry
*entry
)
123 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
124 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
126 if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_RX
) {
127 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
129 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_RX
;
130 } else if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_TX
) {
131 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
133 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_TX
;
136 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb
);
138 void rt2x00queue_free_skb(struct queue_entry
*entry
)
143 rt2x00queue_unmap_skb(entry
);
144 dev_kfree_skb_any(entry
->skb
);
148 void rt2x00queue_align_frame(struct sk_buff
*skb
)
150 unsigned int frame_length
= skb
->len
;
151 unsigned int align
= ALIGN_SIZE(skb
, 0);
156 skb_push(skb
, align
);
157 memmove(skb
->data
, skb
->data
+ align
, frame_length
);
158 skb_trim(skb
, frame_length
);
162 * H/W needs L2 padding between the header and the paylod if header size
163 * is not 4 bytes aligned.
165 void rt2x00queue_insert_l2pad(struct sk_buff
*skb
, unsigned int hdr_len
)
167 unsigned int l2pad
= (skb
->len
> hdr_len
) ? L2PAD_SIZE(hdr_len
) : 0;
172 skb_push(skb
, l2pad
);
173 memmove(skb
->data
, skb
->data
+ l2pad
, hdr_len
);
176 void rt2x00queue_remove_l2pad(struct sk_buff
*skb
, unsigned int hdr_len
)
178 unsigned int l2pad
= (skb
->len
> hdr_len
) ? L2PAD_SIZE(hdr_len
) : 0;
183 memmove(skb
->data
+ l2pad
, skb
->data
, hdr_len
);
184 skb_pull(skb
, l2pad
);
187 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev
*rt2x00dev
,
189 struct txentry_desc
*txdesc
)
191 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
192 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
193 struct rt2x00_intf
*intf
= vif_to_intf(tx_info
->control
.vif
);
196 if (!(tx_info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
))
199 __set_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
201 if (!rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_SW_SEQNO
)) {
203 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
204 * seqno on retransmitted data (non-QOS) and management frames.
205 * To workaround the problem let's generate seqno in software.
206 * Except for beacons which are transmitted periodically by H/W
207 * hence hardware has to assign seqno for them.
209 if (ieee80211_is_beacon(hdr
->frame_control
)) {
210 __set_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
211 /* H/W will generate sequence number */
215 __clear_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
219 * The hardware is not able to insert a sequence number. Assign a
220 * software generated one here.
222 * This is wrong because beacons are not getting sequence
223 * numbers assigned properly.
225 * A secondary problem exists for drivers that cannot toggle
226 * sequence counting per-frame, since those will override the
227 * sequence counter given by mac80211.
229 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
230 seqno
= atomic_add_return(0x10, &intf
->seqno
);
232 seqno
= atomic_read(&intf
->seqno
);
234 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
235 hdr
->seq_ctrl
|= cpu_to_le16(seqno
);
238 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev
*rt2x00dev
,
240 struct txentry_desc
*txdesc
,
241 const struct rt2x00_rate
*hwrate
)
243 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
244 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
245 unsigned int data_length
;
246 unsigned int duration
;
247 unsigned int residual
;
250 * Determine with what IFS priority this frame should be send.
251 * Set ifs to IFS_SIFS when the this is not the first fragment,
252 * or this fragment came after RTS/CTS.
254 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
255 txdesc
->u
.plcp
.ifs
= IFS_BACKOFF
;
257 txdesc
->u
.plcp
.ifs
= IFS_SIFS
;
259 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
260 data_length
= skb
->len
+ 4;
261 data_length
+= rt2x00crypto_tx_overhead(rt2x00dev
, skb
);
265 * Length calculation depends on OFDM/CCK rate.
267 txdesc
->u
.plcp
.signal
= hwrate
->plcp
;
268 txdesc
->u
.plcp
.service
= 0x04;
270 if (hwrate
->flags
& DEV_RATE_OFDM
) {
271 txdesc
->u
.plcp
.length_high
= (data_length
>> 6) & 0x3f;
272 txdesc
->u
.plcp
.length_low
= data_length
& 0x3f;
275 * Convert length to microseconds.
277 residual
= GET_DURATION_RES(data_length
, hwrate
->bitrate
);
278 duration
= GET_DURATION(data_length
, hwrate
->bitrate
);
284 * Check if we need to set the Length Extension
286 if (hwrate
->bitrate
== 110 && residual
<= 30)
287 txdesc
->u
.plcp
.service
|= 0x80;
290 txdesc
->u
.plcp
.length_high
= (duration
>> 8) & 0xff;
291 txdesc
->u
.plcp
.length_low
= duration
& 0xff;
294 * When preamble is enabled we should set the
295 * preamble bit for the signal.
297 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
298 txdesc
->u
.plcp
.signal
|= 0x08;
302 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev
*rt2x00dev
,
304 struct txentry_desc
*txdesc
,
305 struct ieee80211_sta
*sta
,
306 const struct rt2x00_rate
*hwrate
)
308 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
309 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
310 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
311 struct rt2x00_sta
*sta_priv
= NULL
;
315 sta_priv
= sta_to_rt2x00_sta(sta
);
316 txdesc
->u
.ht
.wcid
= sta_priv
->wcid
;
317 density
= sta
->ht_cap
.ampdu_density
;
321 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
322 * mcs rate to be used
324 if (txrate
->flags
& IEEE80211_TX_RC_MCS
) {
325 txdesc
->u
.ht
.mcs
= txrate
->idx
;
328 * MIMO PS should be set to 1 for STA's using dynamic SM PS
329 * when using more then one tx stream (>MCS7).
331 if (sta
&& txdesc
->u
.ht
.mcs
> 7 &&
332 sta
->smps_mode
== IEEE80211_SMPS_DYNAMIC
)
333 __set_bit(ENTRY_TXD_HT_MIMO_PS
, &txdesc
->flags
);
335 txdesc
->u
.ht
.mcs
= rt2x00_get_rate_mcs(hwrate
->mcs
);
336 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
337 txdesc
->u
.ht
.mcs
|= 0x08;
340 if (test_bit(CONFIG_HT_DISABLED
, &rt2x00dev
->flags
)) {
341 if (!(tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
))
342 txdesc
->u
.ht
.txop
= TXOP_SIFS
;
344 txdesc
->u
.ht
.txop
= TXOP_BACKOFF
;
346 /* Left zero on all other settings. */
351 * Only one STBC stream is supported for now.
353 if (tx_info
->flags
& IEEE80211_TX_CTL_STBC
)
354 txdesc
->u
.ht
.stbc
= 1;
357 * This frame is eligible for an AMPDU, however, don't aggregate
358 * frames that are intended to probe a specific tx rate.
360 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
&&
361 !(tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
)) {
362 __set_bit(ENTRY_TXD_HT_AMPDU
, &txdesc
->flags
);
363 txdesc
->u
.ht
.mpdu_density
= density
;
364 txdesc
->u
.ht
.ba_size
= 7; /* FIXME: What value is needed? */
368 * Set 40Mhz mode if necessary (for legacy rates this will
369 * duplicate the frame to both channels).
371 if (txrate
->flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
||
372 txrate
->flags
& IEEE80211_TX_RC_DUP_DATA
)
373 __set_bit(ENTRY_TXD_HT_BW_40
, &txdesc
->flags
);
374 if (txrate
->flags
& IEEE80211_TX_RC_SHORT_GI
)
375 __set_bit(ENTRY_TXD_HT_SHORT_GI
, &txdesc
->flags
);
378 * Determine IFS values
379 * - Use TXOP_BACKOFF for management frames except beacons
380 * - Use TXOP_SIFS for fragment bursts
381 * - Use TXOP_HTTXOP for everything else
383 * Note: rt2800 devices won't use CTS protection (if used)
384 * for frames not transmitted with TXOP_HTTXOP
386 if (ieee80211_is_mgmt(hdr
->frame_control
) &&
387 !ieee80211_is_beacon(hdr
->frame_control
))
388 txdesc
->u
.ht
.txop
= TXOP_BACKOFF
;
389 else if (!(tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
))
390 txdesc
->u
.ht
.txop
= TXOP_SIFS
;
392 txdesc
->u
.ht
.txop
= TXOP_HTTXOP
;
395 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev
*rt2x00dev
,
397 struct txentry_desc
*txdesc
,
398 struct ieee80211_sta
*sta
)
400 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
401 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
402 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
403 struct ieee80211_rate
*rate
;
404 const struct rt2x00_rate
*hwrate
= NULL
;
406 memset(txdesc
, 0, sizeof(*txdesc
));
409 * Header and frame information.
411 txdesc
->length
= skb
->len
;
412 txdesc
->header_length
= ieee80211_get_hdrlen_from_skb(skb
);
415 * Check whether this frame is to be acked.
417 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
))
418 __set_bit(ENTRY_TXD_ACK
, &txdesc
->flags
);
421 * Check if this is a RTS/CTS frame
423 if (ieee80211_is_rts(hdr
->frame_control
) ||
424 ieee80211_is_cts(hdr
->frame_control
)) {
425 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
426 if (ieee80211_is_rts(hdr
->frame_control
))
427 __set_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
);
429 __set_bit(ENTRY_TXD_CTS_FRAME
, &txdesc
->flags
);
430 if (tx_info
->control
.rts_cts_rate_idx
>= 0)
432 ieee80211_get_rts_cts_rate(rt2x00dev
->hw
, tx_info
);
436 * Determine retry information.
438 txdesc
->retry_limit
= tx_info
->control
.rates
[0].count
- 1;
439 if (txdesc
->retry_limit
>= rt2x00dev
->long_retry
)
440 __set_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
);
443 * Check if more fragments are pending
445 if (ieee80211_has_morefrags(hdr
->frame_control
)) {
446 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
447 __set_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
);
451 * Check if more frames (!= fragments) are pending
453 if (tx_info
->flags
& IEEE80211_TX_CTL_MORE_FRAMES
)
454 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
457 * Beacons and probe responses require the tsf timestamp
458 * to be inserted into the frame.
460 if (ieee80211_is_beacon(hdr
->frame_control
) ||
461 ieee80211_is_probe_resp(hdr
->frame_control
))
462 __set_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
);
464 if ((tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
) &&
465 !test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
))
466 __set_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
);
469 * Determine rate modulation.
471 if (txrate
->flags
& IEEE80211_TX_RC_GREEN_FIELD
)
472 txdesc
->rate_mode
= RATE_MODE_HT_GREENFIELD
;
473 else if (txrate
->flags
& IEEE80211_TX_RC_MCS
)
474 txdesc
->rate_mode
= RATE_MODE_HT_MIX
;
476 rate
= ieee80211_get_tx_rate(rt2x00dev
->hw
, tx_info
);
477 hwrate
= rt2x00_get_rate(rate
->hw_value
);
478 if (hwrate
->flags
& DEV_RATE_OFDM
)
479 txdesc
->rate_mode
= RATE_MODE_OFDM
;
481 txdesc
->rate_mode
= RATE_MODE_CCK
;
485 * Apply TX descriptor handling by components
487 rt2x00crypto_create_tx_descriptor(rt2x00dev
, skb
, txdesc
);
488 rt2x00queue_create_tx_descriptor_seq(rt2x00dev
, skb
, txdesc
);
490 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_HT_TX_DESC
))
491 rt2x00queue_create_tx_descriptor_ht(rt2x00dev
, skb
, txdesc
,
494 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev
, skb
, txdesc
,
498 static int rt2x00queue_write_tx_data(struct queue_entry
*entry
,
499 struct txentry_desc
*txdesc
)
501 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
504 * This should not happen, we already checked the entry
505 * was ours. When the hardware disagrees there has been
506 * a queue corruption!
508 if (unlikely(rt2x00dev
->ops
->lib
->get_entry_state
&&
509 rt2x00dev
->ops
->lib
->get_entry_state(entry
))) {
510 rt2x00_err(rt2x00dev
,
511 "Corrupt queue %d, accessing entry which is not ours\n"
512 "Please file bug report to %s\n",
513 entry
->queue
->qid
, DRV_PROJECT
);
518 * Add the requested extra tx headroom in front of the skb.
520 skb_push(entry
->skb
, rt2x00dev
->extra_tx_headroom
);
521 memset(entry
->skb
->data
, 0, rt2x00dev
->extra_tx_headroom
);
524 * Call the driver's write_tx_data function, if it exists.
526 if (rt2x00dev
->ops
->lib
->write_tx_data
)
527 rt2x00dev
->ops
->lib
->write_tx_data(entry
, txdesc
);
530 * Map the skb to DMA.
532 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_DMA
) &&
533 rt2x00queue_map_txskb(entry
))
539 static void rt2x00queue_write_tx_descriptor(struct queue_entry
*entry
,
540 struct txentry_desc
*txdesc
)
542 struct data_queue
*queue
= entry
->queue
;
544 queue
->rt2x00dev
->ops
->lib
->write_tx_desc(entry
, txdesc
);
547 * All processing on the frame has been completed, this means
548 * it is now ready to be dumped to userspace through debugfs.
550 rt2x00debug_dump_frame(queue
->rt2x00dev
, DUMP_FRAME_TX
, entry
);
553 static void rt2x00queue_kick_tx_queue(struct data_queue
*queue
,
554 struct txentry_desc
*txdesc
)
557 * Check if we need to kick the queue, there are however a few rules
558 * 1) Don't kick unless this is the last in frame in a burst.
559 * When the burst flag is set, this frame is always followed
560 * by another frame which in some way are related to eachother.
561 * This is true for fragments, RTS or CTS-to-self frames.
562 * 2) Rule 1 can be broken when the available entries
563 * in the queue are less then a certain threshold.
565 if (rt2x00queue_threshold(queue
) ||
566 !test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
))
567 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
570 static void rt2x00queue_bar_check(struct queue_entry
*entry
)
572 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
573 struct ieee80211_bar
*bar
= (void *) (entry
->skb
->data
+
574 rt2x00dev
->extra_tx_headroom
);
575 struct rt2x00_bar_list_entry
*bar_entry
;
577 if (likely(!ieee80211_is_back_req(bar
->frame_control
)))
580 bar_entry
= kmalloc(sizeof(*bar_entry
), GFP_ATOMIC
);
583 * If the alloc fails we still send the BAR out but just don't track
584 * it in our bar list. And as a result we will report it to mac80211
590 bar_entry
->entry
= entry
;
591 bar_entry
->block_acked
= 0;
594 * Copy the relevant parts of the 802.11 BAR into out check list
595 * such that we can use RCU for less-overhead in the RX path since
596 * sending BARs and processing the according BlockAck should be
599 memcpy(bar_entry
->ra
, bar
->ra
, sizeof(bar
->ra
));
600 memcpy(bar_entry
->ta
, bar
->ta
, sizeof(bar
->ta
));
601 bar_entry
->control
= bar
->control
;
602 bar_entry
->start_seq_num
= bar
->start_seq_num
;
605 * Insert BAR into our BAR check list.
607 spin_lock_bh(&rt2x00dev
->bar_list_lock
);
608 list_add_tail_rcu(&bar_entry
->list
, &rt2x00dev
->bar_list
);
609 spin_unlock_bh(&rt2x00dev
->bar_list_lock
);
612 int rt2x00queue_write_tx_frame(struct data_queue
*queue
, struct sk_buff
*skb
,
613 struct ieee80211_sta
*sta
, bool local
)
615 struct ieee80211_tx_info
*tx_info
;
616 struct queue_entry
*entry
;
617 struct txentry_desc txdesc
;
618 struct skb_frame_desc
*skbdesc
;
619 u8 rate_idx
, rate_flags
;
623 * Copy all TX descriptor information into txdesc,
624 * after that we are free to use the skb->cb array
625 * for our information.
627 rt2x00queue_create_tx_descriptor(queue
->rt2x00dev
, skb
, &txdesc
, sta
);
630 * All information is retrieved from the skb->cb array,
631 * now we should claim ownership of the driver part of that
632 * array, preserving the bitrate index and flags.
634 tx_info
= IEEE80211_SKB_CB(skb
);
635 rate_idx
= tx_info
->control
.rates
[0].idx
;
636 rate_flags
= tx_info
->control
.rates
[0].flags
;
637 skbdesc
= get_skb_frame_desc(skb
);
638 memset(skbdesc
, 0, sizeof(*skbdesc
));
639 skbdesc
->tx_rate_idx
= rate_idx
;
640 skbdesc
->tx_rate_flags
= rate_flags
;
643 skbdesc
->flags
|= SKBDESC_NOT_MAC80211
;
646 * When hardware encryption is supported, and this frame
647 * is to be encrypted, we should strip the IV/EIV data from
648 * the frame so we can provide it to the driver separately.
650 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
.flags
) &&
651 !test_bit(ENTRY_TXD_ENCRYPT_IV
, &txdesc
.flags
)) {
652 if (rt2x00_has_cap_flag(queue
->rt2x00dev
, REQUIRE_COPY_IV
))
653 rt2x00crypto_tx_copy_iv(skb
, &txdesc
);
655 rt2x00crypto_tx_remove_iv(skb
, &txdesc
);
659 * When DMA allocation is required we should guarantee to the
660 * driver that the DMA is aligned to a 4-byte boundary.
661 * However some drivers require L2 padding to pad the payload
662 * rather then the header. This could be a requirement for
663 * PCI and USB devices, while header alignment only is valid
666 if (rt2x00_has_cap_flag(queue
->rt2x00dev
, REQUIRE_L2PAD
))
667 rt2x00queue_insert_l2pad(skb
, txdesc
.header_length
);
668 else if (rt2x00_has_cap_flag(queue
->rt2x00dev
, REQUIRE_DMA
))
669 rt2x00queue_align_frame(skb
);
672 * That function must be called with bh disabled.
674 spin_lock(&queue
->tx_lock
);
676 if (unlikely(rt2x00queue_full(queue
))) {
677 rt2x00_dbg(queue
->rt2x00dev
, "Dropping frame due to full tx queue %d\n",
683 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
685 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA
,
687 rt2x00_err(queue
->rt2x00dev
,
688 "Arrived at non-free entry in the non-full queue %d\n"
689 "Please file bug report to %s\n",
690 queue
->qid
, DRV_PROJECT
);
698 * It could be possible that the queue was corrupted and this
699 * call failed. Since we always return NETDEV_TX_OK to mac80211,
700 * this frame will simply be dropped.
702 if (unlikely(rt2x00queue_write_tx_data(entry
, &txdesc
))) {
703 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
710 * Put BlockAckReqs into our check list for driver BA processing.
712 rt2x00queue_bar_check(entry
);
714 set_bit(ENTRY_DATA_PENDING
, &entry
->flags
);
716 rt2x00queue_index_inc(entry
, Q_INDEX
);
717 rt2x00queue_write_tx_descriptor(entry
, &txdesc
);
718 rt2x00queue_kick_tx_queue(queue
, &txdesc
);
722 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
723 * do this under queue->tx_lock. Bottom halve was already disabled
724 * before ieee80211_xmit() call.
726 if (rt2x00queue_threshold(queue
))
727 rt2x00queue_pause_queue(queue
);
729 spin_unlock(&queue
->tx_lock
);
733 int rt2x00queue_clear_beacon(struct rt2x00_dev
*rt2x00dev
,
734 struct ieee80211_vif
*vif
)
736 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
738 if (unlikely(!intf
->beacon
))
742 * Clean up the beacon skb.
744 rt2x00queue_free_skb(intf
->beacon
);
747 * Clear beacon (single bssid devices don't need to clear the beacon
748 * since the beacon queue will get stopped anyway).
750 if (rt2x00dev
->ops
->lib
->clear_beacon
)
751 rt2x00dev
->ops
->lib
->clear_beacon(intf
->beacon
);
756 int rt2x00queue_update_beacon(struct rt2x00_dev
*rt2x00dev
,
757 struct ieee80211_vif
*vif
)
759 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
760 struct skb_frame_desc
*skbdesc
;
761 struct txentry_desc txdesc
;
763 if (unlikely(!intf
->beacon
))
767 * Clean up the beacon skb.
769 rt2x00queue_free_skb(intf
->beacon
);
771 intf
->beacon
->skb
= ieee80211_beacon_get(rt2x00dev
->hw
, vif
);
772 if (!intf
->beacon
->skb
)
776 * Copy all TX descriptor information into txdesc,
777 * after that we are free to use the skb->cb array
778 * for our information.
780 rt2x00queue_create_tx_descriptor(rt2x00dev
, intf
->beacon
->skb
, &txdesc
, NULL
);
783 * Fill in skb descriptor
785 skbdesc
= get_skb_frame_desc(intf
->beacon
->skb
);
786 memset(skbdesc
, 0, sizeof(*skbdesc
));
789 * Send beacon to hardware.
791 rt2x00dev
->ops
->lib
->write_beacon(intf
->beacon
, &txdesc
);
797 bool rt2x00queue_for_each_entry(struct data_queue
*queue
,
798 enum queue_index start
,
799 enum queue_index end
,
801 bool (*fn
)(struct queue_entry
*entry
,
804 unsigned long irqflags
;
805 unsigned int index_start
;
806 unsigned int index_end
;
809 if (unlikely(start
>= Q_INDEX_MAX
|| end
>= Q_INDEX_MAX
)) {
810 rt2x00_err(queue
->rt2x00dev
,
811 "Entry requested from invalid index range (%d - %d)\n",
817 * Only protect the range we are going to loop over,
818 * if during our loop a extra entry is set to pending
819 * it should not be kicked during this run, since it
820 * is part of another TX operation.
822 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
823 index_start
= queue
->index
[start
];
824 index_end
= queue
->index
[end
];
825 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
828 * Start from the TX done pointer, this guarantees that we will
829 * send out all frames in the correct order.
831 if (index_start
< index_end
) {
832 for (i
= index_start
; i
< index_end
; i
++) {
833 if (fn(&queue
->entries
[i
], data
))
837 for (i
= index_start
; i
< queue
->limit
; i
++) {
838 if (fn(&queue
->entries
[i
], data
))
842 for (i
= 0; i
< index_end
; i
++) {
843 if (fn(&queue
->entries
[i
], data
))
850 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry
);
852 struct queue_entry
*rt2x00queue_get_entry(struct data_queue
*queue
,
853 enum queue_index index
)
855 struct queue_entry
*entry
;
856 unsigned long irqflags
;
858 if (unlikely(index
>= Q_INDEX_MAX
)) {
859 rt2x00_err(queue
->rt2x00dev
, "Entry requested from invalid index type (%d)\n",
864 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
866 entry
= &queue
->entries
[queue
->index
[index
]];
868 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
872 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry
);
874 void rt2x00queue_index_inc(struct queue_entry
*entry
, enum queue_index index
)
876 struct data_queue
*queue
= entry
->queue
;
877 unsigned long irqflags
;
879 if (unlikely(index
>= Q_INDEX_MAX
)) {
880 rt2x00_err(queue
->rt2x00dev
,
881 "Index change on invalid index type (%d)\n", index
);
885 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
887 queue
->index
[index
]++;
888 if (queue
->index
[index
] >= queue
->limit
)
889 queue
->index
[index
] = 0;
891 entry
->last_action
= jiffies
;
893 if (index
== Q_INDEX
) {
895 } else if (index
== Q_INDEX_DONE
) {
900 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
903 static void rt2x00queue_pause_queue_nocheck(struct data_queue
*queue
)
905 switch (queue
->qid
) {
911 * For TX queues, we have to disable the queue
914 ieee80211_stop_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
920 void rt2x00queue_pause_queue(struct data_queue
*queue
)
922 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
923 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
924 test_and_set_bit(QUEUE_PAUSED
, &queue
->flags
))
927 rt2x00queue_pause_queue_nocheck(queue
);
929 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue
);
931 void rt2x00queue_unpause_queue(struct data_queue
*queue
)
933 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
934 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
935 !test_and_clear_bit(QUEUE_PAUSED
, &queue
->flags
))
938 switch (queue
->qid
) {
944 * For TX queues, we have to enable the queue
947 ieee80211_wake_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
951 * For RX we need to kick the queue now in order to
954 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
959 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue
);
961 void rt2x00queue_start_queue(struct data_queue
*queue
)
963 mutex_lock(&queue
->status_lock
);
965 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
966 test_and_set_bit(QUEUE_STARTED
, &queue
->flags
)) {
967 mutex_unlock(&queue
->status_lock
);
971 set_bit(QUEUE_PAUSED
, &queue
->flags
);
973 queue
->rt2x00dev
->ops
->lib
->start_queue(queue
);
975 rt2x00queue_unpause_queue(queue
);
977 mutex_unlock(&queue
->status_lock
);
979 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue
);
981 void rt2x00queue_stop_queue(struct data_queue
*queue
)
983 mutex_lock(&queue
->status_lock
);
985 if (!test_and_clear_bit(QUEUE_STARTED
, &queue
->flags
)) {
986 mutex_unlock(&queue
->status_lock
);
990 rt2x00queue_pause_queue_nocheck(queue
);
992 queue
->rt2x00dev
->ops
->lib
->stop_queue(queue
);
994 mutex_unlock(&queue
->status_lock
);
996 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue
);
998 void rt2x00queue_flush_queue(struct data_queue
*queue
, bool drop
)
1001 (queue
->qid
== QID_AC_VO
) ||
1002 (queue
->qid
== QID_AC_VI
) ||
1003 (queue
->qid
== QID_AC_BE
) ||
1004 (queue
->qid
== QID_AC_BK
);
1006 if (rt2x00queue_empty(queue
))
1010 * If we are not supposed to drop any pending
1011 * frames, this means we must force a start (=kick)
1012 * to the queue to make sure the hardware will
1013 * start transmitting.
1015 if (!drop
&& tx_queue
)
1016 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
1019 * Check if driver supports flushing, if that is the case we can
1020 * defer the flushing to the driver. Otherwise we must use the
1021 * alternative which just waits for the queue to become empty.
1023 if (likely(queue
->rt2x00dev
->ops
->lib
->flush_queue
))
1024 queue
->rt2x00dev
->ops
->lib
->flush_queue(queue
, drop
);
1027 * The queue flush has failed...
1029 if (unlikely(!rt2x00queue_empty(queue
)))
1030 rt2x00_warn(queue
->rt2x00dev
, "Queue %d failed to flush\n",
1033 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue
);
1035 void rt2x00queue_start_queues(struct rt2x00_dev
*rt2x00dev
)
1037 struct data_queue
*queue
;
1040 * rt2x00queue_start_queue will call ieee80211_wake_queue
1041 * for each queue after is has been properly initialized.
1043 tx_queue_for_each(rt2x00dev
, queue
)
1044 rt2x00queue_start_queue(queue
);
1046 rt2x00queue_start_queue(rt2x00dev
->rx
);
1048 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues
);
1050 void rt2x00queue_stop_queues(struct rt2x00_dev
*rt2x00dev
)
1052 struct data_queue
*queue
;
1055 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1056 * as well, but we are completely shutting doing everything
1057 * now, so it is much safer to stop all TX queues at once,
1058 * and use rt2x00queue_stop_queue for cleaning up.
1060 ieee80211_stop_queues(rt2x00dev
->hw
);
1062 tx_queue_for_each(rt2x00dev
, queue
)
1063 rt2x00queue_stop_queue(queue
);
1065 rt2x00queue_stop_queue(rt2x00dev
->rx
);
1067 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues
);
1069 void rt2x00queue_flush_queues(struct rt2x00_dev
*rt2x00dev
, bool drop
)
1071 struct data_queue
*queue
;
1073 tx_queue_for_each(rt2x00dev
, queue
)
1074 rt2x00queue_flush_queue(queue
, drop
);
1076 rt2x00queue_flush_queue(rt2x00dev
->rx
, drop
);
1078 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues
);
1080 static void rt2x00queue_reset(struct data_queue
*queue
)
1082 unsigned long irqflags
;
1085 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
1090 for (i
= 0; i
< Q_INDEX_MAX
; i
++)
1091 queue
->index
[i
] = 0;
1093 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
1096 void rt2x00queue_init_queues(struct rt2x00_dev
*rt2x00dev
)
1098 struct data_queue
*queue
;
1101 queue_for_each(rt2x00dev
, queue
) {
1102 rt2x00queue_reset(queue
);
1104 for (i
= 0; i
< queue
->limit
; i
++)
1105 rt2x00dev
->ops
->lib
->clear_entry(&queue
->entries
[i
]);
1109 static int rt2x00queue_alloc_entries(struct data_queue
*queue
)
1111 struct queue_entry
*entries
;
1112 unsigned int entry_size
;
1115 rt2x00queue_reset(queue
);
1118 * Allocate all queue entries.
1120 entry_size
= sizeof(*entries
) + queue
->priv_size
;
1121 entries
= kcalloc(queue
->limit
, entry_size
, GFP_KERNEL
);
1125 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1126 (((char *)(__base)) + ((__limit) * (__esize)) + \
1127 ((__index) * (__psize)))
1129 for (i
= 0; i
< queue
->limit
; i
++) {
1130 entries
[i
].flags
= 0;
1131 entries
[i
].queue
= queue
;
1132 entries
[i
].skb
= NULL
;
1133 entries
[i
].entry_idx
= i
;
1134 entries
[i
].priv_data
=
1135 QUEUE_ENTRY_PRIV_OFFSET(entries
, i
, queue
->limit
,
1136 sizeof(*entries
), queue
->priv_size
);
1139 #undef QUEUE_ENTRY_PRIV_OFFSET
1141 queue
->entries
= entries
;
1146 static void rt2x00queue_free_skbs(struct data_queue
*queue
)
1150 if (!queue
->entries
)
1153 for (i
= 0; i
< queue
->limit
; i
++) {
1154 rt2x00queue_free_skb(&queue
->entries
[i
]);
1158 static int rt2x00queue_alloc_rxskbs(struct data_queue
*queue
)
1161 struct sk_buff
*skb
;
1163 for (i
= 0; i
< queue
->limit
; i
++) {
1164 skb
= rt2x00queue_alloc_rxskb(&queue
->entries
[i
], GFP_KERNEL
);
1167 queue
->entries
[i
].skb
= skb
;
1173 int rt2x00queue_initialize(struct rt2x00_dev
*rt2x00dev
)
1175 struct data_queue
*queue
;
1178 status
= rt2x00queue_alloc_entries(rt2x00dev
->rx
);
1182 tx_queue_for_each(rt2x00dev
, queue
) {
1183 status
= rt2x00queue_alloc_entries(queue
);
1188 status
= rt2x00queue_alloc_entries(rt2x00dev
->bcn
);
1192 if (rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_ATIM_QUEUE
)) {
1193 status
= rt2x00queue_alloc_entries(rt2x00dev
->atim
);
1198 status
= rt2x00queue_alloc_rxskbs(rt2x00dev
->rx
);
1205 rt2x00_err(rt2x00dev
, "Queue entries allocation failed\n");
1207 rt2x00queue_uninitialize(rt2x00dev
);
1212 void rt2x00queue_uninitialize(struct rt2x00_dev
*rt2x00dev
)
1214 struct data_queue
*queue
;
1216 rt2x00queue_free_skbs(rt2x00dev
->rx
);
1218 queue_for_each(rt2x00dev
, queue
) {
1219 kfree(queue
->entries
);
1220 queue
->entries
= NULL
;
1224 static void rt2x00queue_init(struct rt2x00_dev
*rt2x00dev
,
1225 struct data_queue
*queue
, enum data_queue_qid qid
)
1227 mutex_init(&queue
->status_lock
);
1228 spin_lock_init(&queue
->tx_lock
);
1229 spin_lock_init(&queue
->index_lock
);
1231 queue
->rt2x00dev
= rt2x00dev
;
1238 rt2x00dev
->ops
->queue_init(queue
);
1240 queue
->threshold
= DIV_ROUND_UP(queue
->limit
, 10);
1243 int rt2x00queue_allocate(struct rt2x00_dev
*rt2x00dev
)
1245 struct data_queue
*queue
;
1246 enum data_queue_qid qid
;
1247 unsigned int req_atim
=
1248 rt2x00_has_cap_flag(rt2x00dev
, REQUIRE_ATIM_QUEUE
);
1251 * We need the following queues:
1253 * TX: ops->tx_queues
1255 * Atim: 1 (if required)
1257 rt2x00dev
->data_queues
= 2 + rt2x00dev
->ops
->tx_queues
+ req_atim
;
1259 queue
= kcalloc(rt2x00dev
->data_queues
, sizeof(*queue
), GFP_KERNEL
);
1264 * Initialize pointers
1266 rt2x00dev
->rx
= queue
;
1267 rt2x00dev
->tx
= &queue
[1];
1268 rt2x00dev
->bcn
= &queue
[1 + rt2x00dev
->ops
->tx_queues
];
1269 rt2x00dev
->atim
= req_atim
? &queue
[2 + rt2x00dev
->ops
->tx_queues
] : NULL
;
1272 * Initialize queue parameters.
1274 * TX: qid = QID_AC_VO + index
1275 * TX: cw_min: 2^5 = 32.
1276 * TX: cw_max: 2^10 = 1024.
1277 * BCN: qid = QID_BEACON
1278 * ATIM: qid = QID_ATIM
1280 rt2x00queue_init(rt2x00dev
, rt2x00dev
->rx
, QID_RX
);
1283 tx_queue_for_each(rt2x00dev
, queue
)
1284 rt2x00queue_init(rt2x00dev
, queue
, qid
++);
1286 rt2x00queue_init(rt2x00dev
, rt2x00dev
->bcn
, QID_BEACON
);
1288 rt2x00queue_init(rt2x00dev
, rt2x00dev
->atim
, QID_ATIM
);
1293 void rt2x00queue_free(struct rt2x00_dev
*rt2x00dev
)
1295 kfree(rt2x00dev
->rx
);
1296 rt2x00dev
->rx
= NULL
;
1297 rt2x00dev
->tx
= NULL
;
1298 rt2x00dev
->bcn
= NULL
;