inet: stop leaking jiffies on the wire
[linux/fpc-iii.git] / kernel / signal.c
blob072fd152ab01e3aaa52826ce6407c18df60c52b8
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #include <linux/cn_proc.h>
36 #include <linux/compiler.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/signal.h>
41 #include <asm/param.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/siginfo.h>
45 #include <asm/cacheflush.h>
46 #include "audit.h" /* audit_signal_info() */
49 * SLAB caches for signal bits.
52 static struct kmem_cache *sigqueue_cachep;
54 int print_fatal_signals __read_mostly;
56 static void __user *sig_handler(struct task_struct *t, int sig)
58 return t->sighand->action[sig - 1].sa.sa_handler;
61 static int sig_handler_ignored(void __user *handler, int sig)
63 /* Is it explicitly or implicitly ignored? */
64 return handler == SIG_IGN ||
65 (handler == SIG_DFL && sig_kernel_ignore(sig));
68 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
70 void __user *handler;
72 handler = sig_handler(t, sig);
74 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
76 return 1;
78 return sig_handler_ignored(handler, sig);
81 static int sig_ignored(struct task_struct *t, int sig, bool force)
84 * Blocked signals are never ignored, since the
85 * signal handler may change by the time it is
86 * unblocked.
88 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89 return 0;
92 * Tracers may want to know about even ignored signal unless it
93 * is SIGKILL which can't be reported anyway but can be ignored
94 * by SIGNAL_UNKILLABLE task.
96 if (t->ptrace && sig != SIGKILL)
97 return 0;
99 return sig_task_ignored(t, sig, force);
103 * Re-calculate pending state from the set of locally pending
104 * signals, globally pending signals, and blocked signals.
106 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
108 unsigned long ready;
109 long i;
111 switch (_NSIG_WORDS) {
112 default:
113 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
114 ready |= signal->sig[i] &~ blocked->sig[i];
115 break;
117 case 4: ready = signal->sig[3] &~ blocked->sig[3];
118 ready |= signal->sig[2] &~ blocked->sig[2];
119 ready |= signal->sig[1] &~ blocked->sig[1];
120 ready |= signal->sig[0] &~ blocked->sig[0];
121 break;
123 case 2: ready = signal->sig[1] &~ blocked->sig[1];
124 ready |= signal->sig[0] &~ blocked->sig[0];
125 break;
127 case 1: ready = signal->sig[0] &~ blocked->sig[0];
129 return ready != 0;
132 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
134 static int recalc_sigpending_tsk(struct task_struct *t)
136 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
137 PENDING(&t->pending, &t->blocked) ||
138 PENDING(&t->signal->shared_pending, &t->blocked)) {
139 set_tsk_thread_flag(t, TIF_SIGPENDING);
140 return 1;
143 * We must never clear the flag in another thread, or in current
144 * when it's possible the current syscall is returning -ERESTART*.
145 * So we don't clear it here, and only callers who know they should do.
147 return 0;
151 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
152 * This is superfluous when called on current, the wakeup is a harmless no-op.
154 void recalc_sigpending_and_wake(struct task_struct *t)
156 if (recalc_sigpending_tsk(t))
157 signal_wake_up(t, 0);
160 void recalc_sigpending(void)
162 if (!recalc_sigpending_tsk(current) && !freezing(current))
163 clear_thread_flag(TIF_SIGPENDING);
167 /* Given the mask, find the first available signal that should be serviced. */
169 #define SYNCHRONOUS_MASK \
170 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
171 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
173 int next_signal(struct sigpending *pending, sigset_t *mask)
175 unsigned long i, *s, *m, x;
176 int sig = 0;
178 s = pending->signal.sig;
179 m = mask->sig;
182 * Handle the first word specially: it contains the
183 * synchronous signals that need to be dequeued first.
185 x = *s &~ *m;
186 if (x) {
187 if (x & SYNCHRONOUS_MASK)
188 x &= SYNCHRONOUS_MASK;
189 sig = ffz(~x) + 1;
190 return sig;
193 switch (_NSIG_WORDS) {
194 default:
195 for (i = 1; i < _NSIG_WORDS; ++i) {
196 x = *++s &~ *++m;
197 if (!x)
198 continue;
199 sig = ffz(~x) + i*_NSIG_BPW + 1;
200 break;
202 break;
204 case 2:
205 x = s[1] &~ m[1];
206 if (!x)
207 break;
208 sig = ffz(~x) + _NSIG_BPW + 1;
209 break;
211 case 1:
212 /* Nothing to do */
213 break;
216 return sig;
219 static inline void print_dropped_signal(int sig)
221 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
223 if (!print_fatal_signals)
224 return;
226 if (!__ratelimit(&ratelimit_state))
227 return;
229 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
230 current->comm, current->pid, sig);
234 * task_set_jobctl_pending - set jobctl pending bits
235 * @task: target task
236 * @mask: pending bits to set
238 * Clear @mask from @task->jobctl. @mask must be subset of
239 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
240 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
241 * cleared. If @task is already being killed or exiting, this function
242 * becomes noop.
244 * CONTEXT:
245 * Must be called with @task->sighand->siglock held.
247 * RETURNS:
248 * %true if @mask is set, %false if made noop because @task was dying.
250 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
252 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
253 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
254 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
256 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
257 return false;
259 if (mask & JOBCTL_STOP_SIGMASK)
260 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
262 task->jobctl |= mask;
263 return true;
267 * task_clear_jobctl_trapping - clear jobctl trapping bit
268 * @task: target task
270 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
271 * Clear it and wake up the ptracer. Note that we don't need any further
272 * locking. @task->siglock guarantees that @task->parent points to the
273 * ptracer.
275 * CONTEXT:
276 * Must be called with @task->sighand->siglock held.
278 void task_clear_jobctl_trapping(struct task_struct *task)
280 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
281 task->jobctl &= ~JOBCTL_TRAPPING;
282 smp_mb(); /* advised by wake_up_bit() */
283 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
288 * task_clear_jobctl_pending - clear jobctl pending bits
289 * @task: target task
290 * @mask: pending bits to clear
292 * Clear @mask from @task->jobctl. @mask must be subset of
293 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
294 * STOP bits are cleared together.
296 * If clearing of @mask leaves no stop or trap pending, this function calls
297 * task_clear_jobctl_trapping().
299 * CONTEXT:
300 * Must be called with @task->sighand->siglock held.
302 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
304 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
306 if (mask & JOBCTL_STOP_PENDING)
307 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
309 task->jobctl &= ~mask;
311 if (!(task->jobctl & JOBCTL_PENDING_MASK))
312 task_clear_jobctl_trapping(task);
316 * task_participate_group_stop - participate in a group stop
317 * @task: task participating in a group stop
319 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
320 * Group stop states are cleared and the group stop count is consumed if
321 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
322 * stop, the appropriate %SIGNAL_* flags are set.
324 * CONTEXT:
325 * Must be called with @task->sighand->siglock held.
327 * RETURNS:
328 * %true if group stop completion should be notified to the parent, %false
329 * otherwise.
331 static bool task_participate_group_stop(struct task_struct *task)
333 struct signal_struct *sig = task->signal;
334 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
336 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
338 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
340 if (!consume)
341 return false;
343 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
344 sig->group_stop_count--;
347 * Tell the caller to notify completion iff we are entering into a
348 * fresh group stop. Read comment in do_signal_stop() for details.
350 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
351 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
352 return true;
354 return false;
358 * allocate a new signal queue record
359 * - this may be called without locks if and only if t == current, otherwise an
360 * appropriate lock must be held to stop the target task from exiting
362 static struct sigqueue *
363 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
365 struct sigqueue *q = NULL;
366 struct user_struct *user;
369 * Protect access to @t credentials. This can go away when all
370 * callers hold rcu read lock.
372 rcu_read_lock();
373 user = get_uid(__task_cred(t)->user);
374 atomic_inc(&user->sigpending);
375 rcu_read_unlock();
377 if (override_rlimit ||
378 atomic_read(&user->sigpending) <=
379 task_rlimit(t, RLIMIT_SIGPENDING)) {
380 q = kmem_cache_alloc(sigqueue_cachep, flags);
381 } else {
382 print_dropped_signal(sig);
385 if (unlikely(q == NULL)) {
386 atomic_dec(&user->sigpending);
387 free_uid(user);
388 } else {
389 INIT_LIST_HEAD(&q->list);
390 q->flags = 0;
391 q->user = user;
394 return q;
397 static void __sigqueue_free(struct sigqueue *q)
399 if (q->flags & SIGQUEUE_PREALLOC)
400 return;
401 atomic_dec(&q->user->sigpending);
402 free_uid(q->user);
403 kmem_cache_free(sigqueue_cachep, q);
406 void flush_sigqueue(struct sigpending *queue)
408 struct sigqueue *q;
410 sigemptyset(&queue->signal);
411 while (!list_empty(&queue->list)) {
412 q = list_entry(queue->list.next, struct sigqueue , list);
413 list_del_init(&q->list);
414 __sigqueue_free(q);
419 * Flush all pending signals for this kthread.
421 void flush_signals(struct task_struct *t)
423 unsigned long flags;
425 spin_lock_irqsave(&t->sighand->siglock, flags);
426 clear_tsk_thread_flag(t, TIF_SIGPENDING);
427 flush_sigqueue(&t->pending);
428 flush_sigqueue(&t->signal->shared_pending);
429 spin_unlock_irqrestore(&t->sighand->siglock, flags);
432 static void __flush_itimer_signals(struct sigpending *pending)
434 sigset_t signal, retain;
435 struct sigqueue *q, *n;
437 signal = pending->signal;
438 sigemptyset(&retain);
440 list_for_each_entry_safe(q, n, &pending->list, list) {
441 int sig = q->info.si_signo;
443 if (likely(q->info.si_code != SI_TIMER)) {
444 sigaddset(&retain, sig);
445 } else {
446 sigdelset(&signal, sig);
447 list_del_init(&q->list);
448 __sigqueue_free(q);
452 sigorsets(&pending->signal, &signal, &retain);
455 void flush_itimer_signals(void)
457 struct task_struct *tsk = current;
458 unsigned long flags;
460 spin_lock_irqsave(&tsk->sighand->siglock, flags);
461 __flush_itimer_signals(&tsk->pending);
462 __flush_itimer_signals(&tsk->signal->shared_pending);
463 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
466 void ignore_signals(struct task_struct *t)
468 int i;
470 for (i = 0; i < _NSIG; ++i)
471 t->sighand->action[i].sa.sa_handler = SIG_IGN;
473 flush_signals(t);
477 * Flush all handlers for a task.
480 void
481 flush_signal_handlers(struct task_struct *t, int force_default)
483 int i;
484 struct k_sigaction *ka = &t->sighand->action[0];
485 for (i = _NSIG ; i != 0 ; i--) {
486 if (force_default || ka->sa.sa_handler != SIG_IGN)
487 ka->sa.sa_handler = SIG_DFL;
488 ka->sa.sa_flags = 0;
489 #ifdef __ARCH_HAS_SA_RESTORER
490 ka->sa.sa_restorer = NULL;
491 #endif
492 sigemptyset(&ka->sa.sa_mask);
493 ka++;
497 int unhandled_signal(struct task_struct *tsk, int sig)
499 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
500 if (is_global_init(tsk))
501 return 1;
502 if (handler != SIG_IGN && handler != SIG_DFL)
503 return 0;
504 /* if ptraced, let the tracer determine */
505 return !tsk->ptrace;
508 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
509 bool *resched_timer)
511 struct sigqueue *q, *first = NULL;
514 * Collect the siginfo appropriate to this signal. Check if
515 * there is another siginfo for the same signal.
517 list_for_each_entry(q, &list->list, list) {
518 if (q->info.si_signo == sig) {
519 if (first)
520 goto still_pending;
521 first = q;
525 sigdelset(&list->signal, sig);
527 if (first) {
528 still_pending:
529 list_del_init(&first->list);
530 copy_siginfo(info, &first->info);
532 *resched_timer =
533 (first->flags & SIGQUEUE_PREALLOC) &&
534 (info->si_code == SI_TIMER) &&
535 (info->si_sys_private);
537 __sigqueue_free(first);
538 } else {
540 * Ok, it wasn't in the queue. This must be
541 * a fast-pathed signal or we must have been
542 * out of queue space. So zero out the info.
544 info->si_signo = sig;
545 info->si_errno = 0;
546 info->si_code = SI_USER;
547 info->si_pid = 0;
548 info->si_uid = 0;
552 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
553 siginfo_t *info, bool *resched_timer)
555 int sig = next_signal(pending, mask);
557 if (sig)
558 collect_signal(sig, pending, info, resched_timer);
559 return sig;
563 * Dequeue a signal and return the element to the caller, which is
564 * expected to free it.
566 * All callers have to hold the siglock.
568 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
570 bool resched_timer = false;
571 int signr;
573 /* We only dequeue private signals from ourselves, we don't let
574 * signalfd steal them
576 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
577 if (!signr) {
578 signr = __dequeue_signal(&tsk->signal->shared_pending,
579 mask, info, &resched_timer);
581 * itimer signal ?
583 * itimers are process shared and we restart periodic
584 * itimers in the signal delivery path to prevent DoS
585 * attacks in the high resolution timer case. This is
586 * compliant with the old way of self-restarting
587 * itimers, as the SIGALRM is a legacy signal and only
588 * queued once. Changing the restart behaviour to
589 * restart the timer in the signal dequeue path is
590 * reducing the timer noise on heavy loaded !highres
591 * systems too.
593 if (unlikely(signr == SIGALRM)) {
594 struct hrtimer *tmr = &tsk->signal->real_timer;
596 if (!hrtimer_is_queued(tmr) &&
597 tsk->signal->it_real_incr.tv64 != 0) {
598 hrtimer_forward(tmr, tmr->base->get_time(),
599 tsk->signal->it_real_incr);
600 hrtimer_restart(tmr);
605 recalc_sigpending();
606 if (!signr)
607 return 0;
609 if (unlikely(sig_kernel_stop(signr))) {
611 * Set a marker that we have dequeued a stop signal. Our
612 * caller might release the siglock and then the pending
613 * stop signal it is about to process is no longer in the
614 * pending bitmasks, but must still be cleared by a SIGCONT
615 * (and overruled by a SIGKILL). So those cases clear this
616 * shared flag after we've set it. Note that this flag may
617 * remain set after the signal we return is ignored or
618 * handled. That doesn't matter because its only purpose
619 * is to alert stop-signal processing code when another
620 * processor has come along and cleared the flag.
622 current->jobctl |= JOBCTL_STOP_DEQUEUED;
624 if (resched_timer) {
626 * Release the siglock to ensure proper locking order
627 * of timer locks outside of siglocks. Note, we leave
628 * irqs disabled here, since the posix-timers code is
629 * about to disable them again anyway.
631 spin_unlock(&tsk->sighand->siglock);
632 do_schedule_next_timer(info);
633 spin_lock(&tsk->sighand->siglock);
635 return signr;
639 * Tell a process that it has a new active signal..
641 * NOTE! we rely on the previous spin_lock to
642 * lock interrupts for us! We can only be called with
643 * "siglock" held, and the local interrupt must
644 * have been disabled when that got acquired!
646 * No need to set need_resched since signal event passing
647 * goes through ->blocked
649 void signal_wake_up_state(struct task_struct *t, unsigned int state)
651 set_tsk_thread_flag(t, TIF_SIGPENDING);
653 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
654 * case. We don't check t->state here because there is a race with it
655 * executing another processor and just now entering stopped state.
656 * By using wake_up_state, we ensure the process will wake up and
657 * handle its death signal.
659 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
660 kick_process(t);
664 * Remove signals in mask from the pending set and queue.
665 * Returns 1 if any signals were found.
667 * All callers must be holding the siglock.
669 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
671 struct sigqueue *q, *n;
672 sigset_t m;
674 sigandsets(&m, mask, &s->signal);
675 if (sigisemptyset(&m))
676 return 0;
678 sigandnsets(&s->signal, &s->signal, mask);
679 list_for_each_entry_safe(q, n, &s->list, list) {
680 if (sigismember(mask, q->info.si_signo)) {
681 list_del_init(&q->list);
682 __sigqueue_free(q);
685 return 1;
688 static inline int is_si_special(const struct siginfo *info)
690 return info <= SEND_SIG_FORCED;
693 static inline bool si_fromuser(const struct siginfo *info)
695 return info == SEND_SIG_NOINFO ||
696 (!is_si_special(info) && SI_FROMUSER(info));
699 static int dequeue_synchronous_signal(siginfo_t *info)
701 struct task_struct *tsk = current;
702 struct sigpending *pending = &tsk->pending;
703 struct sigqueue *q, *sync = NULL;
706 * Might a synchronous signal be in the queue?
708 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
709 return 0;
712 * Return the first synchronous signal in the queue.
714 list_for_each_entry(q, &pending->list, list) {
715 /* Synchronous signals have a postive si_code */
716 if ((q->info.si_code > SI_USER) &&
717 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
718 sync = q;
719 goto next;
722 return 0;
723 next:
725 * Check if there is another siginfo for the same signal.
727 list_for_each_entry_continue(q, &pending->list, list) {
728 if (q->info.si_signo == sync->info.si_signo)
729 goto still_pending;
732 sigdelset(&pending->signal, sync->info.si_signo);
733 recalc_sigpending();
734 still_pending:
735 list_del_init(&sync->list);
736 copy_siginfo(info, &sync->info);
737 __sigqueue_free(sync);
738 return info->si_signo;
742 * called with RCU read lock from check_kill_permission()
744 static int kill_ok_by_cred(struct task_struct *t)
746 const struct cred *cred = current_cred();
747 const struct cred *tcred = __task_cred(t);
749 if (uid_eq(cred->euid, tcred->suid) ||
750 uid_eq(cred->euid, tcred->uid) ||
751 uid_eq(cred->uid, tcred->suid) ||
752 uid_eq(cred->uid, tcred->uid))
753 return 1;
755 if (ns_capable(tcred->user_ns, CAP_KILL))
756 return 1;
758 return 0;
762 * Bad permissions for sending the signal
763 * - the caller must hold the RCU read lock
765 static int check_kill_permission(int sig, struct siginfo *info,
766 struct task_struct *t)
768 struct pid *sid;
769 int error;
771 if (!valid_signal(sig))
772 return -EINVAL;
774 if (!si_fromuser(info))
775 return 0;
777 error = audit_signal_info(sig, t); /* Let audit system see the signal */
778 if (error)
779 return error;
781 if (!same_thread_group(current, t) &&
782 !kill_ok_by_cred(t)) {
783 switch (sig) {
784 case SIGCONT:
785 sid = task_session(t);
787 * We don't return the error if sid == NULL. The
788 * task was unhashed, the caller must notice this.
790 if (!sid || sid == task_session(current))
791 break;
792 default:
793 return -EPERM;
797 return security_task_kill(t, info, sig, 0);
801 * ptrace_trap_notify - schedule trap to notify ptracer
802 * @t: tracee wanting to notify tracer
804 * This function schedules sticky ptrace trap which is cleared on the next
805 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
806 * ptracer.
808 * If @t is running, STOP trap will be taken. If trapped for STOP and
809 * ptracer is listening for events, tracee is woken up so that it can
810 * re-trap for the new event. If trapped otherwise, STOP trap will be
811 * eventually taken without returning to userland after the existing traps
812 * are finished by PTRACE_CONT.
814 * CONTEXT:
815 * Must be called with @task->sighand->siglock held.
817 static void ptrace_trap_notify(struct task_struct *t)
819 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
820 assert_spin_locked(&t->sighand->siglock);
822 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
823 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
827 * Handle magic process-wide effects of stop/continue signals. Unlike
828 * the signal actions, these happen immediately at signal-generation
829 * time regardless of blocking, ignoring, or handling. This does the
830 * actual continuing for SIGCONT, but not the actual stopping for stop
831 * signals. The process stop is done as a signal action for SIG_DFL.
833 * Returns true if the signal should be actually delivered, otherwise
834 * it should be dropped.
836 static bool prepare_signal(int sig, struct task_struct *p, bool force)
838 struct signal_struct *signal = p->signal;
839 struct task_struct *t;
840 sigset_t flush;
842 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
843 if (!(signal->flags & SIGNAL_GROUP_EXIT))
844 return sig == SIGKILL;
846 * The process is in the middle of dying, nothing to do.
848 } else if (sig_kernel_stop(sig)) {
850 * This is a stop signal. Remove SIGCONT from all queues.
852 siginitset(&flush, sigmask(SIGCONT));
853 flush_sigqueue_mask(&flush, &signal->shared_pending);
854 for_each_thread(p, t)
855 flush_sigqueue_mask(&flush, &t->pending);
856 } else if (sig == SIGCONT) {
857 unsigned int why;
859 * Remove all stop signals from all queues, wake all threads.
861 siginitset(&flush, SIG_KERNEL_STOP_MASK);
862 flush_sigqueue_mask(&flush, &signal->shared_pending);
863 for_each_thread(p, t) {
864 flush_sigqueue_mask(&flush, &t->pending);
865 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
866 if (likely(!(t->ptrace & PT_SEIZED)))
867 wake_up_state(t, __TASK_STOPPED);
868 else
869 ptrace_trap_notify(t);
873 * Notify the parent with CLD_CONTINUED if we were stopped.
875 * If we were in the middle of a group stop, we pretend it
876 * was already finished, and then continued. Since SIGCHLD
877 * doesn't queue we report only CLD_STOPPED, as if the next
878 * CLD_CONTINUED was dropped.
880 why = 0;
881 if (signal->flags & SIGNAL_STOP_STOPPED)
882 why |= SIGNAL_CLD_CONTINUED;
883 else if (signal->group_stop_count)
884 why |= SIGNAL_CLD_STOPPED;
886 if (why) {
888 * The first thread which returns from do_signal_stop()
889 * will take ->siglock, notice SIGNAL_CLD_MASK, and
890 * notify its parent. See get_signal_to_deliver().
892 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
893 signal->group_stop_count = 0;
894 signal->group_exit_code = 0;
898 return !sig_ignored(p, sig, force);
902 * Test if P wants to take SIG. After we've checked all threads with this,
903 * it's equivalent to finding no threads not blocking SIG. Any threads not
904 * blocking SIG were ruled out because they are not running and already
905 * have pending signals. Such threads will dequeue from the shared queue
906 * as soon as they're available, so putting the signal on the shared queue
907 * will be equivalent to sending it to one such thread.
909 static inline int wants_signal(int sig, struct task_struct *p)
911 if (sigismember(&p->blocked, sig))
912 return 0;
913 if (p->flags & PF_EXITING)
914 return 0;
915 if (sig == SIGKILL)
916 return 1;
917 if (task_is_stopped_or_traced(p))
918 return 0;
919 return task_curr(p) || !signal_pending(p);
922 static void complete_signal(int sig, struct task_struct *p, int group)
924 struct signal_struct *signal = p->signal;
925 struct task_struct *t;
928 * Now find a thread we can wake up to take the signal off the queue.
930 * If the main thread wants the signal, it gets first crack.
931 * Probably the least surprising to the average bear.
933 if (wants_signal(sig, p))
934 t = p;
935 else if (!group || thread_group_empty(p))
937 * There is just one thread and it does not need to be woken.
938 * It will dequeue unblocked signals before it runs again.
940 return;
941 else {
943 * Otherwise try to find a suitable thread.
945 t = signal->curr_target;
946 while (!wants_signal(sig, t)) {
947 t = next_thread(t);
948 if (t == signal->curr_target)
950 * No thread needs to be woken.
951 * Any eligible threads will see
952 * the signal in the queue soon.
954 return;
956 signal->curr_target = t;
960 * Found a killable thread. If the signal will be fatal,
961 * then start taking the whole group down immediately.
963 if (sig_fatal(p, sig) &&
964 !(signal->flags & SIGNAL_GROUP_EXIT) &&
965 !sigismember(&t->real_blocked, sig) &&
966 (sig == SIGKILL || !p->ptrace)) {
968 * This signal will be fatal to the whole group.
970 if (!sig_kernel_coredump(sig)) {
972 * Start a group exit and wake everybody up.
973 * This way we don't have other threads
974 * running and doing things after a slower
975 * thread has the fatal signal pending.
977 signal->flags = SIGNAL_GROUP_EXIT;
978 signal->group_exit_code = sig;
979 signal->group_stop_count = 0;
980 t = p;
981 do {
982 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
983 sigaddset(&t->pending.signal, SIGKILL);
984 signal_wake_up(t, 1);
985 } while_each_thread(p, t);
986 return;
991 * The signal is already in the shared-pending queue.
992 * Tell the chosen thread to wake up and dequeue it.
994 signal_wake_up(t, sig == SIGKILL);
995 return;
998 static inline int legacy_queue(struct sigpending *signals, int sig)
1000 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1003 #ifdef CONFIG_USER_NS
1004 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1006 if (current_user_ns() == task_cred_xxx(t, user_ns))
1007 return;
1009 if (SI_FROMKERNEL(info))
1010 return;
1012 rcu_read_lock();
1013 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1014 make_kuid(current_user_ns(), info->si_uid));
1015 rcu_read_unlock();
1017 #else
1018 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1020 return;
1022 #endif
1024 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1025 int group, int from_ancestor_ns)
1027 struct sigpending *pending;
1028 struct sigqueue *q;
1029 int override_rlimit;
1030 int ret = 0, result;
1032 assert_spin_locked(&t->sighand->siglock);
1034 result = TRACE_SIGNAL_IGNORED;
1035 if (!prepare_signal(sig, t,
1036 from_ancestor_ns || (info == SEND_SIG_PRIV) || (info == SEND_SIG_FORCED)))
1037 goto ret;
1039 pending = group ? &t->signal->shared_pending : &t->pending;
1041 * Short-circuit ignored signals and support queuing
1042 * exactly one non-rt signal, so that we can get more
1043 * detailed information about the cause of the signal.
1045 result = TRACE_SIGNAL_ALREADY_PENDING;
1046 if (legacy_queue(pending, sig))
1047 goto ret;
1049 result = TRACE_SIGNAL_DELIVERED;
1051 * fast-pathed signals for kernel-internal things like SIGSTOP
1052 * or SIGKILL.
1054 if (info == SEND_SIG_FORCED)
1055 goto out_set;
1058 * Real-time signals must be queued if sent by sigqueue, or
1059 * some other real-time mechanism. It is implementation
1060 * defined whether kill() does so. We attempt to do so, on
1061 * the principle of least surprise, but since kill is not
1062 * allowed to fail with EAGAIN when low on memory we just
1063 * make sure at least one signal gets delivered and don't
1064 * pass on the info struct.
1066 if (sig < SIGRTMIN)
1067 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1068 else
1069 override_rlimit = 0;
1071 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1072 override_rlimit);
1073 if (q) {
1074 list_add_tail(&q->list, &pending->list);
1075 switch ((unsigned long) info) {
1076 case (unsigned long) SEND_SIG_NOINFO:
1077 q->info.si_signo = sig;
1078 q->info.si_errno = 0;
1079 q->info.si_code = SI_USER;
1080 q->info.si_pid = task_tgid_nr_ns(current,
1081 task_active_pid_ns(t));
1082 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1083 break;
1084 case (unsigned long) SEND_SIG_PRIV:
1085 q->info.si_signo = sig;
1086 q->info.si_errno = 0;
1087 q->info.si_code = SI_KERNEL;
1088 q->info.si_pid = 0;
1089 q->info.si_uid = 0;
1090 break;
1091 default:
1092 copy_siginfo(&q->info, info);
1093 if (from_ancestor_ns)
1094 q->info.si_pid = 0;
1095 break;
1098 userns_fixup_signal_uid(&q->info, t);
1100 } else if (!is_si_special(info)) {
1101 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1103 * Queue overflow, abort. We may abort if the
1104 * signal was rt and sent by user using something
1105 * other than kill().
1107 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1108 ret = -EAGAIN;
1109 goto ret;
1110 } else {
1112 * This is a silent loss of information. We still
1113 * send the signal, but the *info bits are lost.
1115 result = TRACE_SIGNAL_LOSE_INFO;
1119 out_set:
1120 signalfd_notify(t, sig);
1121 sigaddset(&pending->signal, sig);
1122 complete_signal(sig, t, group);
1123 ret:
1124 trace_signal_generate(sig, info, t, group, result);
1125 return ret;
1128 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1129 int group)
1131 int from_ancestor_ns = 0;
1133 #ifdef CONFIG_PID_NS
1134 from_ancestor_ns = si_fromuser(info) &&
1135 !task_pid_nr_ns(current, task_active_pid_ns(t));
1136 #endif
1138 return __send_signal(sig, info, t, group, from_ancestor_ns);
1141 static void print_fatal_signal(int signr)
1143 struct pt_regs *regs = signal_pt_regs();
1144 printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1146 #if defined(__i386__) && !defined(__arch_um__)
1147 printk(KERN_INFO "code at %08lx: ", regs->ip);
1149 int i;
1150 for (i = 0; i < 16; i++) {
1151 unsigned char insn;
1153 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1154 break;
1155 printk(KERN_CONT "%02x ", insn);
1158 printk(KERN_CONT "\n");
1159 #endif
1160 preempt_disable();
1161 show_regs(regs);
1162 preempt_enable();
1165 static int __init setup_print_fatal_signals(char *str)
1167 get_option (&str, &print_fatal_signals);
1169 return 1;
1172 __setup("print-fatal-signals=", setup_print_fatal_signals);
1175 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1177 return send_signal(sig, info, p, 1);
1180 static int
1181 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1183 return send_signal(sig, info, t, 0);
1186 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1187 bool group)
1189 unsigned long flags;
1190 int ret = -ESRCH;
1192 if (lock_task_sighand(p, &flags)) {
1193 ret = send_signal(sig, info, p, group);
1194 unlock_task_sighand(p, &flags);
1197 return ret;
1201 * Force a signal that the process can't ignore: if necessary
1202 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1204 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1205 * since we do not want to have a signal handler that was blocked
1206 * be invoked when user space had explicitly blocked it.
1208 * We don't want to have recursive SIGSEGV's etc, for example,
1209 * that is why we also clear SIGNAL_UNKILLABLE.
1212 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1214 unsigned long int flags;
1215 int ret, blocked, ignored;
1216 struct k_sigaction *action;
1218 spin_lock_irqsave(&t->sighand->siglock, flags);
1219 action = &t->sighand->action[sig-1];
1220 ignored = action->sa.sa_handler == SIG_IGN;
1221 blocked = sigismember(&t->blocked, sig);
1222 if (blocked || ignored) {
1223 action->sa.sa_handler = SIG_DFL;
1224 if (blocked) {
1225 sigdelset(&t->blocked, sig);
1226 recalc_sigpending_and_wake(t);
1229 if (action->sa.sa_handler == SIG_DFL)
1230 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1231 ret = specific_send_sig_info(sig, info, t);
1232 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1234 return ret;
1238 * Nuke all other threads in the group.
1240 int zap_other_threads(struct task_struct *p)
1242 struct task_struct *t = p;
1243 int count = 0;
1245 p->signal->group_stop_count = 0;
1247 while_each_thread(p, t) {
1248 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1249 count++;
1251 /* Don't bother with already dead threads */
1252 if (t->exit_state)
1253 continue;
1254 sigaddset(&t->pending.signal, SIGKILL);
1255 signal_wake_up(t, 1);
1258 return count;
1261 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1262 unsigned long *flags)
1264 struct sighand_struct *sighand;
1266 for (;;) {
1268 * Disable interrupts early to avoid deadlocks.
1269 * See rcu_read_unlock() comment header for details.
1271 local_irq_save(*flags);
1272 rcu_read_lock();
1273 sighand = rcu_dereference(tsk->sighand);
1274 if (unlikely(sighand == NULL)) {
1275 rcu_read_unlock();
1276 local_irq_restore(*flags);
1277 break;
1280 * This sighand can be already freed and even reused, but
1281 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1282 * initializes ->siglock: this slab can't go away, it has
1283 * the same object type, ->siglock can't be reinitialized.
1285 * We need to ensure that tsk->sighand is still the same
1286 * after we take the lock, we can race with de_thread() or
1287 * __exit_signal(). In the latter case the next iteration
1288 * must see ->sighand == NULL.
1290 spin_lock(&sighand->siglock);
1291 if (likely(sighand == tsk->sighand)) {
1292 rcu_read_unlock();
1293 break;
1295 spin_unlock(&sighand->siglock);
1296 rcu_read_unlock();
1297 local_irq_restore(*flags);
1300 return sighand;
1304 * send signal info to all the members of a group
1306 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1308 int ret;
1310 rcu_read_lock();
1311 ret = check_kill_permission(sig, info, p);
1312 rcu_read_unlock();
1314 if (!ret && sig)
1315 ret = do_send_sig_info(sig, info, p, true);
1317 return ret;
1321 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1322 * control characters do (^C, ^Z etc)
1323 * - the caller must hold at least a readlock on tasklist_lock
1325 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1327 struct task_struct *p = NULL;
1328 int retval, success;
1330 success = 0;
1331 retval = -ESRCH;
1332 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1333 int err = group_send_sig_info(sig, info, p);
1334 success |= !err;
1335 retval = err;
1336 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1337 return success ? 0 : retval;
1340 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1342 int error = -ESRCH;
1343 struct task_struct *p;
1345 for (;;) {
1346 rcu_read_lock();
1347 p = pid_task(pid, PIDTYPE_PID);
1348 if (p)
1349 error = group_send_sig_info(sig, info, p);
1350 rcu_read_unlock();
1351 if (likely(!p || error != -ESRCH))
1352 return error;
1355 * The task was unhashed in between, try again. If it
1356 * is dead, pid_task() will return NULL, if we race with
1357 * de_thread() it will find the new leader.
1362 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1364 int error;
1365 rcu_read_lock();
1366 error = kill_pid_info(sig, info, find_vpid(pid));
1367 rcu_read_unlock();
1368 return error;
1371 static int kill_as_cred_perm(const struct cred *cred,
1372 struct task_struct *target)
1374 const struct cred *pcred = __task_cred(target);
1375 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1376 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1377 return 0;
1378 return 1;
1381 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1382 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1383 const struct cred *cred, u32 secid)
1385 int ret = -EINVAL;
1386 struct task_struct *p;
1387 unsigned long flags;
1389 if (!valid_signal(sig))
1390 return ret;
1392 rcu_read_lock();
1393 p = pid_task(pid, PIDTYPE_PID);
1394 if (!p) {
1395 ret = -ESRCH;
1396 goto out_unlock;
1398 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1399 ret = -EPERM;
1400 goto out_unlock;
1402 ret = security_task_kill(p, info, sig, secid);
1403 if (ret)
1404 goto out_unlock;
1406 if (sig) {
1407 if (lock_task_sighand(p, &flags)) {
1408 ret = __send_signal(sig, info, p, 1, 0);
1409 unlock_task_sighand(p, &flags);
1410 } else
1411 ret = -ESRCH;
1413 out_unlock:
1414 rcu_read_unlock();
1415 return ret;
1417 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1420 * kill_something_info() interprets pid in interesting ways just like kill(2).
1422 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1423 * is probably wrong. Should make it like BSD or SYSV.
1426 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1428 int ret;
1430 if (pid > 0) {
1431 rcu_read_lock();
1432 ret = kill_pid_info(sig, info, find_vpid(pid));
1433 rcu_read_unlock();
1434 return ret;
1437 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1438 if (pid == INT_MIN)
1439 return -ESRCH;
1441 read_lock(&tasklist_lock);
1442 if (pid != -1) {
1443 ret = __kill_pgrp_info(sig, info,
1444 pid ? find_vpid(-pid) : task_pgrp(current));
1445 } else {
1446 int retval = 0, count = 0;
1447 struct task_struct * p;
1449 for_each_process(p) {
1450 if (task_pid_vnr(p) > 1 &&
1451 !same_thread_group(p, current)) {
1452 int err = group_send_sig_info(sig, info, p);
1453 ++count;
1454 if (err != -EPERM)
1455 retval = err;
1458 ret = count ? retval : -ESRCH;
1460 read_unlock(&tasklist_lock);
1462 return ret;
1466 * These are for backward compatibility with the rest of the kernel source.
1469 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1472 * Make sure legacy kernel users don't send in bad values
1473 * (normal paths check this in check_kill_permission).
1475 if (!valid_signal(sig))
1476 return -EINVAL;
1478 return do_send_sig_info(sig, info, p, false);
1481 #define __si_special(priv) \
1482 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1485 send_sig(int sig, struct task_struct *p, int priv)
1487 return send_sig_info(sig, __si_special(priv), p);
1490 void
1491 force_sig(int sig, struct task_struct *p)
1493 force_sig_info(sig, SEND_SIG_PRIV, p);
1497 * When things go south during signal handling, we
1498 * will force a SIGSEGV. And if the signal that caused
1499 * the problem was already a SIGSEGV, we'll want to
1500 * make sure we don't even try to deliver the signal..
1503 force_sigsegv(int sig, struct task_struct *p)
1505 if (sig == SIGSEGV) {
1506 unsigned long flags;
1507 spin_lock_irqsave(&p->sighand->siglock, flags);
1508 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1509 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1511 force_sig(SIGSEGV, p);
1512 return 0;
1515 int kill_pgrp(struct pid *pid, int sig, int priv)
1517 int ret;
1519 read_lock(&tasklist_lock);
1520 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1521 read_unlock(&tasklist_lock);
1523 return ret;
1525 EXPORT_SYMBOL(kill_pgrp);
1527 int kill_pid(struct pid *pid, int sig, int priv)
1529 return kill_pid_info(sig, __si_special(priv), pid);
1531 EXPORT_SYMBOL(kill_pid);
1534 * These functions support sending signals using preallocated sigqueue
1535 * structures. This is needed "because realtime applications cannot
1536 * afford to lose notifications of asynchronous events, like timer
1537 * expirations or I/O completions". In the case of POSIX Timers
1538 * we allocate the sigqueue structure from the timer_create. If this
1539 * allocation fails we are able to report the failure to the application
1540 * with an EAGAIN error.
1542 struct sigqueue *sigqueue_alloc(void)
1544 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1546 if (q)
1547 q->flags |= SIGQUEUE_PREALLOC;
1549 return q;
1552 void sigqueue_free(struct sigqueue *q)
1554 unsigned long flags;
1555 spinlock_t *lock = &current->sighand->siglock;
1557 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1559 * We must hold ->siglock while testing q->list
1560 * to serialize with collect_signal() or with
1561 * __exit_signal()->flush_sigqueue().
1563 spin_lock_irqsave(lock, flags);
1564 q->flags &= ~SIGQUEUE_PREALLOC;
1566 * If it is queued it will be freed when dequeued,
1567 * like the "regular" sigqueue.
1569 if (!list_empty(&q->list))
1570 q = NULL;
1571 spin_unlock_irqrestore(lock, flags);
1573 if (q)
1574 __sigqueue_free(q);
1577 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1579 int sig = q->info.si_signo;
1580 struct sigpending *pending;
1581 unsigned long flags;
1582 int ret, result;
1584 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1586 ret = -1;
1587 if (!likely(lock_task_sighand(t, &flags)))
1588 goto ret;
1590 ret = 1; /* the signal is ignored */
1591 result = TRACE_SIGNAL_IGNORED;
1592 if (!prepare_signal(sig, t, false))
1593 goto out;
1595 ret = 0;
1596 if (unlikely(!list_empty(&q->list))) {
1598 * If an SI_TIMER entry is already queue just increment
1599 * the overrun count.
1601 BUG_ON(q->info.si_code != SI_TIMER);
1602 q->info.si_overrun++;
1603 result = TRACE_SIGNAL_ALREADY_PENDING;
1604 goto out;
1606 q->info.si_overrun = 0;
1608 signalfd_notify(t, sig);
1609 pending = group ? &t->signal->shared_pending : &t->pending;
1610 list_add_tail(&q->list, &pending->list);
1611 sigaddset(&pending->signal, sig);
1612 complete_signal(sig, t, group);
1613 result = TRACE_SIGNAL_DELIVERED;
1614 out:
1615 trace_signal_generate(sig, &q->info, t, group, result);
1616 unlock_task_sighand(t, &flags);
1617 ret:
1618 return ret;
1622 * Let a parent know about the death of a child.
1623 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1625 * Returns true if our parent ignored us and so we've switched to
1626 * self-reaping.
1628 bool do_notify_parent(struct task_struct *tsk, int sig)
1630 struct siginfo info;
1631 unsigned long flags;
1632 struct sighand_struct *psig;
1633 bool autoreap = false;
1634 cputime_t utime, stime;
1636 BUG_ON(sig == -1);
1638 /* do_notify_parent_cldstop should have been called instead. */
1639 BUG_ON(task_is_stopped_or_traced(tsk));
1641 BUG_ON(!tsk->ptrace &&
1642 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1644 if (sig != SIGCHLD) {
1646 * This is only possible if parent == real_parent.
1647 * Check if it has changed security domain.
1649 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1650 sig = SIGCHLD;
1653 info.si_signo = sig;
1654 info.si_errno = 0;
1656 * We are under tasklist_lock here so our parent is tied to
1657 * us and cannot change.
1659 * task_active_pid_ns will always return the same pid namespace
1660 * until a task passes through release_task.
1662 * write_lock() currently calls preempt_disable() which is the
1663 * same as rcu_read_lock(), but according to Oleg, this is not
1664 * correct to rely on this
1666 rcu_read_lock();
1667 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1668 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1669 task_uid(tsk));
1670 rcu_read_unlock();
1672 task_cputime(tsk, &utime, &stime);
1673 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1674 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1676 info.si_status = tsk->exit_code & 0x7f;
1677 if (tsk->exit_code & 0x80)
1678 info.si_code = CLD_DUMPED;
1679 else if (tsk->exit_code & 0x7f)
1680 info.si_code = CLD_KILLED;
1681 else {
1682 info.si_code = CLD_EXITED;
1683 info.si_status = tsk->exit_code >> 8;
1686 psig = tsk->parent->sighand;
1687 spin_lock_irqsave(&psig->siglock, flags);
1688 if (!tsk->ptrace && sig == SIGCHLD &&
1689 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1690 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1692 * We are exiting and our parent doesn't care. POSIX.1
1693 * defines special semantics for setting SIGCHLD to SIG_IGN
1694 * or setting the SA_NOCLDWAIT flag: we should be reaped
1695 * automatically and not left for our parent's wait4 call.
1696 * Rather than having the parent do it as a magic kind of
1697 * signal handler, we just set this to tell do_exit that we
1698 * can be cleaned up without becoming a zombie. Note that
1699 * we still call __wake_up_parent in this case, because a
1700 * blocked sys_wait4 might now return -ECHILD.
1702 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1703 * is implementation-defined: we do (if you don't want
1704 * it, just use SIG_IGN instead).
1706 autoreap = true;
1707 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1708 sig = 0;
1710 if (valid_signal(sig) && sig)
1711 __group_send_sig_info(sig, &info, tsk->parent);
1712 __wake_up_parent(tsk, tsk->parent);
1713 spin_unlock_irqrestore(&psig->siglock, flags);
1715 return autoreap;
1719 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1720 * @tsk: task reporting the state change
1721 * @for_ptracer: the notification is for ptracer
1722 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1724 * Notify @tsk's parent that the stopped/continued state has changed. If
1725 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1726 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1728 * CONTEXT:
1729 * Must be called with tasklist_lock at least read locked.
1731 static void do_notify_parent_cldstop(struct task_struct *tsk,
1732 bool for_ptracer, int why)
1734 struct siginfo info;
1735 unsigned long flags;
1736 struct task_struct *parent;
1737 struct sighand_struct *sighand;
1738 cputime_t utime, stime;
1740 if (for_ptracer) {
1741 parent = tsk->parent;
1742 } else {
1743 tsk = tsk->group_leader;
1744 parent = tsk->real_parent;
1747 info.si_signo = SIGCHLD;
1748 info.si_errno = 0;
1750 * see comment in do_notify_parent() about the following 4 lines
1752 rcu_read_lock();
1753 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1754 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1755 rcu_read_unlock();
1757 task_cputime(tsk, &utime, &stime);
1758 info.si_utime = cputime_to_clock_t(utime);
1759 info.si_stime = cputime_to_clock_t(stime);
1761 info.si_code = why;
1762 switch (why) {
1763 case CLD_CONTINUED:
1764 info.si_status = SIGCONT;
1765 break;
1766 case CLD_STOPPED:
1767 info.si_status = tsk->signal->group_exit_code & 0x7f;
1768 break;
1769 case CLD_TRAPPED:
1770 info.si_status = tsk->exit_code & 0x7f;
1771 break;
1772 default:
1773 BUG();
1776 sighand = parent->sighand;
1777 spin_lock_irqsave(&sighand->siglock, flags);
1778 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1779 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1780 __group_send_sig_info(SIGCHLD, &info, parent);
1782 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1784 __wake_up_parent(tsk, parent);
1785 spin_unlock_irqrestore(&sighand->siglock, flags);
1788 static inline int may_ptrace_stop(void)
1790 if (!likely(current->ptrace))
1791 return 0;
1793 * Are we in the middle of do_coredump?
1794 * If so and our tracer is also part of the coredump stopping
1795 * is a deadlock situation, and pointless because our tracer
1796 * is dead so don't allow us to stop.
1797 * If SIGKILL was already sent before the caller unlocked
1798 * ->siglock we must see ->core_state != NULL. Otherwise it
1799 * is safe to enter schedule().
1801 * This is almost outdated, a task with the pending SIGKILL can't
1802 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1803 * after SIGKILL was already dequeued.
1805 if (unlikely(current->mm->core_state) &&
1806 unlikely(current->mm == current->parent->mm))
1807 return 0;
1809 return 1;
1813 * Return non-zero if there is a SIGKILL that should be waking us up.
1814 * Called with the siglock held.
1816 static int sigkill_pending(struct task_struct *tsk)
1818 return sigismember(&tsk->pending.signal, SIGKILL) ||
1819 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1823 * This must be called with current->sighand->siglock held.
1825 * This should be the path for all ptrace stops.
1826 * We always set current->last_siginfo while stopped here.
1827 * That makes it a way to test a stopped process for
1828 * being ptrace-stopped vs being job-control-stopped.
1830 * If we actually decide not to stop at all because the tracer
1831 * is gone, we keep current->exit_code unless clear_code.
1833 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1834 __releases(&current->sighand->siglock)
1835 __acquires(&current->sighand->siglock)
1837 bool gstop_done = false;
1839 if (arch_ptrace_stop_needed(exit_code, info)) {
1841 * The arch code has something special to do before a
1842 * ptrace stop. This is allowed to block, e.g. for faults
1843 * on user stack pages. We can't keep the siglock while
1844 * calling arch_ptrace_stop, so we must release it now.
1845 * To preserve proper semantics, we must do this before
1846 * any signal bookkeeping like checking group_stop_count.
1847 * Meanwhile, a SIGKILL could come in before we retake the
1848 * siglock. That must prevent us from sleeping in TASK_TRACED.
1849 * So after regaining the lock, we must check for SIGKILL.
1851 spin_unlock_irq(&current->sighand->siglock);
1852 arch_ptrace_stop(exit_code, info);
1853 spin_lock_irq(&current->sighand->siglock);
1854 if (sigkill_pending(current))
1855 return;
1859 * We're committing to trapping. TRACED should be visible before
1860 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1861 * Also, transition to TRACED and updates to ->jobctl should be
1862 * atomic with respect to siglock and should be done after the arch
1863 * hook as siglock is released and regrabbed across it.
1865 set_current_state(TASK_TRACED);
1867 current->last_siginfo = info;
1868 current->exit_code = exit_code;
1871 * If @why is CLD_STOPPED, we're trapping to participate in a group
1872 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1873 * across siglock relocks since INTERRUPT was scheduled, PENDING
1874 * could be clear now. We act as if SIGCONT is received after
1875 * TASK_TRACED is entered - ignore it.
1877 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1878 gstop_done = task_participate_group_stop(current);
1880 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1881 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1882 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1883 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1885 /* entering a trap, clear TRAPPING */
1886 task_clear_jobctl_trapping(current);
1888 spin_unlock_irq(&current->sighand->siglock);
1889 read_lock(&tasklist_lock);
1890 if (may_ptrace_stop()) {
1892 * Notify parents of the stop.
1894 * While ptraced, there are two parents - the ptracer and
1895 * the real_parent of the group_leader. The ptracer should
1896 * know about every stop while the real parent is only
1897 * interested in the completion of group stop. The states
1898 * for the two don't interact with each other. Notify
1899 * separately unless they're gonna be duplicates.
1901 do_notify_parent_cldstop(current, true, why);
1902 if (gstop_done && ptrace_reparented(current))
1903 do_notify_parent_cldstop(current, false, why);
1906 * Don't want to allow preemption here, because
1907 * sys_ptrace() needs this task to be inactive.
1909 * XXX: implement read_unlock_no_resched().
1911 preempt_disable();
1912 read_unlock(&tasklist_lock);
1913 preempt_enable_no_resched();
1914 freezable_schedule();
1915 } else {
1917 * By the time we got the lock, our tracer went away.
1918 * Don't drop the lock yet, another tracer may come.
1920 * If @gstop_done, the ptracer went away between group stop
1921 * completion and here. During detach, it would have set
1922 * JOBCTL_STOP_PENDING on us and we'll re-enter
1923 * TASK_STOPPED in do_signal_stop() on return, so notifying
1924 * the real parent of the group stop completion is enough.
1926 if (gstop_done)
1927 do_notify_parent_cldstop(current, false, why);
1929 /* tasklist protects us from ptrace_freeze_traced() */
1930 __set_current_state(TASK_RUNNING);
1931 if (clear_code)
1932 current->exit_code = 0;
1933 read_unlock(&tasklist_lock);
1937 * We are back. Now reacquire the siglock before touching
1938 * last_siginfo, so that we are sure to have synchronized with
1939 * any signal-sending on another CPU that wants to examine it.
1941 spin_lock_irq(&current->sighand->siglock);
1942 current->last_siginfo = NULL;
1944 /* LISTENING can be set only during STOP traps, clear it */
1945 current->jobctl &= ~JOBCTL_LISTENING;
1948 * Queued signals ignored us while we were stopped for tracing.
1949 * So check for any that we should take before resuming user mode.
1950 * This sets TIF_SIGPENDING, but never clears it.
1952 recalc_sigpending_tsk(current);
1955 static void ptrace_do_notify(int signr, int exit_code, int why)
1957 siginfo_t info;
1959 memset(&info, 0, sizeof info);
1960 info.si_signo = signr;
1961 info.si_code = exit_code;
1962 info.si_pid = task_pid_vnr(current);
1963 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1965 /* Let the debugger run. */
1966 ptrace_stop(exit_code, why, 1, &info);
1969 void ptrace_notify(int exit_code)
1971 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1972 if (unlikely(current->task_works))
1973 task_work_run();
1975 spin_lock_irq(&current->sighand->siglock);
1976 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1977 spin_unlock_irq(&current->sighand->siglock);
1981 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1982 * @signr: signr causing group stop if initiating
1984 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1985 * and participate in it. If already set, participate in the existing
1986 * group stop. If participated in a group stop (and thus slept), %true is
1987 * returned with siglock released.
1989 * If ptraced, this function doesn't handle stop itself. Instead,
1990 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1991 * untouched. The caller must ensure that INTERRUPT trap handling takes
1992 * places afterwards.
1994 * CONTEXT:
1995 * Must be called with @current->sighand->siglock held, which is released
1996 * on %true return.
1998 * RETURNS:
1999 * %false if group stop is already cancelled or ptrace trap is scheduled.
2000 * %true if participated in group stop.
2002 static bool do_signal_stop(int signr)
2003 __releases(&current->sighand->siglock)
2005 struct signal_struct *sig = current->signal;
2007 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2008 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2009 struct task_struct *t;
2011 /* signr will be recorded in task->jobctl for retries */
2012 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2014 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2015 unlikely(signal_group_exit(sig)))
2016 return false;
2018 * There is no group stop already in progress. We must
2019 * initiate one now.
2021 * While ptraced, a task may be resumed while group stop is
2022 * still in effect and then receive a stop signal and
2023 * initiate another group stop. This deviates from the
2024 * usual behavior as two consecutive stop signals can't
2025 * cause two group stops when !ptraced. That is why we
2026 * also check !task_is_stopped(t) below.
2028 * The condition can be distinguished by testing whether
2029 * SIGNAL_STOP_STOPPED is already set. Don't generate
2030 * group_exit_code in such case.
2032 * This is not necessary for SIGNAL_STOP_CONTINUED because
2033 * an intervening stop signal is required to cause two
2034 * continued events regardless of ptrace.
2036 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2037 sig->group_exit_code = signr;
2039 sig->group_stop_count = 0;
2041 if (task_set_jobctl_pending(current, signr | gstop))
2042 sig->group_stop_count++;
2044 t = current;
2045 while_each_thread(current, t) {
2047 * Setting state to TASK_STOPPED for a group
2048 * stop is always done with the siglock held,
2049 * so this check has no races.
2051 if (!task_is_stopped(t) &&
2052 task_set_jobctl_pending(t, signr | gstop)) {
2053 sig->group_stop_count++;
2054 if (likely(!(t->ptrace & PT_SEIZED)))
2055 signal_wake_up(t, 0);
2056 else
2057 ptrace_trap_notify(t);
2062 if (likely(!current->ptrace)) {
2063 int notify = 0;
2066 * If there are no other threads in the group, or if there
2067 * is a group stop in progress and we are the last to stop,
2068 * report to the parent.
2070 if (task_participate_group_stop(current))
2071 notify = CLD_STOPPED;
2073 __set_current_state(TASK_STOPPED);
2074 spin_unlock_irq(&current->sighand->siglock);
2077 * Notify the parent of the group stop completion. Because
2078 * we're not holding either the siglock or tasklist_lock
2079 * here, ptracer may attach inbetween; however, this is for
2080 * group stop and should always be delivered to the real
2081 * parent of the group leader. The new ptracer will get
2082 * its notification when this task transitions into
2083 * TASK_TRACED.
2085 if (notify) {
2086 read_lock(&tasklist_lock);
2087 do_notify_parent_cldstop(current, false, notify);
2088 read_unlock(&tasklist_lock);
2091 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2092 freezable_schedule();
2093 return true;
2094 } else {
2096 * While ptraced, group stop is handled by STOP trap.
2097 * Schedule it and let the caller deal with it.
2099 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2100 return false;
2105 * do_jobctl_trap - take care of ptrace jobctl traps
2107 * When PT_SEIZED, it's used for both group stop and explicit
2108 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2109 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2110 * the stop signal; otherwise, %SIGTRAP.
2112 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2113 * number as exit_code and no siginfo.
2115 * CONTEXT:
2116 * Must be called with @current->sighand->siglock held, which may be
2117 * released and re-acquired before returning with intervening sleep.
2119 static void do_jobctl_trap(void)
2121 struct signal_struct *signal = current->signal;
2122 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2124 if (current->ptrace & PT_SEIZED) {
2125 if (!signal->group_stop_count &&
2126 !(signal->flags & SIGNAL_STOP_STOPPED))
2127 signr = SIGTRAP;
2128 WARN_ON_ONCE(!signr);
2129 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2130 CLD_STOPPED);
2131 } else {
2132 WARN_ON_ONCE(!signr);
2133 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2134 current->exit_code = 0;
2138 static int ptrace_signal(int signr, siginfo_t *info)
2140 ptrace_signal_deliver();
2142 * We do not check sig_kernel_stop(signr) but set this marker
2143 * unconditionally because we do not know whether debugger will
2144 * change signr. This flag has no meaning unless we are going
2145 * to stop after return from ptrace_stop(). In this case it will
2146 * be checked in do_signal_stop(), we should only stop if it was
2147 * not cleared by SIGCONT while we were sleeping. See also the
2148 * comment in dequeue_signal().
2150 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2151 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2153 /* We're back. Did the debugger cancel the sig? */
2154 signr = current->exit_code;
2155 if (signr == 0)
2156 return signr;
2158 current->exit_code = 0;
2161 * Update the siginfo structure if the signal has
2162 * changed. If the debugger wanted something
2163 * specific in the siginfo structure then it should
2164 * have updated *info via PTRACE_SETSIGINFO.
2166 if (signr != info->si_signo) {
2167 info->si_signo = signr;
2168 info->si_errno = 0;
2169 info->si_code = SI_USER;
2170 rcu_read_lock();
2171 info->si_pid = task_pid_vnr(current->parent);
2172 info->si_uid = from_kuid_munged(current_user_ns(),
2173 task_uid(current->parent));
2174 rcu_read_unlock();
2177 /* If the (new) signal is now blocked, requeue it. */
2178 if (sigismember(&current->blocked, signr)) {
2179 specific_send_sig_info(signr, info, current);
2180 signr = 0;
2183 return signr;
2186 int get_signal(struct ksignal *ksig)
2188 struct sighand_struct *sighand = current->sighand;
2189 struct signal_struct *signal = current->signal;
2190 int signr;
2192 if (unlikely(current->task_works))
2193 task_work_run();
2195 if (unlikely(uprobe_deny_signal()))
2196 return 0;
2199 * Do this once, we can't return to user-mode if freezing() == T.
2200 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2201 * thus do not need another check after return.
2203 try_to_freeze();
2205 relock:
2206 spin_lock_irq(&sighand->siglock);
2208 * Every stopped thread goes here after wakeup. Check to see if
2209 * we should notify the parent, prepare_signal(SIGCONT) encodes
2210 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2212 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2213 int why;
2215 if (signal->flags & SIGNAL_CLD_CONTINUED)
2216 why = CLD_CONTINUED;
2217 else
2218 why = CLD_STOPPED;
2220 signal->flags &= ~SIGNAL_CLD_MASK;
2222 spin_unlock_irq(&sighand->siglock);
2225 * Notify the parent that we're continuing. This event is
2226 * always per-process and doesn't make whole lot of sense
2227 * for ptracers, who shouldn't consume the state via
2228 * wait(2) either, but, for backward compatibility, notify
2229 * the ptracer of the group leader too unless it's gonna be
2230 * a duplicate.
2232 read_lock(&tasklist_lock);
2233 do_notify_parent_cldstop(current, false, why);
2235 if (ptrace_reparented(current->group_leader))
2236 do_notify_parent_cldstop(current->group_leader,
2237 true, why);
2238 read_unlock(&tasklist_lock);
2240 goto relock;
2243 /* Has this task already been marked for death? */
2244 if (signal_group_exit(signal)) {
2245 ksig->info.si_signo = signr = SIGKILL;
2246 sigdelset(&current->pending.signal, SIGKILL);
2247 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2248 &sighand->action[SIGKILL - 1]);
2249 recalc_sigpending();
2250 goto fatal;
2253 for (;;) {
2254 struct k_sigaction *ka;
2256 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2257 do_signal_stop(0))
2258 goto relock;
2260 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2261 do_jobctl_trap();
2262 spin_unlock_irq(&sighand->siglock);
2263 goto relock;
2267 * Signals generated by the execution of an instruction
2268 * need to be delivered before any other pending signals
2269 * so that the instruction pointer in the signal stack
2270 * frame points to the faulting instruction.
2272 signr = dequeue_synchronous_signal(&ksig->info);
2273 if (!signr)
2274 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2276 if (!signr)
2277 break; /* will return 0 */
2279 if (unlikely(current->ptrace) && signr != SIGKILL) {
2280 signr = ptrace_signal(signr, &ksig->info);
2281 if (!signr)
2282 continue;
2285 ka = &sighand->action[signr-1];
2287 /* Trace actually delivered signals. */
2288 trace_signal_deliver(signr, &ksig->info, ka);
2290 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2291 continue;
2292 if (ka->sa.sa_handler != SIG_DFL) {
2293 /* Run the handler. */
2294 ksig->ka = *ka;
2296 if (ka->sa.sa_flags & SA_ONESHOT)
2297 ka->sa.sa_handler = SIG_DFL;
2299 break; /* will return non-zero "signr" value */
2303 * Now we are doing the default action for this signal.
2305 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2306 continue;
2309 * Global init gets no signals it doesn't want.
2310 * Container-init gets no signals it doesn't want from same
2311 * container.
2313 * Note that if global/container-init sees a sig_kernel_only()
2314 * signal here, the signal must have been generated internally
2315 * or must have come from an ancestor namespace. In either
2316 * case, the signal cannot be dropped.
2318 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2319 !sig_kernel_only(signr))
2320 continue;
2322 if (sig_kernel_stop(signr)) {
2324 * The default action is to stop all threads in
2325 * the thread group. The job control signals
2326 * do nothing in an orphaned pgrp, but SIGSTOP
2327 * always works. Note that siglock needs to be
2328 * dropped during the call to is_orphaned_pgrp()
2329 * because of lock ordering with tasklist_lock.
2330 * This allows an intervening SIGCONT to be posted.
2331 * We need to check for that and bail out if necessary.
2333 if (signr != SIGSTOP) {
2334 spin_unlock_irq(&sighand->siglock);
2336 /* signals can be posted during this window */
2338 if (is_current_pgrp_orphaned())
2339 goto relock;
2341 spin_lock_irq(&sighand->siglock);
2344 if (likely(do_signal_stop(ksig->info.si_signo))) {
2345 /* It released the siglock. */
2346 goto relock;
2350 * We didn't actually stop, due to a race
2351 * with SIGCONT or something like that.
2353 continue;
2356 fatal:
2357 spin_unlock_irq(&sighand->siglock);
2360 * Anything else is fatal, maybe with a core dump.
2362 current->flags |= PF_SIGNALED;
2364 if (sig_kernel_coredump(signr)) {
2365 if (print_fatal_signals)
2366 print_fatal_signal(ksig->info.si_signo);
2367 proc_coredump_connector(current);
2369 * If it was able to dump core, this kills all
2370 * other threads in the group and synchronizes with
2371 * their demise. If we lost the race with another
2372 * thread getting here, it set group_exit_code
2373 * first and our do_group_exit call below will use
2374 * that value and ignore the one we pass it.
2376 do_coredump(&ksig->info);
2380 * Death signals, no core dump.
2382 do_group_exit(ksig->info.si_signo);
2383 /* NOTREACHED */
2385 spin_unlock_irq(&sighand->siglock);
2387 ksig->sig = signr;
2388 return ksig->sig > 0;
2392 * signal_delivered -
2393 * @ksig: kernel signal struct
2394 * @stepping: nonzero if debugger single-step or block-step in use
2396 * This function should be called when a signal has successfully been
2397 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2398 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2399 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2401 static void signal_delivered(struct ksignal *ksig, int stepping)
2403 sigset_t blocked;
2405 /* A signal was successfully delivered, and the
2406 saved sigmask was stored on the signal frame,
2407 and will be restored by sigreturn. So we can
2408 simply clear the restore sigmask flag. */
2409 clear_restore_sigmask();
2411 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2412 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2413 sigaddset(&blocked, ksig->sig);
2414 set_current_blocked(&blocked);
2415 tracehook_signal_handler(stepping);
2418 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2420 if (failed)
2421 force_sigsegv(ksig->sig, current);
2422 else
2423 signal_delivered(ksig, stepping);
2427 * It could be that complete_signal() picked us to notify about the
2428 * group-wide signal. Other threads should be notified now to take
2429 * the shared signals in @which since we will not.
2431 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2433 sigset_t retarget;
2434 struct task_struct *t;
2436 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2437 if (sigisemptyset(&retarget))
2438 return;
2440 t = tsk;
2441 while_each_thread(tsk, t) {
2442 if (t->flags & PF_EXITING)
2443 continue;
2445 if (!has_pending_signals(&retarget, &t->blocked))
2446 continue;
2447 /* Remove the signals this thread can handle. */
2448 sigandsets(&retarget, &retarget, &t->blocked);
2450 if (!signal_pending(t))
2451 signal_wake_up(t, 0);
2453 if (sigisemptyset(&retarget))
2454 break;
2458 void exit_signals(struct task_struct *tsk)
2460 int group_stop = 0;
2461 sigset_t unblocked;
2464 * @tsk is about to have PF_EXITING set - lock out users which
2465 * expect stable threadgroup.
2467 threadgroup_change_begin(tsk);
2469 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2470 tsk->flags |= PF_EXITING;
2471 threadgroup_change_end(tsk);
2472 return;
2475 spin_lock_irq(&tsk->sighand->siglock);
2477 * From now this task is not visible for group-wide signals,
2478 * see wants_signal(), do_signal_stop().
2480 tsk->flags |= PF_EXITING;
2482 threadgroup_change_end(tsk);
2484 if (!signal_pending(tsk))
2485 goto out;
2487 unblocked = tsk->blocked;
2488 signotset(&unblocked);
2489 retarget_shared_pending(tsk, &unblocked);
2491 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2492 task_participate_group_stop(tsk))
2493 group_stop = CLD_STOPPED;
2494 out:
2495 spin_unlock_irq(&tsk->sighand->siglock);
2498 * If group stop has completed, deliver the notification. This
2499 * should always go to the real parent of the group leader.
2501 if (unlikely(group_stop)) {
2502 read_lock(&tasklist_lock);
2503 do_notify_parent_cldstop(tsk, false, group_stop);
2504 read_unlock(&tasklist_lock);
2508 EXPORT_SYMBOL(recalc_sigpending);
2509 EXPORT_SYMBOL_GPL(dequeue_signal);
2510 EXPORT_SYMBOL(flush_signals);
2511 EXPORT_SYMBOL(force_sig);
2512 EXPORT_SYMBOL(send_sig);
2513 EXPORT_SYMBOL(send_sig_info);
2514 EXPORT_SYMBOL(sigprocmask);
2517 * System call entry points.
2521 * sys_restart_syscall - restart a system call
2523 SYSCALL_DEFINE0(restart_syscall)
2525 struct restart_block *restart = &current->restart_block;
2526 return restart->fn(restart);
2529 long do_no_restart_syscall(struct restart_block *param)
2531 return -EINTR;
2534 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2536 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2537 sigset_t newblocked;
2538 /* A set of now blocked but previously unblocked signals. */
2539 sigandnsets(&newblocked, newset, &current->blocked);
2540 retarget_shared_pending(tsk, &newblocked);
2542 tsk->blocked = *newset;
2543 recalc_sigpending();
2547 * set_current_blocked - change current->blocked mask
2548 * @newset: new mask
2550 * It is wrong to change ->blocked directly, this helper should be used
2551 * to ensure the process can't miss a shared signal we are going to block.
2553 void set_current_blocked(sigset_t *newset)
2555 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2556 __set_current_blocked(newset);
2559 void __set_current_blocked(const sigset_t *newset)
2561 struct task_struct *tsk = current;
2564 * In case the signal mask hasn't changed, there is nothing we need
2565 * to do. The current->blocked shouldn't be modified by other task.
2567 if (sigequalsets(&tsk->blocked, newset))
2568 return;
2570 spin_lock_irq(&tsk->sighand->siglock);
2571 __set_task_blocked(tsk, newset);
2572 spin_unlock_irq(&tsk->sighand->siglock);
2576 * This is also useful for kernel threads that want to temporarily
2577 * (or permanently) block certain signals.
2579 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2580 * interface happily blocks "unblockable" signals like SIGKILL
2581 * and friends.
2583 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2585 struct task_struct *tsk = current;
2586 sigset_t newset;
2588 /* Lockless, only current can change ->blocked, never from irq */
2589 if (oldset)
2590 *oldset = tsk->blocked;
2592 switch (how) {
2593 case SIG_BLOCK:
2594 sigorsets(&newset, &tsk->blocked, set);
2595 break;
2596 case SIG_UNBLOCK:
2597 sigandnsets(&newset, &tsk->blocked, set);
2598 break;
2599 case SIG_SETMASK:
2600 newset = *set;
2601 break;
2602 default:
2603 return -EINVAL;
2606 __set_current_blocked(&newset);
2607 return 0;
2611 * sys_rt_sigprocmask - change the list of currently blocked signals
2612 * @how: whether to add, remove, or set signals
2613 * @nset: stores pending signals
2614 * @oset: previous value of signal mask if non-null
2615 * @sigsetsize: size of sigset_t type
2617 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2618 sigset_t __user *, oset, size_t, sigsetsize)
2620 sigset_t old_set, new_set;
2621 int error;
2623 /* XXX: Don't preclude handling different sized sigset_t's. */
2624 if (sigsetsize != sizeof(sigset_t))
2625 return -EINVAL;
2627 old_set = current->blocked;
2629 if (nset) {
2630 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2631 return -EFAULT;
2632 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2634 error = sigprocmask(how, &new_set, NULL);
2635 if (error)
2636 return error;
2639 if (oset) {
2640 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2641 return -EFAULT;
2644 return 0;
2647 #ifdef CONFIG_COMPAT
2648 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2649 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2651 #ifdef __BIG_ENDIAN
2652 sigset_t old_set = current->blocked;
2654 /* XXX: Don't preclude handling different sized sigset_t's. */
2655 if (sigsetsize != sizeof(sigset_t))
2656 return -EINVAL;
2658 if (nset) {
2659 compat_sigset_t new32;
2660 sigset_t new_set;
2661 int error;
2662 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2663 return -EFAULT;
2665 sigset_from_compat(&new_set, &new32);
2666 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2668 error = sigprocmask(how, &new_set, NULL);
2669 if (error)
2670 return error;
2672 if (oset) {
2673 compat_sigset_t old32;
2674 sigset_to_compat(&old32, &old_set);
2675 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2676 return -EFAULT;
2678 return 0;
2679 #else
2680 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2681 (sigset_t __user *)oset, sigsetsize);
2682 #endif
2684 #endif
2686 static int do_sigpending(void *set, unsigned long sigsetsize)
2688 if (sigsetsize > sizeof(sigset_t))
2689 return -EINVAL;
2691 spin_lock_irq(&current->sighand->siglock);
2692 sigorsets(set, &current->pending.signal,
2693 &current->signal->shared_pending.signal);
2694 spin_unlock_irq(&current->sighand->siglock);
2696 /* Outside the lock because only this thread touches it. */
2697 sigandsets(set, &current->blocked, set);
2698 return 0;
2702 * sys_rt_sigpending - examine a pending signal that has been raised
2703 * while blocked
2704 * @uset: stores pending signals
2705 * @sigsetsize: size of sigset_t type or larger
2707 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2709 sigset_t set;
2710 int err = do_sigpending(&set, sigsetsize);
2711 if (!err && copy_to_user(uset, &set, sigsetsize))
2712 err = -EFAULT;
2713 return err;
2716 #ifdef CONFIG_COMPAT
2717 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2718 compat_size_t, sigsetsize)
2720 #ifdef __BIG_ENDIAN
2721 sigset_t set;
2722 int err = do_sigpending(&set, sigsetsize);
2723 if (!err) {
2724 compat_sigset_t set32;
2725 sigset_to_compat(&set32, &set);
2726 /* we can get here only if sigsetsize <= sizeof(set) */
2727 if (copy_to_user(uset, &set32, sigsetsize))
2728 err = -EFAULT;
2730 return err;
2731 #else
2732 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2733 #endif
2735 #endif
2737 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2739 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2741 int err;
2743 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2744 return -EFAULT;
2745 if (from->si_code < 0)
2746 return __copy_to_user(to, from, sizeof(siginfo_t))
2747 ? -EFAULT : 0;
2749 * If you change siginfo_t structure, please be sure
2750 * this code is fixed accordingly.
2751 * Please remember to update the signalfd_copyinfo() function
2752 * inside fs/signalfd.c too, in case siginfo_t changes.
2753 * It should never copy any pad contained in the structure
2754 * to avoid security leaks, but must copy the generic
2755 * 3 ints plus the relevant union member.
2757 err = __put_user(from->si_signo, &to->si_signo);
2758 err |= __put_user(from->si_errno, &to->si_errno);
2759 err |= __put_user((short)from->si_code, &to->si_code);
2760 switch (from->si_code & __SI_MASK) {
2761 case __SI_KILL:
2762 err |= __put_user(from->si_pid, &to->si_pid);
2763 err |= __put_user(from->si_uid, &to->si_uid);
2764 break;
2765 case __SI_TIMER:
2766 err |= __put_user(from->si_tid, &to->si_tid);
2767 err |= __put_user(from->si_overrun, &to->si_overrun);
2768 err |= __put_user(from->si_ptr, &to->si_ptr);
2769 break;
2770 case __SI_POLL:
2771 err |= __put_user(from->si_band, &to->si_band);
2772 err |= __put_user(from->si_fd, &to->si_fd);
2773 break;
2774 case __SI_FAULT:
2775 err |= __put_user(from->si_addr, &to->si_addr);
2776 #ifdef __ARCH_SI_TRAPNO
2777 err |= __put_user(from->si_trapno, &to->si_trapno);
2778 #endif
2779 #ifdef BUS_MCEERR_AO
2781 * Other callers might not initialize the si_lsb field,
2782 * so check explicitly for the right codes here.
2784 if (from->si_signo == SIGBUS &&
2785 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2786 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2787 #endif
2788 #ifdef SEGV_BNDERR
2789 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2790 err |= __put_user(from->si_lower, &to->si_lower);
2791 err |= __put_user(from->si_upper, &to->si_upper);
2793 #endif
2794 break;
2795 case __SI_CHLD:
2796 err |= __put_user(from->si_pid, &to->si_pid);
2797 err |= __put_user(from->si_uid, &to->si_uid);
2798 err |= __put_user(from->si_status, &to->si_status);
2799 err |= __put_user(from->si_utime, &to->si_utime);
2800 err |= __put_user(from->si_stime, &to->si_stime);
2801 break;
2802 case __SI_RT: /* This is not generated by the kernel as of now. */
2803 case __SI_MESGQ: /* But this is */
2804 err |= __put_user(from->si_pid, &to->si_pid);
2805 err |= __put_user(from->si_uid, &to->si_uid);
2806 err |= __put_user(from->si_ptr, &to->si_ptr);
2807 break;
2808 #ifdef __ARCH_SIGSYS
2809 case __SI_SYS:
2810 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2811 err |= __put_user(from->si_syscall, &to->si_syscall);
2812 err |= __put_user(from->si_arch, &to->si_arch);
2813 break;
2814 #endif
2815 default: /* this is just in case for now ... */
2816 err |= __put_user(from->si_pid, &to->si_pid);
2817 err |= __put_user(from->si_uid, &to->si_uid);
2818 break;
2820 return err;
2823 #endif
2826 * do_sigtimedwait - wait for queued signals specified in @which
2827 * @which: queued signals to wait for
2828 * @info: if non-null, the signal's siginfo is returned here
2829 * @ts: upper bound on process time suspension
2831 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2832 const struct timespec *ts)
2834 struct task_struct *tsk = current;
2835 long timeout = MAX_SCHEDULE_TIMEOUT;
2836 sigset_t mask = *which;
2837 int sig;
2839 if (ts) {
2840 if (!timespec_valid(ts))
2841 return -EINVAL;
2842 timeout = timespec_to_jiffies(ts);
2844 * We can be close to the next tick, add another one
2845 * to ensure we will wait at least the time asked for.
2847 if (ts->tv_sec || ts->tv_nsec)
2848 timeout++;
2852 * Invert the set of allowed signals to get those we want to block.
2854 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2855 signotset(&mask);
2857 spin_lock_irq(&tsk->sighand->siglock);
2858 sig = dequeue_signal(tsk, &mask, info);
2859 if (!sig && timeout) {
2861 * None ready, temporarily unblock those we're interested
2862 * while we are sleeping in so that we'll be awakened when
2863 * they arrive. Unblocking is always fine, we can avoid
2864 * set_current_blocked().
2866 tsk->real_blocked = tsk->blocked;
2867 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2868 recalc_sigpending();
2869 spin_unlock_irq(&tsk->sighand->siglock);
2871 timeout = freezable_schedule_timeout_interruptible(timeout);
2873 spin_lock_irq(&tsk->sighand->siglock);
2874 __set_task_blocked(tsk, &tsk->real_blocked);
2875 sigemptyset(&tsk->real_blocked);
2876 sig = dequeue_signal(tsk, &mask, info);
2878 spin_unlock_irq(&tsk->sighand->siglock);
2880 if (sig)
2881 return sig;
2882 return timeout ? -EINTR : -EAGAIN;
2886 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2887 * in @uthese
2888 * @uthese: queued signals to wait for
2889 * @uinfo: if non-null, the signal's siginfo is returned here
2890 * @uts: upper bound on process time suspension
2891 * @sigsetsize: size of sigset_t type
2893 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2894 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2895 size_t, sigsetsize)
2897 sigset_t these;
2898 struct timespec ts;
2899 siginfo_t info;
2900 int ret;
2902 /* XXX: Don't preclude handling different sized sigset_t's. */
2903 if (sigsetsize != sizeof(sigset_t))
2904 return -EINVAL;
2906 if (copy_from_user(&these, uthese, sizeof(these)))
2907 return -EFAULT;
2909 if (uts) {
2910 if (copy_from_user(&ts, uts, sizeof(ts)))
2911 return -EFAULT;
2914 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2916 if (ret > 0 && uinfo) {
2917 if (copy_siginfo_to_user(uinfo, &info))
2918 ret = -EFAULT;
2921 return ret;
2925 * sys_kill - send a signal to a process
2926 * @pid: the PID of the process
2927 * @sig: signal to be sent
2929 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2931 struct siginfo info;
2933 info.si_signo = sig;
2934 info.si_errno = 0;
2935 info.si_code = SI_USER;
2936 info.si_pid = task_tgid_vnr(current);
2937 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2939 return kill_something_info(sig, &info, pid);
2942 static int
2943 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2945 struct task_struct *p;
2946 int error = -ESRCH;
2948 rcu_read_lock();
2949 p = find_task_by_vpid(pid);
2950 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2951 error = check_kill_permission(sig, info, p);
2953 * The null signal is a permissions and process existence
2954 * probe. No signal is actually delivered.
2956 if (!error && sig) {
2957 error = do_send_sig_info(sig, info, p, false);
2959 * If lock_task_sighand() failed we pretend the task
2960 * dies after receiving the signal. The window is tiny,
2961 * and the signal is private anyway.
2963 if (unlikely(error == -ESRCH))
2964 error = 0;
2967 rcu_read_unlock();
2969 return error;
2972 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2974 struct siginfo info = {};
2976 info.si_signo = sig;
2977 info.si_errno = 0;
2978 info.si_code = SI_TKILL;
2979 info.si_pid = task_tgid_vnr(current);
2980 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2982 return do_send_specific(tgid, pid, sig, &info);
2986 * sys_tgkill - send signal to one specific thread
2987 * @tgid: the thread group ID of the thread
2988 * @pid: the PID of the thread
2989 * @sig: signal to be sent
2991 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2992 * exists but it's not belonging to the target process anymore. This
2993 * method solves the problem of threads exiting and PIDs getting reused.
2995 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2997 /* This is only valid for single tasks */
2998 if (pid <= 0 || tgid <= 0)
2999 return -EINVAL;
3001 return do_tkill(tgid, pid, sig);
3005 * sys_tkill - send signal to one specific task
3006 * @pid: the PID of the task
3007 * @sig: signal to be sent
3009 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3011 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3013 /* This is only valid for single tasks */
3014 if (pid <= 0)
3015 return -EINVAL;
3017 return do_tkill(0, pid, sig);
3020 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3022 /* Not even root can pretend to send signals from the kernel.
3023 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3025 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3026 (task_pid_vnr(current) != pid))
3027 return -EPERM;
3029 info->si_signo = sig;
3031 /* POSIX.1b doesn't mention process groups. */
3032 return kill_proc_info(sig, info, pid);
3036 * sys_rt_sigqueueinfo - send signal information to a signal
3037 * @pid: the PID of the thread
3038 * @sig: signal to be sent
3039 * @uinfo: signal info to be sent
3041 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3042 siginfo_t __user *, uinfo)
3044 siginfo_t info;
3045 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3046 return -EFAULT;
3047 return do_rt_sigqueueinfo(pid, sig, &info);
3050 #ifdef CONFIG_COMPAT
3051 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3052 compat_pid_t, pid,
3053 int, sig,
3054 struct compat_siginfo __user *, uinfo)
3056 siginfo_t info = {};
3057 int ret = copy_siginfo_from_user32(&info, uinfo);
3058 if (unlikely(ret))
3059 return ret;
3060 return do_rt_sigqueueinfo(pid, sig, &info);
3062 #endif
3064 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3066 /* This is only valid for single tasks */
3067 if (pid <= 0 || tgid <= 0)
3068 return -EINVAL;
3070 /* Not even root can pretend to send signals from the kernel.
3071 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3073 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3074 (task_pid_vnr(current) != pid))
3075 return -EPERM;
3077 info->si_signo = sig;
3079 return do_send_specific(tgid, pid, sig, info);
3082 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3083 siginfo_t __user *, uinfo)
3085 siginfo_t info;
3087 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3088 return -EFAULT;
3090 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3093 #ifdef CONFIG_COMPAT
3094 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3095 compat_pid_t, tgid,
3096 compat_pid_t, pid,
3097 int, sig,
3098 struct compat_siginfo __user *, uinfo)
3100 siginfo_t info = {};
3102 if (copy_siginfo_from_user32(&info, uinfo))
3103 return -EFAULT;
3104 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3106 #endif
3109 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3111 void kernel_sigaction(int sig, __sighandler_t action)
3113 spin_lock_irq(&current->sighand->siglock);
3114 current->sighand->action[sig - 1].sa.sa_handler = action;
3115 if (action == SIG_IGN) {
3116 sigset_t mask;
3118 sigemptyset(&mask);
3119 sigaddset(&mask, sig);
3121 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3122 flush_sigqueue_mask(&mask, &current->pending);
3123 recalc_sigpending();
3125 spin_unlock_irq(&current->sighand->siglock);
3127 EXPORT_SYMBOL(kernel_sigaction);
3129 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3131 struct task_struct *p = current, *t;
3132 struct k_sigaction *k;
3133 sigset_t mask;
3135 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3136 return -EINVAL;
3138 k = &p->sighand->action[sig-1];
3140 spin_lock_irq(&p->sighand->siglock);
3141 if (oact)
3142 *oact = *k;
3144 if (act) {
3145 sigdelsetmask(&act->sa.sa_mask,
3146 sigmask(SIGKILL) | sigmask(SIGSTOP));
3147 *k = *act;
3149 * POSIX 3.3.1.3:
3150 * "Setting a signal action to SIG_IGN for a signal that is
3151 * pending shall cause the pending signal to be discarded,
3152 * whether or not it is blocked."
3154 * "Setting a signal action to SIG_DFL for a signal that is
3155 * pending and whose default action is to ignore the signal
3156 * (for example, SIGCHLD), shall cause the pending signal to
3157 * be discarded, whether or not it is blocked"
3159 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3160 sigemptyset(&mask);
3161 sigaddset(&mask, sig);
3162 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3163 for_each_thread(p, t)
3164 flush_sigqueue_mask(&mask, &t->pending);
3168 spin_unlock_irq(&p->sighand->siglock);
3169 return 0;
3172 static int
3173 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3175 stack_t oss;
3176 int error;
3178 oss.ss_sp = (void __user *) current->sas_ss_sp;
3179 oss.ss_size = current->sas_ss_size;
3180 oss.ss_flags = sas_ss_flags(sp);
3182 if (uss) {
3183 void __user *ss_sp;
3184 size_t ss_size;
3185 int ss_flags;
3187 error = -EFAULT;
3188 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3189 goto out;
3190 error = __get_user(ss_sp, &uss->ss_sp) |
3191 __get_user(ss_flags, &uss->ss_flags) |
3192 __get_user(ss_size, &uss->ss_size);
3193 if (error)
3194 goto out;
3196 error = -EPERM;
3197 if (on_sig_stack(sp))
3198 goto out;
3200 error = -EINVAL;
3202 * Note - this code used to test ss_flags incorrectly:
3203 * old code may have been written using ss_flags==0
3204 * to mean ss_flags==SS_ONSTACK (as this was the only
3205 * way that worked) - this fix preserves that older
3206 * mechanism.
3208 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3209 goto out;
3211 if (ss_flags == SS_DISABLE) {
3212 ss_size = 0;
3213 ss_sp = NULL;
3214 } else {
3215 error = -ENOMEM;
3216 if (ss_size < MINSIGSTKSZ)
3217 goto out;
3220 current->sas_ss_sp = (unsigned long) ss_sp;
3221 current->sas_ss_size = ss_size;
3224 error = 0;
3225 if (uoss) {
3226 error = -EFAULT;
3227 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3228 goto out;
3229 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3230 __put_user(oss.ss_size, &uoss->ss_size) |
3231 __put_user(oss.ss_flags, &uoss->ss_flags);
3234 out:
3235 return error;
3237 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3239 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3242 int restore_altstack(const stack_t __user *uss)
3244 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3245 /* squash all but EFAULT for now */
3246 return err == -EFAULT ? err : 0;
3249 int __save_altstack(stack_t __user *uss, unsigned long sp)
3251 struct task_struct *t = current;
3252 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3253 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3254 __put_user(t->sas_ss_size, &uss->ss_size);
3257 #ifdef CONFIG_COMPAT
3258 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3259 const compat_stack_t __user *, uss_ptr,
3260 compat_stack_t __user *, uoss_ptr)
3262 stack_t uss, uoss;
3263 int ret;
3264 mm_segment_t seg;
3266 if (uss_ptr) {
3267 compat_stack_t uss32;
3269 memset(&uss, 0, sizeof(stack_t));
3270 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3271 return -EFAULT;
3272 uss.ss_sp = compat_ptr(uss32.ss_sp);
3273 uss.ss_flags = uss32.ss_flags;
3274 uss.ss_size = uss32.ss_size;
3276 seg = get_fs();
3277 set_fs(KERNEL_DS);
3278 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3279 (stack_t __force __user *) &uoss,
3280 compat_user_stack_pointer());
3281 set_fs(seg);
3282 if (ret >= 0 && uoss_ptr) {
3283 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3284 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3285 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3286 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3287 ret = -EFAULT;
3289 return ret;
3292 int compat_restore_altstack(const compat_stack_t __user *uss)
3294 int err = compat_sys_sigaltstack(uss, NULL);
3295 /* squash all but -EFAULT for now */
3296 return err == -EFAULT ? err : 0;
3299 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3301 struct task_struct *t = current;
3302 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3303 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3304 __put_user(t->sas_ss_size, &uss->ss_size);
3306 #endif
3308 #ifdef __ARCH_WANT_SYS_SIGPENDING
3311 * sys_sigpending - examine pending signals
3312 * @set: where mask of pending signal is returned
3314 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3316 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3319 #endif
3321 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3323 * sys_sigprocmask - examine and change blocked signals
3324 * @how: whether to add, remove, or set signals
3325 * @nset: signals to add or remove (if non-null)
3326 * @oset: previous value of signal mask if non-null
3328 * Some platforms have their own version with special arguments;
3329 * others support only sys_rt_sigprocmask.
3332 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3333 old_sigset_t __user *, oset)
3335 old_sigset_t old_set, new_set;
3336 sigset_t new_blocked;
3338 old_set = current->blocked.sig[0];
3340 if (nset) {
3341 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3342 return -EFAULT;
3344 new_blocked = current->blocked;
3346 switch (how) {
3347 case SIG_BLOCK:
3348 sigaddsetmask(&new_blocked, new_set);
3349 break;
3350 case SIG_UNBLOCK:
3351 sigdelsetmask(&new_blocked, new_set);
3352 break;
3353 case SIG_SETMASK:
3354 new_blocked.sig[0] = new_set;
3355 break;
3356 default:
3357 return -EINVAL;
3360 set_current_blocked(&new_blocked);
3363 if (oset) {
3364 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3365 return -EFAULT;
3368 return 0;
3370 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3372 #ifndef CONFIG_ODD_RT_SIGACTION
3374 * sys_rt_sigaction - alter an action taken by a process
3375 * @sig: signal to be sent
3376 * @act: new sigaction
3377 * @oact: used to save the previous sigaction
3378 * @sigsetsize: size of sigset_t type
3380 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3381 const struct sigaction __user *, act,
3382 struct sigaction __user *, oact,
3383 size_t, sigsetsize)
3385 struct k_sigaction new_sa, old_sa;
3386 int ret = -EINVAL;
3388 /* XXX: Don't preclude handling different sized sigset_t's. */
3389 if (sigsetsize != sizeof(sigset_t))
3390 goto out;
3392 if (act) {
3393 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3394 return -EFAULT;
3397 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3399 if (!ret && oact) {
3400 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3401 return -EFAULT;
3403 out:
3404 return ret;
3406 #ifdef CONFIG_COMPAT
3407 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3408 const struct compat_sigaction __user *, act,
3409 struct compat_sigaction __user *, oact,
3410 compat_size_t, sigsetsize)
3412 struct k_sigaction new_ka, old_ka;
3413 compat_sigset_t mask;
3414 #ifdef __ARCH_HAS_SA_RESTORER
3415 compat_uptr_t restorer;
3416 #endif
3417 int ret;
3419 /* XXX: Don't preclude handling different sized sigset_t's. */
3420 if (sigsetsize != sizeof(compat_sigset_t))
3421 return -EINVAL;
3423 if (act) {
3424 compat_uptr_t handler;
3425 ret = get_user(handler, &act->sa_handler);
3426 new_ka.sa.sa_handler = compat_ptr(handler);
3427 #ifdef __ARCH_HAS_SA_RESTORER
3428 ret |= get_user(restorer, &act->sa_restorer);
3429 new_ka.sa.sa_restorer = compat_ptr(restorer);
3430 #endif
3431 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3432 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3433 if (ret)
3434 return -EFAULT;
3435 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3438 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3439 if (!ret && oact) {
3440 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3441 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3442 &oact->sa_handler);
3443 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3444 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3445 #ifdef __ARCH_HAS_SA_RESTORER
3446 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3447 &oact->sa_restorer);
3448 #endif
3450 return ret;
3452 #endif
3453 #endif /* !CONFIG_ODD_RT_SIGACTION */
3455 #ifdef CONFIG_OLD_SIGACTION
3456 SYSCALL_DEFINE3(sigaction, int, sig,
3457 const struct old_sigaction __user *, act,
3458 struct old_sigaction __user *, oact)
3460 struct k_sigaction new_ka, old_ka;
3461 int ret;
3463 if (act) {
3464 old_sigset_t mask;
3465 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3466 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3467 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3468 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3469 __get_user(mask, &act->sa_mask))
3470 return -EFAULT;
3471 #ifdef __ARCH_HAS_KA_RESTORER
3472 new_ka.ka_restorer = NULL;
3473 #endif
3474 siginitset(&new_ka.sa.sa_mask, mask);
3477 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3479 if (!ret && oact) {
3480 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3481 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3482 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3483 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3484 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3485 return -EFAULT;
3488 return ret;
3490 #endif
3491 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3492 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3493 const struct compat_old_sigaction __user *, act,
3494 struct compat_old_sigaction __user *, oact)
3496 struct k_sigaction new_ka, old_ka;
3497 int ret;
3498 compat_old_sigset_t mask;
3499 compat_uptr_t handler, restorer;
3501 if (act) {
3502 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3503 __get_user(handler, &act->sa_handler) ||
3504 __get_user(restorer, &act->sa_restorer) ||
3505 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3506 __get_user(mask, &act->sa_mask))
3507 return -EFAULT;
3509 #ifdef __ARCH_HAS_KA_RESTORER
3510 new_ka.ka_restorer = NULL;
3511 #endif
3512 new_ka.sa.sa_handler = compat_ptr(handler);
3513 new_ka.sa.sa_restorer = compat_ptr(restorer);
3514 siginitset(&new_ka.sa.sa_mask, mask);
3517 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3519 if (!ret && oact) {
3520 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3521 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3522 &oact->sa_handler) ||
3523 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3524 &oact->sa_restorer) ||
3525 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3526 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3527 return -EFAULT;
3529 return ret;
3531 #endif
3533 #ifdef CONFIG_SGETMASK_SYSCALL
3536 * For backwards compatibility. Functionality superseded by sigprocmask.
3538 SYSCALL_DEFINE0(sgetmask)
3540 /* SMP safe */
3541 return current->blocked.sig[0];
3544 SYSCALL_DEFINE1(ssetmask, int, newmask)
3546 int old = current->blocked.sig[0];
3547 sigset_t newset;
3549 siginitset(&newset, newmask);
3550 set_current_blocked(&newset);
3552 return old;
3554 #endif /* CONFIG_SGETMASK_SYSCALL */
3556 #ifdef __ARCH_WANT_SYS_SIGNAL
3558 * For backwards compatibility. Functionality superseded by sigaction.
3560 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3562 struct k_sigaction new_sa, old_sa;
3563 int ret;
3565 new_sa.sa.sa_handler = handler;
3566 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3567 sigemptyset(&new_sa.sa.sa_mask);
3569 ret = do_sigaction(sig, &new_sa, &old_sa);
3571 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3573 #endif /* __ARCH_WANT_SYS_SIGNAL */
3575 #ifdef __ARCH_WANT_SYS_PAUSE
3577 SYSCALL_DEFINE0(pause)
3579 while (!signal_pending(current)) {
3580 __set_current_state(TASK_INTERRUPTIBLE);
3581 schedule();
3583 return -ERESTARTNOHAND;
3586 #endif
3588 static int sigsuspend(sigset_t *set)
3590 current->saved_sigmask = current->blocked;
3591 set_current_blocked(set);
3593 __set_current_state(TASK_INTERRUPTIBLE);
3594 schedule();
3595 set_restore_sigmask();
3596 return -ERESTARTNOHAND;
3600 * sys_rt_sigsuspend - replace the signal mask for a value with the
3601 * @unewset value until a signal is received
3602 * @unewset: new signal mask value
3603 * @sigsetsize: size of sigset_t type
3605 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3607 sigset_t newset;
3609 /* XXX: Don't preclude handling different sized sigset_t's. */
3610 if (sigsetsize != sizeof(sigset_t))
3611 return -EINVAL;
3613 if (copy_from_user(&newset, unewset, sizeof(newset)))
3614 return -EFAULT;
3615 return sigsuspend(&newset);
3618 #ifdef CONFIG_COMPAT
3619 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3621 #ifdef __BIG_ENDIAN
3622 sigset_t newset;
3623 compat_sigset_t newset32;
3625 /* XXX: Don't preclude handling different sized sigset_t's. */
3626 if (sigsetsize != sizeof(sigset_t))
3627 return -EINVAL;
3629 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3630 return -EFAULT;
3631 sigset_from_compat(&newset, &newset32);
3632 return sigsuspend(&newset);
3633 #else
3634 /* on little-endian bitmaps don't care about granularity */
3635 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3636 #endif
3638 #endif
3640 #ifdef CONFIG_OLD_SIGSUSPEND
3641 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3643 sigset_t blocked;
3644 siginitset(&blocked, mask);
3645 return sigsuspend(&blocked);
3647 #endif
3648 #ifdef CONFIG_OLD_SIGSUSPEND3
3649 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3651 sigset_t blocked;
3652 siginitset(&blocked, mask);
3653 return sigsuspend(&blocked);
3655 #endif
3657 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3659 return NULL;
3662 void __init signals_init(void)
3664 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3667 #ifdef CONFIG_KGDB_KDB
3668 #include <linux/kdb.h>
3670 * kdb_send_sig_info - Allows kdb to send signals without exposing
3671 * signal internals. This function checks if the required locks are
3672 * available before calling the main signal code, to avoid kdb
3673 * deadlocks.
3675 void
3676 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3678 static struct task_struct *kdb_prev_t;
3679 int sig, new_t;
3680 if (!spin_trylock(&t->sighand->siglock)) {
3681 kdb_printf("Can't do kill command now.\n"
3682 "The sigmask lock is held somewhere else in "
3683 "kernel, try again later\n");
3684 return;
3686 spin_unlock(&t->sighand->siglock);
3687 new_t = kdb_prev_t != t;
3688 kdb_prev_t = t;
3689 if (t->state != TASK_RUNNING && new_t) {
3690 kdb_printf("Process is not RUNNING, sending a signal from "
3691 "kdb risks deadlock\n"
3692 "on the run queue locks. "
3693 "The signal has _not_ been sent.\n"
3694 "Reissue the kill command if you want to risk "
3695 "the deadlock.\n");
3696 return;
3698 sig = info->si_signo;
3699 if (send_sig_info(sig, info, t))
3700 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3701 sig, t->pid);
3702 else
3703 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3705 #endif /* CONFIG_KGDB_KDB */